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PREFACE

I like to work in a variety of �elds

in order to spread my mistakes more thinly.

| VICTOR KLEE (1999)

This booklet ontains draft material that I'm irulating to experts in the

�eld, in hopes that they an help remove its most egregious errors before too

many other people see it. I am also, however, posting it on the Internet for

ourageous and/or random readers who don't mind the risk of reading a few

pages that have not yet reahed a very mature state. Beware: This material has

not yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3

were at the time of their �rst printings. And those arefully-heked volumes,

alas, were subsequently found to ontain thousands of mistakes.

Given this aveat, I hope that my errors this time will not be so numerous

and/or obtrusive that you will be disouraged from reading the material arefully.

I did try to make it both interesting and authoritative, as far as it goes. But the

�eld is so vast, I annot hope to have surrounded it enough to orral it ompletely.

Therefore I beg you to let me know about any de�ienies you disover.

To put the material in ontext, this is Setion 7.2.1.7 of a long, long hapter

on ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namely

Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will

begin with a short review of graph theory, with emphasis on some highlights

of signi�ant graphs in the Stanford GraphBase, from whih I will be drawing

many examples. Then omes Setion 7.1, whih deals with the topi of bitwise

manipulations. (I drafted about 60 pages about that subjet in 1977, but

those pages need extensive revision; meanwhile I've deided to work for awhile

on the material that follows it, so that I an get a better feel for how muh

to ut.) Setion 7.2 is about generating all possibilities, and it begins with

Setion 7.2.1: Generating Basi Combinatorial Patterns|whih, in turn, begins

with Setion 7.2.1.1, \Generating all n-tuples," Setion 7.2.1.2, \Generating all

permutations," : : : , Setion 7.2.1.6, \Generating all trees." (Readers of the

present booklet should have already looked at those setions, drafts of whih are

available as Pre-Fasiles 2A, 2B, 3A, 3B, and 4A.) The stage is now set for the

main ontents of this booklet, Setion 7.2.1.7: \History and further referenes."

Setion 7.2.2 will deal with baktraking in general. And so it will ontinue, if

all goes well; an outline of the entire Chapter 7 as urrently envisaged appears

on the taop webpage that is ited on page ii.

iii
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iv PREFACE

Writing about history is extraordinarily diÆult, not only beause the soure

materials are widely sattered but also beause I must operate at the limit of my

ability to understand languages other than English. Furthermore, fats about

real life are muh more ompliated than fats about mathematis. No summary

an adequately onvey the true feelings of an era or the true spirit of a ulture,

yet the story that I'm trying to tell in this setion overs many enturies of

development in many di�erent parts of the world. The story is fasinating, and

many parts of it do not seem to have been told before, at least not in English.

Therefore I'm keen to have professional historians of mathematis take a look at

what I've been able to piee together, hoping that they will not be too shoked

by blunders that have resulted from my present ignorane and/or inompetene.

I hope also to get advie from people of many di�erent ultures who know of

relevant traditions that have not yet been well studied by professional historians.

The answer to exerise 6 poses two historial problems that I haven't been

able to resolve. I urgently need your help also with respet to some exerises that

I made up as I was preparing this material. I ertainly don't like to reeive redit

for things that have already been published by others, and most of these results

are quite natural \fruits" that were just waiting to be \pluked." Therefore

please tell me if you know who deserves to be redited, with respet to the ideas

found in exerises 2, 8, 10, 17, 20, 26, and/or 27.

I shall happily pay a �nder's fee of $2.56 for eah error in this draft when it is

�rst reported to me, whether that error be typographial, tehnial, or historial.

The same reward holds for items that I forgot to put in the index. And valuable

suggestions for improvements to the text are worth 32/ eah. (Furthermore, if

you �nd a better solution to an exerise, I'll atually reward you with immortal

glory instead of mere money, by publishing your name in the eventual book:�)

Cross referenes to yet-unwritten material sometimes appear as `00'; this

impossible value is a plaeholder for the atual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.

12 Otober 2004

-4



0 COMBINATORIAL ALGORITHMS (F4B)

[This subjet℄ has a relation

to almost every speies of useful knowledge

that the mind of man an be employed upon.

| JAMES BERNOULLI, Ars Conjetandi (1713)

7.2.1.7. History and further referenes. Early work on the generation of

ombinatorial patterns began as ivilization itself was taking shape. The story

is quite fasinating, and we will see that it spans many ultures in many parts of

the world, with ties to poetry, musi, and religion. There is spae here to disuss

only some of the prinipal highlights; but perhaps a few glimpses into the past

will stimulate the reader to dig deeper into the roots of the subjet, as the world

gets ever smaller and as global sholarship ontinues to advane.

Lists of binary n-tuples an be traed bak thousands of years to anient

China, India, and Greee. The most notable soure|beause it still is a best-

selling book in modern translations| is the Chinese I Ching or Yijing, whose

name means \the Bible of Changes." This book, whih is one of the �ve lassis

of Confuian wisdom, onsists essentially of 2

6

= 64 hapters; and eah hapter

is symbolized by a hexagram formed from six lines, eah of whih is either

(\yin") or (\yang"). For example, hexagram 1 is pure yang, ; hexagram 2

is pure yin, ; and hexagram 64 intermixes yin and yang, with yang on top: .

Here is the omplete list:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

(1)

This arrangement of the 64 possibilities is alled King Wen's ordering, beause

the basi text of the I Ching has traditionally been asribed to King Wen (. 1100

B.C.), the legendary progenitor of the Chou dynasty. Anient texts are, however,

notoriously diÆult to date reliably, and modern historians have found no solid

evidene that anyone atually ompiled suh a list of hexagrams before the third

entury B.C.

Notie that the hexagrams of (1) our in pairs: Those with odd numbers are

immediately followed by their top-to-bottom reetions, exept when reetion

would make no hange; and the eight symmetrial diagrams are paired with

their omplements (1 = 2, 27 = 28, 29 = 30, 61 = 62). Hexagrams that are

omposed from two trigrams that represent the four basi elements heaven ( ),

earth ( ), �re ( ), and water ( ) have also been plaed judiiously. Otherwise

the arrangement appears to be essentially random, as if a person untrained in

mathematis kept listing di�erent possibilities until being unable to ome up

with any more. A few intriguing patterns do exist between the pairs, but no

more than are present by oinidene in the digits of � (see 3.3{(1)).

0



7.2.1.7 HISTORY AND FURTHER REFERENCES 1

Yin and yang represent omplementary aspets of the elementary fores of

nature, always in tension, always hanging. The I Ching is somewhat analogous

to a thesaurus in whih the hexagrams serve as an index to aumulated wisdom

about fundamental onepts like giving ( ), reeiving ( ), modesty ( ), joy

( ), fellowship ( ), withdrawal ( ), peae ( ), onit ( ), organization

( ), orruption ( ), immaturity ( ), elegane ( ), et. One an hoose

a pair of hexagrams at random, obtaining the seond from the �rst by, say,

independently hanging eah yin to yang (or vie versa) with probability 1/4;

this tehnique yields 4096 ways to ponder existential mysteries, as well as a

Markov proess by whih hange itself might perhaps give meaning to life.

A stritly logial way to arrange the hexagrams was eventually introdued

about A.D. 1060 by Shao Yung. His ordering, whih proeeded lexiographially

from to to to to to � � � to to (reading eah hexagram from

bottom to top), was muh more user-friendly than the King Wen order, beause

a random pattern ould now be found quikly. When G. W. Leibniz learned

about this sequene of hexagrams in 1702, he jumped to the erroneous onlusion

that Chinese mathematiians had one been familiar with binary arithmeti.

[See Frank Swetz, Mathematis Magazine 76 (2003), 276{291. Further details

about the I Ching an be found, for example, in Joseph Needham's Siene and

Civilisation in China 2 (Cambridge University Press, 1956), 304{345; R. J. Lynn,

The Classi of Changes (New York: Columbia University Press, 1994).℄

Another anient Chinese philosopher, Yang Hsiung, proposed a system based

on 81 ternary tetragrams instead of 64 binary hexagrams. His Canon of Supreme

Mystery, written . 2 B.C., has reently been translated into English by Mihael

Nylan (Albany, New York: 1993). Yang desribed a omplete, hierarhial ter-

nary tree struture in whih there are 3 regions, with 3 provines in eah region,

3 departments in eah provine, 3 families in eah department, and 9 short poems

alled \appraisals" for eah family, hene 729 appraisals in all|making almost

exatly 2 appraisals for every day in the year. His tetragrams were arranged in

strit lexiographi order when read top-to-bottom: , , , , , , ,

: : : , . In fat, as explained on page 28 of Nylan's book, Yang presented a simple

way to ompute the rank of eah tetragram, as if using a radix-3 number system.

Thus he would not have been surprised or impressed by Shao Yung's systemati

ordering of binary hexagrams, although Shao lived more than 1000 years later.

Indian prosody. Binary n-tuples were studied in a ompletely di�erent ontext

by pundits in anient India, who investigated the poeti meters of sared Vedi

hants. Syllables in Sanskrit are either short (. ) or long (_), and the study

of syllable patterns is alled \prosody." Modern writers use the symbols ^

and �� instead of . and _. A typial Vedi verse onsists of four lines with

n syllables per line, for some n � 8; prosodists therefore sought a way to lassify

all 2

n

possibilities. The lassi work Chandah

.

�s�astra by Pi _ngala, written before

A.D. 400 and probably muh earlier (the exat date is quite unertain), desribed

proedures by whih one ould readily �nd the index k of any given pattern of

^s and ��s, as well as to �nd the kth pattern, given k. In other words, Pi _ngala

explained how to rank any given pattern as well as to unrank any given index;

1



2 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

thus he went beyond the work of Yang Hsiung, who had onsidered ranking but

not unranking. Pi _ngala's methods were also related to exponentiation, as we

have noted earlier in onnetion with Algorithm 4.6.3A.

The next important step was taken by a prosodist named Ked�ara in his

work Vr

.

ttaratn�akara, thought to have been written in the 8th entury. Ked�ara

gave a step-by-step proedure for listing all the n-tuples from ������ : : :�� to

^���� : : :�� to ��^�� : : :�� to ^^�� : : :�� to ����^: : :�� to ^��^: : :��

to � � � to ^^^: : :^, essentially Algorithm 7.2.1.1M in the ase of radix 2. His

method may well have been the �rst-ever expliit algorithm for ombinatorial

sequene generation. [See B. van Nooten, J. Indian Philos. 21 (1993), 31{50.℄

Poeti meters an also be regarded as rhythms, with one beat for eah ^

and two beats for eah ��. An n-syllable pattern an involve between n and 2n

beats, but musial rhythms suitable for marhing or daning generally are based

on a �xed number of beats. Therefore it was natural to onsider the set of all

sequenes of ^s and ��s that have exatly m beats, for �xed m. Suh patterns

are now alled Morse ode sequenes of length m, and we know from exerise

4.5.3{32 that there are exatly F

m+1

of them. For example, the 21 sequenes

when m = 7 are

^������, ��^����, ^^^����, ����^��, ^^��^��,

^��^^��, ��^^^��, ^^^^^��, ������^,

^^����^, ^��^��^, ��^^��^, ^^^^��^,

^����^^, ��^��^^, ^^^��^^, ����^^^,

^^��^^^, ^��^^^^, ��^^^^^, ^^^^^^^.

(2)

In this way Indian prosodists were led to disover the Fibonai sequene, as we

have observed in Setion 1.2.8.

Moreover, the anonymous author of Pr�akr

.

ta Pai�ngala (. 1320) disovered

elegant algorithms for ranking and unranking with respet to m-beat rhythms.

To �nd the kth pattern, one starts by writing down m ^s, then expresses the

di�erene d = F

m+1

� k as a sum of Fibonai numbers F

j

1

+ � � �+F

j

t

; here F

j

1

is the largest Fibonai number that is � d and F

j

2

is the largest � d�F

j

1

, et.,

ontinuing until the remainder is zero. Then beats j�1 and j are to be hanged

from ^^ to ��, for j = j

1

, : : : , j

t

. For example, to get the 5th element of (2)

we ompute 21� 5 = 16 = 13 + 3 = F

7

+ F

4

; the answer is ^^��^��.

A few years later, N�ar�ayan

.

a Pan

.

d

.

ita treated the more general problem of

�nding all ompositions of m whose parts are � q, where q is any given posi-

tive integer. As a onsequene he disovered the qth-order Fibonai sequene

5.4.2{(4), whih was destined to be used 600 years later in polyphase sorting;

he also developed the orresponding ranking and unranking algorithms. [See

Parmanand Singh, Historia Mathematia 12 (1985), 229{244, and exerise 16.℄

Pi _ngala gave speial ode-names to all the three-syllable meters,

������ = m (m), ����^ = t (t),

^���� = y (y), ^��^ = j (j),

��^�� = r (r), ��^^ = B (bh),

^^�� = s (s), ^^^ = n (n),

(3)

2



7.2.1.7 HISTORY AND FURTHER REFERENCES 3

and students of Sanskrit have been expeted to memorize them ever sine.

Somebody long ago devised a lever way to reall these odes, by inventing

the nonsense word yam�at�ar�ajabh�anasalag�am (ymAtArAjBAnslgAm); the point

is that the ten syllables of this word an be written

ya

^

m�a

��

t�a

��

r�a

��

ja

^

bh�a

��

na

^

sa

^

la

^

g�am

��

(4)

and eah three-syllable pattern ours just after its ode name. The origin of

yam�a : : : lag�am is obsure, but Subhash Kak [Indian J. History of Siene 35

(2000), 123{127℄ has traed it bak at least to C. P. Brown's Sanskrit Prosody

(1869), page 28; thus it quali�es as the earliest known appearane of a \de Bruijn

yle" that enodes binary n-tuples.

Meanwhile, in Europe. In a similar way, lassi Greek poetry was based on

groups of short and/or long syllables alled \metrial feet," analogous to bars of

musi. Eah basi type of foot aquired a Greek name; for example, two short

syllables `^^' were alled a pyrrhi, and two long syllables `����' were alled a

spondee, beause those rhythms were used respetively in a song of war (purr�qh)

or a song of peae (sponda�). Greek names for metri feet were soon assimilated

into Latin and eventually into modern languages, inluding English:

^ arsis

�� thesis

^^ pyrrhi

^�� iambus

��^ trohee

���� spondee

^^^ tribrah

^^�� anapest

^��^ amphibrah

^���� bahius

��^^ datyl

��^�� amphimaer

����^ palimbahius

������ molossus

^^^^ proeleusmati

^^^�� fourth p�on

^^��^ third p�on

^^���� minor ioni

^��^^ seond p�on

^��^�� diiambus

^����^ antispast

^������ �rst epitrite

��^^^ �rst p�on

��^^�� horiambus

��^��^ ditrohee

��^���� seond epitrite

����^^ major ioni

����^�� third epitrite

������^ fourth epitrite

�������� dispondee

(5)

Alternative names, like \horee" instead of \trohee," or \reti" instead of

\amphimaer," were also in ommon use. Moreover, by the time Diomedes wrote

his Latin grammar (approximately A.D. 375), eah of the 32 �ve-syllable feet

had aquired at least one name. Diomedes also pointed out the relation between

omplementary patterns; he stated for example that tribrah and molossus are

\ontrarius," as are amphibrah and amphimaer. But he also regarded datyl

as the ontrary of anapest, and bahius as the ontrary of palimbahius, al-

though the literal meaning of palimbahius is atually \reverse bahius." Greek

prosodists had no standard order in whih to list the individual possibilities, and

3



4 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

the form of the names makes it lear that no onnetion to a radix-two number

system was ontemplated. [See H. Keil, Grammatii Latini 1 (1857), 474{482;

W. von Christ, Metrik der Griehen und R�omer (1879), 78{79.℄

Surviving fragments of a work by Aristoxenus alled Elements of Rhythm

(. 325 B.C.) show that the same terminology was applied also to musi. And

indeed, the same traditions lived on after the Renaissane; for example, we �nd

on page 32 of Athanasius Kirher's Musurgia Universalis 2 (Rome: 1650), and

Kirher went on to desribe all of the three-note and four-note rhythms of (5).

Early lists of permutations. We've traed the history of formulas for ounting

permutations in Setion 5.1.2; but nontrivial lists of permutations were not

published until hundreds of years after the formula n! was disovered. The �rst

suh tabulation urrently known was ompiled by the Italian physiian Shabbetai

Donnolo in his ommentary on the kabbalisti Sefer Yetzirah, written in A.D. 946.

Table 1 shows his list for n = 5 as it was subsequently printed in Warsaw (1884).

(The Hebrew letters in this table are typeset in a rabbinial font traditionally

used for ommentaries; notie that the letter hanges its shape to when it

appears at the left end of a word.) Donnolo went on to list 120 permutations

of the six-letter word , all beginning with shin ( ); then he noted that

120 more ould be obtained with eah of the other �ve letters in front, making

720 in all. His lists involved groupings of six permutations, but in a haphazard

fashion that led him into error (see exerise 4). Although he knew how many

permutations there were supposed to be, and how many should start with a given

letter, he evidently didn't have an algorithm for generating them.

Table 1

A MEDIEVAL LIST OF PERMUTATIONS

A omplete list of all 720 permutations of fa; b; ; d; e; fg appeared on pages

668{671 of Jeremias Drexel's Orbis Pha�ethon (Munih: 1629; also on pages 526{

531 of the Cologne edition in 1631). He o�ered it as proof that a man with six

guests ould seat them di�erently at lunh and dinner every day for a year|

4



7.2.1.7 HISTORY AND FURTHER REFERENCES 5

altogether 360 days, beause there were �ve days of fasting during Holy Week.

Shortly afterwards, Marin Mersenne exhibited all 720 permutations of the six

tones fut; re;mi; fa; sol; lag, on pages 111{115 of his Traitez de la Voix et des

Chants (Volume 2 of Harmonie Universelle, 1636); then on pages 117{128 he

presented the same data in musial notation:

Drexel's table was organized lexiographially by olumns; Mersenne's tables

were lexiographi with respet to the order ut < re < mi < fa < sol < la, begin-

ning with \ut,re,mi,fa,sol,la" and ending with \la,sol,fa,mi,re,ut." Mersenne also

prepared a \grand et immense" manusript that listed all 40,320 permutations

of eight notes on 672 folio pages, followed by ranking and unranking algorithms

[Biblioth�eque nationale de Frane, Fonds Fran�ais, no. 24256℄.

We saw in Setion 7.2.1.2 that the important idea of plain hanges, Algo-

rithm 7.2.1.2P, was invented in England a few years later.

Methods for listing all permutations of a multiset with repeated elements

were often misunderstood by early authors. For example, when Bh�askara exhib-

ited the permutations of f4; 5; 5; 5; 8g in setion 271 of his L

�

�l�avat

�

� (. 1150), he

gave them in the following order:

48555 84555 54855 58455 55485

55845 55548 55584 45855 45585

45558 85455 85545 85554 54585

58545 55458 55854 54558 58554

(6)

Mersenne used a slightly more sensible but not ompletely systemati order on

page 131 of his book when he listed sixty anagrams of the Latin name IESVS.

When Athanasius Kirher wanted to illustrate the 30 permutations of a �ve-

note melody on pages 10 and 11 of Musurgia Universalis 2 (1650), this lak of a

system got him into trouble (see exerise 5):

(7)

But John Wallis knew better. On page 117 of his Disourse of Combinations

(1685) he orretly listed the 60 anagrams of \messes" in lexiographi order, if

we let m < e < s ; and on page 126 he reommended respeting alphabeti order

\that we may be the more sure, not to miss any."

We will see later that the Indian mathematiian N�ar�ayan

.

a Pan

.

d

.

ita had al-

ready developed a theory of permutation generation in the 14th entury, although

his work remained almost totally unknown.

5



6 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Seki's list. Takakazu Seki (1642{1708) was a harismati teaher and researher

who revolutionized the study of mathematis in 17th-entury Japan. While he

was studying the elimination of variables from simultaneous homogeneous equa-

tions, he was led to expressions suh as a

1

b

2

� a

2

b

1

and a

1

b

2



3

� a

1

b

3



2

+

a

2

b

3



1

� a

2

b

1



3

+ a

3

b

1



2

� a

3

b

2



1

, whih we now reognize as determinants.

In 1683 he published a booklet about this disovery, introduing an ingenious

sheme for listing all permutations in suh a way that half of them were \alive"

(even) and the other half were \dead" (odd). Starting with the ase n = 2, when

`12' was alive and `21' was dead, he formulated the following rules for n > 2:

1) Take every live permutation for n�1, inrease all its elements by 1, and insert

1 in front. This rule produes (n�1)!=2 \basi permutations" of f1; : : : ; ng.

2) From eah basi permutation, form 2n others by rotation and reetion:

a

1

a

2

: : : a

n�1

a

n

; a

2

: : : a

n�1

a

n

a

1

; : : : ; a

n

a

1

a

2

: : : a

n�1

; (8)

a

n

a

n�1

: : : a

2

a

1

; a

1

a

n

a

n�1

: : : a

2

; : : : ; a

n�1

: : : a

2

a

1

a

n

: (9)

If n is odd, those in the �rst row are alive and those in the seond are dead;

if n is even, those in eah row are alternatively alive, dead, : : : , alive, dead.

For example, when n = 3 the only basi permutation is 123. Thus 123, 231,

312 are alive while 321, 132, 213 are dead, and we've suessfully generated the

six terms of a 3 � 3 determinant. The basi permutations for n = 4 are 1234,

1342, 1423; and from, say, 1342 we get a set of eight, namely

+ 1342� 3421 + 4213� 2134 + 2431� 1243 + 3124� 4321; (10)

alternately alive (+) and dead (�). A 4 � 4 determinant therefore inludes the

terms a

1

b

3



4

d

2

� a

3

b

4



2

d

1

+ � � � � a

4

b

3



2

d

1

and sixteen others.

Seki's rule for permutation generation is quite pretty, but unfortunately it

has a serious problem: It doesn't work when n > 4. His error seems to have

gone unreognized for hundreds of years. [See Y. Mikami, The Development of

Mathematis in China and Japan (1913), 191{199; Takakazu Seki's Colleted

Works (Osaka: 1974), 18{20, : : ; and exerises 7{8.℄

Lists of ombinations. The earliest exhaustive list of ombinations known to

have survived the ravages of time appears in the last book of Su�sruta's well-known

Sanskrit treatise on mediine, Chapter 63, written before A.D. 600 and perhaps

muh earlier. Noting that mediine an be sweet, sour, salty, peppery, bitter,

and/or astringent, Su�sruta's book diligently listed the (15; 20; 15; 6; 1; 6) ases

that arise when those qualities our two, three, four, �ve, six, and one at a time.

Bh�askara repeated this example in setions 110{114 of L

�

�l�avat

�

�, and observed

that the same reasoning applies to six-syllable poeti meters with a given number

of long syllables. But he simply mentioned the totals, (6; 15; 20; 15; 6; 1), without

listing the ombinations themselves. In setions 274 and 275, he observed that

the numbers (n)(n� 1) : : : (n� k + 1)=(k(k � 1) : : : (1)) enumerate ompositions

(that is, ordered partitions) as well as ombinations; again he gave no list.

To avoid prolixity this is treated in a brief manner;

for the siene of alulation is an oean without bounds.

| Bh�askara (. 1150)

6



7.2.1.7 HISTORY AND FURTHER REFERENCES 7

An isolated but interesting list of ombinations appeared in the remarkable

algebra text Al-B�ahir �'l-h

.

is�ab (The Shining Book of Calulation), written by

al-Samaw'al of Baghdad when he was only 19 years old (1144). In the losing

part of that work he presented a list of

�

10

6

�

= 210 simultaneous linear equations

in 10 unknowns:

Al-Samaw'al's Arabi original Equivalent modern notation

65 654321 m (1) x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

6

= 65

70 754321 o (2) x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

7

= 70

75 854321 ~ (3) x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

8

= 75

.

.

.

.

.

.

91 1098764 ¢ � (209) x

4

+ x

6

+ x

7

+ x

8

+ x

9

+ x

10

= 91

100 1098765 Ý � (210) x

5

+ x

6

+ x

7

+ x

8

+ x

9

+ x

10

= 100

(11)

Eah ombination of ten things taken six at a time yielded one of his equa-

tions. His purpose was evidently to demonstrate that over-determined equations

an still have a unique solution|whih in this ase was (x

1

; x

2

; : : : ; x

10

) =

(1; 4; 9; 16; 25; 10; 15; 20; 25; 5). [Salah Ahmad and Roshdi Rashed, Al-B�ahir en

Alg�ebre d'As-Samaw'al (Damasus: 1972), 77{82, 248{231.℄

Rolling die. Some glimmerings of elementary ombinatoris arose also in

medieval Europe, espeially in onnetion with the question of listing all possible

outomes when three die are thrown. There are, of ourse,

�

8

3

�

= 56 ways to

hoose 3 things from 6 when repetitions are allowed. Gambling was oÆially pro-

hibited; yet these 56 ways beame rather well known. In about A.D. 965, Bishop

Wibold of Cambrai in northern Frane devised a game alled Ludus Clerialis,

so that members of the lergy ould enjoy rolling die while remaining pious.

His idea was to assoiate eah possible roll with one of 56 virtues, aording to

the following table:

q q q

love

q

q

q

q

q

q

q

q

q

q

perseverane q

q

q

q

q

q

q

qq

q hospitality q

q

q

q

qq

q q

q

q

q

q

q

morti�ation

q q

q

q

faith

q

q

qq

q q

qq

q kindness q

q

q

q

q

q

q

q

q

q

q

eonomy q

q

q

q

q

qq

q q

q

qq

q innoene

q q

q

q

q

hope

q

q

qq

q q

q

qq

q modesty q

q

q

qq

q q

qq

q patiene q

q

q

q

q

qq

q q

q

q

q

q

q

ontrition

q q

q

qq

q justie

q

q

qq

q q

q

q

q

q

q

resignation q

q

q

qq

q q

q

qq

q zeal q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

onfession

q q

q

q

qq

q prudene

q

q

q

qq

q q

q

qq

q gentleness q

q

q

qq

q q

q

q

q

q

q

poverty q

qq

q q

qq

q q

qq

q maturity

q q

q

q

q

q

q

q

temperane

q

q

q

qq

q q

q

q

q

q

q

generosity q

q

q

q

qq

q q

q

qq

q softness q

qq

q q

qq

q q

q

qq

q soliitude

q

q

q

q

q

ourage

q

q

q

q

q

q

q

q

q

q

q

q

q

wisdom q

q

q

q

qq

q q

q

q

q

q

q

virginity q

qq

q q

qq

q q

q

q

q

q

q

onstany

q

q

q

q

q

q

peae q

q

q

q

q

q

remorse q

q

q

q

q

q

q

q

q

q

q

q

q

q

respet q

qq

q q

q

qq

q q

q

qq

q intelligene

q

q

q

q

qq

q hastity q

q

q

q

q

q

q

joy q

q

q

q

q

q

q

q

q

piety q

qq

q q

q

qq

q q

q

q

q

q

q

sighing

q

q

q

q

q

qq

q mery q

q

q

q

q

qq

q sobriety q

q

q

q

q

q

q

qq

q indulgene q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

weeping

q

q

q

q

q

q

q

q

q

obediene q

q

q

q

q

q

qq

q satisfation q

q

q

q

q

q

q

q

qq

q prayer q

q

qq

q q

q

qq

q q

q

qq

q heerfulness

q

q

q

q

q

q

q

fear q

q

q

q

q

q

q

q

q

q

sweetness q

q

q

q

q

q

q

q

q

q

q

q

a�etion q

q

qq

q q

q

qq

q q

q

q

q

q

q

ompassion

q

q

q

q

q

qq

q foresight q

q

q

q

q

q

q

q

leverness q

q

q

q

qq

q q

qq

q judgment q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

self-ontrol

q

q

q

q

q

q

qq

q disretion q

q

q

q

q

q

qq

q simpliity q

q

q

q

qq

q q

q

qq

q vigilane q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

humility

Players took turns, and the �rst to roll eah virtue aquired it. After all possibil-

ities had arisen, the most virtuous player won. Wibold noted that love (aritas)

is the best virtue of all. He gave a ompliated soring system by whih two

virtues ould be ombined if the sum of pips on all six of their die was 21; for

7
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example, love + humility or hastity + intelligene ould be paired in this way,

and suh ombinations ranked above any individual virtue. He also onsidered

more omplex variants of the game in whih vowels appeared on the die instead

of spots, so that virtues ould be laimed if their vowels were thrown.

Wibold's table of virtues was presented in lexiographi order, as above,

when it was �rst desribed by Bald�eri in his Chronion Cameraense, about

150 years later. [Patrologia Latina 134 (Paris: 1884), 1007{1016.℄ But another

medieval manusript presented the possible die rolls in quite a di�erent order:

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

qq

q q

q

qq

q q

qq

q q

qq

q q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

qq

q q

q

q

q

q

q

q

q

qq

q q

q

qq

q q

qq

q q

q

qq

q q

q

qq

q q

q

q

q

q

qq

q q

q

qq

q q

q

q

q

qq

q q

q

qq

q

q

q

qq

q q

qq

q q

q

q

q

q

q

q

qq

q q

qq

q q

q

qq

q q

qq

q q

qq

q q

q

q

q

qq

q q

qq

q q

q

q

qq

q q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q q q

q

q

q

q

q

q

q q

q

q

qq

q

q q

q

qq

q

q q

q

q

q

q q

q

q

q

q

q

q

q

q

q

q

qq

q q

qq

q q

q

qq

q q

qq

q q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

qq

q q

q

q

q

q

qq

q q

qq

q q

q

q

q

qq

q q

qq

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

qq

q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q q

q

q

q

q

(12)

In this ase the author knew how to deal with repeated values, but had a very

ompliated, ad ho way to handle the ases in whih all die were di�erent. [See

D. R. Bellhouse, International Statistial Review 68 (2000), 123{136.℄

An amusing poem entitled \Chaune of the Dyse," attributed to John

Lydgate, was written in the early 1400s for use at parties. Its opening verses

invite eah person to throw three die; then the remaining verses, whih are

indexed in dereasing lexiographi order from q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

to q

q

q

q

q

q

q

q

q

q

q

q

q

q

qq

q to � � � to

q q q

,

give 56 harater skethes that light-heartedly desribe the thrower. [The full

text was published by E. P. Hammond in Englishe Studien 59 (1925), 1{16;

a translation into modern English would be desirable.℄

I pray to god that euery wight may aste

Vpon three dyse ryght as is in hys herte

Whether he be rehelesse or stedfaste

So moote he lawghen outher elles smerte

He that is gilty his lyfe to onverte

They that in trouthe haue su�red many a throwe

Moote ther haune fal as they moote be knowe.

| The Chaune of the Dyse (. 1410)

Ramon Llull. Signi�ant ripples of ombinatorial onepts also emanated

from an energeti and quixoti Catalan poet, novelist, enylopedist, eduator,

mysti, and missionary named Ramon Llull (. 1232{1316). Llull's approah to

knowledge was essentially to identify basi priniples and then to ontemplate

ombining them in all possible ways.

For example, one hapter in his Ars Compendiosa Inveniendi Veritatem

(. 1274) began by enumerating sixteen attributes of God: Goodness, greatness,

eternity, power, wisdom, love, virtue, truth, glory, perfetion, justie, generosity,

mery, humility, sovereignty, and patiene. Then Llull wrote

�

16

2

�

= 120 short

essays of about 80 words eah, onsidering God's goodness as related to greatness,

8
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God's goodness as related to eternity, and so on, ending with God's sovereignty as

related to patiene. In another hapter he onsidered seven virtues (faith, hope,

harity, justie, prudene, fortitude, temperane) and seven vies (gluttony, lust,

greed, sloth, pride, envy, anger), with

�

14

2

�

= 91 subhapters to deal with eah

pair in turn. Other hapters were systematially divided in a similar way, into

�

8

2

�

= 28,

�

15

2

�

= 105,

�

4

2

�

= 6, and

�

16

2

�

= 120 subsetions. (One wonders what

might have happened if he had been familiar with Wibold's list of 56 virtues;

would he have produed ommentaries on all

�

56

2

�

= 1540 of their pairs?)

Fig. 44. Illustrations in a manusript presented by Ramon Llull to

the doge of Venie in 1280. [From his Ars Demonstrativa, Bibliotea

Mariana, VI 200, folio 3

v

.℄

Llull illustrated his methodology by drawing irular diagrams like those in

Figure 44. The left-hand irle in this illustration, Deus, names sixteen divine

attributes|essentially the same sixteen listed earlier, exept that love (amor)

was now alled will (voluntas), and the �nal four were now respetively simpliity,

rank, mery, and sovereignty. Eah attribute is assigned a ode letter, and

the illustration depits their interrelations as the omplete graph K

16

on ver-

ties (B;C;D;E;F;G;H; I;K;L;M;N;O;P;Q;R). The right-hand �gure, virtutes

et vitia, shows the seven virtues (b; ; d; e; f; g; h) interleaved with the seven vies

(i; k; l;m; n; o; p); in the original manusript virtues appeared in blue ink while

vies appeared in red. Notie that in this ase his illustration depited two

independent omplete graphs K

7

, one of eah olor. (He no longer bothered to

ompare eah individual virtue with eah individual vie, sine every virtue was

learly better than every vie.)

Llull used the same approah to write about mediine: Instead of juxta-

posing theologial onepts, his Liber Prinipiorum Mediin� (. 1275) on-

sidered ombinations of symptoms and treatments. And he also wrote books

9



10 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Fig. 45. Llullian illustrations

from a manusript presented to

the queen of Frane, . 1325.

[Badishe Landesbibliothek Karls-

ruhe, Codex St. Peter perg. 92,

folios 28

v

and 39

v

.℄

on philosophy, logi, jurisprudene, astrology, zoology, geometry, rhetori, and

hivalry|more than 200 works in all. It must be admitted, however, that muh

of this material was highly repetitive; modern data ompression tehniques would

probably redue Llull's output to a size muh less than that of, say, Aristotle.

He eventually deided to simplify his system by working primarily with

groups of nine things. See, for example, Fig. 45, where irle A now lists only the

�rst nine of God's attributes (B;C;D;E;F;G;H; I;K). The

�

9

2

�

= 36 assoiated

pairs (BC;BD; : : : ; IK) appear in the stairstep hart at the right of that irle. By

adding two more virtues, namely patiene and ompassion|as well as two more

vies, namely lying and inonsisteny|he ould treat virtues vis-�a-vis virtues

and vies vis-�a-vis vies with the same hart. He also proposed using the same

hart to arry out an interesting sheme for voting, in an eletion with nine

andidates [see I. MLean and J. London, Studia Lulliana 32 (1992), 21{37℄.

The enirled triangles at the lower left of Fig. 45 illustrate another key

aspet of Llull's approah. Triangle (B;C;D) stands for (di�erene, onordane,

ontrariness); triangle (E;F;G) stands for (beginning, middle, ending); and trian-

gle (H; I;K) stands for (greater, equal, less). These three interleaved appearanes

of K

3

represent three kinds of three-valued logi. Llull had experimented earlier

with other suh triplets, notably `(true, unknown, false)'. We an get an idea

10



7.2.1.7 HISTORY AND FURTHER REFERENCES 11

of how he used the triangles by onsidering how he dealt with ombinations of

the four basi elements (earth, air, �re, water): All four elements are di�erent;

earth is onordant with �re, whih onords with air, whih onords with

water, whih onords with earth; earth is ontrary to air, and �re is ontrary

to water; these onsiderations omplete an analysis with respet to triangle

(B;C;D). Turning to triangle (E;F;G), he noted that various proesses in nature

begin with one element dominating another; then a transition or middle state

ours, until a goal is reahed, like air beoming warm. For triangle (H; I;K) he

said that in general we have �re > air > water > earth with respet to their

\spheres," their \veloities," and their \nobilities"; nevertheless we also have,

for example, air > �re with respet to supporting life, while air and �re have

equal value when they are working together.

Llull provided the vertial table at the right of Fig. 45 as a further aid. (See

exerise 11 below.) He also introdued movable onentri wheels, labeled with

the letters (B;C;D;E;F;G;H; I;K) and with other names, so that many things

ould be ontemplated simultaneously. In this way a faithful pratitioner of

the Llullian art ould be sure to have all the bases overed. [Llull may have

seen similar wheels that were used in nearby Jewish ommunities; see M. Idel,

J. Warburg and Courtauld Institutes 51 (1988), 170{174 and plates 16{17.℄

Several enturies later, Athanasius Kirher published an extension of Llull's

system as part of a large tome entitled Ars Magna Siendi sive Combinatoria

(Amsterdam: 1669), with �ve movable wheels aompanying page 173 of that

book. Kirher also extended Llull's repertoire of omplete graphs K

n

by provid-

ing illustrations of omplete bipartite graphs K

m;n

; for example, Fig. 46 is taken

from page 171 of Kirher's book, and his page 170 ontains a glorious piture

of K

18;18

.

Fig. 46. K

9;9

as pre-

sented by Athanasius

Kirher in 1669.

It is an investigative and inventive art.

When ideas are ombined in all possible ways,

the new ombinations start the mind thinking along novel hannels

and one is led to disover fresh truths and arguments.

| MARTIN GARDNER, Logi Mahines and Diagrams (1958)

The most extensive modern development of Llull-like methods is perhaps

The Shillinger System of Musial Composition by Joseph Shillinger (New York:

11



12 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Carl Fisher, 1946), a remarkable two-volume work that presents theories of

rhythm, melody, harmony, ounterpoint, omposition, orhestration, et., from

a ombinatorial perspetive. On page 56, for example, Shillinger lists the 24

permutations of fa; b; ; dg in the Gray-ode order of plain hanges (Algorithm

7.2.1.2P); then on page 57 he applies them not to pithes but rather to rhythms,

to the durations of notes. On page 364 he exhibits the symmetrial yle

(2; 0; 3; 4; 2; 5; 6; 4; 0; 1; 6; 2; 3; 1; 4; 5; 3; 6; 0; 5; 1); (13)

a universal yle of 2-ombinations for the seven objets f0; 1; 2; 3; 4; 5; 6g; in

other words, (13) is an Eulerian trail in K

7

: All

�

7

2

�

= 21 pairs of digits our

exatly one. Suh patterns are grist for a omposer's mill. But we an be

grateful that Shillinger's better students (like George Gershwin) did not ommit

themselves entirely to a stritly mathematial sense of aesthetis.

Taquet, van Shooten, and Izquierdo. Three additional books related to

our story were published during the 1650s. Andr�e Taquet wrote a popular text,

Arithmeti� Theoria et Praxis (Louvain: 1656), that was reprinted and revised

often during the next �fty years. Near the end, on pages 376 and 377, he gave a

proedure for listing ombinations two at a time, then three at a time, et.

Frans van Shooten's Exeritationes Mathemati� (Leiden: 1657) was more

advaned. On page 373 he listed all ombinations in an appealing layout

a

b: ab

: a: b: ab

d: ad: bd: abd: d: ad: bd: abd

(14)

and he proeeded on the next few pages to extend this pattern to the letters e,

f , g, h, i, k, \et si in in�nitum." On page 376 he observed that one an replae

(a; b; ; d) by (2; 3; 5; 7) in (14) to get the divisors of 210 that exeed unity:

2

3 6

5 10 15 30

7 14 21 42 35 70 105 210

(15)

And on the following page he extended the idea to

a

a: aa

b: ab: aab

: a: aa: b: ab: aab

(16)

thereby allowing two a's. He didn't really understand this extension, though; his

next example

a

a: aa

a: aaa

b: ab: aab: aaab

b: bb: abb: aabb: aaabb

(17)

was bothed, indiating the limits of his knowledge at the time. (See exerise 13.)

12
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On page 411 van Shooten observed that the weights (a; b; ; d) = (1; 2; 4; 8)

ould be assigned in (14), leading to

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(18)

after addition. But he didn't see the onnetion with radix-2 arithmeti.

Sebasti�an Izquierdo's two-volume work Pharus Sientiarum (Lyon: 1659),

\The Lighthouse of Siene," inluded a niely organized disussion of ombina-

toris entitled Disputatio 29, De Combinatione. He gave a detailed disussion of

four key parts of Stanley's Twelvefold Way, namely the n-tuples, n-variations,

n-multiombinations, and n-ombinations of m objets that appear in the �rst

two rows and the �rst two olumns of Table 7.2.1.4{1.

In Setions 81{84 of De Combinatione he listed all ombinations of m letters

taken n at a time, for 2 � n � 5 and n � m � 9, always in lexiographi order;

he also tabulated them for m = 10 and 20 in the ases n = 2 and 3. But when

he listed the m

n

variations of m things taken n at a time, he hose a more

ompliated ordering (see exerise 14).

Izquierdo was �rst to disover the formula

�

m+n�1

n

�

for ombinations of m

things taken n at a time with unlimited repetition; this rule appeared in x48{x51

of his work. But in x105, when he attempted to list all suh ombinations in the

ase n = 3, he didn't know that there was a simple way to do it. In fat, his

listing of the 56 ases form = 6 was rather like the old, awkward ordering of (12).

Combinations with repetition were not well understood until James Ber-

noulli's Ars Conjetandi, \The Art of Guessing," ame out in 1713. In Part 2,

Chapter 5, Bernoulli simply listed the possibilities in lexiographi order, and

showed that the formula

�

m+n�1

n

�

follows by indution as an easy onsequene.

[Niol�o Tartaglia had, inidentally, ome lose to disovering this formula in his

General trattato di numeri, et misure 2 (Venie: 1556), 17

r

and 69

v

; so had the

Maghrebi mathematiian Ibn Mun`im in his 13th-entury Fiqh al-H

.

is�ab.℄

The null ase. Before we onlude our disussion of early work on ombinations,

we should not forget a small yet noble step taken by John Wallis on page 110

of his Disourse of Combinations (1685), where he spei�ally onsidered the

ombination of m things taken 0 at a time: \It is manifest, That, if we would

take None, that is, if we would leave All ; there an be but one ase thereof, what

ever be the Number of things exposed." Furthermore, on page 113, he knew that

�

0

0

�

= 1: \(for, here, to take all, or to leave all, is but one and the same ase.)"

However, when he gave a table of n! for n � 24, he did not go so far as to

point out that 0! = 1, or that there is exatly one permutation of the empty set.

The work of N�ar�ayan

.

a. A remarkable monograph entitled Gan

.

ita Kaumud��

(\Treatise on Calulation"), written by N�ar�ayan

.

a Pan

.

d

.

ita in 1356, has reently

beome known in detail to sholars outside of India for the �rst time, thanks

to an English translation by Parmanand Singh [Gan

.

ita Bh�arat�� 20 (1998), 25{

82; 21 (1999), 10{73; 22 (2000), 19{85; 23 (2001), 18{82; 24 (2002), 35{98℄.

13



14 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Chapter 13 of his work, subtitled A_nka P�a�sa (\Conatenation of Numbers"), was

devoted to ombinatorial generation. Indeed, although the 97 \sutras" of this

hapter were rather rypti, they presented a omprehensive theory of the subjet

that antiipated developments in the rest of the world by several hundred years.

For example, N�ar�ayan

.

a dealt with permutation generation in sutras 49{55a,

where he gave algorithms to list all permutations of a set in dereasing olex or-

der, together with algorithms to rank a given permutation and to unrank a given

serial number. In this way he essentially disovered the fatorial representation

of positive integers. Then in sutras 57{60 he extended the algorithms to handle

general multisets; for example, he listed the permutations of f1; 1; 2; 4g as

1124; 1214; 2114; 1142; 1412; 4112; 1241; 2141; 1421; 4121; 2411; 4211;

again in dereasing olex order.

N�ar�ayan

.

a's sutras 88{92 dealt with systemati generation of ombinations.

Besides illustrating the ombinations of f1; : : : ; 8g taken 3 at a time, namely

(678; 578; 478; : : : ; 134; 124; 123);

he also onsidered a bit-string representation of these ombinations in the reverse

order (inreasing olex):

(11100000; 11010000; 10110000; : : : ; 00010011; 00001011; 00000111):

He almost, but not quite, disovered Theorem 7.2.1.3L.

Thus we an legitimately regard N�ar�ayan

.

a Pan

.

d

.

ita as the founder of the

siene of ombinatorial generation|even though, like many other pioneers who

were signi�antly \ahead of their time," his work on the subjet never beame

well known even in his own ountry.

Permutable poetry. Let's turn now to a urious question that attrated

the attention of several prominent mathematiians in the seventeenth entury,

beause it sheds onsiderable light on the state of ombinatorial knowledge in

Europe at that time. A Jesuit priest named Bernard Bauhuis had omposed a

famous one-line tribute to the Virgin Mary, in Latin hexameter:

Tot tibi sunt dotes, Virgo, quot sidera �lo. (19)

[\Thou hast as many virtues, O Virgin, as there are stars in heaven"; see

his Epigrammatum Libri V (Cologne: 1615), 49.℄ His verse inspired Eryius

Puteanus, a professor at the University of Louvain, to write a book entitled

Pietatis Thaumata (Antwerp: 1617), presenting 1022 permutations of Bauhuis's

words. For example, Puteanus wrote

107 Tot dotes tibi, quot �lo sunt sidera, Virgo.

270 Dotes tot, �lo sunt sidera quot, tibi Virgo.

329 Dotes, �lo sunt quot sidera, Virgo tibi tot.

384 Sidera quot �lo, tot sunt Virgo tibi dotes.

725 Quot �lo sunt sidera, tot Virgo tibi dotes.

949 Sunt dotes Virgo, quot sidera, tot tibi �lo.

1022 Sunt �lo tot Virgo tibi, quot sidera, dotes.

(20)

14
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He stopped at 1022, beause 1022 was the number of visible stars in Ptolemy's

well-known atalog of the heavens.

The idea of permuting words in this way was well known at the time; suh

wordplay was what Julius Saliger had alled \Proteus verses" in his Poeties

Libri Septem (Lyon: 1561), Book 2, Chapter 30. The Latin language lends itself

to permutations like (20), beause Latin word endings tend to de�ne the funtion

of eah noun, making the relative word order muh less important to the meaning

of a sentene than it is in English. Puteanus did state, however, that he had

spei�ally avoided unsuitable permutations suh as

Sidera tot �lo, Virgo, quot sunt tibi dotes, (21)

beause they would plae an upper bound on the Virgin's virtues rather than a

lower bound. [See pages 12 and 103 of his book.℄

Of ourse there are 8! = 40;320 ways to permute the words of (19). But

that wasn't the point; most of those ways don't \san." Eah of Puteanus's 1022

verses obeyed the strit rules of lassial hexameter, the rules that had been

followed by Greek and Latin poets sine the days of Homer and Vergil, namely:

i) Eah word onsists of syllables that are either long (��) or short (^);

ii) The syllables of eah line belong to one of 32 patterns,

n

��^^

����

o n

��^^

����

o n

��^^

����

o n

��^^

����

o

��^^

n

��^

����

o

: (22)

In other words there are six metrial feet, where eah of the �rst four is either a

datyl or a spondee in the terminology of (5); the �fth foot should be a datyl,

and the last is either trohee or spondee.

The rules for long versus short syllables in Latin poetry are somewhat triky

in general, but the eight words of Bauhuis's verse an be haraterized by the

following patterns:

tot = ��; tibi =

n

^^

^��

o

; sunt = ��; dotes = ����;

Virgo =

n

��^

����

o

; quot = ��; sidera = ��^^; �lo = ����: (23)

Notie that poets had two hoies when they used the words `tibi' or `Virgo'.

Thus, for example, (19) �ts the hexameter pattern

��

Tot

^

ti-

^

bi

��

sunt

��

do-

��

tes,

��

Vir-

��

go,

��

quot

��

si-

^

de-

^

ra

��

�-

��

lo.

(24)

(Datyl, spondee, spondee, spondee, datyl, spondee; \dum-diddy dum-dum

dum-dum dum-dum dum-diddy dum-dum." The ommas represent slight pauses,

alled \�suras," when the words are read; they don't onern us here, although

Puteanus inserted them arefully into eah of his 1022 permutations.)

A natural question now arises: If we permute Bauhuis's words at random,

what are the odds that they san? In other words, how many of the permutations

obey rules (i) and (ii), given the syllable patterns in (23)? G. W. Leibniz raised

15



16 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

this question, among others, in his Dissertatio de Arte Combinatoria (1666), a

work published when he was applying for a position at the University of Leipzig.

At this time Leibniz was just 19 years old, largely self-taught, and his under-

standing of ombinatoris was quite limited; for example, he believed that there

are 600 permutations of fut; ut; re;mi; fa; solg and 480 of fut; ut; re; re;mi; fag,

and he even stated that (22) represents 76 possibilities instead of 32. [See x5 and

x8 in his Problem 6.℄

But Leibniz did realize that it would be worthwhile to develop general

methods for ounting all permutations that are \useful," in situations when

many permutations are \useless." He onsidered several examples of Proteus

verses, enumerating some of the simpler ones orretly but making many errors

when the words were ompliated. Although he mentioned Puteanus's work, he

didn't attempt to enumerate the sannable permutations of (19).

A muh more suessful approah was introdued a few years later by Jean

Prestet in his

�

El�emens des Math�ematiques (Paris: 1675), 342{438. Prestet gave

a lear exposition leading to the onlusion that exatly 2196 permutations of

Bauhuis's verse would yield a proper hexameter. However, he soon realized that

he had forgotten to ount quite a few ases| inluding those numbered 270,

384, and 725 in (20). So he ompletely rewrote this material when he published

Nouveaux

�

El�emens des Math�ematiques in 1689. Pages 127{133 of Prestet's new

book were devoted to showing that the true number of sannable permutations

was 3276, almost 50% larger than his previous total.

Meanwhile John Wallis had treated the problem in his Disourse of Combi-

nations (London: 1685), 118{119, published as a supplement to his Treatise of

Algebra. After explaining why he believed the orret number to be 3096, Wallis

admitted that he may have overlooked some possibilities and/or ounted some

ases more than one; \but I do not, at present, disern either the one and other."

An anonymous reviewer of Wallis's work remarked that the true number of

metrially orret permutations was atually 2580|but he gave no proof [Ata

Eruditorum 5 (1686), 289℄. The reviewer was almost ertainly G. W. Leibniz

himself, although no lue to the reasoning behind the number 2580 has been

found among Leibniz's voluminous unpublished notes.

Finally James Bernoulli entered the piture. In his inaugural leture as

Dean of Philosophy at the University of Basel, 1692, he mentioned the tot-

tibi enumeration problem and stated that a areful analysis is neessary to

obtain the orret answer|whih, he said, was 3312(!). His proof appeared

posthumously in the �rst edition of his Ars Conjetandi (1713), 79{81. [Those

pages were, inidentally, omitted from later editions of that famous book, and

from his olleted works, beause he didn't atually intend them for publiation;

a proofreader had inserted them by mistake. See Die Werke von Jakob Bernoulli

3 (Basel: Birkh�auser, 1975), 78, 98{106, 108, 154{155.℄

So who was right? Are there 2196 sannable permutations, or 3276, or 3096,

or 2580, or 3312? W. A. Whitworth and W. E. Hartley onsidered the question

anew in The Mathematial Gazette 2 (1902), 227{228, where they eah presented

elegant arguments and onluded that the true total was in fat none of the

16



7.2.1.7 HISTORY AND FURTHER REFERENCES 17

above. Their joint answer, 2880, represented the �rst time that any two math-

ematiians had independently ome to the same onlusion about this problem.

But exerises 21 and 22, below, reveal the truth: Bernoulli is vindiated,

and everybody else was wrong. Moreover, a study of Bernoulli's systemati

and arefully indented 3-page derivation indiates that he was suessful hiey

beause he adhered faithfully to a disipline that we now all the baktrak

method. We shall study the baktrak method thoroughly in Setion 7.2.2, where

we will also see that the tot-tibi question is readily solved as a speial ase of

the exat over problem.

Even the wisest and most prudent people often su�er from

what Logiians all insuÆient enumeration of ases.

| JAMES BERNOULLI (1692)

Set partitions. The partitions of a set seem to have been studied �rst in Japan,

where a parlor game alled genji-ko (\Genji inense") beame popular among

upperlass people about A.D. 1500. The host of a gathering would seretly selet

�ve pakets of inense, some of whih might be idential, and he would burn

them one at a time. The guests would try to disern whih of the sents were

the same and whih were di�erent; in other words, they would try to guess whih

of the $

5

= 52 partitions of f1; 2; 3; 4; 5g had been hosen by their host.

Fig. 47. Diagrams used to represent set partitions

in 16th entury Japan. [From a opy in the olle-

tion of Tamaki Yano at Saitama University.℄

Soon it beame ustomary to represent the 52 possible outomes by diagrams

like those in Fig. 47. For example, the uppermost diagram of that illustration,

when read from right to left, would indiate that the �rst two sents are idential

and so are the last three; thus the partition is 12 j345. The other two diagrams,

similarly, are pitorial ways to represent the respetive partitions 124 j35 and

1 j24 j35. As an aid to memory, eah of the 52 patterns was named after a

hapter of Lady Murasaki's famous 11th-entury Tale of Genji, aording to the

following sequene [Enylopedia Japoni� (Tokyo: Sanseido, 1910), 1299℄:

(25)

(One again, as we've seen in many other examples, the possibilities were not

arranged in any partiularly logial order.)

17



18 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

The appealing nature of these genji-ko patterns led many families to adopt

them as heraldi rests. For example, the following stylized variants of (25) were

found in standard atalogs of kimono patterns early in the 20th entury:

[See Fumie Adahi, Japanese Design Motifs (New York: Dover, 1972), 150{153.℄

Early in the 1700s, Takakazu Seki and his students began to investigate the

number of set partitions $

n

for arbitrary n, inspired by the known result that

$

5

= 52. Yoshisuke Matsunaga found formulas for the number of set partitions

when there are k

j

subsets of size n

j

for 1 � j � t, with k

1

n

1

+ � � � + k

t

n

t

= n

(see the answer to exerise 1.2.5{21). He also disovered the basi reurrene

relation 7.2.1.5{(14), namely

$

n+1

=

�

n

0

�

$

n

+

�

n

1

�

$

n�1

+

�

n

2

�

$

n�2

+ � � �+

�

n

n

�

$

0

; (26)

by whih the values of $

n

an readily be omputed.

Matsunaga's disoveries remained unpublished until Yoriyuki Arima's book

Sh�uki Sanp�o ame out in 1769. Problem 56 of that book asked the reader to

solve the equation \$

n

= 678570" for n; and Arima's answer, worked out in

detail (with redit duly given to Matsunaga), was n = 11.

Shortly afterwards, Masanobu Saka studied the number

�

n

k

	

of ways that

an n-set an be partitioned into k subsets, in his work Sanp�o-Gakkai (1782). He

disovered the reurrene formula

n

n+ 1

k

o

= k

n

n

k

o

+

n

n

k � 1

o

; (27)

and tabulated the results for n � 11. James Stirling, in his Methodus Di�eren-

tialis (1730), had disovered the numbers

�

n

k

	

in a purely algebrai ontext; thus

Saka was the �rst person to realize their ombinatorial signi�ane.

An interesting algorithm for listing set partitions was subsequently devised

by Toshiaki Honda (see exerise 24). Further details about genji-ko and its rela-

tion to the history of mathematis an be found in Japanese artiles by Tamaki

Yano, Sugaku Seminar 34, 11 (Nov. 1995), 58{61; 34, 12 (De. 1995), 56{60.

Set partitions remained virtually unknown in Europe until muh later, ex-

ept for three isolated inidents. First, George and/or Rihard Puttenham

published The Arte of English Poesie in 1589, and pages 70{72 of that book

18
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ontain diagrams similar to those of genji-ko. For example, the seven diagrams

(28)

were used to illustrate possible rhyme shemes for 5-line poems, \whereof some

of them be harsher and unpleasaunter to the eare then other some be." But this

visually appealing list was inomplete (see exerise 25).

Seond, an unpublished manusript of G. W. Leibniz from the late 1600s

shows that he had tried to ount the number of ways to partition f1; : : : ; ng

into three or four subsets, but with almost no suess. He enumerated

�

n

2

	

by

a very umbersome method, whih would not have led him to see readily that

�

n

2

	

= 2

n�1

� 1. He attempted to ompute

�

n

3

	

and

�

n

4

	

only for n � 5, and

made several numerial slips leading to inorret answers. [See E. Knobloh,

Studia Leibnitiana Supplementa 11 (1973), 229{233; 16 (1976), 316{321.℄

The third European appearane of set partitions had a ompletely di�erent

harater. John Wallis devoted the third hapter of his Disourse of Combina-

tions (1685) to questions about \aliquot parts," the proper divisors of numbers,

and in partiular he studied the set of all ways to fatorize a given integer. This

question is equivalent to the study of multiset partitions; for example, the fator-

izations of p

3

q

2

r are essentially the same as the partitions of fp; p; p; q; q; rg, when

p, q, and r are prime numbers. Wallis devised an exellent algorithm for listing

all fatorizations of a given integer n, essentially antiipating Algorithm 7.2.1.5M

(see exerise 28). But he didn't investigate the important speial ases that arise

when n is the power of a prime (equivalent to integer partitions) or when n is

squarefree (equivalent to set partitions). Thus, although Wallis was able to solve

the more general problem, its omplexities paradoxially deeted him from dis-

overing partition numbers, Bell numbers, or Stirling subset numbers, or from de-

vising simple algorithms that would generate integer partitions or set partitions.

Integer partitions. Partitions of integers arrived on the sene even more

slowly. Bishop Wibold (. 965) knew the partitions of n into exatly three

parts � 6. So did Galileo, who wrote a memo about them (. 1627) and also

studied their frequeny of ourrene as rolls of three die. [\Sopra le soperte de

i dadi," in Galileo's Opere, Volume 8, 591{594; he listed partitions in dereasing

lexiographi order.℄

Mersenne listed the partitions of 9 into any number of parts, on page 130 of

his Traitez de la Voix et des Chants (1636). With eah partition 9 = a

1

+ � � �+a

k

he also omputed the multinomial oeÆient 9!=(a

1

! : : : a

k

!); as we've seen earlier,

he was interested in ounting various melodies, and he knew for example that

there are 9!=(3!3!3!) = 1680 melodies on the nine notes fa; a; a; b; b; b; ; ; g.

But he failed to mention the ases 8 + 1 and 3 + 2 + 1 + 1 + 1 + 1, probably

beause he hadn't listed the possibilities in any systemati way.

Leibniz onsidered two-part partitions in Problem 3 of his Dissertatio de

Arte Combinatoria (1666), and his unpublished notes show that he subsequently

spent onsiderable time trying to enumerate the partitions that have three or
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20 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

more summands. He alled them \diserptions," or (less frequently) \divul-

sions"| in Latin of ourse|or sometimes \setions" or \dispersions" or even

\partitions." He was interested in them primarily beause of their onnetion

with the monomial symmetri funtions

P

x

a

1

i

1

x

a

2

i

2

: : : . But his many attempts

led to almost total failure, exept in the ase of three summands, when he almost

(but not quite) disovered the formula for

�

�

n

3

�

�

in exerise 7.2.1.4{31. For example,

he arelessly ounted only 21 partitions of 8, forgetting the ase 2+2+2+1+1;

and he got only 26 for p(9), after missing 3 + 2 + 2 + 2, 3 + 2 + 2 + 1 + 1,

2 + 2 + 2 + 1 + 1 + 1, and 2 + 2 + 1 + 1 + 1 + 1 + 1| in spite of the fat that

he was trying to list partitions systematially in dereasing lexiographi order.

[See E. Knobloh, Studia Leibnitiana Supplementa 11 (1973), 91{258; 16 (1976),

255{337; Historia Mathematia 1 (1974), 409{430.℄

Abraham de Moivre had the �rst real suess with partitions, in his paper

\A Method of Raising an in�nite Multinomial to any given Power, or Extrating

any given Root of the same" [Philosophial Transations 19 (1697), 619{625 and

Fig. 5℄. He proved that the oeÆient of z

m+n

in (az + bz

2

+ z

3

+ � � � )

m

has

one term for eah partition of n; for example, the oeÆient of z

m+6

is

�

m

6

�

a

m�6

b

6

+ 5

�

m

5

�

a

m�5

b

4

+ 4

�

m

4

�

a

m�4

b

3

d+ 6

�

m

4

�

a

m�4

b

2



2

+ 3

�

m

3

�

a

m�3

b

2

e+ 6

�

m

3

�

a

m�3

bd+ 2

�

m

2

�

a

m�2

bf +

�

m

3

�

a

m�3



3

+ 2

�

m

2

�

a

m�2

e+

�

m

2

�

a

m�2

d

2

+

�

m

1

�

a

m�1

g: (29)

If we set a = 1, the term with exponents b

i



j

d

k

e

l

: : : orresponds to the partition

with i 1s, j 2s, k 3s, l 4s, et. Thus, for example, when n = 6 he essentially

presented the partitions in the order

111111; 11112; 1113; 1122; 114; 123; 15; 222; 24; 33; 6: (30)

He explained how to list the partitions reursively, as follows (but in di�erent

language related to his own notation): For k = 1, 2, : : : , n, start with k and

append the (previously listed) partitions of n� k whose smallest part is � k.

[My solution℄ was ordered to be published in the Transations,

not so muh as a matter relating to Play,

but as ontaining some general Speulations

not unworthy to be onsidered by the Lovers of Truth.

| ABRAHAM DE MOIVRE (1717)

P. R. de Montmort tabulated all partitions of numbers � 9 into � 6 parts

in his Essay d'Analyse sur les Jeux de Hazard (1708), in onnetion with die

problems. His partitions were listed in a di�erent order from (30); for example,

111111; 21111; 2211; 222; 3111; 321; 33; 411; 42; 51; 6: (31)

He probably was unaware of de Moivre's prior work.

So far almost none of the authors we've been disussing atually desribed

the proedures by whih they generated ombinatorial patterns. We an only

infer their methods, or lak thereof, by studying the lists that they atually pub-

lished. Furthermore, in rare ases suh as de Moivre's paper where a tabulation

20
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method was expliitly desribed, the author assumed that all patterns for the

�rst ases 1, 2, : : : , n� 1 had been listed before it was time to takle the ase of

order n. No method for generating patterns \on the y," moving diretly from

one pattern to its suessor without looking at auxiliary tables, was atually

explained by any of the authors we have enountered, exept for Ked�ara and

N�ar�ayan

.

a. Today's omputer programmers naturally prefer methods that are

more diret and need little memory.

Roger Joseph Bosovih published the �rst diret algorithm for partition

generation in Giornale de' Letterati (Rome, 1747), on pages 393{404 together

with two foldout tables faing page 404. His method, whih produes for n = 6

the respetive outputs

111111; 11112; 1122; 222; 1113; 123; 33; 114; 24; 15; 6; (32)

generates partitions in preisely the reverse order from whih they are visited by

Algorithm 7.2.1.4P; and his method would indeed have been featured in Setion

7.2.1.4, exept for the fat that the reverse order turns out to be slightly easier

and faster than the order that he had hosen.

Bosovih published sequels in Giornale de' Letterati (Rome, 1748), 12{27

and 84{99, extending his algorithm in two ways. First, he onsidered generating

only partitions whose parts belong to a given set S, so that symboli multinomials

with sparse oeÆients ould be raised to the mth power. (He said that the gd

of all elements of S should be 1; in fat, however, his method ould fail if 1 =2 S.)

Seond, he introdued an algorithm for generating partitions of n into m parts,

given m and n. Again he was unluky: A slightly better way to do that task,

Algorithm 7.2.1.4H, was found subsequently, diminishing his hanes for fame.

Hindenburg's hype. The inventor of Algorithm 7.2.1.4H was Carl Friedrih

Hindenburg, who also redisovered N�ar�ayan

.

a's Algorithm 7.2.1.2L, a winning

tehnique for generating multiset permutations. Unfortunately, these small su-

esses led him to believe that he had made revolutionary advanes in mathemat-

is|although he did ondesend to remark that other people suh as de Moivre,

Euler, and Lambert had ome lose to making similar disoveries.

Hindenburg was a prototypial overahiever, extremely energeti if not in-

spired. He founded or ofounded Germany's �rst professional journals of math-

ematis (published 1786{1789 and 1794{1800), and ontributed long artiles to

eah. He served several times as aademi dean at the University of Leipzig,

where he was also the Retor in 1792. If he had been a better mathematiian,

German mathematis might well have ourished more in Leipzig than in Berlin

or G�ottingen.

But his �rst mathematial work, Beshreibung einer ganz neuen Art, nah

einem bekannten Gesetze fortgehende Zahlen durh Abz�ahlen oder Abmessen

bequem und siher zu �nden (Leipzig: 1776), amply foreshadowed what was to

ome: His \ganz neue" (ompletely new) idea in that booklet was simply to give

ombinatorial signi�ane to the digits of numbers written in deimal notation.

Inredibly, he onluded his monograph with large foldout sheets that ontained
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a table of the numbers 0000 through 9999| followed by two other tables that

listed the even numbers and odd numbers separately(!).

Hindenburg published letters from people who praised his work, and invited

them to ontribute to his journals. In 1796 he edited Sammlung ombinatorish-

analytisher Abhandlungen, whose subtitle stated (in German) that de Moivre's

multinomial theorem was \the most important proposition in all of mathematial

analysis." About a dozen people joined fores to form what beame known as

Hindenburg's Combinatorial Shool, and they published thousands of pages �lled

with esoteri symbolism that must have impressed many nonmathematiians.

The work of this Shool was not ompletely trivial from the standpoint

of omputer siene. For example, H. A. Rothe, who was Hindenburg's best

student, notied that there is a simple way to go from a Morse ode sequene

to its lexiographi suessor or predeessor. Another student, J. C. Burkhardt,

observed that Morse ode sequenes of length n ould also be generated easily

by �rst onsidering those with no dashes, then one dash, then two, et. Their

motivation was not to tabulate poeti meters of n beats, as it had been in India,

but rather to list the terms of the ontinuant polynomials K(x

1

; x

2

; : : : ; x

n

),

Eq. 4.5.3{(4). [See Arhiv f�ur reine und angewandte Mathematik 1 (1794), 154{

194.℄ Furthermore, on page 53 of Hindenburg's 1796 Sammlung ited above,

G. S. Kl�ugel introdued a way to list all permutations that has subsequently

beome known as Ord-Smith's algorithm; see Eqs. (23){(26) in Setion 7.2.1.2.

Hindenburg believed that his methods deserved equal time with algebra,

geometry, and alulus in the standard urriulum. But he and his disiples

were ombinatorialists who only made ombinatorial lists. Burying themselves

in formulas and formalisms, they rarely disovered any new mathematis of real

interest. Eugen Netto has admirably summarized their work in M. Cantor's

Geshihte der Mathematik 4 (1908), 201{219. \For a while they ontrolled

the German market; however, most of what they dug up soon sank into a not-

entirely-deserved oblivion."

The sad outome was that ombinatorial studies in general got a bad name.

G�osta Mittag-Le�er, who assembled a magni�ent library of mathematial lit-

erature about 100 years after Hindenburg's death, deided to plae all suh

work on a speial shelf marked \Dekadenter." And this ategory still persists

in the library of Sweden's Institut Mittag-Le�er today, even as that institute

attrats world-lass ombinatorial mathematiians whose researh is anything

but deadent.

Looking on the bright side, we may note that at least one good book did

emerge from all of this ativity. Andreas von Ettingshausen's Die ombina-

torishe Analysis (Vienna: 1826) is noteworthy as the �rst text to disuss om-

binatorial generation methods in a perspiuous way. He disussed the general

priniples of lexiographi generation in x8, and applied them to onstrut good

ways to list all permutations (x11), ombinations (x30), and partitions (x41{x44).

Where were the trees? We've now seen that lists of tuples, permutations,

ombinations, and partitions were ompiled rather early in human history, by
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interested and interesting researhers. Thus we've aounted for the evolution

of the topis studied in Setions 7.2.1.1 through 7.2.1.5, and our story will be

omplete if we an trae the origins of tree generation, Setion 7.2.1.6.

But the historial reord of that topi before the advent of omputers is

virtually a blank page, with the exeption of a few 19th-entury papers by Arthur

Cayley. Cayley's major work on trees, originally published in 1875 and reprinted

on pages 427{460 of his Colleted Mathematial Papers, Volume 4, was limaxed

by a large foldout illustration that exhibited all the free trees with 9 or fewer

unlabeled verties. Earlier in that paper he had also illustrated the nine oriented

trees with 5 verties. The methods he used to produe those lists were quite

ompliated, ompletely di�erent from Algorithm 7.2.1.6O and exerise 7.2.1.6{

90. All free trees with up to 10 verties were listed many years later by F. Harary

and G. Prins [Ata Math. 101 (1958), 158{162℄, who also went up to n = 12 in

the ases of free trees with no nodes of degree 2 or with no symmetries.

The trees most dearly beloved by omputer sientists|binary trees or the

equivalent ordered forests or nested parentheses|are however strangely absent

from the literature. We saw in Setion 2.3.4.5 that many mathematiians of the

1700s and 1800s had learned how to ount binary trees, and we also know that

the Catalan numbers C

n

enumerate dozens of di�erent kinds of ombinatorial

objets. Yet nobody seems to have published an atual list of the C

4

= 14

objets of order 4 in any of these guises, muh less the C

5

= 42 objets of

order 5, before 1950. (Exept indiretly: The 42 genji-ko diagrams in (25) that

have no interseting lines turn out to be equivalent to the 5-node binary trees

and forests. But this fat was not learned until the 20th entury.)

There are a few isolated instanes where authors of yore did prepare lists of

C

3

= 5 Catalan-related objets. Cayley, again, was �rst; he illustrated the binary

trees with 3 internal nodes and 4 leaves as follows in Philosophial Magazine 18

(1859), 374{378:

(33)

(That same paper also illustrated another speies of tree, equivalent to so-alled

weak orderings.) Then, in 1901, E. Netto listed the �ve ways to insert parentheses

into the expression `a+ b+ + d':

(a+b)+(+d); [(a+b)+℄+d; [a+(b+)℄+d; a+[(b+)+d℄; a+[b+(+d)℄: (34)

[Lehrbuh der Combinatorik, x122.℄ And the �ve permutations of f+1;+1;+1;

�1;�1;�1g whose partial sums are nonnegative were listed in the following way

by Paul Erd}os and Irving Kaplansky [Sripta Math. 12 (1946), 73{75℄:

1+1+1�1�1�1; 1+1�1+1�1�1; 1+1�1�1+1�1;

1�1+1+1�1�1; 1�1+1�1+1�1: (35)

Even though only �ve objets are involved, we an see that the orderings in (33)

and (34) were basially ath-as-ath-an; only (35), whih mathes Algorithm

7.2.1.6P, was systemati and lexiographi.
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We should also note briey the work of Walther von Dyk, sine many reent

papers use the term \Dyk words" to refer to strings of nested parentheses. Dyk

was an eduator known for o-founding the Deutshes Museum in Munih, among

other things. He wrote two pioneering papers about the theory of free groups

[Math. Annalen 20 (1882), 1{44; 22 (1883), 70{108℄. Yet the so-alled Dyk

words have at best a tenuous onnetion to his atual researh: He studied the

words on fx

1

; x

�1

1

; : : : ; x

k

; x

�1

k

g that redue to the empty string after repeatedly

erasing adjaent letter-pairs of the forms x

i

x

�1

i

or x

�1

i

x

i

; the onnetion with

parentheses and trees arises only when we limit erasures to the �rst ase, x

i

x

�1

i

.

Thus we may onlude that, although an explosion of interest in binary trees

and their ousins ourred after 1950, suh trees represent the only aspet of our

story whose historial roots are rather shallow.

After 1950. Of ourse the arrival of eletroni omputers hanged everything.

The �rst omputer-oriented publiation about ombinatorial generation methods

was a note by C. B. Tompkins, \Mahine attaks on problems whose variables

are permutations" [Pro. Symp. Applied Math. 6 (1956), 202{205℄. Thousands

more were destined to follow.

Several artiles by D. H. Lehmer, espeially his \Teahing ombinatorial

triks to a omputer" in Pro. Symp. Applied Math. 10 (1960), 179{193, proved

to be extremely inuential in the early days. [See also Pro. 1957 Canadian

Math. Congress (1959), 160{173; Pro. IBM Sienti� Computing Symposium

on Combinatorial Problems (1964), 23{30; and Chapter 1 of Applied Combina-

torial Mathematis, edited by E. F. Bekenbah (Wiley, 1964), 5{31.℄ Lehmer

represented an important link to previous generations. For example, Stanford's

library reords show that he had heked out Netto's Lehrbuh der Combinatorik

in January of 1932.

The main publiations relevant to partiular algorithms that we've studied

have already been ited in previous setions, so there is no need to repeat them

here. But textbooks and monographs that �rst put piees of the subjet together

in a oherent framework were also of great importane. Three books, in parti-

ular, were espeially noteworthy with respet to establishing general priniples:

� Elements of Combinatorial Computing by Mark B. Wells (Pergamon Press,

1971), espeially Chapter 5.

� Combinatorial Algorithms by Albert Nijenhuis and Herbert S. Wilf (Aa-

demi Press, 1975). A seond edition was published in 1978, ontaining

additional material, and Wilf subsequently wrote Combinatorial Algorithms:

An Update (Philadelphia: SIAM, 1989).

� Combinatorial Algorithms: Theory and Pratie by Edward M. Reingold,

Jurg Nievergelt, and Narsingh Deo (Prentie{Hall, 1977), espeially the

material in Chapter 5.

Robert Sedgewik ompiled the �rst extensive survey of permutation generation

methods in Computing Surveys 9 (1977), 137{164, 314. Carla Savage's survey

artile about Gray odes in SIAM Review 39 (1997), 605{629, was another

milestone.
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We noted above that algorithms to generate Catalan-ounted objets were

not invented until omputer programmers developed an appetite for them. The

�rst suh algorithms to be published were not ited in Setion 7.2.1.6 beause

they have been superseded by better tehniques; but it is appropriate to list

them here. First, H. I. Soins gave two reursive algorithms for ordered tree

generation, in the same paper we have ited with respet to the generation of

oriented trees [Mahine Intelligene 3 (1968), 43{60℄. His algorithms dealt with

binary trees represented as bit strings that were essentially equivalent to Polish

pre�x notation or to nested parentheses. Then Mark Wells, in Setion 5.5.4 of his

book ited above, generated binary trees by representing them as nonrossing

set partitions. And Gary Knott [CACM 20 (1977), 113{115℄ gave reursive

ranking and unranking algorithms for binary trees, representing them via the

inorder-to-preorder permutations q

1

: : : q

n

of Table 7.2.1.6{3.

Algorithms to generate all spanning trees of a given graph have been pub-

lished by numerous authors ever sine the 1950s, motivated originally by the

study of eletrial networks. Among the earliest suh papers were works of

N. Nakagawa, IRE Trans. CT-5 (1958), 122{127; W. Mayeda, IRE Trans.

CT-6 (1959), 136{137, 394; H. Watanabe, IRE Trans. CT-7 (1960), 296{302;

S. Hakimi, J. Franklin Institute 272 (1961), 347{359.

A reent introdution to the entire subjet an be found in Chapters 2

and 3 of Combinatorial Algorithms: Generation, Enumeration, and Searh by

Donald L. Kreher and Douglas R. Stinson (CRC Press, 1999).

Frank Ruskey is preparing a book entitled Combinatorial Generation that

will ontain a thorough treatment and a omprehensive bibliography. He has

made working drafts of several hapters available on the Internet.

EXERCISES

Many of the exerises below ask a modern reader to �nd and/or to orret errors in

the literature of bygone days. The point is not to gloat over how smart we are in the

21st entury; the point is rather to understand that even the pioneers of a subjet an

stumble. One good way to learn that a set of ideas is not really as simple as it might

seem to today's omputer sientists and mathematiians is to observe that some of the

world's leading thinkers had to struggle with the onepts when they were new.

1. [15 ℄ Does the notion of \omputing" arise in the I Ching?

x 2. [M30 ℄ (The geneti ode.) DNA moleules are strings of \nuleotides" on the

4-letter alphabet fT; C; A; Gg, and most protein moleules are strings of \amino aids" on

the 20-letter alphabet fA;C;D;E;F;G;H; I;K;L;M;N;P;Q;R;S;T;V;W;Yg. Three

onseutive nuleotides xyz form a \odon," and a strand x

1

y

1

z

1

x

2

y

2

z

2

: : : of DNA

spei�es the protein f(x

1

; y

1

; z

1

)f(x

2

; y

2

; z

2

) : : : , where f(x; y; z) is the element in row z

and olumn y of matrix x in the array

0

B

�

F S Y C

F S Y C

L S � �

L S � W

1

C

A

0

B

�

L P H R

L P H R

L P Q R

L P Q R

1

C

A

0

B

�

I T N S

I T N S

I T K R

M T K R

1

C

A

0

B

�

V A D G

V A D G

V A E G

V A E G

1

C

A

.

(Here (T; C; A; G) = (1; 2; 3; 4); for example, f(CAT) is the element in row 1 and olumn 3

of matrix 2, namely H.) Enoding proeeds until a odon leads to the stopper `�'.
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a) Show that there is a simple way to map eah odon into a hexagram of the I Ching,

with the property that the 21 possible outomes fA;C;D; : : : ;W;Y;�g orrespond

to 21 onseutive hexagrams of the King Wen ordering (1).

b) Is that a sensational disovery?

3. [20 ℄ What is the millionth meter that has 30 beats, in olex ordering analogous

to (2)? What is the rank of ^^^��^����^^^^����^^^^^^^��^��?

4. [19 ℄ Analyze the imperfetions of Donnolo's list of permutations in Table 1.

5. [16 ℄ What's wrong with Kirher's list of �ve-note permutations in (7)?

6. [25 ℄ Mersenne published a table of the �rst 64 fatorials on pages 108{110 of his

Traitez de la Voix et des Chants (1636). His value for 64! was � 2:2�10

89

; but it should

have been � 1:3� 10

89

. Find a opy of his book and try to �gure out where he erred.

7. [20 ℄ What permutations of f1; 2; 3; 4; 5g are \alive" and \dead" aording to Seki's

rules (8) and (9)?

x 8. [M27 ℄ Make a path to (9) so that Seki's proedure will be orret.

9. [15 ℄ From (11), dedue the Arabi way to write the Arabi numerals (0; 1; :::; 9).

x 10. [HM27 ℄ In Ludus Clerialis, what is the expeted number of times the three die

are rolled before all possible virtues are aquired?

11. [21 ℄ Deipher Llull's vertial table at the right of Fig. 45. What 20 ombinatorial

objets does it represent? Hint: Don't be misled by typographi errors.

12. [M20 ℄ Relate Shillinger's universal yle (13) to the universal yle of Poinsot in

exerise 7.2.1.3{106.

13. [21 ℄ What should van Shooten have written, instead of (17)? Give also the

orresponding tableau for ombinations of the multiset fa; a; a; b; b; g.

x 14. [20 ℄ Complete the following sequene, from x95 of Izquierdo's De Combinatione:

ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB : : : .

15. [15 ℄ If all n-ombinations of f1; : : : ;mg with repetition are listed in lexiographi

order, how many of them begin with the number j?

16. [20 ℄ (N�ar�ayan

.

a Pan

.

d

.

ita, 1356.) Design an algorithm to generate all ompositions

of n into parts � q, namely all ordered partitions n = a

1

+ � � �+ a

t

, where 1 � a

j

� q

for 1 � j � t and t is arbitrary. Illustrate your method when n = 7 and q = 3.

17. [HM27 ℄ Analyze the algorithm of exerise 15.

18. [10 ℄ Trik question: Leibniz published his Dissertatio de Arte Combinatoria in

1666. Why was that a partiularly auspiious year, permutationwise?

19. [17 ℄ In whih of Puteanus's verses (20) is `tibi' treated as ^�� instead of ^^?

20. [M25 ℄ To ommemorate the visit of three illustrious noblemen to Dresden in 1617,

a poet published 1617 permutations of the hexameter verse

Dant tria jam Dresd�, eu sol dat, lumina luem.

\Three give now to Dresden, as the sun gives, lights to light." [Gregor Kleppis, Proteus

Poetius (Leipzig: 1617).℄ How many permutations of those words would atually san

properly? Hint: The verse has datyls in the �rst and �fth feet, spondees elsewhere.
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21. [HM30 ℄ Let f(p; q; r; s; t) be the number of ways to make (o

p

; o

q

; o

r

) by onate-

nating the strings fs � o; t � oog, when p+ q+ r = s+2t. For example, f(2; 3; 2; 3; 2) = 5

beause the �ve ways are

(oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo):

a) Show that f(p; q; r; s; t) = [u

p

v

q

w

r

z

s

℄ 1=((1� zu� u

2

)(1� zv� v

2

)(1� zw�w

2

)).

b) Use the funtion f to enumerate the sannable permutations of (19), subjet to

the additional ondition that the �fth foot doesn't begin in the middle of a word.

) Now enumerate the remaining ases.

x 22. [M40 ℄ Look up the original disussions of the tot-tibi problem that were published

by Prestet, Wallis, Whitworth, and Hartley. What errors did they make?

23. [20 ℄ What order of the 52 genji-ko diagrams orresponds to Algorithm 7.2.1.5H?

x 24. [23 ℄ Early in the 1800s,Toshiaki Honda gave a reursive rule for generating all par-

titions of f1; : : : ; ng. His algorithm produed them in the following order when n= 4:

Can you guess the orresponding order for n = 5? Hint: See (26).

25. [15 ℄ The 16th-entury author of The Arte of English Poesie was interested only in

rhyme shemes that are \omplete" in the sense of exerise 7.2.1.5{35; in other words,

every line should rhyme with at least one other. Furthermore, the sheme should

be \indeomposable" in the sense of exerise 7.2.1.2{100: A partition like 12 j345

deomposes into a 2-line poem followed by a 3-line poem. And the sheme shouldn't

onsist trivially of lines that all rhyme with eah other. Under these onditions, is (28)

a omplete list of 5-line rhyme shemes?

x 26. [HM25 ℄ How many n-line rhyme shemes satisfy the onstraints of exerise 24?

x 27. [HM31 ℄ The set partition 14 j25 j36 an be represented by a genji-ko diagram suh

as ; but every suh diagram for this partition must have at least three plaes where

lines ross, and rossings are sometimes onsidered undesirable. How many partitions

of f1; : : : ; ng have a genji-ko diagram in whih the lines ross at most one?

x 28. [25 ℄ Let a, b, and  be prime numbers. JohnWallis listed all possible fatorizations

of a

3

b

2

 as follows: bbaaa, bbaa � a, baaa � b, bbaaa � , bba � aa, bba � a � a, baa � ba,

baa � b � a, bbaa � a, bbaa �  � a, aaa � bb, aaa � b � b, baaa � b, baaa �  � b, bb � aaa,

bb � aa � a, bb � a � a � a, ba � baa, ba � ba � a, ba � aa � b, ba � b � a � a, bba � aa, bba � a � a,

bba �aa � , bba �  �a �a, aa � bb �a, aa � ba � b, aa � b � b �a, baa � b �a, baa � a � b, baa � ba � ,

baa �  � b � a, aaa � b � b, aaa � bb � , aaa �  � b � b, b � ba � aa, b � ba � a � a, b � aa � b � a,

b � b � a � a � a, bb � a � aa, bb � a � a � a, bb � aa �  � a, bb �  � a � a � a, a � ba � ba, a � ba � b � a,

a � aa � b � b, a � b � b � a � a, ba � ba �  � a, ba � aa �  � b, ba �  � b � a � a, aa �  � b � b � a,

 � b � b � a � a � a. What algorithm did he use to generate them in this order?

x 29. [24 ℄ In what order would Wallis have generated all fatorizations of the number

abde = 5 � 7 � 11 � 13 � 17? Give your answer as a sequene of genji-ko diagrams.

30. [M20 ℄ What is the oeÆient of a

i

1

1

a

i

2

2

: : : z

m+n

in (a

0

z + a

1

z

2

+ a

2

z

3

+ � � � )

m

?

(See (29).)

31. [20 ℄ Compare de Moivre's and de Montmort's orders for partitions, (30) and (31),

with Algorithm 7.2.1.4P.

32. [21 ℄ (R. J. Bosovih, 1748.) List all partitions of 20 for whih all parts are 1, 7,

or 10. Also design an algorithm that lists all suh partitions of any given integer n > 0.

27



28 ANSWERS TO EXERCISES 7.2.1.7

SECTION 7.2.1.7

1. Perhaps under hexagram 21, \runhing" ( ); however, the anient ommentators

related this hexagram more to law enforement than to the interation of eletrons.

2. (a) For the �rst nuleotide in the odon, let (T; C; A; G) be respetively represented

by (

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

); represent the seond nuleotide, similarly, by (

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

); repre-

sent the third by (

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

;

. .

. .

. .

. .

); and superimpose those three representations. Thus,

for example, hexagram number 34 is =

. .

. .

. .

. .

+

. .

. .

. .

. .

+

. .

. .

. .

. .

; it represents the odon TTC,

whih maps to the amino aid F. Under this orrespondene, hexagrams 34 through 54

inlusive map into the respetive values (F;G;L;Q;W;D; S;�;P;Y;K;A; I;T;N;H;M;

R;V;E;C). Moreover, the three hexagrams that map to `�' are numbers 1, 9, and 41,

namely , , and , whih mean \reation", \taming," and \removal of exess" in

the I Ching|all quite appropriate for the notion of ompleting a protein.

(b) Consider the

�

64

6;6;6;4;4;4;4;4;3;3;2;2;2;2;2;2;2;2;2;1;1

�

� 2:3 � 10

69

ways to permute

the elements of the 4� 4� 4 geneti ode array. Exatly

2402880402175789790003993681964551328451668718750185553920000000� 2:4� 10

63

of them ontain at least one run of 21 distint onseutive elements. [Using the priniple

of inlusion and exlusion one an show that any multiset f(n

1

+1) �x

1

; : : : ; (n

r

+1) �x

r

g

with r distint elements and n

r

= 0 has exatly

(n+1)

�

n

n

1

; : : : ; n

r

�

r!�

r

X

k=1

(n+1�k)k!(r�k)! a

k

X

0�d

1

;:::;d

r

�1

d

1

+���+d

r

=k

�

n� k

n

1

� d

1

; : : : ; n

r

� d

r

�

suh permutations, where n = n

1

+ � � � + n

r

and a

k

is the number of indeomposable

permutations with k elements (exerise 7.2.1.2{100).℄ Thus only about one out of every

million permutations has the stated property.

But there are 4!

3

�

6

2;2;2

�

= 1244160 ways to represent odons as in part (a), and

most of them orrespond to di�erent permutations of the amino aids (exept for

interhanging the representations of T and C in third position).

Empirially, in fat, about 31% of all permutations of the 64 hexagrams turn out

to have suitable odon mappings. Thus the onstrution in part (a) gives no reason to

believe that the authors of the I Ching antiipated the geneti ode in any way.

3. Sine F

31

� 10

6

= F

28

+ F

22

+ F

20

+ F

18

+ F

16

+ F

14

+ F

9

, the millionth is

^^^^^^^��^^^����������^^^^��^^:

Going the other way is easier: F

31

� (F

5

+F

8

+F

10

+F

16

+F

18

+F

27

+F

30

) = 314159.

4. One of the two appearanes of on line 4 should be ; this glith may

simply be a typographial error. Similarly, one on line 8 should be . But

the six ases with rightmost letters appear twie, in lines 3 and 4, while the ases

with rightmost are missing. Donnolo himself must be responsible for this aw.

5. The last one should have been , not .

6. The nth value m

n

in Mersenne's list agrees with n! only for 1 � n � 13 and

15 � n � 38. Mersenne knew that 14! = 87178291200 6= m

14

= 8778291200, beause he

inserted the missing `1' in his personal opy of the book (now owned by the Biblioth�eque

Nationale; a fasimile was published in 1975). But the other errors in his table were not

merely typographial, beause they propagated into subsequent entries, exept in the

ase of m

50

: m

39

= 39!+ 10

26

� 10

10

; m

40

= 40m

39

; m

41

= 41m

40

� 4 � 10

25

� 14 � 10

11

;
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m

n

= nm

n�1

for n = 42, 43, 44, 46, 47, 48, 49, 55, 60, and 62; m

50

= 50m

49

+ 10

66

;

m

51

= 51 � 50 �m

49

. When he omputed m

45

= 9 � 45 �m

44

� 10

40

+10

29

, he apparently

deided to take a shortut, beause it's easy to multiply by 5 or by 9; but he multiplied

twie by 9. Most of his errors indiate an unreliable multipliation tehnique, whih

may have depended on an abaus: m

52

= 52m

51

+ 5 � 10

56

� 2 � 10

47

+ 10

34

; m

53

=

53m

52

� 4 � 10

29

; m

54

= 54m

53

+ 10

16

; m

57

= 57m

56

+ 10

33

+ 10

24

; m

58

= 58m

57

+

10

67

�10

35

+10

32

+11 �10

26

; m

59

= 59m

58

+10

66

+10

49

�10

28

; m

61

= 61m

60

�5 �10

81

;

m

63

= 63m

62

+ 10

82

� 10

74

; m

64

= 64m

63

+ 3 � 10

81

+ 10

67

+ 2 � 10

38

� 2 � 10

33

� 10

23

.

The remaining ase, m

56

� 10:912m

55

is ba�ing; it is � 56m

55

(modulo 10

17

), but

its other digits seem to satisfy neither rhyme nor reason. Can they be easily explained?

Notes: Athanasius Kirher must have opied from Mersenne when he tabulated n!

for 1 � n � 50 on page 157 of his Ars Magna Siendi (1669), beause he repeated all of

Mersenne's mistakes. Kirher did, however, list the values 10m

14

, m

45

=10, and 10m

49

instead of m

14

, m

45

, and m

49

; perhaps he was trying to make the sequene grow more

steadily. It is not lear who �rst alulated the orret value of 39!; exerise 1.2.5{4

tells the story of 1000!.

7. The basi permutations are 12345, 13254, 14523, 15432, 12453, 14235, 15324,

13542, 12534, 15243, 13425, 14352. But then we �nd that all 60 of the even

permutations are both alive and dead, beause (9) di�ers by an even permutation

from (8). (Moreover, if we somehow repair the ase n = 5, half of the live permutations

for n = 6 will turn out to be odd.)

8. For example, we an replae (9) by

a

n

a

3

: : : a

n�1

a

2

a

1

; a

1

a

n�1

: : : a

n

a

3

a

2

; : : : ; a

n�1

a

2

: : : a

n�2

a

1

a

n

;

thus ipping the ends and ylially shifting the other elements in the permutations

of (8). This modi�ation works beause all permutations have the orret parity, and

beause the live and dead ones both have a

1

in every possible position. (We essentially

have a dual Sims table for the alternating group, as in Eq. 7.2.1.2{(32); but our elements

are named (n;n� 1; : : : ; 1) instead of (0; 1; : : : ; n� 1).)

A simpler way to generate permutations with the proper signs was published by

�

E. B�ezout [M�emoires Aad. Royale des Sienes (Paris, 1764), 292℄: Eah permutation

a

1

: : : a

n�1

of f1; : : : ; n� 1g yields n others, a

1

: : : a

n�1

a

n

� a

1

: : : a

n�2

a

n

a

n�1

+ � � � .

9. (0;1;2;3;4;5;6;7;8;9); or perhaps we should say (9;8;7;6;5;4;3;2;1;0). Notes:

A di�erent system was used for the index numbers of the equations; for example, `�'

stood for 200. Moreover, it should be noted that (11) is atually a transription of al-

Samaw'al's work into modern Arabi; Ahmad and Rashed based their work on a 14th-

entury opy that used similar but older forms of the digits: (5;1;2;3;:;;;6;7;8;9).

Al-Samaw'al himself may well have used numerals of an even earlier vintage.

10. If the 56 ases were equally likely, the answer would be 56H

56

� 258:2, as in

the oupon olletor's problem (exerise 3.3.2{8). But (6; 30; 20) ases our with the

respetive probabilities (1=216; 1=72; 1=36); so the orret answer turns out to be

Z

1

0

(1� (1� e

�t=216

)

6

(1� e

�t=72

)

30

(1� e

�t=36

)

20

) dt � 546:6;

about 42% of the upper bound 216H

216

. [See P. Flajolet, D. Gardy, and L. Thimonier,

Disrete Applied Math. 39 (1992), 207{229.℄

11. It tabulates the

�

6

3

�

= 20 ombinations of (b; ; d;B;C;D) taken three at a time;

furthermore, they appear in lexiographi order if we regard b <  < d < B < C < D.
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The letter t ( ) means \shift from lowerase to upperase." [See A. Bonner, Seleted

Works of Ramon Llull (Prineton: 1985), 596{597.℄ There are two typos: `d' should

be `b' at the beginning of line 6; `' should be `d' at the end of line 18. Line 1 would

have been more onsistent with the others if Llull had presented it as

;

but in that line, of ourse, no ase shift was needed.

12. Multiply Poinsot's yle by 5 (mod 7).

13. It's best to have just n lines when there are n di�erent letters:

a: aa: aaa

b: ab: aab: aaab: bb: abb: aabb: aaabb

Then, assigning the weights (a; b) = (1; 4) gives the numbers 1 through 11 as in (18).

(The �rst line of (16) should also be omitted.) Similarly, for fa; a; a; b; b; g we would

impliitly give  the weight 12 and add the additional line

: a: aa: aaa: b: ab: aab: aaab: bb: abb: aabb: aaabb:

[J. Bernoulli almost did it right in Ars Conjetandi, Part 2, Chapter 6.℄

14. ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB AEC AED BCD BCE BCA BDE

BDA BDC BEA BEC BED BAC BAD BAE CDE CDA CDB CEA CEB CED CAB CAD

CAE CBD CBE CBA DEA DEB DEC DAB DAC DAE DBC DBE DBA DCE DCA DCB

EAB EAC EAD EBC EBD EBA ECD ECA ECB EDA EDB EDC. It's a genlex ordering

(see Algorithm 7.2.1.3R), proeeding ylially through the letters not yet used.

[A similar ordering had been used to form all 120 permutations of �ve letters in a

kabbalisti work entitled Sha`ari Tzedeq, asribed to the 13th-entury author Natan ben

Sa`adyah Har'ar of Messina, Siily; see Le Porte della Giustizia (Milan: Adelphi, 2001).℄

15. After j we plae the (n � 1)-ombinations of fj; : : : ;mg with repetition, so the

answer is

�

(m+1�j)+(n�1)�1

n�1

�

=

�

m+n�j�1

n�1

�

. [Jean Borrel, also known as Buteonis,

pointed this out on pages 305{309 of his early book Logistia (Lyon: 1560). He

tabulated all throws of n die for 1 � n � 4, then used a sum over j to dedue that

there are 56+ 35+ 20+ 10+ 4+ 1 = 252 distint throws for n = 5, and 462 for n = 6.℄

16. N1. [Initialize.℄ Set r  n, t 0, and a

0

 0.

N2. [Advane.℄ While r � q, set t t+ 1, a

t

 q, and r  r � q. Then if r > 0,

set t t+ 1 and a

t

 r.

N3. [Visit.℄ Visit the omposition a

1

: : : a

t

.

N4. [Find j.℄ Set j  t, t� 1, : : : , until a

j

6= 1. Terminate the algorithm if j = 0.

N5. [Derease a

j

.℄ Set a

j

 a

j

� 1, r  t� j + 1, t j; return to N2.

For example, the ompositions for n = 7 and q = 3 are 331, 322, 3211, 313, 3121, 3112,

31111, 232, 2311, 223, 2221, 2212, 22111, 2131, 2122, 21211, 2113, 21121, 21112, 211111,

133, 1321, 1312, 13111, 1231, 1222, 12211, 1213, 12121, 12112, 121111, 1132, 11311,

1123, 11221, 11212, 112111, 11131, 11122, 111211, 11113, 111121, 111112, 1111111.

N�ar�ayan

.

a's sutras 79 and 80 gave essentially this proedure, but with the strings

reversed (133, 223, 1123, : : : ), beause he preferred dereasing olex order. Curiously,

he alled this a \famous method, told by sholars of old dramati art," although no

referenes to prior desriptions are urrently known exept in the ase q = 2.

17. The number V

n

of visits is F

(q)

n+q�1

= �(�

n

q

); see exerise 5.4.2{7. The number

X

n

of times step N4 tests a

j

= 1 satis�es X

n

= X

n�1

+ � � � +X

n�q

+ 1, and we �nd
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X

n

= V

0

+ � � � + V

n

= (qV

n

+ (q � 1)V

n�1

+ � � � + V

n�q+1

� 1)=(q � 1) = �(V

n

). The

number Y

n

of times step N2 sets a

t

 q satis�es the same reurrene, and we �nd

Y

n

= X

n�q

. And the number of times step N2 �nds r = 0 turns out to be V

n�q

.

18. It was MDCLXVI in Roman numerals, where M > D > C > L > X > V > I.

19. Lines 329 and 1022. (Puteanus inluded 139 suh verses among his list of 1022.)

20. With `tria' preeding `lumina', there are 5! � 2! � (11; 12; 12; 16) ways having a

datyl in the (1st, 2nd, 3rd, 4th) foot, respetively; with `lumina' preeding `tria' there

are 5! � 2! � (16; 12; 12; 11). So the total is 24480. [Leibniz onsidered this problem

near the end of his Dissertatio de Arte Combinatoria, and ame up with the answer

45870; but his argument was riddled with errors.℄

21. (a) The generating funtion 1=((1 � zu � yu

2

)(1 � zv � yv

2

)(1 � zw � yw

2

)) is

learly equal to

P

p;q;r;s;t�0

f(p; q; r; s; t)u

p

v

q

w

r

z

s

y

t

.

(b) If `tibi' is ^^ and `Virgo' is ����, the number is 3! 3! times

P

3

k=0

(f(2k + 1;

6� 2k; 2; 3; 3) + f(2k; 6� 2k; 2; 2; 3)), namely 36((7+7) + (9+5) + (10+5) + (14+7)) =

2304. Otherwise `tibi' is^��, `Virgo' is ��^, and the number is 2! 3! times

P

3

k=0

(f(2k;

5�2k; 2; 3; 2)+f(2k; 6�2k; 1; 3; 2)), namely 12((7+6)+(5+4)+(4+4)+(0+6)) = 432.

() The �fth foot begins with the seond syllable of `�lo', `dotes', or `Virgo'.

Hene the additional number is 3! 3!

P

2

k=0

f(2k; 5 � 2k; 2; 3; 2) = 36(7 + 5 + 4) = 576,

and the grand total is 2304 + 432 + 576 = 3312.

22. Let � 2 fquot; sunt; totg, � 2 f�lo; dotes;Virgog, � = sidera, and � = tibi.

Prestet's analysis was essentially equivalent to that of Bernoulli, but he forgot to inlude

the 36 ases ��������. (In his favor one an say that those ases are poetially sterile;

Puteanus found no use for them.) The 1675 edition of Prestet's book had also omitted

all permutations that end with ��.

Wallis divided the possibilities into 23 types, T

1

[ T

2

[ � � � [ T

23

. He laimed that

his types 6 and 7 eah yielded 324 verses; but atually jT

6

j = jT

7

j = 252, beause his

variable i should be 7, not 9. He also ounted many solutions twie: jT

3

\ T

5

j = 72,

jT

2

\ T

7

j = jT

5

\ T

7

j = jT

3

\ T

6

j = jT

6

\ T

10

j = 36, and jT

11

\ T

12

j = jT

12

\ T

13

j =

jT

14

\ T

15

j = 12. He missed the 36 possibilities �������� (19 of whih were used by

Puteanus). And he also missed all the permutations of exerise 20(); Puteanus had

used 250 of those 576. The Latin edition of Wallis's book, published in 1693, orreted

several typographi errors in this setion, but none of the mathematial mistakes.

Whitworth and Hartley omitted all ases with `tibi' = ^�� (see exerise 18),

possibly beause people's knowledge of lassial hexameter was beginning to fade.

[Speaking of errors, Puteanus atually published only 1020 distint permutations,

not 1022, beause lines 592 and 593 in his list were idential to lines 601 and 602. But

he would have had no trouble �nding two more ases| for example, by hanging `tot

sunt' to `sunt tot' in lines 252, 345, 511, 548, 659, 663, 678, 693, or 797.℄

23. Reading eah diagram left-to-right, so that 12 j345$ , we get
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24. His rule was: For k = 0, 1, : : : , n � 1, and for eah ombination 0 < j

1

< � � � <

j

k

< n of n�1 things taken k at a time, visit all partitions of f1; : : : ; n�1gnfj

1

; : : : ; j

k

g

together with the blok fj

1

; : : : ; j

k

; ng. His order for n = 5 was:

But stritly speaking, the answer to this exerise is \No"|beause Honda's rule is not

omplete until the order of the ombinations is spei�ed. He generated ombinations

in olex order (lexiographi on j

t

: : : j

1

). Lexiographi order on j

1

: : : j

t

would also be

onsistent with the list given for n = 4, but it would put before . Referene:

T. Hayashi, Tôhoku Math. J. 33 (1931), 332{337.

25. No; (28) misses 14 j235 (the top-bottom reetion of its seond pattern).

26. Let a

n

be the number of indeomposable partitions of f1; : : : ; ng, and let a

0

n

be the number that are both indeomposable and omplete. These sequenes begin

ha

1

; a

2

; : : : i = h1; 1; 2; 6; 22; 92; 426; : : : i, ha

0

1

; a

0

2

; : : : i = h0; 1; 1; 3; 9; 33; 135; : : : i; and

the answer to this exerise is a

0

n

�1 for n � 2. It turns out that a

n

is also the number of

symmetri polynomials of degree n in nonommuting variables. [See M. C. Wolf, Duke

Math. J. 2 (1936), 626{637, who also tabulated indeomposable partitions into k parts.℄

If A(z) =

P

n

a

n

z

n

, and if B(z) =

P

n

$

n

z

n

is the non-exponential generating

funtion for Bell numbers, we have A(z)B(z) = B(z) � 1, hene A(z) = 1 � 1=B(z).

And the result of exerise 7.2.1.5{35 implies that

P

n

a

0

n

z

n

= zA(z)=(1 + z � A(z)) =

z(B(z)�1)=(1+zB(z)). Unfortunately B(z) has no espeially nie losed form. Notie

that indeomposable set partitions with n > 1 orrespond to vaillating tableau loops

with no three onseutive �s equal to zero (see exerise 7.2.1.5{27).

27. The problem is ambiguous beause genji-ko diagrams are not well de�ned. Let's

require all vertial lines of a blok to have the same height; then, for example, 145 j236

has no single-rossing diagram beause is not allowed.

The number of partitions with no rossing is C

n

(see exerise 7.2.1.6{26). For one

rossing, the elements of the two bloks that ross must appear within the restrited

growth sequene as either x

i

yx

j

y

k

or x

i

y

j+1

xy

k

or x

i

y

j

xy

k

x

l

, where i; j; k; l > 0.

Suppose the pattern is x

i

yx

j

y

k

. The number of suh partitions is

[z

n�i�j�k�1

℄C(z)

i+j+k+2

= C

(n�i�j�k�1)n

by Eq. 7.2.1.6{(24). Summing on k gives C

(n�i�j�2)(n+1)

; then summing on j and i

gives C

(n�4)(n+3)

.

Similarly, the other two patterns ontribute C

(n�5)(n+3)

and C

(n�5)(n+4)

. The

total number of single-rossing partitions is therefore C

(n�5)(n+3)

+ C

(n�4)(n+4)

.

28. Order the divisors of bbaaa by their number of prime fators and then olexio-

graphially: 1 � a � b �  � aa � ba � a � bb � b � aaa � baa � aa � bba �

ba � bb � baaa � aaa � bbaa � baa � bba � bbaaa � baaa � bbaa � bbaaa.

For every suh divisor d, in dereasing order, let d be the �rst fator; reursively append

all fatorizations of bbaaa=d whose �rst fator is � d.
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If the divisors had been ordered lexiographially (namely 1 < a < aa < aaa <

b < ba < � � � < bbaa < bbaaa), Wallis's algorithm would have been equivalent to

Algorithm 7.2.1.5M with (n

1

; n

2

; n

3

) = (1; 2; 3). He probably hose his more ompli-

ated ordering of the divisors beause it tends to agree more losely with ordinary

numerial order when a � b � ; for example, his ordering is preisely numerial when

(a; b; ) = (7; 11; 13). By generating the divisors aording to his somewhat omplex

sheme, Wallis was essentially generating multiset ombinations, whih we noted in

Setion 7.2.1.3 are equivalent to bounded ompositions. [Referene: A Disourse of

Combinations (1685), 126{128, with two typographi errors orreted.℄

29. The fatorizations edba, edb �a, eda �b, : : : , e �d � �b �a orrespond respetively to

30. The oeÆient is zero unless i

1

+2i

2

+ � � � = n; in that ase it is

�

m

k

�

a

m�k

0

�

k

i

1

;i

2

;:::

�

where k = i

1

+ i

2

+ � � � . (Consider (a

0

z)

m

times (1 + (a

1

=a

0

)z + (a

2

=a

0

)z

2

+ � � � )

m

.)

31. The order produed by that algorithm is dereasing lexiographi, the reverse

of (31), if we assume that partitions a

1

: : : a

k

have a

1

� � � � � a

k

; de Moivre's was

inreasing olexiographi.

32. 20 � 1 = 7 + 13 � 1 = 2 � 7 + 6 � 1 = 10 + 10 � 1 = 10 + 7 + 3 � 1 = 2 � 10. In general,

Bosovih suggested starting with n �1 and omputing the suessor of a �10+b �7+ �1

as follows: If  � 7, the suessor is a �10+(b+1) �7+(�7) �1; otherwise if +7b � 10,

the suessor is (a+ 1) � 10 + (+ 7b� 10) � 1; otherwise stop.
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that exerise for further information. An answer page is not indexed here unless it refers to a
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Fatorial number system, 14.
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Multiombinations: Combinations with

repetition, 7{8, 14, 26.

Multinomial oeÆients, 19.

Multinomial theorem, 20, 22, 27.

Multipartitions: Partitions of a multiset,

19, 27.

Multiset ombinations, 26, 33.
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Shao Yung ( ), 1.
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