
Planning and Learning in Permutation Groups

Amos Fiat? Shahar Moses?

Abstract

Planning is the problem of synthesizing a desired behav-

ior from given basic operations, and learning is the dual

problem of analysing a given behavior to determine the

unknown basic operations. In this paper we develop new

algorithms for solving these problems in the context of in-

vertible operations on finite state environments. In addition

to their obvious AI applications, these algorithms can effi-

ciently find the shortest way to solve Rubik’s cube, test

ping-pong protocols, and solve systems of equations over

permutation groups.

1 Introduction

Let G be a permutation group over S = {1,2...,q} gen-

erated by P = {91,92,-.-; 9%}. Each g in G can be rep-

resented (in infinitely many ways) by words in (UU =~*)*

where ¥ is the set of formal symbols {g91,g92,...,g%} and

E-! is the set of their formal inverses {g7!,95°,..., 9; °}-

The length of g € G with respect to P is defined as the

length of the shortest word w € (UL Z~')* that represents
g, and the diameter of G is defined as the largest length of

its members.

Sims [Sim70] described a simple method for deciding
membership in G, which was shown to run in polynomial

time by Furst Hopcroft and Luks [FHL80]. Unfortunately,

the actual representations derived from this algorithm are

usually exponentially long. The problem of determining the

length of a given g was shown to be NP-hard by Even and

Goldreich [EG81], and P-space complete by Jerrum [J85],
and in fact it is not difficult to show that in some permuta-

tion groups there are permutations with super-polynomial

length. However, most of the interesting groups have very

small diameters and for them the Sims representations are

very wasteful. Our goal in Section 2 is to develop a new

planning algorithm which can find short representations

whenever they exist. In Section 3 we describe some in-

teresting applications of this algorithm in the context of

Rubik’s group (whose diameter is believed to be 20), and in

particular describe the first practical algorithm for finding

the shortest solution for any given state of Rubik’s cube.

In Section 4 we consider the problem of Learning in

permutation groups. In this problem an intelligent entity

(baby, robot, etc.) is introduced into a new and unknown

environment. He can apply several invertible operations

1Computer Science Dept., Tel-Aviv University, Israel

2Mathematics Dept., The Hebrew University, Israel

3 Applied Mathematics Dept., The Weizmann Institute, Israel
4 Algebra Dept., Eétvos University, Hungary

CH2806-8/89/0000/0274/$01.00 © 1989 IEEE

Adi Shamir?

274

[lan Shimshoni® Gabor Tardos*

which affect the environment, but he has no a-priori un-

derstanding of their nature. His goal is to infer a com-

plete description of the basic operations from a large num-

ber of observations. We assume that the entity does not

have complete control over the environment, cannot always

isolate his operations, and cannot always observe the im-

mediate effect of his actions, and thus we do not allow him

to learn simply by bringing the environment to each one

of its possible states and trying out each one of the basic

operations. Our formalization of this learning problem con-

sists of a set S = {1,2...,q} of states of the environment,

a set © = {91,92,---, 9} of unknown permutations, and

a collection of observations of the form ‘the cummulative

effect of applying the sequence of operations specified in w

to initial state 7 results in final state 7”. The main result of

this section is a new algorithm which can infer the unknown

g; from these observations in almost linear time.

Remark: In this paper we denote permutations over

S = {1,2,...,q} by q-vectors whose i-th position indicates

the value to which i is mapped. We enclose these vectors

in angular brackets to avoid confusion with the cycle rep-

resentation of permutations. We apply these permutations

to arguments written to their left, and compose them from

left to right. For example,

2<3,1,2><3,2,1>=1<3,2,1>=38.

2 The Planning Algorithm

The basic problem considered in this section is to determine

whether a given permutation g € G can be represented

by some word w € (HU D-1)* of length n, and to find

such a representation if it exists. Simple adaptations of our

algorithm can find the shortest representations of g, deal

with a partially specified g, and yield a probabilistic upper

bound on the diameter of G.

The total number of words of length n in (ZU E~')*

is R = (2k) (or 2k(2k — 1)"~! if we are interested only

in reduced words which do not contain adjacent inverses),

and thus the problem can be trivially solved by exhaustive

search in O(R) time and O((k+n)q) space. Our main idea is

to tradeoff time for space in an efficient way to get a O(R!/*)

time and O(R"4) space algorithm. With current technol-

ogy, the new algorithm can solve representation problems

with search spaces of up to R = 2° possible words, which

is an improvement of many orders of magnitude over any

previous algorithm.

To tradeoff time for space, we divide the (unknown) word

w that represents g into t subwords w = wiwW2... U4 (we

assume that ¢ divides n and thus all the w; have the same

length n/t). We replace the original generators by “super-

generators” consisting of all the permutations which can be

obtained by composing n/t generators from © U m7}, and

search for a representation of g as a word of length ¢ over

the supergenerators. More generally, we define the follow-

ing problem:

The t-list problem: Given a permutation g and ¢ lists

Ly, L2,...L; of m permutations each, determine whether

gE Ly Le... £4.

The original representation problem can be viewed as the

n-list problem in which each L; contains the original gener-

ators and their inverses, whereas exhaustive search can be

viewed as the 1-list problem in which L, contains all the

permutations in G whose length is n. Our new algorithm

is based on the 4-list version of the representation problem,

and thus the size of each list (which determines the space

complexity of the algorithm) is m = (2k)"/4 = RMA.

By modifying the permutations stored in the L; lists, we

can show:

Lemma 1 The problem of determining whether g €

L,L2L3L4 can be reduced to the problem of determining

whether LiL} ()L4L4 is not empty, with |L;| = |L;j,|-

Proof: Let Li = I1, Ly = Lo, L3 = {gr-*|r € La}, and

4 = {r- |r € Ls}. If nm = 97,73", 7 € L;, then

gE Ly LoLh3Lxq. o

To find a common permutation A in L{L5 and L514, we

generate their entries in lexicographically increasing order,

and then search the two sorted lists in time which is linear

in their length.

The main problem left is how to generate the m? permu-

tations in L/L (or L4L4) in lexicographically increasing

order without actually storing or sorting so many permu-

tations. This on-the-fly generation has been considered by

Schroeppel and Shamir [SS81] in the context of the knap-

sack problem. When Li and L4 are lists of numbers, they

proposed to generate all their sums Li + L4 in increasing

numeric order by using the following algorithm:

1. Sort L4 into increasing numeric order, with 21 being

its smallest element.

2. Create a priority queue Q which initially contains the

sums z, + y for all y € L4.

3. Repeat until Q becomes empty: Delete the pair 2 +

y with the smallest sum from Q, print its sum, and

replace it with 2’ + y where 2’ is the successor of z in

L‘, (if such a successor does not exist, insert nothing).

This algorithm uses only linear space, and its running

time (up to logarithmic factors) is proportional to the num-

ber of printed values. The sortedness of the printed out-

puts is an easy consequence of the monotonicity of addition

(namely, that 2 < 2’ implieszr+y < z'+y). Unfortunately,

the composition of permutations is an inherently non mono-

tonic operation (not only under lexicographic ordering, but

under any total order whatsoever), and thus the Schroeppel-

Shamir algorithm cannot be directly used in permutation

groups. o

275

Example 1 Consider the permutations

2 =< 1,7,6,5,4,3,2> and 2’ =< 2,1,3,4,5,6,7 >,

x’ is the immediate successor to x under lexicographic or-

dering. Then for y =< 7,1,2,3,4,5,6 > the composi-

tion zy is < 7,6,5,4,3,2,1 > while the composition x’y

is < 1,7,2,3,4,5,6 >. Since zy > z'y, these permuta-

tions demonstrate the non-continuity as well as the non-

monotonicity of the composition operation in permutation

groups.

The main difficulty in using this algorithm is that we

have to traverse the z in Li, in a different order for each

y in D4, in order to get a continuously ascending sequence

of zy compositions. To overcome this difficulty, we store

the permutations in L{ as a tree T rather than as a linear

list. The tree has height g and each vertex has q sons, so

that each root-to-leaf path has a q-vector < t1, 12 ...5%g >

over S = {1,2,...q} as its name. The permutations in

L‘, correspond to a subset of T’s leaves, and we prune all

the unused leaves along with their unused ancestors to make

sure that the size of T is proportional to the size of Li. The

natural order < on the remaining leaves is the lexicographic

order on their path names. However, for any permutation y

we can define a new lexicographic order <, on the leaves of

T by reordering the sons 1,2,...,9 of each internal vertex

V so that ly! < 2y-! <...< qy7'. By visiting the leaves

of the tree T' in the new <,y order we can show:

Lemma 2 Given a tree T (which can be exponentially large

in q) and two permutations x and y, we can find the x’ in

T for which x’y is the smallest permutation larger than zy

(under standard lexicographic ordering) in O(q?) time.

Consider now the point in the execution of the algorithm

at which the pair of permutations zy has just been deleted

from Q. We can now use the algorithm of Lemma 2 to

efficiently find the new pair x’y which has to be reinserted

into Q. Since we associate each y in L‘, with all the possible

z in L4, and geta lexicographically non-decreasing sequence

of outputs from Q, we have shown:

Theorem 3 The representation problem in permutation

groups can be solved by the 4-list algorithm in O(R*/?) time

and O(R*/4) space.

A simple generalization of this algorithm can solve the

representation problem for any time and space complexi-

ties along the tradeoff curve TS? =O(R) for S < O(R14).

A natural question is whether better tradeoffs can be ob-

tained by solving the t-list problem for larger values of ¢.

The surprising answer is that arbitrarily good tradeoffs are

possible:

Theorem 4 J. The 10-list problem over permutation

groups can be solved in time and space complexities re-

lated by TS? = O(R) for S < O(R?°).

The 29-list problem over permutation groups can be

solved in time and space complezities related by TS*=

O(R) for S < O(R'??),

3. More generally, the t;-hst problem fort; = 2/4+2)-!_2
can be solved in time and space complerities related by
TS! = O(R) for S < O(R'4).

The proof of this theorem will be given in the full paper.
However, it should be stressed that all these “improved”
tradeoffs are less important because the “real” time/space
tradeoff does not favor time to such an extent.

3 Applications to Rubik’s cube

The problem of determining short solutions to Rubik’s cube
instances has been looked at by many hobbyists and group
theorists, but has not been completely solved so far. The
problem is essentially the representation problem in a par-
ticular permutation group generated by 18 basic permuta-
tions (the rotation of each one of the six faces by 90, 180 or
270 degrees) operating on the 48 movable subfaces of the
cube. A simple counting argument shows that at least 17
moves are required to solve most instances of the cube, but
Berlekamp, Conway and Guy [BCG81] used a refined anal-
ysis to show that some instances require at least 18 moves.
Singmaster (Sin79] conjectured that “God’s algorithm” can
solve all the instances in at most 20 moves, but did not pro-
vide any experimental evidence to support this conjecture.
The fastest known cube algorithm (due to Thistlethewaite
[BCG81]) requires 52 moves.

The number of non-redundant sequences of 20 moves (ie.
those which do not contain two successive rotations of the
same face) exceeds 278 and thus all the previously known
algorithms could not find optimal solutions in reasonable
time and space complexities. However, our new algorithm
can find 20 move solutions to Rubik’s cube instances in
O(24°) time and O(2?°) space: all we have to do is to cre-
ate the list L of all the 911,250 permutations which can
be generated by non-redundant compositions of 5 face ro-
tations, and to use our 4-list algorithm to find the given
instance g in LULL. It is not difficult to show that this al-
gorithm will automatically find shorter solutions whenever
they exist, and thus if Singmaster’s conjecture is correct,
we have a feasible implementation of ‘God’s algorithm”!

An interesting application of the new algorithm (first
pointed out to us by Stuart Kurtz) is to obtain a proba-
bilistic upper bound on the diameter of a given permutation
group G. The basic idea is to compute the length of suffi-
ciently many random g € G (such g can be chosen with uni-
form probability distribution in polynomial time by using
the Sims representations). We cannot use the largest dis-
covered length as our estimate of the diameter, since G may
contain very few permutations of maximal length. However,
it is easy to show:

Lemma 5 If more than half of the permutations gEG
have length bounded by c, then the diameter of G is at most
2c,

As a result, any probabilistic algorithm for bounding the
median length of random permutations in G can be trans-
formed into a probabilistic algorithm for bounding the di-
ameter of G. If this median length in Rubik’s group can

276

be experimentally shown to be at most 18, we can conclude
that the diameter of G is at most 36. While this derived
bound is considerably higher than Singmaster’s conjectured
bound of 20, it is considerably smaller than Thistlethwaite’s
best proven bound of 52.

In addition to finding optimal solutions to given instances
of the cube, we can use the new algorithm to derive opti-
mal subroutines for the manual solution of the cube. So-
lutions of this type usually solve the cube in stages from
bottom to top, and at each stage the goal is to flip particu-
lar subcubes without moving the lower subcubes but with-
out caring about the effect of the subroutine on the higher
subcubes. This is a special case of ‘planning with dont
cares” in which the desired permutation g has the form
9 =< %,22,...,24,7?,...? >, and we are looking for the
shortest representation of any permutation g’ which agrees
with g on the first i arguments. Even though the num-
ber of compatible g’ permutations may be exponential and
the length of their shortest representations may fluctuate
wildly, we can solve this problem with essentially the same
complexity as in the fully specified case:

Theorem 6 The representation problem for partially spec-
ified permutations can be solved in O(R'/?) time and
O(R/4) space.

Another interesting application of our algorithm is to ex-
plore Rubik’s group by enumerating all its identities. For
example, we have enumerated all the inequivalent non-
trivial identities of length 16 in this group, such as:

B3 U2 13 B1 F1 D2U2 B3F3 R1U2 Bi F1D2U2 F3
DI F1£2U2 11 U3 F3U3L1 U1 L1 D3 L3 F1 U3 F3

There are exactly 1190 such indentities, and their list is
available upon request.

4 The Learning Algorithm

As stated in the introduction, our learning problem is es-
sentially the problem of solving a system of equations of
the form iw = j where 7 and j are states in S and w is a
word over the unknown permutations in ©UX~!. Without
loss of generality, we can assume that the given words w are
reduced.

Example 2 Let S = {1,2,3} and © = {x,y}. Consider
the following set of equations:

2y-tz = 3,

2yzrr = 3,

ley? = 2,

327hye-! = 2

lzy = 1,

syzry = 1,

The problem is to deduce their unique solution x =<
3,2,1> andy =< 2,3,1>.

Given a system of equations over an arbitrary domain,
we can define its “solvability” in two different ways:

1. Semantic solvability: Exactly one set of values satisfies
all the equations.

2. Syntactic solvability: A unique solution of the form

variables=values can be derived as additional equa-

tions from the given equations by a finite sequence of

equality-preserving transformations.

The semantic solvability of systems of equations over per-

mutations groups is an extremely difficult decision problem:

Lemma 7 (i) Deciding whether the system has at least

one solution ts NP-complete.

(ii) Deciding whether the system has at most one solution

is co-NP-complete.

Since the only viable way to check the semantic solvability

of systems of equations over permutation groups seems to

be exhaustive search, handling even a small set of equations

with k = 2 unknown permutations over g = 16 elements

may require (q!)* = 28° operations.

However, learning problems are usually characterized by

an abundance of equations obtained from a long series of

observations. The first few equations give rise to an under-

defined system which is neither semantically solvable nor

syntactically solvable. As we discover more equations, the

system becomes semantically solvable, but it is difficult to

discover the transition or to solve the equations. By adding

even more questions, we can make the system syntactically

solvable. As shown in this paper, we can then demonstrate

this fact and actually find the solution by an almost linear

time algorithm. Finally, if we add at this stage too many

contradictory equations, we can prove the unsolvability of

the system by deriving an impossible equation of the form

i = j for two different values in S.

The equality preserving transformations we allow in our

definition of syntactic solvability are all the group theoretic

operations:

1. ie = 7 is an equation for anyi€ S.

2. If iw'w” = j is an equation and z is an operation in

D, then iw'er71w” = j and iw’z~'zw” = j are also

equations.

3. If iw'xz7!w” = j or iw’z-tzw” = j are equations,

then iw’w” = j is also an equation.

1
4. If iw = j is an equation, then jw’ = 7 is also an

equation.

5. If iw! = j and jw” = k are equations, then iw'w” =k

is also an equation.

We denote the set of all the original and implied equations

by E, and the subset of E in which the words w are reduced

by D.

Our learning algorithm is a natural extension of the coset

enumeration techniques used by combinatorial group the-

orists (e.g., Todd and Coxeter [TC36] and Mendelsohn

[M64]) to study abstract groups presented by generators

z,y,... and identity relations w = e, and the graphical

technique used by Angluin [A82] to learn reversible regu-

lar languages. Given a system of equations, we construct

a directed graph G whose edges are labelled by letters

from ©. We interpret any undirected path in G as a word

w € (DUL7!)* by using the original letters for edges tra-

versed in the forwards direction and their inverse letters for

edges traversed in the backwards direction. The graph con-

tains q special vertices, which denote the q possible values in

S. An undirected path w € (© UEZ7')* from special vertex

i to special vertex j corresponds to the equation iw = j (by

our conventions, we get the equivalent equation jw~+ = i

by following the same path in the reverse direction). Ini-

tially the graph contains only the q special vertices and

no edges (and thus it represents only the trivial equations

ie = i). To accomodate a new equation iw = j, we just add

a new path from i to j (via new intermediate vertices) in

which the labels and directions of the edges correspond to

the successive letters in w.

Example 3 Consider once more the six equations over

L= {x,y} and S= {1, 2,3}:

lzy7'=2

3a—tya7t = 2.
Qy-!2z = 8

2yzz = 3,
ley =1,

3yzy = 1,

The graph G generated by these equations is given in Figure

1.

Figure 1: The graph G generated by example 3.

To show that the equation ly = 2 is implied by this graph,

we have to find some path w from 1 to 2 whose reduced form

is the single letter y. The inherent non-determinism of the

reduction process makes this a non-trivial task: the shortest

path of this type is w = aycyyt2olylenty, obtained by

starting at 1, proceeding twice around the loop, continuing

from 1 to 3, and finally going to 2 via the middle path. This

path is generated by composing two instances of the first

Vi V2 UY + Vo

x x = x

V3 V3

VA Vo > V+ V2

V3 V3

Figure 2: Merging Vertices.

equation, the inverse of the fourtn equation, and the inverse
of the second equation. Note in particular that this w is
much longer than either the original or the final equations.
Q

Given the graph G which represents all the original equa-
tions, our algorithm repeatedly merges any pair of (special
or non-special) vertices V; and Vo for which there exists
some V3 which is connected to both Vi, and Vs by edges
with the same label and direction. (See Figure 2).

Note that by merging V; and V2 we can create new merge-
able pairs of vertices which were not mergeable in the origi-
nal graph. Since each merge operation reduces the number
of vertices by 1, the number of merge operations is bounded
by the size of the original graph which is bounded by q
plus the total number of symbols in all the original equa-
tions. Since this reduction process has the Church-Rosser
property, the order of the merges does not affect the final
reduced graph, which is denoted by G.

Example 4 Consider the graph G in Example 3. The
graphs in figure 3 represent the successive generations of
intermediate graphs obtained during the reduction process
(for the sake of clarity, we connect all the mergeable pairs
of vertices in the graph by dotted lines).

The last graph is reduced since none of its vertices are
mergeable, and thus it is the final G. a

The crucial property of this reduction is:

Theorem 8 Let Ej; be the set of equations iw = j asso-
crated with the undirected paths from i to j in G, and let
Dj; be the same set in which each word w is replaced by its
reduced form. Then:

(i) The reduction process can affect the Ej; but leaves the
Dj; unchanged.

(ii) In the final reduced graph G, Ei; = Di;.

Since G is a deterministic finite automation, all its paths
are reduced by definition, and thus we can determine
whether a given equation iw = j with reduced w is syntac-
tically implied by the original equations simply by checking
whether the path w which starts at 7 ends at j. In particu-
lar, we can deduce the following corollaries:

Theorem 9 The system of equations is syntactically solv-
able iff in the subgraph of G induced by the q special vertices
each vertex has exactly one outgoing edge with each label.

Theorem 10 Jf the reduction process attempts to merge
two special vertices, the original system of equations is con-
tradictory.

Example 5 The system of equations in Example 3 is syn-
tactically solvable, since the reduced graph in Example §
has all the required edges between special vertices. By ex-
amining these edges, we can easily conclude that the unique
solution of this system of equations is x =< 3,2,1 > and

278

Figure 3: Reduction process of example 4

y =< 2,3,1 >. Adding the equation lyyy = 2 to the origi-

nal equations will cause the corresponding G to collapse to

a single vertex, and thus the expanded system of equations

as contradictory. a

Remark: In some learning problems, the given equations

contain only uninverted symbols from ©. Our learning algo-

rithm can handle such problems without difficulty, but its

proof of correctness still depends on the assumption that

the unused inverse operations exist.

By carefully optimizing the various subroutines in our

algorithm, we can prove:

Theorem 11 The syntactic solvability of a given system

of equations can be decided in O(ma(m)) time and O(m)
space, where m is q plus the total number of symbols in

all the equations and a(x) is the inverse to the Ackerman
function.

This almost linear complexity enabled us to solve huge

systems with up to one million equations in reasonable time

and space complexities.

The special case of syntactic solvability with q = 1 has

a particularly interesting interpretation. For this value of ¢
the permutations x,y... have no internal structure, and

thus they can be considered as the generators of a free

group. Instead of equations iw = j, we are given an initial

set of “known” words w, and asked to close this set under

the group operations of products, inverses and reductions

(in particular, the learning problem is to determine whether

the original generators x,y... are in this closure). Note

that this problem is not the standard word problem in free

groups, since the words w are “known” but are not neces-

sarily the identity, and thus we are not allowed to delete

occurrences of w from the middle of other words. This

slight change of interpretation suffices to make the “knowl-

edge closure” solvable in almost linear time, whereas the
“identity closure” is undecidable!

A natural question (which apparently has not been ad-

dressed so far in the literature) is to determine the threshold

number t, of random reduced words in (© UE7!)" we have
to choose to make their closure under group operations the
whole (ZU Z7~!)*.

Example 6 The following approzimations of tn were ex-
perimentally found by running the learning algorithm on
randomly generated sets of words of length n over Si =
{x,y}:

th & 5,

to, & 5272,

tog & 24,

tos © 37987,
ti3 ye 130,

tog & 282159.
ti7 778,

Let R = 2k(2k—1)"~1 be the number of possible reduced
words of length n over a k-letter alphabet. The following
upper bound on the asynptotic behavior of t, is a simple
corollary of the birthday paradox:

Lemma 12 t, = O(RY?),

Proving that this bound is tight is much harder, and re-
quires a very delicate counting argument:

Theorem 13 t, = 2(R1/2-*) for any e > 0.

In the context of our learning algorithm in permutation
groups with gq > 1, we can show:

Theorem 14 The expected number of random equations of
length n over q states required to make the system syntac-
tecally solvable is O(tyq).

It is important to note that while this number increases
exponentially with the word length n, it increases only lin-
early with the number q of states in S. In typical cases, the
learning entity applies only a few consecutive operations to
its environment between any pair of observations, but the
number of possible states of the environment is very large.
For n < 15, the constant of proportionality t, in the linear
function of q is quite small.

To demonstrate the usefulness of the new algorithm, we
consider the well known problem of testing ping-pong com-
munication protocols. In this problem, the opponent has
a repertoire of invertible operations 2; which he can apply
by himself, and a repertoire of operation words w; which he
can trick the other users to apply to his arguments. The
first user applies an initial word wo to the message M, and
the question is whether the opponent can recover M by in-
verting the effect of wo. Dolev and Yao [DY83] were the
first to analyse this problem, and described a O(m®) algo-
rithm for solving it. This was later improved to an O(m?)
algorithm by Dolev Even and Karp [DEK82]. However, the
analysis of ping-pong protocols is just a special case of our
learning problem, in which we have to decide whether wo?
belongs to the “knowledge closure” of all the x; and w;. We
have thus proved:

Theorem 15 Ping-pong protocols can be tested in almost
linear time.

There are many interesting research problems left open
by our learning algorithm. For example:

279

1. The algorithm is very sensitive to erroneous equations.

How can we make it more robust?

The algorithm can result in a partially reduced graph.

How can we use the structure of this graph to conduct

an intelligent search for solutions?

3. The states may not be fully observable. How can we

augment the algorithm to handle partially specified

states?

References

[A82] D. Angluin, Inference of Reversible Languages,

J. ACM, July 1982.

E.R. Belekamp, J.H. Conway, and R.K. Guy,

Winning Ways, Academic Press, London,

1981.

[BCG8]]

D. Dolev, S. Even, and R.M. Karp, On the

Security of Ping-Pong Protocols, Information

and Control, Vol. 55, 1982.

[DEK82]

D. Dolev and A.C. Yao, On the Security of

Public-Key Protocols, IEEE Trans. on Infor-

mation Theory, Vol IT-29, 1983.

[DY83]

S. Even and O. Goldriech, The Minimum

Length Generator Sequence Problem is NP-

hard, J. Algorithms, 2, pp. 311-313, 1981.

[EG81]

M. Furst, J. Hopcroft and E. Luks, Polynomial

Time Algorithms for Permutation Groups, in

Proceedings of the 21st IEEE Annual Sym-

posium on Foundations of Computer Science,

1980.

[FHL80}

[J85] M.R. Jerrum, The Complexity of Finding
Minimum Length Generator Sequences, TCS,

April 1985.

[M64] N.S. Mendelsohn, An Algorithmic Solution for
a Word Problem in Group Theory, Canad. J.

Math, 16, 1964, pp. 509-516.

R. Schroeppel and A. Shamir, A T = O(2"/?),

S = 0O(2"/4) Algorithm for Certain NP-
complete Problems, SIAM J. Computing,

1981.

[SS81]

[Sim70] C.C. Sims, Computational Methods in the
Study of Permutation Groups, in Computa-

tional problems in Abstract Algebra, J. Leech,

Ed., Pergamon Press, Elmsford, NY.

[Sin79] D. Singmaster, Notes on the “magic cube”,
Polytechnic of the South Bank, London SE1

OAA, 1979.

J.A. Todd and H.S.M. Coxeter, Proc. Edin-

burgh Math Soc., (2), 5, 1936, pp. 26-36.

[TC36]

