A CORRECT PREPROCESSING ALGORITHM FOR BOYER-MOORE STRING-SEARCHING*

WOJCIECH RYTTER \dagger

Abstract

We present the correction to Knuth's algorithm [2] for computing the table of pattern shifts later used in the Boyer-Moore algorithm for pattern matching.

Key words. algorithm, pattern-matching, string, overlap

The key to the Boyer-Moore algorithm for the fast pattern matching is the application of the table of pattern shifts which is denoted in [1] by Δ_{2} and in [2] by $d d^{\prime}$. Let us denote this table by D.

Assume that the pattern is given by the array pattern [1:n], so D is given as an array $D[1: n]$. For every $1 \leqq j \leqq n, D[j]$ gives the minimum shift $d>0$ such that the pattern with the right end placed at the position $k+d$ of the processing string is compatible with the part of string scanned before, where k is the last scanned position in the string and j is the last scanned position in the pattern.

The formal definition of D given in [2] is:

$$
\begin{array}{r}
D[j]=\operatorname{MIN}\{s+n-j \mid s \geqq 1 \text { and }(s \geqq j \text { or pattern }[j-s] \neq \text { pattern }[j]) \\
\quad \text { and }((s \geqq i \text { or pattern }[i-s]=\text { pattern }[i]) \text { for } j<i \leqq n)\} .
\end{array}
$$

Algorithm A given by Knuth is:

```
A1. for \(k:=1\) step 1 until \(n\) do \(D[k]:=2^{*} n-k\);
A2. \(j:=n ; t:=n+1\);
    while \(j>0\) do
    begin
    \(f[j]:=t\);
    while \(t \leqq n\) and pattern \([j] \neq\) pattern \([t]\) do
    begin
        \(D[t]:=\operatorname{MIN}(D[t], n-j) ;\)
        \(t:=f[t] ;\)
    end
    \(t:=t-1 ; j:-j-1\);
    end;
A3. for \(k:=1\) step 1 until \(t\) do
```

$$
D[k]:=\operatorname{MIN}(D[k], n+t-k) ;
$$

Algorithm A computes also the auxiliary table $f[0: n]$, for $j<n$ defined as follows: $f[j]=\min \{i \mid j<i \leqq n$ and pattern $[i+1] \cdots$ pattern $[n]=$ pattern $[j+1] \cdots$ pattern $[n+j-i]\}$; the final value of t corresponds to $f[0] . f[0]$ is the minimum nonzero shift of pattern on itself; let us denote this value by SHIFT (pattern).

[^0]

Take as inputs to Algorithm A the following two strings: pattern $1=$ aaaaaaaaa and pattern $2=$ abaabaabaa. Denoting by $\operatorname{def} D$ and D^{\prime} respectively the value of D according to the definition and computed by Algorithm A we obtain the following results:

j		1	2	3	4	5	6	7	8	9	10
pattern $1[j]$	$=$	a	a	a	a	a	a	a	a	a	a
Def $D[j]$	$=$	10	10	10	10	10	10	10	10	10	10
$D^{\prime}[j]$	$=$	10	18	17	16	15	14	13	12	11	10
SHIFT $($ pattern 1$)$	$=1$.										
pattern 2[j]	$=$	a	b	a	a	b	a	a	b	a	a
$\operatorname{Def} D[j]$	$=$	12	11	10	12	11	10	12	11	2	2
$D^{\prime}[j]$	$=$	12	11	10	16	15	14	13	12	2	2
SHIFT											

The disagreement between $\operatorname{Def} D$ and D^{\prime} demonstrates explicitly that Knuth's algorithm is incorrect.

There are three cases which are considered in the design of Algorithm A for computing the value of $D[j]$:

Case (1). $D[j]=2^{*} n-j$. This is the most simple case computed in the part A1 of Algorithm A.

Case (2). $D[j]<n$ and pattern $[l] \neq$ pattern $[j]$, where $l=n-D[j]$. In this case $D[j]$ is computed in the part A2.

Case (3). $n \leqq D[j]<2^{*} n-j$ and $j \leqq$ SHIFT(pattern) $=f[0]=t$. In this case $D[j]$ is computed in the part A3 of Algorithm A.

However, another case occurs which is not covered by Cases (1), (2) and (3):
Case (4). $n<D[j]<2^{*} n-j$ and $j>$ SHIFT(pattern). For example it occurs for pattern $=$ pattern 2 and $j=5$. To correct Algorithm A, we have to consider not only the minimal nonzero shift of the string on itself but all shifts, namely all i such that $0<i \leqq n$ and pattern $[i+1] \cdots$ pattern $[n]=$ pattern $[1] \cdots$ pattern $[n-i]$. Let us denote the set of all such i by ALLSHIFTS(pattern). Using the method of computing the failure function in the pattern-matching algorithm of Knuth, Morris and Pratt [2], we give below a correct version of the algorithm, where A1, A2 denote the corresponding parts of Algorithm A.

Algorithm B.

A1; A2;
$q:=t ; t:=n+1-q ; q 1:=1$;
B1. $j 1:=1 ; ~ t 1:=0$;
while $j 1 \leqq t$ do
begin
$f 1[j 1]:=t 1$;
while $t 1 \geqq 1$ and pattern $[j 1] \neq$ pattern $[t 1]$ do $t 1:=f 1[t 1]$; $t 1:=t 1+1 ; j 1:=j 1+1 ;$
end;

$$
\begin{aligned}
& \text { B2. while } q<n \text { do } \\
& \text { begin } \\
& \text { for } k:=q 1 \text { step } 1 \text { until } q \text { do } D[k]:=\operatorname{Min}(D[k], n+q-k) \text {; } \\
& q 1:=q+1 ; q:=q+t-f 1[t] ; \\
& t:=f 1[t] \text {; end; }
\end{aligned}
$$

The part B1 computes the auxiliary table $f 1\left[1: t^{\prime}\right]$ where $t^{\prime}=n+1-$ SHIFT(pattern), and the part B2 computes the values of $D[j]$ for both Cases (3) and (4).

$$
\begin{aligned}
& f 1[1]=0 \text { and for } 1<j \leqq t^{\prime}, \\
& \quad f 1[j]=\max \{i \mid 1 \leqq i<j \text { and pattern }[j-i+1] \cdots \operatorname{pattern}[j-1] \\
& =\operatorname{pattern}[1] \cdots \operatorname{pattern}[i-1]\} .
\end{aligned}
$$

The correctness of the part B2 follows from the following: If ALLSHIFTS(pattern) = $\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$ and $i_{1}=\operatorname{SHIFT}($ pattern $)$ and $i_{1}<i_{2}<\cdots<i_{k}$ and $t_{1}=n+1-i_{1}, t_{p+1}=$ $f 1\left[t_{p}\right]$ for $p=1,2, \cdots,(k-1)$ then $i_{p+1}=i_{p}+t_{p}-t_{p+1}$ for $p=1,2, \cdots,(k-1)$.

Remark 1. The same table space can be used for f and $f 1$.
Remark 2. The tables f and $f 1$ are related in the following way: Let pattern' be the string resulting from reversing the string pattern and $f 1$ be computed for the string pattern and f be computed for pattern'.

Then

$$
f 1[i]=n-f[n-i+1]+1 \quad \text { for } i=1,2, \cdots,(n+1) .
$$

Remark 3. Denote OVR(pattern) $=n-$ SHIFT(pattern). So OVR(pattern) gives the maximum overlap of the pattern with itself. The difference in the time complexity of Algorithms A and B is proportional to OVR(pattern) which can be linear with respect to n. However, on the average it is very small for alphabets of the size greater than 1. Let $V(n, k)$ denotes the average value of OVR(pattern) taken over the set of all patterns of the length n over the same alphabet of the size k.

The rounded values of $V(n, 2)$ for $n \leqq 14$ computed on B6700 are shown in Table 1.

TAble 1

n	1	2	3	4	5	6	7
$V(n, 2)$	0	0.5	0.75	1.0	1.125	1.281	1.375
n	8	9	10	11	12	13	14
$V(n, 2)$	1.453	1.500	1.545	1.574	1.595	1.607	1.618

Lemma. 1. If $k>1$ then $V(n, k)<k /(k-1)^{2}$.
2. $V(n, 2)<2$.
3. $V(n, k)<1$ for $k>2$.

Proof. Fix n and k and assume that $k>1$. Let a_{j} be the number of patterns such that $\operatorname{OVR}($ pattern $)=j$ for $j=1,2, \cdots,(n-1)$. Every pattern with $\operatorname{OVR}($ pattern $)=j$ is determined by its prefix of the length $n-j$. So $a_{j} \leqq k^{n-j}$. Hence $V(n, k)=$ $\left(\sum_{j=1}^{n-1} j \cdot a_{j}\right) / k^{n} \leqq \sum_{j=1}^{n-1} j \cdot(1 / k)^{i} \leqq \sum_{j=1}^{\infty} j \cdot(1 / k)^{i}=k /(k-1)^{2}$. Parts 2 and 3 of the lemma follow from 1. This ends the proof.

REFERENCES

[1] R. S. Boyer and J. S. Moore, A fast string searching algorithm, Comm. ACM, 20 (1977), pp. 762-772.
[2] D. E. Knuth, J. H. Morris, Jr. and V. R. Pratt, Fast pattern matching in strings, this Journal, 6 (1977), pp. 323-350.

[^0]: * Received by the editor January 18, 1979, and in revised form May 25, 1979.
 \dagger Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México Apartado Postal 20-726, México 20, D.F. On leave of absence from Institute of Informatics, Department of Mathematics, Warsaw University, Warsaw, Poland.

