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A consideration of several different examples sheds new light on the problem of ereat- 
ing reliable, well-structured programs that behave efficiently. This study focuses 
largely on two issues: (a) improved syntax for iterations and error exits, making it 
possible to write a larger class of programs clearly and efficiently without g o  t o  state- 
ments; (b) a methodology of program design, beginning with readable and correct, 
but possibly inefficient programs that are systematically transformed if necessary into 
efficient and correct, but possibly less readable code. The discussion brings out op- 
posing points of view about whether or not g o  t o  statements should be abolished; 
some merit is found on both sides of this question. Fina!ly, an attempt is made to 
define the true nature of structured programming, and to recommend fruitful direc- 
tions for further study. 
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You may go when you will go, 
And I will stay behind. 

--Edna St. Vincent Millay [66] 

Most  likely you go your way and I ' l l  go mine. 
--Song title by Bob Dylan [33] 

Do you suffer from painful elimination? 
--Advertisement, J. B. Williams Co. 

INTRODUCTION 

A revolution is taking place in  the way we 
write programs and teach programming, be- 
cause we are beginning to understand the 
associated mental processes more deeply. I t  
is impossible to read the recent book Struc- 
tured programming [17; 55] without having it 
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change your life. The reasons for this revolu- 
tion and its future prospects have been aptly 
described by E. W. Dijkstra in his 1972 Tur- 
ing Award Lecture, "The Humble Program- 
mer" [27l. 

As we experience this revolution, each of 
us naturally is developing strong feelings one 
way or the other, as we agree or disagree 
with the revolutionary leaders. I must admit 
to being a nomhumble programmer, egotisti- 
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eal enough to believe that my own opinions 
of the current treads are not a waste of the 
reader's time. Therefore I want to express in 
this article several i of the things that struck 
me most forcefully as I have been thinking 
about structured programming during the 
last year; several of my blind spots were re- 
moved as I ivas learning these things, and I 
hope I can convey some of my excitement to 
the reader. Hardly any of the ideas I will 
discuss are my own; they are nearly all the 
work of others, but perhaps I may be pre- 
senting them in a new light. I write this 
article in the first person to emphasize the 
fact that what I 'm saying is just one man's 
opinion; I don't expect to persuade everyone 
that my present views are correct. 

Before beginning a more technical discus- 
sion. I should confess that the title of this 
article was chosen primarily to generate 
attention. There are doubtless some readers 
who are convinced that abolition of go t o  

statements is merely a fad. and they may see 
this title and think, "Aha! Knuth is rehabili- 
tating the go to statement, and we can go 
back to our old ways of programming 
again." Another class of readers will see the 
heretical title and think, "When are die- 
hards like Knuth going to get with it?" I 
hope that both classes of people will read on 
and discover that what I am really doing is 
striving for a reasonably well balanced view- 
point about the proper role of go to state- 
ments. I argue for the elimination of go to's 
in certain cases, and for their introduction in 
others. 

I believe that by presenting such a view I 
am not in fact disagreeing sharply with 
Dijkstra's ideas, since he recently wrote the 
following: "Please don't fall into the trap of 
believing that I am terribly dogmatical 
about [the go to statement]. I have the 
uncomfortable feeling that others are making 
a religion out of it, as if the conceptual 
problems of programming could be solved by 
a single trick, by a simple form of coding 
discipline!" [29]. In other words, it, seems 
that fanatical advocates of the New Pro- 
gramming are going overboard in their strict 
enforcement of morality and purity in 
programs. Sooner or later people are going 
to find that their beautifully-structured 
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programs are running at only half the speed 
--or worse--of the dirty old programs they 
used to write, and they will mistakenly blame 
the structure instead of recognizing what is 
probably the real culprit--the system over- 
head caused by typical compiler implementa- 
tion of Boolean variables and procedure calls. 
Then we'll have an unfortunate counter- 
revolution, something like the current rejec- 
tion of the "New Mathematics" in reaction 
to its over-zealous reforms. 

I t  may be helpful to consider a further 
analogy with mathematics. In 1904, Bert- 
rand Russell published his famous paradox 
about the set of all sets which aren't mem- 
bers of themselves. This antinomy shook the 
foundations of classical mathematical rea- 
soning, since it apparently brought very 
simple and ordinary deductive methods into 
question. The ensuing crisis led to the rise 
of "intuitionist logic", a school of thought 
championed especially by the Dutch mathe- 
matician, L. E. J. Brouwer; intuitionism 
abandoned all deductions that were based on 
questionable nonconstructive ideas. For a 
while it appeared that intuitionist logic 
would cause a revolution in mathematics. 
But the new approach angered David Hil- 
bert, who was perhaps the leading mathema- 
tician of the time; Hilbert said that "For- 
bidding a mathematician to make use of the 
principle of the excluded middle is like 
forbidding an astronomer his telescope or a 
boxer the use of his fists." He characterized 
the intuitionist approach as seeking "to 
save mathematics by throwing overboard 
all that is troublesome . . . .  They would chop 
up and mangle the science. If we would 
follow such a reform as they suggest, we 
could run the risk of losing a great part of our 
most valuable treasures" [80, pp. 98-99, 
148-150, 154-157, 184-185, 268-270]. 

Something a little like this is happening 
in computer science. In the late 1960's we 
witnessed a "software crisis", which many 
people thought was paradoxical because 
programming was supposed to be so easy. 
As a result of the crisis, people are now be- 
ginning to renounce every feature of pro- 
gramming that can be considered guilty by 
virtue of its association with difficulties. Not 
only go to statements are being questioned; 
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we also hear complaints about floating-point 
calculations, global variables, semaphores, 
pointer variables, and even assignment 
statements. Soon we might be restricted to 
only a dozen or so programs that are suffi- 
ciently simple to be allowable; then we will 
be almost certain that these programs 
cannot lead us into any trouble, but of 
course we won't be able to solve many 
problems. 

In the mathematical ease, we know what 
happened: The intuitionists taught the other 
mathematicians a great deal about deductive 
methods, while the other mathematicians 
cleaned up the classical methods and even- 
tually "won" the battle. And a revolution 
did, in fact, take place. In the computer 
science case, I imagine that a similar thing 
will eventually happen: purists will point the 
way to clean constructions, and others will 
find ways to purify their use of floating-point 
arithmetic, pointer variables, assignments, 
etc., so that these classical tools can be used 
with comparative safety. 

Of course all analogies break down, includ- 
ing this one, especially since I 'm not yet 
conceited enough to compare myself to 
David Hilbert. But I think it's an amusing 
coincidence that the present programming 
revolution is being led b y  another Dutchman 
(although he doesn't have extremist views 
corresponding to Brouwer's); and I do 
consider assignment statements and pointer 
variables to be among computer science's 
"most valuable treasures!'. 

At the present time I think we are on the 
verge of discovering at last what program- 
ming languages should really be like. I look 
forward to seeing many responsible experi- 
ments with language design during the next 
few years; and my dream is that by 1984 we 
will see a consensus developing for a really 
good programming language (or, more likely, 
a coherent family of languages). Further- 
more, I 'm guessing that people will become 
so disenchanted with the languages they are 
now using--even COBOL and FORTrAN-- 
that this new language, UTOPXA 84, will have 
a chance to take over. At present we are far 
from that goal, yet there are indications 
that such a language is very slowly taking 
shape. 
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Will UTOPIA 84, or perhaps we should call 
it NEWSPEAK, contain go to statements? At 
the moment, unfortunately, there isn't even 
a consensus about this apparently trivial 
issue, and we had better not be hung up on 
the question too much longer since there are 
only ten years left. 

I will try in what follows to give a reason- 
ably comprehensive survey of the go to 
controversy, arguing both pro and con, with- 
out taking a strong stand one way or the 
other until the discussion is nearly complete. 
In order to illustrate different uses of go to  
statements, I will discuss many example 
programs, some of which tend to negate the 
conclusions we might draw from the others. 
There are two reasons why I have chosen to 
present the material in this apparently 
vacillating manner. First, since I have the 
opportunity to choose all the examples, I 
don't think it's fair to load the dice by select- 
ing only program fragments which favor one 
side of the argument. Second, and perhaps 
most important, I tried this approach when I 
lectured on the subject at UCLA in Feb- 
ruary, 1974, and it worked beautifully: 
nearly everybody in the audience had the 
illusion that I was largely supporting his or 
her views, regardless of what those views 
were ! 

1. ELIMINATION OF go to STATEMENTS 

Historical Background 
At the IFIP  Congress in 1971 I had the 
pleasure of meeting Dr. Eiichi Goto of 
Japan, who cheerfully complained that he 
was always being eliminated. Here is the 
history of the subject, as far as I have been 
able to trace it. 

The first programmer who systematically 
began to avoid all labels and go to state- 
ments was perhaps D. V. Schorre, then of 
UCLA. He has written the following account 
of his early experiences [85]: 

Since the summer of 1960, I have been writ ing 
programs in outline form, using conventions of 
indentat ion to indicate the flow of control. I 
have never found it  necessary to take excep- 
tion to these conventions by using go state- 
ments .  I used to keep these outlines as original 

documentation of a program, instead of using 
flow charts . . .  Then I would code the pro- 
gram in assembly language from the outline. 
Everyone liked these outlines better than 
t h e  flow charts I had drawn before, which 
w e r e  not very neat--my flow charts had been 
nick-named "balloon-o-grams". 

He reported that this method made programs 
easier to plan, to modify and to check out. 

When I met Schorre in 1963, he told me of 
his radical ideas, and I didn't believe they 
would work. In fact, I suspected that it was 
really his rationalization for not finding an 
easy way to put labels and go to  statements 
into his META-II subset of ALGOL [84], a 
language which I liked very much except for 
this omission. In 1964 I challenged him to 
write a program for the eight-queens prob- 
lem without using go to statements, and he 
responded with a program using recursive 
procedures and Boolean variables, very much 
like the program later published independ- 
ently by Wirth [96]. 

I was still not convinced that all go t o  

statements could or should be done away 
with, although I fully subscribed to Peter 
Naur's observations which had appeared 
about the same time [73]. Since Naur's 
comments were the first published remarks 
about harmful go to's, it is instructive to 
quote some of them here: 

If you look carefully you will find that surpris- 
ingly often a g o  t o  statement which looks back 
really is a concealed for statement. And you 
will be pleased to find how the clarity of the 
algorithm improves when you insert the f o r  
clause where it belongs . . . .  If the purpose [of 
a programming course] is to teach ALGOL pro- 
gramming, the use of flow diagrams will do 
more harm than good, in my opinion. 

The next year we find George Forsythe 
also purging go to statements from algo- 
rithms submitted to Communications of the 
ACM (cf. [53]). Incidentally. the second 
example program at the end of the original 
ALGOL 60 report [72] contains four go t o  

statements, to labels named AA, BB, CC, 
and DD, so it is clear that the advantages of 
ALGOL'S control structures weren't fully 
perceived in 1960. 

In 1965, Edsger Dijkstra published the 
following instructive remarks [21]: 

Two programming depar tment  managers from 
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different countr ies  and different backgrounds  
- - t h e  one main ly  scientific, the  o ther  main ly  
commerc ia l - -have  communicated to me, in-  
dependent ly  of e a c h  o ther  and  on the i r  own 
in i t ia t ive ,  the i r  observat ion  t h a t  the  qua l i ty  
of the i r  programmers  was inversely propor-  
t ional  to the  dens i ty  of goto s t a t emen t s  in 
the i r  programs . . . .  I have  done var ious  pro- 
g ramming e x p e r i m e n t s . . ,  in modified ver-  
sions of ALGOL 60 in which the goto s t a t e m e n t  
was abolished . . . .  The  l a t t e r  versions were 
more difficult to make:  we are so famil iar  wi th  
the jump order t h a t  i t  requires  some effort to 
forget  i t !  In  all cases tried, however,  the  
program wi thou t  the goto s t a t e m e n t  turned  
out  to be shor te r  and more lucid. 

A few months later, at the ACM Pro- 
gramming Languages and Pragmatics Con- 
ference, Peter Landin put it this way [59]: 

There  is a game somet imes  played wi th  ALGOL 
60 p rograms- - rewr i t ing  them so as to avoid 
using g o  t o  s ta tements .  I t  is pa r t  of a more 
embracing game-- reduc ing  the  ex ten t  to 
which the program conveys i ts  informat ion by  
explici t  sequencing . . . .  The game's  signifi- 
cance lies in t h a t  i t  f requent ly  produces a 
more " t r a n s p a r e n t "  program---easier to 
unders tand ,  debug, modify,  and  incorpora te  
in to  a larger  program. 

Peter Naur reinforced this opinion at the 
same meeting [74, p. 179]. 

The next chapter in the story is what many 
people regard as the first, because it made the 
most waves. Dijkstra submitted a short 
article to Communications of the ACM, de- 
voted entirely to a discussion of go to state- 
meats. In order to speed publication, the 
editor decided to publish Dijkstra's article 
as a letter, and to supply a new title, "Go to 
statement considered harmful". This note 
[23] rapidly became well-known; it expressed 
Dijkstra's conviction that go to's "should 
be abolished from all 'higher level' program- 
ming languages (i.e., everything except, 
perhaps, plain machine code) . . . .  The go t o  
statement as it stands is just too primitive; 
it is too much an invitation to make a mess of 
one's program." He encouraged looking for 
alternative constructions which may be 
necessary to satisfy all needs. Dijkstra also 
recalled that Heinz Zemanek had expressed 
doubts about go to statements as early as 
1959; and that Peter Landin, Christopher 
Strachey, C. A. R. Hoare and others had 
been of some influence on his thinking. 
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By 1967, the entire XPL compiler had 
been written by McKeeman, Homing, and 
Wortman, using go to :only once ([65], pp. 
365-458; the go to is on page 385). In 1971, 
Christopher Strachey [87] reported that "It  
is my aim to write programs with no labels. 
I am doing quite well. I have got the operat- 
ing system down to 5 labels and I am plan- 
ning to write a compiler with no labels at 
all." In 1972, an entire session of the ACM 
National Conference was devoted to the 
subject [44; 60; 100]. The December, 1973, 
issue of Datamation featured five articles 
about structured programming and elimina- 
tion of go to's [3; 13; 32; 64; 67]. Thus, it is 
clear that sentiments against go to state- 
ments have been building up. In fact, the 
discussion has apparently caused some 
people to feel threatened; Dijkstra once told 
me that he actually received '% torrent of 
abusive letters" after publication of his 
article. 

The tide of opinion first hit me personally 
in 1969, when I was teaching an introductory 
programming course for the first time. I 
remember feeling frustrated on several 
occasions, at not seeing how to write pro- 
grams in the new style; I would run to Bob 
Floyd's office asking for help, and he usually 
showed me what to do. This was the genesis 
of our article [52] in which we presented two 
types of programs which did not submit 
gracefully to the new prohibition. We found 
that there was no way to implement certain 
simple constructions wit h while and condi- 
tional gtatemeats substituted for go to's, 
unless extra computation was specified. 

During the last few years several languages 
have appeared in which the designers 
proudly announced that they have abolished 
the go to statement. Perhaps the most 
prominent of these is Brass [98], which 
originally replaced go to's by eight so-called 
"escape" statements. And the eight weren't 
even enough; the authors wrote, "Our 
mistake was in assuming that there is no 
need for a label once the go to is removed," 
and they later [99, 100] added a new state- 
ment "leave (label) w i t h  (expression)" 
which goes to the place after the statement 
identified by the (label). Other go to-less 
languages for systems programming have 
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similarly introduced other statements which 
provide "equally powerful" alternative ways 
to jump. 

In other words, it seems that there is wide- 
spread agreement that go to statements are 
harmful, yet programmers and language 
designers still feel the need for some euphe- 
mism that "goes to" without saying go to. 

A Searching •×ampM 
What are the reasons for this? In [52], Floyd 
and I gave the following example of a typical 
program for which the ordinary capabilities 
of whi le  and if  statements are inadequate. 
Let's suppose that we want to search a table 
A[1] . . .  A[m] of distinct values, in order to 
find where a given value x appears; if x is not 
present in the table, we want to insert it as 
an additional entry. Let's suppose further 
that there is another array B, where B[,] 
equals the number of times we have searched 
for the value A[i]. We might solve such a 
problem as follows: 

E x a m p l e  1: 

for i : =  1 s t e p  1 u n t i l  m d o .  
i f  A[i] = x t h e n  go to  f o u n d  fi; 

n o t  f o u n d :  i : =  r e + l ;  m : =  i ;  
A[i] : =  x;  B[i] :=  0; 

f o u n d :  B[i] : =  B [ i ] + I ;  

(In the present article I shall use an ad hoc 
programming language that is very similar 
to ALGOL 60, with one exception: the symbol 
fi is required as a closing bracket for all i f  
statements, so that begin and end aren't 
needed between then  and else. I don't 
really like the looks of fi at the moment; but 
it is short, performs a useful function, and 
connotes finality, so I 'm confidently hoping 
that I'll get used to it. Alan Perlis has re- 
marked that tl is a perfect example of a 
cryptic notation that can make program- 
ming unnecessarily complicated for begin- 
ners; yet I 'm more comfortable with fi every 
time I write it. I still balk at spelling other 
basic symbols backwards, and so do most of 
the people I know; a student's paper con- 
taining the code fragment "esae; c o m m e n t  
bletch t n e m m o c ; "  is a typical reaction to 
this trend !) 

There are ways to express Example 1 
without go to statements, but they require 

more computation an.d aren't really more 
perspicuous. Therefore, this example has 
been widely quoted in defense of the go to 
statement, and it is appropriate to scrutinize 
the problem carefully. 

Let's suppose that we've been forbidden 
to use go to statements, and that we want 
to do precisely the computation specified in 
Example 1 (using the obvious expansion of 
such a for statement into assignments and 
a while iteration). If this means not only 
that we want the same results, but also that 
we want to do the same operations in the 
same order, the mission is impossible. But if 
we are allowed to weaken the conditions 
just slightly, so that a relation can be tested 
twice in succession (assuming that it will 
yield the same result each time, i.e., that it 
has no side-effects), we can solve the problem 
as follows: 

E x a m p l e  la :  

i : = 1 ;  
w h i l e  i < m a n d  A[i] # x d o  i :--  i + 1 ;  
i f i  > m t h e n  ra :=  i; A[i] :=  x; B[i]  ::= 0 fi; 
B[i]  : =  B [ i ] + I ;  

The and operation used here stands for 
McCarthy's sequential conjunction operator 
[62, p. 185]; i.e., "p and  q" means "if p 
t h e n  q else false fl", so that q is not evalu- 
ated when p is false. Example la will do 
exactly the same sequence of computations 
as Example 1, except for one extra compari- 
son of i with m (and occasionally one less 
computation of m +  1). If the iteration in this 
while loop is performed a large number of 
times, the extra comparison has a negligible 
effect on the running time. 

Thus, we can live without the go to in 
Example 1. But Example la  is slightly less 
readable, in my opinion, as well as slightly 
slower; so it isn't clear what we have gained. 
Furthermore, if we had made Example 1 
more complicated, the trick of going to Ex- 
ample la  would no longer work. For ex- 
ample, suppose we had inserted another 
statement into the for loop, just before the 
i f  clause; then the relations i _< m and 
A[i] -- x wouldn't have been tested consecu- 
tively, and we couldn't in general have com- 
bined them with and. 

John Cooke told me an instructive story 
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relating to Example 1 and to the design of 
languages. Some PL/ I  programmers were 
asked to do the stated search problem with- 
out using jumps, and they came up with 
essentially the following two solutions: 

a)  

b) 

DO I - 1 to M WHILE A(I) -~ ffi X; 
END; 
IF I > M THEN 

DO; M z I; A(I) = X; B(I) ffi 0; END; 
B(I) ffi B(I) + I; 
FOUND = 0; 
DO I - i TO M WHILE FOUND = 0;  

IF A(I) - X THEN FOUND = i; 
END; 
I F  FOUND ffi 0 THEN 

DO; M - I ;  A ( I )  = X; B ( I )  ffi 0;  END; 
B(I)  - B(I)  ffi 1; 

Solution (a) is best, but since it involves a 
null iteration (with no explicit statements 
being iterated) most people came up with 
Solution (b). The instructive point is that 
Solution (b) doesn't work; there is a serious 
bug which caused great puzzlement before 
the reason was found. Can the reader 
spot the difficulty? (The answer appears on 
page 298.) 

As I've said, Example 1 has often been 
used to defend the go to statement. Un- 
fortunately, however, the example is totally 
unconvincing in spite of the arguments I 've 
stated so far, because the method in Example 
1 is almost never a good way to search an 
array for x ! The following modification to the 
data structure makes the algorithm much 
better: 

Example 2: 

A[mq-1] := x; i := 1; 
w h i l e  A[i] ~ ~c do i := i+1; 
i f i  > m then m := i; B[i] := 1; 
e l se  B[i] := B [ i ] + I  fi; 

Example 2 beats Example 1 because it 
makes the inner loop considerably faster. If 
we assume that the programs have been 
handcoded in assembly language, so that the 
values of i, m, and x are kept in registers, 
and if we let n be the final value of i at the 
end of the program, Example 1 will make 
6n + 10 (+3  if not found) references to 
memory for data and instructions on a 
typical computer, while the second program 
will make only 4n + 14 (+6 ' i f  not found).• 
If, on the other hand, we assume that these 

- 2 6 7  

programs are translated by a typical "90 % 
efficient compiler" wi~h bounds-checking 
suppressed, the corresponding run-time 
figures are respectively about  14n + 5 and 
l ln  + 21. (The appendix to this paper 
explains the ground rules for these calcula- 
tions.) Under the first assumption we save 
about 33 % of the run-time, and under the 
second assumption we save about 21%, so 
in both cases the elimination of the go t o  
has also eliminated some of the running 
time. 

Efficiency 
The ratio of running times (about 6 to 4 in 
the first case when n is large) is rather sur- 
prising to people who haven't studied pro- 
gram behavior carefully. Example 2 doesn't 
look that much more efficient, but it is. 
Experience has shown (see [46], [51]) that 
most of the running time in non-IO-bound 
programs is concentrated in about 3 % of the 
source text. We often see a short inner loop 
whose speed governs the overall program 
speed to a remarkable degree; speeding up 
the inner loop by 10 % speeds up everything 
by almost 10 %. And if the inner loop has 10 
instructions, a moment's thought will usually 
cut it to 9 or fewer. 

My own programming style has of course 
changed during the last decade, according to 
the trends of the times (e.g., I 'm not quite so 
tricky anymore, and I use fewer go to's), 
but the major change in my style has been 
due to this inner loop phenomenon. I now 
look with an extremely jaundiced eye at 
every operation in a critical inner loop, seek- 
ing to modify my program and data struc- 
ture (as in the change from Example 1 to 
Example 2) so that some of the operations 
can be eliminated. The reasons for this ap- 
proach are that: a) it doesn't take long, since 
the inner loop is short; b) the payoff is real; 
and c) I can then afford to be less efficient 
in the other parts of my programs, which 
therefore are more readable and more easily 
written and debugged. Tools are being 
developed to make this critical-loop identifi- 
cation job easy (see for example [46] and 
[82]). 

Thus. if I hadn't seen how to remove one 
of the operations from the loop in Example I 
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by changing to Example 2. I would probably 
(at least) have made the for loop run from 
m to 1 instead of from 1 to m, since it's 
usually easier to test for zero than to com- 
pare with m. And if Example 2 were really 
critical, I would improve on it still more by 
"doubling it up" so that the machine code 
would be essentially as follows. 

E x a m p l e  2a:  

A [ m + l ]  :=  x;  i :=  1; go  t o  t e s t ;  
loop:  i :=  i + 2 ;  
t e s t :  i f  A[i] = x t h e n  g o  t o  found  fi; 

i f  A [ i + I ]  ~ x t h e n  go  t o  loop fi; 
i :=  i + 1 ;  

found :  i f i  > m t h e n  m := i;  B[i] :=  1; 
e l s e  B[i] :=  B [ i ] + I  fi; 

Here the loop variable i increases by 2 on 
each iteration, so we need to do that opera- 
tion only half as often as before; the rest of 
the code in the loop has essentially been 
duplicated to make this work. The running 
time has now been reduced to about 3.5n + 
14.5 or 8.5n + 23.5 under our respective 
assumptions--again this is a noticeable 
saving in the overall running speed, if, say, 
the average value of n is about 20, and if 
this search routine is performed a million or 
so times in the overall program. Such loop- 
optimizations are not difficult to learn and, 
as I have said, they are appropriate in just 
a small part of a program, yet they very 
often yield substantial savings. (Of course if 
we want to improve on Example 2a still 
more, especially for large m, we'll use a more 
sophisticated search technique; but let's 
ignore that issue, at the moment, since I 
want to illustrate loop optimization in gen- 
eral, not searching in particular.) 

The improvement in speed from Example 
2 to Example 2a is only about 12%, and 
many people would pronounce that insig- 
nificant. The conventional wisdom shared 
by many of today's software engineers calls 
for ignoring efficiency in the small; but I 
believe this is simply an overreaction to the 
abuses they see being practiced by penny- 
wise-and-pound-foolish programmers, who 
can't debug or maintain their "optimized" 
programs. In established engineering dis- 
ciplines a 12 % improvement, easily obtained, 
is never considered marginal; and I believe 

the same viewpoint should prevail in soft- 
ware engineering~ Of course I wouldn't 
bother making such optimizations on a one- 
shot job, but when it's a question of prepar- 
ing quality programs, I don't want to re- 
strict myself to tools that deny me such 
efficiencies. 

There is no doubt that the grail of effi- 
ciency leads to abuse. Programmers waste 
enormous amounts of time thinking about, 
or worrying about, the speed of noncritical 
parts of their programs, and these attempts 
at efficiency actually have a strong negative 
impact when debugging and maintenance are 
considered. We should forget about small 
efficiencies, say about 97% of the time: pre- 
mature optimization is the root of all evil. 

Yet we should not pass up our opportuni- 
ties in that critical 3 %. A good programmer 
will not be lulled into complacency by such 
reasoning, he will be wise to look carefully 
at the critical code; but only after that code 
has been identified. I t  is often a mistake to 
make a priori judgments about what parts 
of a program are really critical, since the 
universal experience of programmers who 
have been using measurement tools has been 
that their intuitive guesses fail. After work- 
ing with such tools for seven years, I've be- 
come convinced that all compilers written 
from now on should be designed to provide 
all programmers with feedback indicating 
what parts of their programs are costing 
the most; indeed, this feedback should be 
supplied automatically unless it has been 
specificMly turned off. 

After a programmer knows which parts of 
his routines are really important, a trans- 
formation like doubling up of loops will be 
worthwhile. Note that this transformation 
introduces go to statements--and so do 
several other loop optimizations; I will re- 
turn to this point later. Meanwhile I have 
to admit that the presence of go to state- 
ments in Example 2a has a negative as well 
as a positive effect on efficiency; a non- 
optimizing compiler will tend to produce 
awkward code, since the contents of regis- 
ters can't be assumed known when a label is 
passed. When I computed the running times 
cited above by looking at a typical compiler's 
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output for this example, I found that the 
improvement in performance was not quite 
as much as I had expected. 

Error Exits 
For simplicity I have avoided a very impor- 
tant issue in the previous examples, but it 
must now be faced. All of the programs we 
have considered exhibit bad programming 
practice, since they fail to make the neces- 
sary check that m has not gone out of range. 
In each case before we perform "m := i"  we 
should precede that operation by a test such 
a s  

i f  m = m a x  t h e n  g o  t o  m e m o r y  o v e r f l o w ;  

where max is an appropriate threshold value. 
I left this statement out of the examples 
since it would have been distracting, but we 
need to look at it now since it is another 
important class of go to statements: an 
er~vr exit. Such checks on the validity of 
data are very important, especially in soft- 
ware, and it seems to be the one class of go 
to's that still is considered ugly but neces- 
sary by today's leading reformers. (I wonder 
how Val Schorre has managed to avoid such 
go to's during all these years.) 

Sometimes it is necessary to exit from 
several levels of control, cutting across code 
that may even have been written by other 
programmers; and the most graceful way to 
do this is a direct approach with a go to or 
its equivalent. Then the intermediate levels 
of the program can be written under the 
assumption that nothing will go wrong. 

I will return to the subject of error exits 
later. 

Subscript Checking 
In the particular examples given above we 
can, of course, avoid testing m vs. max if 
we have dynamic range-checking on all sub- 
scripts o f  A. But this usually aborts the 
program, giving us little or no control over 
the error recovery; so we probably want to 
test m anyway. And ouch, what subscript 
checking does to the inner loop execution 
times! In Example 2, I will certainly want to 
suppress range-checking in the while clause 
since its subscript can't be out of range unless 
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Aim+ 1] was already invalid in the previous 
line. Similarly, in Example 1 there van be no 
range error in the for loop unless a range 
error occurred earlier. I t  seems senseless to 
have expensive range cheeks in those parts 
of my programs that I know are clean. 

In this respect I should mention I-Ioare's 
almost persuasive arguments to the contrary 
[40, p. 18]. He points out quite correctly that. 
the current practice of compiling subscript 
range checks into the machine code while a 
program is being tested, then suppressing the 
checks during production runs, is like a sailor 
who wears his life preserver while training 
on land but leaves it behind when he sails[ 
On the other hand, that sailor isn't so foolish 
if life vests are extremely expensive, and if he 
is such an excellent swimmer that the chance 
of needing one is quite small compared with 
the other risks he is taking. In the foregoing 
examples we typically are much more cer- 
tain that the subscripts will be in range than 
that other aspects of our overall program will 
work correctly. John Coeke observes that 
time-consuming range checks can be avoided 
by a smart compiler which first compiles the 
checks into the program then moves them 
out of the loop. Wirth [94] and ttoare 
[39] have pointed out that a well-designed 
for statement can permit even a rather 
simple-minded compiler to avoid most range 
checks within loops. 

I believe that range checking should be 
used far more often than it currently is, but 
not everywhere. On the other hand I am 
really assuming infallible hardware when I 
say this; surely I wouldn't want to remove 
the parity check mechanism from the hard- 
ware, even under a hypothetical assumption 
that it was slowing down the computation. 
Additional memory protection is necessary 
to prevent my program from harming some- 
one else's, and theirs from clobbering mine. 
My arguments are directed towards com- 
piled-in tests, not towards the hardware 
mechanisms which are reallj~ needed to en- 
sure reliability. 

Hash Coding 
Now let's move on to another example, based 
on a standard hashing technique but other- 
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wise designed for the same application as the 
above. Here h(x) is a hash function which 
takes on values between 1 and m; and x ~ 0. 
In this case m is somewhat larger than the 
number of items in the table, and "empty" 
positions are represented by 0. 

Example  3: 

i := h(x); 
w h i l e  A[i] # 0 d o  

b e g i n  i f  A[i] = x t h e n  go  t o  found  fi; 
i : =  i - -1 ;  i f i  = 0 t h e n  i :=  m fi; 

e n d ;  
n o t  found :  A[i] :=  x; B[i] :=  0; 
found :  B[i] :=  B [ i ] + I ;  

If we analyze this as we did Example 1, 
we see that the trick which led to Example 2 
doesn't work any more. Yet if we want to 
eliminate the go to we can apply the idea of 
Example la by writing 

w h i l e  A[i] ~ 0 a n d  h[ i ]  ~ x d o  . . . 

and by testing afterwards which condition 
caused termination. This version is perhaps 
a little bit easier to read; unfortunately it 
makes a redundant test, which we would like 
to avoid if we were in a critical part of the 
program. 

Why should I worry about the redundant 
test in this case? After all, the extra test 
whether A[i] was ~ 0 or ~ x is being made 
outside of the while loop, and I said before 
that we should generally ecnfine our optimi- 
zations to inner loops. Here, the reason is 
that this while loop won't usually be a loop 
at all; with a proper choice of h and m, the 
operation i := i - 1  will tend to be executed 
very infrequently, often less than once per 
search on the average [54, Section 6.4]. Thus, 
the entire program of Example 3, except per- 
haps for the line labeled "not found", must 
be considered as part of the inner loop, if 
this search process is a dominant part of the 
overall program (as it often is). The redund- 
ant test will therefore be significant in this 
case. 

Despite this concern with efficiency, I 
should actually have written the first draft 
of Example 3 without that go to statement, 
probably even using a while clause written 
in an extended language, such as 

w h i l e A [ i ]  ~ {0, x } d o . . .  

I 

since this formulation abstracts the real 
meaning of what!is happening. Someday 
there may be hardware capable of testing 
membership in small sets more efficiently 
than if we program the tests sequentially, 
so that such a program would lead ~o better 
code than Example 3. And there is a much 
more important reason for preferring this 
form of the while clause: it reflects a sym- 
metry between 0 and x that is not present in 
Example 3. For example, in most software 
applications it turns out that the condition 
A[~] -- x terminates the loop far more fie- 
quently than A[~] = 0; with this knowledge, 
my second draft of the program would be 
the following. 

E x a m p l e  3a: 

i :ffi h(x); 
w h i l e  A[i] ~ x d o  

b e g i n  i f  A[i] = 0 
t h e n  A[i] : =  x; B[i] :-- 0; 

go  t o  found ;  
fi; 
i : =  i - 1 ; i f i  = 0 t h e n i  : =  raft; 

e n d ;  
found: B[i] :ffi B[il+I; 

This program is easy to derive from the 
go to-less form, but not from Example 3; 
and it is better than Example 3. So, again we 
see the advantage of delaying optimizations 
until we have obtained more knowledge of a 
program's behavior. 

I t  is instructive to consider Example 3a 
further, assuming now that the while loop 
is performed many times per search. Al- 
though this should not happen in most ap- 
plications of hashing, there are other pro- 
grams in which a loop of the above form is 
present, so it is worth examining what we 
should do in such circumstances. If the w h i l e  
loop becomes an inner loop affecting the 
overall program speed, the whole picture 
changes; that redundant test outside the loop 
becomes utterly negligible, but the test 
" i f  i = 0" suddenly looms large. We gen- 
erally want to avoid testing conditions that 
are almost always false, inside a critical 
loop. Therefore, under these new assump- 
tions I would change the data structure by 
adding a'new element A[0] = 0 to the array 
and eliminating the test for i ffi 0 as follows. 
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Example 3b: 

i := h(~); 
• while A[i] ~ x do 

i f  A[i] ~ 0 
then  i := i - 1  
else i f  i = 0 

then  i := m; 
else A[i] := x; B[i] := 0; 

go to  found; 
fi; 

fi; 
found: B[il := B[i]+I; 

The loop now is noticeably faster. Again, I 
would be unhappy with slow subscript range 
checks if this loop were critical. Incidentally, 
Example 3b was derived from Example 3a, 
and a rather different program would have 
emerged if the same idea had been applied 
to Example 3; then a test " i f  i = 0" would 
have been inserted outside the loop, at label 
"not  found", and another go to  would have 
been introduced by the optimization process. 

As in the first examples, the program in 
Example 3 is flawed in failing to test for 
memory overflow. I should have done this, 
for example by keeping a count, n, of how 
many items are nonzero. The "not found" 
routine should then begin with something 
like "n := n - k l ;  i f  n = m t h e n  g o  t o  
memory overflow". 

Text Scanning 
The first t ime I consciously applied the top- 
down structured programming methodology 
to a reasonably complex job was in the late 
summer of 1972, when I wrote a program to 
prepare the index to my book Sorting and 
Searching [54]. I was quite pleased with the 
way that  program turned out (there was 
only one serious bug), but  I did use one g o  t o  
statement. In this case the reason was some- 
what different, having nothing to do with 
exiting from loops; I was exiting, in fact, 
from an i f - then-e l se  construction. 

The following example is a simplified ver- 
sion of the situation I encountered. Suppose 
we are processing a stream of text, and that  
we want to read and print the next character 
from the input; however, if tha t  character is 
a slash ( " / " )  we want to " tabulate"  instead 
(i.e., to advance in the output  to the next 
tab-stop position on the current line); how- 
ever, two consecutive slashes means a 

"carriage re turn"  (i.e., ito advance in t h e  
output  to the beginning of the  next  line). 
After printing a period (" .")  we also want to 
insert an additional spac e in the output.  The 
following code clearly does the trick. 

Example 4: 

x :ffi read char; 
if  ~ = alash 
then  x := read char; 

if  x = slash 
then  return the carriage; 

go to char processed; 
e lse  tabulate; 
fi; 

fi; 
write char (x); 
i f  x = period then write char (space) fi; 

char processed: 

An abstract program with similar charac- 
terist ics  has been studied by  Peterson et al. 
[77; Fig. l(a)]. In practice we occasionally 
run into situations where a sequence of 
decisions is made via nested i f - t h e n - e l s e ' s ,  
and then two or more of the branches merge  
into one. We can manage  such decision-table 
tasks without go to ' s  by  copying the com- 
mon code into each place, or by  defining it  
as a p roced u re ,  but  this does not  seem con- 
ceptually simpler than to make g o  t o  a com- 
mon par t  of the program in such cases. Thus 
in Example 4 I could avoid the go to  by 
copying "write char (x); f f  x ~ pcr/od t h e n  
write char (space) f i"  into the  program after 
"tabulate;" and by  making corresponding 
changes. But  this would be a pointless waste 
of energy just to eliminate a perfectly under- 
standable go to  statement:  the resulting 
program would actually be harder to  main- 
tain than the former, since the action of 
printing a character now appears in two 
different places. The alternative of declaring 
procedures avoids the lat ter  problem, but  it  
is not  especially at t ract ive either. Still 
another alternative is: 

Example 4a: 

x :-- re~td char; 
double slash := false; 
i f  x = slash 
then  x := read char; 

i f  x = slash 
then  double slash :ffi true; 
else tabulate; 
fi; 
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fi; 
i f  double slash 
t h e n  return the carriage; 
e l s e  write char(x);  

i f  x = period t h e n  write char (space)  fi; 
fi; 

I claim that this is conceptually no simpler 
than Example 4; indeed, one can argue that 
it is actually more difficult, because it makes 
the entire routine aware of the "double slash" 
exception to the rules, instead of dealing with 
it in one exceptional place. 

A Confession 
Before we go on to another example, I must 
admit what many readers already suspect, 
namely, that I 'm subject to substantial bias 
because I actually have a vested interest in 
go to statements! The style for the series 
of books I 'm writing was set in the early 
1960s, and it would be too difficult for me to 
change it now; I present algorithms in my 
books using informal English language 
descriptions, and go to or its equivalent is 
almost the only control structure I have. 
Well, I rationalize this apparent anachro- 
nism by arguing that: a) an informaI English 
description seems advantageous because 
many readers tell me they automatically 
read English, but skip over formal code; b) 
when go to statements are used judiciously 
together with comments stating nonobvious 
loop invariants, they are semantically equi- 
valent to while statements, except that 
indentation is missing to indicate the struc- 
ture; c) the algorithms are nearly always 
short, so that accompanying flowcharts are 
able to illustrate the structure; d) I try to 
present algorithms in a form that is most 
efficient for implementation, and high-level 
structures often don't do this; e) many 
readers will get pleasure from converting my 
semiformal algorithms into beautifully struc- 
tured programs in a formal programming 
language; and f) we are still learning much 
about control structures, and I can't afford 
to wait for the final consensus. 

In spite of these rationalizations, I 'm 
uncomfortable about the situation, because 
I find others occasionally publishing ex- 
amples of algorithms in "my" style but 
without the important parenthesized com- 
ments and/or with unrestrained use of go t o  

statements. In addition, I also know of 
places where I l~ave myself used a compli- 
cated structure with excessively unrestrained 
go to statements, especially the notorious 
Algorithm 2.3.3A for multivariate poly- 
nomial addition [50]. The original program 
had at least three bugs; exercise 2.3.3-14, 
"Give a formal proof (or disproof) of the 
validity of Algorithm A", was therefore 
unexpectedly easy. Now in the second edi- 
tion, I believe that the revised algorithm is 
correct, but I still don't know any good way 
to prove it; I've had to raise the difficulty 
rating of exercise 2.3.3-14, and I hope some- 
day to see the algorithm cleaned up without 
loss of its efficiency. 

My books emphasize efficiency because 
they deal with algorithms that are used re- 
peatedly as building blocks in a large variety 
of applications. I t  is important to keep 
efficiency in its place, as mentioned above, 
but when efficiency counts we should also 
know how to achieve it. 

In order to make it possible to derive 
quantitative assessments of efficiency, my 
books show how to analyze machine lan- 
guage programs; and these programs are 
expressed in MIXAL, a symbolic assembly 
language that explicitly corresponds one- 
for-one to machine language. This has its 
uses, but there is a danger of placing too 
much stress on assembly code. Programs in 
MIXAL are like programs in machine lan- 
guage, devoid of structure; or, more pre- 
cisely, it is difficult for our eyes to perceive 
the program structure. Accompanying com- 
ments explain the program and relate it to 
the global structure illustrated in flowcharts, 
but it is not so easy to understand what is 
going on; and it is easy to make mistakes, 
partly because we rely so much on comments 
which might possibly be inaccurate descrip- 
tions of what the program really does. It is 
clearly better to write programs in a lan- 
guage that reveals the control structure, 
even if we are intimately conscious of the 
hardware at each step; and therefore I will 
be discussing a structured assembly language 
called P L / M I X  in the fifth volume of The 
art of computer programming. Such a language 
(analogous to Wirth's PL360 [95]) should 
really be supported by each manufacturer 
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for each machine in place of the old-fash- 
ioned structureless assemblers that still pro- 
liferate. 

On the other hand I 'm not really un- 
happy that MIxAL programs appear in my 
books, because I believe that MIXAL is a 
good example of a "quick and dirty assem- 
bler", a genre of software which will always 
be useful in its proper role. Such an assembler 
is characterized by language restrictions 
that make simple one-pass assembly possible, 
and it has several noteworthy advantages 
when we are first preparing programs for a 
new machine: a) it is a great improvement 
over numeric machine code; b) its rules are 
easy to state; and c) it can be implemented 
in an afternoon or so, thus getting an effi- 
cient assembler working quickly on what 
may be very primitive equipment. So far I 
have implemented six such assemblers, at 
different times in my life, for machines or 
interpretive systems or microprocessors that 
had no existing software of comparable 
utility; and in each case other constraints 
made it impractical for me to take the extra 
time necessary to develop a good, structured 
assembler. Thus I am sure that the concept 
of quick-and-dirty-assembler is useful, and 
I 'm glad to let MIXAL illustrate what one is 
like. However, I also believe strongly that 
such languages should never be improved to 
the point where they are too easy or too 
pleasant to use; one must restrict their use 
to primitive facilities that are easy to imple- 
ment efficiently. I would never switch to a 
two-pass process, or add complex pseudo- 
operations, macro-facilities, or even fancy 
error diagnostics to such a language, nor 
would I maintain or distribute such a 
language as a standard programming tool for 
a real machine. All such ameliorations and 
refinements should appear in a structured 
assembler. Now that the technology is 
available, we can condone unstructured 
languages only as a bootstrap-like means to 
a limited end, when there are strong eco- 
nomic reasons for not implementing a better 
system. 

Tree Searching 
But, I 'm digressing from my subject of go t o  
elimination in higher level languages. A few 

weeks ago I decided to choose an algorithm 
at random from my books, to study its use 
of go to statements. The very first example 
I encountered [54, Algorithm 6.2.3C] turned 
out to be another case where existing pro- 
gramming languages have no good substitute 
for go to's. In simplified form, the loop 
where the trouble arises can be written as 
follows. 

E x a m p l e  5: 

compare :  
i f  A[i] < x 
t h e n  i f  L[i] # 0 

t h e n  i :=  L[i] ;  go  t o  compare; 
e l s e  L[i] :=  j ;  go  t o  insert  fi; 

e l s e  i f  R[i]  # 0 
t h e n  i :=  R[i] ;  go  t o  c o m p a r e ;  
e l s e  R[i] :-- j ;  go  to  insert fi; 

fi; 
insert: A[j] := x; 
L[j] := 0; R[j] := 01j := j+ l ;  

This is part of the well-known "tree search 
and insertion" scheme, where a binary search 
tree is being represented by three arrays: 
A[i] denotes the information stored at node 
number i, and L[i], R[~] are the respective 
node numbers for the roots of that node's 
left and right subtrees; empty  subtrees are 
represented by zero. The program searches 
down the tree until finding an empty sub- 
tree where x can be inserted; and variable j 
points to an appropriate place to do the 
insertion. For convenience, I have assumed 
in this example that x is not already present 
in the search tree. 

Example 5 has four go to statements, but 
the control structure is saved from obscurity 
because the program is so beautifully sym- 
metric between L and R. I h-low that these 
go to statements can be eliminated by 
introducing a Boolean variable which be- 
comes true when L[i] or R[i] is found to be 
zero. But I don't want to test this variable 
in the inner loop of my program. 

Systematic Elimination 
A good deal of theoretical work has been 
addressed to the question of g o  t o  elimina- 
tion, and I shall now try to summarize the 
findings and to discuss their relevance. 

S. C. Kleene proved a famous theorem in 
1956 [48] which says, in essence, that the set 
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of all paths through any flowchart can be 
represented as a "regular expression" R 
built up from the following operations: 

8 
R1; R2 

R1 O R2 
R + 

the single arc s of the flowchart 
concatenation (all paths  consisting 
of a path of R~ followed by a path 
of R~) 
union (all paths of either R~ or R2) 
iteration (all paths of the form p~; 
p2; "" ; p~ for some n )_ 1, 
where each p~ is a path of R) 

These regular expressions correspond 
loosely to programs consisting of statements 
in a programming language related by the 
three operations of sequential composition, 
conditionals (if-then-else), and iterations 
(while loops). Thus, we might expect that 
these three program control structures would 
be sufficient for all programs. However, 
closer analysis shows that Kleene's theorem 
does not relate directly to control structures; 
the problem is only superficially similar. His 
result is suggestive but not really applicable 
in this case. 

The analogous result for control struc- 
tures was first proved by G. Jacopini in 1966, 
in a paper written jointly with C. BShm 
[8]. Jacopini showed, in effect, that any 
program given, say, in flowchart form can be 
transformed systematically into another 
program, which computes the same results 
and which is built up from statements in the 
original program using only the three basic 
operations of composition, conditional, and 
iteration, plus possible assignment state- 
meats and tests on auxiliary variables. Thus, 
in principle, go to statements can always be 
removed. A detailed exposition of Jacopini's 
construction has been given by H. D. Mills 
[69]. 

Recent interest in structured programming 
has caused many authors to cite Jacopini's 
result as a significant breakthrough and as a 
cornerstone of modern programming tech- 
nique. Unfortunately, these authors are un- 
aware of the comments made by Cooper in 
1967 [16] and later by Bruno and Steiglitz 
[10], namely, that from a practical stand- 
point the theorem is meaningless. Indeed, 
any program can obviously be put into the 
"beautifully structured" form 

p :-- 1; 
w h i l e  p > 0 do  

b e g i n  i f  p = 1 t h e n  perform step 1; 
p :=  successor of s tep 1 fi; 

i f  p = 2 t h e n  perform step  2; 
p :=  successor s tep 2 fi; 

. . .  

i f  p = nn t h e n  perform step n; 
p :=  successor of step n fi; 

end .  

Here the auxiliary variable p serves as a 
program counter representing which box of 
the flowchart we're in, and the program stops 
when p is set to zero. We have eliminated all 
g o  to's, but we've actually lost all the struc- 
ture. 

Jacopini conjectured in his paper that 
auxiliary variables are necessary in general, 
and that the go to's in a program of the 
form 

Ll :  i f  Bi  t h e n  go  t o  L2 fi; 
$1; 

i f  B~ t h e n  go t o  L~ fi; 
S~; 

go  t o  L1; 
L~: S,; 

cannot always be removed unless additional 
computation is done. Floyd and I proved this 
conjecture with John Hopcroft's help [52]. 
Sharper results were later obtained by Ash- 
croft and Manna [1], Bruno and Steiglitz 
[10], Kosaraju [57], and Peterson, Kasami, 
and Tokura [77]. 

Jaeopini's original construction was not 
merely the trivial flowchart emulation 
scheme indicated above; he was able to 
salvage much of the given flowchart struc- 
ture if it was reasonably well-behaved. A 
more general technique of g o  t o  elimination, 
devised by Ashcroft and Manna [1], made 
it possible to capture still more of a given 
program's natural flow; for example, their 
technique applied to Example 5 yields 

Example 5a: 

t :=  t rue;  
w h i l e  t d o  

b e g i n  i f  A[i]  < x 
t h e n  i f  L[i] # 0 t h e n  i : =  L[i] ;  

e l s e  L[i] := j; t :=  f a l s e  fi; 
e l s e  i f  R[i]  # 0 t h e n  i :=  R[i] ;  

e l s e  R[i]  :=  j; t : =  f a l s e  fi; 
end;  

AUI := x; 
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But, in general, their technique may cause a 
program to grow exponentially in size; and 
when error exits or other recalcitrant go 
to's are present, the resulting programs will 
indeed look rather like the flowchart emula- 
tor sketched above. 

If such automatic go to elimination 
procedures are applied to badly structured 
programs, we can expect the resulting pro- 
grams to be at least as badly structured. 
Dijkstra pointed this out already in [23], 
saying: 

The exercise to translate an arbitrary flow 
diagram more or less mechanically into a 
jumpless one, however, is not to be recom- 
mended. Then the resulting flow diagram 
cannot be expected to be more transparent 
than the original one. 

In other words, we shouldn't merely 
remove go to statements because it's the 
fashionable thing to do; the presence or 
absence of go to statements is not really the 
issue. The underlying structure of the 
program is what counts, and we want only 
to avoid usages which somehow clutter up 
the program. Good structure can be expressed 
in FORTRAN or COBOL, or even in assembly 
language, although less clearly and with 
much more trouble. The real goal is to 
formulate our programs in such a way that  
they are easily understood. 

Program structure refers to the way in 
which a complex algorithm is built up from 
successively simpler processes. In most 
situations this structure can be described 
very nicely in terms of sequential composi- 
tion, conditionals, simple iterations, and 
with case statements for multiway branches; 
undisciplined go to statements make pro- 
gram structure harder to perceive, and they 
are often symptoms of a poor conceptual 
formulation. But  there has been far too 
much emphasis on go to elimination instead 
of on the really important issues; people 
have a natural tendency to set up all easily 
understood quantitative goal like the aboli- 
tion of jumps, instead of working directly 
for a qualitative goal like good program 
structure. In a similar way, many people 
have set up "zero population growth" as a 
goal to be achieved, when they really desire 

living conditions that  are much harder to 
quantify. 

Probably the worst mistake any one can 
make with respect to the subject of g o  t o  
statements is to assume that  "structured- 
programming" is achieved by writing pro- 
grams as we always have and then elimi- 
nating the go to's. Most go to 's  shouldn't 
be there in the first place! What  we really 
want is to conceive of our program in such 
a way that  we rarely even think about g o  t o  
statements, because the real need for them 
hardly ever arises. The language in which we 
express our ideas has a strong influence on 
our thought processes. Therefore, Dijkstra 
[23] asks for more new language features--  
structures which encourage clear thinking--  
in order to avoid the go to ' s  temptations to- 
ward complications. 

Event Indicotors 
The best such language feature I know has 
recently been proposed by C. T. Zahn 
[102]. Since this is still in the experimental 
stage, I will take the liberty of modifying 
his "syntactic sugar" slightly, without 
changing his basic idea. The essential novelty 
in his approach is to introduce a new quan- 
t i ty  into programming languages, called an 
event indicator (not to be confused with 
concepts from P L / I  or SIMSC~IPT). M y  
current preference is to write his event- 
driven construct in the following two general 
forms. 

A) l o o p  u n t i l  (eventh or  - . -  or  {event)s: 
(statement list)0; 

repeat ;  
t h e n  (event)l = > (statement list)l; 

(event)~ = > ( s tatement  list)n; 
fi; 

B) b e g i n  u n t i l  (event)l  or  . . .  or  (event)n; 
(statement list)0; 

end; 
then (even t ) t  = > ( s t a t e m e n t  l is t ) t ;  

ievent)~ = > (statement list)z; 
fi: 

There is also a new statement, "(event)",  
which means that  the designated event has 
occurred: such a statement is allowed only 

Computing Surveys, VoL 6, No. 4, December 1974 

i 



276 • Donald E. Knuth 

within (statement lisQ0 of an u n t i l  con- 
struct which declares that event. 

In form (A), (statement list)0 is executed 
repeatedly until control leaves the construct 

• entirely or until one of the named events 
occurs; in the latter case, the statement 
list corresponding to that event is executed. 
The behavior in form (B) is similar, except 
that no iteration is implied; one of the named 
events must have occurred before the e n d  
is reached. The t h e n . . ,  fi part may be 
omitted when there is only one event name. 

The above rules should become clear 
after looking at what happens when Example 
5 above is recoded in terms of this new fea- 
ture: 

Example 5b: 

loop u n t i l  lef t  leaf hi t  or 
r ight  leaf hi t :  

i f  A[i] < x 
t h e n  i f  L[i] # 0 t h e n  i := L[i]; 

e l se  left leaf hit fi; 
else i f  R[i] # 0 t h e n  i :=  R[i]; 

else r ight  leaf hi t  fi; 
fi; 

repeat; 
t h e n  left  leaf hit  = > L[i] := j; 

right leaf hit = > R[i] := j; 
fi; 
A[j] := x; L[j] := 0; R[j] := 0; j := j+ l ;  

Alternatively, using a singleevent, 

Example 5c: 

loop  u n t i l  leaf replaced: 
i f  A[i] < x 
t h e n  i f  L[i] # 0 t h e n  i := L[i] 

e l s e  L[i] := j; leaf replaced fi; 
e l se  i f  R[i] # 0 t h e n  i := R[i] 

e l s e  R[i] := j; leaf replaced fi; 
fi; 

repeat; 
A[j] := x; L[j] :~ O; R[j] := O; j := j + l ;  

For reasons to be discussed later, Example 
5b is preferable to 5c. 

I t  is important to emphasize that the first 
line of the construct merely declares the 
event indicator names, and that event 
indicators are not conditions which are being 
tested continually; (event) statements are 
simply transfers of control which the com- 
piler can treat very efficiently. Thus, in 
Example 5e the statement "leaf replaced" 
is essentially a go to which jumps out of 
the loop. 

This use of events is, in fact, semantically 
equivalent to a restricted form of go t o  
statement, which Peter Landin discussed 
in 1965 [58] before most of us were ready to 
listen. Landin's device has been reformulated 
by Clint and Hoare [14] in the following 
way: Labels are declared at the beginning 
of each block, just as procedures normally 
are, and each label also has a (label body) 
just as a procedure has a (procedure body). 
Within the block whose heading contains 
such a declaration of label L, the statement 
go to L according to this scheme means 
"execute the body of L, then leave the 
block". I t  is easy to see that this is exactly 
the form of control provided by Zahn's 
event mechanism, with the (label body)s 
replaced by (statement list)s in the t h e n  • • • 
fi postlude and with (event) statements 
corresponding to Landin's go to. Thus, 
Clint and Hoare would have written Ex- 
ample 5b as follows. 

w h i l e  true  do 
begin label  left  leaf hi t ;  L[i] :=  j ;  

label  r ight  leaf hi t ;  R[i] :=  j;  
i f  A[i] < x 
then  i f  L[i] # 0 t h e n  i :=  L[i]; 

e l se  go t o  left leaf hit fi; 
else i f  R[/] # 0 then  i :=  R[/]; 

else go to  r ight  leaf hi t  fi; 
end; 

A[j] :=  x; L[j] :=  0; R[j] :=  0; j :=  j + l ;  

I believe the program reads much better in 
Zahn's form, with the (label body)s set in 
the code between that which logically 
precedes and follows. 

Landin also allowed his "labels" to have 
parameters like any other procedures; this 
is a valuable extension to Zahn's proposal, 
so I shall use events with value parameters 
in several of the examples below. 

As Zahn [102] has shown, event-driven 
statements blend well with the ideas of 
structured programming by stepwise refine- 
ment. Thus, Examples 1 to 3 can all be cast 
into the following more abstract form, using 
an event "found" with an integer parameter: 

begin  u n t i l  found: 
search table for x and 
insert  i t  if not  present;  

end; 
t h e n  found (integer j) = >  B[j] := B [ j ] + I ;  
fi; 
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This much of the program can be written 
before we have decided how to maintain 
the table. At  the next level of abstraction, 
we might decide to represent the table as a 
sequential list, as in Example  1, so tha t  
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if  x = slash 
then  double slash; 
else tabu/ate; 

normal character input (x); 
fi; 

else normal character input (x); 
"search table . . .  " would expand into 

for i := 1 step 1 unt i l  m do 
i f  A[i] = x then found(i) fi; 

m := m~-l; Aim] := x; found(m); 

Note  tha t  this for  loop is more disciplined 
than the one in our original Example  1, 
because the iteration variable is not used 
outside the loop; it now conforms to the rules 
of ALGOL W and ALGOL 68. Such for  loops 
provide convenient documentation and 
avoid common errors associated with global 
variables; their advantages have been 
discussed by  Hoare [39]. 

Similarly, if we want  to use the idea of 
Example  2 we might write the following 
code as the refinement of "search table • . . " "  

begin integer i; 
A[m-bl] := x; i  := 1; 
while A[i] ~ x do i := i-bl; 
i f i  > m t h e n m  := i ;B[m]  := 0fi; 
found (/) ; 

end; 

And finally, if we decide to use hashing, 
we obtain the equivalent of Example 33 
which might be written as follows. 

fi) 
end; 
then normal character input (char x) ffi > 

write char (x) ; 
i f  x --- period then  write char (space) fi; 

double slash = > return the carriage, 
fi; 

This program states the desired actions a 
bit  more clearly than  any of our previous 
a t tempts  were able to do. 

Even t  indicators, handle error exits too. 
For example, we might write a program as 
follows. 

begin un t i l  error or normal end: 

i f  m = max then error ('symbol table full') fi; 

normal end; 
end; 
then  error (string E) ffi 

print ('unrecoverable error,'; E); 
normal end = > 

print ('computation complete'); 
fi; 

Comparison of Features 
Of course, event indicators are not the only 
decent alternatives tO g o  t o  statements  

begin integer i; 
i := h(x); 
loop unt i l  present or absent: 

if  A[i] = x then present fi; 
i f  A[i] = 0 then absent fi; 
i : = i - 1 ;  
i f i  = 0 t h e n i  := mfi; 

repeat; 
then  present = > found(i); 

absent = >  A[i] := x; found(/); 
fi; 

end; 

tha t  have been proposed. M a n y  authors 
have suggested language features which 
provide roughly equivalent facilities, but  
which are expressed in terms of ex i t ,  j u m p -  
o u t ,  break ,  or l e a v e  statements.  Kosaraju  
[57] has proved tha t  such s ta tements  are 
sufficient to express all programs without 
go to ' s  and without any  extra computation,  
but  only if an exit f rom arbitrari ly many  
levels of control is permitted.  

The earliest language features of this kind 
The  b e g i n  u n t i l  (event) construct ulso 

provides a natural  way to deal with decision- 
table constructions such as the text-scanning 
application we have discussed. 

Example 4b: 

begin unt i l  normal character input 
or double slash: 

char x; 
x := read char; 
i f  x = slash 
then x := read char~ ~ 

(besides Landin 's  proposal) provided essen- 
tially only one exit f rom a loop; this means 
tha t  the code appearing in the t h e n  . . .  fi 
postlude of our examples would be inserted 
into the body itself before branching. (See 
Example 5c.) The separation of such code 
as in Zahn's  proposal is better ,  mainly 
because the body of the construct corre- 
sponds to code tha t  is written under different 
" invar iant  assumptions" which are inopera- 
tive after a particular event  has occurred. 
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Thus, each'event corresponds to a particular 
set of assertions about the state of the 
program, and the code which follows that 
event takes cognizance of these assertions, 
which are rather different from the assertions 
in the main body of the construct. (For this 
reason I prefer Example 5b to Example 5c.) 

Language features allowing multiple exits 
have been proposed by G. V. Bochmann [7], 
and independently by Shigo et al. [86]. These 
are semantically equivalent to Zahn's pro- 
posals, with minor variations; but they 
express such semantics in terms of state- 
ments that say "exit to (label)". I believe 
Zahn's idea of event indicators is an im- 
provement on the previous schemes, because 
the specification of events instead of labels 
encourages a better conception of the pro- 
gram. The identifier given to a label is often 
an imperative verb like "insert" or "com- 
pare", saying what action is to be done next, 
while the appropriate identifier for an event 
is more likely to be an adjective like "found". 
The names of .events are very much like the 
names of Boolean variables, and I believe 
this accounts for the popularity of Boolean 
variables as documentation aids, in spite of 
their inefficiency. 

Putting this another way, it is much 
better from a psychological standpoint to 
w r i t e  

l o o p  u n t l l  f o u n d  • • • ; f o u n d ;  • • • repeat  

than to write 

search: w h i l e  t rue  do 
beg in  . . .  ; l e a v e  s e a r c h ;  . - .  end. 

The l e a v e  or e x i t  statement is operationally 
the same, but intuitively different, since it 
talks more about the program than about 
the problem. 

The PL / I  language allows programmer- 
defined ON-conditions, which are similar 
in spirit to event indicators. A programmer 
first executes a statement "ON CONDITION 
(identifier) block" which specifies a block 
of code that is to be executed when the 
identified event occurs, and an occurrence 
of that event is indicated by writing SIG- 
NAL CONDITION (identifier). However, 
the analogy is not very close, since control 
returns to the statement following the 
SIGNAL statement after execution of the 

specified block of code, and the block may 
be dynamically respecified. 

Some people have suggested to me that 
events should be called "conditions" instead, 
by analogy with Boolean expressions. How- 
ever, that terminology would tend to imply a 
relation which is continually being moni- 
tored, instead of a happening. By writing 
"loop un t i l  yprime is near y: . . . "  we seem 
to be saying that the machine should keep 
track of whether or not y and yprime are 
nearly equal; a better choice of words would 
be an event name like "loop un t i l  con- 
vergence established: .- ."  so that we can 
write " i f  abs(yprime - y) < epsilon X y 
t h e n  convergence established". An event 
occurs when the program has discovered 
that the state of computatioD has changed. 

Simple Iterations 
So far I haven't mentioned what I believe 
is really the most common situation in which 
go to statements are needed by an ALGOL 
or PL/ I  programmer, namely a simple 
iterative loop with one entrance and one 
exit. The iteration statements most often 
proposed as alternatives to go to statements 
have been "while B do S" and "repeat  S 
u n t i l  B". However, in practice, the itera- 
tions I encounter very often have the form 

A: S; 
i f  B t h e n  go to  Z fi; 
T; go to  A; 

Z: 

where S and T both represent reasonably 
long sequences of code. If S is empty, we 
have a while loop, and if T is empty we 
have a repeat  loop, but in the general case 
it is a nuisance to avoid the go to state- 
ments. 

A typical example of such an iteration 
occurs when S is the code to acquire or 
generate a new piece of data, B is the test 
for end of data, and T is the processing of 
that data. Another example is when the code 
preceding the loop sets initial conditions 
for some iterative process; then S is a com- 
putation of quantities involved in the test 
for convergence, B is the test for conver- 
gence, and T is the adjustment of variables 
for the next iteration. 

Dijkstra [29] aptly named this a loop 
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which is performed "n and a half times". 
The usual practice for avoiding go to's in 
such loops is either to duplicate the code 
for S, writing 

S; while  B do begin T; S end; 

where B is the negation of relation B; or to 
figure out some sort of "inverse" for T so 
that "T-i; T" is equivalent to a null state- 
ment, and writing 

T-l; repeat T; S unt i l  B; 

or to duplicate the code for B and to make a 
redundant test, writing 

repeat S; i f  B then T fi; unt i l  B; 

or its equivalent. The reader who studies 
go to-less programs as they appear in the 
literature will find that all three of these 
rather unsatisfactory constructions are used 
frequently. 

I discussed this weakness of ALGOL in a 
letter to Niklaus Wirth in 1967, and he 
proposed two solutions to the problem, 
together with many other instructive ideas 
in an unpublished report on basic concepts 
of programming languages [94]. His first 
suggestion was to write 

repeat begin S; when B exit; T; end; 

and readers who remember 1967 will also 
appreciate his second suggestion, 

turn on begin S; when B drop out; T; end.  

Neither set of delimiters was felt to be 
quite right, but a modification of the first 
proposal (allowing one or more single-level 
exit statements within repeat  b e g i n . . .  
end) was later incorporated into an experi- 
mental version of the ALGOL W language. 
Other languages such as BCPL and BLISS 
incorporated and extended the exit idea, as 
mentioned above. Zahn's construction now 
allows us to write, for example, 

loop unt i l  all data exhausted: 
S; 
if B then all data exhausted fi; 
T; 

repeat; 

and this is a better syntax for the n + 
problem than we have had previously. 

On the other hand, it would be nicest if 

our language would provide a single feature 
which covered all simple iterations without 
going to a rather "big" construct like the 
event-driven scheme. When a programmer 
uses the simpler feature he is thereby making 
it clear that he has a simple iteration, with 
exactly one condition which is being tested 
exactly once each time around the loop. 
Furthermore, by providing special syntax 
for this common case we make it easier for a 
compiler to produce more efficient code, 
since the compiler can rearrange the machine 
instructions so that the test appears physi- 
cally at the end of loop. (Many hours of 
computer time are now wasted each day 
executing unconditional jumps to the be- 
ginning of loops.) 

Ole-Johan Dahl has recently proposed a 
syntax which I think is the first real solution 
to the n -{- ~ problem, He suggests writing 
the general simple iteration defined above as 

loop; S; whi le  B: T; repeat; 

where, as before, S and T denote sequences 
of one or more statements separated by 
semicolons. Note that as in two of our 
original go to-free examples, the syntax 
refers to condition B which represents 
staying in the iteration, instead of condition 
B which represents exiting; and this may 
be the secret of its success. 

Dahl's syntax may not seem appropriate 
at first, but actually it reads well in every 
example I have tried, and I hope the reader 
will reserve judgment until seeing the ex- 
amples in the rest of this paper. One of the 
nice properties of his syntax is that the word 
repeat occurs naturally at the end of a loop 
rather than at its beginning, since we read 
the actions of the program sequentially. 
As we reach the end, we are instructed to 
repeat the loop, instead of being informed 
that the text of the loop (not its execution) 
has ended. Furthermore, the above syntax 
avoids ALGOL'S use of the word do (and 
also the more recent unnatural delimiter 
od); the word do as used in ALGOL has 
never sounded quite right to native speakers 
of English, it has always been rather quaint 
for us to say "do read (A[i])" or "do begln"! 
Another feature of Dahl's proposals is that 
it is easily axiomatized along the lines 
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proposed by Hoare [37, 41]: 

{P}SiQ} 
{Q A B}T{P} 

{P} loop: S; while B: T; repeat; {Q A ~ B} 

(Here I am using braces around the asser- 
tions, as in Wirth's PASCAL language [97], 
instead of following Hoare's original nota- 
tion "P {S} Q", since assertions are, by 
nature, parenthetical remarks.) 

The nicest thing about Dahl's proposal 
is that it works also when S or T is empty, 
so that we have a uniform syntax for all 
three cases; the while and repeat  state- 
ments found in ALGoL-like languages of the 
late 1960s are no longer needed. When S or 
T is empty, it is appropriate to delete the 
preceding colon. Thus 

loop while B :  
T; 

repeat; 

takes the place of "while B do b e g i n  T 
end;" and 

loop: 
S 

while B repeat; 

takes the place of "repeat  S u n t i l  B;". At 
first glance these may seem strange, but 
probably less strange than the whi le  and 
repeat  statements did when we first learned 
them. 

If I were designing a programming lan- 
guage today, my current preference would 
be to use Dahl's mechanism for simple 
iteration, plus Zahn's more general con- 
struct, plus a for statement whose syntax 
would be perhaps 

loop f o r l  < i < n :  
S; 

repeat; 

with appropriate extensions. These control 
structures, together with i f . . .  t h e n - . .  
else .- .  fi, will comfortably handle all the 
examples discussed so far in this paper, 
without any go to statements or loss of 
efficiency or clarity. Furthermore, none of 
these language features seems to encourage 
overly-complicated program structure. 

2. INTRODUCTION OF go to STATEMENTS 
I 

Now that I have discussed how to remove 
go to  statements, !I will turn around and 
show why there are occasions when I actually 
wish to insert them into a go to-less program. 
The reason is that I like well-documented 
programs very much, but I dislike inefficient 
ones; and there are some cases where I 
simply seem to need go to statements, 
despite the examples stated above. 

Recursion Elimination 
Such cases come to light primarily when I 'm 
trying to optimize a program (originally 
well-structured), often involving the removal 
of implicit or explicit recursion. For example, 
consider the following recursive procedure 
that prints the contents of a binary tree in 
symmetric order. The tree is represented by 
L, A, and R arrays as in Example 5, and the 
recursive procedure is essentially the defini- 
tion of symmetric order. 

Example 6: 

procedure treeprint(O; integer t; value t; 
if t # 0  
then treeprint(L[t]) ; 

print (A[tl) ; 
treeprint (R[t]); 

fi; 

This procedure may be regarded as a 
model for a great many algorithms which 
have the same structure, since tree traversal 
occurs in so many applications; we shall 
assume for now that printing is our goal, 
with the understanding that this is only one 
instance of a generM family of algorithms. 

I t  is often useful to remove recursion 
from an algorithm, because of important 
economies of space or time, even though this 
tends to cause some loss of the program's 
basic clarity. (And, of course, we might also 
have to state our algorithm in a language 
like FORTRAN or in a machine language that 
doesn't allow recursion.) Even when we use 
ALGOL or PL/I ,  every compiler I know im- 
poses considerable overhead on procedure 
calls; this is to a certain extent inevitable 
because of the generMity of the parameter 
mechanisms, especially cM1 by name and the 
maintenance of proper dynamic environ- 
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ments. When procedure calls occur in an 
inner loop the overhead can slow a program 
down by a factor of two or more. But if we 
hand tailor our own implementation of 
recursion instead of relying on a general 
mechanism we can usually find worthwhile 
simplifications, and in the process we occa- 
sionally get a deeper insight into the original 
algorithm. 

There has been a good deal published 
about recursion elimination (especially in the 
work of Barron [4], Cooper [15], Manna and 
Waldinger [61], McCarthy [62], and Strong 
[88; 91]); but I 'm amazed that very little of 
this is about "down to earth" problems. I 
have always felt that the transformation 
from recursion to iteration is one of the most 
fundamental concepts of computer science, 
and that a student should learn it at about 
the time he is studying data structures. This 
topic is the subject of Chapter 8 in my multi- 
volume work; but it's only by accident that 
recursion wasn't Chapter 3, since it concep- 
tually belongs very early in the table of 
contents. The material just wouldn't fit com- 
fortably into any of the earlier volumes; yet 
there are many algorithms in Chapters 1-7 
that are recursions in disguise. Therefore it 
surprises me that the literature on recursion 
removal is primarily concerned with "baby" 
examples like computing factorials or re- 
versing lists, instead of with a sturdy toddler 
like Example 6. 

Now let's go to work on the above ex- 
ample. I assume, of course, that the reader 
knows the standard way of implementing 
recursion with a stack [20], but I want to 
make simplifications beyond this. Rule 
number one for simplifying procedure calls 
is: 

If the last action of procedure p before it re- 
turns is to call procedure q, simply go to  the 
beginning of procedure q instead. 

(We must forget for the time being that we 
don't like go to statements.) I t  is easy to 
confirm the validity of this rule, if, for sim- 
plicity, we assume parameterless procedures. 
For the operation of calling q is to put a re- 
turn address on the stack, then to execute q, 
then to resume p at the return address 
specified, then to resume the caller of p. The 

above simplification makes q resume the 
caller of p. When q ffi p the argument is 
perhaps a bit subtle, but it's all right. (I'm 
not sure who originated this principle; I 
recall learning it from Gill's paper [34, p. 
183], and then seeing many instances of it in 
connection with top-do~vn compiler organiza- 
tion. Under certain conditions the BLms/l l  
compiler [101] is capable of discovering this 
simplification. Incidentally, the converse of 
the above principle is also true (see [52]): 
go to statements can always be eliminated 
by declaring suitable procedures, each of 
which calls another as its last action. This 
shows that procedure calls include go t o  
statements as a special case; it cannot be 
argued that procedures are conceptually 
simpler than go to's, although some people 
have made such a claim.) 

As a result of applying the above simplifi- 
cation, and adapting it in the obvious way 
to the case of a procedure with one parame- 
ter, Example 6 becomes 

E x a m p l e  6a:  

procedure treeprint(t); integer  t; va lue  ~; 
L : i f t ~ 0  

then treeprint(L[t]) ; 
print(A[t]) ; 
t : =  R[t];  g o  t o  L;  

fi; 

But we don't really want that g o  t o ,  so we 
might prefer to write the code as follows, 
using Dahl's syntax for iterations as ex- 
plained above. 

E x a m p l e  6b:  

procedure treeprint(t); integer  t; value t; 
loop whi le  t ~ 0: 

treeprint (L[t]) ; 
print (A [t]) ; 
t :=  R[t] ;  

repeat; 

If our goal is to impress somebody, we 
might tell them that we thought of Example 
6b first, instead of revealing that we got it 
by straightforward simplification of the 
obvious program in Example 6. 

There is still a recursive call in Example 
6b; and this time it's embedded in the pro- 
cedure, so it looks as though we have to go 
to the general stack implementation. How- 
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ever, the recursive call now occurs in only 
one place, so we need not put a return 
address on the stack; only the local variable 
t needs to be saved on each call. (This is 
another simplification which occurs fre- 
quently.) The program now takes the fol- 
lowing nonrecursive form. 

Example 6c : 

procedure  treeprint(t); i n t e g e r  t; va lue  t; 
b e g i n  i n t e g e r  s tack  S; S := e m p t y ;  

L I :  loop w h i l e  t ~ 0: 
< =  t; t := L[t]; go to  L1; 

L2: t <= S; 
print (A[t]) ; 
t := R[t]; 

repeat;  
i f  nonempty(S) then  go  to  L2 fi; 
end. 

Here for simplicity I have extended ALGOL 
to allow a "stack" data type, where S < = t 
means "push t onto S" and t < = S means 
"pop the top of S to t, assuming that S is 
nonempty". 

I t  is easy to see that Example 6c is equiva- 
lent to Example 6b. The statement "go t o  
LI"  initiates the procedure, and control 
returns to the following statement (labeled 
L2) when the procedure is finished. Although 
Example 6c involves go to statements, their 
purpose is easy to understand, given the 
knowledge that we have produced Example 
6c by a mechanical, completely reliable 
method for removing recursion. Hopkins 
[44] has given other examples where go t o  
at a low level supports high-level construc- 
tions. 

But if you look at the above program 
again, you'll probably be just as shocked as 
I was when I first realized what has hap- 
pened. I had always thought that the use of 
g o  t o  statements was a bit sinful, say a 
"venial sin"; but there was one kind of g o  t o  
that I certainly had been taught to regard 
as a mortal sin, perhaps even unforgivable, 
namely one which goes into the middle of an 
iteration! Example 6c does precisely that, 
and it is perfectly easy to understand Exam- 
ple 6c by comparing it with Example 6b. 
In this particular case we can remove the 
go to's without difficulty; but in general 
when a recursive call is embedded in 
~ r  "1 ""~'~ a rc~,~, ,~ ti l l  .~ ~,,,~,~u~u ,., 

several complex levels of control, there is no 

equally simple way to remove the recursion 
without resorting to something like Example 
6c. As I say, it was a shock when I first ran 
across such an example. Later, Jim Horning 
confessed to me that he also was guilty, in 
the syntax-table-building program for the 
XPL system [65, p. 500], because XPL 
doesn't allow recursion; see also [56]. Clearly 
a now doctrine about sinful go to's is needed , 
some sort of "situation ethics". 

The new morality that I propose may 
perhaps be stated thus: "Certain go t o  
statements which arise in connection with 
well-understood transformations are accept- 
able, provided that the program documenta- 
tion explains what the transformation was." 
The use of four-letter words like goto can 
occasionally be justified even in the best of 
company. 

This situation is very similar to what 
people have commonly encountered when 
proving a program correct. To demonstrate 
the validity of a typical program Q, it is 
usually simplest and best to prove that some 
rather simple but less efficient program P is 
correct and then to prove that P can be 
transformed into Q by a sequence of valid 
optimizations. I 'm saying that a similar 
thing should be considered standard prac- 
tice for all but the simplest software pro- 
grams: A programmer should create a pro- 
gram P which is readily understood and 
well-documented, and then he should op- 
timize it into a program Q which is very effi- 
cient. Program Q may contain go to state- 
ments and other low-level features, but the 
transformation from P to Q should be ac- 
complished by completely reliable and well- 
documented "mechanical" operations. 

At this point many readers will say, "But 
he should only write P, and an optimizing 
compiler will produce Q." To this I say, 
"No, the optimizing compiler would have to 
be so complicated (much more so than any- 
thing we have now) that it will in fact be 
unreliable." I have another alternative to 
propose, a new class of software which will 
be far better. 

Program Manipulation Systems 
For 15 years or so I have been trying to 
think of how to write a compiler that really 
produces top quality code. For example, 
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most of the Mix programs in my books are 
considerably more efficient than any of 
today's most visionary compiling schemes 
would be able to produce. I 've tried to study 
the various techniques that a hand-coder 
like myself uses, and to fit them into some 
systematic and automatic system. A few 
years ago, several students and I looked at a 
typical sample of FORTRAN programs [51], 
and we all tried hard to see how a machine 
could produce code that would compete 
with our best hand-optimized object pro- 
grams. We found ourselves always running 
up against the same problem: the compiler 
needs to be in a dialog with the prograrmner; 
it needs to know properties of the data, and 
whether certain cases can arise, etc. And we 
couldn't think of a good language in which 
to have such a dialog. 

For some reason we all (especially me) had 
a mental block about optimization, namely 
that we always regarded it ~ a behind-the- 
scenes activity, to be done in the machine 
language, which the programmer isn't sup- 
posed to know. This veil was first lifted from 
my eyes in the Fall of 1973. when I ran across 
a remark by Hoare [42] that, ideally, a 
language should be designed so that an 
optimizing compiler can describe its optimi- 
zations in the source language. Of course! 
Why hadn't I ever thought of it? 

Once we have a suitable language, we will 
be able to have what seems to be emerging 
as the programming system of the future: an 
interactive program-manipulation system, 
analogous to the many symbol-manipulation 
systems which are presently undergoing ex- 
tensive development and experimentation. 
We are gradually learning about program 
transformations, which are more complicated 
than formula manipulations but really not 
very different. A program-manipulation sys- 
tem is obviously what we've been leading up 
to, and I wonder why I never thought of it 
before. Of course, the idea isn't original with 
me; when I told Hoare, he said, "Exactly!" 
and referred me to u recent paper by Darling- 
ton and Burstall [18]. Their paper describes 
a system which removes some recursions 
from a LisP-like language (curiously, without 
introducing any go to's), and which also 
does some conversion of data structures 
(from sets to lists or bit strings) and some 

restructuring of a program by  combining 
similar loops. I'later discovered that program 
manipulation is just part of a much more 
ambitious project undertaken by Cheatham 
and Wegbreit [12]; another paper about 
source-code optimizations has also recently 
appeared [83]. Since LIsP programs are easily 
manipulated as LisP d£ta objects, there has 
also been a rather extensive development of 
similar ideas in this domain, notably by 
Warren Teitelman (see [89, 90]). The time 
is clearly ripe for program-manipulation 
systems, and a great deal of further work 
suggests itself. 

The programmer using such a system will 
write his beautifully-structured, but possibly 
inefficient, program P; then he will inter- 
actively specify transformations that make 
it efficient. Such a system will be much more 
powerful and reliable than a "completely 
automatic one. We can also imagine the sys- 
tem manipulating measurement statistics 
concerning how much of the total running 
time is spent in each statement, since the 
programmer will want to know which parts 
of his program deserve to be optimized, and 
how much effect an optimization will really 
have. The original program P should be re- 
tained along with the transformation specifi- 
cations, so that it can be properly understood 
and maintained as time passes. As I say, this 
idea certainly isn't my own; it is so exciting 
I hope that everyone soon becomes aware of 
its possibilities. 

A "calculus" of program transformations 
is gradually emerging, a set of operations 
which can be applied to programs without 
rethinking the specific problem each time. 
I have already mentioned several of these 
transformations: doubling up of loops (Ex- 
ample 2a), changing final calls to go to ' s  
(Example 6a), using a stack for recursions 
(Example 6c), and combining disjoint loops 
over the same range [18]. The idea of macro- 
expansions in general seems to find "its most 
appropriate realization as part of a program 
manipulation system. 

Another well-known example is the re- 
moval of invariant subexpressions from 
loops. We are all familiar with the fact that 
a program which includes such subexpres- 
sions is more readable than the corresponding 
program with invariant subexpressions 
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moved out of their loops; yet we consciously 
remove them when the running time of the 
program is important. 

Still another type of transformation occurs 
when we go from high-level "abstract" data  
structures to low-level "concrete" ones (see 
Hoare's chapter in [17] for numerous ex- 
amples). In the case of Example 6c, we can 
replace the stack by an array and a pointer, 
arriving at  

E x a m p l e  6d:  

procedure treeprint(t); integer t; v a l u e  t; 
begin integer array S[1: n];  i n  t e g e r  k; k : = 0; 

L I :  l o o p  w h i l e  t ~ 0:  
k : =  k + l ;  S[k] : =  t; 
t :=  L[t]; go  t o  L1; 

L2: t := S[k]; k := k - l ;  
print (AIt]) ; 
t := R[t]; 

repeat; 
i f k ~ 0 t h e n  go  t o L 2 f i ;  

end. 

Here the programmer must specify a safe 
value for the maximum stack size n, in order 
to make the transformation legitimate. Al- 
ternatively, he may wish to implement the 
stack by a linked list. This choice can usually 
be made without difficulty, and it illustrates 
another area in which interaction is prefer- 
able to completely automatic t r a n s f o r m a -  
tions. 

Recursion vs. Iteration 
Before leaving the treeprint example, I would 
like to pursue the question of go to  elimina- 
tion from Example 6c, since this leads to 
some interesting issues. I t  is clear that  the 
first go to is just a simple iteration, and a 
little further study shows that  Example 6e 
is just one simple iteration inside another, 
namely (in Dahl's syntax) 

E x a m p l e  6e: 

procedure treeprint(t); integer l; value t; 
begin integer stack S; S :=  empty; 

loop: 
loop w h i l e  t ~ 0: 

S < = t ;  
t := L[t]; 

repeat; 
w h i l e  nonemply(S) : 

t < =  S; 
print(A[t]); 
t := Rit]; 

r e p e a t ;  
end .  

Furthermore, there is a rather simple way 
to understand this program, by providing 
suitable "loop invari~nts". At the beginning 
of the first (outer) loop, suppose the stack 
contents from top tO bottom are t,, . . . ,  t~ 
for some n > 0; then the procedure's re- 
maining duty is to accomplish the effect of 

treeprint (t) ; 
print(A[t,]) ; treeprint(R[t,]) ; 

print(A[tl]) ; treeprint(R[tl]) ; (*) 

In other words, the purpose of the stack 
is to record postponed obligations to print 
the A's and right subtrees of certain nodes. 
Once this concept is grasped, the meaning 
of the program is clear and we can even see 
how we might have written it without ever 
thinking of a recursive formulation or a 
go to  statement: The innermost loop ensures 
t ffi 0, and afterwards the program reduces 
the stack, maintaining (*) as the condition 
to be fulfilled, at  key points in the outer loop. 

A careful programmer might notice a 
source of inefficiency in this program: when 
L[t] = 0, we put  t on the stack, then take it 
off again. If  there are n nodes in a binary 
tree, about half of them, on the average, will 
have L[t] ffi 0 so we might wish to avoid 
this extra computation. I t  isn't  easy to do 
tha t  to Example 6e without major surgery 
on the structure; but it  is easy to modify 
Example 6e (or 6d), by simply bracketing 
the souree of inefficiency, including the go 
t o ,  and the label, and all. 

E x a m p l e  6f:  

procedure treeprinl(t); v a l u e  t; i n t e g e r  t; 
begin integer stack S; S :=  empty; 

L I :  loop while t ~ 0: 
L3:  i f  L[t] ~ 0 

then S < = t; t :=  L[t];  go  t o  L1;  
L2:  t < = S;  

fi; 
print(A[t]) ; 
t := R[tl; 

repeat; 
i f  nonempty(S) t h e n  go  t o  L2 fi; 

end. 

Here we notice tha t  a further simplification 
is possible: go to  L1 can become go to  L3 
because t is known to he nonzero. 

An equivalent go to-free program analo- 
gous to Example 6e is 
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E x a m p l e  6g: 

procedure treeprint(t); value t; integer t; 
begin integer stack S; S :=  e m p t y ;  

l o o p  u n t i l  f inished: 
i f /  ~ 0  
then 

l o o p  w h i l e  L[t] ~ 0: 
S < = t ;  
t := L[t]; 

repeat; 
e |se  

i f  nonempty (S) 
then  t < = S; 
else finished; 
fi; 

fi; 
print(A[t]) ; 
t :ffi R[t]; 

repeat; 
end. 

I deriv'ed this program by thinking of the 
loop invariant (*) in Example 6e and acting 
accordingly, not by trying to eliminate the 
go to's from Example 6f. So I know this 
program is well-structured, and I therefore 
haven't succeeded in finding an example of 
recursion removal where go to's are strictly 
necessary. It  is interesting, in fact, that our 
transformations originally intended for effi- 
ciency led us to new insights and to programs 
that still possess decent structure. However, 
I still feel that Example 6f is easier to under- 
stand than 6g, given that the reader is told 
the recursive program it comes from and the 
transformations that were used. The recur- 
sire program is trivially correct, and the 
transformations require only routine verifi- 
cation; by contrast, a mental leap is needed 
to invent (*). 

Does recursion elimination help? Clearly 
there won't be much gain in this example if 
the print routine itself is the bottleneck. But 
let's replace print(A[t]) by 

i :=  i-t-1; B[i] :=  A[t]; 

i.e., instead of printing the tree, let's assume 
that we merely want to transfer its contents 
to some other array B. Then we can expect 
to see an improvement. 

After making this change, I tried the re- 
cursive Example 6 vs. the iterative Example 
6d on the two main ALGOL compilers avail- 
able to me. Normalizing the results so that 
6d takes 1.0 units of time per node of the 
tree, with subscript checking suppressed, I 

• 2 8 5  

found that the corresponding reeursive ver- 
sion took about 2.1 unlfis of time per node 
using our ALGOL W compiler for the 360/67; 
and the ratio was 1.16 using the SAIL com- 
piler for the PDP-10. (Incidentally, the 
relative run-times for Example 6f were 0.8 
with ALGOL W, and 0.7 with SAIL. When 
subscript ranges were dynamically checked, 
ALGOL W took 1.8 units of time per node for 
the nonrecursive version, and 2.8 with the 
recursive version; SAIL'S figures were 1.28 
and 1.34.) 

Boolean Variable Elimination 
Another important program transformation, 
somewhat less commonly known, is the re- 
moval of Boolean variables by code duplica- 
tion. The following example is taken from 
Dijkstra's treatment [26, pp. 91-93] of 
Hoare's "Quicksort" algorithm. The idea is 
to rearrange array elements A[m]... A[n] so 
that they are partitioned into two parts: 
The left part Aim] . . .  A[j--1], for some 
appropriate j, will contain all the elements 
less than some value, v; the right part 
A[ j+  1]... A[n] will contain all the elements 
greater than v; and the element A[j] lying 
between these parts will be equal to v. 
Partitioning is done by scanning from the 
left until finding an element greater than v, 
then scanning from the right until finding an 
element less than v, then scanning from the 
left again, and so on, moving the offending 
elements to the opposite side, until the two 
scans come together; a Boolean variable up 
is used to distinguish the left scan from the 
right. 

Example  7 : 

i :=  m ; j  :=  n; 
v :=  A[j] ;  up := true; 
l oop :  

i f  up 
then  i f  A[/] ~> v 

then A[3] :ffi A[i]; up :ffi f a l s e  fii 
else i f  v > A[j] 

then A[i] :-:  A[j] ;  up  :-- t r u e  fi; 
fi; 
i f  up then  i :ffi i + 1  else j :ffi j - - 1  fi; 

while  i < j repeat; 
A[j] :=  v; 

The manipulation and testing of up is 
rather time-consuming here. We can, in 
general, eliminate a Boolean variable by 
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storing its current value in the program 
counter, i.e., by  duplicating the program, 
letting one part  of the text represent t r u e  
and the other part  false, with jumps be- 
tween the two parts in appropriate places. 
Example 7 therefore becomes 

Example 7a: 

i := m;j := n; 
v := A[jl; 
loop: i f  A[ i ]  > v 

t h e n  A[j] := A[i]; go  t o  upf fi; 
u p t : i  := i+1; 

w h i l e  i < j repeat ;  g o  t o  common; 
loop:  i f  v > A[j] 
t h e n  A[i] := A[j]; go  t o  upt fi; 

upf: j := j-- l ;  
w h i l e  i < j repeat ;  

common: A[j] := v; 

Note that  again we have come up with a 
program which has jumps into the middle of 
iterations, yet  we can understand it since we 
know that  it came from a previously under- 
stood program, by way of an understandable 
transformation. 

Of course this program is messier than the 
first, and we must ask again if the gain in 
speed is worth this cost. If we are writing a 
sort procedure that  will be used many times, 
we will be interested in the speed. The 
average running time of Quicksort was 
analyzed by  Hoare in his 1962 paper on the 
subject [36], and it turns out tha t  the body 
of the loop in Example 7 is performed about 
2N In N times while the statement up := 
false is performed about ~ N  In N times, if 
we are sorting N elements. All other parts of 
the overall sorting program (not shown 
here) have a running time of order N or less, 
so when N is reasonably large the speed of 
the inner loop governs the speed of the entire 
sorting process. (Incidentally, a recursive 
version of Quicksort will run just about as 
fast, since the recursion overhead is not 
part  of the inner loop. But  in this case the 
removal of recursion is of great value for 
another reason, because it cuts the auxiliary 
stack space requirement from order N to 
order log N.) 

Using these facts about inner loop times, 
we can make a quanti tat ive comparison of 
Examples 7 and 7a. As with Example 1, it 
seems best to make two comparisons, one 
with the assembly code that  a decent pro- 

grammer would write for the examples, and 
the other with the object code produced by 
a typical compiler tha t  does only local op- 
timizations. The assembly-language pro- 
grammer will keep i, j ,  v, and up in registers, 
while a typical compiler will not keep vari- 
ables in registers from one statement to 
another, except if they happen to be there 
by  coincidence. Under these assumptions, 
the asymptotic running time for all entire 
Quicksort program based on these routines 
will be 

assembled compiled 
Example  7 202/~N In N 55~6N In N 
Example  7a 1 5 ~ N  In N 40N In N 

expressed in memory references to data and 
instructions. So Example 7a saves more than 
25 % of the sorting time. 

I showed this example to Dijkstra, cau- 
tioning him that  the go to  leading into an 
iteration might be a terrible shock. I was 
extremely pleased to receive his reply [31]: 

Your technique of storing the value of up in 
the order counter is, of course, absolutely safe. 
I did not faint! I am in no sense "afraid" of a 
program constructed that way, but I cannot 
consider it beautiful: it is really the same 
repetition with the same terminating condi- 
tion, that "changes color" as the computation 
proceeds. 

He went on to say that  he looks forward to 
the day when machines are so fast tha t  we 
won' t  be under pressure to optimize our 
programs; yet  

For the time being I could not  agree mare with 
your closing remarks : if the economies matter,  
apply "disciplined optimalization" to a nice 
program, the correctness of which has been 
established beyond reasonable doubt. Your 
massaging of the program text is then no 
longer trickery ad hoe, it is perfectly safe and 
sound. 

I t  is hard for me to express the joy that  this 
letter gave me; it was like having all my 
sins forgiven, since I need no longer feel 
guilty about  my optimized programs. 

Coroutines 
Several of the people who read the first draft  
of this paper observed that  Example 7a can 
perhaps be understood more easily as the 
result of eliminating coroutine linkage instead 
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of Boolean variables. Consider the following 
program: 

Example 7b: 

e o r o u t i n e  move i; 
loop:  i f  A[i] > v 

t h e n  A[j] := A[i]; 
r e s u m e  move j; 

fi; 
i := i+1; 

w h i l e  i < j repeat ;  
e o r o u t i n e  move j; 

l oop:  i f  v > A[j]  
t h e n  A[i] := A[j]; 

r e s u m e  move i; 
fi; 
j := j--l ;  

w h i l e  i < j repeat ;  
i := m;j  := n; v := A[jl; 
call move i; 
A[jl := v; 

When a coroutine is "resumed", let's as- 
sume that  it begins after its own r e s u m e  
statement; and when a coroutine terminates, 
let's assume tha t  the most recent call  state- 
ment is thereby completed. (Actual coroutine 
linkage is slightly more involved, see Chapter 
3 of [17], but this description will suffice for 
our purposes.) Under these conventions, 
Example 7b is precisely equivalent to Ex- 
ample 7a. At the beginning of move i we 
know tha t  A[k] <_ v for all k < i, and tha t  
i < j,  and tha t  {A[m], . . - ,  A [ j - 1 ] , A [ j + I ] ,  
• .. ,A[n]} 0 v is a permutation of the orig- 
inal contents of {A[m], . . . ,  A[n]l; a similar 
statement holds at the beginning of move j .  
This separation into two coroutines can be 
said to make Example 7b conceptually sim- 
pler than Example 7; but on the other hand, 
the idea of coroutines admittedly takes some 
getting used to. 

Christopher Strachey once told me about 
an example which first convinced him that  
coroutines provided an important control 
structure. Consider two binary trees repre- 
sented as in Examples 5 and 6, with their A 
array information in increasing order as we 
traverse the trees in symmetric order of their 
nodes. The problem is to merge these two A 
array sequences into one ordered sequence. 
This requires traversing both trees more or 
less asynchronously, in symmetric order, so 
we'll need two versions of Example 6 running 
cooperatively. A conceptually simple solu- 
tion to this problem can be written with 

coroutines, or by fo~ming an equivalent 
program which expresses the coroutine link- 
age in terms of g o  t o  statements; it  appears 
to be cumbersome (though not impossible) 
to do the job without using either feature. 

Quicksort.. A Digression 
Dijkstra also sent another instructive ex- 
ample in his letter [30]. He decided to create 
the program of Example 7 from scratch, as 
if Hoare's algorithm had never been in- 
vented, starting instead with modern ideas 
of semi-automatic program construction 
based on the following invariant relation: 

v = A[n] A 
V k ( m < _ k < i  = > A [ k l _ <  v) A 
Vk(j < k < n = > A[k] _> v). 

The resulting program is unusual, yet per- 
haps cleaner than Example 7: 

i :ffi m;j  := n - i ; v  := A[nh 
l o o p  w h i l e  i < j; 

i f  A[j] ~ v t h e n j  := j - l ;  
e l s e  A[i] := : A[j]; i :ffi i + 1 ;  
fi; 

repeat ;  
i f  j ~ m t h e n  Alml :=  : Alnl;  j :=  m fi; 

Here " :=  :" denotes the interchange (i.e., 
swap) operation. At the conclusion of this 
program, the A array will be different than 
before, but we will have the array parti- 
tioned as desired for sorting (i.e., A[m]. • • A[j] 
are ~ v and A[ j+I ] . . .A[n]  are ~v). 

Unfortunately, however, this "pure" pro- 
gram is less efficient than Example 7, and 
Dijkstra noted that  he didn't  like it  very 
much himself. In fact, Quicksort is really 
quick in practice because there is a method 
that  is even better than Example 7a: A good 
Quicksort routine will have a faster inner 
loop which avoids most of the " i  < j "  tests. 
Dijkstra recently [31] sent me another ap- 
proach to the problem, which leads to a 
much better solutiom First we can abstract 
the situation by considering any notions 
"small" and "large" so that :  a) an element 
A[i] is never both small and large simultane- 
ously; b) some elements might be neither 
small nor large; c) we wish to rearrange an 
array so that  all small elements precede all 
large ones; and d) there is at  least one ele- 
ment which is not small, and at  least one 
which is not large. Then we can write the 
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following program in terms of this abstrac- 
tion. 

Example 8: 

i := m;j := n; 
loop:  

loop  w h i l e  A[i] is small: 
i := i + 1 ;  repeat;  

l o o p  w h i l e  A[j] is large: 
j := j - l ;  repeat;  

w h i l e  i < j: 
A[i] := : A[j]; 
i := i + l ; j  := j--l;  

repeat;  

At the beginning of the first (outer) loop 
we know that  A[k] is not large for m g k < i, 
and that  A[k] is not small for j < k < n; 
also that  there exists a k such that  i < k _< n 
and A[k] is not small, and a k such that  
m < k < j and A[k] is not large. The opera- 
tions in the loop are easily seen to preserve 
these "invariant"  conditions. Note tha t  the 
inner loops are now extremely fast, and that  
they are guaranteed to terminate; therefore 
the proof of correctness is simple. At the 
conclusion of the outer loop we know that  
A[m] . . .  A[ i -1]  and A[j] are not large, that  
A[i] and A[ j+  1] . . .  A[n] are not small, and 
t h a t m  < j  < i < n. 

Applying this to Quicksort, we can set 
v :=  A[n] and write 

"A[i] < v" in place of "A[i] is small" 
"A[j] > v" in place of "A[j] is large" 

in the above program. This gives a very 
pret ty algorithm, which is essentially equiva- 
lent to the method published by Hoare [38] 
in his first major application of the idea of 
invariants, and discussed in his original 
paper on Quicksort [36]. Note that  since 
v = A[n], we know that  the first execution 
of "loop while  A[j] > v" will be trivial; 
we could move this loop to the end of the 
outer loop just before the final repeat .  This 
would be slightly faster, but  it would make 
the program harder to understand, so I 
would hesitate to do it. 

The Quicksort partitioning algorithm 
actually given in my book [54] is better than 
Example 7a, but somewhat different from 
the program we have just derived. M y  
version can be expressed as follows (assum- 
ing that  A[m-1]  is defined and <A[n]): 

• i := m - - l ;  j :ffi n; v := A[n]; 
loop  u n t i l  pointers have met: 

loop: i := i + 1 ;  w h i l e  A[i] < v repeat;  
i f  i _) j t h e n  pointers have met; fi 
A[j] := A[i]; 
loop: j := j - l ;  w h i l e  A{j] > v repeat;  
i f i  _> j t h e n  j := i; pointers have met; fi 
A[i] := A[j]; 

repeat;  
Afj] := v; 

At the conclusion of this routine, the 
contents of A[m] . . .  A[n] have been per- 
muted so tha t  A i m ] . . .  A[ j -1 ]  are < v 
and A[ j+ I ]  - . .  A[n] are _> v and A[j] = v 
and m < j < n. The assembled version will 
make about l l N  In N references to memory 
on the average, so this program saves 28 % 
of the running time of Example 7a. 

When I first saw Example 8 I was cha- 
grined to note that  it was easier to prove 
than my program, it was shorter, and (the 
crushing blow) it also seemed about 3% 
faster, because it tested "i < j "  only half 
as often. My  first mathematical analysis of 
the average behavior of Example 8 indicated 
tha t  the asymptotic number of comparisons 
and exchanges would be the same, even 
though the partitioned subfiles included all 
N elements instead of N -  1 as in the classical 
Quicksort routine. But  suddenly it occurred 
to me tha t  my new analysis was incorrect 
because one of its fundamental assumptions 
breaks down: the elements of the two subfiles 
after partitioning by Example 8 are not in 
random order! This was a surprise, because 
randomness is preserved by the usual Quick- 
sort routine. When the N keys are distinct, 
v will be the largest element in the left subtile, 
and the mechanism of Example 8 shows 
that  v will tend to be near the left of that  
subtile. When tha t  subtile is later partitioned, 
it  is highly likely that  v will move to the 
extreme right of the resulting right sub- 
subtile. So that  right sub-subtile will be 
subject to a trivial partitioning by its largest 
element; we have a subtle loss of efficiency 
on the third level of recursion. I still haven't  
been able to analyze Example 8, but  empiri- 
cal tests have borne out my prediction that  
it  is in fact about 15 % slower than the book 
algorithm. 

Therefore, there is no reason for anybody 
to use Example 8 in a sorting routine; 
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though it is slightly cleaner looking than the 
method in my book, it is noticeably slower, 
and we have nothing to fear by using a 
slightly more complicated method once it 
has been proved correct. Beautiful algo- 
rithms are, unfortunately, not always the 
most useful. 

This is not the end of the Quicksort 
story (although I almost wish it was, since 
I think the preceding paragraph makes an 
important point). After I had shown Ex- 
ample 8 to my student, Robert Sedgewick, 
he found a way to modify it, preserving 
the randomness of the sub files, thereby 
achieving both elegance and efficiency at 
the same'time. Here is his revised program. 

E x a m p l e  8a:  

i :=  m - l ;  j :=  n;  v :=  A[n]; 
loop: 

loop: i :=  i%1;  w h i l e  A[i] < v repeat; 
loop: j :=  j - - l ;  w h i l e  A[j] > v r e p e a t ;  

w h i l e  i < j :  
A[il := : A[jl; 

repeat; 
A[i] :=  : A[n]; 

(As in the previous example, we assume 
that Aim-1] is defined and < A[n], since 
the j pointer might run off the left end.) 
At the beginning of the outer loop the in- 
variant conditions are now 

m - - l  _< i < j < n; 
A[k] < v f o r m - l _ <  k < i ;  
A[k] > v for j _< k < n;  
A[n] = v. 

It  follows that Example 8a ends with 

A [ m ] . . . A [ i - 1 ]  < v = A[i] _< A [ i + I ] . . . A [ n ]  

and m < i < n; hence a valid partition has 
been achieved. 

Sedgewick also found a way to improve 
the inner loop of the algorithm from my 
book, namely: 

i :=  m - - l ;  j :=  n ;  v :=  A[n]; 
loop: 

loop: i :=  iq-1;  w h i l e  A[i] < v repeat; 
A[j] :=  A[i]:  
loop: j :=  j - - l ;  w h i l e  h [ j ]  > v repeat; 

w h i l e  i < j :  
A[il := A[j]; 

repeat; 
i f  i ~ j then j :=  j ~ l ;  
A[j]  :=  v; 

• 2 8 9  

Each of these programs leads to a Qnick- 
sort routine that makes about 102~N In N 
memory references on the average; the 
former is preferable (except on machines 
for which exchanges are clumsy), since it is 
easier to understand. Thus I learned again 
that I should always keep looking for im- 
provements, even when I have a satisfactory 
program. 

Axiomatics of Jumps 
We have now discussed many different 
transformations on programs; and there are 
more which could have been mentioned (e.g., 
the removal of trivial assignments as in [50, 
exercise 1.1-3] or [54, exercise 5.2.1-33]). 
This should be enough to establish that a 
program-manipulation system will have 
plenty to do. 

Some of these transformations introduce 
go to statements that  cannot be handled 
very nicely by event:indicators, and in 
general we might expect to find a few pro- 
grams in which go to statements survive. 
Is it really a formidable job to understand 
such programs? Fortunately this is not an 
insurmountable task, as recent work has 
shown. For many years,: the go to ~tatement 
has been troublesome in the definition of 
correctness proofs and language semantics; 
for example, Hoare and Wirth have pre- 
sented an axiomatic definition of PASCAL 
[41] in which everything but  real arithmetic 
and the go to is defined formally. Clint and 
Hoare [14] have shown how to extend this 
to event-indicator go to 's  (i.e., those which 
don't lead into iterations or conditionals), 
but  they stressed that the general case 
appears to be fraught with complications. 
Just recently, however, Hoare has shown 
that there is, in fact, a rather simple way 
to give an axiomatic definition of go t o  

statements; indeed, he wishes quite frankly 
that it hadn't been quite so simple. For each 
label L in a program, the programmer should 
state a logical assertion a(L)  which is to be 
true whenever we reach L. Then the axioms 

{a(L)} go to  L {false} 

plus the rules of inference 

{~(L)} S{P} t- {a(L)} L:S {P} 
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are allowed in program proofs, and all 
properties of labels and go to's will follow 
if the a(L) are selected intelligently. One 
must, of course, carry out the entire proof 
using the same assertion a(L) for each 
appearance of the label L, and some choices 
of assertions will lead to more powerful 
results than others. 

Informally, a(L) represents the desired 
state of affairs at label L; this definition 
says essentially that a program is correct if 
a(L) holds at L and before all "go to L" 
statements, and that control never "falls 
through" a go to statement to the following 
text. Stating the assertions a(L) is analogous 
to formulating loop invariants. Thus, it is 
not difficult to deal formally with tortuous 
program structure if it turns out to be 
necessary; all we need to know is the "mean- 
ing" of each label. 

Reduction of Complication 
There is one remaining use of go to for 
which I have never seen a good replacement, 
and in fact it's a situation where I still 
think go to is the right idea. This situation 
typically occurs after a program has made a 
multiway branch to a rather large number 
of different but related cases. A little com- 
putation often suffices to reduce one case to 
another; and when we've reduced one problem 
to a simpler one, the most natural thing is 
for our program to go to the routine which 
solves the simpler problem. 

For example, consider writing an interpre- 
tive routine (e.g., a microprogrammed 
emulator), or a simulator of another com- 
puter. After decoding the address and fetch- 
ing the operand from memory, we do a 
multiway branch based on the operation 
code. Let's say the operations include no-op, 
add, subtract, jump on overflow, and uncon- 
ditional jump. Then the subtract routine 
might be 

operand : =  --  operand; g o  t o  a d d ;  

the add routine might be 

accum := accum -b operand; 
tyme : =  tyme ...I- 1; 
g o  t o  n o  o p ;  

and jump on overflow might be 

i f  overflow 
t h e n  overflow : =  f a l s e ;  g o  t o  j u m p ;  
e l s e  g o  t o  n o  o p ;  
fi; 

I still believe that this is the correct way to 
write such a program. 

Such situations aren't restricted to in- 
terpreters and simulators, although the 
foregoing is a particularly dramatic example. 
Multiway branching is an important pro- 
gramming technique which is all too often 
replaced by an inefficient sequence of i f  
tests. Peter Naur recently wrote me that he 
considers the use of tables to control program 
flow as a basic idea of computer science that 
has been nearly forgotten; but he expects it 
will be ripe for rediscovery any day now. I t  
is the key to efficiency in all the best; corn- 
priers I have studied. 

Some hints of this situation, where one 
problem reduces to another, have occurred 
in previous examples of this paper. Thus, 
after searching for x and discovering that 
it is absent, the "not found" routine can 
insert x into the table, thereby reducing the 
problem to the "found" case. Consider also 
our decision-table Example 4, and suppose 
that each period was to be followed by a 
carriage return instead of by an extra space. 
Then it would be natural to reduce the 
post-processing of periods to the return- 
carriage part of the program. In each case, a 
go to would be easy to understand. 

If we need to find a way to do this without 
saying go to, we could extend Zahn's event 
indicator scheme so that some events are 
allowed to happen in the t h e n . . ,  fl part 
after we have begun to process other events. 
This accommodates the above-mentioned 
examples very nicely; but of course it can 
be dangerous when misused, since it gives us 
back all the power of go to. A restriction 
which allows (statement list)~ to refer to 
(event)j only for j > i would be less dan- 
gerous. 

With such a language feature, we can't 
"fall through" a label (i.e., an event indi- 
cator) when the end of the preceding code 
is reached; we must explicitly name each 
event when we go to its routine. ProI~fibiting 
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"fall through" means forcing a programmer 
to write "go to common" just before the 
label "common:" in Example 7a; surpris- 
ingly, such a change actually makes that 
program more readable, since it makes the 
symmetry plain. Also, the program fragment 

s u b t r a c t :  operand := - operand; go t o  add;  
add:  accum :=  accum + operand; 

seems to be more readable than if "go to 
add" were deleted. I t  is interesting to 
ponder why this is so. 

3. CONCLUSIONS 

This has been a long discussion, and very 
detailed, but a few points stand out. First, 
there are several kinds of programming 
situations in which go to statements are 
harmless, even desirable, if we are program- 
ming in ALGOL or PL/I .  But secondly, new 
types of syntax are being developed that 
provide good substitutes for these harmless 
go to's, and without encouraging a pro- 
grammer to create "logical spaghetti". 

One thing we haven't spelled out clearly, 
however, is what makes some go to's bad 
and others acceptable. The reason is that 
we've really been directing our attentior~ to 
the wrong issue, to the objective question 
of go to elimination instead of the important 
subjective question of program structure. 
In the words of John Brown [9], "The act of 
focusing our mightiest intellectual resources 
on the elusive goal of go to-less programs 
has helped us get our minds off all those 
really tough and possibly unresolvable 
problems and issues with which today's 
professional programmer would otherwise 
have to grapple." By writing this long 
article I don't want to add fuel to the con- 
troversy about go to elimination, since that 
topic has already assumed entirely too much 
significance; my goal is to lay that contro- 
versy to rest, and to help direct the discus- 
sion towards more fruitful channels. 

Structured Programming 
The real issue is structured programming, 
but unfortunately this has become a catch 
phrase whose meaning is rarely understood 

in the same way by different people. Every- 
body knows it is a Good Thing, but as 
McCracken [64] has said, "Few people 
would venture a definition. In fact, it is not 
clear that there exists a simple definition as 
yet." Only one thing is really clear: Struc- 
tured programming is not the process of 
writing programs and then eliminating their 
go to statements. We should be able to 
define structured programming without 
referring to go to statements at all; then 
the fact that go to statements rarely need 
to be introduced as we write programs should 
follow as a corollary. 

Indeed, Dijkstra's original article [25] 
which gave Structured Programming its 
name never mentions go to statements at 
all; he directed attention to the critical 
question, "For what program structures can 
we give correctness proofs without undue 
labor, even if the programs get large?" By 
correctness proofs he explained that he does 
not mean formal derivations from axioms, 
he means any sort of proof (formal or in- 
formal) that is "sufficiently convincing"; 
and a proof really means an understanding. 
By program structure he means data struc- 
ture as well as contro[strueture. 

We understand complex things by sys- 
tematically breaking them into successively 
simpler parts and understanding how these 
parts fit together locally. Thus, we have 
different levels of understanding, and each 
of these levels corresponds to an abstraction 
of the detail at the level it is composed from. 
For example, at one level of abstraction, we 
deal with an integer without considering 
whether it is represented in binary notation 
or two's complement, etc., while at deeper 
levels this representation may be important. 
At more abstract levels the precise value of 
the integer is not important except as it 
relates to other data. 

Charles L. Baker mentioned this principle 
as early as 1957, as part of his 8-page review 
[2] of McCracken's first book on program- 
ming: 

Break the problem into small, self-contained 
subroutines, trying at all times to isolate the 
various sections of coding as much as possible 
. . .  [then] the problem is reduced to many 
much smaller ones. The truth of this seems 
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very obvious to experienced coders, yet  it is 
hard to put  across to the newcomer. 

Abstraction is easily understood in terms 
of B N F  notation. A metalinguistic category 
like (assignment statement) is an abstrac- 
tion which is composed of two abstractions 
(a (left part  list) and an (arithmetic expres- 
sion)), each of which is composed of abstrac- 
tions such as (identifier) or (term), etc. We 
understand the program syntax as a whole 
by  knowing the structural details tha t  relate 
these abstract parts. The  most difficult 
things to understand about a program's 
syntax are the identifiers, since their meaning 
is passed across several levels of structure. 
I f  all identifiers of an ALGOL program wer~ 
changed to random meaningless strings of 
symbols, we would have great difficulty 
seeing what the type of a variable is and 
what the program means, but  we would 
still easily recognize the more local features, 
such as assignment statements, expressions, 
subscripts, etc. (This inability for our eyes 
to associate a type or mode with an identifier 
has led to what I believe are fundamental 
errors of human engineering in the design 
of ALGOL 68, but  that 's  another story. M y  
own notation for stacks in Example 6e 
suffers from the same problem; it  works in 
these examples chiefly because t is lower 
case and S is upper case.) Larger nested 
structures are harder for the eye to see unless 
they are indented, but  indentation makes the 
structure plain. 

I t  would probably be still better  if we 
changed our source language concept so that  
the program wouldn't  appear as one long 
string. John McCar thy  says "I  find it diffi- 
cult to believe that  whenever I see a tree I 
am really seeing a string of symbols." In- 
stead, we should give meaningful names to 
the larger constructs in our program that  
correspond to meaningful levels of abstrac- 
tion, and we should define those levels of 
abstraction in one place, and merely use 
their names (instead of including the de- 
tailed code) when they are used to build 
larger concepts. Procedure names do this, 
but  the language could easily be designed 
so that  no action of calling a subroutine is 
implied. 

From these remarks it  is clear tha t  se- 
quential composition, iteration, and condi- 
tional statements present syntactic struc- 
tures tha t  the eye can readily assimilate; 
but  a go to  statement does not. The visual 
structure of go to  statements is like that  of 
flowcharts, except reduced to one dimension 
in our source languages. In two dimensions 
it is possible to perceive go to  structure in 
small examples, but  we rapidly lose our 
ability to understand larger and larger 
flowcharts; some intermediate levels of 
abstraction are necessary. As an under- 
graduate, in 1959, I published an octopus 
flowchart which I sincerely hope is the most 
horribly complicated that  will ever appear in 
print;  anyone who believes tha t  flowcharts 
are the best way to understand a program 
is urged to look at  this example [49]. (See 
also [32, p. 54] for a nice illustration of how 
go to 's  make a P L / I  program obscure, and 
see R. Lawrence Clark's hilarious spoof 
about  linear representation of flowcharts by  
means of a " c o m e  f r o m  s ta tement"  [13].) 

I have felt for a long time that  a t~dent 
for programming consists largely of the 
ability to switch readily from microscopic 
to macroscopic views of things, i.e., to change 
levels of abstraction fluently. I mentioned 
this [55] to Dijkstra, and he replied [29] 
with an excellent analysis of the situation: 

I feel somewhat guilty when I have suggested 
that the distinction or introduction of "differ- 
ent levels of abstraction" allow you to think 
about only one level at a time, ignoring com- 
pletely the other levels. This is not true. You 
are trying to organize your thoughts; that is, 
you are seeking to arrange matters in such a 
way that you can concentrate on some portion, 
say with 90% of your conscious thinking, while 
the rest is temporarily moved away somewhat 
towards the background of your mind. But 
that is something quite different from "ignor- 
ing completely": you allow yourself tem- 
porarily to ignore details, but some overall 
appreciation of what is supposed to be or to 
come there continues to play a vital role. You 
remain alert for little red lamps that suddenly 
start  flickering in the corners of your eye. 

I asked t toare  for a short definition of 
structured programming, and he replied that  
it is " the  systematic use of abstraction to 
control a mass of detail, and also a means of 
documentation which aids program design." 
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I hope that  my remarks above have made 
the abstract concept of abstraction clear; 
the second par t  of Hoare's definition (which 
was also stressed by Dijkstra in his original 
paper [25]) states tha t  a good way to express 
the abstract properties of an unwritten piece 
of program often helps us to write that  
program, and to "know" that  it is correct 
as we write it. 

Syntactic structure is just one par t  of the 
picture, and B N F  would be worthless if the 
syntactic constructs did not correspond to 
semantic abstractions. Similarly, a good 
program will be composed in such a way 
that  each semantic level of abstraction has a 
reasonably simple relation to its constituent 
parts. We noticed in our discussion of 
Jacopini's theorem that  every program can 
trivially be expressed in terms of a simple 
iteration which simulates a computer; but  
tha t  iteration has to carry the entire be- 
havior of the program through the loop, so 
it  is worthless as a level of abstraction. 

An iteration statement should have a 
purpose that  is reasonably easy to state; 
typically, this purpose is to make a certain 
Boolean relation true while maintaining a 
certain invariant condition satisfied by the 
variables. The Boolean condition is stated 
in the program, while the invariant should 
be stated in a comment, unless it is easily 
supplied by the reader. For example, the 
invariant in Example 1 is tha t  A[k] ~ x for 
1 ~ /~ ~ i, and in Example 2 it is the same, 
plus the additional relation Aim-k 1] = x. 
Both of these are so obvious that  I didn't  
bother to mention them; but  in Examples 
6e and 8, I stated the more complicated 
invariants that  arose. In each of those cases 
the program almost wrote itself once the 
proper invariant was given. Note that  an 
"invariant  assertion" actually does vary 
slightly as we execute statements of the]oop, 
bu t  it  comes back to its original form when 
we repeat the loop. 

Thus, an iteration makes a good abstrac- 
tion if we can assign a meaningful invariant 
describing the local states of affairs as it 
executes, and if we can describe its purpose 
(e.g., to change one state to another). Simi- 
larly, an i f . - -  t h e n  - . -  else - . -  tl state- 
ment will be a good abstraction if we can 

state an overall purpose, for the statement 
as a whole. ! 

We also need well-structured data; i.e., 
as we write the program we should have an 
abstract idea of what each variable means. 
This idea is also usually describable as an 
invariant relation, e.g.,: "m is the number of 
items in the table" or "x is the search argu- 
ment"  Or "L[t] is the number of the root 
node of node t's left subtree, or 0 if this 
subtree is empty"  or "the contents of stack 
S are postponed obligations to do such and 
such". 

Now let's consider the slightly more 
complex case of an event-driven construct. 
This should also correspond to a meaningful 
abstraction, and our examples show what is 
involved: For each event we give an (in- 
variant) assertion which describes the situa- 
tion which must hold when that event 
occurs, and for the loop u n t i l  we also give 
an invariant for the loop. An event s tatement 
typically corresponds to an abrupt change 
in conditions so tha t  a different assertion 
from the loop invariant is necessary. 

An error exit can be considered well- 
structured for precisely t h i s  \ r eason- - i t  
corresponds to a situation that is~impossible 
according to the local invariant  assertions; 
it is easiest to formulate assertions that  
assume nothing will go ~ o n g ,  rather than 
to make the invariants cover all contin- 
gencies. When we jump out to an error exit 
we go to another level of abstraction having 
different assumptions. 

As another simple example, consider bi- 
nary search in an ordered array using the 
invariant relation A[i] < x < A[j]: 

l o o p  w h i l e  i ~ l  < j ;  
k :=  ( i+j)  + 2; 
i f  A[k] < x t h e n  i :ffi k;  
e l se  i f A [ k ]  > x t h e n  j :ffi k;  

e l se  cannot preserve the invariant fi; 
fi; 

repeat;  

Upon normal exit from this loop, the 
conditions i -b l  ~ j and A[i] < x < A[3] 
imply that  A[i] < x < A[i-kl], i.e., tha t  x 
is not present. If the program comes to 
"cannot  preserve the iinvariant" (because 
x = A[k]), it wants to go to  another set of 
assumptions. The event-driven construct 
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provides a level at  which it  is appropriate 
to specify the other assumptions. 

Another good illustration occurs in Ex- 
ample 6g; the purpose of the main i f  state- 
ment is to find the first node whose A value 
should be printed. If there is no such t, the 
event "finished" has clearly occurred; it is 
bet ter  to regard the i f  s tatement as having 
the stated abstract purpose without con- 
sidering that  t might not exist. 

With go to Statements 
We can also consider go t o  statements from 
the same point of view; when do they cor- 
respond to a good abstraction? We've al- 
ready mentioned tha t  go to ' s  do not have a 
syntactic structure tha t  the eye can grasp 
automatically; but  in this respect they are 
no worse off than variables and other iden- 
tifiers. When these are given a meaningful 
name corresponding to the abstraction 
(N.B. not a numeric label!), we need not 
apologize for the lack of syntactic structure. 
And the appropriate abstraction itself is an 
invariant essentially like the assertions 
specified for an event. 

In  other words, we can indeed consider 
go to  statements as par t  of systematic ab- 
straction; all we need is a clearcut notion of 
exactly what it  means to go to  each label. 
This should come as no great surprise. After 
all, a lot of computer programs have been 
written using go to  statements during the 
last 25 years, and these programs haven ' t  
all been failures! Some programmers have 
clearly been able to master structure and 
exploit it; not as consistently, perhaps, as in 
modern-day structured programming, bu t  
not inflexibly either. By now, many people 
who have never had any special difficulty 
writing correct programs have naturally 
been somewhat upset after being branded 
as sinners, especially when they know per- 
fectly well what they ' re  doing; so they have 
understandably been less than enthusiastic 
about "structured programming" as it has 
been advertised to them. 

My. feeling is tha t  it 's certainly possible 
to write well-structured programs with go t o  
statements. For example, Dijkstra 's 1965 
program about concurrent process control 

[24] used three go to  statements, all of 
which were perfectly easy to understand; 
and I think at  most two of these would 
have disappeared from his code if ALGOL 60 
had had a whi le  statement. But  go to  is 
hardly ever the best alternative now, since 
bet ter  language features are appearing. If 
the invariant for a label is closely related to 
another invariant, we can usually save com- 
plexity by  combining those two into one 
abstraction, using something other than 
go to  for the combination. 

There is also another problem, namely at 
what level of abstraction should we introduce 
a label? This however is like the analogous 
problem for variables, and the general an- 
swer is still unclear in both cases. Aspects 
of data  structure are often postponed, bu t  
sometimes variables are defined and passed 
as "parameters"  to other levels of abstrac- 
tion. There seems to be no clearcut idea as 
yet  about  a set of syntax conventions, relat- 
ing to the definition of variables, which 
would be most appropriate to structured 
programming methodology; but  for each 
particular problem there seems to be an 
appropriate level. 

Efficiency 
In our previous discussion we concluded that  
premature emphasis on efficiency is a big 
mistake which may well be the source of 
most programming complexity and grief. 
We should ordinarily keep efficiency con- 
siderations in the background when we for- 
mulate our programs. We need to be sub- 
consciously aware of the data  processing 
tools available to us, but  we should strive 
most of all for a program that  is easy to 
understand and almost sure to work. (Most 
programs are probably only run once; and 
I suppose in such cases we needn' t  be too 
fussy about  even the structure, much less 
the efficiency, as long as we are happy with 
the answers.) 

When efficiencies do matter,  however, the 
good news is tha t  usually only a very small 
fraction of the code is significantly involved. 
And when it is desirable to sacrifice clarity 
for efficiency, we have seen that  it is possible 
to produce reliable programs that  can be 
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maintained over a period of time, if we start  
with a well-structured program and then use 
well-understood transformations that  can be 
applied mechanically. We shouldn't a t tempt  
to understand the resulting program as it  
appears in its final form; it should be thought 
of as the result of the original program modi- 
fied by specified transformations. We can 
envision program manipulation systems 
which will facilitate making and document- 
ing these transformations. 

In this regard I would like to quote some 
observations made recently by Pierre-Arnoul 
de Marneffe [19]: 

In civil engineering design, it is presently a 
mandatory concept known as the "Shanley 
Design Criterion" to collect several functions 
into one p a r t . . .  If you make a cross-section 
of, for instance, the German V-2, you find ex- 
ternal skin, structural rods, tank wall, etc. If 
you cut across the Saturn-B moon rocket, you 
find only an external skin which is at the same 
time a structural component and the tank 
wall. Rocketry engineers have used the "Shan- 
ley Principle" thoroughly when they use the 
fuel pressure inside the tank to improve the 
rigidity of the external skin! . . . People can 
argue that structured programs, even if they 
work correctly, will look like laboratory 
prototypes where you can discern all the indi- 
vidual components, but which are not daily 
usable. Building "integrated" products is an 
engineering principle as valuable as structur- 
ing the design process. 

He goes on to describe plans for a prototype 
system that  will automatically assemble 
integrated programs from well-structured 
ones that  have been written top-down by 
stepwise refinement. 

Today's  hardware designers certainly 
know the advantages of integrated cir- 
cuitry, but  of course they must first under- 
stand the separate circuits before the inte- 
gration is done. The V-2 rocket would never 
have been airborne if its designers had orig- 
inally tried to combine all its functions. 
Engineering has two phases, structuring and 
integration; we ought not to forget either 
one, but  it  is best to hold off the integration 
phase until a well-structured prototype is 
working and understood. As stated by Wein- 
berg [93], the former regimen of analysis/ 
coding/debugging should be replaced by 
analysis/coding/debugging/improving. 

• 295 

The Future 
I t  seems clear that lan~ages somewhat 
different from those in existence today 
would enhance the preparation of structured 
programs. We will perhaps eventually be 
writing only small modules which are iden- 
tified by name as they are used to  build 
larger ones, so that  devices like indentation, 
rather than delimiters, might become feasible 
for expressing local structure in the source 
language. (See the discussion following 
Landin's paper [59].) Although our examples 
don' t  indicate this, it  turns out tha t  a given 
level of abstraction often involves several 
related routines and data  definitions; for 
example, when we decide to represent a table 
in a certain way, we simultaneously want to 
specify the routines for storing and fetching 
information from that  table. The next gep- 
eration of languages will probably take into 
account such related routines. 

Program manipulation systems appea~ to 
be a promising future tool which will help 
programmers to improve their programs, and 
to enjoy doing it. Standard operating pro- 
cedure nowadays is usually to hand code 
critical portions of a routine in assembly 
language. Let  us hope such assemblers will 
die out, and we will see several levels of 
language instead: At the highest levels we 
will be able to write abstract programs, while 
at the lowest levels we will be able to control 
storage and register allocation, and to sup- 
press subscript range checking, etc. With an 
integrated system it will be possible to do 
debugging and analysis of the  transformed 
program using a higher level language for 
communication. All levels will, of course, 
exhibit program structure syntactically so 
that  our eyes can grasp it. 

I guess the big question, although it  really 
shouldn't be so big, is whether or not the 
ultimate language will have go to  statements 
in its higher levels, or whether go to  will be 
confined to lower levels. I personally 
wouldn't  mind having go to  in the highest 
level, just in case I really need it; but  I prob- 
ably would never use it, if the general 
iteration and event constructs suggested in 
this paper were present. As soon as people 
learn to apply principles of abstraction 
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consciously, they won't  see the need for go 
to ,  and the issue will just fade away. On the 
other hand, W. W. Peterson told me about  
his experience teaching P L / I  to beginning 
programmers: He taught  them to use go t o  
only in unusual special cases where i f  and 
whi le  aren ' t  right, but  he found [78] tha t  
"A disturbingly large percentage of the 
students ran into situations that  require 
go to's,  and sure enough, it  was often because 
whi le  didn't  work well to their plan, but  
almost invariably because their plan was 
poorly thought  out ."  Because of arguments 
like this, I 'd  say we should, indeed, abolish 
go to  from the high-level language, at least 
as an experiment in training people to 
formulate their abstractions more carefully. 
This does have a beneficial effect on style, 
although I would not  make such a prohibi- 
tion if the new language features described 
above were not available. The question is 
whether we should ban it, or educate against 

i t ;  should we a t tempt  to legislate program 
morality? In this case I vote for legislation, 
with appropriate legal substitutes in place 
of the former overwhelming temptations. 

A great deal of research must be done if 
we're going to have the desired language by  
1984. Control structure is merely one simple 
issue, compared to questions of abstract data 
structure. I t  will be a major problem to keep 
the total  number of language features within 
tight limits. And we must especially look at  
problems of inpu t /ou tpu t  and data  for- 
matting, in order to provide a viable alterna- 
tive to CoBoL. 

A C K N O W L E D G M E N T S  

I've benefited from a truly extraordinary amount 
of help while preparing this paper. The individuals 
named provided me with a total of 144 pages of 
single-spaced comments, plus six hours of conver- 

sation, and four computer listings: 

Frances E. Mien 
Forest Baskett 
G. V. Bochmann 
Per Brinch Hansen 
R. M. Burstall 
Vinton Cerf 
T. E. Cheatham, Jr. 
John Cocke 
Ole-Johan Dahl 
Peter J. Denning 
Edsger Dijkstra 
James Eve 
K. Friedenbach 
Donald I. Good 
Ralph E. Gorin 
Leo Guibas 
C. A. R. Hoare 
Martin Hopkins 
James J. Homing 
B. M. Leavenworth 
Henry F. Ledgard 

Ralph L. London 
Zohar Manna 
W. M. McKeeman 
Harlan D. Mills 
Peter Naur 
Kjell Overholt 
James Pe~erson 
W. Wesley Peterson 
Mark Rain 
John Reynolds 
Barry K. Rosen 
E. Satterthwaite, Jr. 
D. V. Schorre 
Jacob T. Schwartz 
Richard L. Sites 
Richard Sweet 
Robert D. Tennent 
Niklaus Wirth 
M. Woodger 
William A. Wulf 
Charles T. Zaha 

These people unselfishly devoted hundreds of 
man-hours to helping me revise the firstdraft; and 
I'm sorry that I wasn't able to reconcile all of their 
interesting points of view. In many places I have 
shamelessly used their suggestions without an 
explicit acknowledgment; this article is virtually 
a joint paper with 30 to 40 co-authors! However, 
any mistakes it contains are my own. 

A P P E N D I X  

In order to make some quanti tat ive esti- 
mates of efficiency, I have counted memory 
references for data and instructions, assum- 
ing a multiregister computer without cache 
memory. Thus, each instruction costs one 
unit, plus another if it  refers to memory; 
small constants and base addresses are as- 
sumed to be either par t  of the instruction or 
present in a register. Here are the code se- 
quences developed for the first two examples, 
assuming that  a typical assembly-language 
programmer or a very good optimizing com- 
piler is at  work. 
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L A B E L  I N S T R U C T I O N  C O S T  T I M E S  

Example 1: 

loop: 

tes t :  

notfound:  

found: 

r l  ~-- 1 1 
r2 ~ m  2 
r3 ~ - x  2 
t o  tes t  1 
A[rl]: r3 2 
t o  found i f  = 1 
r l  ~- r l + l  1 
r l  : r2 1 
t o  loop i f  _4 1 
m + - r l  2 
A[rl] ~-- r3 2 
B[rl] ~-- 0 2 
r4 ~-- B[rl] 2 
r4 ~-- r 4 + l  1 
B[rl] *-  r4 2 

1 

1 

1 

1 
n-a 

n-a 

n-1 
n 

n 

a 

a 

1 

1 

1 

L A B E L  I N S T R U C T I O N  C O S T  T I M E S  

Example 2: r2 ~-- m 2 
r3 ~--x 2 
A[r2+l ]  ~-- r3 2 
r l  ~--0 1 

loop: r l  ~-- r l + l  1 
A[rl]: r3 2 
to  loop i f  ~ 1 
r l  : r2 1 
to found if < 1 

notfound:  m ~-- r l  etc. as in Example I. 

I 
1 
1 
1 
n 
n 
n 
1 
1 
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A t r a d i t i o n a l  " 9 0 %  eff ic ient  c o m p i l e r "  w o u l d  r e n d e r  t h e  f i rs t  e x a m p l e  
as  fo l lows :  

L A B E L  I N S T R U C T I O N  C O S T  T I M E S  

Example  1: r l  ~-- 1 1 1 
to  tes t  1 1 

iner:  r l  ¢- i 2 n--1 
r l  ~-- r1+1 1 n--1 

tes t :  r l  : m 2 n 
t o  notfound i f  ~ 1 n 
i ¢-- r l  2 n - a  
r2 ~-- A[rl] 2 nn-a 
r2: x 2 n - a  
t o  found i f  -- 1 n - a  
t o  iner 1 n -  1 

notfound:  r l  ~-- m 2 a 
r l  ~-- r l  T 1 1 a 
i 4- - r l  2 a 
m c - r l  2 a 
r l  ~--x 2 a 
r 2 ¢ - i  2 a 
A[r2] ~-- r l  2 a 
Bit2] ~-- 0 2 a 

found: r l  ~-- i 2 1 
r2 ~-- B[rl] 2 1 
r2 ~- r2W1 1 1 
B[rl] ~- r2 2 1 

4t 
4t 
4b ~t 

* m e n t .  * 
46 4$ 

Answer to PL/I Problem, page 267. 

T h e  v a r i a b l e  I is i n c r e a s e d  b e f o r e  F O U N D  is t e s t ed .  O n e  w a y  to  fix 
t h e  p r o g r a m  is t o  i n se r t  " I  = I - F O U N D ; "  b e f o r e  t h e  l a s t  s t a t e -  
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