
Structured P r o g r a m m i n g w i t h go to S ta tements

DONALD E. KNUTH
Stanford University, Stanford, California 9~S05

A consideration of several different examples sheds new light on the problem of ereat-
ing reliable, well-structured programs that behave efficiently. This study focuses
largely on two issues: (a) improved syntax for iterations and error exits, making it
possible to write a larger class of programs clearly and efficiently without g o t o state-
ments; (b) a methodology of program design, beginning with readable and correct,
but possibly inefficient programs that are systematically transformed if necessary into
efficient and correct, but possibly less readable code. The discussion brings out op-
posing points of view about whether or not g o t o statements should be abolished;
some merit is found on both sides of this question. Fina!ly, an attempt is made to
define the true nature of structured programming, and to recommend fruitful direc-
tions for further study.

Keywords and phrases: structured programming, g o t o statements, language design,
event indicators, recursion, Boolean variables, iteration, optimization of programs,
program transformations, program manipulation systems searching, Quieksort,
efficiency

CR categories: 4.0, 4.10, 4.20, 5.20, 5.5, 6.1 (5.23, 5.24, 5.25, 5.27)

You may go when you will go,
And I will stay behind.

--Edna St. Vincent Millay [66]

Most likely you go your way and I ' l l go mine.
--Song title by Bob Dylan [33]

Do you suffer from painful elimination?
--Advertisement, J. B. Williams Co.

INTRODUCTION

A revolution is taking place in the way we
write programs and teach programming, be-
cause we are beginning to understand the
associated mental processes more deeply. I t
is impossible to read the recent book Struc-
tured programming [17; 55] without having it

This research was supported in part by the Na-
tional Science Foundation under grant number
GJ 36473X, and by IBM Corporation.

change your life. The reasons for this revolu-
tion and its future prospects have been aptly
described by E. W. Dijkstra in his 1972 Tur-
ing Award Lecture, "The Humble Program-
mer" [27l.

As we experience this revolution, each of
us naturally is developing strong feelings one
way or the other, as we agree or disagree
with the revolutionary leaders. I must admit
to being a nomhumble programmer, egotisti-

Copyright (~) 1974, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted, provided that ACM's copyright notice is
given and that reference is made to this publication, to its date of issue, and to the fact that reprint-
ing privileges were granted by permission of the Association for Computing Machinery.

Computing Surveys, V?L 6, No. 4, Dee, ember 1974

http://crossmark.crossref.org/dialog/?doi=10.1145%2F356635.356640&domain=pdf&date_stamp=1974-12-01

2 6 2 , Donald E. Knuth

C O N T E N T S

INTRODUCTION
1. ELIMINATION OF s o to STATEMENTS

Historical Background
A Searching Example
Efficiency
Error Exits
Subscript Checking
Hash Coding
Text Scanning
A Confession
Tree Searching
Systematic Elimination
Event Indicators
Comparison of Features
Simple Iterations

2. INTRODUCTION OF s o to STATEMENTS
Recursion Elimination
Program Manipulation Systems
Reeursion vs. I teration
Boolean Variable Elimination
Coroutines
Quicksort : A Digression
Axiomatics of Jumps
Reduction of Complication

3. CONCLUSIONS
Structured Programming
With go to Statements
Efficiency
The Future

A C K N O W L E D G M E N T S
A P P E N D I X
BIBLIOGRAPHY

eal enough to believe that my own opinions
of the current treads are not a waste of the
reader's time. Therefore I want to express in
this article several i of the things that struck
me most forcefully as I have been thinking
about structured programming during the
last year; several of my blind spots were re-
moved as I ivas learning these things, and I
hope I can convey some of my excitement to
the reader. Hardly any of the ideas I will
discuss are my own; they are nearly all the
work of others, but perhaps I may be pre-
senting them in a new light. I write this
article in the first person to emphasize the
fact that what I 'm saying is just one man's
opinion; I don't expect to persuade everyone
that my present views are correct.

Before beginning a more technical discus-
sion. I should confess that the title of this
article was chosen primarily to generate
attention. There are doubtless some readers
who are convinced that abolition of go t o

statements is merely a fad. and they may see
this title and think, "Aha! Knuth is rehabili-
tating the go to statement, and we can go
back to our old ways of programming
again." Another class of readers will see the
heretical title and think, "When are die-
hards like Knuth going to get with it?" I
hope that both classes of people will read on
and discover that what I am really doing is
striving for a reasonably well balanced view-
point about the proper role of go to state-
ments. I argue for the elimination of go to's
in certain cases, and for their introduction in
others.

I believe that by presenting such a view I
am not in fact disagreeing sharply with
Dijkstra's ideas, since he recently wrote the
following: "Please don't fall into the trap of
believing that I am terribly dogmatical
about [the go to statement]. I have the
uncomfortable feeling that others are making
a religion out of it, as if the conceptual
problems of programming could be solved by
a single trick, by a simple form of coding
discipline!" [29]. In other words, it, seems
that fanatical advocates of the New Pro-
gramming are going overboard in their strict
enforcement of morality and purity in
programs. Sooner or later people are going
to find that their beautifully-structured

Comput ing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with go to Sta~ment~
!

programs are running at only half the speed
--or worse--of the dirty old programs they
used to write, and they will mistakenly blame
the structure instead of recognizing what is
probably the real culprit--the system over-
head caused by typical compiler implementa-
tion of Boolean variables and procedure calls.
Then we'll have an unfortunate counter-
revolution, something like the current rejec-
tion of the "New Mathematics" in reaction
to its over-zealous reforms.

I t may be helpful to consider a further
analogy with mathematics. In 1904, Bert-
rand Russell published his famous paradox
about the set of all sets which aren't mem-
bers of themselves. This antinomy shook the
foundations of classical mathematical rea-
soning, since it apparently brought very
simple and ordinary deductive methods into
question. The ensuing crisis led to the rise
of "intuitionist logic", a school of thought
championed especially by the Dutch mathe-
matician, L. E. J. Brouwer; intuitionism
abandoned all deductions that were based on
questionable nonconstructive ideas. For a
while it appeared that intuitionist logic
would cause a revolution in mathematics.
But the new approach angered David Hil-
bert, who was perhaps the leading mathema-
tician of the time; Hilbert said that "For-
bidding a mathematician to make use of the
principle of the excluded middle is like
forbidding an astronomer his telescope or a
boxer the use of his fists." He characterized
the intuitionist approach as seeking "to
save mathematics by throwing overboard
all that is troublesome They would chop
up and mangle the science. If we would
follow such a reform as they suggest, we
could run the risk of losing a great part of our
most valuable treasures" [80, pp. 98-99,
148-150, 154-157, 184-185, 268-270].

Something a little like this is happening
in computer science. In the late 1960's we
witnessed a "software crisis", which many
people thought was paradoxical because
programming was supposed to be so easy.
As a result of the crisis, people are now be-
ginning to renounce every feature of pro-
gramming that can be considered guilty by
virtue of its association with difficulties. Not
only go to statements are being questioned;

* 263

we also hear complaints about floating-point
calculations, global variables, semaphores,
pointer variables, and even assignment
statements. Soon we might be restricted to
only a dozen or so programs that are suffi-
ciently simple to be allowable; then we will
be almost certain that these programs
cannot lead us into any trouble, but of
course we won't be able to solve many
problems.

In the mathematical ease, we know what
happened: The intuitionists taught the other
mathematicians a great deal about deductive
methods, while the other mathematicians
cleaned up the classical methods and even-
tually "won" the battle. And a revolution
did, in fact, take place. In the computer
science case, I imagine that a similar thing
will eventually happen: purists will point the
way to clean constructions, and others will
find ways to purify their use of floating-point
arithmetic, pointer variables, assignments,
etc., so that these classical tools can be used
with comparative safety.

Of course all analogies break down, includ-
ing this one, especially since I 'm not yet
conceited enough to compare myself to
David Hilbert. But I think it's an amusing
coincidence that the present programming
revolution is being led b y another Dutchman
(although he doesn't have extremist views
corresponding to Brouwer's); and I do
consider assignment statements and pointer
variables to be among computer science's
"most valuable treasures!'.

At the present time I think we are on the
verge of discovering at last what program-
ming languages should really be like. I look
forward to seeing many responsible experi-
ments with language design during the next
few years; and my dream is that by 1984 we
will see a consensus developing for a really
good programming language (or, more likely,
a coherent family of languages). Further-
more, I 'm guessing that people will become
so disenchanted with the languages they are
now using--even COBOL and FORTrAN--
that this new language, UTOPXA 84, will have
a chance to take over. At present we are far
from that goal, yet there are indications
that such a language is very slowly taking
shape.

Computing Surveys, Vol. 6, No. 4, December 1974

264 • Donald E. Knuth

Will UTOPIA 84, or perhaps we should call
it NEWSPEAK, contain go to statements? At
the moment, unfortunately, there isn't even
a consensus about this apparently trivial
issue, and we had better not be hung up on
the question too much longer since there are
only ten years left.

I will try in what follows to give a reason-
ably comprehensive survey of the go to
controversy, arguing both pro and con, with-
out taking a strong stand one way or the
other until the discussion is nearly complete.
In order to illustrate different uses of go to
statements, I will discuss many example
programs, some of which tend to negate the
conclusions we might draw from the others.
There are two reasons why I have chosen to
present the material in this apparently
vacillating manner. First, since I have the
opportunity to choose all the examples, I
don't think it's fair to load the dice by select-
ing only program fragments which favor one
side of the argument. Second, and perhaps
most important, I tried this approach when I
lectured on the subject at UCLA in Feb-
ruary, 1974, and it worked beautifully:
nearly everybody in the audience had the
illusion that I was largely supporting his or
her views, regardless of what those views
were !

1. ELIMINATION OF go to STATEMENTS

Historical Background
At the IFIP Congress in 1971 I had the
pleasure of meeting Dr. Eiichi Goto of
Japan, who cheerfully complained that he
was always being eliminated. Here is the
history of the subject, as far as I have been
able to trace it.

The first programmer who systematically
began to avoid all labels and go to state-
ments was perhaps D. V. Schorre, then of
UCLA. He has written the following account
of his early experiences [85]:

Since the summer of 1960, I have been writ ing
programs in outline form, using conventions of
indentat ion to indicate the flow of control. I
have never found it necessary to take excep-
tion to these conventions by using go state-
ments . I used to keep these outlines as original

documentation of a program, instead of using
flow charts . . . Then I would code the pro-
gram in assembly language from the outline.
Everyone liked these outlines better than
t h e flow charts I had drawn before, which
w e r e not very neat--my flow charts had been
nick-named "balloon-o-grams".

He reported that this method made programs
easier to plan, to modify and to check out.

When I met Schorre in 1963, he told me of
his radical ideas, and I didn't believe they
would work. In fact, I suspected that it was
really his rationalization for not finding an
easy way to put labels and go to statements
into his META-II subset of ALGOL [84], a
language which I liked very much except for
this omission. In 1964 I challenged him to
write a program for the eight-queens prob-
lem without using go to statements, and he
responded with a program using recursive
procedures and Boolean variables, very much
like the program later published independ-
ently by Wirth [96].

I was still not convinced that all go t o

statements could or should be done away
with, although I fully subscribed to Peter
Naur's observations which had appeared
about the same time [73]. Since Naur's
comments were the first published remarks
about harmful go to's, it is instructive to
quote some of them here:

If you look carefully you will find that surpris-
ingly often a g o t o statement which looks back
really is a concealed for statement. And you
will be pleased to find how the clarity of the
algorithm improves when you insert the f o r
clause where it belongs If the purpose [of
a programming course] is to teach ALGOL pro-
gramming, the use of flow diagrams will do
more harm than good, in my opinion.

The next year we find George Forsythe
also purging go to statements from algo-
rithms submitted to Communications of the
ACM (cf. [53]). Incidentally. the second
example program at the end of the original
ALGOL 60 report [72] contains four go t o

statements, to labels named AA, BB, CC,
and DD, so it is clear that the advantages of
ALGOL'S control structures weren't fully
perceived in 1960.

In 1965, Edsger Dijkstra published the
following instructive remarks [21]:

Two programming depar tment managers from

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with go to Statements

different countr ies and different backgrounds
- - t h e one main ly scientific, the o ther main ly
commerc ia l - -have communicated to me, in-
dependent ly of e a c h o ther and on the i r own
in i t ia t ive , the i r observat ion t h a t the qua l i ty
of the i r programmers was inversely propor-
t ional to the dens i ty of goto s t a t emen t s in
the i r programs I have done var ious pro-
g ramming e x p e r i m e n t s . . , in modified ver-
sions of ALGOL 60 in which the goto s t a t e m e n t
was abolished The l a t t e r versions were
more difficult to make: we are so famil iar wi th
the jump order t h a t i t requires some effort to
forget i t ! In all cases tried, however, the
program wi thou t the goto s t a t e m e n t turned
out to be shor te r and more lucid.

A few months later, at the ACM Pro-
gramming Languages and Pragmatics Con-
ference, Peter Landin put it this way [59]:

There is a game somet imes played wi th ALGOL
60 p rograms- - rewr i t ing them so as to avoid
using g o t o s ta tements . I t is pa r t of a more
embracing game-- reduc ing the ex ten t to
which the program conveys i ts informat ion by
explici t sequencing The game's signifi-
cance lies in t h a t i t f requent ly produces a
more " t r a n s p a r e n t " program---easier to
unders tand , debug, modify, and incorpora te
in to a larger program.

Peter Naur reinforced this opinion at the
same meeting [74, p. 179].

The next chapter in the story is what many
people regard as the first, because it made the
most waves. Dijkstra submitted a short
article to Communications of the ACM, de-
voted entirely to a discussion of go to state-
meats. In order to speed publication, the
editor decided to publish Dijkstra's article
as a letter, and to supply a new title, "Go to
statement considered harmful". This note
[23] rapidly became well-known; it expressed
Dijkstra's conviction that go to's "should
be abolished from all 'higher level' program-
ming languages (i.e., everything except,
perhaps, plain machine code) The go t o
statement as it stands is just too primitive;
it is too much an invitation to make a mess of
one's program." He encouraged looking for
alternative constructions which may be
necessary to satisfy all needs. Dijkstra also
recalled that Heinz Zemanek had expressed
doubts about go to statements as early as
1959; and that Peter Landin, Christopher
Strachey, C. A. R. Hoare and others had
been of some influence on his thinking.

• 265

By 1967, the entire XPL compiler had
been written by McKeeman, Homing, and
Wortman, using go to :only once ([65], pp.
365-458; the go to is on page 385). In 1971,
Christopher Strachey [87] reported that "It
is my aim to write programs with no labels.
I am doing quite well. I have got the operat-
ing system down to 5 labels and I am plan-
ning to write a compiler with no labels at
all." In 1972, an entire session of the ACM
National Conference was devoted to the
subject [44; 60; 100]. The December, 1973,
issue of Datamation featured five articles
about structured programming and elimina-
tion of go to's [3; 13; 32; 64; 67]. Thus, it is
clear that sentiments against go to state-
ments have been building up. In fact, the
discussion has apparently caused some
people to feel threatened; Dijkstra once told
me that he actually received '% torrent of
abusive letters" after publication of his
article.

The tide of opinion first hit me personally
in 1969, when I was teaching an introductory
programming course for the first time. I
remember feeling frustrated on several
occasions, at not seeing how to write pro-
grams in the new style; I would run to Bob
Floyd's office asking for help, and he usually
showed me what to do. This was the genesis
of our article [52] in which we presented two
types of programs which did not submit
gracefully to the new prohibition. We found
that there was no way to implement certain
simple constructions wit h while and condi-
tional gtatemeats substituted for go to's,
unless extra computation was specified.

During the last few years several languages
have appeared in which the designers
proudly announced that they have abolished
the go to statement. Perhaps the most
prominent of these is Brass [98], which
originally replaced go to's by eight so-called
"escape" statements. And the eight weren't
even enough; the authors wrote, "Our
mistake was in assuming that there is no
need for a label once the go to is removed,"
and they later [99, 100] added a new state-
ment "leave (label) w i t h (expression)"
which goes to the place after the statement
identified by the (label). Other go to-less
languages for systems programming have

Computing Surveys, VoL 6, No. 4, December 1974

266 • Donald E. Knuth

similarly introduced other statements which
provide "equally powerful" alternative ways
to jump.

In other words, it seems that there is wide-
spread agreement that go to statements are
harmful, yet programmers and language
designers still feel the need for some euphe-
mism that "goes to" without saying go to.

A Searching •×ampM
What are the reasons for this? In [52], Floyd
and I gave the following example of a typical
program for which the ordinary capabilities
of whi le and if statements are inadequate.
Let's suppose that we want to search a table
A[1] . . . A[m] of distinct values, in order to
find where a given value x appears; if x is not
present in the table, we want to insert it as
an additional entry. Let's suppose further
that there is another array B, where B[,]
equals the number of times we have searched
for the value A[i]. We might solve such a
problem as follows:

E x a m p l e 1:

for i : = 1 s t e p 1 u n t i l m d o .
i f A[i] = x t h e n go to f o u n d fi;

n o t f o u n d : i : = r e + l ; m : = i ;
A[i] : = x; B[i] := 0;

f o u n d : B[i] : = B [i] + I ;

(In the present article I shall use an ad hoc
programming language that is very similar
to ALGOL 60, with one exception: the symbol
fi is required as a closing bracket for all i f
statements, so that begin and end aren't
needed between then and else. I don't
really like the looks of fi at the moment; but
it is short, performs a useful function, and
connotes finality, so I 'm confidently hoping
that I'll get used to it. Alan Perlis has re-
marked that tl is a perfect example of a
cryptic notation that can make program-
ming unnecessarily complicated for begin-
ners; yet I 'm more comfortable with fi every
time I write it. I still balk at spelling other
basic symbols backwards, and so do most of
the people I know; a student's paper con-
taining the code fragment "esae; c o m m e n t
bletch t n e m m o c ; " is a typical reaction to
this trend !)

There are ways to express Example 1
without go to statements, but they require

more computation an.d aren't really more
perspicuous. Therefore, this example has
been widely quoted in defense of the go to
statement, and it is appropriate to scrutinize
the problem carefully.

Let's suppose that we've been forbidden
to use go to statements, and that we want
to do precisely the computation specified in
Example 1 (using the obvious expansion of
such a for statement into assignments and
a while iteration). If this means not only
that we want the same results, but also that
we want to do the same operations in the
same order, the mission is impossible. But if
we are allowed to weaken the conditions
just slightly, so that a relation can be tested
twice in succession (assuming that it will
yield the same result each time, i.e., that it
has no side-effects), we can solve the problem
as follows:

E x a m p l e la :

i : = 1 ;
w h i l e i < m a n d A[i] # x d o i :-- i + 1 ;
i f i > m t h e n ra := i; A[i] := x; B[i] ::= 0 fi;
B[i] : = B [i] + I ;

The and operation used here stands for
McCarthy's sequential conjunction operator
[62, p. 185]; i.e., "p and q" means "if p
t h e n q else false fl", so that q is not evalu-
ated when p is false. Example la will do
exactly the same sequence of computations
as Example 1, except for one extra compari-
son of i with m (and occasionally one less
computation of m + 1). If the iteration in this
while loop is performed a large number of
times, the extra comparison has a negligible
effect on the running time.

Thus, we can live without the go to in
Example 1. But Example la is slightly less
readable, in my opinion, as well as slightly
slower; so it isn't clear what we have gained.
Furthermore, if we had made Example 1
more complicated, the trick of going to Ex-
ample la would no longer work. For ex-
ample, suppose we had inserted another
statement into the for loop, just before the
i f clause; then the relations i _< m and
A[i] -- x wouldn't have been tested consecu-
tively, and we couldn't in general have com-
bined them with and.

John Cooke told me an instructive story

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with g o t o ,Sta~nezd~
L

relating to Example 1 and to the design of
languages. Some PL/ I programmers were
asked to do the stated search problem with-
out using jumps, and they came up with
essentially the following two solutions:

a)

b)

DO I - 1 to M WHILE A(I) -~ ffi X;
END;
IF I > M THEN

DO; M z I; A(I) = X; B(I) ffi 0; END;
B(I) ffi B(I) + I;
FOUND = 0;
DO I - i TO M WHILE FOUND = 0;

IF A(I) - X THEN FOUND = i;
END;
I F FOUND ffi 0 THEN

DO; M - I ; A (I) = X; B (I) ffi 0; END;
B(I) - B(I) ffi 1;

Solution (a) is best, but since it involves a
null iteration (with no explicit statements
being iterated) most people came up with
Solution (b). The instructive point is that
Solution (b) doesn't work; there is a serious
bug which caused great puzzlement before
the reason was found. Can the reader
spot the difficulty? (The answer appears on
page 298.)

As I've said, Example 1 has often been
used to defend the go to statement. Un-
fortunately, however, the example is totally
unconvincing in spite of the arguments I 've
stated so far, because the method in Example
1 is almost never a good way to search an
array for x ! The following modification to the
data structure makes the algorithm much
better:

Example 2:

A[mq-1] := x; i := 1;
w h i l e A[i] ~ ~c do i := i+1;
i f i > m then m := i; B[i] := 1;
e l se B[i] := B [i] + I fi;

Example 2 beats Example 1 because it
makes the inner loop considerably faster. If
we assume that the programs have been
handcoded in assembly language, so that the
values of i, m, and x are kept in registers,
and if we let n be the final value of i at the
end of the program, Example 1 will make
6n + 10 (+3 if not found) references to
memory for data and instructions on a
typical computer, while the second program
will make only 4n + 14 (+6 ' i f not found).•
If, on the other hand, we assume that these

- 2 6 7

programs are translated by a typical "90 %
efficient compiler" wi~h bounds-checking
suppressed, the corresponding run-time
figures are respectively about 14n + 5 and
l ln + 21. (The appendix to this paper
explains the ground rules for these calcula-
tions.) Under the first assumption we save
about 33 % of the run-time, and under the
second assumption we save about 21%, so
in both cases the elimination of the go t o
has also eliminated some of the running
time.

Efficiency
The ratio of running times (about 6 to 4 in
the first case when n is large) is rather sur-
prising to people who haven't studied pro-
gram behavior carefully. Example 2 doesn't
look that much more efficient, but it is.
Experience has shown (see [46], [51]) that
most of the running time in non-IO-bound
programs is concentrated in about 3 % of the
source text. We often see a short inner loop
whose speed governs the overall program
speed to a remarkable degree; speeding up
the inner loop by 10 % speeds up everything
by almost 10 %. And if the inner loop has 10
instructions, a moment's thought will usually
cut it to 9 or fewer.

My own programming style has of course
changed during the last decade, according to
the trends of the times (e.g., I 'm not quite so
tricky anymore, and I use fewer go to's),
but the major change in my style has been
due to this inner loop phenomenon. I now
look with an extremely jaundiced eye at
every operation in a critical inner loop, seek-
ing to modify my program and data struc-
ture (as in the change from Example 1 to
Example 2) so that some of the operations
can be eliminated. The reasons for this ap-
proach are that: a) it doesn't take long, since
the inner loop is short; b) the payoff is real;
and c) I can then afford to be less efficient
in the other parts of my programs, which
therefore are more readable and more easily
written and debugged. Tools are being
developed to make this critical-loop identifi-
cation job easy (see for example [46] and
[82]).

Thus. if I hadn't seen how to remove one
of the operations from the loop in Example I

Computing Surveys, V61. 6, No. 4, De .~mber I ~ 4

268 • Donald E. Knuth

by changing to Example 2. I would probably
(at least) have made the for loop run from
m to 1 instead of from 1 to m, since it's
usually easier to test for zero than to com-
pare with m. And if Example 2 were really
critical, I would improve on it still more by
"doubling it up" so that the machine code
would be essentially as follows.

E x a m p l e 2a:

A [m + l] := x; i := 1; go t o t e s t ;
loop: i := i + 2 ;
t e s t : i f A[i] = x t h e n g o t o found fi;

i f A [i + I] ~ x t h e n go t o loop fi;
i := i + 1 ;

found : i f i > m t h e n m := i; B[i] := 1;
e l s e B[i] := B [i] + I fi;

Here the loop variable i increases by 2 on
each iteration, so we need to do that opera-
tion only half as often as before; the rest of
the code in the loop has essentially been
duplicated to make this work. The running
time has now been reduced to about 3.5n +
14.5 or 8.5n + 23.5 under our respective
assumptions--again this is a noticeable
saving in the overall running speed, if, say,
the average value of n is about 20, and if
this search routine is performed a million or
so times in the overall program. Such loop-
optimizations are not difficult to learn and,
as I have said, they are appropriate in just
a small part of a program, yet they very
often yield substantial savings. (Of course if
we want to improve on Example 2a still
more, especially for large m, we'll use a more
sophisticated search technique; but let's
ignore that issue, at the moment, since I
want to illustrate loop optimization in gen-
eral, not searching in particular.)

The improvement in speed from Example
2 to Example 2a is only about 12%, and
many people would pronounce that insig-
nificant. The conventional wisdom shared
by many of today's software engineers calls
for ignoring efficiency in the small; but I
believe this is simply an overreaction to the
abuses they see being practiced by penny-
wise-and-pound-foolish programmers, who
can't debug or maintain their "optimized"
programs. In established engineering dis-
ciplines a 12 % improvement, easily obtained,
is never considered marginal; and I believe

the same viewpoint should prevail in soft-
ware engineering~ Of course I wouldn't
bother making such optimizations on a one-
shot job, but when it's a question of prepar-
ing quality programs, I don't want to re-
strict myself to tools that deny me such
efficiencies.

There is no doubt that the grail of effi-
ciency leads to abuse. Programmers waste
enormous amounts of time thinking about,
or worrying about, the speed of noncritical
parts of their programs, and these attempts
at efficiency actually have a strong negative
impact when debugging and maintenance are
considered. We should forget about small
efficiencies, say about 97% of the time: pre-
mature optimization is the root of all evil.

Yet we should not pass up our opportuni-
ties in that critical 3 %. A good programmer
will not be lulled into complacency by such
reasoning, he will be wise to look carefully
at the critical code; but only after that code
has been identified. I t is often a mistake to
make a priori judgments about what parts
of a program are really critical, since the
universal experience of programmers who
have been using measurement tools has been
that their intuitive guesses fail. After work-
ing with such tools for seven years, I've be-
come convinced that all compilers written
from now on should be designed to provide
all programmers with feedback indicating
what parts of their programs are costing
the most; indeed, this feedback should be
supplied automatically unless it has been
specificMly turned off.

After a programmer knows which parts of
his routines are really important, a trans-
formation like doubling up of loops will be
worthwhile. Note that this transformation
introduces go to statements--and so do
several other loop optimizations; I will re-
turn to this point later. Meanwhile I have
to admit that the presence of go to state-
ments in Example 2a has a negative as well
as a positive effect on efficiency; a non-
optimizing compiler will tend to produce
awkward code, since the contents of regis-
ters can't be assumed known when a label is
passed. When I computed the running times
cited above by looking at a typical compiler's

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with go to Statements

output for this example, I found that the
improvement in performance was not quite
as much as I had expected.

Error Exits
For simplicity I have avoided a very impor-
tant issue in the previous examples, but it
must now be faced. All of the programs we
have considered exhibit bad programming
practice, since they fail to make the neces-
sary check that m has not gone out of range.
In each case before we perform "m := i" we
should precede that operation by a test such
a s

i f m = m a x t h e n g o t o m e m o r y o v e r f l o w ;

where max is an appropriate threshold value.
I left this statement out of the examples
since it would have been distracting, but we
need to look at it now since it is another
important class of go to statements: an
er~vr exit. Such checks on the validity of
data are very important, especially in soft-
ware, and it seems to be the one class of go
to's that still is considered ugly but neces-
sary by today's leading reformers. (I wonder
how Val Schorre has managed to avoid such
go to's during all these years.)

Sometimes it is necessary to exit from
several levels of control, cutting across code
that may even have been written by other
programmers; and the most graceful way to
do this is a direct approach with a go to or
its equivalent. Then the intermediate levels
of the program can be written under the
assumption that nothing will go wrong.

I will return to the subject of error exits
later.

Subscript Checking
In the particular examples given above we
can, of course, avoid testing m vs. max if
we have dynamic range-checking on all sub-
scripts o f A. But this usually aborts the
program, giving us little or no control over
the error recovery; so we probably want to
test m anyway. And ouch, what subscript
checking does to the inner loop execution
times! In Example 2, I will certainly want to
suppress range-checking in the while clause
since its subscript can't be out of range unless

• 269

Aim+ 1] was already invalid in the previous
line. Similarly, in Example 1 there van be no
range error in the for loop unless a range
error occurred earlier. I t seems senseless to
have expensive range cheeks in those parts
of my programs that I know are clean.

In this respect I should mention I-Ioare's
almost persuasive arguments to the contrary
[40, p. 18]. He points out quite correctly that.
the current practice of compiling subscript
range checks into the machine code while a
program is being tested, then suppressing the
checks during production runs, is like a sailor
who wears his life preserver while training
on land but leaves it behind when he sails[
On the other hand, that sailor isn't so foolish
if life vests are extremely expensive, and if he
is such an excellent swimmer that the chance
of needing one is quite small compared with
the other risks he is taking. In the foregoing
examples we typically are much more cer-
tain that the subscripts will be in range than
that other aspects of our overall program will
work correctly. John Coeke observes that
time-consuming range checks can be avoided
by a smart compiler which first compiles the
checks into the program then moves them
out of the loop. Wirth [94] and ttoare
[39] have pointed out that a well-designed
for statement can permit even a rather
simple-minded compiler to avoid most range
checks within loops.

I believe that range checking should be
used far more often than it currently is, but
not everywhere. On the other hand I am
really assuming infallible hardware when I
say this; surely I wouldn't want to remove
the parity check mechanism from the hard-
ware, even under a hypothetical assumption
that it was slowing down the computation.
Additional memory protection is necessary
to prevent my program from harming some-
one else's, and theirs from clobbering mine.
My arguments are directed towards com-
piled-in tests, not towards the hardware
mechanisms which are reallj~ needed to en-
sure reliability.

Hash Coding
Now let's move on to another example, based
on a standard hashing technique but other-

Computing Surveys, Vol. 6, No. 4, December 1974

!

270 • Donald E. Knuth

wise designed for the same application as the
above. Here h(x) is a hash function which
takes on values between 1 and m; and x ~ 0.
In this case m is somewhat larger than the
number of items in the table, and "empty"
positions are represented by 0.

Example 3:

i := h(x);
w h i l e A[i] # 0 d o

b e g i n i f A[i] = x t h e n go t o found fi;
i : = i - -1 ; i f i = 0 t h e n i := m fi;

e n d ;
n o t found : A[i] := x; B[i] := 0;
found : B[i] := B [i] + I ;

If we analyze this as we did Example 1,
we see that the trick which led to Example 2
doesn't work any more. Yet if we want to
eliminate the go to we can apply the idea of
Example la by writing

w h i l e A[i] ~ 0 a n d h[i] ~ x d o . . .

and by testing afterwards which condition
caused termination. This version is perhaps
a little bit easier to read; unfortunately it
makes a redundant test, which we would like
to avoid if we were in a critical part of the
program.

Why should I worry about the redundant
test in this case? After all, the extra test
whether A[i] was ~ 0 or ~ x is being made
outside of the while loop, and I said before
that we should generally ecnfine our optimi-
zations to inner loops. Here, the reason is
that this while loop won't usually be a loop
at all; with a proper choice of h and m, the
operation i := i - 1 will tend to be executed
very infrequently, often less than once per
search on the average [54, Section 6.4]. Thus,
the entire program of Example 3, except per-
haps for the line labeled "not found", must
be considered as part of the inner loop, if
this search process is a dominant part of the
overall program (as it often is). The redund-
ant test will therefore be significant in this
case.

Despite this concern with efficiency, I
should actually have written the first draft
of Example 3 without that go to statement,
probably even using a while clause written
in an extended language, such as

w h i l e A [i] ~ {0, x } d o . . .

I

since this formulation abstracts the real
meaning of what!is happening. Someday
there may be hardware capable of testing
membership in small sets more efficiently
than if we program the tests sequentially,
so that such a program would lead ~o better
code than Example 3. And there is a much
more important reason for preferring this
form of the while clause: it reflects a sym-
metry between 0 and x that is not present in
Example 3. For example, in most software
applications it turns out that the condition
A[~] -- x terminates the loop far more fie-
quently than A[~] = 0; with this knowledge,
my second draft of the program would be
the following.

E x a m p l e 3a:

i :ffi h(x);
w h i l e A[i] ~ x d o

b e g i n i f A[i] = 0
t h e n A[i] : = x; B[i] :-- 0;

go t o found ;
fi;
i : = i - 1 ; i f i = 0 t h e n i : = raft;

e n d ;
found: B[i] :ffi B[il+I;

This program is easy to derive from the
go to-less form, but not from Example 3;
and it is better than Example 3. So, again we
see the advantage of delaying optimizations
until we have obtained more knowledge of a
program's behavior.

I t is instructive to consider Example 3a
further, assuming now that the while loop
is performed many times per search. Al-
though this should not happen in most ap-
plications of hashing, there are other pro-
grams in which a loop of the above form is
present, so it is worth examining what we
should do in such circumstances. If the w h i l e
loop becomes an inner loop affecting the
overall program speed, the whole picture
changes; that redundant test outside the loop
becomes utterly negligible, but the test
" i f i = 0" suddenly looms large. We gen-
erally want to avoid testing conditions that
are almost always false, inside a critical
loop. Therefore, under these new assump-
tions I would change the data structure by
adding a'new element A[0] = 0 to the array
and eliminating the test for i ffi 0 as follows.

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with g o t o E ~ n t s • '271

Example 3b:

i := h(~);
• while A[i] ~ x do

i f A[i] ~ 0
then i := i - 1
else i f i = 0

then i := m;
else A[i] := x; B[i] := 0;

go to found;
fi;

fi;
found: B[il := B[i]+I;

The loop now is noticeably faster. Again, I
would be unhappy with slow subscript range
checks if this loop were critical. Incidentally,
Example 3b was derived from Example 3a,
and a rather different program would have
emerged if the same idea had been applied
to Example 3; then a test " i f i = 0" would
have been inserted outside the loop, at label
"not found", and another go to would have
been introduced by the optimization process.

As in the first examples, the program in
Example 3 is flawed in failing to test for
memory overflow. I should have done this,
for example by keeping a count, n, of how
many items are nonzero. The "not found"
routine should then begin with something
like "n := n - k l ; i f n = m t h e n g o t o
memory overflow".

Text Scanning
The first t ime I consciously applied the top-
down structured programming methodology
to a reasonably complex job was in the late
summer of 1972, when I wrote a program to
prepare the index to my book Sorting and
Searching [54]. I was quite pleased with the
way that program turned out (there was
only one serious bug), but I did use one g o t o
statement. In this case the reason was some-
what different, having nothing to do with
exiting from loops; I was exiting, in fact,
from an i f - then-e l se construction.

The following example is a simplified ver-
sion of the situation I encountered. Suppose
we are processing a stream of text, and that
we want to read and print the next character
from the input; however, if tha t character is
a slash (" / ") we want to " tabulate" instead
(i.e., to advance in the output to the next
tab-stop position on the current line); how-
ever, two consecutive slashes means a

"carriage re turn" (i.e., ito advance in t h e
output to the beginning of the next line).
After printing a period (" .") we also want to
insert an additional spac e in the output. The
following code clearly does the trick.

Example 4:

x :ffi read char;
if ~ = alash
then x := read char;

if x = slash
then return the carriage;

go to char processed;
e lse tabulate;
fi;

fi;
write char (x);
i f x = period then write char (space) fi;

char processed:

An abstract program with similar charac-
terist ics has been studied by Peterson et al.
[77; Fig. l(a)]. In practice we occasionally
run into situations where a sequence of
decisions is made via nested i f - t h e n - e l s e ' s ,
and then two or more of the branches merge
into one. We can manage such decision-table
tasks without go to ' s by copying the com-
mon code into each place, or by defining it
as a p roced u re , but this does not seem con-
ceptually simpler than to make g o t o a com-
mon par t of the program in such cases. Thus
in Example 4 I could avoid the go to by
copying "write char (x); f f x ~ pcr/od t h e n
write char (space) f i" into the program after
"tabulate;" and by making corresponding
changes. But this would be a pointless waste
of energy just to eliminate a perfectly under-
standable go to statement: the resulting
program would actually be harder to main-
tain than the former, since the action of
printing a character now appears in two
different places. The alternative of declaring
procedures avoids the lat ter problem, but it
is not especially at t ract ive either. Still
another alternative is:

Example 4a:

x :-- re~td char;
double slash := false;
i f x = slash
then x := read char;

i f x = slash
then double slash :ffi true;
else tabulate;
fi;

Computing Surveys, Vot~ 6, No..4, Deaember-.l~4
[- ,

- ~ , ~ , . ~ 4 d ~ . ~ : , - " i ~ z : ~ . : ~ . ¢ ~ ! " ¸ ¸ •

272 • Donald E. Knuth

fi;
i f double slash
t h e n return the carriage;
e l s e write char(x);

i f x = period t h e n write char (space) fi;
fi;

I claim that this is conceptually no simpler
than Example 4; indeed, one can argue that
it is actually more difficult, because it makes
the entire routine aware of the "double slash"
exception to the rules, instead of dealing with
it in one exceptional place.

A Confession
Before we go on to another example, I must
admit what many readers already suspect,
namely, that I 'm subject to substantial bias
because I actually have a vested interest in
go to statements! The style for the series
of books I 'm writing was set in the early
1960s, and it would be too difficult for me to
change it now; I present algorithms in my
books using informal English language
descriptions, and go to or its equivalent is
almost the only control structure I have.
Well, I rationalize this apparent anachro-
nism by arguing that: a) an informaI English
description seems advantageous because
many readers tell me they automatically
read English, but skip over formal code; b)
when go to statements are used judiciously
together with comments stating nonobvious
loop invariants, they are semantically equi-
valent to while statements, except that
indentation is missing to indicate the struc-
ture; c) the algorithms are nearly always
short, so that accompanying flowcharts are
able to illustrate the structure; d) I try to
present algorithms in a form that is most
efficient for implementation, and high-level
structures often don't do this; e) many
readers will get pleasure from converting my
semiformal algorithms into beautifully struc-
tured programs in a formal programming
language; and f) we are still learning much
about control structures, and I can't afford
to wait for the final consensus.

In spite of these rationalizations, I 'm
uncomfortable about the situation, because
I find others occasionally publishing ex-
amples of algorithms in "my" style but
without the important parenthesized com-
ments and/or with unrestrained use of go t o

statements. In addition, I also know of
places where I l~ave myself used a compli-
cated structure with excessively unrestrained
go to statements, especially the notorious
Algorithm 2.3.3A for multivariate poly-
nomial addition [50]. The original program
had at least three bugs; exercise 2.3.3-14,
"Give a formal proof (or disproof) of the
validity of Algorithm A", was therefore
unexpectedly easy. Now in the second edi-
tion, I believe that the revised algorithm is
correct, but I still don't know any good way
to prove it; I've had to raise the difficulty
rating of exercise 2.3.3-14, and I hope some-
day to see the algorithm cleaned up without
loss of its efficiency.

My books emphasize efficiency because
they deal with algorithms that are used re-
peatedly as building blocks in a large variety
of applications. I t is important to keep
efficiency in its place, as mentioned above,
but when efficiency counts we should also
know how to achieve it.

In order to make it possible to derive
quantitative assessments of efficiency, my
books show how to analyze machine lan-
guage programs; and these programs are
expressed in MIXAL, a symbolic assembly
language that explicitly corresponds one-
for-one to machine language. This has its
uses, but there is a danger of placing too
much stress on assembly code. Programs in
MIXAL are like programs in machine lan-
guage, devoid of structure; or, more pre-
cisely, it is difficult for our eyes to perceive
the program structure. Accompanying com-
ments explain the program and relate it to
the global structure illustrated in flowcharts,
but it is not so easy to understand what is
going on; and it is easy to make mistakes,
partly because we rely so much on comments
which might possibly be inaccurate descrip-
tions of what the program really does. It is
clearly better to write programs in a lan-
guage that reveals the control structure,
even if we are intimately conscious of the
hardware at each step; and therefore I will
be discussing a structured assembly language
called P L / M I X in the fifth volume of The
art of computer programming. Such a language
(analogous to Wirth's PL360 [95]) should
really be supported by each manufacturer

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with g o t o Statenwnt,,~ • 273

for each machine in place of the old-fash-
ioned structureless assemblers that still pro-
liferate.

On the other hand I 'm not really un-
happy that MIxAL programs appear in my
books, because I believe that MIXAL is a
good example of a "quick and dirty assem-
bler", a genre of software which will always
be useful in its proper role. Such an assembler
is characterized by language restrictions
that make simple one-pass assembly possible,
and it has several noteworthy advantages
when we are first preparing programs for a
new machine: a) it is a great improvement
over numeric machine code; b) its rules are
easy to state; and c) it can be implemented
in an afternoon or so, thus getting an effi-
cient assembler working quickly on what
may be very primitive equipment. So far I
have implemented six such assemblers, at
different times in my life, for machines or
interpretive systems or microprocessors that
had no existing software of comparable
utility; and in each case other constraints
made it impractical for me to take the extra
time necessary to develop a good, structured
assembler. Thus I am sure that the concept
of quick-and-dirty-assembler is useful, and
I 'm glad to let MIXAL illustrate what one is
like. However, I also believe strongly that
such languages should never be improved to
the point where they are too easy or too
pleasant to use; one must restrict their use
to primitive facilities that are easy to imple-
ment efficiently. I would never switch to a
two-pass process, or add complex pseudo-
operations, macro-facilities, or even fancy
error diagnostics to such a language, nor
would I maintain or distribute such a
language as a standard programming tool for
a real machine. All such ameliorations and
refinements should appear in a structured
assembler. Now that the technology is
available, we can condone unstructured
languages only as a bootstrap-like means to
a limited end, when there are strong eco-
nomic reasons for not implementing a better
system.

Tree Searching
But, I 'm digressing from my subject of go t o
elimination in higher level languages. A few

weeks ago I decided to choose an algorithm
at random from my books, to study its use
of go to statements. The very first example
I encountered [54, Algorithm 6.2.3C] turned
out to be another case where existing pro-
gramming languages have no good substitute
for go to's. In simplified form, the loop
where the trouble arises can be written as
follows.

E x a m p l e 5:

compare :
i f A[i] < x
t h e n i f L[i] # 0

t h e n i := L[i] ; go t o compare;
e l s e L[i] := j ; go t o insert fi;

e l s e i f R[i] # 0
t h e n i := R[i] ; go t o c o m p a r e ;
e l s e R[i] :-- j ; go to insert fi;

fi;
insert: A[j] := x;
L[j] := 0; R[j] := 01j := j+ l ;

This is part of the well-known "tree search
and insertion" scheme, where a binary search
tree is being represented by three arrays:
A[i] denotes the information stored at node
number i, and L[i], R[~] are the respective
node numbers for the roots of that node's
left and right subtrees; empty subtrees are
represented by zero. The program searches
down the tree until finding an empty sub-
tree where x can be inserted; and variable j
points to an appropriate place to do the
insertion. For convenience, I have assumed
in this example that x is not already present
in the search tree.

Example 5 has four go to statements, but
the control structure is saved from obscurity
because the program is so beautifully sym-
metric between L and R. I h-low that these
go to statements can be eliminated by
introducing a Boolean variable which be-
comes true when L[i] or R[i] is found to be
zero. But I don't want to test this variable
in the inner loop of my program.

Systematic Elimination
A good deal of theoretical work has been
addressed to the question of g o t o elimina-
tion, and I shall now try to summarize the
findings and to discuss their relevance.

S. C. Kleene proved a famous theorem in
1956 [48] which says, in essence, that the set

Computing Surveys, Vol. 6, No. 4, December 1974

274 • Donald E. Knuth

of all paths through any flowchart can be
represented as a "regular expression" R
built up from the following operations:

8
R1; R2

R1 O R2
R +

the single arc s of the flowchart
concatenation (all paths consisting
of a path of R~ followed by a path
of R~)
union (all paths of either R~ or R2)
iteration (all paths of the form p~;
p2; "" ; p~ for some n)_ 1,
where each p~ is a path of R)

These regular expressions correspond
loosely to programs consisting of statements
in a programming language related by the
three operations of sequential composition,
conditionals (if-then-else), and iterations
(while loops). Thus, we might expect that
these three program control structures would
be sufficient for all programs. However,
closer analysis shows that Kleene's theorem
does not relate directly to control structures;
the problem is only superficially similar. His
result is suggestive but not really applicable
in this case.

The analogous result for control struc-
tures was first proved by G. Jacopini in 1966,
in a paper written jointly with C. BShm
[8]. Jacopini showed, in effect, that any
program given, say, in flowchart form can be
transformed systematically into another
program, which computes the same results
and which is built up from statements in the
original program using only the three basic
operations of composition, conditional, and
iteration, plus possible assignment state-
meats and tests on auxiliary variables. Thus,
in principle, go to statements can always be
removed. A detailed exposition of Jacopini's
construction has been given by H. D. Mills
[69].

Recent interest in structured programming
has caused many authors to cite Jacopini's
result as a significant breakthrough and as a
cornerstone of modern programming tech-
nique. Unfortunately, these authors are un-
aware of the comments made by Cooper in
1967 [16] and later by Bruno and Steiglitz
[10], namely, that from a practical stand-
point the theorem is meaningless. Indeed,
any program can obviously be put into the
"beautifully structured" form

p :-- 1;
w h i l e p > 0 do

b e g i n i f p = 1 t h e n perform step 1;
p := successor of s tep 1 fi;

i f p = 2 t h e n perform step 2;
p := successor s tep 2 fi;

. . .

i f p = nn t h e n perform step n;
p := successor of step n fi;

end .

Here the auxiliary variable p serves as a
program counter representing which box of
the flowchart we're in, and the program stops
when p is set to zero. We have eliminated all
g o to's, but we've actually lost all the struc-
ture.

Jacopini conjectured in his paper that
auxiliary variables are necessary in general,
and that the go to's in a program of the
form

Ll : i f Bi t h e n go t o L2 fi;
$1;

i f B~ t h e n go t o L~ fi;
S~;

go t o L1;
L~: S,;

cannot always be removed unless additional
computation is done. Floyd and I proved this
conjecture with John Hopcroft's help [52].
Sharper results were later obtained by Ash-
croft and Manna [1], Bruno and Steiglitz
[10], Kosaraju [57], and Peterson, Kasami,
and Tokura [77].

Jaeopini's original construction was not
merely the trivial flowchart emulation
scheme indicated above; he was able to
salvage much of the given flowchart struc-
ture if it was reasonably well-behaved. A
more general technique of g o t o elimination,
devised by Ashcroft and Manna [1], made
it possible to capture still more of a given
program's natural flow; for example, their
technique applied to Example 5 yields

Example 5a:

t := t rue;
w h i l e t d o

b e g i n i f A[i] < x
t h e n i f L[i] # 0 t h e n i : = L[i] ;

e l s e L[i] := j; t := f a l s e fi;
e l s e i f R[i] # 0 t h e n i := R[i] ;

e l s e R[i] := j; t : = f a l s e fi;
end;

AUI := x;

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with g o t o Statements • 275

But, in general, their technique may cause a
program to grow exponentially in size; and
when error exits or other recalcitrant go
to's are present, the resulting programs will
indeed look rather like the flowchart emula-
tor sketched above.

If such automatic go to elimination
procedures are applied to badly structured
programs, we can expect the resulting pro-
grams to be at least as badly structured.
Dijkstra pointed this out already in [23],
saying:

The exercise to translate an arbitrary flow
diagram more or less mechanically into a
jumpless one, however, is not to be recom-
mended. Then the resulting flow diagram
cannot be expected to be more transparent
than the original one.

In other words, we shouldn't merely
remove go to statements because it's the
fashionable thing to do; the presence or
absence of go to statements is not really the
issue. The underlying structure of the
program is what counts, and we want only
to avoid usages which somehow clutter up
the program. Good structure can be expressed
in FORTRAN or COBOL, or even in assembly
language, although less clearly and with
much more trouble. The real goal is to
formulate our programs in such a way that
they are easily understood.

Program structure refers to the way in
which a complex algorithm is built up from
successively simpler processes. In most
situations this structure can be described
very nicely in terms of sequential composi-
tion, conditionals, simple iterations, and
with case statements for multiway branches;
undisciplined go to statements make pro-
gram structure harder to perceive, and they
are often symptoms of a poor conceptual
formulation. But there has been far too
much emphasis on go to elimination instead
of on the really important issues; people
have a natural tendency to set up all easily
understood quantitative goal like the aboli-
tion of jumps, instead of working directly
for a qualitative goal like good program
structure. In a similar way, many people
have set up "zero population growth" as a
goal to be achieved, when they really desire

living conditions that are much harder to
quantify.

Probably the worst mistake any one can
make with respect to the subject of g o t o
statements is to assume that "structured-
programming" is achieved by writing pro-
grams as we always have and then elimi-
nating the go to's. Most go to 's shouldn't
be there in the first place! What we really
want is to conceive of our program in such
a way that we rarely even think about g o t o
statements, because the real need for them
hardly ever arises. The language in which we
express our ideas has a strong influence on
our thought processes. Therefore, Dijkstra
[23] asks for more new language features--
structures which encourage clear thinking--
in order to avoid the go to ' s temptations to-
ward complications.

Event Indicotors
The best such language feature I know has
recently been proposed by C. T. Zahn
[102]. Since this is still in the experimental
stage, I will take the liberty of modifying
his "syntactic sugar" slightly, without
changing his basic idea. The essential novelty
in his approach is to introduce a new quan-
t i ty into programming languages, called an
event indicator (not to be confused with
concepts from P L / I or SIMSC~IPT). M y
current preference is to write his event-
driven construct in the following two general
forms.

A) l o o p u n t i l (eventh or - . - or {event)s:
(statement list)0;

repeat ;
t h e n (event)l = > (statement list)l;

(event)~ = > (s tatement list)n;
fi;

B) b e g i n u n t i l (event)l or . . . or (event)n;
(statement list)0;

end;
then (even t) t = > (s t a t e m e n t l is t) t ;

ievent)~ = > (statement list)z;
fi:

There is also a new statement, "(event)",
which means that the designated event has
occurred: such a statement is allowed only

Computing Surveys, VoL 6, No. 4, December 1974

i

276 • Donald E. Knuth

within (statement lisQ0 of an u n t i l con-
struct which declares that event.

In form (A), (statement list)0 is executed
repeatedly until control leaves the construct

• entirely or until one of the named events
occurs; in the latter case, the statement
list corresponding to that event is executed.
The behavior in form (B) is similar, except
that no iteration is implied; one of the named
events must have occurred before the e n d
is reached. The t h e n . . , fi part may be
omitted when there is only one event name.

The above rules should become clear
after looking at what happens when Example
5 above is recoded in terms of this new fea-
ture:

Example 5b:

loop u n t i l lef t leaf hi t or
r ight leaf hi t :

i f A[i] < x
t h e n i f L[i] # 0 t h e n i := L[i];

e l se left leaf hit fi;
else i f R[i] # 0 t h e n i := R[i];

else r ight leaf hi t fi;
fi;

repeat;
t h e n left leaf hit = > L[i] := j;

right leaf hit = > R[i] := j;
fi;
A[j] := x; L[j] := 0; R[j] := 0; j := j+ l ;

Alternatively, using a singleevent,

Example 5c:

loop u n t i l leaf replaced:
i f A[i] < x
t h e n i f L[i] # 0 t h e n i := L[i]

e l s e L[i] := j; leaf replaced fi;
e l se i f R[i] # 0 t h e n i := R[i]

e l s e R[i] := j; leaf replaced fi;
fi;

repeat;
A[j] := x; L[j] :~ O; R[j] := O; j := j + l ;

For reasons to be discussed later, Example
5b is preferable to 5c.

I t is important to emphasize that the first
line of the construct merely declares the
event indicator names, and that event
indicators are not conditions which are being
tested continually; (event) statements are
simply transfers of control which the com-
piler can treat very efficiently. Thus, in
Example 5e the statement "leaf replaced"
is essentially a go to which jumps out of
the loop.

This use of events is, in fact, semantically
equivalent to a restricted form of go t o
statement, which Peter Landin discussed
in 1965 [58] before most of us were ready to
listen. Landin's device has been reformulated
by Clint and Hoare [14] in the following
way: Labels are declared at the beginning
of each block, just as procedures normally
are, and each label also has a (label body)
just as a procedure has a (procedure body).
Within the block whose heading contains
such a declaration of label L, the statement
go to L according to this scheme means
"execute the body of L, then leave the
block". I t is easy to see that this is exactly
the form of control provided by Zahn's
event mechanism, with the (label body)s
replaced by (statement list)s in the t h e n • • •
fi postlude and with (event) statements
corresponding to Landin's go to. Thus,
Clint and Hoare would have written Ex-
ample 5b as follows.

w h i l e true do
begin label left leaf hi t ; L[i] := j ;

label r ight leaf hi t ; R[i] := j;
i f A[i] < x
then i f L[i] # 0 t h e n i := L[i];

e l se go t o left leaf hit fi;
else i f R[/] # 0 then i := R[/];

else go to r ight leaf hi t fi;
end;

A[j] := x; L[j] := 0; R[j] := 0; j := j + l ;

I believe the program reads much better in
Zahn's form, with the (label body)s set in
the code between that which logically
precedes and follows.

Landin also allowed his "labels" to have
parameters like any other procedures; this
is a valuable extension to Zahn's proposal,
so I shall use events with value parameters
in several of the examples below.

As Zahn [102] has shown, event-driven
statements blend well with the ideas of
structured programming by stepwise refine-
ment. Thus, Examples 1 to 3 can all be cast
into the following more abstract form, using
an event "found" with an integer parameter:

begin u n t i l found:
search table for x and
insert i t if not present;

end;
t h e n found (integer j) = > B[j] := B [j] + I ;
fi;

Computing Su~eys, VoL 6, No. 4, December 1974

S t r u c t u r e d P r o g r a m m i n g w i th go t o Sta~mcnto

This much of the program can be written
before we have decided how to maintain
the table. At the next level of abstraction,
we might decide to represent the table as a
sequential list, as in Example 1, so tha t

• • '277

if x = slash
then double slash;
else tabu/ate;

normal character input (x);
fi;

else normal character input (x);
"search table . . . " would expand into

for i := 1 step 1 unt i l m do
i f A[i] = x then found(i) fi;

m := m~-l; Aim] := x; found(m);

Note tha t this for loop is more disciplined
than the one in our original Example 1,
because the iteration variable is not used
outside the loop; it now conforms to the rules
of ALGOL W and ALGOL 68. Such for loops
provide convenient documentation and
avoid common errors associated with global
variables; their advantages have been
discussed by Hoare [39].

Similarly, if we want to use the idea of
Example 2 we might write the following
code as the refinement of "search table • . . " "

begin integer i;
A[m-bl] := x; i := 1;
while A[i] ~ x do i := i-bl;
i f i > m t h e n m := i ;B[m] := 0fi;
found (/) ;

end;

And finally, if we decide to use hashing,
we obtain the equivalent of Example 33
which might be written as follows.

fi)
end;
then normal character input (char x) ffi >

write char (x) ;
i f x --- period then write char (space) fi;

double slash = > return the carriage,
fi;

This program states the desired actions a
bit more clearly than any of our previous
a t tempts were able to do.

Even t indicators, handle error exits too.
For example, we might write a program as
follows.

begin un t i l error or normal end:

i f m = max then error ('symbol table full') fi;

normal end;
end;
then error (string E) ffi

print ('unrecoverable error,'; E);
normal end = >

print ('computation complete');
fi;

Comparison of Features
Of course, event indicators are not the only
decent alternatives tO g o t o statements

begin integer i;
i := h(x);
loop unt i l present or absent:

if A[i] = x then present fi;
i f A[i] = 0 then absent fi;
i : = i - 1 ;
i f i = 0 t h e n i := mfi;

repeat;
then present = > found(i);

absent = > A[i] := x; found(/);
fi;

end;

tha t have been proposed. M a n y authors
have suggested language features which
provide roughly equivalent facilities, but
which are expressed in terms of ex i t , j u m p -
o u t , break , or l e a v e statements. Kosaraju
[57] has proved tha t such s ta tements are
sufficient to express all programs without
go to ' s and without any extra computation,
but only if an exit f rom arbitrari ly many
levels of control is permitted.

The earliest language features of this kind
The b e g i n u n t i l (event) construct ulso

provides a natural way to deal with decision-
table constructions such as the text-scanning
application we have discussed.

Example 4b:

begin unt i l normal character input
or double slash:

char x;
x := read char;
i f x = slash
then x := read char~ ~

(besides Landin 's proposal) provided essen-
tially only one exit f rom a loop; this means
tha t the code appearing in the t h e n . . . fi
postlude of our examples would be inserted
into the body itself before branching. (See
Example 5c.) The separation of such code
as in Zahn's proposal is better , mainly
because the body of the construct corre-
sponds to code tha t is written under different
" invar iant assumptions" which are inopera-
tive after a particular event has occurred.

Computing Surveys, Vol. 6, No. 4, December 1~4

278 • Donald E. Knuth

Thus, each'event corresponds to a particular
set of assertions about the state of the
program, and the code which follows that
event takes cognizance of these assertions,
which are rather different from the assertions
in the main body of the construct. (For this
reason I prefer Example 5b to Example 5c.)

Language features allowing multiple exits
have been proposed by G. V. Bochmann [7],
and independently by Shigo et al. [86]. These
are semantically equivalent to Zahn's pro-
posals, with minor variations; but they
express such semantics in terms of state-
ments that say "exit to (label)". I believe
Zahn's idea of event indicators is an im-
provement on the previous schemes, because
the specification of events instead of labels
encourages a better conception of the pro-
gram. The identifier given to a label is often
an imperative verb like "insert" or "com-
pare", saying what action is to be done next,
while the appropriate identifier for an event
is more likely to be an adjective like "found".
The names of .events are very much like the
names of Boolean variables, and I believe
this accounts for the popularity of Boolean
variables as documentation aids, in spite of
their inefficiency.

Putting this another way, it is much
better from a psychological standpoint to
w r i t e

l o o p u n t l l f o u n d • • • ; f o u n d ; • • • repeat

than to write

search: w h i l e t rue do
beg in . . . ; l e a v e s e a r c h ; . - . end.

The l e a v e or e x i t statement is operationally
the same, but intuitively different, since it
talks more about the program than about
the problem.

The PL / I language allows programmer-
defined ON-conditions, which are similar
in spirit to event indicators. A programmer
first executes a statement "ON CONDITION
(identifier) block" which specifies a block
of code that is to be executed when the
identified event occurs, and an occurrence
of that event is indicated by writing SIG-
NAL CONDITION (identifier). However,
the analogy is not very close, since control
returns to the statement following the
SIGNAL statement after execution of the

specified block of code, and the block may
be dynamically respecified.

Some people have suggested to me that
events should be called "conditions" instead,
by analogy with Boolean expressions. How-
ever, that terminology would tend to imply a
relation which is continually being moni-
tored, instead of a happening. By writing
"loop un t i l yprime is near y: . . . " we seem
to be saying that the machine should keep
track of whether or not y and yprime are
nearly equal; a better choice of words would
be an event name like "loop un t i l con-
vergence established: .- ." so that we can
write " i f abs(yprime - y) < epsilon X y
t h e n convergence established". An event
occurs when the program has discovered
that the state of computatioD has changed.

Simple Iterations
So far I haven't mentioned what I believe
is really the most common situation in which
go to statements are needed by an ALGOL
or PL/ I programmer, namely a simple
iterative loop with one entrance and one
exit. The iteration statements most often
proposed as alternatives to go to statements
have been "while B do S" and "repeat S
u n t i l B". However, in practice, the itera-
tions I encounter very often have the form

A: S;
i f B t h e n go to Z fi;
T; go to A;

Z:

where S and T both represent reasonably
long sequences of code. If S is empty, we
have a while loop, and if T is empty we
have a repeat loop, but in the general case
it is a nuisance to avoid the go to state-
ments.

A typical example of such an iteration
occurs when S is the code to acquire or
generate a new piece of data, B is the test
for end of data, and T is the processing of
that data. Another example is when the code
preceding the loop sets initial conditions
for some iterative process; then S is a com-
putation of quantities involved in the test
for convergence, B is the test for conver-
gence, and T is the adjustment of variables
for the next iteration.

Dijkstra [29] aptly named this a loop

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with go to Statements • 279

which is performed "n and a half times".
The usual practice for avoiding go to's in
such loops is either to duplicate the code
for S, writing

S; while B do begin T; S end;

where B is the negation of relation B; or to
figure out some sort of "inverse" for T so
that "T-i; T" is equivalent to a null state-
ment, and writing

T-l; repeat T; S unt i l B;

or to duplicate the code for B and to make a
redundant test, writing

repeat S; i f B then T fi; unt i l B;

or its equivalent. The reader who studies
go to-less programs as they appear in the
literature will find that all three of these
rather unsatisfactory constructions are used
frequently.

I discussed this weakness of ALGOL in a
letter to Niklaus Wirth in 1967, and he
proposed two solutions to the problem,
together with many other instructive ideas
in an unpublished report on basic concepts
of programming languages [94]. His first
suggestion was to write

repeat begin S; when B exit; T; end;

and readers who remember 1967 will also
appreciate his second suggestion,

turn on begin S; when B drop out; T; end.

Neither set of delimiters was felt to be
quite right, but a modification of the first
proposal (allowing one or more single-level
exit statements within repeat b e g i n . . .
end) was later incorporated into an experi-
mental version of the ALGOL W language.
Other languages such as BCPL and BLISS
incorporated and extended the exit idea, as
mentioned above. Zahn's construction now
allows us to write, for example,

loop unt i l all data exhausted:
S;
if B then all data exhausted fi;
T;

repeat;

and this is a better syntax for the n +
problem than we have had previously.

On the other hand, it would be nicest if

our language would provide a single feature
which covered all simple iterations without
going to a rather "big" construct like the
event-driven scheme. When a programmer
uses the simpler feature he is thereby making
it clear that he has a simple iteration, with
exactly one condition which is being tested
exactly once each time around the loop.
Furthermore, by providing special syntax
for this common case we make it easier for a
compiler to produce more efficient code,
since the compiler can rearrange the machine
instructions so that the test appears physi-
cally at the end of loop. (Many hours of
computer time are now wasted each day
executing unconditional jumps to the be-
ginning of loops.)

Ole-Johan Dahl has recently proposed a
syntax which I think is the first real solution
to the n -{- ~ problem, He suggests writing
the general simple iteration defined above as

loop; S; whi le B: T; repeat;

where, as before, S and T denote sequences
of one or more statements separated by
semicolons. Note that as in two of our
original go to-free examples, the syntax
refers to condition B which represents
staying in the iteration, instead of condition
B which represents exiting; and this may
be the secret of its success.

Dahl's syntax may not seem appropriate
at first, but actually it reads well in every
example I have tried, and I hope the reader
will reserve judgment until seeing the ex-
amples in the rest of this paper. One of the
nice properties of his syntax is that the word
repeat occurs naturally at the end of a loop
rather than at its beginning, since we read
the actions of the program sequentially.
As we reach the end, we are instructed to
repeat the loop, instead of being informed
that the text of the loop (not its execution)
has ended. Furthermore, the above syntax
avoids ALGOL'S use of the word do (and
also the more recent unnatural delimiter
od); the word do as used in ALGOL has
never sounded quite right to native speakers
of English, it has always been rather quaint
for us to say "do read (A[i])" or "do begln"!
Another feature of Dahl's proposals is that
it is easily axiomatized along the lines

Computing Surveys, Vol. 6, No. 4, December 1974
i

280 • Donald E. Knuth

proposed by Hoare [37, 41]:

{P}SiQ}
{Q A B}T{P}

{P} loop: S; while B: T; repeat; {Q A ~ B}

(Here I am using braces around the asser-
tions, as in Wirth's PASCAL language [97],
instead of following Hoare's original nota-
tion "P {S} Q", since assertions are, by
nature, parenthetical remarks.)

The nicest thing about Dahl's proposal
is that it works also when S or T is empty,
so that we have a uniform syntax for all
three cases; the while and repeat state-
ments found in ALGoL-like languages of the
late 1960s are no longer needed. When S or
T is empty, it is appropriate to delete the
preceding colon. Thus

loop while B :
T;

repeat;

takes the place of "while B do b e g i n T
end;" and

loop:
S

while B repeat;

takes the place of "repeat S u n t i l B;". At
first glance these may seem strange, but
probably less strange than the whi le and
repeat statements did when we first learned
them.

If I were designing a programming lan-
guage today, my current preference would
be to use Dahl's mechanism for simple
iteration, plus Zahn's more general con-
struct, plus a for statement whose syntax
would be perhaps

loop f o r l < i < n :
S;

repeat;

with appropriate extensions. These control
structures, together with i f . . . t h e n - . .
else .- . fi, will comfortably handle all the
examples discussed so far in this paper,
without any go to statements or loss of
efficiency or clarity. Furthermore, none of
these language features seems to encourage
overly-complicated program structure.

2. INTRODUCTION OF go to STATEMENTS
I

Now that I have discussed how to remove
go to statements, !I will turn around and
show why there are occasions when I actually
wish to insert them into a go to-less program.
The reason is that I like well-documented
programs very much, but I dislike inefficient
ones; and there are some cases where I
simply seem to need go to statements,
despite the examples stated above.

Recursion Elimination
Such cases come to light primarily when I 'm
trying to optimize a program (originally
well-structured), often involving the removal
of implicit or explicit recursion. For example,
consider the following recursive procedure
that prints the contents of a binary tree in
symmetric order. The tree is represented by
L, A, and R arrays as in Example 5, and the
recursive procedure is essentially the defini-
tion of symmetric order.

Example 6:

procedure treeprint(O; integer t; value t;
if t # 0
then treeprint(L[t]) ;

print (A[tl) ;
treeprint (R[t]);

fi;

This procedure may be regarded as a
model for a great many algorithms which
have the same structure, since tree traversal
occurs in so many applications; we shall
assume for now that printing is our goal,
with the understanding that this is only one
instance of a generM family of algorithms.

I t is often useful to remove recursion
from an algorithm, because of important
economies of space or time, even though this
tends to cause some loss of the program's
basic clarity. (And, of course, we might also
have to state our algorithm in a language
like FORTRAN or in a machine language that
doesn't allow recursion.) Even when we use
ALGOL or PL/I , every compiler I know im-
poses considerable overhead on procedure
calls; this is to a certain extent inevitable
because of the generMity of the parameter
mechanisms, especially cM1 by name and the
maintenance of proper dynamic environ-

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with g o t o 8~atements • 281

ments. When procedure calls occur in an
inner loop the overhead can slow a program
down by a factor of two or more. But if we
hand tailor our own implementation of
recursion instead of relying on a general
mechanism we can usually find worthwhile
simplifications, and in the process we occa-
sionally get a deeper insight into the original
algorithm.

There has been a good deal published
about recursion elimination (especially in the
work of Barron [4], Cooper [15], Manna and
Waldinger [61], McCarthy [62], and Strong
[88; 91]); but I 'm amazed that very little of
this is about "down to earth" problems. I
have always felt that the transformation
from recursion to iteration is one of the most
fundamental concepts of computer science,
and that a student should learn it at about
the time he is studying data structures. This
topic is the subject of Chapter 8 in my multi-
volume work; but it's only by accident that
recursion wasn't Chapter 3, since it concep-
tually belongs very early in the table of
contents. The material just wouldn't fit com-
fortably into any of the earlier volumes; yet
there are many algorithms in Chapters 1-7
that are recursions in disguise. Therefore it
surprises me that the literature on recursion
removal is primarily concerned with "baby"
examples like computing factorials or re-
versing lists, instead of with a sturdy toddler
like Example 6.

Now let's go to work on the above ex-
ample. I assume, of course, that the reader
knows the standard way of implementing
recursion with a stack [20], but I want to
make simplifications beyond this. Rule
number one for simplifying procedure calls
is:

If the last action of procedure p before it re-
turns is to call procedure q, simply go to the
beginning of procedure q instead.

(We must forget for the time being that we
don't like go to statements.) I t is easy to
confirm the validity of this rule, if, for sim-
plicity, we assume parameterless procedures.
For the operation of calling q is to put a re-
turn address on the stack, then to execute q,
then to resume p at the return address
specified, then to resume the caller of p. The

above simplification makes q resume the
caller of p. When q ffi p the argument is
perhaps a bit subtle, but it's all right. (I'm
not sure who originated this principle; I
recall learning it from Gill's paper [34, p.
183], and then seeing many instances of it in
connection with top-do~vn compiler organiza-
tion. Under certain conditions the BLms/l l
compiler [101] is capable of discovering this
simplification. Incidentally, the converse of
the above principle is also true (see [52]):
go to statements can always be eliminated
by declaring suitable procedures, each of
which calls another as its last action. This
shows that procedure calls include go t o
statements as a special case; it cannot be
argued that procedures are conceptually
simpler than go to's, although some people
have made such a claim.)

As a result of applying the above simplifi-
cation, and adapting it in the obvious way
to the case of a procedure with one parame-
ter, Example 6 becomes

E x a m p l e 6a:

procedure treeprint(t); integer t; va lue ~;
L : i f t ~ 0

then treeprint(L[t]) ;
print(A[t]) ;
t : = R[t]; g o t o L;

fi;

But we don't really want that g o t o , so we
might prefer to write the code as follows,
using Dahl's syntax for iterations as ex-
plained above.

E x a m p l e 6b:

procedure treeprint(t); integer t; value t;
loop whi le t ~ 0:

treeprint (L[t]) ;
print (A [t]) ;
t := R[t] ;

repeat;

If our goal is to impress somebody, we
might tell them that we thought of Example
6b first, instead of revealing that we got it
by straightforward simplification of the
obvious program in Example 6.

There is still a recursive call in Example
6b; and this time it's embedded in the pro-
cedure, so it looks as though we have to go
to the general stack implementation. How-

Computing Surveys, Vo|. 6, No. 4, De~ember 1~4

282 • Donald E. Knuth

ever, the recursive call now occurs in only
one place, so we need not put a return
address on the stack; only the local variable
t needs to be saved on each call. (This is
another simplification which occurs fre-
quently.) The program now takes the fol-
lowing nonrecursive form.

Example 6c :

procedure treeprint(t); i n t e g e r t; va lue t;
b e g i n i n t e g e r s tack S; S := e m p t y ;

L I : loop w h i l e t ~ 0:
< = t; t := L[t]; go to L1;

L2: t <= S;
print (A[t]) ;
t := R[t];

repeat;
i f nonempty(S) then go to L2 fi;
end.

Here for simplicity I have extended ALGOL
to allow a "stack" data type, where S < = t
means "push t onto S" and t < = S means
"pop the top of S to t, assuming that S is
nonempty".

I t is easy to see that Example 6c is equiva-
lent to Example 6b. The statement "go t o
LI" initiates the procedure, and control
returns to the following statement (labeled
L2) when the procedure is finished. Although
Example 6c involves go to statements, their
purpose is easy to understand, given the
knowledge that we have produced Example
6c by a mechanical, completely reliable
method for removing recursion. Hopkins
[44] has given other examples where go t o
at a low level supports high-level construc-
tions.

But if you look at the above program
again, you'll probably be just as shocked as
I was when I first realized what has hap-
pened. I had always thought that the use of
g o t o statements was a bit sinful, say a
"venial sin"; but there was one kind of g o t o
that I certainly had been taught to regard
as a mortal sin, perhaps even unforgivable,
namely one which goes into the middle of an
iteration! Example 6c does precisely that,
and it is perfectly easy to understand Exam-
ple 6c by comparing it with Example 6b.
In this particular case we can remove the
go to's without difficulty; but in general
when a recursive call is embedded in
~ r "1 ""~'~ a rc~,~, ,~ ti l l .~ ~,,,~,~u~u ,.,

several complex levels of control, there is no

equally simple way to remove the recursion
without resorting to something like Example
6c. As I say, it was a shock when I first ran
across such an example. Later, Jim Horning
confessed to me that he also was guilty, in
the syntax-table-building program for the
XPL system [65, p. 500], because XPL
doesn't allow recursion; see also [56]. Clearly
a now doctrine about sinful go to's is needed ,
some sort of "situation ethics".

The new morality that I propose may
perhaps be stated thus: "Certain go t o
statements which arise in connection with
well-understood transformations are accept-
able, provided that the program documenta-
tion explains what the transformation was."
The use of four-letter words like goto can
occasionally be justified even in the best of
company.

This situation is very similar to what
people have commonly encountered when
proving a program correct. To demonstrate
the validity of a typical program Q, it is
usually simplest and best to prove that some
rather simple but less efficient program P is
correct and then to prove that P can be
transformed into Q by a sequence of valid
optimizations. I 'm saying that a similar
thing should be considered standard prac-
tice for all but the simplest software pro-
grams: A programmer should create a pro-
gram P which is readily understood and
well-documented, and then he should op-
timize it into a program Q which is very effi-
cient. Program Q may contain go to state-
ments and other low-level features, but the
transformation from P to Q should be ac-
complished by completely reliable and well-
documented "mechanical" operations.

At this point many readers will say, "But
he should only write P, and an optimizing
compiler will produce Q." To this I say,
"No, the optimizing compiler would have to
be so complicated (much more so than any-
thing we have now) that it will in fact be
unreliable." I have another alternative to
propose, a new class of software which will
be far better.

Program Manipulation Systems
For 15 years or so I have been trying to
think of how to write a compiler that really
produces top quality code. For example,

Computing Surveys, Vol; 6, No. 4, December 1974

Structured Programming with g o t o Statements • 283

most of the Mix programs in my books are
considerably more efficient than any of
today's most visionary compiling schemes
would be able to produce. I 've tried to study
the various techniques that a hand-coder
like myself uses, and to fit them into some
systematic and automatic system. A few
years ago, several students and I looked at a
typical sample of FORTRAN programs [51],
and we all tried hard to see how a machine
could produce code that would compete
with our best hand-optimized object pro-
grams. We found ourselves always running
up against the same problem: the compiler
needs to be in a dialog with the prograrmner;
it needs to know properties of the data, and
whether certain cases can arise, etc. And we
couldn't think of a good language in which
to have such a dialog.

For some reason we all (especially me) had
a mental block about optimization, namely
that we always regarded it ~ a behind-the-
scenes activity, to be done in the machine
language, which the programmer isn't sup-
posed to know. This veil was first lifted from
my eyes in the Fall of 1973. when I ran across
a remark by Hoare [42] that, ideally, a
language should be designed so that an
optimizing compiler can describe its optimi-
zations in the source language. Of course!
Why hadn't I ever thought of it?

Once we have a suitable language, we will
be able to have what seems to be emerging
as the programming system of the future: an
interactive program-manipulation system,
analogous to the many symbol-manipulation
systems which are presently undergoing ex-
tensive development and experimentation.
We are gradually learning about program
transformations, which are more complicated
than formula manipulations but really not
very different. A program-manipulation sys-
tem is obviously what we've been leading up
to, and I wonder why I never thought of it
before. Of course, the idea isn't original with
me; when I told Hoare, he said, "Exactly!"
and referred me to u recent paper by Darling-
ton and Burstall [18]. Their paper describes
a system which removes some recursions
from a LisP-like language (curiously, without
introducing any go to's), and which also
does some conversion of data structures
(from sets to lists or bit strings) and some

restructuring of a program by combining
similar loops. I'later discovered that program
manipulation is just part of a much more
ambitious project undertaken by Cheatham
and Wegbreit [12]; another paper about
source-code optimizations has also recently
appeared [83]. Since LIsP programs are easily
manipulated as LisP d£ta objects, there has
also been a rather extensive development of
similar ideas in this domain, notably by
Warren Teitelman (see [89, 90]). The time
is clearly ripe for program-manipulation
systems, and a great deal of further work
suggests itself.

The programmer using such a system will
write his beautifully-structured, but possibly
inefficient, program P; then he will inter-
actively specify transformations that make
it efficient. Such a system will be much more
powerful and reliable than a "completely
automatic one. We can also imagine the sys-
tem manipulating measurement statistics
concerning how much of the total running
time is spent in each statement, since the
programmer will want to know which parts
of his program deserve to be optimized, and
how much effect an optimization will really
have. The original program P should be re-
tained along with the transformation specifi-
cations, so that it can be properly understood
and maintained as time passes. As I say, this
idea certainly isn't my own; it is so exciting
I hope that everyone soon becomes aware of
its possibilities.

A "calculus" of program transformations
is gradually emerging, a set of operations
which can be applied to programs without
rethinking the specific problem each time.
I have already mentioned several of these
transformations: doubling up of loops (Ex-
ample 2a), changing final calls to go to ' s
(Example 6a), using a stack for recursions
(Example 6c), and combining disjoint loops
over the same range [18]. The idea of macro-
expansions in general seems to find "its most
appropriate realization as part of a program
manipulation system.

Another well-known example is the re-
moval of invariant subexpressions from
loops. We are all familiar with the fact that
a program which includes such subexpres-
sions is more readable than the corresponding
program with invariant subexpressions

Computing Surveys, ~ui. 6, Noo4, December 1974
[

284 • Donald E . Knu th

moved out of their loops; yet we consciously
remove them when the running time of the
program is important.

Still another type of transformation occurs
when we go from high-level "abstract" data
structures to low-level "concrete" ones (see
Hoare's chapter in [17] for numerous ex-
amples). In the case of Example 6c, we can
replace the stack by an array and a pointer,
arriving at

E x a m p l e 6d:

procedure treeprint(t); integer t; v a l u e t;
begin integer array S[1: n]; i n t e g e r k; k : = 0;

L I : l o o p w h i l e t ~ 0:
k : = k + l ; S[k] : = t;
t := L[t]; go t o L1;

L2: t := S[k]; k := k - l ;
print (AIt]) ;
t := R[t];

repeat;
i f k ~ 0 t h e n go t o L 2 f i ;

end.

Here the programmer must specify a safe
value for the maximum stack size n, in order
to make the transformation legitimate. Al-
ternatively, he may wish to implement the
stack by a linked list. This choice can usually
be made without difficulty, and it illustrates
another area in which interaction is prefer-
able to completely automatic t r a n s f o r m a -
tions.

Recursion vs. Iteration
Before leaving the treeprint example, I would
like to pursue the question of go to elimina-
tion from Example 6c, since this leads to
some interesting issues. I t is clear that the
first go to is just a simple iteration, and a
little further study shows that Example 6e
is just one simple iteration inside another,
namely (in Dahl's syntax)

E x a m p l e 6e:

procedure treeprint(t); integer l; value t;
begin integer stack S; S := empty;

loop:
loop w h i l e t ~ 0:

S < = t ;
t := L[t];

repeat;
w h i l e nonemply(S) :

t < = S;
print(A[t]);
t := Rit];

r e p e a t ;
end .

Furthermore, there is a rather simple way
to understand this program, by providing
suitable "loop invari~nts". At the beginning
of the first (outer) loop, suppose the stack
contents from top tO bottom are t,, . . . , t~
for some n > 0; then the procedure's re-
maining duty is to accomplish the effect of

treeprint (t) ;
print(A[t,]) ; treeprint(R[t,]) ;

print(A[tl]) ; treeprint(R[tl]) ; (*)

In other words, the purpose of the stack
is to record postponed obligations to print
the A's and right subtrees of certain nodes.
Once this concept is grasped, the meaning
of the program is clear and we can even see
how we might have written it without ever
thinking of a recursive formulation or a
go to statement: The innermost loop ensures
t ffi 0, and afterwards the program reduces
the stack, maintaining (*) as the condition
to be fulfilled, at key points in the outer loop.

A careful programmer might notice a
source of inefficiency in this program: when
L[t] = 0, we put t on the stack, then take it
off again. If there are n nodes in a binary
tree, about half of them, on the average, will
have L[t] ffi 0 so we might wish to avoid
this extra computation. I t isn't easy to do
tha t to Example 6e without major surgery
on the structure; but it is easy to modify
Example 6e (or 6d), by simply bracketing
the souree of inefficiency, including the go
t o , and the label, and all.

E x a m p l e 6f:

procedure treeprinl(t); v a l u e t; i n t e g e r t;
begin integer stack S; S := empty;

L I : loop while t ~ 0:
L3: i f L[t] ~ 0

then S < = t; t := L[t]; go t o L1;
L2: t < = S;

fi;
print(A[t]) ;
t := R[tl;

repeat;
i f nonempty(S) t h e n go t o L2 fi;

end.

Here we notice tha t a further simplification
is possible: go to L1 can become go to L3
because t is known to he nonzero.

An equivalent go to-free program analo-
gous to Example 6e is

Computing Surveys, Vol. 6, No. 4, December 1974
i

Structured Programming with go to Statement8

E x a m p l e 6g:

procedure treeprint(t); value t; integer t;
begin integer stack S; S := e m p t y ;

l o o p u n t i l f inished:
i f / ~ 0
then

l o o p w h i l e L[t] ~ 0:
S < = t ;
t := L[t];

repeat;
e |se

i f nonempty (S)
then t < = S;
else finished;
fi;

fi;
print(A[t]) ;
t :ffi R[t];

repeat;
end.

I deriv'ed this program by thinking of the
loop invariant (*) in Example 6e and acting
accordingly, not by trying to eliminate the
go to's from Example 6f. So I know this
program is well-structured, and I therefore
haven't succeeded in finding an example of
recursion removal where go to's are strictly
necessary. It is interesting, in fact, that our
transformations originally intended for effi-
ciency led us to new insights and to programs
that still possess decent structure. However,
I still feel that Example 6f is easier to under-
stand than 6g, given that the reader is told
the recursive program it comes from and the
transformations that were used. The recur-
sire program is trivially correct, and the
transformations require only routine verifi-
cation; by contrast, a mental leap is needed
to invent (*).

Does recursion elimination help? Clearly
there won't be much gain in this example if
the print routine itself is the bottleneck. But
let's replace print(A[t]) by

i := i-t-1; B[i] := A[t];

i.e., instead of printing the tree, let's assume
that we merely want to transfer its contents
to some other array B. Then we can expect
to see an improvement.

After making this change, I tried the re-
cursive Example 6 vs. the iterative Example
6d on the two main ALGOL compilers avail-
able to me. Normalizing the results so that
6d takes 1.0 units of time per node of the
tree, with subscript checking suppressed, I

• 2 8 5

found that the corresponding reeursive ver-
sion took about 2.1 unlfis of time per node
using our ALGOL W compiler for the 360/67;
and the ratio was 1.16 using the SAIL com-
piler for the PDP-10. (Incidentally, the
relative run-times for Example 6f were 0.8
with ALGOL W, and 0.7 with SAIL. When
subscript ranges were dynamically checked,
ALGOL W took 1.8 units of time per node for
the nonrecursive version, and 2.8 with the
recursive version; SAIL'S figures were 1.28
and 1.34.)

Boolean Variable Elimination
Another important program transformation,
somewhat less commonly known, is the re-
moval of Boolean variables by code duplica-
tion. The following example is taken from
Dijkstra's treatment [26, pp. 91-93] of
Hoare's "Quicksort" algorithm. The idea is
to rearrange array elements A[m]... A[n] so
that they are partitioned into two parts:
The left part Aim] . . . A[j--1], for some
appropriate j, will contain all the elements
less than some value, v; the right part
A[j+ 1]... A[n] will contain all the elements
greater than v; and the element A[j] lying
between these parts will be equal to v.
Partitioning is done by scanning from the
left until finding an element greater than v,
then scanning from the right until finding an
element less than v, then scanning from the
left again, and so on, moving the offending
elements to the opposite side, until the two
scans come together; a Boolean variable up
is used to distinguish the left scan from the
right.

Example 7 :

i := m ; j := n;
v := A[j] ; up := true;
l oop :

i f up
then i f A[/] ~> v

then A[3] :ffi A[i]; up :ffi f a l s e fii
else i f v > A[j]

then A[i] :-: A[j] ; up :-- t r u e fi;
fi;
i f up then i :ffi i + 1 else j :ffi j - - 1 fi;

while i < j repeat;
A[j] := v;

The manipulation and testing of up is
rather time-consuming here. We can, in
general, eliminate a Boolean variable by

Computing Surveys, Vo~ 6, No. 4, Deeember lff/4

286 • Donald E. Knuth

storing its current value in the program
counter, i.e., by duplicating the program,
letting one part of the text represent t r u e
and the other part false, with jumps be-
tween the two parts in appropriate places.
Example 7 therefore becomes

Example 7a:

i := m;j := n;
v := A[jl;
loop: i f A[i] > v

t h e n A[j] := A[i]; go t o upf fi;
u p t : i := i+1;

w h i l e i < j repeat ; g o t o common;
loop: i f v > A[j]
t h e n A[i] := A[j]; go t o upt fi;

upf: j := j-- l ;
w h i l e i < j repeat ;

common: A[j] := v;

Note that again we have come up with a
program which has jumps into the middle of
iterations, yet we can understand it since we
know that it came from a previously under-
stood program, by way of an understandable
transformation.

Of course this program is messier than the
first, and we must ask again if the gain in
speed is worth this cost. If we are writing a
sort procedure that will be used many times,
we will be interested in the speed. The
average running time of Quicksort was
analyzed by Hoare in his 1962 paper on the
subject [36], and it turns out tha t the body
of the loop in Example 7 is performed about
2N In N times while the statement up :=
false is performed about ~ N In N times, if
we are sorting N elements. All other parts of
the overall sorting program (not shown
here) have a running time of order N or less,
so when N is reasonably large the speed of
the inner loop governs the speed of the entire
sorting process. (Incidentally, a recursive
version of Quicksort will run just about as
fast, since the recursion overhead is not
part of the inner loop. But in this case the
removal of recursion is of great value for
another reason, because it cuts the auxiliary
stack space requirement from order N to
order log N.)

Using these facts about inner loop times,
we can make a quanti tat ive comparison of
Examples 7 and 7a. As with Example 1, it
seems best to make two comparisons, one
with the assembly code that a decent pro-

grammer would write for the examples, and
the other with the object code produced by
a typical compiler tha t does only local op-
timizations. The assembly-language pro-
grammer will keep i, j , v, and up in registers,
while a typical compiler will not keep vari-
ables in registers from one statement to
another, except if they happen to be there
by coincidence. Under these assumptions,
the asymptotic running time for all entire
Quicksort program based on these routines
will be

assembled compiled
Example 7 202/~N In N 55~6N In N
Example 7a 1 5 ~ N In N 40N In N

expressed in memory references to data and
instructions. So Example 7a saves more than
25 % of the sorting time.

I showed this example to Dijkstra, cau-
tioning him that the go to leading into an
iteration might be a terrible shock. I was
extremely pleased to receive his reply [31]:

Your technique of storing the value of up in
the order counter is, of course, absolutely safe.
I did not faint! I am in no sense "afraid" of a
program constructed that way, but I cannot
consider it beautiful: it is really the same
repetition with the same terminating condi-
tion, that "changes color" as the computation
proceeds.

He went on to say that he looks forward to
the day when machines are so fast tha t we
won' t be under pressure to optimize our
programs; yet

For the time being I could not agree mare with
your closing remarks : if the economies matter,
apply "disciplined optimalization" to a nice
program, the correctness of which has been
established beyond reasonable doubt. Your
massaging of the program text is then no
longer trickery ad hoe, it is perfectly safe and
sound.

I t is hard for me to express the joy that this
letter gave me; it was like having all my
sins forgiven, since I need no longer feel
guilty about my optimized programs.

Coroutines
Several of the people who read the first draft
of this paper observed that Example 7a can
perhaps be understood more easily as the
result of eliminating coroutine linkage instead

Comuuting Surveys, Vol. 6, No. 4, December 1974

Structured Programming with g o t o Statements • 2 8 7

of Boolean variables. Consider the following
program:

Example 7b:

e o r o u t i n e move i;
loop: i f A[i] > v

t h e n A[j] := A[i];
r e s u m e move j;

fi;
i := i+1;

w h i l e i < j repeat ;
e o r o u t i n e move j;

l oop: i f v > A[j]
t h e n A[i] := A[j];

r e s u m e move i;
fi;
j := j--l ;

w h i l e i < j repeat ;
i := m;j := n; v := A[jl;
call move i;
A[jl := v;

When a coroutine is "resumed", let's as-
sume that it begins after its own r e s u m e
statement; and when a coroutine terminates,
let's assume tha t the most recent call state-
ment is thereby completed. (Actual coroutine
linkage is slightly more involved, see Chapter
3 of [17], but this description will suffice for
our purposes.) Under these conventions,
Example 7b is precisely equivalent to Ex-
ample 7a. At the beginning of move i we
know tha t A[k] <_ v for all k < i, and tha t
i < j, and tha t {A[m], . . - , A [j - 1] , A [j + I] ,
• .. ,A[n]} 0 v is a permutation of the orig-
inal contents of {A[m], . . . , A[n]l; a similar
statement holds at the beginning of move j .
This separation into two coroutines can be
said to make Example 7b conceptually sim-
pler than Example 7; but on the other hand,
the idea of coroutines admittedly takes some
getting used to.

Christopher Strachey once told me about
an example which first convinced him that
coroutines provided an important control
structure. Consider two binary trees repre-
sented as in Examples 5 and 6, with their A
array information in increasing order as we
traverse the trees in symmetric order of their
nodes. The problem is to merge these two A
array sequences into one ordered sequence.
This requires traversing both trees more or
less asynchronously, in symmetric order, so
we'll need two versions of Example 6 running
cooperatively. A conceptually simple solu-
tion to this problem can be written with

coroutines, or by fo~ming an equivalent
program which expresses the coroutine link-
age in terms of g o t o statements; it appears
to be cumbersome (though not impossible)
to do the job without using either feature.

Quicksort.. A Digression
Dijkstra also sent another instructive ex-
ample in his letter [30]. He decided to create
the program of Example 7 from scratch, as
if Hoare's algorithm had never been in-
vented, starting instead with modern ideas
of semi-automatic program construction
based on the following invariant relation:

v = A[n] A
V k (m < _ k < i = > A [k l _ < v) A
Vk(j < k < n = > A[k] _> v).

The resulting program is unusual, yet per-
haps cleaner than Example 7:

i :ffi m;j := n - i ; v := A[nh
l o o p w h i l e i < j;

i f A[j] ~ v t h e n j := j - l ;
e l s e A[i] := : A[j]; i :ffi i + 1 ;
fi;

repeat ;
i f j ~ m t h e n Alml := : Alnl; j := m fi;

Here " := :" denotes the interchange (i.e.,
swap) operation. At the conclusion of this
program, the A array will be different than
before, but we will have the array parti-
tioned as desired for sorting (i.e., A[m]. • • A[j]
are ~ v and A[j+I] . . .A[n] are ~v).

Unfortunately, however, this "pure" pro-
gram is less efficient than Example 7, and
Dijkstra noted that he didn't like it very
much himself. In fact, Quicksort is really
quick in practice because there is a method
that is even better than Example 7a: A good
Quicksort routine will have a faster inner
loop which avoids most of the " i < j " tests.
Dijkstra recently [31] sent me another ap-
proach to the problem, which leads to a
much better solutiom First we can abstract
the situation by considering any notions
"small" and "large" so that : a) an element
A[i] is never both small and large simultane-
ously; b) some elements might be neither
small nor large; c) we wish to rearrange an
array so that all small elements precede all
large ones; and d) there is at least one ele-
ment which is not small, and at least one
which is not large. Then we can write the

Computing Surveys, Vo|. 0, No. 4, December 1974
t

288 • Donald E. Knuth

following program in terms of this abstrac-
tion.

Example 8:

i := m;j := n;
loop:

loop w h i l e A[i] is small:
i := i + 1 ; repeat;

l o o p w h i l e A[j] is large:
j := j - l ; repeat;

w h i l e i < j:
A[i] := : A[j];
i := i + l ; j := j--l;

repeat;

At the beginning of the first (outer) loop
we know that A[k] is not large for m g k < i,
and that A[k] is not small for j < k < n;
also that there exists a k such that i < k _< n
and A[k] is not small, and a k such that
m < k < j and A[k] is not large. The opera-
tions in the loop are easily seen to preserve
these "invariant" conditions. Note tha t the
inner loops are now extremely fast, and that
they are guaranteed to terminate; therefore
the proof of correctness is simple. At the
conclusion of the outer loop we know that
A[m] . . . A[i -1] and A[j] are not large, that
A[i] and A[j+ 1] . . . A[n] are not small, and
t h a t m < j < i < n.

Applying this to Quicksort, we can set
v := A[n] and write

"A[i] < v" in place of "A[i] is small"
"A[j] > v" in place of "A[j] is large"

in the above program. This gives a very
pret ty algorithm, which is essentially equiva-
lent to the method published by Hoare [38]
in his first major application of the idea of
invariants, and discussed in his original
paper on Quicksort [36]. Note that since
v = A[n], we know that the first execution
of "loop while A[j] > v" will be trivial;
we could move this loop to the end of the
outer loop just before the final repeat . This
would be slightly faster, but it would make
the program harder to understand, so I
would hesitate to do it.

The Quicksort partitioning algorithm
actually given in my book [54] is better than
Example 7a, but somewhat different from
the program we have just derived. M y
version can be expressed as follows (assum-
ing that A[m-1] is defined and <A[n]):

• i := m - - l ; j :ffi n; v := A[n];
loop u n t i l pointers have met:

loop: i := i + 1 ; w h i l e A[i] < v repeat;
i f i _) j t h e n pointers have met; fi
A[j] := A[i];
loop: j := j - l ; w h i l e A{j] > v repeat;
i f i _> j t h e n j := i; pointers have met; fi
A[i] := A[j];

repeat;
Afj] := v;

At the conclusion of this routine, the
contents of A[m] . . . A[n] have been per-
muted so tha t A i m] . . . A[j -1] are < v
and A[j+ I] - . . A[n] are _> v and A[j] = v
and m < j < n. The assembled version will
make about l l N In N references to memory
on the average, so this program saves 28 %
of the running time of Example 7a.

When I first saw Example 8 I was cha-
grined to note that it was easier to prove
than my program, it was shorter, and (the
crushing blow) it also seemed about 3%
faster, because it tested "i < j " only half
as often. My first mathematical analysis of
the average behavior of Example 8 indicated
tha t the asymptotic number of comparisons
and exchanges would be the same, even
though the partitioned subfiles included all
N elements instead of N - 1 as in the classical
Quicksort routine. But suddenly it occurred
to me tha t my new analysis was incorrect
because one of its fundamental assumptions
breaks down: the elements of the two subfiles
after partitioning by Example 8 are not in
random order! This was a surprise, because
randomness is preserved by the usual Quick-
sort routine. When the N keys are distinct,
v will be the largest element in the left subtile,
and the mechanism of Example 8 shows
that v will tend to be near the left of that
subtile. When tha t subtile is later partitioned,
it is highly likely that v will move to the
extreme right of the resulting right sub-
subtile. So that right sub-subtile will be
subject to a trivial partitioning by its largest
element; we have a subtle loss of efficiency
on the third level of recursion. I still haven't
been able to analyze Example 8, but empiri-
cal tests have borne out my prediction that
it is in fact about 15 % slower than the book
algorithm.

Therefore, there is no reason for anybody
to use Example 8 in a sorting routine;

Computing Surveys, Vol. 8, No. 4, December 197t

Structured Programming with go to ,Statements

though it is slightly cleaner looking than the
method in my book, it is noticeably slower,
and we have nothing to fear by using a
slightly more complicated method once it
has been proved correct. Beautiful algo-
rithms are, unfortunately, not always the
most useful.

This is not the end of the Quicksort
story (although I almost wish it was, since
I think the preceding paragraph makes an
important point). After I had shown Ex-
ample 8 to my student, Robert Sedgewick,
he found a way to modify it, preserving
the randomness of the sub files, thereby
achieving both elegance and efficiency at
the same'time. Here is his revised program.

E x a m p l e 8a:

i := m - l ; j := n; v := A[n];
loop:

loop: i := i%1; w h i l e A[i] < v repeat;
loop: j := j - - l ; w h i l e A[j] > v r e p e a t ;

w h i l e i < j :
A[il := : A[jl;

repeat;
A[i] := : A[n];

(As in the previous example, we assume
that Aim-1] is defined and < A[n], since
the j pointer might run off the left end.)
At the beginning of the outer loop the in-
variant conditions are now

m - - l _< i < j < n;
A[k] < v f o r m - l _ < k < i ;
A[k] > v for j _< k < n;
A[n] = v.

It follows that Example 8a ends with

A [m] . . . A [i - 1] < v = A[i] _< A [i + I] . . . A [n]

and m < i < n; hence a valid partition has
been achieved.

Sedgewick also found a way to improve
the inner loop of the algorithm from my
book, namely:

i := m - - l ; j := n ; v := A[n];
loop:

loop: i := iq-1; w h i l e A[i] < v repeat;
A[j] := A[i]:
loop: j := j - - l ; w h i l e h [j] > v repeat;

w h i l e i < j :
A[il := A[j];

repeat;
i f i ~ j then j := j ~ l ;
A[j] := v;

• 2 8 9

Each of these programs leads to a Qnick-
sort routine that makes about 102~N In N
memory references on the average; the
former is preferable (except on machines
for which exchanges are clumsy), since it is
easier to understand. Thus I learned again
that I should always keep looking for im-
provements, even when I have a satisfactory
program.

Axiomatics of Jumps
We have now discussed many different
transformations on programs; and there are
more which could have been mentioned (e.g.,
the removal of trivial assignments as in [50,
exercise 1.1-3] or [54, exercise 5.2.1-33]).
This should be enough to establish that a
program-manipulation system will have
plenty to do.

Some of these transformations introduce
go to statements that cannot be handled
very nicely by event:indicators, and in
general we might expect to find a few pro-
grams in which go to statements survive.
Is it really a formidable job to understand
such programs? Fortunately this is not an
insurmountable task, as recent work has
shown. For many years,: the go to ~tatement
has been troublesome in the definition of
correctness proofs and language semantics;
for example, Hoare and Wirth have pre-
sented an axiomatic definition of PASCAL
[41] in which everything but real arithmetic
and the go to is defined formally. Clint and
Hoare [14] have shown how to extend this
to event-indicator go to 's (i.e., those which
don't lead into iterations or conditionals),
but they stressed that the general case
appears to be fraught with complications.
Just recently, however, Hoare has shown
that there is, in fact, a rather simple way
to give an axiomatic definition of go t o

statements; indeed, he wishes quite frankly
that it hadn't been quite so simple. For each
label L in a program, the programmer should
state a logical assertion a(L) which is to be
true whenever we reach L. Then the axioms

{a(L)} go to L {false}

plus the rules of inference

{~(L)} S{P} t- {a(L)} L:S {P}

Computing Surveys, Vol. 6, No. 4, December 1974

290 • Donald E. Knuth

are allowed in program proofs, and all
properties of labels and go to's will follow
if the a(L) are selected intelligently. One
must, of course, carry out the entire proof
using the same assertion a(L) for each
appearance of the label L, and some choices
of assertions will lead to more powerful
results than others.

Informally, a(L) represents the desired
state of affairs at label L; this definition
says essentially that a program is correct if
a(L) holds at L and before all "go to L"
statements, and that control never "falls
through" a go to statement to the following
text. Stating the assertions a(L) is analogous
to formulating loop invariants. Thus, it is
not difficult to deal formally with tortuous
program structure if it turns out to be
necessary; all we need to know is the "mean-
ing" of each label.

Reduction of Complication
There is one remaining use of go to for
which I have never seen a good replacement,
and in fact it's a situation where I still
think go to is the right idea. This situation
typically occurs after a program has made a
multiway branch to a rather large number
of different but related cases. A little com-
putation often suffices to reduce one case to
another; and when we've reduced one problem
to a simpler one, the most natural thing is
for our program to go to the routine which
solves the simpler problem.

For example, consider writing an interpre-
tive routine (e.g., a microprogrammed
emulator), or a simulator of another com-
puter. After decoding the address and fetch-
ing the operand from memory, we do a
multiway branch based on the operation
code. Let's say the operations include no-op,
add, subtract, jump on overflow, and uncon-
ditional jump. Then the subtract routine
might be

operand : = -- operand; g o t o a d d ;

the add routine might be

accum := accum -b operand;
tyme : = tyme ...I- 1;
g o t o n o o p ;

and jump on overflow might be

i f overflow
t h e n overflow : = f a l s e ; g o t o j u m p ;
e l s e g o t o n o o p ;
fi;

I still believe that this is the correct way to
write such a program.

Such situations aren't restricted to in-
terpreters and simulators, although the
foregoing is a particularly dramatic example.
Multiway branching is an important pro-
gramming technique which is all too often
replaced by an inefficient sequence of i f
tests. Peter Naur recently wrote me that he
considers the use of tables to control program
flow as a basic idea of computer science that
has been nearly forgotten; but he expects it
will be ripe for rediscovery any day now. I t
is the key to efficiency in all the best; corn-
priers I have studied.

Some hints of this situation, where one
problem reduces to another, have occurred
in previous examples of this paper. Thus,
after searching for x and discovering that
it is absent, the "not found" routine can
insert x into the table, thereby reducing the
problem to the "found" case. Consider also
our decision-table Example 4, and suppose
that each period was to be followed by a
carriage return instead of by an extra space.
Then it would be natural to reduce the
post-processing of periods to the return-
carriage part of the program. In each case, a
go to would be easy to understand.

If we need to find a way to do this without
saying go to, we could extend Zahn's event
indicator scheme so that some events are
allowed to happen in the t h e n . . , fl part
after we have begun to process other events.
This accommodates the above-mentioned
examples very nicely; but of course it can
be dangerous when misused, since it gives us
back all the power of go to. A restriction
which allows (statement list)~ to refer to
(event)j only for j > i would be less dan-
gerous.

With such a language feature, we can't
"fall through" a label (i.e., an event indi-
cator) when the end of the preceding code
is reached; we must explicitly name each
event when we go to its routine. ProI~fibiting

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with go to Statements • 291

"fall through" means forcing a programmer
to write "go to common" just before the
label "common:" in Example 7a; surpris-
ingly, such a change actually makes that
program more readable, since it makes the
symmetry plain. Also, the program fragment

s u b t r a c t : operand := - operand; go t o add;
add: accum := accum + operand;

seems to be more readable than if "go to
add" were deleted. I t is interesting to
ponder why this is so.

3. CONCLUSIONS

This has been a long discussion, and very
detailed, but a few points stand out. First,
there are several kinds of programming
situations in which go to statements are
harmless, even desirable, if we are program-
ming in ALGOL or PL/I . But secondly, new
types of syntax are being developed that
provide good substitutes for these harmless
go to's, and without encouraging a pro-
grammer to create "logical spaghetti".

One thing we haven't spelled out clearly,
however, is what makes some go to's bad
and others acceptable. The reason is that
we've really been directing our attentior~ to
the wrong issue, to the objective question
of go to elimination instead of the important
subjective question of program structure.
In the words of John Brown [9], "The act of
focusing our mightiest intellectual resources
on the elusive goal of go to-less programs
has helped us get our minds off all those
really tough and possibly unresolvable
problems and issues with which today's
professional programmer would otherwise
have to grapple." By writing this long
article I don't want to add fuel to the con-
troversy about go to elimination, since that
topic has already assumed entirely too much
significance; my goal is to lay that contro-
versy to rest, and to help direct the discus-
sion towards more fruitful channels.

Structured Programming
The real issue is structured programming,
but unfortunately this has become a catch
phrase whose meaning is rarely understood

in the same way by different people. Every-
body knows it is a Good Thing, but as
McCracken [64] has said, "Few people
would venture a definition. In fact, it is not
clear that there exists a simple definition as
yet." Only one thing is really clear: Struc-
tured programming is not the process of
writing programs and then eliminating their
go to statements. We should be able to
define structured programming without
referring to go to statements at all; then
the fact that go to statements rarely need
to be introduced as we write programs should
follow as a corollary.

Indeed, Dijkstra's original article [25]
which gave Structured Programming its
name never mentions go to statements at
all; he directed attention to the critical
question, "For what program structures can
we give correctness proofs without undue
labor, even if the programs get large?" By
correctness proofs he explained that he does
not mean formal derivations from axioms,
he means any sort of proof (formal or in-
formal) that is "sufficiently convincing";
and a proof really means an understanding.
By program structure he means data struc-
ture as well as contro[strueture.

We understand complex things by sys-
tematically breaking them into successively
simpler parts and understanding how these
parts fit together locally. Thus, we have
different levels of understanding, and each
of these levels corresponds to an abstraction
of the detail at the level it is composed from.
For example, at one level of abstraction, we
deal with an integer without considering
whether it is represented in binary notation
or two's complement, etc., while at deeper
levels this representation may be important.
At more abstract levels the precise value of
the integer is not important except as it
relates to other data.

Charles L. Baker mentioned this principle
as early as 1957, as part of his 8-page review
[2] of McCracken's first book on program-
ming:

Break the problem into small, self-contained
subroutines, trying at all times to isolate the
various sections of coding as much as possible
. . . [then] the problem is reduced to many
much smaller ones. The truth of this seems

Computing Surveys, Vol. 6, No. 4, December 19'I4

~ ~ ~ ~

292 • Donald E. Knuth

very obvious to experienced coders, yet it is
hard to put across to the newcomer.

Abstraction is easily understood in terms
of B N F notation. A metalinguistic category
like (assignment statement) is an abstrac-
tion which is composed of two abstractions
(a (left part list) and an (arithmetic expres-
sion)), each of which is composed of abstrac-
tions such as (identifier) or (term), etc. We
understand the program syntax as a whole
by knowing the structural details tha t relate
these abstract parts. The most difficult
things to understand about a program's
syntax are the identifiers, since their meaning
is passed across several levels of structure.
I f all identifiers of an ALGOL program wer~
changed to random meaningless strings of
symbols, we would have great difficulty
seeing what the type of a variable is and
what the program means, but we would
still easily recognize the more local features,
such as assignment statements, expressions,
subscripts, etc. (This inability for our eyes
to associate a type or mode with an identifier
has led to what I believe are fundamental
errors of human engineering in the design
of ALGOL 68, but that 's another story. M y
own notation for stacks in Example 6e
suffers from the same problem; it works in
these examples chiefly because t is lower
case and S is upper case.) Larger nested
structures are harder for the eye to see unless
they are indented, but indentation makes the
structure plain.

I t would probably be still better if we
changed our source language concept so that
the program wouldn't appear as one long
string. John McCar thy says "I find it diffi-
cult to believe that whenever I see a tree I
am really seeing a string of symbols." In-
stead, we should give meaningful names to
the larger constructs in our program that
correspond to meaningful levels of abstrac-
tion, and we should define those levels of
abstraction in one place, and merely use
their names (instead of including the de-
tailed code) when they are used to build
larger concepts. Procedure names do this,
but the language could easily be designed
so that no action of calling a subroutine is
implied.

From these remarks it is clear tha t se-
quential composition, iteration, and condi-
tional statements present syntactic struc-
tures tha t the eye can readily assimilate;
but a go to statement does not. The visual
structure of go to statements is like that of
flowcharts, except reduced to one dimension
in our source languages. In two dimensions
it is possible to perceive go to structure in
small examples, but we rapidly lose our
ability to understand larger and larger
flowcharts; some intermediate levels of
abstraction are necessary. As an under-
graduate, in 1959, I published an octopus
flowchart which I sincerely hope is the most
horribly complicated that will ever appear in
print; anyone who believes tha t flowcharts
are the best way to understand a program
is urged to look at this example [49]. (See
also [32, p. 54] for a nice illustration of how
go to 's make a P L / I program obscure, and
see R. Lawrence Clark's hilarious spoof
about linear representation of flowcharts by
means of a " c o m e f r o m s ta tement" [13].)

I have felt for a long time that a t~dent
for programming consists largely of the
ability to switch readily from microscopic
to macroscopic views of things, i.e., to change
levels of abstraction fluently. I mentioned
this [55] to Dijkstra, and he replied [29]
with an excellent analysis of the situation:

I feel somewhat guilty when I have suggested
that the distinction or introduction of "differ-
ent levels of abstraction" allow you to think
about only one level at a time, ignoring com-
pletely the other levels. This is not true. You
are trying to organize your thoughts; that is,
you are seeking to arrange matters in such a
way that you can concentrate on some portion,
say with 90% of your conscious thinking, while
the rest is temporarily moved away somewhat
towards the background of your mind. But
that is something quite different from "ignor-
ing completely": you allow yourself tem-
porarily to ignore details, but some overall
appreciation of what is supposed to be or to
come there continues to play a vital role. You
remain alert for little red lamps that suddenly
start flickering in the corners of your eye.

I asked t toare for a short definition of
structured programming, and he replied that
it is " the systematic use of abstraction to
control a mass of detail, and also a means of
documentation which aids program design."

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with go t o ~Stah~ments • 293

I hope that my remarks above have made
the abstract concept of abstraction clear;
the second par t of Hoare's definition (which
was also stressed by Dijkstra in his original
paper [25]) states tha t a good way to express
the abstract properties of an unwritten piece
of program often helps us to write that
program, and to "know" that it is correct
as we write it.

Syntactic structure is just one par t of the
picture, and B N F would be worthless if the
syntactic constructs did not correspond to
semantic abstractions. Similarly, a good
program will be composed in such a way
that each semantic level of abstraction has a
reasonably simple relation to its constituent
parts. We noticed in our discussion of
Jacopini's theorem that every program can
trivially be expressed in terms of a simple
iteration which simulates a computer; but
tha t iteration has to carry the entire be-
havior of the program through the loop, so
it is worthless as a level of abstraction.

An iteration statement should have a
purpose that is reasonably easy to state;
typically, this purpose is to make a certain
Boolean relation true while maintaining a
certain invariant condition satisfied by the
variables. The Boolean condition is stated
in the program, while the invariant should
be stated in a comment, unless it is easily
supplied by the reader. For example, the
invariant in Example 1 is tha t A[k] ~ x for
1 ~ /~ ~ i, and in Example 2 it is the same,
plus the additional relation Aim-k 1] = x.
Both of these are so obvious that I didn't
bother to mention them; but in Examples
6e and 8, I stated the more complicated
invariants that arose. In each of those cases
the program almost wrote itself once the
proper invariant was given. Note that an
"invariant assertion" actually does vary
slightly as we execute statements of the]oop,
bu t it comes back to its original form when
we repeat the loop.

Thus, an iteration makes a good abstrac-
tion if we can assign a meaningful invariant
describing the local states of affairs as it
executes, and if we can describe its purpose
(e.g., to change one state to another). Simi-
larly, an i f . - - t h e n - . - else - . - tl state-
ment will be a good abstraction if we can

state an overall purpose, for the statement
as a whole. !

We also need well-structured data; i.e.,
as we write the program we should have an
abstract idea of what each variable means.
This idea is also usually describable as an
invariant relation, e.g.,: "m is the number of
items in the table" or "x is the search argu-
ment" Or "L[t] is the number of the root
node of node t's left subtree, or 0 if this
subtree is empty" or "the contents of stack
S are postponed obligations to do such and
such".

Now let's consider the slightly more
complex case of an event-driven construct.
This should also correspond to a meaningful
abstraction, and our examples show what is
involved: For each event we give an (in-
variant) assertion which describes the situa-
tion which must hold when that event
occurs, and for the loop u n t i l we also give
an invariant for the loop. An event s tatement
typically corresponds to an abrupt change
in conditions so tha t a different assertion
from the loop invariant is necessary.

An error exit can be considered well-
structured for precisely t h i s \ r eason- - i t
corresponds to a situation that is~impossible
according to the local invariant assertions;
it is easiest to formulate assertions that
assume nothing will go ~ o n g , rather than
to make the invariants cover all contin-
gencies. When we jump out to an error exit
we go to another level of abstraction having
different assumptions.

As another simple example, consider bi-
nary search in an ordered array using the
invariant relation A[i] < x < A[j]:

l o o p w h i l e i ~ l < j ;
k := (i+j) + 2;
i f A[k] < x t h e n i :ffi k;
e l se i f A [k] > x t h e n j :ffi k;

e l se cannot preserve the invariant fi;
fi;

repeat;

Upon normal exit from this loop, the
conditions i -b l ~ j and A[i] < x < A[3]
imply that A[i] < x < A[i-kl], i.e., tha t x
is not present. If the program comes to
"cannot preserve the iinvariant" (because
x = A[k]), it wants to go to another set of
assumptions. The event-driven construct

Computing Surveys ~ol. 6, No. 4, December 1974

294 • Donald E. Knuth

provides a level at which it is appropriate
to specify the other assumptions.

Another good illustration occurs in Ex-
ample 6g; the purpose of the main i f state-
ment is to find the first node whose A value
should be printed. If there is no such t, the
event "finished" has clearly occurred; it is
bet ter to regard the i f s tatement as having
the stated abstract purpose without con-
sidering that t might not exist.

With go to Statements
We can also consider go t o statements from
the same point of view; when do they cor-
respond to a good abstraction? We've al-
ready mentioned tha t go to ' s do not have a
syntactic structure tha t the eye can grasp
automatically; but in this respect they are
no worse off than variables and other iden-
tifiers. When these are given a meaningful
name corresponding to the abstraction
(N.B. not a numeric label!), we need not
apologize for the lack of syntactic structure.
And the appropriate abstraction itself is an
invariant essentially like the assertions
specified for an event.

In other words, we can indeed consider
go to statements as par t of systematic ab-
straction; all we need is a clearcut notion of
exactly what it means to go to each label.
This should come as no great surprise. After
all, a lot of computer programs have been
written using go to statements during the
last 25 years, and these programs haven ' t
all been failures! Some programmers have
clearly been able to master structure and
exploit it; not as consistently, perhaps, as in
modern-day structured programming, bu t
not inflexibly either. By now, many people
who have never had any special difficulty
writing correct programs have naturally
been somewhat upset after being branded
as sinners, especially when they know per-
fectly well what they ' re doing; so they have
understandably been less than enthusiastic
about "structured programming" as it has
been advertised to them.

My. feeling is tha t it 's certainly possible
to write well-structured programs with go t o
statements. For example, Dijkstra 's 1965
program about concurrent process control

[24] used three go to statements, all of
which were perfectly easy to understand;
and I think at most two of these would
have disappeared from his code if ALGOL 60
had had a whi le statement. But go to is
hardly ever the best alternative now, since
bet ter language features are appearing. If
the invariant for a label is closely related to
another invariant, we can usually save com-
plexity by combining those two into one
abstraction, using something other than
go to for the combination.

There is also another problem, namely at
what level of abstraction should we introduce
a label? This however is like the analogous
problem for variables, and the general an-
swer is still unclear in both cases. Aspects
of data structure are often postponed, bu t
sometimes variables are defined and passed
as "parameters" to other levels of abstrac-
tion. There seems to be no clearcut idea as
yet about a set of syntax conventions, relat-
ing to the definition of variables, which
would be most appropriate to structured
programming methodology; but for each
particular problem there seems to be an
appropriate level.

Efficiency
In our previous discussion we concluded that
premature emphasis on efficiency is a big
mistake which may well be the source of
most programming complexity and grief.
We should ordinarily keep efficiency con-
siderations in the background when we for-
mulate our programs. We need to be sub-
consciously aware of the data processing
tools available to us, but we should strive
most of all for a program that is easy to
understand and almost sure to work. (Most
programs are probably only run once; and
I suppose in such cases we needn' t be too
fussy about even the structure, much less
the efficiency, as long as we are happy with
the answers.)

When efficiencies do matter, however, the
good news is tha t usually only a very small
fraction of the code is significantly involved.
And when it is desirable to sacrifice clarity
for efficiency, we have seen that it is possible
to produce reliable programs that can be

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with go t o Sta~ments

maintained over a period of time, if we start
with a well-structured program and then use
well-understood transformations that can be
applied mechanically. We shouldn't a t tempt
to understand the resulting program as it
appears in its final form; it should be thought
of as the result of the original program modi-
fied by specified transformations. We can
envision program manipulation systems
which will facilitate making and document-
ing these transformations.

In this regard I would like to quote some
observations made recently by Pierre-Arnoul
de Marneffe [19]:

In civil engineering design, it is presently a
mandatory concept known as the "Shanley
Design Criterion" to collect several functions
into one p a r t . . . If you make a cross-section
of, for instance, the German V-2, you find ex-
ternal skin, structural rods, tank wall, etc. If
you cut across the Saturn-B moon rocket, you
find only an external skin which is at the same
time a structural component and the tank
wall. Rocketry engineers have used the "Shan-
ley Principle" thoroughly when they use the
fuel pressure inside the tank to improve the
rigidity of the external skin! . . . People can
argue that structured programs, even if they
work correctly, will look like laboratory
prototypes where you can discern all the indi-
vidual components, but which are not daily
usable. Building "integrated" products is an
engineering principle as valuable as structur-
ing the design process.

He goes on to describe plans for a prototype
system that will automatically assemble
integrated programs from well-structured
ones that have been written top-down by
stepwise refinement.

Today's hardware designers certainly
know the advantages of integrated cir-
cuitry, but of course they must first under-
stand the separate circuits before the inte-
gration is done. The V-2 rocket would never
have been airborne if its designers had orig-
inally tried to combine all its functions.
Engineering has two phases, structuring and
integration; we ought not to forget either
one, but it is best to hold off the integration
phase until a well-structured prototype is
working and understood. As stated by Wein-
berg [93], the former regimen of analysis/
coding/debugging should be replaced by
analysis/coding/debugging/improving.

• 295

The Future
I t seems clear that lan~ages somewhat
different from those in existence today
would enhance the preparation of structured
programs. We will perhaps eventually be
writing only small modules which are iden-
tified by name as they are used to build
larger ones, so that devices like indentation,
rather than delimiters, might become feasible
for expressing local structure in the source
language. (See the discussion following
Landin's paper [59].) Although our examples
don' t indicate this, it turns out tha t a given
level of abstraction often involves several
related routines and data definitions; for
example, when we decide to represent a table
in a certain way, we simultaneously want to
specify the routines for storing and fetching
information from that table. The next gep-
eration of languages will probably take into
account such related routines.

Program manipulation systems appea~ to
be a promising future tool which will help
programmers to improve their programs, and
to enjoy doing it. Standard operating pro-
cedure nowadays is usually to hand code
critical portions of a routine in assembly
language. Let us hope such assemblers will
die out, and we will see several levels of
language instead: At the highest levels we
will be able to write abstract programs, while
at the lowest levels we will be able to control
storage and register allocation, and to sup-
press subscript range checking, etc. With an
integrated system it will be possible to do
debugging and analysis of the transformed
program using a higher level language for
communication. All levels will, of course,
exhibit program structure syntactically so
that our eyes can grasp it.

I guess the big question, although it really
shouldn't be so big, is whether or not the
ultimate language will have go to statements
in its higher levels, or whether go to will be
confined to lower levels. I personally
wouldn't mind having go to in the highest
level, just in case I really need it; but I prob-
ably would never use it, if the general
iteration and event constructs suggested in
this paper were present. As soon as people
learn to apply principles of abstraction

Computing Surveys, V01. 6, No. 4, December 1974

296 • Donald E. Knuth

consciously, they won't see the need for go
to , and the issue will just fade away. On the
other hand, W. W. Peterson told me about
his experience teaching P L / I to beginning
programmers: He taught them to use go t o
only in unusual special cases where i f and
whi le aren ' t right, but he found [78] tha t
"A disturbingly large percentage of the
students ran into situations that require
go to's, and sure enough, it was often because
whi le didn't work well to their plan, but
almost invariably because their plan was
poorly thought out ." Because of arguments
like this, I 'd say we should, indeed, abolish
go to from the high-level language, at least
as an experiment in training people to
formulate their abstractions more carefully.
This does have a beneficial effect on style,
although I would not make such a prohibi-
tion if the new language features described
above were not available. The question is
whether we should ban it, or educate against

i t ; should we a t tempt to legislate program
morality? In this case I vote for legislation,
with appropriate legal substitutes in place
of the former overwhelming temptations.

A great deal of research must be done if
we're going to have the desired language by
1984. Control structure is merely one simple
issue, compared to questions of abstract data
structure. I t will be a major problem to keep
the total number of language features within
tight limits. And we must especially look at
problems of inpu t /ou tpu t and data for-
matting, in order to provide a viable alterna-
tive to CoBoL.

A C K N O W L E D G M E N T S

I've benefited from a truly extraordinary amount
of help while preparing this paper. The individuals
named provided me with a total of 144 pages of
single-spaced comments, plus six hours of conver-

sation, and four computer listings:

Frances E. Mien
Forest Baskett
G. V. Bochmann
Per Brinch Hansen
R. M. Burstall
Vinton Cerf
T. E. Cheatham, Jr.
John Cocke
Ole-Johan Dahl
Peter J. Denning
Edsger Dijkstra
James Eve
K. Friedenbach
Donald I. Good
Ralph E. Gorin
Leo Guibas
C. A. R. Hoare
Martin Hopkins
James J. Homing
B. M. Leavenworth
Henry F. Ledgard

Ralph L. London
Zohar Manna
W. M. McKeeman
Harlan D. Mills
Peter Naur
Kjell Overholt
James Pe~erson
W. Wesley Peterson
Mark Rain
John Reynolds
Barry K. Rosen
E. Satterthwaite, Jr.
D. V. Schorre
Jacob T. Schwartz
Richard L. Sites
Richard Sweet
Robert D. Tennent
Niklaus Wirth
M. Woodger
William A. Wulf
Charles T. Zaha

These people unselfishly devoted hundreds of
man-hours to helping me revise the firstdraft; and
I'm sorry that I wasn't able to reconcile all of their
interesting points of view. In many places I have
shamelessly used their suggestions without an
explicit acknowledgment; this article is virtually
a joint paper with 30 to 40 co-authors! However,
any mistakes it contains are my own.

A P P E N D I X

In order to make some quanti tat ive esti-
mates of efficiency, I have counted memory
references for data and instructions, assum-
ing a multiregister computer without cache
memory. Thus, each instruction costs one
unit, plus another if it refers to memory;
small constants and base addresses are as-
sumed to be either par t of the instruction or
present in a register. Here are the code se-
quences developed for the first two examples,
assuming that a typical assembly-language
programmer or a very good optimizing com-
piler is at work.

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Programming with go to 81z~ ~nent~ 297

L A B E L I N S T R U C T I O N C O S T T I M E S

Example 1:

loop:

tes t :

notfound:

found:

r l ~-- 1 1
r2 ~ m 2
r3 ~ - x 2
t o tes t 1
A[rl]: r3 2
t o found i f = 1
r l ~- r l + l 1
r l : r2 1
t o loop i f _4 1
m + - r l 2
A[rl] ~-- r3 2
B[rl] ~-- 0 2
r4 ~-- B[rl] 2
r4 ~-- r 4 + l 1
B[rl] *- r4 2

1

1

1

1
n-a

n-a

n-1
n

n

a

a

1

1

1

L A B E L I N S T R U C T I O N C O S T T I M E S

Example 2: r2 ~-- m 2
r3 ~--x 2
A[r2+l] ~-- r3 2
r l ~--0 1

loop: r l ~-- r l + l 1
A[rl]: r3 2
to loop i f ~ 1
r l : r2 1
to found if < 1

notfound: m ~-- r l etc. as in Example I.

I
1
1
1
n
n
n
1
1

Computing Surveys, V01. 6, No. 4, Dee, ember 1974

298 * D o n a l d E . K n u t h

A t r a d i t i o n a l " 9 0 % eff ic ient c o m p i l e r " w o u l d r e n d e r t h e f i rs t e x a m p l e
as fo l lows :

L A B E L I N S T R U C T I O N C O S T T I M E S

Example 1: r l ~-- 1 1 1
to tes t 1 1

iner: r l ¢- i 2 n--1
r l ~-- r1+1 1 n--1

tes t : r l : m 2 n
t o notfound i f ~ 1 n
i ¢-- r l 2 n - a
r2 ~-- A[rl] 2 nn-a
r2: x 2 n - a
t o found i f -- 1 n - a
t o iner 1 n - 1

notfound: r l ~-- m 2 a
r l ~-- r l T 1 1 a
i 4- - r l 2 a
m c - r l 2 a
r l ~--x 2 a
r 2 ¢ - i 2 a
A[r2] ~-- r l 2 a
Bit2] ~-- 0 2 a

found: r l ~-- i 2 1
r2 ~-- B[rl] 2 1
r2 ~- r2W1 1 1
B[rl] ~- r2 2 1

4t
4t
4b ~t

* m e n t . *
46 4$

Answer to PL/I Problem, page 267.

T h e v a r i a b l e I is i n c r e a s e d b e f o r e F O U N D is t e s t ed . O n e w a y to fix
t h e p r o g r a m is t o i n se r t " I = I - F O U N D ; " b e f o r e t h e l a s t s t a t e -

BIBLIOGRAPHY

[1] ASHCROFT, EDWARD, AND MANNA, ZOHAR.
"The translat ion of 'go to ' programs to
'while ' programs," Proc. I F I P Congress
1971 Vol. 1, North-Hol land Publ. Co., Am-
sterdam, The Netherlands, 1972, 250-255.

[2] BAKER, CHARLES L. "Review of D. D. Mc-
Cracken, Digital co~rputer programming,"
Math. Comput. 11 (19M), 298-305.

[3] BAKER, F. TERRY, AND MILLS, HARLAN D.
"Chief programmer teams," Datamation 19,
12 (December 1973), 58-61.

[4] BARRON, D. W. Recursive techniques in
programming, American Elsevier, New
York, 1968, 64 pp.

[5] BAUER F L " A - h i " " / . . p Iosophy of program-
ruing,' Univers i ty of London Special Lec-
tures in Computer Science (October 1973):
Lecture notes published by Math. Inst . ,
Tech. Univ. of Munich, Germany.

[6] BERRY, DANIELM. "Loops with normal and
abnormal exi ts ," Modeling and Measure-
ment Note ~8, Computer Science Depart-
ment, Univ. California, Los Angeles, Calif.
1974, 39 pp.

[7] BOCHMANN, G . V . Multiple e x ' t s f r o m a
loop without the GOTO," Comm. A C M 16,
7 (July 1973), 443-444.

[8] B~HM, CORRADO AND JACOPINI, GUISEPPE.
"Flow-diagrams, Turing machines, and
languages with only two formation rules ,"
Comm. A C M 9, 5 (May 1966), 366-371.

Computing Surveys, Vol. 6, No. 4, December 1974

Structured Pregramming with go to Statements

[9] BROWN, JOHN R. "In m e m o r i a m . . . " , un-
published note, January 1974.

[10] BRUNO J., AND STIEGLITZ, K. "The expres-
sion of algorithms by charts," J. ACM 19,
3 (July 1972), 517-525.

[11] BURKHARD, W. A. "Nonrecursive tree tra-
versal algorithms," in Proc. 7th Annual
Princeton Conf. on Information Sciences and
Systems, Princeton Univ. Press, Princeton,
N.J., 1973, 403-405.

[12] CHEATHAM, T. E., JR., AND WEGBREIT, BEN.
"A laboratory for the study of automating
programming," in Proc. AFIPS 1972 Spring
Joint Computer Conf., Vol. 40, AFIPS Press,
Montvale, N.J., 1972, 11-21.

[13] CLARK, R. LAWRENCE. "A linguistic contri-
bution to GOTO-less programming," Data-
marion 19, 12 (December 1973), 62-63.

[14] GLINT, M., AND HOARE, C. A. R. "Program
proving: jumps and functions," Acta Infor-
matica 1, 3 (1972), 214-224.

[15] COOPER, D. C. "The equivalence of certain
computations," Computer J. 9, 1 (May
1966), 45-52.

[16] COOPER, D. C. "BShm and Jacopini's re-
duction of flow charts," Comm. ACM 10, 8
(August 1967), 463, 473.

[17] DAHL, O.-J., DIJKSTRA, E. W., AND HOARE,
C. A. R. Structured programming, Academic
Press, London, England, 1972, 220 pp.

[18] DARLINGTON, J., AND BURSTALL, R. M. "A
system which automatically improves pro-
grams," in Proc. 8rd Interntl. Conf. on Arti-
ficial Intelligence, Stanford Univ., Stanford,
Calif., 1973, 479-485.

[19] DE MARNEFFE, PIERRE-ARNOUL. "Holon
programming: A survey," Universite de
Liege, ~ervice Informatique, Liege, Bel-
gium, 1973, 135 pp.

[20] DIJKSTRA, E. W. "Recursive program-
ming," Numerische Mathematik 2, 5 (1960),
312-318.

[21] DIJKSTRA, E. W. "Programming considered
as a human act ivi ty," in Proc. IFIP Con-
gress 1965, North-Holland Publ. Co., Am-
sterdam, The Netherlands, 1965, 213-217.

[22] DIJKSTRA, E. W. "A constructive approach
to the problem of program correctness,"
BIT 8, 3 (1968), 174-186.

[23] DIJKSTRA, E. W. "Go to statement con-
sidered harmful," Comm. ACM l l , 3 (March
1968), 147-148, 538, 541.

[There are two instances of pages 147-148
in this volume; the second 147-148 is rele-
vant here.]

[24] DIJKSTRA, E. W. "Solution of a problem in
concurrent programming control," Comm.
ACM 9, 9 (September 1968), 569.

[25] DIJKSTRA, E. W. "Structured program-
ming," in Software engineering techniques,
J. N. Buxton and B. Randell [Eds.] NATO
Scientific Affairs Division, Brussels, Bel-
gium, 1970, 84-88.

[26] DIJKSTRA, E. W. "EWD316: A short intro-
duction to the art of programming," Tech-
nical University Eindhoven, The Nether-
lands, August 1971, 97 pp.

[27] DIJKSTRA, E. W. "The humble program-
mer," Comm. ACM 15, 10 (October 1972),
859-866.

[28] DIJKSTRA, E. W. "Prospects for a better
programming language," in High level lan-

• 2 9 9

guages, C. Boon [Ed]., ~.nfoteeh State of the
Art Report 7, 1972, 217~232.

[29] DIJKSTRA, E. W. persbnal communication,
January 3, 1973.

[30] DIJKSTRA, E. W. personal communication,
November 19, 1973.

[31] DIJKSTRA, E. W. personal communication,
• January 30, 1974.

[32] DONALDSON, JAMES'R. "Structured pro-
gramming," Datamation 19, 12 (December
1973), 52-54.

[33] DYLAN , Bos. Blonde on blonde, reeord album
produced by Bob John~ston, Columbia Rec-
ords, New York, March 1966, Columbia C2S
841.

[34] GILL, STANLEY. "Automatic computing: I ts
problems and prizes," Computer J. 8, 3
(October 1965), 177-189.

[35] HENDERSON, P. AND S~OWDON, R. "An ex-
periment in structured programming,"
BIT 12, 1 (1972),,~8~-5~. ,, _ . ,

[36] HOARE, C. A .R . Quicksort, Computer J.
5, 1 (1962), 10-15.

[37] HOARE, C. A. R. "An! axiomatic approach
to computer programming," Comm. ACM
12, 10 (October 1969!, 576-880, 583.

[38] HOARE, C. A. R. 'Proof of a program:
FIND," Comm. ACM 14, 1 (January 1971),
39-45.

[39] HOARE, C. A. R. "A note on the for s tate-
ment," BIT 12, 3 (1972), 334-341.

[40] HOARE, C. A. R. "Prospects for a better
programming language," in High level lan-
guages, C. Boon [Ed.], Infotech State of
the Art Report 7, 1972, 327-343.

[41] HOARE, C. A. R., AND WXRTH, N. "An axio-
matic definition of thb programming lan-
guage PASCAL," Ac~a ln~ormatiea 2, 4
(1973), 335-355. i

[42] HOARE, C. A. R. "Hints for programming
language design," COmputer Science re-
port STAN-CS-74-403, Stanford Univ.,
Stanford, Calif., January 1974, 29 pp.

[43] HOPKINS, M~R~IN E: "Computer aided
software design," in ~oftware engineering
techniques, J. N. Buxton and B. Randell
[Eds.] NATO Scientific Affairs Division,
Brussels, Belgium, 1970, 99-101.

[44] HOPKINS, MARTIN E, "A case for the
GOTO," ProP. ACM Annual Conference
Boston, Mass., August 1972, 787-790.

[45] HULL, T. E. "Would you believe structured
FORTRAN?" SIGNUM Newsletter 8, 4
(October 1973), 13-16. ~

[46] INGALLS, DAN. "The execution time pro-
file as a programming tool," in Compiler
optimization, 2d Courant Computer Sci-
ence Symposium, Randall Rustin [Ed.],
Prentice-Hall, Englewood Cliffs, N. J.,
1972, 107-128.

[471 KELLEY, ROBERT A., AND WAVrERS, JOHN
R. "APLGOL-2, a structured programming
system for APL," IBM Palo Alto Scientific
Center report 320-3318 i(August 1973), 29 pp.

[48] KLEENE, S. C. "Representation of events
in nerve nets," in Automata ~tudies, C. E.
Shannon and J. McCarthy [Eds.], Princeton
University Press, Princeton, N.J., 1956, 3-
40.

[49] KNUTH, DONALD E. "RUNCIBLE--Alge-
braie translation on a limited computer,"
Comm. ACM 2, 11 (November, 1959), 18-21.

Computing Surveys, Vol. i 6, No. 4. December 1~q4
i

300 • Donald E. Knu th

[There is a bug in the flowchart. The arc
labeled "2" from the box labeled "0:" in
the upper left corner should go to the box
labeledR~ ffi 8003.]

[50] KNUTH, DONALD E. Fundamental algorithms,
The art of computer programming, Vol. 1,
Addison-Wesley, Reading, Mass. 1968 2d
ed., 1973, 634 pp

[51] KNUTH, DONALD E. "An empirical s tudy of
FORTRAN programs,!' Software--Practice
and Experience 1, 2 (April-June 1971), 105-
133.

[52] KNUTH, DONALD E., AND FLOYD, ROBERT W.
"Notes on avoiding 'go to ' s tatements,"
Information Processing Letters 1, 1 (Febru-
ary 1971), 23-31, 177.

[53] KNUTH, DONALD E. "George Forsythe and
the development of Computer Science,"
Comm. ACM 15, 8 (August 1972), 721-726.

[54] KNUTH, DONALD E. Sorting and searching,
The art of computer programming, Vol. 3,
Addison-Wesley, Reading, Mass., 1973, 722

[55] ~NUTH, DONALD E. "A review of 'struc-
tured programming'," Stanford Computer
Science Department report STAN-CS-73-
371, Stanford Univ., Stanford, Calif., June
1973, 25 p p -

[56] KNUTH, DONALD E., AND SZWARCFITER,
JAYME L. "A structured program to gener-
ate all topological sorting arrangements,"
Information Processing Letters 2, 6 (April
1974) 153-157.

[57] KOSARAJU, S. RAO. "Analysis of structured
rograms," Proe. Fifth Annual ACM Syrup.
heory of Computing, (May 1973), 240-252;

also in J. Computer and System Sciences, 9,
3 (December 1974).

[58] LANDIN, P. J. "A correspondence between
ALGOL 60 and Church's lambda-notation:
part I , " Comm. ACM 8, 2 (February 1965),
89-101.

[59] LANDIN, P. J. "The next 700 programming
languages," Comm. ACM 9, 3 (March 1966),
157-166.

[60] LEAVENWORTH, B. M. "Programming
with(out) the GOTO," Proc. ACM Annual
Conference, Boston, Mass., August 1972, 782-
786.

[61] MANNA, ZOHAR, AND WALDINGER, RICHARD
J. "Towards automatic program synthesis,"
in Symposium on Semantics of Algorithmic
Languages, Lecture Notes in Mathematics
188, E. Engeler [Ed.], Springer-Verlag, New
York, 1971, 270-310.

[62] McCARTHY, JOHN. "Reeursive functions
of symbolic expressions and their compu-
tation by machine, part I , " Comm. ACM 3,
4 (April 1960), 184-195.

[63] MCCARTHY, JOHN. "Towards a mathemati-
cal science of computation," in Proc. IFIP
Congress 1962, Munich, Germany, North-
Holland Publ. Co., Amsterdam, The Nether-
lands, 1963, 21-28.

[64] McCRACKEN, DANIEL D. "Revolution in
• rogranmaing," Datamation 19, 12 (Decem-

er 1973), 50-52.
[65] McKEEMAN, W. M.; HORNING, J. J.; AND

WORTMAN, D. B. A compiler generator,
Prentice-Hall, Englewood Cliffs, N. J.,
1970, 527 pp.

[66] MILLAY, EDnA ST. VINCENT. "Elaine"; el.
Bart let t ' s Familiar Quotations.

[67] MILLER, EDWARD F., JR., AND LINDAMOOD,
GEORGE E. "Structured programming: top-
down approach," Datamation 19, 12 (De-
cember 1973)i 55--57.

[68] MILLS, H. D~ "Top-down programming in
• large systems," in Debugging techniques in

large systems, Randall Rustin [Ed.], Pren-
tice-Hall, Englewood Cliffs, N. J., 1971, 41-
55.

[69] MILLS, H. D. "Mathematical foundations
for structured programming," report FSC
72-6012, IBM Federal Systems Division,
Gaithersburg, Md. (February 1972), 62 pp.

[70] MILLS, H. D, "How to write correct pro-
grams and know i t , " report FSC 73-5008,
IBM Federal Systems Division, Gaithers-
burg, Md. (1973), 26 pp.

[71] NASSI, I. R., AND AKKOYUNLU, E. A. "Veri-
fication techniques for a hierarchy of con-
trol structures," Tech. report 26, Dept. of
Computer Science, State Univ. of New
York, Stony Brook, New York (January
1974), 48 pp.

[72] NAUR, PETER [Ed.] "Report on the al-
gorithmic language ALGOL 60," Comm.
ACM 3, 5 (May 1960), 299-314.

[73] NAUR, PETER. "Go to statements and good
Algol s tyle ," BIT 3, 3 (1963), 204-208.

[74] NAUR, PETER. "Program translation viewed
as a general data processing problem,"
Comm. ACM 9, 3 (March 1966), 176--179.

[75] NAUR, PETER. "An experiment on program
development," BIT 12, 3 (1972), 347-365.

{76] PAGER, D. "Some notes on speeding up
certain loops by software, firmware, and

w '~ " hard are means, in Computers and auto-
mata, Jerome Fox lEd.f, John Wiley & Sons,
1yew xork 1972, 207-213; also in IEEE
Trans. Computers, C-21, 1 (January 1972),
97-100.

[77] PETERSON, W. W.; KASAMI, T.; AND TOK-
UEA, N. "On the capabilities of whi le , re-
pea t , and exi t s tatements," Comm. ACM
16, 8 (August 1973), 503-512.

[78] PETERSON, W. WESLEY. personal communi-
cation, April 2, 1974.

[79] RAIN, MARK AND HOLAOER, PER. "The
present most recent final word about labels
in MARY," Machine Oriented Languages Bul-
letin 1, Trondheim, Norway (October 1972),
18-26.

[80] REID, CONSTANCE. Hilbert, Springer-Verlag,
New York, 1970, 290 pp.

[81] REYNOLDS, JOHN. "Fundamentals of struc-
tured programming," Systems and Info.
Set. 555 course notes, Syracuse Univ., Syra-
cuse, N.Y., Spring 1973.

[82] SATTERTHWAITE, E. H. "Debugging tools
for high level languages," Software--Practice
and Experience 2, 3 (July-September 1972),
197-217.

[83] SCHNECK, P. B., AND ANGEL, ELLINOR. "A
FORTRAN to FORTRAN optimizing com-
piler," Computer J. 16, 4 (1973), 322-330.

[84] SCHORRE, D. V. "META-II--a syntax-di-
rected compiler writing language," Proc.
ACM National Conference, Philadelphia,
Pa., 1964, paper D1.3.

Computing Surveys, Vol. 6, No. 4, December 197/4

Structured Programming with g o t o ,~tabynents

[85] SCHORRE, D. V. "Improved organization
for procedural languages," Tech. memo
TM 3086/002/00, Systems Development [94]
Corp., Santa Monica, Calif., September 8,
1966, 8 pp.

[86] SHIGO, O.; SHIMOMURA, T.; FUJIBAYASHI
S.; AND MAEJIMA, T. "SPOT: an experi- [95]
mental system for structured programming"
(in Japanese), Conference Record, Informa-
tion Processing Society of Japan, 1973. [96]

]Translation available from the authors,
Nippon Electric Company Ltd., Kawa-
saki, Japan.] [97]

[87] STRACHEY, C. "Varieties of programming
language," in High level languages, C. Boon
lEd.], Infotech State of the Art Report 7, [98]
1972, 345-362.

[~] STRONG, H. R. JR. "Translating recursion
equations into flowcharts," J. Computer and
System Sciences 5, 3 (June 1971), 254-285. [99]

[89] TEITELMAN, W. "Toward a programming
laboratory," in Software Engineering Tech-
niques, J. N. Buxton and B. Randall [Eds.],
NATO Scientific Affairs Division, Brussels,
Belgium, 1970, 137-149,~ N [100]

[90] TEITELMAN, W. et al. I TERLISP reference
manual," Xerox Pale Alto Research Center,
Pale Alto, Calif., and Bolt Beranek and [101]
Newman, Inc., 1974.

[91] WALKER, S. A., AND STRONG, I-I. a . "Char-
acterizations of flowchartable recursions,"
J. Computer and System Sciences 7, 4 (Au-
gust 1973), 404-447.

[92] WEGNER, EEF.RHARD. "Tree-structured pro- [102]
grams," Comm. ACM 16, 11 (November
1973), 704-705.

[93] WEINBERG, GERALD M. "The psychology of

• 801

improved prograr~ing: perf~mance,"
Datamation 17, 11 (November 1972), 82--85.
WIRTH, N. ¢'On certain basic concepts of
programming languages," Stanford Com-
puter Science Report CS 65, Stanford, Calif.
(May 1967), 30pp.
WIRTH, N. "PL 360,i a programming lan-
guage for the 360 computers," J. ACM 15,
1 (January 1968), 37-74.
WIRTH, N. "Pro g,ra~ development by step-
wise refinement, Comm. ACM 14, 4 (April
1971), 221-227.
WIRTH, N. "The programming language
Pascal," Aeta Info~natica 1, 1 (1971), 35-
63.
WULF, W. A. ; RUSSELL, D. B. ; ~ D HABER-
MANN, A. N. "BLISSi: A language for sys-
tems programming,'~ Comm. ACM 14, 12
(December 1971), 780~-790.
WULF, W. A. "Prog~nuning without the
goto," Information ~Pror~ssing 71, Prec.
IFIP Congress, Vol. 1, North-Holland
Publ. Co., Amsterdam, The Netherlands,
1971, 408-413.
WULF, W. A. "A case against the GOTO,"
Prec. ACM 197~ Annual Conference, Bos-
ton, Mass. (August 1972), 791-797.
WULF, W. A.; JOHNSON, RIeH~Rn K.; WEIN-
STOCK, CHARLES P.; AND HeRBs, STEVEN O.
"The design of an 4ptimizing compiler,"
Computer Science !Department report,
Carnegie-Mellon Univ., Pittsburgh, Pa.,
(December 1973), 103~pl~.
ZAHN, CHARLES T. "A control statement for
natural top-down structured program-
ming," presented atl Symposium on Pro-
gramming Languages~ Parrs, 1974.

Computing Surveys, VoL 6, No. 4, December 1974

