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SUMMARY
The paper describes a randomization procedure consisting in distributing
a deck of cards into 10 decks using random decimal digits and repeating this
step with each deck consisting of three or more cards. One random digit is
used for randomizing a deck of two cards. This procedure, which is
essentially a particular case of a general procedure described by Rao (1961),
is called the multistage randomization procedure, or MRP. Some appli­
cations are described. A recursive formula is given for the expected number
of random digits required by MRP for the randomization of n symbols. A
measure of the efficiency of a randomization procedure is presented. The
efficiency of MRP is compared with the efficiencies of two other random­
ization procedures, and it is proved that MRP has an asymptotic efficiency
of lOOper cent.

1. DESCRIPTION OF THE MULTISTAGE RANDOMIZATION PROCEDURE (MRP)
A SIMPLE procedure for the randomization of the integers 1,2, ... , n consists in
(1) writing these integers on cards, one on each, (2) distributing these cards into
10 decks, using random digits 1,2, ... , 9, 0, (3) repeating step (2) with each deck until
single cards or decks of two cards remain, (4) then randomizing each deck of two
cards using one random digit and the rule "keep the order if the digit is odd, otherwise
reverse the order", and (5) putting all randomized decks successively on top of a
result deck. We shall refer to this procedure as the multistage randomization
procedure, or MRP.

As an example consider a deck of 15 cards numbered 1,2, ... , 15, with number 1
on the top card. Using the 15 first digits on row 21 of page 23 of Kendall and Smith
(1939), i.e. the digits 4, 9, 8, 7, 9, 8, 3, 0, 2, 8, 2, 9, 9, 4 and 1, we put the first three
cards as bottom cards into decks Nos. 4, 9, 8, etc. Thus we get the following 10 "decks":

Deck number 2 3 4 5 6 7 8 9 10

Numbers
on cards

15
11
9 7

14
1

10
6

4 3

13
12
5
2 8

Due to chance two "decks" are empty. Deck No.1 contains only one card, so
this card will be the bottom card of the result deck. Deck No.2 contains two cards,
and these are randomized using the next random digit, which is 3. Since this is odd
we keep the order of deck No.2 and put it on top of the result deck. The latter deck
now consists of the cards numbered from top to bottom 11, 9 and 15. On top of these
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cards we next put deck No.3, i.e. the card numbered 7. To randomize deck No.4
we use the next digit which is 4. Hence we reverse the order of deck No.4 before
putting it on top of the result deck.

The next deck which needs to be randomized is No.8. Using the random digits
6, 1, 1 we get 10 "subdecks", as follows:

Subdeck number

Numbers
on cards 3

6

2 3 4 5 6 7 8 9 10

10

All of these subdecks except two are empty. We need an extra random digit to
randomize the first subdeck. We get the digit 2, and hence reverse the order of subdeck
1 before putting it on the result deck. Then the card numbered 10 is put on the
result deck.

Deck No.9 is distributed into subdecks using the random digits 0,6, 1,0, and thus
the cards numbered 2 and 13 appear in the tenth subdeck. Since the next random
digit is odd the card numbered 2 appears now on top of the result deck. Finally, the
card numbered 8 is put on the result deck.

The result deck will now have the 15 cards ordered as follows from top to bottom:

8,2, 13, 12,5, 10,6,3,4, 1, 14, 7,11, 9, 15.

It is advisable to mark the 10 deck numbers with particular cards and to put the
subdecks in a separate row along the first set of decks. If n is large, the number of
deck-rows needed will sometimes be so large that it is suitable to put aside the first
set of decks and then randomize each deck separately. By using a set of edge-punched
cards which can be easily ordered, subsets corresponding to the actual number of
integers can be taken out; the work of writing numbers on cards does not then have
to be repeated each time the procedure is applied.

Methods can be easily constructed that require on the average fewer random
digits than MRP, but instead such methods often require more thinking or more
computation than MRP.

2. ApPLICATIONS

MRP is particularly useful when randomizing large numbers of objects, but it
can also be used when drawing one or more large samples from a finite population.
Three applications will now be mentioned.

1. Randomization within blocks of fractional factorial experiments. Cochran and
Cox (1957) give tables of random permutations of 9 and 16 integers. Some of the
fractional factorial experiment designs published by the Statistical Engineering
Laboratory of the National Bureau of Standards (1957) and by Connor and Zelen
(1959) require, however, blocks with more than 16 units, the largest numbers of units
per block being 32, 64 and 128 for designs with factors at two levels, and 27, 81 and
243 for designs with factors at three levels.

2. Randomization, with replication, in work sampling. Suppose one wants to
randomize the order of k observations on each of m persons, i.e. together k.m
observations. This can be done by randomizing km cards consisting of k sets of cards
with each set numbered 1,2, ... , m.
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3. Sampling a large proportion of a finite population. Suppose a population of
150 objects is given and that a random sample of 50 objects is required. Suppose
also that the 50 sample objects do not have to be recorded in a random order. Using
a standard method based on 3-digit random numbers at least 150 random digits
will be required. Without considerably increasing this number the required sample
can be rapidly obtained by means of MRP. Only one of the 10 decks will have to be
split: the one containing the fiftieth card. The procedure can be improved. Since the
sizes of the first set of decks are independent of the numbers written on the cards,
one can make the choice of decks depend on their sizes. In this way one can often
reduce the size of the deck containing the fiftieth card.

3. MRP GIVES ALL PERMUTATIONS WITH EQUAL PROBABILITIES
In this section we shall prove that MRP gives each permutation of the n cards

with the probability l/(n I).
This statement holds for n = 1. On the assumption that it holds for 1,2, ... , n - 1

cards we show that it holds for n cards.
Consider one particular permutation al a2 ••• an of n cards. Let deck number 1

consist of the first nl of these cards, let deck number 2 consist of the next n2 cards
and so on, and let deck number 10 consist of the last n l O cards, where the largest
ni (i = 1, ... , 10) is less than n. The probability of getting, in step (2) of MRP, this
distribution over 10 decks, before randomizing the decks, is p", where p = 1/10.
Since step (2) is repeated if one of the ni equals n, the conditional probability of the
same distribution over decks, given that no deck contains n cards, is pn/(l-lOpn),
or pn/(l_pn-l).

The probability of getting the permutation al a2... an, of the nl cards of deck
number 1 is l/(nl !), since, by assumption, MRP gives equal chances to all permutations
of n - 1 or fewer cards. Similarly the probability of getting the permutation
an,+!an,+2' ... , an,+n. of the n2 cards of deck number 2 is 1/(n2 !) and so on. Hence
the probability of getting the permutation al a2 •• , an and ni cards in the ith deck
(i = 1, ... ,n) in step (2), given that not all n cards will appear in the same deck, is

pn 1
l_pn-l' nl!n2!'" nlO ! '

But the sum of all such probabilities over all possible sets of 10 decks with no ni
equal to n is (l/n!), since the sum over all ni' with no ni equal to n, of the multinomial
probability

n! n
" ,.pnl·n2· .. ·nlO·

equals 1-pn-l. This completes the proof.

4. THE EXPECTED NUMBER OF RANDOM DIGITS REQUIRED BY MRP
Due to the statistical nature of MRP the number of random digits required to

randomize n symbols is itself a random variable. In the present section the expected
value of this random variable is considered. This quantity is fairly easy to compute
for moderate sizes of n.

We shall denote by g(n, r) the expected value of random numbers required by a
generalized MRP for which a number system based on r symbols is used. Since
g(n, r) equals n plus the sum of the expected numbers for the r decks of step (2), which
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are all determined by the same binomial distribution, we get

(4.1)n ( ) (1' i ( l)n-ig(n,r)=n+ri~O 7 ,) 1-, g(i,r).

For our present procedure, where r = 10, we write g(n, 10) = g(n). Solving (4.1)
for r = 10, we get the recursion formula

(4.2)

(n = 0, 1)

(n = 2)

o
1

g(n) = I)
n+ 10 :~2 G(1/1O)i(9/1O)n-ig(i)

( / I (n~ 3).1- 1 lO)n

Values of g(n) for n = 2(1) 25(5) 50(10)100 are given in Table 1 (overleaf).

5. A MEASURE OF EFFICIENCY FOR RANDOMIZATION PROCEDURES

As a measure of the efficiency of any procedure for randomizing n (.» 1) different
symbols by means of random decimal digits such that each permutation will have
the same probability of appearing we shall use the quantity Eo defined as

E - 10gI0(n!) ( 1) (51)
o - Expected number of random decimal digits required n>. .

The choice of Eo is based on the following considerations. To choose at random
one of 10k arrangements, in restricted randomization, a set of k random digits is
necessary and sufficient. To choose one out of the n! possible arrangements of n
symbols the number of random digits, K, must be so large that 10K is not less than n!
Thus K cannot be less than logio(n !). Hence Eo~ 1. However, it is possible to construct
a randomization procedure, which with unlimited application gives an efficiency
arbitrarily close to 1. Suppose x independent randomizations of n symbols are
carried out, where x is a large number. Writing n! = N there are together NX possible
results of all these randomizations. We assume that all these results are ordered.
Let now y be an integer for which lOy> NX. If sets of y random digits are sampled
until a set corresponding to one of the NX randomizations is obtained then, according
to a well-known result in inverse sampling (see, for example, Olds (1940), formula (6),
with an infinite population), the expected number of sampled sets is liP, where
P = N/(lOY). Hence the expected number of random digits per randomization of n
symbols is y/(Px) or (y/x){lOY/(NX)}. Writing A for the latter quantity we now show
that A/logloN can be made arbitrarily close to 1. We first observe that there exists an
x-value, say xo, which is larger than Y]«, where e is an arbitrarily small positive
number, and a corresponding y-value, say Yo, such that the inequalities

(5.2)

hold. This follows from Theorems 7.10 and 7.11 of Niven and Zuckerman (1960),
if yo/xo is chosen as a convergent, of sufficiently large odd index, of the irrational
number 10gio N. Hence lOY,/NX' can be made arbitrarily close to 1, and the same
holds for yo/(xo10glO N). It follows that A/logl ON can be made arbitrarily close to 1.
Thus the efficiency attained in the corresponding xo randomizations can be made
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arbitrarily close to 1. The same holds for x randomizations, if x satisfies the inequalities
kxo< x ~ (k + 1)xo' provided k is a sufficiently large integer. For in this case the
x randomizations can be split up into k sets of Xo randomizations plus a residual set,

TABLE 1

The efficiencies of the three methods, MRP, ORP and MORP

Number of Expected number of random decimal Efficiency (per cent.)
symbols digits required by of

n MRP ORP MORP MRP ORP MORP

2 1·000 1·000 1·000 30·1 30·1 30·1
3 3-303 4·333 2·111 23·6 18'0 36·9
4 4·610 6·833 3·361 29·9 20·2 41·1
5 6'018 8·833 4·361 34·5 23·5 47'7

6 7'525 10·50 6·028 38·0 27'2 47-4
7 9·127 11'93 7·457 40·6 31·0 49·7
8 10·82 13-18 8·707 42·6 34'9 52·9
9 12·59 14'29 9·818 44·1 38·9 56·6

10 14'45 15'29 10·82 45·4 42·9 60·6

11 16·37 33·47 12·84 46·4 22·7 59·2
12 18'37 50'14 14·92 47-3 17·3 58·2
13 20·42 65·52 17·12 48·0 14·9 57·2
14 22'53 79·81 19·16 48·6 13'7 57·1
15 24·69 93·14 21·38 49·1 13·0 56·7

16 26·90 105·6 23·47 49·5 12·6 56·8
17 29·14 117·4 25·82 49'9 12·4 56·4
18 31·43 128·5 28·04 50·3 12-3 56·4
19 33'74 139·0 30·15 50·6 12-3 56'7
20 36·08 149·0 32·15 51·0 12-3 56·7

21 38·45 158·6 34·53 51-3 12-4 57·1
22 40·84 167·7 36·80 51·5 12·6 57·2
23 43'25 176·4 38·97 51·8 12·7 57·5
24 45-68 184·7 41·06 52·1 12-9 57-9
25 48'12 192'7 43·06 52·3 13·1 58'5

30 60·49 228'5 54·99 53-6 14·2 59·0
35 73·03 258·9 67·04 54·8 15·5 59·7
40 85-67 285·2 80·22 55·9 16·8 59·7
45 98·40 308·5 91·86 57'0 18·2 61·0
50 111·2 329·3 102·3 58·0 19-6 63'0

60 137·2 365·5 138·4 59·7 22-4 59·2
70 163-8 396'1 169·0 61·1 25·3 59·2
80 191·0 422·6 195·5 62·2 28·1 60·8
90 219'0 446'0 219·0 63·1 31·0 63-1

100 247·7 467·0 239·9 63-8 33-8 65·8

and for each of the k sets the efficiencycan be made arbitrarily close to 1, while for the
residual set the efficiency always can be made positive. We have thus shown that,
in a sufficiently large number of randomizations of n symbols, the efficiency can be
made arbitrarily close to 1.
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6. THE EFFICIENCY OF MRP COMPARED WITH THAT OF ANOTHER
SIMPLE RANDOMIZATION PROCEDURE

In this section MRP will be compared with another simple randomization
procedure, which can be described as follows. Suppose the number of symbols to be
randomized, n, satisfies the inequality

(6.1)

where s is an integer. The n symbols are numbered 1,2, ... , n. First (s+ I)-digit
random numbers are sampled until a number ~ n is obtained (a random number
consisting of s+ 1 zeros is read as 10S+1). The symbol with the same number is then
chosen as the first symbol of the random arrangement of the n symbols. The remaining
n-l symbols are renumbered 1,2, ... , n -1 (if necessary). Next random numbers are
sampled until a number not greater than n-l is obtained, and the corresponding
symbol is chosen as the second symbol of the random arrangement, etc. When the
number of remaining symbols is greater than 108-1 but not greater than 108 s-digit
random numbers are used. When the number of remaining symbols is greater than
108-2 but not greater than 108-1 (s-I)-digit random numbers are used, etc. When
two symbols remain only one l-digit random number is needed, as with MRP. If,
for example, n = 30 the first 20 symbols are sampled by means of 2-digit random
numbers, and the next 9 symbols are sampled by means of I-digit random numbers.

The sampling and renumbering can be made rapidly if the symbols are represented
by, for example, numbered metallic spheres which are placed between two parallel and
fixed rods, one of which has a scale on which the number of non-sampled spheres can
be read off exactly. When sampling a sphere one uses the numbers on the scale.
After sampling a sphere, the remaining ones are "renumbered", i.e. moved together
so that the length of the row of spheres is decreased by one unit. We shall refer to
this procedure as the one-stage randomization procedure, or ORP. It is developed
from the simplest one of the procedures described by Fisher and Yates (1943).

The expected number of random digits required by ORP can be determined using
inverse sampling and the formula

r
~ I/i=10ger+C+l/2r-B/8r2,
i=l

(6.2)

where C = 0·5772 ... is Euler's constant and Bis a number between 0 and 1 (cf. Cramer,
1946, section 12.2).

Suppose now that n = 108 + m, where s~ 1. Then the probability that an
(s+ I)-digit random number is not greater than n is n/(lOS+l). Hence the expected
number of(s+ I)-digit random numbers needed to sample the first symbol using ORP
is 1OS+1/n. Similarly, if i ~ m, the expected number of (s+ I)-digit random numbers
needed to sample the ith symbol using ORP is 10s+1/(l08+m-H 1). Hence the
expected number of random digits needed to sample the first m symbols is

(6.3)
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(6.4)

In the same way the expected number of random digits needed to sample the
next 108+1_ lOs symbols is approximately

io- S (log 10+ 2. ~Os 2 .1~s-I)'

The expected number of random digits required by ORP when randomizing n
symbols is given, without approximation, for n = 2(1) 25(5) 50(10) 100 in Table 1.
In the same table the efficiencies of MRP and ORP are given for the same set of
n-values. We find that the efficiency of ORP is much lower than that of MRP for
most of these n-values.

7. THE EFFICIENCY OF MRP COMPARED WITH THAT OF A FAIRLY
EFFICIENT ONE-STAGE PROCEDURE

In this section we consider a modification of ORP, here called MORP, which
coincides with one of the procedures suggested by Fisher and Yates (1943), except
that the number of digits constituting the random number is not held constant when
n is greater than 10. The procedure will be described for n = 38. To choose the first
symbol of the random arrangement we sample 2-digit random numbers until we get
one of the numbers 01-76, 76 being the largest integer multiple of 38 not exceeding
100. Suppose we get the random number 47. This number is divided by 38, giving the
residual 9. Then the ninth out of the 38 symbols is chosen. (A remainder equal to 0
is counted as 38 in this case.) When 10 or fewer symbols remain we sample l-digit
random numbers. When, for example, 4 symbols remain we sample I-digit random
numbers until we get one of the numbers 1-8, 8 being the largest integer multiple of
4 not exceeding 10, and so on.

From Table 1 it is seen that MORP gives a higher efficiency than MRP for most
of the n-values in the tables. However, MRP is much easier to apply than MORP,
at least for large values of n. .

8. THE ASYMPTOTIC EFFICIENCY OF MRP

In this section we show that the asymptotic efficiency of MRP, as n goes to 00,

is 100 per cent. For this purpose we first construct a family of upper bounds on g(n).
Consider the function

(8.1)

where we choose a, band c such that h1(n) = g(n) for n = 1, 2 and 3. Using (4.2) we
get the equation system

which has the solution

a+ b+c=O

4a+2b+c = 1

9a+3b+c = 109/33

a = 43/66, b = - 63/66, c = 20/66.

(8.2)

(8.3)

We now prove the inequality

hl(n)~g(n) (n=0,1,2, ... ). (8.4)
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and thus

Obviously (8.4) holds for n = 0, I, 2 and 3. Assuming that h1(j)~g(j) for
j = 1,2, ... , (n-I), we have, for n~ 3, using (4.2) and writing p instead of 1/10

n-1 (n)(l_pn-1)(h1(n) - g(n)) = (1-pn-1)h1(n)-n- 10 i~l i pi(l-p)n-i g(i) ~ A(n),

where A(n) = (l-pn-1)h1(n)-n-1O i~O G)pi(l-p)n-i(ai2+bHC)

+ IOpnh1(n)+ IOc(l-p)n

= h1(n)-n-lO(ap2n2+ap(l-p) n+bpn+ c)+ 10c(l-p)n

= (l-p)an2- (1+(I-p)a)n-9c+ lOc(l-p)n

or A(n) = 0·9an2- (1+0'9a)n-9c+ 1O(0·9n)c.

Now A(3) = O. Further, for real x,

dA(x)
----;IX = 0'9a(2x - I) - I + IOc(0'9X

) loge0·9.

Since 10geY<y-1 for Y > 0 and Y# I (see, for example, Hardy et al., 1934, p. 106),
we have that loge(l0/9) < 9-1, so that, for x> I,

0'9X1oge0·9> - 0'9X(9-1) > - 10-1•

dA(x)
Hence ~>0'9a(2x-I)-I-c for x>l,

dA(x)
----;]X>O for x~ 3.

It follows that h1(n)~g(n) for integer n~ 3, which completes the proof of (8.4).
We shall now prove that, for k = 1,2, ... and n = 0, 1,2, ... ,

g(n) ~ hk(n) = akn2+bkn+clc' (8.5)

where alc=lO-lc+l a, blc=k-I+(I-lO-lc+l)a+b and clc=lOlc-1C. (8.6)

We know that (8.5) holds for k = 1. Assuming that (8.5) holds with k-1 instead
of k we have, for n~ 3,

g(n) s n+ 10i~O G)pi(l-p)n-i hk-1(i). (8.7)

We now verify that the right member of (8.7) can be denoted by hin). In fact the
coefficient of n2 in the right member of (8.7) is

lOp2alc_1 = 1O-lalc_1 = lO-l(lO-lc+2a) = lO-k+l = ak'

Similarly bk and ck are verified. Thus (8.5) holds for n = 3,4, ... , and k = 1,2, ....
Using (8.3) we finally verify that (8.5) holds for n = 0, I and 2, and k = 1,2, ....

Now the efficiency of MRP is

E _ 10glO(n!)
0- g(n) . (8.8)
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(8.9)

Using Stirling's formula and (8.5) and (8.6) we get

E
(n+t)loglon-nlogloe

0> hk(n) .

For each n we now choose k such that

10glOn s k <1og10n+ 1. (8.10)

Hence hk(n) < lOa(n-l)+n(a+b+loglOn)+cn.

Thus Eo is larger than a quantity which has the limiting value 1, as n-+oo.
Hence MRP has the limiting efficiency100 per cent. It is easy to verify that neither

ORP nor MORP is asymptotically efficient.

9. NOTE ON A PROCEDURE SUGGESTED BY RAo
The author developed MRP in 1958. The present paper was almost completed

when the author learnt that Rao (1961) had presented a randomization procedure of
which MRP is essentially a particular case. Rao, whose method uses pen and paper
and who does not mention the use of cards, recommends a one-way classification for
n ~ 10, a two-way classification for 10< n ~ 100, and so on. A two-way classification
corresponds to 100 decks, and requires that two random digits are chosen at a time
at the step corresponding to distributing cards into decks. The efficiency of this
procedure is somewhat lower than that of MRP for n-values between 10 and 100,
but the difference decreases with increasing n in this interval. Thus the expected
number of random digits required by Rao's procedure for n = 11,50 and 100 is 22'55,
112·4 and 247'7, respectively.

10. A MODIFICATION OF MRP
All methods mentioned in the previous sections have rather low efficiencies for

small n, except MORP, and require one random decimal digit to randomize 2 symbols.
A simple way of improving MRP, without at the same time completely destroying its
simplicity, is to transform random decimal digits into random bits, i.e. random
binary digits. The following procedure is both simple and fairly efficient. Draw a
pair of random decimal digits. When a random decimal digit equals one of the
numbers 0-7 we get 3 random bits from it, and when it equals 8 or 9 we get 1 random
bit from it. Each time the pair gives together 4 random bits in this way we get a
fifth random bit by observing which of the decimal digits of the pair gives 3 bits.
Hence the expected number of random bits obtained from a pair of random decimal
digits equals (0'64)(6)+(0'32)(5)+(0'04)(2) = 5'52, or 2·76 per each decimal digit.
Thus in unlimited application of this method 1/2'76 = 0·36232 random decimal
digits are required, on the average, to randomize two symbols. This gives an efficiency
of 83·1 per cent. Using a supply ofrandom bits, obtained in this way, for step (4) of
MRP (cf. section 1), the expected number of random decimal digits required will be
5-10 per cent. lower for moderate sizes of n, as compared with MRP. Thus for
n = 3, 12 and 30 the gain will be about 5, 10 and 6 per cent., respectively.
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