
The Technical Development of
Internet Email

Craig Partridge
BBN Technologies

Development and evolution of the technologies and standards for
Internet email took more than 20 years, and arguably is still under
way. The protocols to move email between systems and the rules for
formatting messages have evolved, and been largely replaced at least
once. This article traces that evolution, with a focus on why things
look as they do today.

The explosive development of networked
electronic mail (email) has been one of the
major technical and sociological develop-
ments of the past 40 years. A number of
authors have already looked at the develop-
ment of email from various perspectives.1 The
goal of this article is to explore a perspective
that, surprisingly, has not been thoroughly
examined: namely, how the details of the
technology that implements email in the
Internet have evolved.

This is a detailed history of email’s plumb-
ing. One might imagine, therefore, that it is
only of interest to a plumber. It turns out,
however, that much of how email has evolved
has depended on seemingly obscure decisions.
Writing this article has been a reminder of
how little decisions have big consequences,
and I have sought to highlight those decisions
in the narrative.

Architecture of email
In telling the story of how email came to

look as it does today, we start by describing (in
broad strokes) today’s world, so that the steps
in the evolution can be marked more clearly.

Today’s email system can be divided into
two distinct subsystems. One subsystem, the
message handling system (MHS), is responsible
for moving email messages from sending users
to receiving users, and is built on a set of
servers called message transfer agents (MTAs).
The other subsystem, which we will call the
user agent (UA), works with the user to receive,
manage (e.g., delete, archive, or print), and
create email messages, and interacts with the
MHS to cause messages to be delivered.
Readers may recognize this terminology as
being roughly that developed by the X.400
email standardization process.

Each subsystem internally has a rich set of
protocols and services to perform its job. For
instance, the UA typically includes network
protocols to manage mailboxes kept on remote
storage at a user’s Internet service provider or
place of work. The MHS includes protocols to
reliably move email messages from one MTA to
another, and to determine how to route a
message through the MTAs to its recipients.

The UA and MHS must also have some
standards in common. In particular, they need
to agree on the format of email messages and
the format of the metadata (the so-called
envelope) that accompanies each message on
its path through the network.

The focus of this article is how these
different pieces incrementally came into being
and exploring why each one emerged and how
its emergence affected the larger email system.
In the interests of space, this survey stops
around the end of 1991. That termination date
leaves out at least four stories: (1) the develop-
ment of graphics-based user interfaces for
personal computers and the incorporation of
those interfaces into web browsers; (2) the rise
of UA protocols such as the Post Office Protocol
(POP)2 and IMAP3 (these protocols existed
prior to 1991, but much of their evolution
occurred later); (3) the continuing efforts to
further internationalize email (e.g., allowing
non-ASCI characters in email addresses); and
(4) the rise of unwanted email (dubbed
‘‘spam’’) and tools that sought to diminish it.
Furthermore, in the interests of space, I do not
consider the development of technical stan-
dards for the support of email lists.

First steps
Electronic mail existed before networks did.

In the 1960s, time-shared operating systems

IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/08/$25.00 G 2008 IEEE 3

developed local email systems delivering mail
between users on a single system.4 The
importance of this work is that email requires
a certain amount of local infrastructure. There
needs to be a place to put each user’s email.
There needs to be a way for a user to discover
that he or she has new email. By the early
1970s, many operating systems had these
facilities.

In July 1971, Dick Watson of SRI Interna-
tional published an Internet Request for
Comments5 (RFC-196) describing what he
called ‘‘A Mail Box Protocol.’’ The idea was to
provide a mechanism where the new Network
Information Center (NIC) could distributed
documents to sites on the Arpanet. Watson
described a way to send files (documents) to a
teletype printer, with different mailboxes for
different types of printers. Mailbox 0 was a
teletype

assumed to have a print line 72 characters

wide, and a page of 66 lines. The new line

convention will be carriage return (X90D9)

followed by line feed (X90A9) … The standard

printer will accept form feed (X90C9) as

meaning move paper to the top of a new

page.6

Ray Tomlinson of Bolt Beranek and New-
man (now BBN Technologies or BBN) read
Watson’s memo and reacted that ‘‘it was
overly complicated because it tried to deal
with printing ink on paper with a line printer
and delivered the paper to numbered mail-
boxes.’’7 In Tomlinson’s view, the correct
approach was to send documents to a user’s
electronic mailbox and let the user decide if
the document merited printing.8 So Tomlin-
son set out to see if he could send email this
way between two TENEX systems9 over the
Arpanet. His approach was simple.

TENEX already had an existing local email
program called SNDMSG,10 which, given a mes-
sage, appended that message to a file called
MAILBOX in a user’s directory. TENEX also had a
homegrown file transfer service called CPYnet
(written by Tomlinson). In a passive mode,
CPYnet listened at a particular address for
requests to read, write, or append to a particular
local file. Email was achieved by incorporating
CPYnet into SNDMSG. If SNDMSG was given a
message addressed to a user at a remote host, it
opened a CPYnet connection to the remote
host and instructed CPYnet to append the
message to the user’s mailbox on that host.

Users learned that they had received net-
work email the same way they learned they

had received local email. In TENEX, they got a
‘‘You have mail’’ message when they logged
in. Mail was read by viewing or printing the
mailbox file, usually with the TYPE command.
(Almost immediately, TYPE MAILBOX was
replaced with a TENEX macro READMAIL).
Messages were deleted by deleting the relevant
lines with a text editor.

Tomlinson made two important contribu-
tions. First, he found a way to express the
networked email address. He chose to use the
‘‘@’’ sign to divide the user’s account name
from the name of the host where the account
resided, resulting in the now ubiquitous
user@remote format.11 Second, SNDMSG was the
first MTA—it took a message and delivered it
(using the CPYnet protocol) to a remote user’s
mailbox.

Observe that the last contribution is a
surprise. We might imagine that the first
program was more of a user agent (UA) than
a message transfer agent (MTA). But SNDMSG

could only deliver mail, it could not receive
mail, and it delivered the email all the way to
the recipient’s mailbox. Therefore, SNDMSG was
much closer in spirit to an MTA (and, indeed,
as we shall see, was used as an MTA for a
number of years). At the same time, SNDMSG

was primitive. If there were multiple email
recipients on the same host, it copied the
message once for each recipient. If the remote
host was down, SNDMSG simply returned a
failure message—it made no effort to retrans-
mit.

Despite its primitive nature, Tomlinson’s
creation took off. The next few years saw it
mature from a fun idea to a central feature of
the Arpanet (and later the Internet).

From primitive to production
By late 1973, email was widely used on the

Arpanet. What happened after Tomlinson’s
experiment to make this happen? Obviously,
email met a need. But there were also technical
steps: standardization of the transfer protocol
and the development of user interfaces.

A standard transfer protocol

First, the community replaced CPYnet with
a standardized file transfer service, the first
generation of the File Transfer Protocol (FTP).
This process took a while. In 1971, FTP was
simply a set of rather complex ideas written up
in a set of RFCs by a team led by Abhay
Bhushan of the Massachusetts Institute of
Technology (MIT).12 The goal behind these
ideas was to create a general tool to manage
files (including deleting and renaming files) on

The Technical Development of Internet Email

4 IEEE Annals of the History of Computing

remote machines and to do it in a way that
met the needs of any envisioned application.13

At the same time, Dick Watson’s mailbox
idea was continuing to mature. In November
1971, a team including Watson proposed a
way to enhance (the still nascent) FTP with
an explicit MAIL command to support
appending a file to a mailbox. They further
proposed that email be simply ASCII strings
of text (no binary images) and that mailbox
numbers be replaced with text user identi-
fiers. The identifiers were ‘‘NIC handles.’’ NIC
handles were given out by the Network
Information Center to authorized network
users (and were used as login IDs on Arpanet
terminal servers, called TIPS). This idea, of
course, meant that every host would need to
maintain a table mapping NIC handles of
local users to the location of their mailbox
file. Retaining Watson’s original idea of acc-
essing a printer, the MAIL command could be
given the name ‘‘Printer’’ instead of a NIC
handle and the file would be printed.

Concurrently, Tomlinson distributed
SNDMSG to other TENEX systems and people
began to get hands-on experience with email.
TENEX was the most common operating system
on the Arpanet at the time, and so probably at
least half the Arpanet users had access to
SNDMSG.

In April 1972, most of the interested parties,
including both Tomlinson and Watson, met at
MIT to discuss revisions to the File Transfer
Protocol. The meeting made several decisions,
at least one of which proved to have a long-
term impact: the group agreed to use text
(ASCII) commands and replies (previous ver-
sions of FTP had used binary commands) to aid
interactive use.14 To this day, the Internet uses
text commands to transfer email (and the
tradition lives on in much later protocols, such
as the Web’s transfer protocol, HTTP). A new
version of the FTP specification, based on these
ideas and written by Bhushan, came out in
July 1972.15

The new specification envisioned that email
would be delivered via the APPEND command,
which appended data to a file. Discussions
about FTP and email continued, however, and
a month later, Bhushan issued a revision to the
FTP specification16 to include a new com-
mand, MLFL (Mail File). It is said Bhushan
came up with MLFL because, one evening
while he was writing the revision, a fellow
graduate student at MIT stopped by to suggest
that a better solution was required for email.17

MLFL took one argument, a user id, which
could either be a NIC handle or a local user

name (local to the remote host). The user id
could also be left out, in which case the mail
was to be delivered to a printer. After the MLFL
command was accepted, the email file was
transmitted over an FTP data channel (with
the end of the file indicating the end of the
message). The file was required to be in ASCII.
A separate copy of the file was sent for each
recipient at a host.

MLFL was an important step. A key flaw in
Tomlinson’s prototype email was that you had
to know where in the receiving host’s file
system a user’s mailbox was located, so that
you could append to it.18 This limitation
probably explains why most of the email
activity in 1971 and 1972 appears to have
taken place between TENEX systems, where the
file name for the mailbox was consistent.
MLFL adopted Watson’s notion that mailbox-
es are symbolic names that the receiving
system translates into an appropriate user
mailbox file and thereby freed email from
system-specific limitations.

An interactive command, MAIL, was also
defined, so that users logged into a TIP could
type in an email message using only FTP’s
control connection. In this case, a line with a
single dot (‘‘.’’) on it marked the end of the
message. Ending a message with a single dot is
still how email is moved over the Internet today.

The MAIL—and, more important, MLFL—
commands remained the way email was
delivered between systems for several years.

In the fall of 1972, Bob Clements of BBN
updated SNDMSG to use the new commands.
Several other email-cognizant FTP implemen-
tations appeared. The most notable is probably
the system for MIT’s Multics. Ken Pogran
wrote the FTP implementation and Mike
Padlipsky wrote the NETML program that
handled email.19 Multics was exceptional for
the time because it had good security includ-
ing user file privileges, so Padlipsky had to
invent a special user (ANONYMOUS) to receive
email and distribute it to users.20 The concept
of an anonymous login account caught on as a
way to permit FTP access to users who did not
have an account and remains a central feature
of FTP to this day.

First user agents

The second development of 1972 and 1973
was the creation of tools to create and manage
email. Here the center of innovation was
within the Advanced Research Projects Agency
(ARPA) itself. Larry Roberts, head of the ARPA
office funding Arpanet, was an early and
aggressive user of email. Early in 1972, Stephen

April–June 2008 5

Lukasik, the head of ARPA, also began using
email and that induced a number of others,
including the ARPA department heads, to use
email too.21

Soon Lukasik became frustrated with READ-
MAIL, which forced him to read through all
the messages in his mailbox in order. Lukasik
liked to keep copies of email he received,
which made the problem worse. He appealed
to Roberts for something better.

One night in July, Roberts wrote a tool
using macros for the TECO (Text Editor and
COrrector22) text editor to manage a mail-
box.23 The tool was dubbed RD. RD made it
possible to list the messages in the mailbox, to
pick which message to read next, and to print
individual messages.

Roberts’ colleague at ARPA, Barry Wessler,
promptly rewrote RD as a standalone program
in the programming language SAIL and added
additional features for usability. Improve-
ments in Wessler’s ‘‘New RD’’ or NRD included
the ability to manage more than one file of
messages, and mechanisms to file, retrieve,
and delete messages. RD and NRD were the
first mailbox management tools, the first true
user agents.

Wessler’s NRD was not distributed outside
ARPA. (RD was.) In early 1973, Martin Yonke
was a graduate student intern at the University
of Southern California’s Information Sciences
Institute (ISI) and looking for something to do.
Steve Crocker of ARPA gave Yonke a copy of
Wessler’s code (which ran on TENEX) and
suggested Yonke look at improving it. Yonke
added command completion (type the first
letter or two of a command and the rest of the
name would be filled in) and a help interface.
A user could type a question mark in most
places in a command to learn what the choices
were. The revised NRD was dubbed BANANARD.24

(At the time, ‘‘banana’’ was technical slang for
‘‘cool’’ or ‘‘better’’.) Yonke distributed and
maintained BANANARD for a bit less than a year
although it remained in use for several years
more.

Among the amusing stories from that year,
one concerned mailbox sizes: BANANARD kept an
index of messages in a file, so Yonke had to
estimate how big the index (which was read
into memory) might be. Yonke estimated the
largest possible mailbox size, doubled that,
and concluded that assuming a mailbox was
never larger than 5,000 messages was safe.
Within a few months, Steve Crocker exceeded
the limit. So did John Vittal.25

One challenge in RD and NRD was the lack
of a standard format for email messages.

Headers varied. It was hard to find where one
message ended and the next one started.
Wessler remembers trying to get NRD to find
the start of headers, but it was too hard because
messages routinely had other messages em-
bedded in them. Therefore, NRD (and RD and
BANANARD) relied on the receiving system to
place a start-of-message delimiter before each
message in the mailbox.26 The delimiter had
four SOH (Start Of Header, also known as
Control-A) bytes followed by information
about the message (initially just a byte count,
later somewhat more information).27 In one of
those odd quirks, part of the start-of-message
delimiter has lived on. While some present-
day email systems parse for a header, others
still expect messages separated by a line with
four consecutive SOH bytes.

Transitions

In March 1973, another meeting of people
working on FTP was held, to try to clarify issues
lingering from the April 1972 meeting. It
marked a subtle transition.

Originally, clarifying and improving the
support for email in FTP was part of the
agenda.28 Yet the meeting was ambivalent
about the relationship between FTP and email.
Prodded by a late-in-the-meeting arrival of
ARPA’s Steve Crocker, who asked how they
were doing on email support, the group
decided to formally incorporate the MLFL
and MAIL commands into the new specifica-
tion29 (recall that the commands had previ-
ously been in a separate addendum). Between
the meeting and the issuances of the new FTP
specification, it was decided that email should
really be a separate, auxiliary protocol.30 Email
had become important (or complex) enough
to merit distinction.

One challenge in RD and

NRD was the lack of a

standard format for email

messages. Headers varied.

It was hard to find where

one message ended and

the next one started.

The Technical Development of Internet Email

6 IEEE Annals of the History of Computing

Second, the community was shifting. Al-
though both meetings had over 20 attendees,
they were different sets of people. Only five
people31 attended both meetings.32 Abhay
Bhushan, who had been driving the develop-
ment of and writing the specifications for FTP,
would soon move on to other things. Nancy
Neigus of BBN wrote the new FTP specifica-
tion.

The research focus was also changing. By
year’s end, Larry Roberts (probably email’s
most important early adopter) would leave
ARPA, and under his successor, Bob Kahn,
ARPA’s networking focus would change to
developing networks over media other than
telephone wires (e.g., satellites and radios) and
the problems of interconnecting those net-
works.

Finally, at least from a standards perspec-
tive, the protocol for delivering email enters a
kind of limbo. The auxiliary protocol specifi-
cation for email envisioned in the new FTP
specification never appeared. After three years,
Jon Postel wrote a two-page memo that never
appeared online, documenting the, by then
well-established, practice of using MAIL and
MLFL. The memo suggests some sites had not
bothered to update their FTP from before the
1973 FTP meeting.33 There were multiple
attempts to allow FTP to send a single copy
of a message to multiple recipients. All of them
apparently failed.34 It would take seven years
from the FTP meeting before the community
seriously returned to the problems of a new
email protocol.35 Innovation over the next few
years would come from user agents and a long-
running debate over the format of email
messages, especially email headers.

Rise of the user agent
In early 1974, John Vittal worked in the

office next door to Martin Yonke’s office at ISI.
Vittal had helped Yonke with BANANARD, and
about the time Yonke stopped working on
BANANARD so he could finish his graduate
degree, Vittal took a copy of the code and
began to think about building an improved
user agent.

MSG

Vittal called his new program MSG. In it
he sought to write a user agent that was simple
yet did all the things a user needed it to do. It
had roughly the same functionality as BANA-

NARD, but the structure of its commands reflect-
ed feedback Vittal sought out from users about
how they wanted to manage their email. MSG
was a personal effort by Vittal (writing code on

nights and weekends), and when he left ISI for
BBN in 1976, he took MSG with him.

MSG was, in fact, surprisingly simple. It was
a stand-alone program with its own set of
commands. There were just 30 commands,
named such that their first letter uniquely
identified all but six. Combined with a
command-completion scheme, this usually-
unique-on-first letter approach permitted con-
cise typing by experienced users. (Many early
computer users were hunt-and-peck typists, so
keeping commands to a letter or two in length
was a big time-saver.)

Of these 30 commands, several were new
from BANANARD. Some were minor, such as a
command to toggle the user interface between
a concise and a verbose mode. However, three
commands reflect important changes:

N Move reflected Vittal’s attention to user
behavior. He noticed that one of the most
common activities was to save a message in
a file and then delete the message from the
inbound mailbox. Vittal created the com-
bined Save/Delete command, Move.

N Answer (now usually called ‘‘reply’’) is
widely held to be Vittal’s most insightful
and important invention. Answer exam-
ined a received message to determine to
whom a reply should be sent, then placed
these addresses, along with a copy of the
original SUBJECT field, in a responding
message. Among the challenges Vittal had
to solve were the varying email-addressing
standards and what options to give a user
(reply to everyone? reply only to the sender
of the note?). It took three implementa-
tions to get right.36

N The wonder of Answer is that it suddenly
made replying to email easy. Rather than
manually copying the addresses, the user
could just type Answer and Reply. Users at
the time remember the creation of Answer
as transforming—converting email from a
system of receiving memos into a system
for conversation. (There are anecdotal
reports that email traffic grew sharply
shortly after Answer appeared.37)

N Forward provided the mechanism to send
an email message to a person who was not
already a recipient. How much of an
innovation Forward was is unclear. Barry
Wessler had to struggle with messages
embedded in messages in NRD. But the
formalization of the idea was new.

MSG became the Arpanet’s most popular user
agent and remained so for several years.

April–June 2008 7

Hermes and MH

About the same time Vittal was starting
work on MSG, Steve Walker at ARPA created a
new committee called the ‘‘Message Services
Committee,’’ charged with thinking about
email issues. Its focus was on user agents (Al
Vezza of MIT remembers a push to get user
agents to support command completion) and
email headers. In the summer of 1975, Walker
also created the MsgGroup mailing list, to
encourage greater discussion.38

Motivating these efforts was an ARPA
program called the Military Message Experi-
ment (MME) to make email into a useful
service to the military. As part of this program,
between 1975 and 1979, ISI, BBN, and MIT (in
an advisory role) sought to create user agents
designed for the needs of the military. The
initial goal was a system for personnel at the
office of the Navy Commander in Chief for the
Pacific (CINCPAC).39 In a related effort, RAND
Corporation was funded to develop a Unix
email user agent.40

Hermes (a BBN project) and MH (at RAND)
were products of this program. Another sys-
tem, called SIGMA, was developed by ISI for
CINCPAC but never used elsewhere. They illus-
trate some of the diversity of user agents of the
time. (An interesting side note is that John
Vittal worked on both SIGMA and Hermes,
while continuing his work on MSG. So Vittal’s
personal project was competing with the in-
house official product. At both ISI and BBN,
MSG won.)

Hermes was designed for an office (or
command) environment where much of the
email received was kept for reference. It
contained a sophisticated set of mechanisms
for filing and searching for messages, including
a database that recorded key fields from each
message to make searches fast. Hermes also
provided a high degree of customization.
Readers could create a template of how
messages should be displayed, how they should
be printed, and even how they should be
created (what fields a user should be prompted
for). To support this customization, Hermes
had a per-user configuration file (called a
profile) remembered as having been large and
complex, though documentation suggests it
was far simpler than the MH profile file became
by the mid-1980s.41 Initially known as the
MAILSYS project, the Hermes team at various
times included Jerry Burchfiel, Ted Meyer,
Austin Henderson, Doug Dodds, Debbie
Deutsch, Charlotte Mooers, and John Vittal.

MH (‘‘Mail Handler’’) was the successor and
response to an earlier RAND system, called MS.

MS was a user agent for the Unix operating
system (apparently the first Unix user agent).
MS was funded by Steve Walker at ARPA and
was created by William Crosby, Steven Tepper,
and Dave Crocker.42 MS’s defining character-
istic appears to have been that it supported
multiple user interfaces, including one that
sought to mimic a Unix command shell and
another that mimicked MSG.

Soon after MS was working in 1977, Stock
Gaines and Norm Shapiro of RAND wrote an
internal memo suggesting that MS was incon-
sistent with the style of other Unix pro-
grams.43 Unix encouraged the use of many
small programs, each of which did something
well and creating metaprograms by combining
the small programs together using a mecha-
nism called ‘‘pipes.’’44 Gaines and Shapiro
suggested the same approach for email: a set
of small programs that managed email, where
email messages were stored as separate files in
a user’s directory.

Two years after the memo, a new RAND
employee, Bruce Bordon, was assigned to
upgrade MS. He recommended to his manage-
ment that rather than upgrade MS, he should
implement Gaines and Shapiro’s idea. The
result was MH.

The virtue of MH is that it makes email part
of the user’s larger environment.45 Output of
email display programs can be filtered through
search programs such as grep or simply sent to
the printing program. MH, in some ways
anticipated today’s world, where clicking on
an attachment opens the correct program.
Culturally, in Unix, rather than clicking on an
attachment, one pipes data from one program
to the next to produce the desired result.

Because MH puts every message in a
separate file in a folder (directory), it is easy
to manipulate both individual messages and
folders. Accordingly, MH (unlike MS46) has
powerful tools to sort folders and to search,
mark, and label messages.

Through most of the 1980s, MH was
maintained by Marshall Rose, with help from
a number of people, most notably John
Romine, Jerry Sweet, and Van Jacobson.47

Others have picked up the task since and MH
(much evolved in its code, but still recogniz-
able as Bordon’s suite of programs) continues
to be widely used today.

Message formats and headers
When Ray Tomlinson sent his email be-

tween TENEX systems, he used a format similar
to a business memo. But there was no standard
format for email messages and creating and

The Technical Development of Internet Email

8 IEEE Annals of the History of Computing

revising standards for email message formats
would consume a tremendous amount of
effort over the next several years.

First message format standard

Abhay Bhushan, Ken Pogran, Ray Tom-
linson, and Jim White (of SRI) took the first
step to standardize email headers in RFC-561,
published in September 1973.48 Their proposal
was mild. Every email message should have
three fields (FROM, SUBJECT, and DATE) at the
start. Additional fields were permitted, one per
line, with each line starting with a single word
(no spaces) followed by a colon (:). The end of
this header section was marked by a single
blank line, after which came the contents of
the message.

The proposed standard was forward looking
even as it lacked some basic features. The
ability to make any word into a header field
was progressive and left plenty of room for
experimentation. The date field was surpris-
ingly precise, specifying the time to the
minute and the time zone. The blank line
after the header remains a feature of email
today. Yet there was no TO field, so a recipient
wouldn’t necessarily know who else was to
receive the message, and, while use of the @
sign was already common, the address format
required using the word ‘‘at,’’ as in TOMLIN-
SON AT BBN-TENEX, with the odd conse-
quence that for several years, people would
send emails using ‘‘at’’ in the FROM (and soon,
TO) field and yet within the message itself list
their email address with an ‘‘@.’’

Partial progress

In 1975, a team of people working on email
systems at BBN sought to update RFC-561 with
RFC-680.49 The work was produced under the
auspices of ARPA’s Message Services Commit-
tee.50 The RFC authors were Ted Meyer and
Austin Henderson, but email on the
MsgGroup mailing list suggests Charlotte
Mooers51 also played a major role. RFC-680
set out to document a large number of fields,
many of which were already in widespread but
informal use, and to standardize their formats
in a way that computer programs (e.g., user
agents) could easily parse.

That the header standard needed updating
was becoming increasingly clear. Jack Haverty
offered the following example from his time
maintaining the MIT-ITS mailer.

[A] field like ‘‘To: PDL, Cerf@ISIA’’ was
ambiguous was ‘‘PDL’’ really ‘‘PDL@ISIA’’
(picking up the host from the end of the

line)? Or was it ‘‘PDL@MIT-DMS’’ (picking up
the host from the ‘‘From: JFH@MIT-DMS’’
elsewhere in the header)?

Various mail programs adopted different
such ‘‘abbreviations’’ which drove me crazy.
… To handle all of this protocol chaos, I wrote
(and rewrote, and tweaked) a sizable (for a
LISPish world) chunk of code to try to deduce
the precise meaning of each message header
contents and semantics based on where the
message came from. Different mail programs
had different ideas about the interpretation of
fields in the headers.

That code first tried to figure out where an
incoming message had come from. This was
not so obvious as it might seem because of
redistribution and forwarding of messages,
and differences in behavior of various versions
of the other guy’s software. So it wasn’t
enough to just look to see if you were talking
to MIT-MULTICS. I remember having condi-
tional clauses that in essence said ‘‘If I see a
pattern like such-and-such in the headers, this
is probably a message from version xx.yy of
Ken Pogran’s Multics mailer.’’ With enough
such tests, it formed an opinion about which
mail daemon it was talking with, and which
mail UI program had created a message.

Having hopefully figured out the other
guy’s genealogy (and therefore protocol dia-
lect), the code then acted based on a painfully
collected set of observations about how that
system behaved.52

RFC-680 is notable for documenting the
increase in header fields that had taken place
over two years. It defined a number of widely
used but not standardized header fields,
including most notably, the TO field, but also
CC (carbon copy), BCC (blind carbon copy), IN-
REPLY-TO, SENDER, and MESSAGE-ID. Introduction
of the TO field meant a format needed to be
chosen for sending to multiple recipients. The
proposal called for multiple email addresses in
a field separated by commas. The RFC also
documented the use of @ instead of ‘‘at.’’

RFC-680 was a clear step forward from RFC-
561. Still, RFC-680 had limitations. It was
based on practices on TENEX systems, which
were not always representative of the Arpanet
community as a whole. (For example, the
decision to separate addresses in the TO field
with commas was a TENEX convention.) Its
syntax had bugs (it unintentionally permitted
‘‘@’’ and comma in mailbox names). Further-
more, pragmatically, RFC-680, while intended
to become a standard, was never officially
issued as a standard.53

In addition, RFC-680 revealed a philosoph-
ical split between members of the Message
Services Committee. The MIT members (Vezza

April–June 2008 9

and Haverty) felt email headers were primarily
of use to the email handling programs and
should be designed to be machine-readable.
Others felt that headers should focus on being
human readable. RFC-680 tried to strike a
compromise, which apparently pleased nei-
ther side.54

The result was confusion. Some sites up-
dated their mailers to conform to RFC-680
while others continued to follow RFC-561.

A new standard

Sometime in 1976, the Message Services
Committee was replaced by the ARPA Com-
mittee on Human-Aided Communication.55

One of the new committee’s early actions was
to seek to clarify the state of standards for
email message formats. A vigorous email
discussion on the Header-People mailing list
in the fall of 1976 led to a new proposed
standard in RFC-724 (‘‘Proposed Standard for
Message Format’’) written by Ken Pogran
(MIT), John Vittal (now at BBN), Dave Crocker,
and Austin Henderson.56 It came out in early
1977.

The RFC-724 authors, like the RFC-680
authors, sought mostly to document current
practice. Vittal nicely summarized the goals as:

to take RFC680 plus what we felt were things

which people were already doing that were

useful to most, take out some things that

weren’t terribly useful and probably shouldn’t

have been in 680 in the first place, and come

up with a new specification. There were

several things that some systems were already

doing: comments (e.g. the day of week in

parentheses), association of people names

with user names (like at places like Stanford,

CMU and MIT, also using parenthesization),

random date format preferences (Multics vs

Tenex, etc.), and so on. Elements of 680 which

were not perceived as necessary were mostly

the military-like field names such as prece-

dence, as well as syntactic inconsistencies

(bugs), and syntactic limitations. These could

all be accomplished by using the notion of

user-defined fields.57

RFC-724 defined a text-only message format.
The message header and contents were ASCII.
The authors observed that, at some point in
the future, clearly email would use richer
binary formats, but that was beyond the
immediate need.

The new RFC provoked a tremendous
amount of debate on Header-People and a
more focused (and very distinct) discussion on
MsgGroup.

The MsgGroup discussion raised two issues.
First, was the new RFC going to cause much
longer message headers that users would have
to see? Second, wasn’t the major issue simply a
desire to embed users’ real names into TO and
FROM fields and, in that light, were all the other
header fields necessary? The conclusion was
that extra header information simply reflected
the reality of what had already happened, and
the desire not to see them pointed to a need for
user agents to edit header information, and
that yes, adding names mattered.

The Header-People debate was rooted in
specification details. The best example of the
tenor of discussion is a multiday argument
(rich with ad hominem remarks) about wheth-
er to use 12-hour or 24-hour times in the DATE

field, with much debate about whether
‘‘12am’’, ‘‘12pm’’, or ‘‘12m’’ was the correct
abbreviation for midnight. The upshot was to
eliminate support for 12-hour times.58

The result was RFC-733, a revision (by the
same authors) of RFC-724. The major improve-
ment in the revision (beyond the date field)
was a clear statement of how to include names
with email addresses. The format was to put
the email address in angle brackets (, .) as in
‘‘David H. Crocker’’ ,crocker@rand-unix.,
and if the text before the brackets contained
any special characters such as punctuation or
control characters, it had to be in quotes. The
RFC also made clear that mailing lists looked
like any other mailbox.59 Issued in November
1977, RFC-733 was the official standard for
message formats for five years, and a de facto
standard well into the mid-1980s.

Today’s standard

In 1982, as the email community was
preparing to transition to the Internet, the
authors of RFC-733 were asked to update it.
The authors of 733 had several conversations
about what the changes should be, but only
Dave Crocker (who had become a graduate
student at the University of Delaware) had the
time to undertake the revisions. Several fea-
tures of RFC-733 that had failed to win popular
acceptance were deleted, and three new fields,
FORWARDED, RESENT-FROM, and RESENT-TO, were
added (to support the common practice of
forwarding an email message to someone else).

A more startling feature (in retrospect) was
the addition of the RECEIVED field. RECEIVED is
odd because it, alone of all the fields in the
message header, was created by MTAs rather
than UAs. Every MTA was required to insert a
RECEIVED field into the message, to track the
message’s path through the network. Looking

The Technical Development of Internet Email

10 IEEE Annals of the History of Computing

back, this is an odd and subtle architectural
change that made MTAs responsible for
understanding the format of messages, which
previously (ignoring the practical problem of
address rewriting; see the next section) MTAs
had not needed to understand.

The result, written by Crocker and pub-
lished in August 1982, was RFC-822. RFC-822,
or more commonly, simply 822 format,
remains the basic standard a quarter century
later. (An updated version appeared as RFC-
2822 in 2001, but the basic format is un-
changed.)60

Before we leave the discussion of the
evolution of message formats, a few observa-
tions are in order. First, developing a message
format was a difficult intellectual problem.
RFC-822 is 47 pages long and a combination of
an augmented Backus-Naur notation that
defined each field’s format and briefly stated
each field’s semantics. It is comparable in
complexity to the computer language specifi-
cations of the time. Second, it is hard to
understate the importance of RFC-733. RFC-
733 came out early enough to become the de
facto standard for email message formats
throughout much of the world. The UUCP
network, the Computer Science Network
(CSnet) and Bitnet all ended up using RFC-
733 format for their email messages.61

Evolving the MTA
SNDMSG was the earliest MTA. It simply

delivered the message or returned an immedi-
ate error message saying it had failed. After
about a year, Bob Clements enhanced SNDMSG

to retransmit messages if the remote host was
down.62 About two years later, SNDMSG was
updated to place each message in a file in the
user’s directory (one file per email) and a new
program, called MAILER, would periodically
pick up and deliver email files in the user’s
directory.63 (Observe that this change convert-
ed SNDMSG to a user agent, with MAILER taking
on the role of MTA.)

In a nutshell, that incremental evolution
describes the experience of developing MTAs
in the 1970s. Each operating system would
implement an MTA, which was then refined
over the years to deal with environmental
conditions.

Unfortunately, the different MTAs evolved
differently. The underlying problem was that
email via FTP was underspecified. (It is useful to
observe that the specification foremail delivery
with FTP was two pages long, while the SMTP
specification, when it appeared, was 68 pages
long.) Implementers had considerable latitude,

and they used it.64 By the mid-1970s, imple-
menting an MTA was getting harder, not
because email had become more difficult, but
because the profusion of slightly different
MTAs meant that everyone’s MTA had to be
programmed to deal with the differences.

For example, there was considerable dis-
agreement about whether one had to login to
the remote system (FTP had a login command
called User) before trying to deliver email with
MLFL. Multics required a login. TENEX did not.
So MTAs had to include code to recognize
when they were talking to Multics and when
to TENEX and adapt their behavior accordingly.

SMTP, because it was well-specified, even-
tually solved this problem (see the ‘‘SMTP and
avoiding second system syndrome’’ section).
Unfortunately, by this point, a new problem
had arisen: multiple email networks.

Bitnet, CSnet, and UUCP

Between 1978 and 1981, three major email
networks were created. Although the Internet
remained the largest network throughout the
1980s, these three networks (UUCP, CSnet,
and Bitnet) would grow big enough to influ-
ence email standards. The UUCP network was
comparable to the Internet in size. And, almost
from the start, the four networks were inter-
connected,65 creating massive challenges for
MTAs of routing between four networks (not
counting the smaller networks that appeared)
with different address formats.

UUCP network. The UUCP network
(named for the Unix-to-Unix CoPy program
over which it was built) began inside AT&T in
1978.66 It used dial-up telephone links to
exchange files and within a few months was
moving email. AT&T soon distributed the
software and the UUCP network, made up of
cooperating sites, was off and running. Over
the next decade it grew at a prodigious rate,
such that by 1990, its population was estimat-
ed at a million users—comparable to the
Internet’s population.67

The UUCP network was a multihop net-
work. To reach machine V, an email from
machine M might have to pass through
intermediate systems Q and T. The motivation
for this approach was to minimize phone bills.
In the 1970s and early 1980s, long distance
calls were expensive, and the rates differed by
hour (with evening and night rates being
sharply lower). Modems were slow (a couple
hundred bytes per second was considered
good) and files were (relatively speaking) large.

April–June 2008 11

So the typical operating mode at any UUCP
site was to save up all email until 5 p.m., then
call a nearby UUCP site to forward email along
and receive inbound email. Indeed, over the
course of the night, several phone calls would
be made to push outbound mail and receive
inbound mail. Depending on the calling
schedules and the connectivity of the ma-
chines, email could travel a few or several hops
before the nightly calling frenzy ended.

Initially, the person composing the email
had to spell out the entire path a piece of email
needed to take through the network. In the
UUCP network, the hops were separated by
exclamation points (‘‘!,’’ pronounced as
‘‘bang’’). So, someone mailing the author via
UUCP from UC Berkeley in the 1980s would
send it to ucbvax!ihnp4!harvard!bbn!craig (in
which each text string followed by a ‘‘!’’ is
known as a hop; this example has four hops).

In 1982, Steve Bellovin wrote pathalias, a
tool designed to compute paths from a
network map. He refined it with Peter Honey-
man.68 Pathalias was distributed widely. Now,
by keeping a map of regional connectivity, it
became possible to email via landmark sites
and have them fill in the missing hops. So, for
instance, the author’s address could be re-
duced to ihnp4!bbn!craig and the harvard hop
would be dynamically inserted.

In 1984, Mark Horton began an effort to
create a complete UUCP network map, which
reached fruition about 1986. After that, UUCP
users could simply type sitename!user, and
pathalias would compute a path to sitename
for them. An even fancier trick was to add a
network domain to the sitename, such as
bbn.arpa!craig, and pathalias would compute a
path to an email gateway between the UUCP
network and the Internet.

CSnet. By the late 1970s, the computer
science research community realized that the
Arpanet was changing how people did re-
search. Researchers who had access to a
network got information more quickly, and
could collaborate and share work more easily.
Thus was identified the first ‘‘digital divide’’—
between computer science departments that
had access to Arpanet and those that did
not.69

The goal of the Computer Science Network
(CSnet) was to bridge that gap. Created in 1981
by the National Science Foundation in coop-
eration with ARPA, CSnet linked computer
science departments and industrial research
laboratories to the Arpanet (and then the
Internet).70

CSnet was designed to become self-support-
ing. The ARPA and NSF funding was only to
provide start-up capital and an initial operations
budget. For the first two years, CSnet operations
were distributed between the University of
Wisconsin and the University of Delaware, with
help from RAND (which ran a gateway on the
West Coast). Beginning in 1983, the network
was operated by BBN, where a team of roughly
10 people provided technical support (includ-
ing writing or maintaining much of the email
software used by CSnet members), user services,
anddidmarketingandsales.By1988,CSnetwas
self-supporting and had approximately 180
members, most of them computer science
departments in North America.

Technologically, CSnet did everything pos-
sible to make its members feel part of the
Internet community. Initially, connectivity
was almost entirely email only, using dial-up
phone service. Over time, direct access via IP
was also supported over a variety of media,
including IP over X.2571 and the first dial-up IP
network.72

After 1983, email in CSnet all went through
a single email gateway, CSNET-RELAY, which sat
on both CSnet and the Internet. Email was
routed by addressing it to the relay, with the
user address being the target address on the
other network. The syntax used a percent sign
(%) to divide the next hop user name from
relay address. So, to get from the Internet to a
CSnet host, one emailed to user%host.csnet@
csnet-relay.arpa. From CSnet, one emailed
user%host.arpa@csnet-relay.csnet. Email was for-
matted according to RFC-733 and 822 stan-
dards.

Bitnet. Bitnet was established in the
same year as CSnet, but with a different
driving force. Bitnet (‘‘Because It’s There’’ or,
later, ‘‘Because It’s Time’’) was created by

CSnet was designed to

become self-supporting.

The ARPA and NSF fund-

ing was only to provide

start-up capital and an

initial operations budget.

The Technical Development of Internet Email

12 IEEE Annals of the History of Computing

university computer centers (now information
technology offices) to interconnect their com-
puting facilities with email and file transfer.
Because the centers typically used IBM main-
frames running the VM operating system,
Bitnet was constructed from low-speed leased
lines running IBM networking software, on
which email was overlaid.

Like CSnet, Bitnet used Internet email
standards (with the %-hack in the email
address for gatewaying). Unlike CSnet, Bitnet
did not have a central management or support
center. Instead, most functions were volunteer
activities, with coordination provided by
Educom (Interuniversity Communications
Council). In mid-1988, Bitnet had nearly 400
member sites.

The boards of Bitnet and CSnet overlapped
and the two networks eventually merged, so
one may wonder why they were distinct in the
first place. The distinction lies in the relation-
ship, often contentious, between computer
science departments and computing centers in
the 1970s and 1980s. Computer science depart-
ments typically maintained their own comput-
ing facilities, to enable research by computer
science faculty. Computing centers were uni-
versity-wide resources that sought to provide
stable computing environments for researchers
in other disciplines. The stereotype was that
computersciencedepartmentsrancutting-edge
operating systems on minicomputers and
workstations while computing centers ran
established commercial operating systems on
mainframes. More important, from an institu-
tional perspective, the computer science de-
partment typically provided a haven for those
on campus who were (for whatever reason)
disgruntled with the computing center. Neither
partyparticularlywantedtorelyontheother for
network access, with the result that there were
two networks: one for each community.

Email addressing across networks. The
four networks (including the Internet) period-
ically viewed themselves as competitors. Yet
the four networks were also committed to
making email work among them. A number of
sites brought up gateways between the net-
works. Even more sites made a point of
residing on more than one network, to ensure
ease of mailing for their users.

It is widely agreed that, by the early 1980s,
email addresses were a disaster both for users
trying to email across networks, and network
administrators trying tokeep theemail flowing.

The disaster had two dimensions. First, one
had to know which network a user was on. For

instance, if someone told you he was bob@
princeton, one had to immediately ask ‘‘which
network’’ because princeton.bitnet and princeton.
csnet were different machines and were not
interconnected. If a user forgot, or her email
software removed the network appellation
(e.g., .csnet) the email would be delivered to
the bob@princeton in whichever network the
sender was in.

The second problem was that, even if one
knew which network an email address was in,
getting it there was not easy. To take a
relatively common example, consider the
following four addresses:

ihnp4!ucbvax!bob%princeton.csnet@
csnet-relay.arpa

bob%princeton.csnet%csnet-relay.arpa@
wiscvm

bob%princeton.csnet@csnet-relay.arpa

bob@princeton

These represent the four likely addresses for
reaching bob at Princeton’s CSnet host, from
the UUCP network, Bitnet, the Internet, and
CSnet respectively. If the examples are not
painful enough, consider the first address and
how it would be handled in transit.

It starts in the UUCP network and is passed
to ihnp4 (a key UUCP relay at Bell Labs in
Naperville, Illinois). Ihnp4 must puzzle out
ucbvax!bob%princeton.csnet@csnet-relay.arpa and
decide if the email address is to the left of
the @ sign (Internet style) or to the right of
the bang (UUCP style). As ihnp4 is a UUCP-
only system, it knows to use UUCP ad-
dressing and passes the message to ucbvax
at the University of California at Berkeley.
Ucbvax is a gateway on both the Internet
and UUCP networks so it must puzzle out
bob%princeton.csnet@csnet-relay.arpa. Thank-
fully, ucbvax was not on CSnet and clearly
not the same system as csnet-relay.arpa, so
bob%princeton.csnet is no good. Thus the
message must be sent to the CSnet relay
(and, because Arpanet did not strip mailing
information, it remains bob%princeton.csnet@
csnet-relay.arpa). CSnet’s relay in turn extracts
the address to the left of the @ sign, to get
bob%princeton.csnet and delivers the email to
Princeton.

Observe that there’s ample chance for
confusion. Another nasty problem was that
each mailer had to make sure that the FROM

address in the email was updated (and some-
times the TO and CC addresses as well) so that
the recipient of the email could successfully
reply to it. Yet another challenge was that, for
a period, the United Kingdom decided to

April–June 2008 13

reverse the order of labels in a domain name
(so Kirstein@uk.ac.ucl.cs) with the result that
some mailers had to parse names backward
and forward (‘‘bothways’’ mode) to see if they
made sense.

It is no surprise that the people who made
major contributions to email MTAs at this
time were people closely affiliated with email
gateways.

delivermail, sendmail, and mmdf

The appearance of new email networks
transformed the complexity of the MTA. Now,
at least on systems that were on multiple email
networks, the MTA had to understand multiple
addressing formats and routing rules and
competently move messages between the var-
ious networks as appropriate. One sign that the
problem of writing an MTA had gotten hard
was that it became the subject of serious
academic research. The major contributions
were made by two graduate students: Eric
Allman at UC Berkeley (delivermail and send-
mail) and Dave Crocker (who had left RAND to
study at the University of Delaware, where he
wrote mmdf).

Both men were trying to solve essentially the
same problem: supporting multiple email net-
works in one system. Allman needed an MTA
for UC Berkeley’s main email system, which
served as the university’s email gateway be-
tween the UUCP network and the Arpanet and
local email delivery. Crocker needed an MTA to
support local email, Arpanet email, and a new
phone-based delivery system which eventually
became CSnet’s PhoneNet protocol. The two
men solved the problem very differently.

delivermail. Allman’s delivermail, the
simplest of these MTAs, was written for
Berkeley’s BSD Unix operating system in
1979 and was a basic program73 not greatly
more complex in its workings than Bob
Clements’ 1973-vintage SNDMSG. When in-
voked by a user agent (or the inbound FTP
server), delivermail expected to be given a
message, which it would either deliver or
return an error message. The big difference
was that delivermail implemented a layer of
indirection. Rather than delivering the mes-
sage to a mailbox or a remote system, deliver-
mail looked at the destination address and
then picked a program to deliver the message
to. So, for instance, to deliver Arpanet mail via
FTP, delivermail called an auxiliary program
called arpa and passed the mail to the arpa
program and waited for a (real-time) response

regarding delivery. If, by some mischance, the
message had to be queued, arpa (not deliver-
mail) would queue it.

To parse the address, delivermail used the
simple expedient of assuming that an at-sign
meant Arpanet mail, an exclamation point in
the address meant UUCP, and a colon meant
the local BERKNET protocols. For each address
type, delivermail could be configured either to
call a program to deliver the mail, or call a
program to relay the mail to the appropriate
gateway (one email gateway per type).

The delivermail MTA had a powerful aliases
features, in which a destination address could
be expanded to a list of email addresses. It also
had a first class logging system (a way to record
what delivermail did) called syslog. Email
systems were developing increasingly sophis-
ticated logging mechanisms; syslog was so good
that it eventually became a standard part of
BSD Unix and is now used by a wide range of
applications.

One surprising feature of delivermail was
that part of its configuration was compiled
into the program. That is, for each machine,
one compiled a custom version of delivermail.
So, for instance, if the machine was connected
to Arpanet, one compiled delivermail with the
–DHAS_ARPA flag to the C compiler.

mmdf. About the same time that Allman
was creating delivermail, Dave Crocker was
writing the first version of mmdf (the Multi-
channel Memo Distribution Facility).74 Rather
than seek to process each message immediate-
ly, as delivermail did, Crocker sought to
decompose the process into multiple stages.

When a message arrived (via the network or
from a user agent), the message was given to a
program called submit, which checked that the
message format was correct (here the common
use of 733 format was a big win) and then
looked at the address to decide what network
the message was to go out on. The message was
assigned to a ‘‘channel.’’ Each channel had its
own queue: a directory where messages and
their ‘‘envelopes’’ (control information) were
stored. Simply, submit placed the message in
the right queue.

Another program, called deliver, was regu-
larly scanning the queues for messages. When
a new message appeared, deliver called on a
channel-specific program (e.g., mmdf’s equiv-
alent of delivermail’s arpa program for Arpanet
email) to deliver the message. If message
delivery failed, submit was called to send the
message back to its sender. If there was a
transient error (e.g., the remote host was

The Technical Development of Internet Email

14 IEEE Annals of the History of Computing

down), the message was left in the queue and
deliver would try it again later.

The mmdf MTA also supported aliases and
had a fine logging system.

An important contribution of mmdf was
achieving an effective split of the message
delivery process. Diagnosing email problems
(whether configuration problems or problems
with particular messages) was cleanly com-
partmentalized. Similarly, submit prevented
junk from entering the system; deliver handled
problems in delivery. An operator knew where
the problem was by seeing which program was
complaining in the logs.

Another contribution was restriction of
privileges. One of the key problems in any
mail system is that whatever program delivers
mail to the user’s mailbox needs special
privileges. In mmdf, that was one small
program, the local channel delivery process.
All the other processes could be run as a regular
user (usually called ‘‘mmdf’’).

The channel model also proved flexible. A
message could go through multiple channels
before leaving a system. Soon, mmdf developed
a ‘‘list’’ channel to handle mailing lists. A
message was placed in the list channel to have
its destination address expanded. It exited the
list channel by being placed in one or more
channels to be delivered to members of the
mailing list. Later, when MX resource records
were introduced (see the ‘‘Email routing with
domain names’’ section), they introduced a
new error: a domain name that (because of
DNS problems) could not currently be looked
up. In mmdf this was trivially handled by
creating a new channel, where submit placed
messages whose addresses could not be re-
solved at the moment.

A downside of mmdf was that rather than
one configuration file, there were several,
scattered in different places. While each con-
figuration file was simple (a list of attribute:
value pairs), the sheer number of them could
prove frustrating.

sendmail. Based on experience with deli-
vermail, Eric Allman decided to write a new
MTA for release with the 4.2 version of BSD
Unix. The new MTA was called sendmail.

Culturally, sendmail was similar to deliver-
mail. But from a practical perspective, it was
quite different. Major differences included the
following:75

N Configuration was determined by a file,
called sendmail.cf, rather than being com-
piled in.

N The address parsing rules and message
delivery rules were defined by a grammar
in the configuration file.

N sendmail now maintained its own message
queue.

N Certain delivery programs (most notably
email delivery via SMTP) were compiled
into sendmail instead of client programs
(e.g., arpa).

But this list understates the transformation
from delivermail to sendmail: sendmail was
almost an order of magnitude more complex
(measured in lines of code) and tremendously
more flexible.

The changes had an interesting mix of con-
sequences. Probably the most important conse-
quence was flexibility. Placing address parsing
and configuration rules in a grammar made it
possible to dynamically configure sendmail for
arbitrarily complex email environments.

Another consequence was a reinforcement
of delivermail’s approach of putting all the
email expertise into one program. SMTP was
now embedded in sendmail. So too was queue
management. It made sendmail a complex
program and hard to change. Allman later
noted that sendmail should have been better
decomposed into constituent functions, even
if only internally.76

An unexpected consequence was that craft-
ing and debugging sendmail’s single configu-
ration file (sendmail.cf) became a central
preoccupation (some would say headache)
for system administrators over the next several
years. A properly working email system re-
quired the configuration file be right. And
sendmail’s grammar (with a fondness for
single-letter tokens, which made mnemonic
naming impossible) gave administrators many
opportunities to make a mistake.

Evolution and perspective

Over the 1980s, both sendmail and mmdf
prospered: mmdf was substantially reworked
by Crocker, Doug Kingston (of the Army’s
Ballistic Research Laboratory), Steve Kille (of
University College London), and Dan Long
and me (of BBN) into a new release called
mmdf2, which was used at a number of major
email centers in the mid- and late 1980s.

Also, mmdf inspired PMDF, a rewrite of
mmdf in Pascal for the VMS operating system.
The initial implementation was done by Ira
Winston at the University of Pennsylvania. It
was then maintained and substantially revised
by Mark Vassol and Ned Freed (then at
Oklahoma State University). PMDF became a

April–June 2008 15

popular email system for Digital Equipment
Corporation’s VMS operating system and, over
time, became the dominant email system on
Bitnet (where VMS systems were popular) and
eventually became a commercial product.

The sendmail MTA was repeatedly improved
in subtle ways. Over time, as BSD Unix became
the most popular operating system on the
Internet, sendmail became the most common
MTA, while the sendmail.cf file continued to
build a reputation for being complex.

In the end, sendmail had the last word.
When the complex mix of email networks
consolidated into a single email network after
1990, it was no longer necessary to write a
sendmail grammar that could handle multiple
email address formats. The sendmail.cf be-
came much simpler. Sendmail could be recog-
nized for its flexibility without being forced to
demonstrate its potential complexity. It re-
mains a popular MTA to this day.

SMTP and avoiding second
system syndrome

By 1980, the Internet protocols were rapidly
maturing, and ARPA (rechristened DARPA
some years earlier) had started to plan the
operational transition from Arpanet to Inter-
net protocols. Initially, the expectation was
that Internet email would be multimedia and
thus a full-scale replacement of Arpanet email
with Internet multimedia email would be
made.77 However, by May 1980, Vint Cerf of
DARPA had concluded multimedia email
would come too late for the Internet transition
and that the problem of supporting text mail
and bridging email from systems using the old
Arpanet protocols to systems using the Inter-
net protocols needed a solution.78 In Septem-
ber 1980, three RFCs appeared that were
intended to start the process of planning the
transition.

The first RFC (RFC-771) was written by Cerf
and Jon Postel (at ISI) and was a plan to make
the transition from Arpanet email protocols to
Internet email protocols using designated
email gateways that operated using both
protocol suites.79

The other two RFCs are more interesting.
RFC-773 was an addendum to RFC-771,
written by Cerf, and sketched out some of
the key technical issues in the transition. Cerf
was concerned to make the email transition as
simple as possible and to defer hard work until
multimedia email was in place on the Internet.
One surprising statement followed the obser-
vation that FTP-based transfer passed only the
user part of user@host to the remote system,

but email gateways needed to know the host
part to effectively gateway email. Rather than
bite the bullet and accept an Arpanet change
to FTP to pass the host part, Cerf suggested
that, for compatibility sake, the user part be
standardized across the Arpanet/Internet—in
effect, every system was to know every user’s
email name and where to deliver its mail! This
idea seems to have been rapidly abandoned.

In RFC-772, Suzanne Sluizer and Jon Postel
proposed a new ‘‘Mail Transfer Protocol’’ or
MTP.80 Its purpose was to serve as the bridge
protocol for the email gateways between
Arpanet and Internet email protocols.81 What,
precisely, the Internet email protocols would
be was not discussed (though clearly the intent
was they would be new protocols capable of
supporting multimedia). Very little thought
had been given to email protocols since the
1973 FTP meeting but MTP tried to take
advantage of what little thought had taken
place. In particular, MTP sought to provide
better support for delivering email messages to
multiple users on a single system.

In community lore, MTP is remembered as
an ugly protocol. In truth, it was not ugly, but
it was complex. It negotiated two different
ways to send email. One could either send the
message first and then send the destination
address, or one could send the destination
address and then the message. MTP used
complex commands, which made understand-
ing error codes difficult. For instance, it
was possible to say MAIL ,from@host1. TO
,remote@host2. as a single command, which
made it hard to parse error messages about
addresses to determine whether the FROM or
TO address (or both) was in error. It had an
approach to email forwarding that permitted
an MTA to announce that it didn’t know how
to forward a message but would hold onto the
message anyway until the MTA’s operator
figured out where the message should go—a
bizarre idea that would have ensured endless
work for operators.

Some of these problems were noted at the
time.82 Nevertheless, MTP soldiered on. At
least four implementations were made,83 and
the MTP specification was revised in May
1981. The revisions appear to be largely
cosmetic and the protocol remained complex.
The impression is that the email transition
plans were poorly thought through. Some of
the Internet researchers of the time remember
that the community viewed email as a distrac-
tion—with so many problems in TCP and IP,
who needed to look higher in the stack? They
give credit to Cerf for forcing them to

The Technical Development of Internet Email

16 IEEE Annals of the History of Computing

periodically pay attention. Then, late in 1981,
things suddenly cleared up.

The continuing criticism caused Postel to
rethink MTP, and, in November 1981, he
wrote an RFC describing a simpler protocol,
the ‘‘Simple Mail Transfer Protocol’’ (SMTP).
SMTP was, indeed, simple. Every command
had zero or one arguments. Recipients were
always listed before the message was sent, and
each recipient was listed and acknowledged
separately. A slightly revised version of the
specification came out as RFC-821.

It is not clear what inspired SMTP’s design,
but there is a hint. Sluizer and Postel published
two RFCs documenting their experience im-
plementing MTP.84 The first one, RFC-784,
observed that it was convenient to maintain
two files for each email message: a control file
called the envelope and the message itself. At
this point, the concept of an envelope was still
relatively new. The term envelope had been
coined in 1975 as a way of discussing header
fields that MTAs needed to be able to deliver a
message,85 but by 1979, its meaning had
shifted to mean the metadata associated with
a message.86

The second RFC, RFC-785, detailed the
internal structure of the envelope file as it
appeared on TOPS-20. Each item of informa-
tion (each email recipient, the email sender,
etc.) was kept on a separate line. And if one
reads the SMTP specification, each command
in SMTP corresponds to adding a line of
information in the TOPS-20 envelope file. So
perhaps that is where Postel got his ideas for
SMTP.

SMTP, with modest changes, remains the
way email is transferred today, 25 years later.
In that light, it makes sense to try to assess
what has made SMTP so long-lived.

First, we note that SMTP did (and in some
cases, still does) have deficiencies. Despite
Postel’s interest in the support of multimedia
mail, SMTP was defined to use 7-bit ASCII—a
decision that had to be undone a decade later.
SMTP’s request/reply format causes SMTP
connections to follow a pattern of many little
data exchanges (command/reply, command/
reply) and then a big transfer of the actual
email message. This pattern turns out to be bad
both for TCP and on network paths with long
delays. This problem was eventually solved
with SMTP pipelining.87 RFC-821 had some
SMTP commands to send messages directly to
user terminals. These commands were never
implemented widely. In addition, SMTP has a
small race condition, such that email can be
duplicated.88

These deficiencies are outweighed by
SMTP’s design. Each command has zero or
one arguments. Reply codes are three-digit
numbers, with the first digit standardized.89 A
positive response or an error can be deter-
mined by the first digit, even if the particular
error code is novel. Transmission of a message
typically requires just three commands: MAIL
FROM, RCPT TO, and DATA. While SMTP
clearly reflects its roots in FTP (which has a
similar command style), the complicating
features of FTP (in particular, features for
interactive user support) were removed.

Domains and a new way to route
From the early days of the Arpanet, the

DDN Network Information Center (NIC)
maintained a file, named HOSTS.TXT, which
mapped single-word hostnames to network
addresses. This file was copied to every host on
the Arpanet and later Internet, so users could
use character-based mnemonic hostnames
such as bbn-loki rather than numeric addresses
such as 128.89.1.178.

Unfortunately, the HOSTS.TXT scheme had
several limitations. Updates were difficult. The
NIC needed to be notified when a new host
was installed or host information was
changed, and then every host needed to
download the new HOSTS.TXT. To minimize
the network load (HOSTS.TXT was a relatively
large file and having every host get a copy
could cause considerable network load),
HOSTS.TXT was updated just a few times a week.
Simply getting new information propagated
could take several days.

Furthermore, the namespace was flat. Only
one machine could be named FRODO. Further-
more, names were relatively short (24 charac-
ters maximum90), so users had to become
increasingly creative about hostnames as the
network grew.

In 1982, the Internet community set out to
replace HOSTS.TXT with a distributed database.
Zaw-Sing Su and Jon Postel of ISI wrote a
proposal for a new naming structure. The
scheme created hierarchical names, with dif-
ferent portions of the hierarchy, called do-
mains, delimited by a dot (‘‘.’’) in the name.91

For example, under this scheme, F.ISI, would
be the name of host F in the ISI domain. The
naming scheme was clearly inspired by the
recently developed Grapevine distributed
naming system developed at Xerox PARC.92

In November 1983, Paul Mockapetris of ISI
issued two RFCs93 specifying a distributed
database system to support a domain name
system (DNS). Reflecting considerable com-

April–June 2008 17

mentary on the NameDroppers mailing list,
the proposed DNS supported multiple levels of
hierarchy (vs. the two levels used by Grapevine
and suggested by Su and Postel). The DNS
stored information as resource records, where
each record mapped a name to a typed value
such as an IP address. A single name could
have multiple records (so a host with multiple
IP addresses would have one resource record
for each IP address). Work began at ISI and UC
Berkeley to implement the proposed DNS in
TOPS-20 and Berkeley Unix.94

By the summer of 1985, both servers were
working (at least experimentally). But several
deployment issues remained unresolved, at
least two of which were vital: how email was to
work with the DNS, and how the namespace
should be organized.

Email routing with domain names

In the summer of 1985, I joined the staff
of CSnet and was asked to see what modifica-
tions needed to be made to CSnet’s email
software to support the (now working) domain
name system. Mockapetris’s DNS specification
had created two resource records to support
email routing, but the specification only
loosely specified how they would be used.
Initially, I thought the problem would be
easy95 only to realize a few weeks later that
there was a serious issue.96

Mockapetris had defined two email routing
records for the DNS: a Mail Destination (MD)
record and a Mail Forwarder (MF) record. The
notion was to allow a domain name to specify
that all email addressed to the domain was to
be delivered to a particular host (an MD), or
that the email could be relayed via one or more
email gateways (MFs). The central idea here
was new and powerful: under the DNS, the
right side of the @ sign in an email address was
no longer the host to which email was to be
delivered, but a name for which email routing
was specified.

I eventually realized that, if a name had
both MD and MF records, there were situations
where email could loop or worse, fail to be
delivered.97 I wrote a draft RFC describing a
complex set of rules that ensured such failures
would not occur and sent it to Jon Postel and
Mockapetris. Postel and Mockapetris felt the
proposed rules were ugly and burdensome to
MTAs. They asked me to work with a small
group of people, including Mockapetris, to
find a better solution.98

After a couple days of discussion, Mock-
apetris suggested a potential solution was to

have one record for mail routing, called a Mail
EXchanger (MX) record. I worked through the
details of the idea and crafted the routing rules
for MX resource records. I reported that the
resulting specification was indeed much sim-
pler (about half as long as the previous one).
Postel declared a solution had been found, and
asked Mockapetris to update the DNS specifi-
cation. Mockapetris’ update and my specifica-
tion appeared in January 1986.99

MX resource records remain the way email
is routed today. The basic idea is simple. A
name is associated with one or more MX
resource records. Each resource record has the
name of one host and a preference number.
To route to a name, a mailer looks up the
name’s MX records and then successively
tries to deliver to the hosts, starting with the
host with the lowest (best) preference num-
ber, until delivery succeeds or the mailer runs
out of MX records. To prevent loops, if the
mailer is one of the MX hosts listed, it may
only deliver to MXs with a lower preference
value. Despite the simplicity, the scheme
supports most useful types of email routing
easily.100

Defining the domain name space

Another open question in late 1985 was
what the top-level domains would be. Top-
level domains are the last part of a domain
name: thus in example.com the top-level is
.com. As the DNS began to work, and as email
was being modified to use it, the issue of
finalizing top-level domain names became an
increasingly vital issue.

It soon became clear that the issue tran-
scended the Internet community. The major
email networks connected to the Internet saw
a chance to make their naming schemes

Another open question in

late 1985 was what the

top-level domains would

be. As the DNS began to

work, finalizing top-level

domain names became an

increasingly vital.

The Technical Development of Internet Email

18 IEEE Annals of the History of Computing

consistent. Indeed, one of the people pushing
most vigorously for resolution was Dick
Edmiston, who led CSnet.

Elizabeth ‘‘Jake’’ Feinler, head of the DDN
NIC, hosted a two-day meeting at SRI Interna-
tional in late January 1986 to resolve all
outstanding issues. Beyond several Internet
representatives, mostly notably Postel, Mock-
apetris, and Ken Harrenstein (SRI), the meet-
ing included representation from the UUCP
community (Mark Horton), Bitnet (Dan
Oberst), and CSnet (Laura Breeden and me),
representatives (Kevin Dunlap and Jim Bloom)
from the UC Berkeley BSD Unix project (which
maintained sendmail and the bind DNS soft-
ware) and Steve Kille (of University College
London).101

Once the meeting began, it was clear that
but for an odd issue about creating .net,102 the
real issue at the meeting was email compati-
bility. CSnet used Internet email standards
whenever possible and planned to implement
DNS naming throughout its network. The
UUCP network, limited by its flat namespace,
also saw an advantage in adopting domain
names. Bitnet was less certain, but still felt
domain names were of interest. More general-
ly, a brief discussion of the routing technolo-
gies of the different networks made clear that it
was possible to create seamless support for
email addresses of the form user@domain-name
that spanned the four networks. The end of
the era of ihnp4!ucbvax!bob%princeton.csnet@
csnet-relay.arpa was visible and exciting. Every-
one at the meeting agreed to push to get their
respective software ready.

Except … except that Mark Horton wanted
compatibility with X.400 email addresses too.
(X.400 is described in more detail in the
‘‘X.400’’ section). The X.400 naming system
was known (though not yet working). It used
names that were close to domain names. Steve
Kille and Horton had worked out a way to map
between X.400 addresses to DNS names, if the
DNS followed certain naming practices. Hor-
ton wanted to make it possible for sites to pick
domain names that would be compatible with
X.400. Those questions led to the question of
whether there would be a .us domain. X.400
names were assigned by country, and thus
organizations in the United States, in the
X.400 system, would have names ending in
.us. If Kille and Horton were to achieve the goal
of compatibility with X.400, there needed to
be a .us domain, and names in the .us domain
had to be given out according to X.4009s rules.

Postel was adamantly opposed to structur-
ing .us to fit X.400. He felt that forcing people

to add a country code to their email address
was much like forcing them to add a network
name such as .arpa or .bitnet to their email
address. In his view, both practices were ugly
and restrictive.103 He asked why a university
had to make the top level of its name the
country in which the university was situated,
when clearly the most important aspect of the
institution was that it was an educational
organization. Equally vigorously, Postel had
no interest in assisting a conversion to X.400.
Indeed, he already had taken the step (as the
Internet Assigned Numbers Authority) of
assigning control of .us to himself and made
it clear that his naming structure for .us would
bear no relationship to anything compatible
with X.400.

The debate ran, on and off throughout the
meeting. In the end, the parties agreed to
disagree, but accept that the decision was
Postel’s.

At the time, Postel’s intransigence seemed
just a stubborn attempt to delay an inevitable
transition to X.400. In retrospect, several
factors were about to converge to make the
debate, arguably, X.4009s high water mark.

By standardizing on domain names, the
meeting created a common email addressing
and message format that probably covered
over 90 percent of the email community of the
time. Over the next several years, organiza-
tions on CSnet, Bitnet, and UUCP, already
using domain names and thus culturally
acclimated to the Internet world, would begin
seamlessly transitioning to the Internet. SMTP,
RFC-822, and domain names were about to
become a technical juggernaut that X.400
would be hard-put to displace. Postel’s deci-
sion to keep .us distinct from X.400 made the
process of replacement by X.400 tougher—
everyone would have to change email address-
es (precisely the barrier that the meeting had
eliminated for organizations on CSnet, Bitnet,
and UUCP who wished to join the Internet).

If X.400 was to become the next email
standard, it now had to pin its hopes on the
fact that X.400 supported multimedia while
SMTP/RFC-822 did not.

Long tough path to multimedia (e)mail
Multimedia mail is email that contains a

richer set of objects than simply ASCII text.
Throughout the 1970s, email on the Arpanet
and most other email systems was limited to
ASCII. At the end of the 1970s, researchers and
implementers began to think about how email
might be enriched.

April–June 2008 19

Early multimedia

In 1977, IFIP created a working group
(WG 6.5) to address the need for standards for
computer-based message systems. Grossly sim-
plifying its charter (which included dealing
with issues such as networked Telex messages),
the working group was to lay the groundwork
for an international standard for email. This
effort was eventually to lead to the CCITT/ISO
X.400 standards for email. Real work seems to
have begun sometime in 1978 or 1979. As part
of this effort, Debbie Deutsch and John Vittal
at BBN were thinking about the format of
email messages.

Under the auspices of the National Software
Works program,104 Jon Postel at ISI started
investigating protocols to move multimedia
messages between systems. In March 1979,
Postel published ideas for an ‘‘Internet Mes-
sage Protocol.’’105

In 1978, the UUCP email network began
operation. In 1979, responding to a need for a
way to safely send binary files between
systems, Mark Horton (then a grad student at
Berkeley) wrote the uuencode program, and it
was distributed with the 4.0BSD distribution of
the Berkeley Unix operating system. uuencode
converted binary files into a formatted ASCII
file that could be included in any email
message. A complementary program, uude-
code, could read the formatted ASCII and
extract the binary contents. uudecode was
cleverly designed to skip over any leading text
until it hit the line encoding the start of a
uuencoded object. So you could include some
leading text in the email describing the binary
object being sent and yet safely feed the entire
email to uudecode to extract the binary.
uuencode’s major contribution to multimedia
mail was to demonstrate that people did want
to email around binaries—for years, on the
Internet, uuencode was the way binary data was
sent.106

Oddly, while the work on uuencode, Postel’s
work at ISI, and the work at BBN all led to
fruitful results, it is hard to directly trace the
work in any of them to the final development
of Internet multimedia mail. But they created
a milieu in which multimedia mail was
anticipated, and finally, after long effort,
achieved.

Internet multimedia—Round one

By 1980, Postel’s work107 on multimedia
protocols had created an expectation that the
Internet would shortly transition to multime-
dia email. As the introduction to the 1980
email transition plan makes clear:

This plan covers only the transition from the
current text computer mail in the Arpanet
environment to text computer mail in an
Internet environment. This plan does not
address a second transition from text only
mail to multimedia mail.108

Cerf’s commentary on the transition plan
noted:

DARPA is beginning a new phase of research
into automatic electronic message handling
systems. Ultimately it is intended that elec-
tronic messages incorporate multiple media
such as text, facsimile, compressed digitized
voice, graphics and so on.79

By the start of 1982, there were at least nine
Internet multimedia projects at seven institu-
tions (CMU, ISI, MIT, COMSAT, BBN, UCL, and
SRI). The jump in effort was sparked by the
advent of desktop machines with high-quality
graphics. Several projects were using the new
PERQ workstations, MIT was using Apollo
workstations, SRI was using the Foonly F-5 (a
desktop PDP-10 clone), and BBN was using its
own graphics workstation called the Jericho.
Most of the research effort was devoted to
trying to figure out how to encapsulate voice
and CCITT fax data into email.109

Despite the large number of efforts and the
apparent interest in getting multimedia email
working over the Internet, little came of these
projects. The most successful appears to have
been the Diamond multimedia project led by
Bob Thomas and Harry Forsdick at BBN. (Also
on the team was Ray Tomlinson.) By 1985,
Diamond had a complete multimedia email
system with user interface, mail transport
system, and a multimedia editor to create
documents that blended voice, video, spread-
sheets, and other data.110 BBN made Diamond
into a product (called Slate) and sold a modest
number of systems.

Impressive as Diamond was (and the
demos were wonderful), it proved a develop-
mental dead-end for two reasons. The first
was simply that Diamond (like the other
multimedia projects) was too soon. As Cerf’s
comments about incorporating voice and fax
into regular emails show, there was a shortage
of digital data. The profusion of digital, often
graphics-rich, data was still a few years away.
The second problem was that when digital
data became available, users turned out to
want to pick their own tools. That is, rather
than use Diamond’s built-in spreadsheet
editor on a Diamond document, they wanted
to use Excel or Lotus 1-2-3 to create a

The Technical Development of Internet Email

20 IEEE Annals of the History of Computing

document and then email that document to
their colleagues. In short, the challenges for
multimedia email were not those of creating
content, but rather those of packaging binary
objects or ‘‘attachments’’ into regular email,
and how to create open interfaces that
allowed applications (and email user agents)
to insert and extract those attachments from
email easily.

A slightly later (1987) and more successful
activity was the messaging system for the
Andrew Project at CMU. The Andrew project
was a collaboration between IBM and Carnegie
Mellon University to create a powerful and
affordable computing environment for stu-
dents.111 Andrew sought to create a seamless
computing environment throughout campus,
where students could log into any machine
and read and write email, do coursework, or
any one of a number of other activities. The
Andrew Message System (AMS) was designed
to be a showcase application demonstrating
the utility of Andrew.

In many ways, AMS was very similar to the
earlier Internet projects (of which its designers
appear to have been unaware).112 It had its
own multimedia editor, a custom GUI, and
was built atop a sophisticated distributed
system. But AMS had one important cultural
difference: it was designed to coexist with
existing email services rather than replace
them. As a result, AMS’s designer, Nathaniel
Borenstein, sought to find ways to make AMS’s
multimedia messages compatible with send-
mail and SMTP. That mind-set was to prove
useful a few years later.

X.400

Interestingly, the people working on the
CCITT/ISO email standard, called X.400, bet-
ter understood the multimedia challenges and
set out to create an email standard designed to
carry third-party documents. In many re-
spects, X.400 was one of the best CCITT/ISO
networking standards activities. This success
may be attributed to several email-savvy
people who worked on it including John Vittal
and Debbie Deutsch (both at BBN) and Jim
White (by then at Xerox).

The X.400 team sought to design a com-
pletely new email system, built on top of the
emerging ISO standards for data networking.
To that end, they created an email delivery
architecture (defining user agents and message
transfer agents), and developed protocols for
delivering email from end point to end point,
and formats for email addresses and email
messages.

A good example of the work, and an
illustration of its quality and some of the
challenges of the time, is the work on
encoding data in messages.113 X.400 chose to
standardize on a binary data format for
messages. That decision created a number of
challenges including:

N How to represent binary data efficiently on the
network. At the time, network capacity was
extremely expensive, so there was a moti-
vation to save every possible byte (and bit).
The X.400 team sought a compact data
representation.

N How did applications embed data in messages?
The issue here is that data formats on
different computers may be incompatible.
They were certainly incompatible in the
early 1980s, when a byte could be 5, 6, 7, 8,
9, or 10 bits long depending on the system.
Data to be sent over the network needs a
standard, ‘‘external’’ format that is com-
puter independent. In the early 1980s this
concept was alien to most programmers.114

The X.400 approach was to encourage
programmers to define how to move their
data into and out of a generic format called
an external data format.

N Data and not garbage. X.400 envisioned a
world in which user agents developed new
features and new applications would em-
bed data in a document and so the
receiving user agent might receive an email
message that contained header fields it did
not understand and application data from
an application it had never seen before.
How to ensure the user agent didn’t simply
report it had received garbage? The solution
that X.400 chose to this problem was to
make the data self-describing.

The result was a conceptually elegant encod-
ing. Every piece of data is encoded as a triplet
of a type (for self-description), a length (which
permitted compressing data into its shortest
representation), and a value. The encoding is
recursive, so a structured type is a triplet,
whose value field contained triplets for the
individual fields in the type.

This general, self-describing, external data
format initially was issued as the CCITT X.409
standard but soon became the standard known
as Abstract Syntax Notation 1 (ASN.1). The
compact self-describing data format was de-
signed by Debbie Deutsch, Bob Resnick, John
Vittal, and Jan Walker, working under a con-
tract to the National Bureau of Standards.115 To
the encoding, Jim White added a formal

April–June 2008 21

language intended to make it easy to specify
a data representation without having to actu-
ally write out the bit-by-bit descriptions.

While X.400 did not survive, X.409/ASN.1
is widely used in network protocols. The
communal consensus is that the formal lan-
guage is a nuisance and the focus on encoding
efficiently made the formatting overly com-
plex. But the self-describing triples are elegant
and solve many problems.

The X.400 community was justly proud of
their work. An obvious question is why did not
X.400, partly completed in 1984 and updated
in 1988, become the Internet multimedia
email standard?

The short answer is that it could have.116

Steve Kille, who had been on the UCL
multimedia project, concluded X.400 was the
way to go and invested considerable effort in
trying to make X.400 Internet-ready. However,
there were challenges. X.400 was tightly
embedded in the ISO standards (which were
intentionally different from the Internet stan-
dards), and fitting X.400 into the Internet’s
email system was hard.

In addition, as the Horton-Postel debate of
the previous section shows, there were political
issues. The ISO/CCITT community was acutely
aware that in X.400 they had produced a
cutting-edge data networking standard for the
Internet’s key application (email) and hoped to
ride the success of X.400 to convince (force) the
Internet community to adopt the rest of the ISO
‘‘Open Systems Interconnection’’ (OSI) proto-
col suite in place of TCP/IP. Conversely, the
Internet community was willing (sometimes
grudgingly) to admit that X.400 was a nice
piece of work. But most members of the Inter-
net community also tarred X.400 as a compo-
nent of the unpopular OSI protocol suite.

Internet multimedia—Round two
As the 1990s began, the Andrew Messaging

System was in use at CMU and a derivative was
available from Next Computers as NeXTMail.
X.400 had undergone a round of revisions in
1988. But the Internet still lacked any way to
send multimedia email. Binary data were,
however, being routinely sent using uuencode.

In its meeting of December 1990, the
Internet Engineering Task Force (IETF) decided
to investigate the possibility of making SMTP
‘‘8-bit friendly,’’ that is, making it possible to
move binary information via SMTP.117 Much
of the interest in this change came from
Europe. The European portion of the Internet
was growing rapidly, and Europeans very

much wanted to be able to send email in their
own languages and character sets. At the time,
SMTP limited them to (essentially) US ASCII.

At its next meeting in March 1991, the IETF
effort both made tremendous progress and
stumbled.118

The progress was to realize that the job was
to extend SMTP and to extend RFC-8229s email
message format to support national character
sets and binary (multimedia) material.119 A
group to study RFC-822 extensions was creat-
ed. It promptly coalesced around a proposal
from a team led by Nat Borenstein and Ned
Freed. Borenstein, now working at Bellcore,
had both the experience and credibility of
having built the Andrew Messaging System.
Freed brought several years of experience
maintaining PMDF.

The IETF’s stumble came in extending
SMTP. By March 1991, there was uncertainty
about the goal of the upgrade. The motivation
in December 1990 had been to meet European
needs, but now the new SMTP group (distinct
from the 822 group) seemed to think enabling
a transition to X.400 was a more important
goal. Further, the details of upgrading the
existing SMTP infrastructure to support 8-bit
transfers were difficult and fraught with
transition challenges, which worried vendors.

Over the summer of 1991, the two groups’
paths diverged.

The group working on 822 extensions
arguably had the harder problem. It had
decided to adopt a scheme where binary
objects were encoded as separate sections of
the body of an RFC-822 message. This solution
required devising a scheme for identifying the
separate sections (the core idea of the Boren-
stein/Freed proposal) and then coming up
with a uniform naming scheme that made it
possible to identify what each binary object
was and how it was encoded. The group had to
resolve problems such as naming schemes for
200+ character sets. Yet, the group made swift
progress and by late 1991 was making largely
minor changes to a suite of documents
recognizably defining the Multipurpose Inter-
net Mail Extensions (MIME) standard that is
used today. (In one amusing moment, the
group agreed it did not want to support
uuencode coding as it was distasteful, even
though uuencode was the default way to send
binary documents at the time.120)

In contrast, the group working on 8-bit
friendly SMTP floundered. Every solution
presented challenges, and the group was
struggling to make a choice. Furthermore, a
significant part of the group felt that it was

The Technical Development of Internet Email

22 IEEE Annals of the History of Computing

time to replace SMTP (the ‘‘new protocol’’
approach) or transition to X.400. The effort
lacked focus.

At the November 1991 IETF meeting, senior
members of the community stepped forward
to force a solution. John Klensin, whose
networking experience stretched back to early
Internet days, was induced to step in as the
group’s chair.121 Klensin had the seniority and
credibility to issue an ultimatum: either the
group converged immediately on an approach
or the 8-bit SMTP effort would be terminated.
The ultimatum effectively excluded X.400 and
new protocols from the agenda, leaving the
group to grapple with the challenges of
extending SMTP.

There were two key issues. First, how to
transition from 7-bit to 8-bit gracefully. There
was much discussion about how 7-bit MTAs
should interact with 8-bit MTAs and vice versa,
including questions of whether 8-bit MTAs
needed to be able to convert messages from 8-
bit to 7-bit representations (a painful idea). In
the end, the decision was that 7-bit MTAs
would refuse 8-bit email, and the 8-bit MTA
had the choice of converting from 8-bit to 7-
bit MIME or returning the email as undeliver-
able. The choice to permit email to be returned
assumed that the general transition to 8-bit
SMTP wouldn’t take very long (as, indeed, it
didn’t).

The second issue was how to mark email
messages as being 8-bit. Initially the idea was
that SMTP would acquire a new set of
commands to support 8-bit email (distinct
from the 7-bit commands). During the winter
of 1992, the group discussed the meanings of
commands named CPBL and EMAL to support
delivery of 8-bit emails.122 Sometime in the
spring of 1992, encouraged by Marshall Rose
to find a simpler solution, the group members
realized that these commands were superflu-
ous.123 The existing SMTP commands could be
made to work with 8-bit email and all that was
needed was a message at the start of an SMTP
interaction to confirm that both ends of the
conversation were 8-bit capable. The EHLO
(extended HELO) message was promptly in-
vented and the problem of SMTP extensions
was then, largely, solved. RFC-1426 written by
Klensin, Freed, Rose, Einar Stefferud, and Dave
Crocker appeared in February 1993.124 With
modest modifications it defines what is today’s
standard.

A subtext to the IETF process is how many
senior email experts were pulled into the
process. While the December 1990 decision to
update SMTP was made by a group with

limited email expertise,125 subsequent meet-
ings were typically filled with email experts
such as Nathaniel Borenstein, Mark Crispin,
Dave Crocker, Erik Fair, Ned Freed, Christian
Huitema, John Klensin, and Einar Stef-
ferud.126

Closing thoughts
One of the interesting things about the

history of Arpanet/Internet email is how often
little issues were redirected into bigger, more
important results. Dick Watson wanted to
print memos on remote printers. Instead, Ray
Tomlinson created networked email. Vint Cerf
and Jon Postel wanted to make sure email was
gatewayed between Arpanet and Internet
protocols, yet the result was replacing FTP
with SMTP. A desire to support European
character sets started a process that, finally,
caused the Internet to support multimedia
email and attachments. A subtext to this
process is the willingness to discard partial
solutions such as MTP, or MD and MF resource
records, for a better solution.

Another observation is the exceptional
talent that was often involved. Several people
mentioned have received the IEEE Internet
Award (Dave Crocker, Steve Crocker, Paul
Mockapetris, and Ray Tomlinson), the IEEE
Kobayashi Award (Vint Cerf and Van Jacob-
son), or the ACM SIGCOMM Award (Cerf,
Jacobson, Mockapetris, Jon Postel, and Larry
Roberts) for their contributions. Many more
are IEEE or ACM fellows.

Acknowledgments
In the 1970s, many key ideas never made it
into an RFC or even an email archive. Thus
writing this article required help from several
people (in the form of interviews or reviews) to
fill in the blanks. Thanks are due to Eric
Allman, Steve Bellovin, Bob Braden, Jerry
Burchfiel, Noel Chiappa, Dave Crocker, Steve
Crocker, John Day, Peter Denning, Jake Fein-
ler, Ken Harrenstein, Mary Ann Horton, Steve
Kille, John Klensin, Alex McKenzie, Mike
Padlipsky, Suzanne Sluizer, Ray Tomlinson,
Al Vezza, John Vittal, Steve Walker, Barry
Wessler, and Martin Yonke. In some situa-
tions, recollections differ, and I have been
unable to find contemporary documentation
to sort out the differences. Where the recol-
lections are matters of nuance, I sought to
present a middle ground. Where the differenc-
es seemed likely to be material for a future
historian, I have documented differences in
the notes. Any errors are, of course, my fault. I
am intensely grateful to the BBN Library staff

April–June 2008 23

(Jennie Connolly and Penny Steele-Perkins)
for their invaluable assistance finding older
references.

References and notes
1. J.S. Quarterman, The Matrix: Computer Networks

and Conferencing Systems Worldwide, Digital Press.

1990; P.H. Salus, Casting the Net: From ARPANET

to Internet and Beyond, Addison-Wesley, 1995; K.

Hafner and M. Lyon, Where Wizards Stay up Late,

Simon & Schuster, 1996; I.R. Hardy, ‘‘The

Evolution of ARPANET Email,’’ Univ. California,

Berkeley, master’s thesis, 1996; J. Abbate,

Inventing the Internet, MIT Press, 1999.

Quarterman’s book sought to document the state

of networking in the world in 1990 and is a

tremendously valuable testament to a time just

before the Internet took over. The works of Salus,

Hafner and Lyon, and Abbate are general histories

in which email plays a modest part—this article is,

in some sense, the fine-grained version of email’s

history. Hardy’s thesis seeks to understand the

social dynamics of the community in which email

developed and is a useful complement to this

work. T. Haigh, ‘‘The Web’s Missing Links: Search

Engines and Portals,’’ The Internet and American

Business, W. Aspray and P. Ceruzzi, eds., MIT

Press, 2008, also has a useful perspective.

2. J.K. Reynolds, Post Office Protocol, Internet Request

for Comments No. 918, Oct. 1984; J. Myers and

M. Rose, Post Office Protocol—Version 3, Internet

Request for Comments No. 1939, May 1996. (For

information on retrieving RFCs online, see Ref. 5).

3. M.R. Crispin, Interactive Mail Access Protocol:

Version 2, Internet Request for Comments No.

1064, July 1988.

4. T. Van Vleck, ‘‘The History of Electronic Mail,’’

http://www.multicians.org/thvv/mail-history.

html.

5. The Internet Request for Comments series is

maintained online. To retrieve a particular RFC,

use http://www.rfc-editor.org/rfc/rfc#.txt, where

is replaced with the one-, two-, three-, or four-

digit RFC number.

6. R.W. Watson, A Mail Box Protocol, Internet Request

for Comments No. 196, 20 July 1971.

7. R. Tomlinson, personal communication, 13 Apr.

2006.

8. A similar line of thinking had led to email in

Multics. Louis Pouzin wanted a way to send a

message to an operator and that idea morphed

into sending messages between users. J. Klensin,

personal communication, 10 June 2006.

9. D.G. Bobrow et al., ‘‘TENEX, a Paged Timesharing

System for the PDP-10,’’ Comm. ACM, vol. 15, no.

3, 1972.

10. SNDMSG’s origins are uncertain. Tomlinson ported

SNDMSG to TENEX from another operating system.

He believed the operating system was Berkeley’s

SDS-940 system, but the SDS-940 veterans report

it did not have an email program.

11. The choice of @ did cause some controversy. It

turned out that @ was a reserved character in

Multics that caused all input to that point on a

line to be deleted.

12. A. Bhushan, File Transfer Protocol, Internet Request

for Comments No. 114, 10 Apr. 1971; A.

Bhushan et al., The File Transfer Protocol, Internet

Request for Comments No. 265, 17 Nov. 1971.

13. A side note: the problem of developing a general

distributed file system (which was the goal of the

initial FTP work) turned out to be excruciatingly

hard and was not solved until the early 1980s and

required the development of the concept of

remote procedure call (see B.J. Nelson, ‘‘Remote

Procedure Call,’’ doctoral dissertation, Carnegie

Mellon Univ., 1981) and distributed transactions

(W.E. Weihl, ‘‘Transaction Processing

Techniques,’’ Distributed Systems, 2nd ed., S.

Mullender, ed., Addison-Wesley, 1993).

14. A.K. Bhushan, Data and File Transfer Workshop

Notes, Internet Request for Comments No. 327,

27 Apr. 1972.

15. A.K. Bhushan, File Transfer Protocol, Internet

Request for Comments No. 354, 8 July 1972.

16. A.K. Bhushan, Comments on the File Transfer

Protocol, Internet Request for Comments No. 385,

18 Aug. 1972. Despite the title, it is the

document that defined MLFL and MAIL and

appears to have been the standard reference for

the next eight years.

17. D. Crocker, personal communication, 26 Apr.

2006.

18. The Arpanet community eventually developed a

term for this kind of problem: the n 3 m rule. The

n 3 m rule, paraphrased, says that one should

abhor designing systems where the consequence

of adding a new system is that every other system

needs to learn how the new system works (i.e.,

where the new system places users’ mailboxes).

19. A.K. Bhushan, RFC-385; M. Padlipsky, personal

communication, 14 Apr. 2006.

20. M. Padlipsky, ‘‘And They Argued All Night …,’’

note at http://www.lafn.org/%7Eba213/allnight.

html.

21. S. Lukasik, oral history interview by J.E. O’Neill, 17

Oct. 1991, Redondo Beach, Calif., OH 232,

Charles Babbage Inst. Lukasik guessed he was

using email on Arpanet by 1971 (p. 11). That is

too early, but 1972 is plausible.

22. The original name was Tape Editor and COrrector,

but by 1973, the acronym had evolved. Thanks to

Dan Murphy (TECO’s author) and John Vittal for

tracking down when the name changed.

23. Lukasik (Ref. 21) says Roberts produced RD

overnight. Roberts dates the invention of RD to

The Technical Development of Internet Email

24 IEEE Annals of the History of Computing

July 1972 in his Internet chronology (http://www.

packet.cc/internet.html).

24. M. Yonke, personal communication, 26 Apr.

2006. There was an intermediate program

between NRD and BANANARD, called WRD (for

Wessler’s RD). Yonke recalls it was only around

briefly and was largely Wessler’s code with bug

fixes, but otherwise unmodified.

25. M. Yonke, personal communication, 26 Apr.

2006; S. Crocker, personal communication, 31

May 2006; J. Vittal, personal communication, 5

June 2006; Yonke remembers the index size as

5,000 while Crocker remembers it as a much

smaller number (a few hundred). Vittal

remembers hitting the limit.

26. B.D. Wessler, personal communication, 17 Apr.

2006.

27. R. Tomlinson, personal communication, 13 Apr.

2006; J. Vittal, personal communication, 5 June

2006.

28. The meeting announcement (A. McKenzie, File

Transfer Protocol—Meeting Announcement and a

New Proposed Document, Internet Request for

Comments No. 454, 16 Feb. 1973) contains a

draft new specification and includes suggested

improvements to MAIL and MLFL.

29. J. Day, personal communications, 14 and 16 Apr.

2006.

30. N. Neigus, File Transfer Protocol, Internet Request

for Comments No. 542, 12 Aug. 1973.

31. The common set of attendees was Abhay

Bhushan (from MIT), Bob Braden (UCLA), Alex

McKenzie (BBN), Jon Postel (UCLA), and Jim

White (SRI).

32. That there were FTP meetings at roughly the

same time of year in both 1972 and 1973 has

caused some confusion decades later. People are

sometimes confused about which meeting they

attended.

33. J. Postel, ‘‘Mail Protocol,’’ DDN NIC memo

29588, 18 Feb. 1976 in ARPANET Protocol

Handbook, DDN Network Information Center,

Jan. 1978.

34. Allowing multiple addresses in a MLFL/MAIL

command was proposed in A. Bhushan, File

Transfer Protocol (FTP) Status and Further

Comments, Internet Request for Comments No.

414, 29 Nov. 1972, and again (now using new

commands) in K. Harrenstein, FTP Extension:

XRSQ/XRCP, Internet Request for Comments No.

743, 30 Dec. 1977. NIC 29588 suggests that

some sites used the RFC-414 scheme but that it

was not universally accepted.

35. There were some proposals for an email protocol

(the preface to RFC-724 mentions ‘‘Several

versions of such a protocol have been proposed

...’’). However, none seem to have gotten serious

attention; only one seems to have been issued as

an RFC (J.E. White, Proposed Mail Protocol,

Internet Request for Comments No. 524, June

1973), and there’s a strong impression that the

community paid very little attention to the issue.

36. J. Vittal, ‘‘MSG—A Simple Message System,’’

Computer Messaging Systems, R.P. Uhlig, ed.,

North Holland, 1981.

37. BBN collected Arpanet traffic measurements

monthly during this time, but I have been unable

to find a copy of them and thus could not verify

this claim.

38. S. Walker, ‘‘Message Group Status,’’ email to

MsgGroup of 7 June 1975.

39. The Navy was a pioneer in the use of email for

operational needs. In 1973, the Navy had

inaugurated the ‘‘Navy Communications

Processing and Routing System

(NAVCOMPARS),’’ an internal email system to

distribute orders to shore bases and to ships

(messages to ships were relayed via shortwave

radio using human operators). NAVCOMPARS

remained a key part of the Navy’s infrastructure

until it was turned off in 2002. B.M. Hintz, ‘‘The

Naval Communications Processing and Routing

System: Analysis of an Automated System,’’

master’s thesis, Naval Postgraduate School, Mar.

1976. A good description of the system as it was

operating in 1984 can be found in S. Blumenthal

et al., ‘‘NAVCAMS LAN Engineering Plan,’’ BBN

Report 5907, Mar. 1985.

40. S. Walker, personal communication, 8 June 2006.

41. D.P. Deutsch and D.W. Dodds, Hermes System

Overview, BBN Report 4115, May 1979.

42. D.H. Crocker, Framework and Functions of the

‘‘MS’’ Personal Message System, tech. report R-

2134-ARPA, RAND Corp., Dec. 1977.

43. A copy of the original memo can be found at

http://rand-mh.sourceforge.net/book/overall/

hiofmh.html.

44. D.M. Ritchie and K. Tompson, ‘‘The UNIX Time-

Sharing System,’’ The Bell System Technical J,

vol. 57, no. 6, July-Aug. 1978, part 2,

pp. 1905-1930.

45. Dave Crocker observes the interesting

counterpoint that attempts to ‘‘enhance’’ MH,

such as xmh and mhe, have sought to move the

MH commands back into a monolithic program.

46. Dave Crocker reports that the MS manual, to his

surprise, does not describe features for searching.

D. Crocker, personal communication, June 2006.

47. I interacted with Rose and Jacobson on MH

support in the 1980s. Other names come from J.

Peek, MH & xmh: Email for Users & Pro-

grammers, O’Reilly and Associates, 3rd ed., 1995.

48. A. Bhushan et al., Standardizing Network Mail

Headers, Internet Request for Comments

No. 561, 5 Sept. 1973.

April–June 2008 25

49. T.H. Myer and D.A. Henderson, Message

Transmission Protocol, Internet Request for

Comments No. 680, Apr. 1975.

50. See E. Stefferud, ‘‘MSGGROUP Situation Report

#1,’’ email to Header-People of 2 Dec. 1975.

51. In particular, Mooers wrote emails on behalf of

the BBN team explaining details of RFC-680.

Years later, Mooers was CSnet’s ‘‘postmistress’’

and internationally known for her expertise in

solving email problems.

52. J. Haverty, ‘‘Re: [ih] NIC 7104 (ARPANET Protocol

Handbook)’’ email to Internet-History mailing list

of 28 Apr. 2006.

53. See RFC-724 preface.

54. Interview with A. Vezza on 3 May 2006. He

believes his (now lost) memo, ‘‘Message Services

Committee Minority Report,’’ Jan. 1975,

expressed the view that headers should be

machine readable. See also the preface to RFC-

724, which reflects the continued debate.

55. The initial membership of the new committee was

Walker, John Seely-Brown, David Farber, Ken

Pogran, and John Vittal. J. Vittal, personal

communication, 5 June 2006.

56. For key notes in the discussion, see the note from

J. Haverty (JFH @ MIT) on 30 Sept. 1976, ‘‘Re:

your message to MSGGROUP at from and sender

…,’’ and J. Vittal, ‘‘Some comments (RFC-724,

etc.) …’’ of 9 Nov. 1976, both emails to

MsgGroup. Confusing the discussion is that an

early draft of RFC-724 was apparently distributed,

with its assigned RFC number, in 1976 (well

before its official publication date). K. Pogran et

al., Proposed Official Standard for the Format of

ARPA Network Messages, Internet Request for

Comments No. 724, 12 May 1977.

57. J. Vittal, ‘‘Comments on the state of the world,’’

email to Header-People mailing list of 29 Oct.

1977.

58. See the numerous emails between 4 and 11 Oct.

1977 in Header-People.

59. Mailing lists had an odd history in the message

format standardization process. No later than

1975, there were mailing lists as we know them

today, in which email to, say, MsgGroup@ISI was

delivered to host ISI. Host ISI then redistributed

the message to the members of the list. Yet there

seem to have been a number of different

practices intended to show that the message was

to a mailing list. So, at one time, ISI would rewrite

the outbound TO field of MsgGroup messages to

read ‘‘[ISI]MSGGROUP:’’.

60. D. Crocker, Standard for the Format of ARPA

Internet Text Messages, Internet Request for

Comments No. 822, Aug. 1982; P. Resnick,

Internet Message Format, Internet Request for

Comments No. 2822, Apr. 2001.

61. CSnet supported RFC-733 format from the start.

The UUCP network took somewhat longer. The

driving forces were sendmail (used on many

UUCP systems) and netnews B, which

intentionally used 733 format for bulletin boards.

Both software systems (plus a desire to easily

gateway to the Internet) pushed the community

to informally standardize on 733 for email. (S.

Bellovin, personal communication, 30 May 2006;

M. Horton, personal communication, 6 June

2006; see also, M. Horton, UUCP Mail Interchange

Format Standard, Internet Request for Comments

No. 976, Feb. 1986.) Bitnet started using a

custom VM email format but soon shifted to 733

(J. Klensin, personal communication, 26 May

2006).

62. A. Bhushan, File Transfer Protocol (FTP) Status and

Further Comments, Internet Request for

Comments No. 414, 29 Nov. 1972, lists the

implementation status of various FTP

implementations and observes that Clements has

implemented email retransmission.

63. See Deutsch and Dobbs, Hermes System Overview,

p. 21.

64. Compare with B. Reid, ‘‘Let’s hear it for uniform

standards,’’ email to Header-People of 10 Feb.

1978.

65. This decision to interconnect is, in retrospect,

somewhat surprising. The different networks did

view themselves as competing with each other.

However, they also viewed themselves as

competing with the postal services (derisively

dubbed ‘‘snail mail’’) and prided themselves on

getting email where it belonged faster and more

effectively than paper-based mail. Credit should

also be given to Larry Landweber, a member of

both CSnet’s and Bitnet’s boards, and a vigorous

advocate of interconnecting networks.

66. D.A. Nowitz and M.E. Lesk, ‘‘A Dial-Up Network

of UNIXTM Systems,’’ 18 Apr. 1978, Unix

Programmer’s Manual, 7th ed., Bell Telephone

Laboratories, 1979.

67. J.S. Quarterman, The Matrix, p. 251 and 278.

68. P. Honeyman and S. Bellovin, ‘‘PATHALIAS or the

Care and Feeding of Relative Addresses,’’ Proc.

1987 Summer Usenix Conf., 1986, Usenix Assoc.,

pp. 126-141.

69. D. Comer, ‘‘The Computer Science Research

Network CSNET: A History and Status Report,’’

Comm. ACM, vol. 26, no. 10, 1983, pp. 747-753.

70. Peter Denning, one of the CSnet principals,

remembers that, to make the CSnet proposal

‘‘researchy’’ enough to be acceptable to the

National Science Board, the proposal emphasized

‘‘resource sharing’’ rather than email, but

everyone, including the junior NSF staffers,

understood this was a fig leaf for email. (P.

Denning, personal communication, 5 June 2006.)

The Technical Development of Internet Email

26 IEEE Annals of the History of Computing

71. D.E. Comer and J.T. Korb, ‘‘CSNET Protocol

Software: The IP-to-X.25 Interface,’’ Proc. ACM

SIGCOMM 983, ACM Press, 1983, pp. 154-159.

72. L. Lanzillo and C. Partridge, ‘‘Implementation of

Dial-up IP for UNIX Systems,’’ Proc. 1989 Winter

Usenix Conf., Usenix Assoc., pp. 201-208.

73. Surviving source code (version 2.7 from 1981) is

about 6,800 lines of C code. There seem to have

been no technical papers describing delivermail.

The discussion here comes primarily from reading

the source code and its Unix manual pages.

74. D.H. Crocker, E.S. Szurkowski,, and D.J. Farber,

‘‘An Internetwork Memo Distribution

Capability—MMDF,’’ Proc. 6th ACM/IEEE Data

Comm. Symp., ACM Press, 1979, pp. 18-25.

75. This list is a subset of the list of differences in E.

Allman, ‘‘Mail Systems and Addressing in

4.2bsd,’’ Proc. 1983 Winter Usenix Conf., Usenix

Assoc., 1983, pp. 53-62.

76. E. Allman and M. Amos, ‘‘Sendmail Revisited,’’

Proc. 1985 Summer Usenix Conf., Usenix Assoc.,

1985, pp. 547-555.

77. See J. Postel, ‘‘Internet Meeting notes—4, 5, & 6

February 1980,’’ Internet Engineering Notes, no.

134, 29 Feb. 1980, which notes that ISI was

working on ‘‘Internet Mail, which includes the

development of mechanisms for delivery of mail

in an internet and provision for multi-media data

in the mail.’’

78. J. Postel, ‘‘Internet Meeting Notes—14 & 15 May

1980,’’ Internet Engineering Notes, no. 145, 25

May 1980.

79. V. Cerf and J. Postel, Mail Transition Plan, Internet

Request for Comments No. 771, Sept. 1980.

80. S. Sluizer and J. Postel, Mail Transfer Protocol,

Internet Request for Comments No. 772, Sept.

1980. Some people have conflated MTP and MP

(the Mail Protocol—see the Early Multimedia

section) and incorrectly believe that MTP

supported multimedia.

81. RFC-771 does not explain why it was written. But

RFC-772 makes clear that MTP is intended solely

for use for gateways.

82. Suzanne Sluizer recalls Jon ‘‘Postel saying people

thought that MTP was too complicated.’’ C.J.

Bennett, ‘‘A Simple NIFTP-Based Mail System,’’

Internet Engineering Notes, no. 169, 23 Jan. 1981,

lists issues with MTP on pp. 4 and 5.

83. J. Postel, ‘‘Internet Meeting Notes—28-29-30

January 1981,’’ Internet Engineering Notes, no.

175, 13 Mar. 1981, lists four implementations:

MIT, ISI, DCEC, and COMSAT.

84. S. Sluizer and J. Postel, Mail Transfer Protocol: ISI

TOPS-20 Implementation, Internet Request for

Comments No. 784, 1 July 1981; S. Sluizer and J.

Postel, Mail Transfer Protocol: ISI TOPS-20 File

Definitions, Internet Request for Comments No.

785, 1 July 1981.

85. E. Stefferud, ‘‘Subdivision of Messages,’’ email to

MsgGroup of 11 July 1975.

86. The first use of envelope to mean metadata

appears to be by D. Crocker, E. Szurkowski, and

D. Farber, ‘‘An Internetwork Memo Distribution

Capability—MMDF,’’ Proc. 6th ACM/IEEE Data

Comm. Symp., ACM Press, 1979, pp. 18-25.

87. The idea for pipelining originated with Phil Karn

around 1990, when he told it to me, and I in turn,

repeated the idea to Van Jacobson. Jacobson

thought it was a wonderful idea, and put it into

sendmail only to discover that many SMTP

implementations failed if pipelining was turned

on. Some of the painful experience is described in

P. Karn, email to IETF mailing list of 8 Sept. 1993.

Eventually, the IETF approved a pipelining

extension to SMTP to make it official: N. Freed,

SMTP Service Extension for Command Pipelining,

Internet Request for Comments No. 2920, Sept.

2000.

88. C. Partridge, Duplicate Messages and SMTP,

Internet Request for Comments No. 1047, 1 Feb.

1988.

89. Unfortunately, SMTP is no longer quite this

simple. Some commands now have additional

parameters (a consequence of the 8-bit

enhancements; J. Klensin, Simple Mail Transfer

Protocol, Internet Request for Comments No.

2821, Apr. 2001), and there’s pressure to

standardize the error codes to avoid dependence

on the error message, which may be a local

language (J. Klensin, personal communication, 11

June 2006).

90. E. Feinler et al., DoD Internet Host Table

Specification, Internet Request for Comments

No. 810, 1 Mar. 1982.

91. Z. Su and J. Postel, Domain Naming Convention for

Internet User Applications, Internet Request for

Comments No. 819, 1 Aug. 1982.

92. See A.D. Birrell et al., ‘‘Grapevine: An Exercise in

Distributed Computing,’’ Comm. ACM, vol. 25,

no. 4, 1982, pp. 260-274.

93. P. Mockapetris, Domain Names: Concepts and

Facilities, Internet Request for Comments

No. 882, 1 Nov. 1983; P. Mockapetris, Domain

Names: Implementation Specification, Internet

Request for Comments No. 883, 1 Nov. 1983.

94. P. Mockapetris and K.J. Dunlap, ‘‘Development of

the Domain Name System,’’ Proc. ACM SIGCOMM

988, ACM Press, 1988, pp. 123-133.

95. C. Partridge, ‘‘MF in domain database,’’ message

to NameDroppers mailing list of 29 Oct. 1985.

96. C. Partridge, ‘‘MD and MF for one host,’’ message

to NameDroppers mailing list of 11 Nov. 1985.

97. The description of the issues is now lost, but it seems

useful to reconstruct it from memory. If a name

could have both MD and MF records associated

with it, we needed a set of rules for delivery in the

April–June 2008 27

presence of both records. The obvious answer was

that a host that was neither an MD nor an MF for

the name could deliver email to either the MD or

the MF; a host that was an MF could only deliver to

an MD; and a host that was an MD could do a DNS

lookup, but, once it realized it was an MD, had to

look in other databases to figure out how to deliver

the message. Now consider the problem of host H,

trying to deliver a message to domain name D. H

looks up D in the DNS and gets back a set of email

resource records. H must then examine all the

records to see if H is listed as either an MD or an MF

for D to behave in accordance with the delivery

rules. Herein lay a problem. It was possible in the

DNS to deliver an incomplete list of MDs and MFs.

In particular, the DNS’s caching mechanism

(combined with the fact that one could query for

MDs and MFs either individually or using an

aggregate MAILA query) allowed for look up

responses to contain either the MDs for D or the

MFs for D, or both. And if H did not get both MDs

and MFs, H could make an incorrect decision.

98. These discussions involved both private and

public messages. The private messages have been

lost. The key public messages are P. Milazzo, ‘‘Re:

MD and MF for one host,’’ message to

NameDroppers on 11 Nov. 1985 in response to

the message cited in Ref. 95; C. Partridge,

‘‘Mailers use MD and MF,’’ message to

NameDroppers on 12 Nov. 1985; and P.

Mockapetris, ‘‘MD, MF and larger issues,’’

message to NameDroppers on 15 Nov. 1985. It is

my recollection that the Mockapetris note came

after a private email exchange among Postel,

Mockapetris, and Partridge. Rudy Nedved (then

of CMU) and Jon Crowcroft (then of University

College London) also made important

contributions, especially in thinking how MX RRs

interacted with sites that gatewayed email.

99. P. Mockapetris, Domain Systems Changes and

Observations, Internet Request for Comments

No. 973, Jan. 1986; C. Partridge, Mail Routing

and the Domain System, Internet Request for

Comments No. 974, Jan. 1986. While the RFCs

were issued in late January, I recall that the work

on RFC-974 was largely done by Thanksgiving of

1985 (which is remarkable, given the issues with

MD and MF surfaced on 11 Nov.) and the delay

until January was to give Mockapetris time to

think about how to address other DNS issues so

that RFC-973 could be a comprehensive update.

100. C. Partridge, ‘‘Mail Routing Using Domain

Names: An Informal Tour,’’ Proc. 1986 Summer

Usenix Conf., Usenix. Assoc., 1986, pp. 366-376.

101. No notes of this meeting survive. The

attendance list is crafted from my recollections

and those of Mary Ann Horton. There’s

uncertainty about whether Steve Kille was there

(he’s not sure) but it is more likely than not. Kille

would have provided an international

perspective (he was at University College

London) and an X.400 perspective. The account

of the meeting is my recollection. Horton’s

recollections place somewhat more emphasis on

finalizing the list of top-level domains.

102. The issue surrounding .net was that SRI

(operator of the DDN NIC) and BBN (operator

of the CSnet CIC) competed for network

operations contracts and differed in their

strategies. BBN’s approach was to build the

brand of the entity for which BBN operated the

network (so, for instance, BBNers on the CSnet

project had CSnet business cards) on the theory

that BBN’s dedication to building the brand

made BBN more attractive to the customer. SRI

sought to strongly link the entity to SRI, on the

theory the customer would be more reluctant to

change operators. So CSnet wanted to see a .net

top-level domain so that NIC’s name would be,

say, nic.inter.net. SRI wanted the NIC’s name to

be nic.sri.com. In the event, .net was created,

but the NIC became nic.ddn.mil.

103. For Postel’s views on .arpa and .uucp and the

like, see his email ‘‘re: naming and routing’’ to

the NameDroppers mailing list on 8 Feb. 1995.

104. R.E. Millstein, ‘‘The National Software Works: A

Distributed Processing System,’’ Proc. ACM’77

Conf., ACM Press, pp. 44-52.

105. J. Postel, Internet Message Protocol, Internet

Request for Comments No. 753, Mar. 1979.

106. The uuencode format was also adopted by

several early email tools, notably Microsoft Mail

and Lotus cc:Mail, for packaging attachments.

M.A. Horton, personal communication, 6 June

2006.

107. J. Postel, Internet Message Protocol, Internet

Request for Comments No. 759, Aug. 1980. J.

Postel, A Structured Format for Transmission of

Multi-Media Documents, Internet Request for

Comments No. 767, Aug. 1980.

108. V. Cerf, Comments on NCP/TCP Mail Service

Transition Strategy, Internet Request for

Comments No. 773, 1 Oct. 1980.

109. For a brief overview of the projects, see J. Postel,

Multimedia Mail Meeting Notes, Internet Request

for Comments No. 807, 9 Feb. 1982.

110. R.H. Thomas et al., ‘‘Diamond: A Multimedia

Message System Built on a Distributed

Architecture,’’ Computer, Dec. 1985, pp. 65-78.

111. Concurrently a similar project, Project Athena,

was under way at MIT.

112. The first paper on the Andrew Messaging System

cites none of the prior Internet-based work. See J.

Rosenberg, C.F. Everhart, and N.S. Borenstein,

‘‘An Overview of the Andrew Message System: A

Portable, Distributed System for Multi-media

The Technical Development of Internet Email

28 IEEE Annals of the History of Computing

Electronic Communication,’’ Proc. ACM

SIGCOMM ’87, ACM Press, pp. 99-108.

113. For a general overview of work in data encoding

for the period, see C. Partridge and M. Rose, ‘‘A

Comparison of External Data Formats,’’ Message

Handling Systems and Distributed Applications (Proc.

IFIP Workshop on Message Handling), E. Stefferud

and O. Jacobsen, eds., North Holland, 1989.

114. There were some pioneers. The earliest idea I

have seen for an external data format is J.

Haverty, MSDTP-Message Services Data

Transmission Protocol, Internet Request for

Comments No. 713, 6 Apr. 1976. It contains a

remarkably thorough understanding of the

problem of creating an external data format.

Haverty was at BBN when Deutsch and Vittal

were doing their work.

115. D. Deutsch, R. Resnick,, and J. Vittal, Specification

of a Draft Message Format Standard, BBN Report

4486, Sept. 1980. D. Deutsch et al., Specification

for Message Format for Computer Based Message

Systems (Revised), BBN Report 4765R, 23 Apr.

1982. Online literature generally gives all credit for

ASN.1 to Jim White. As explained to me (some

years ago), White gets credit for ASN.1’s language

for expressing types, but the actual on-the-wire

encoding (the Basic Encoding Rules) is the creation

of Deutsch’s group. The dates of these two BBN

reports are consistent with that story (they define

what clearly became the encoding rules) and

explain why the encoding rules are completely

unlike Courier, which was White’s invention and

the Xerox external data format of the time.

116. There is considerable debate, even today, about

how viable X.400 would have been as the

Internet’s email system. Several readers of the

paper felt the characterization of X.400 both in

terms of the quality of its technology and its

chances for success is far too generous. Some

others felt this was about right.

117. Proc. Nineteenth IETF Meeting, IETF, Dec 1990,

pp. 72-76.

118. Proc. Twentieth IETF Meeting, IETF, 11-15 Mar.

1991, M. Davies and G. Vaudreuil, eds.,

pp. 75-84.

119. There are some hints in the meeting notes that the

two groups initially may have been confused

about whether they were complementary or

competing. Participants’ memories vary. But it is

hard to believe that there was much competition,

given they had the same chairman.

120. The decision not to support uuencode is noted

on p. 62 of Proc. Twenty-Second IETF Meeting,

IETF, 18-22 Nov. 1991, M. Davies, C. Clark, and

D. Legare, eds.

121. Until Nov. 1991, both the SMTP and RFC-822

extensions groups were chaired by Greg

Vaudreuil. Vaudreuil was a good group leader, but

also new to the field and quite young and thus,

unlike Klensin, in no position to dictate a solution

to a fractious (and senior) group of techies.

Vaudreuil continued as chair of the 822-extensions

group and brought it to a successful conclusion.

Klensin remembers Phill Gross, IETF chair,

‘‘dragged me, I’m tempted to say kicking and

screaming’’ into taking on the SMTP problems (J.

Klensin, personal communication, 11 June 2006).

122. M. Davies, ed., Proc. Twenty-Third IETF Meeting,

IETF, 15-20 Mar. 1992.

123. Recollections differ slightly about how this change

of course came about. (J. Klensin, personal

communication, 11 June 2006; D. Crocker,

personal communication, 31 May 2006). Rose

pushed for the simplification. What is unclear is

whether EHLO was Rose’s idea, or the reworking of

an earlier idea by Klensin that the working group

had discarded. I cannot find documentation

pointing to one or the other answer.

124. J. Klensin et al., SMTP Service Extension for 8bit-

MIME Transport, Internet Request for Comments

No. 1426, Feb. 1993.

125. Of the Dec. 1990 group, only Bob Braden of ISI

had written an MTA or participated in crafting

an email standards document.

126. Borenstein, Freed, Crocker, and Klensin’s

background is described earlier in the article.

Stefferud ran the Msg-People mailing list

in the 1970s and coined the term ‘‘envelope.’’

Fair was widely respected as an expert at

keeping email systems running and, at the

time, managed Apple Computer’s email

systems. Huitema was a pioneer in networking

in France.

Craig Partridge is chief scien-

tist for networking at BBN

Technologies, where he has

worked on data networking

problems since 1983. He is

best known for his work on

email routing, TCP round-trip

time estimation, and high-

performance router design. He received an MSc

and a PhD, both in computer science, from

Harvard University. Craig is the former editor in

chief of IEEE Network Magazine and ACM Computer

Communication Review and is an IEEE Fellow.

Readers may contact Craig Partridge about this

article at craig@bbn.com.

For further information on this or any other

computing topic, please visit our Digital Library

at http://computer.org/csdl.

April–June 2008 29

