
10 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

P h i l i p p e K r u c h t e n n U n i v e r s i t y o f B r i t i s h C o l u m b i a n k r u c h t e n @ i e e e . o r g

The Biological
Half-Life of Software
Engineering Ideas

Philippe Kruchten

I am pleased to inaugurate a new department by one of our most veteran editors. Philippe Kruchten is

among the rare pioneers who have successfully straddled industry and academia. His contribution to soft-

ware practice has been huge. He is now a professor of software engineering at the University of British

Columbia in Vancouver, Canada. He spent 17 years at Rational Software, now part of IBM, where he led

the development of the Rational Unified Process, a Web-based, generic software development process. He

wrote three books on the RUP and created a model for representing software architecture based on mul-

tiple coordinated views, which led to an IEEE standard.

The insights brewed through his years of experience are sharp and penetrating. Thus, look forward to

Philippe’s and his guest authors’ take on software engineering education, training, learning, certification,

accreditation, and career advancement in these pages. From time to time, you’ll also find in them invalu-

able information on the IEEE Computer Society’s professional advancement initiatives. Oh, before I for-

get … expect Philippe to touch sensitive chords and provoke thoughtful discussion on hairy issues pertain-

ing to the development of our profession. Enjoy the first edition! —Hakan Erdogmus, editor in chief

A
product’s biological half-life is the time

it takes the body to eliminate one half of

the product taken in by natural biologi-

cal means. For example, caffeine’s half-

life is roughly three and a half hours. Of

all the molecules of coffee in the cup I just

finished, my body will have eliminated—or bro-

ken down into simpler compounds—half in three

hours, three quarters in six hours,

and so on.

Using the same general idea,

I’ve often wondered about the

half-life of important software en-

gineering concepts, tools, meth-

ods, and even companies. If you

were to compose a list of 100 im-

portant concepts in year T0, how

many would still be important in

year T0 + N?

The five-year hypothesis
My conjecture is that the half-life of software engi-

neering ideas is roughly five years. Five years from

now, 50 percent of the key ideas, concepts, and so

on in this copy of IEEE Software will have been for-

gotten or seriously marginalized—not really worth

teaching an undergraduate software engineering

student, for example. No, I haven’t rigorously tested

this hypothesis, but just for fun, I took from my

shelf a few issues of IEEE Software from 1988 (this

shows my age, I know). What do we have here?

Lots of articles about programming languages:

Fortran (okay, it’s still around in some circles, but

not taught much), Eiffel (a small niche of fans), Ada

(very marginal; gee, I loved that language, so here

I’ll drop an emotional tear), TurboPascal (yep, used

that), someone who wants to integrate Loops with

Prolog, and a visual front end for Prolog, touted as

the new great way forward.

On the operating-systems front, OS/2 is men-

tioned most (gone now). And we have companies

buying full-page ads: Stepstone (gone), Softool

(gone), and Interactive Software (morphed). On

systems, the hypercube computer is the state of the

art, and rapid prototyping is the new “in” process

(which, in some ways, survives in early iterations

career development

 September/October 2008 I E E E S O F T W A R E 11

of agile development). Out of 50 items I

checked, maybe three are still important to-

day, or at least recognizable. That’s indeed

a half-life of five years. This made me won-

der: of 200 things I learned about software

in school, only one or two would still be key

ideas today! What could those be? Modu-

larity? Synchronization between processes?

The Dijkstra/Parnas/Hoare stuff?

Keeping up-to-date
So, if concepts, ideas, tools, or techniques

in our field have a half-life of five years, we

need to constantly replenish our brains’

content. We can’t stop learning new things,

or we’ll get empty pretty rapidly, and we’ll

be totally useless, obsolete, hit by The Pe-

ter Principle. We must constantly learn

new tricks. We snooze, and poof, we’re off

the wagon. The next time we look for a

job, we won’t even recognize what the ads

are talking about.

We also have an ethical duty to keep up

to speed with advances in our field. The

IEEE/ACM Software Engineering Code

of Ethics (you’ve read it and have a copy

handy on your hard drive, right?) states

that

Software engineers shall partici-
pate in lifelong learning regarding
the practice of their profession. …
They shall continually endeavor to
further their knowledge of develop-
ments in the analysis, specification,
design, development, maintenance
and testing of software …, together
with the management of the develop-
ment process, … to improve their
knowledge of relevant standards and
the law governing the software and
related documents.

Professional organizations worldwide

have started to take a stand about this, see-

ing that their members take a rather relaxed

and lazy view of the topic, and they now

mandate Continuous Professional Develop-

ment (CPD). If you happen to be an IEEE

Certified Software Development Profes-

sional (CSDP; I’m #99), you know that ev-

ery five years (five years, huh?) you must

demonstrate that you’ve kept up-to-date,

in some way or other: taking classes, read-

ing books, going to seminars and confer-

ences—I get a few points for researching

and writing this article! Engineers Canada

and its constituent bodies have taken a simi-

lar approach; I must now tick a box on my

yearly license renewal as a professional en-

gineer, and in a few years, they might even

audit my CPD record.

During parts of my career, I was heav-

ily involved in hiring new people for large

software teams. Some of my questions of-

ten puzzled candidates: What technical

book have you read in the past six months?

What technical publication do you sub-

scribe to or read regularly? Tell me about

one new thing you’ve learned lately, a new

idea that you haven’t yet tried, but are ea-

ger to? I’ve often been disappointed by the

results. I didn’t give much of a chance to

someone who hadn’t read a single book, or

sometimes a single technical publication,

in six months.

Now that I’m retired from industry and

teaching software engineering, I often get

into debates with students about the training-

versus-education issue. One came to see

me with a long list of languages, tools, and

techniques (a long acronym soup) picked

from all the ads he could find for software

positions, and said, “We are not learning

the right things here; we should be learning

C#, RUP, Ajax, Perl, Python, DB2, HTML,

Oracle 9, SAP R5,” and so on, and my re-

ply was invariably this: How about you

learn how to learn? Wouldn’t that be more

useful than just learning a large collection

of techniques that are going to vanish soon

(half-life: five years)? How about getting

into your system some more complex mol-

ecules that don’t dissolve too rapidly, that

have half-lives of 20 years?

So, we need to learn continuously. But

how do we go about doing this? You seem

to be reading IEEE Software—is this suf-

ficient? What if you don’t live in or close to

a school? Or a library? There’s the Net, of

course: Google, Slashdot, the blogosphere,

RSS feeds, and wikis. But how do we sort

out the anecdotal, the crazy opinions, the

sales pitches, and the rants from solid and

validated information? Where to go? Or

not to go? How to avoid being swamped?

Professional development
This is the first installment in a new IEEE

Software column on professional devel-

opment. In small doses over the next few

months, we’ll be covering in more detail

some of these issues: body of knowledge,

knowledge transfer, education and curric-

ulum, continuing education, certification,

professionalism, associations, career ad-

vancement, and the relationships between

all these things. I don’t intend to pontifi-

cate alone on all these topics, and I’ll find

knowledgeable helpers in my personal net-

work to write some of this—in fact, con-

sider this a call for participation.

I
f some of these issues are dear to your

heart, if you want to share them with

us, I’d be happy to hand over the micro-

phone (or the keyboard) for 1,500 words.

But contact me first, and let’s discuss your

idea.

Philippe Kruchten is a professor of software engi-
neering at the University of British Columbia in Vancouver.
Contact him at kruchten@ieee.org.

CAREER DEVELOPMENT

Are You Running a Software
Engineering Research Lab?
We’re offering complementary print copies for a period of
two years to select university research groups with student
members. Let us know if you’re responsible for a software
engineering research group at a reputable academic
department and wish to receive two complementary copies

of IEEE Software to be made available to your group in a common area. Tell us a
bit about your group and its research focus (not exceeding one paragraph). Don’t
forget to mention the group’s size and composition as well as the contact person’s
name, email, and postal address. Indicate whether your institution is privately or
publicly funded. This is a limited-time offer available to eligible research groups
on a first-come, first-served basis as long as quotas last. Each geographical area
has a quota. Send your request to software@computer.org, with subject line “re-
search group comp copies.”

