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The availability of interaction data between small molecule drugs and protein targets has

increased substantially in recent years. Using seven different databases, we were able to assemble

a total of 4767 unique interactions between 802 drugs and 480 targets, which means that on

average every drug is currently acknowledged to interact with 6 targets. The application of

network theory to the analysis of these data reveals an unexpectedly complex picture of

drug–target interactions. The results confirm that the topology of drug–target networks depends

implicitly on data completeness, drug properties, and target families. The implications for drug

discovery are discussed.

Introduction

The traditional view of drugs interacting selectively with a

specific protein target has been recently challenged by growing

evidence that they possess instead an inherently rich

polypharmacology.1 For example, celecoxib (Celebrex) is still

being referred to as a selective cyclooxygenase-2 non-steroidal

anti-inflammatory drug, even though relevant affinities for at

least two additional targets (namely, carbonic anhydrase II

and 5-lipoxygenase) have been lately identified,2,3 and

pergolide (Permax) was not long ago still regarded as a

member of a class of drugs known as dopamine agonists,

despite its currently accepted promiscuity over multiple G

protein-coupled receptors (GPCRs).4 As more data on the

interaction between drugs and targets are being generated and

made publicly accessible,5 it is becoming evident that selective

drugs acting exclusively on single targets seem to be the

exception rather than the norm.

The core of this historical misconception of drug selectivity

lies in the fact that, mainly due to limited time and resources,

drugs are usually not screened systematically through a large

panel of protein targets for the sake of acquiring knowledge

about their complete pharmacological profile. Instead, drugs

are only tested against a limited number of off-target proteins

assumed to be relevant for a particular drug discovery project

and selected mainly on the basis of safety concerns

and phylogenetic relationships to the primary target.6,7 In

addition, our biased perception of drug selectivity is aggra-

vated by the fact that, from all data generated, only a portion

is ultimately published, and even then it is found scattered over

numerous bibliographic sources often using different names

for the same drug and target entities.8 In this respect, recent

initiatives to collect and store drug–target interaction data

from the literature have contributed highly to the modern

appreciation of the polypharmacology of drugs.5,9

As a consequence, even though currently available inter-

action data may still be largely incomplete, nonhomogeneous

and biased toward certain areas of interest, an unexpectedly

complex picture of drug–target interactions has started to

emerge.10 Analysing this increasingly complex ensemble of

interactions requires specialised visualisation tools. The

simplest approach is to depict directly the entire drug–target

interaction matrix in which each cell of the matrix is coloured

according to the affinity between a particular drug–target

pair.11 But in recent years, the application of network theory

to visualise and analyse drug–target interaction data has

become very popular for its ability to capture complexity in

a compact and illustrative manner.10–14 Accordingly, the aim

of this contribution is to perform a more in-depth exploration

of the topology of networks constructed from drug–target

interaction data and, in particular, analyse the effect that drug

properties and target families might have on the overall

structure of drug–target networks.

Results

Drug–target interaction data were extracted from seven

annotated chemical libraries, collecting globally a total of

6284 interactions between 802 drugs and 480 targets. Table 1

summarises the number of drugs, targets, drug–target inter-

actions, and target interactions per drug provided by each

particular database. Additional drug–target interaction data

were predicted computationally by means of a ligand-based

approach to target profiling.11 Then, drug–target networks

were constructed by linking all drug–target pairs for which an

interaction was either known experimentally from annotated
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chemical libraries or predicted computationally by in silico

target profiling and then visualised using a common layout

algorithm that disperses the nodes in the plane and minimises

their overlap.15 Apart from the apparent visual differences, the

topology of drug–target interaction networks was assessed

quantitatively in terms of the fraction of nodes belonging to

the largest connected component (nLCC) in the corresponding

drug network, in which nodes are drugs connected if they

share at least one target, and target network, in which nodes

are targets connected if they share at least one drug, and these

values were then compared to the corresponding values

obtained from one hundred randomised networks keeping

the total number of nodes and interactions unchanged. Given

the relatively large degree of connectivity found in all drug and

target networks derived from the drug–target networks

presented here, standard deviations for the corresponding

nLCC values were in most cases lower than the number of

decimal digits provided and thus they have been omitted for

the sake of simplicity. The following sections analyse the

effects that data completeness, drug properties, and target

families may have on the topology of drug–target networks.

Topology of drug–target interaction networks

A recent study highlighted the dramatic effect that data

completeness had on the topology of drug–target interaction

networks when systematically completing the interaction data

present in DrugBank5 with additional literature-based experi-

mental data available in Wombat16 and subsequently with

estimated data obtained from an in silico target profiling

method.10 A revised analysis is presented here, now including

experimental drug–target interaction data added in the recent

updates of DrugBank and Wombat, and complemented with

new data available from five additional databases, namely,

BindingDB,17 PDSP,18 CYPdb, GPCRdb, and NRdb19

(Table 1).

The first drug–target network (Fig. 1a) was based on the

1404 interactions available in DrugBank connecting 774 drugs

to 289 targets, resulting in an average number of interactions

per drug of 1.8. As can be observed, the topology of this

drug–target network reveals a well-organised modular

structure, with many proteins clustering around phylogenetic

families. The nLCC values for the corresponding drug and

target networks are 0.66 and 0.47, respectively. Both these

numbers are significantly smaller than the values of 0.93 and

0.77 obtained from the corresponding randomised networks.

The two nLCC values are also found to be very much in

agreement with those reported recently from networks derived

using the same data source.14

A second drug–target network (Fig. 1b) was then derived by

supplementing the original data present in DrugBank with

additional interaction data available in Wombat, which

resulted in 2288 drug–target interactions between 785 drugs

and 413 targets. This means that Wombat enriched the

original DrugBank network with 11 drugs, 124 targets, and

884 drug–target interactions. The result is that the topology of

the drug–target network is visibly affected, becoming more

complex and interconnected, with an average number of

interactions per drug of 2.9. Quantitatively, this is reflected

by nLCC values of 0.87 and 0.78 for the corresponding drug

and target networks, respectively, which become now closer to

the values of 0.95 and 0.91 derived from randomised networks.

A third drug–target network (Fig. 1c) was constructed with

all drug–target interaction data from the seven annotated

databases considered in this work (Table 1). In total, they

accumulate 4767 interactions connecting 802 drugs and 480

targets, that is 17 drugs, 67 targets, and 2479 interactions more

than the network constructed from DrugBank and Wombat

only (Fig. 1b). This translates into a significant increase in the

number of interactions per drug, doubling the value from 2.9

to 5.9, which in turn results in a drug–target network with a

highly-connected structure. The nLCC values for the corres-

ponding drug and target networks are 0.92 and 0.87,

respectively, almost reaching the corresponding values of

0.97 and 0.94 from the randomised networks. Interestingly,

the value of 5.9 interactions per drug obtained from all

experimental drug–target interaction data currently available

is now approaching the projected value of 6.3 reported

previously by in silico target profiling.10

Finally, a fourth drug–target network (Fig. 1d) was derived

by complementing all experimental drug–target interaction

data with annotations assigned using a ligand-based approach

to in silico target profiling.11 Note that, compared to previous

works,10,11 the ligand-based target models used here were

significantly augmented with the latest drug–target interaction

data included in the most recent updates of all annotated

chemical libraries (Table 1). The resulting network contains

10 343 interactions linking 802 drugs with 675 targets, which

now gives a projected average number of interactions per drug

of 12.9. The topology of the network reveals a high

Table 1 List of databases with drug–target interaction data used in this work

Databasea Drugs Targets Interactions Interactions per drug

DrugBank 2008.07 774 289 1404 1.8
Wombat 2007.2 336 257 1178 3.5
DB + WB 785 413 2288 2.9
PDSP 2008 296 187 2590 8.8
BindingDB 2008.09 70 41 109 1.6
CYPdb 153 34 418 2.7
GPCRdb 145 59 573 3.9
NRdb 12 7 12 1.7
DB + WB + OD 802 480 4767 5.9
DB + WB + OD + IS 802 675 10343 12.9

a DB: DrugBank, WB: Wombat, OD: other databases, IS: in silico predictions.
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interconnected structure between nodes, with nLCC values for

the corresponding drug and target networks of 0.98 and 0.97,

respectively, very close to the values of 0.99 and 0.99 obtained

from the analogous randomised networks.

Overall, the exercise of systematically adding currently

known experimental drug–target interaction data contained

in different databases confirms the dramatic effect that data

completeness has on the topology of drug–target networks and

consequently on any conclusions that can be derived from

them.10 In this respect, the well-organised modular structure

of the drug–target network constructed with interaction data

from DrugBank (Fig. 1a) was gradually transformed into

highly-connected topologies as additional experimental data

were considered. Likewise, the average number of 2 targets per

drug derived from DrugBank and 3 targets per drug, when

supplemented with Wombat, increased to 6 targets per drug

when all experimental drug–target interaction data available

at present were used. This value may go up to 13 targets per

drug, according to the projection obtained by means of

an in silico target profiling method.

Dependence on drug properties

Using a simple model of ligand–receptor interactions, one can

deduce that as the number of potentially-interacting features

in a molecule increases, the chance of observing a useful

interaction for a randomly chosen ligand falls dramatically.20

The direct consequences of this theoretical hypothesis are that

large complex molecules should in principle be more selective

than small simple molecules and thus the topology of

drug–target interaction networks could depend implicitly on

the properties of drugs.

In order to investigate this aspect, two properties

were calculated for all drugs, namely, molecular weight

(MW, in Dalton), which correlates well with molecular size,

and hydrophobicity (clogP, calculated logarithm of n-octanol–

water partition coefficient), taken as a rough estimate of

pharmacophoric complexity. Then, the set of 802 drugs was

partitioned into several ranges for each property and the

projected mean promiscuity (number of interactions per drug)

for all drugs within each property range calculated from the

values used to derive the drug–target network completed with

computationally-predicted interactions (Fig. 1d). The distri-

bution of the mean promiscuities of drugs upon variation of

MW and clogP is presented in Fig. 2. For the sake of

completeness, the exact number of drugs, the mean number

of interactions and the degree of the drug–target network

within each property block is provided in Table S1 (ESIz) and

the corresponding distribution obtained from the drug–target

Fig. 1 Drug–target interaction networks derived cumulatively from various data sources: (a) DrugBank, (b) DrugBank and Wombat,

(c) DrugBank, Wombat, BindingDB, PDSP, CYPdb, GPCRdb and NRdb, and (d) DrugBank, Wombat, BindingDB, PDSP, CYPdb, GPCRdb,

NRdb and in silico annotations. Drugs and targets are indicated as black and white circles, respectively.
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network derived from all currently available experimental

interaction data (Fig. 1c) is also given in Fig. S1 of the ESI.z

The general trends observed are that, within a given range of

MW values, promiscuity tends to increase with hydro-

phobicity but also that, within a given range of clogP values,

promiscuity has a tendency to decrease with size. The effect is

clearly visible for the smallest (MW o 300) and the more

hydrophobic (clogP4 4) drugs, but it becomes less evident for

drugs in the other ranges of property values. For example, the

mean promiscuity obtained for the least hydrophobic drugs

(clogP o 1) remains almost invariable with increased MW.

The same holds true for the largest drugs (MW 4 400) upon

increased hydrophobicity, although in this case a change is

markedly observed at high hydrophobicity values (clogP4 4).

Likewise, for drugs in the medium range of hydrophobicity

values (2 o clogP o 4), the mean promiscuity experiences

minor changes with increased molecular size until it drops

abruptly at high values (MW 4 400). Qualitatively, similar

trends are already obtained from the analysis of experimental

interaction data (Fig. S1, ESIz), the differences being mainly

associated with the issue of data completeness. Broadly, these

results agree well with the inverse correlation between mean

MW and promiscuity, and the trend that promiscuous

compounds tend to have clogP values above 2.5–3.0, observed

recently from an analysis of a different source of drug–target

interaction data.21

Following our previous observations (Fig. 1), one should

expect that low mean promiscuities will be potentially

associated with highly disconnected drug–target networks

with well-structured topologies for the largest connected

component, whereas high mean promiscuity values may result

in more dense and connected network topologies. In order to

highlight the topological differences among the networks

constructed from drugs included in the various property

blocks of Fig. 2, focus was given to the sets of drugs contained

in the two property poles. On one hand, the set of 27 drugs

with MW 4 400 and clogP o 1 have, on average, 2.4

experimentally known interactions per drug, with a projected

Fig. 2 Variation of the mean promiscuity of drugs contained within

value ranges of molecular weight (MW) and hydrophobicity (clogP).

Fig. 3 Drug–target interaction networks and representative structures of drugs contained in the two blocks of property ranges: (a) MW 4 400

and clogP o 1, and (b) MW o 300 and clogP 4 4. Drugs and targets are indicated as black and white circles, respectively.
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value of 6.7. Accordingly, the drug–target network associated

with this property block displays a relatively small and

modular giant component alongside many isolated interactions

(Fig. 3a). On the other hand, the set of 49 drugs with

MW o 300 and clogP 4 4 have, on average, 9.2 experi-

mentally known interactions per drug, with a projected value

of 30.9. Consequently, the drug–target network derived for

this property block shows comparably a much larger and

connected giant component with only a few isolated inter-

actions (Fig. 3b). These two examples illustrate clearly the

implicit dependence of the topology of drug–target networks

on drug properties.

A close inspection of the composition and structural

features of drugs contained within the two most distant

property blocks may provide some clues for the trends

observed. Therefore, representative structures of the two sets

of drugs were also included in Fig. 3. As can be observed, the

structures of drugs with MW 4 400 and clogP o 1 are of

highly complex nature, complexity here is understood to be the

presence and combination of multiple potentially-interacting

features (Fig. 3a). In contrast, the structures of drugs with

MW o 300 and clogP 4 4 all share a rather simple arrange-

ment of hydrophobic features combined with the presence of a

few potentially-interacting features (Fig. 3b), visually quite

distinct from the complex composition of the previous drug

set. Interestingly, while many of the large hydrophilic drugs

are enzyme inhibitors, the majority of the small hydrophobic

drugs interact with GPCRs, an indication that the degree of

drug–target interactions may vary among target families.

Dependence on target families

A recent analysis highlighted the dependence of molecular

properties on target families for a set of 642 marketed oral

drugs.22 For example, it was found that the mean MW for

drugs acting on ion channels and proteases is 305.5 and 430.6,

respectively, and the mean clogP for drugs acting on aminergic

GPCRs and nuclear receptors is 2.8 and 4.1, respectively.

Therefore, on one hand, it has been reported already that

the properties of drugs vary significantly among target families

and, on the other hand, it was shown in the previous section

that the topology of drug–target networks depends implicitly

on the properties of drugs. Consequently, one should expect

also an implicit dependence of the topology of drug–target

networks on the target family. To investigate this aspect, the

list of 480 targets experimentally known to interact with any of

the 802 drugs was organised in four main target families

of therapeutic relevance, namely, enzymes, GPCRs, ion

channels/transporters, and nuclear receptors. Then, drugs

were assigned to each target family if interaction data between

Fig. 4 Drug–target interaction networks derived for the different target families: (a) enzymes, (b) ion channels/transporters, (c) nuclear receptors,

and (d) G protein-coupled receptors. Drugs and targets are indicated as black and white circles, respectively.
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the drug and a member of that family existed. The resulting

drug–target networks are presented in Fig. 4, which represents

a deconvolution into target families of Fig. 1c. For the sake of

completeness, the corresponding networks derived from

drug–target interaction data completed by computational

means are provided in Fig. S2 of the ESI.z

The drug–target network derived for enzymes contains 1112

interactions connecting 431 drugs with 191 targets, resulted in

an average number of experimentally known interactions per

drug of 2.6, with a projected value of 4.8 (Fig. 4a). Visually,

the topology of the network reveals a well-organised structure.

The nLCC values for the corresponding drug and target

networks are 0.84 and 0.74, respectively, both numbers being

smaller than the values of 0.95 and 0.86 obtained from the

corresponding randomised networks.

A similar topological structure is observed for the drug–

target network derived for ion channels/transporters, contain-

ing 623 interactions between 268 drugs and 93 targets, with an

average number of 2.3 experimentally known interactions per

drug and a projected value of 3.0 (Fig. 4b). In this case, the

nLCC values for the drug and target networks derived are 0.90

and 0.74, respectively, comparably smaller than the values of

0.94 and 0.87 obtained from the randomised networks and all

similar to the corresponding values obtained above for the

enzyme network.

The drug–target network constructed for the 77 drugs

connected to 19 nuclear receptors through 155 interactions

reveals a much simpler topology due to the relatively small size

of the network, with an average number of experimentally

known interactions per drug of 2.0 and a projected value of 2.3

(Fig. 4c). The nLCC values of the associated drug and target

networks are 0.84 and 0.47, respectively. In fact, the network is

composed of two subnetworks, dividing nuclear receptors into

two main cross-pharmacology sets. The largest connected

component contains 7 members of the estrogen-like class

and the 2 thyroid hormone receptors, whereas the smallest

component includes the 3 retinoic acid receptors, the 3 retinoic

X receptors, the 3 peroxisome proliferator activated receptors,

and the vitamin D3 receptor.

In contrast, the drug–target network for GPCRs contains

2646 interactions between 396 drugs and 106 targets, resulted

in an average number of interactions per drug of 6.7, with a

projected value of 10.0 (Fig. 4d). Compared to the drug–target

networks obtained for the other three target families, the

topology of this network is visually more dense and inter-

connected, with many targets collapsed in the centre of the

network. From a quantitative viewpoint, the nLCC values for

the corresponding drug and target networks of 0.97 and 0.93,

respectively, are now much closer to the values of 0.99 and

0.94 obtained from the analogous randomised networks. In

fact, only 8 targets are left outside the largest connected

component derived from all experimental interaction data

available, those being the two endothelin type A and B

receptors, the gonadotropin-releasing, follicle-stimulating,

and luteinizing hormone receptors, and the purinoreceptor,11

in addition to a calcium-sensing and a taste receptor. Overall,

these analyses illustrate clearly the implicit dependence of the

topology of drug–target networks on target families which,

beyond the effect that the properties of bioactive molecules

might have, are a reflection of how the intrinsic phylogenetic

relationships among the targets of a given family translate into

cross-pharmacologies between them.

Conclusions

It is a fact that our conventional notion of target selectivity

should be reconsidered and recognised as being as truthful as

our limited degree of knowledge on the complete pharmaco-

logical profile of drugs permits. In this respect, data complete-

ness is a critical issue to our understanding of drug–target

interactions and more efforts should be devoted to systematically

derive complete interaction matrices. In the meantime, caution

is advised on any conclusion derived from analyses performed

uniquely on currently available drug–target interaction data.

On the basis of current interaction data, but largely

complemented also with the projections performed by means

of in silico target profiling methods, a complex picture of

drug–target interactions is starting to emerge. Within this

context, network theory offers both an illustrative and

quantitative framework with which to analyse this complexity.

In this work, network approaches were used to analyse the

implicit dependence of the topology of drug–target interaction

networks on drug properties and target families. A remarkable

convergence of the results was obtained. From the analysis of

drug properties, it was observed that small hydrophobic drugs

appear to be significantly more promiscuous than large

hydrophilic drugs, whereas from the analysis of target families,

the drug–target interaction network composed by drugs

targeting GPCRs was found to be significantly more

connected than any of the networks derived for the other

target families. Both findings converge when realising that

small hydrophobic drugs are known to interact primarily with

GPCRs, whereas the majority of the large hydrophilic drugs

appear to be enzyme inhibitors.

These results may have potential implications for drug

discovery. On one hand, the properties of the chemical space

surrounding drugs may be linked implicitly to some degree of

target promiscuity. On the other hand, drug properties seem to

determine also to a certain extent the scope of the biological

space that could be potentially targeted by those drugs. Thus,

ultimately, target spaces may also be implicitly linked to some

basal degree of target promiscuity. Understanding the

complexity associated with the implicit dependencies of

promiscuity on drug properties and target families may

facilitate our quest to generate safer, more efficient drugs.

Databases and methods

Annotated chemical libraries

Drug–target interaction data available experimentally were

extracted from a representative sample of annotated chemical

libraries (Table 1). It included DrugBank, the major public

resource of drug–target interaction data;5 Wombat, a

commercial collection of small molecules with known

biological activity from medicinal chemistry literature;16

BindingDB, a publicly accessible database of experimentally

determined binding affinities of protein–ligand complexes;17
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and PDSP Ki database, a repository of experimental Ki data

on receptors available from the Psychoactive Drug Screening

Program.18 These four databases were supplemented with

three additional annotated libraries assembled internally

and directed to cytochromes (CYPdb), G protein-coupled

receptors (GPCRdb) and nuclear receptors (NRdb).19 In total,

6284 drug–target interactions between 802 drugs and 480

targets were collected (Table 1). Over 40% of those inter-

actions are reported in two or more databases, which results in

a total number of 4767 unique drug–target interactions. Of

those, 3749 interactions are found exclusively in one database

only, with PDSP (39.0%), DrugBank (24.2%), and Wombat

(21.6%) gathering almost 85% of them.

In silico target profiling

Several approaches to in silico pharmacology have appeared in

recent years, some exploiting the vast amount of information

on bioactive ligands (ligand-based methods), others making

use of protein structures (structure-based methods).23

Additional drug–target interaction data generated computa-

tionally were obtained here using a ligand-based target

profiling method developed recently in our laboratory.11 Our

approach relies on the assumption that the set of bioactive

ligands collected for a given target provides in fact a

complementary description of the target from a ligand

perspective. In order to be able to process this information

efficiently, molecular structures need to be encoded using some

sort of mathematical descriptors. In this respect, a novel set of

low-dimension molecular descriptors called SHED were

used.24 SHED are derived from distributions of atom-centered

feature pairs extracted directly from the topology of

molecules. The collection of SHED values reflecting the

overall distribution of pharmacophoric features in a molecule

constitutes its SHED profile. The ensemble of SHED profiles

representing all bioactive molecules annotated to a particular

protein target constitutes a mathematical description of the

target from a chemical perspective. Ligand-based descriptor

models were derived for 1491 targets using a total of 156 749

unique bioactive molecules stored in the annotated chemical

libraries described above. The probability of a drug interacting

with a particular target is assumed to be related to the degree

of similarity relative to the set of known bioactive ligands for

that target. Accordingly, Euclidean distances between the

SHED profile of a drug and all SHED profiles associated with

a target are first calculated and a final target scoring is given by

the minimum value of all Euclidean distances.25 Following

previous validation analyses,11,25 if that minimum Euclidean

distance is below 0.6, a new drug–target interaction is assigned.
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