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Sometimes a system with many simple components will exhibit a behavior of the whole that seems 

more organised than the behavior of the individual parts. Consider the intricate structure of a snowflake. 

Symmetric shapes within the crystals of ice repeat in threes and sixes, with patterns recurring from place to 

place and within themselves at different scales. The shapes formed by the ice are consequences of the local 

rules of interaction that govern the molecules of water, although the connection between the shapes and the 

rules is far from obvious. After all, these are the same rules of interaction that cause water to suddenly turn 

to steam at its boiling point and cause whirlpools to form in a stream. The rules that govern the forces 

between water molecules seem much simpler than crystals or whirlpools or boiling points, yet all of these 

complex phenomena are somehow consequences of those rules.  Such phenomena are called emergent 

behaviors of the system. 

It would be very convenient if intelligence were an emergent behavior of randomly connected neurons 

in the same sense that snowflakes and whirlpools are emergent behaviors of water molecules. It might then 

be possible to build a thinking machine by simply hooking together a sufficiently large network of 

artificial neurons. The notion of emergence would suggest that such a network, once it reached some critical 

mass, would spontaneously begin to think. 

This is a seductive idea because it allows for theh possibility of constructing intelligence without first 

understanding it. Understanding intelligence is difficult and probably a long way off, so the possibility that 

it might spontaneously emerge from the interactions of a large collection of simple parts has considerable 

appeal to the would-be builder of thinking machines. Unfortunately, that idea does not suggest a practical 

approach to construction. The concept of emergence in itself offers neither guidance on how to construct 

such a system nor insight into why it would work. 

Ironically, the apparent inscrutability of the idea of intelligence as an emergent behavior accounts for 

much of its continuing popularity. Emergence offers a way to believe in physical causality while 

simultaneously maintaining the impossibility of a reductionist explanation of thought. For those who fear 

mechanistic explanations of the human mind, our ignorance of how local interactions produce emergent 

behavior offers a reassuring fog in which to hide the soul. 

There has been a recent renewal of interest in emergent behavior in the form of simulated neural 

networks and connectionist models, spin glasses and cellular automata, and evolutionary models. Each of 

these is a model of some real system. For neural networks and connectionist models, the system being 

modeled is a collection of biological neurons, such as the brain; for spin glasses it is molecular crystals. 

Cellular automata and evolutionary models are based on the ontogenesis and phylogenesis of living 

organisms. In all of these cases, both the model and the system being modeled produce dramatic examples 

of emergent behavior. 

Most of these models are not new, but interest in them is being stirred because of a combination of 

new insights and new tools. The insights come primarily from a branch of physics called dynamical 

systems theory. The tools come from the development of new types of computing devices. Just as we 

thought of intelligence in terms of servomechanism in the 1950s, and in terms of sequential computers in 

the sixties and seventies, we are now beginning to think in terms of parallel computers, in which tens of 

thousands of processors work together. This is not a deep philosophical shift, but it is of great practical 

importance, since it is now possible to study large emergent systems experimentally. 

Inevitably, antireductionists interpret such progress as a schism between symbolic rationalists, who 

oppose them, and gestaltists, who support them. I have often been asked which “side” I am on. Not being a 

philosopher, my inclination is to focus on the practical aspects of this question: How would we go about 



constructing an emergent intelligence? What information would we need to know in order to succeed? How 

can this information be determined by experiment? 

The emergent system that I can most easily imagine would be an implementation of symbolic thought 

rather than a refutation of it. Symbolic thought would be an emergent property of the system. The point of 

view is best explained by the following parable about the origin of human intelligence. As far as I know, 

this parable of human evolution is consistent with the available evidence (as are many others), but because 

it is chosen to illustrate a point, it should be read as a story, not as a theory. It is different from most 

accepted theories of human development in that it presents features that are measurable in the archaeological 

records—such as increased brain size, food sharing and neoteny—as consequences rather than causes of 

intelligence. 

Once upon a time, about two and a half million years ago, there lived a race of apes that walked 

upright. In terms of intellect and habit they were similar to modern chimpanzees. The young apes, like 

young apes today, had a tendency to mimic the actions of others. In particular, they had a tendency to 

imitate sounds. If one ape shrieked “ooh, eeh, eeh,” another would repeat “ooh, eeh, eeh.” Some sequences 

of sounds, or "songs", were more likely to be mimicked than others. 

Let us ignore the evolution of the apes for the moment and consider the evolution of the songs. Since 

the songs were replicated by the apes, and since they sometimes died away and were occasionally combined 

with others, we may loosely consider them (very loosely) a form of life. They survived, bred, competed 

with one another, and evolved according to their own criterion of fitness. If a song contained a particularly 

catchy phrase that caused it to be repeated often, then that phrase was likely to be incorporated into other 

songs. Only songs that had a strong tendency to be repeated survived. 

The survival of a song was only indirectly related to the survival of the apes; it was more directly 

affected by the survival of other songs. Since the apes were a limited resource, the songs had to compete 

with one another for a chance to be sung. One successful competition strategy was for a song to specialize; 

that is, for it to find a particular niche in which it was apt to be repeated. Songs that fit particularly well 

with specific moods or activities of apes had a special survival value for this reason. (I do not know why 

some songs fit well with particular moods, but since it is true for me, I do not find it hard to believe that it 

was true for my ancestors.) 

Before songs began to specialize they were of no particular value to the apes. In a biological sense the 

songs were parasites, taking advantage of the apes' tendency to imitate. As songs became specialized, 

however, it became advantageous for apes to pay attention to the songs of others and to differentiate 

between them. By listening to songs, a clever ape could gain useful information. For example, an ape could 

infer that another ape had found food or that it was likely to attack. Once the apes began to take advantage 

of the songs, a symbiotic relationship developed: songs enhanced their own survival by conveying useful 

information to apes; apes enhanced their own survival by improving their capacity to remember, replicate, 

and understand songs. Thus the blind forces of evolution created a partnership between the songs and the 

apes that thrived on the basis of mutual self-interest. Eventually this partnership evolved into one of the 

world's most successful symbionts: the human race. 

Unfortunately, songs do not leave fossils, so unless some natural process has left a phonographic trace, 

we may never know if the preceding story describes what really happened. But if the story is true, the apes 

and the songs became the two components of human intelligence. The songs evolved into the knowledge, 

mores, and mechanisms of thought that together are the symbolic portion of human intelligence. The apes 

became apes with bigger brains, perhaps optimized for late maturity so that they could learn more songs. 

Homo sapiens is a cooperative combination of the two. 

It is not unusual in nature for two species to live together so interdependently that they appear to be a 

single organism. Lichens are symbionts of a fungus and an alga that live so closely intertwined that they 

can only be separated under a microscope. Bean plants need living bacteria in their roots to fix the nitrogen 

they extract from the soil, and in return the bacteria need nutrients from the bean plants. Even the single-

celled Paramecium bursarra uses green algae living inside itself to synthesize food. 



Another example of two entirely different forms of "life" that form a symbiosis may be even closer to 

the example of the songs and the apes. In The Origins of Life, Freeman Dyson suggests that biological life 

is a symbiotic combination of two different self-reproducing entities with very different forms of 

replication.1 Dyson suggests that life originated in two stages. While most theories of the origin of life 

start with nucleotides replicating in some "primeval soup", Dyson's theory starts with metabolizing drops 

of oil. 

In the beginning these hypothetical replicating oil drops had no genetic material, but were self-

perpetuating chemical systems that absorbed raw materials from their surroundings. When a drop reached a 

certain size it would split; about half of its constituents would go to each part. Such drops evolved efficient 

metabolic systems even though their rules of replication were very different from the Mendelian rules of 

modern life. Once the oil drops became good at metabolizing, they were infected by another form of 

replicators that, like the songs, had no metabolism of their own. These were parasitic molecules of DNA; 

like modern viruses, they took advantage of the existing machinery of the host cells to reproduce. The 

metabolizers and the DNA eventually coevolved into the mutually beneficial symbiosis that we know today 

as life. 

This two-part theory of life is not conceptually far from the two-part story of intelligence. Both 

suggest that a preexisting homoestatic mechanism was infected by an opportunistic parasite. The two parts 

reproduced according to different sets of rules, but were able to coevolve so successfully that the resulting 

symbiont appears to be a single entity. Viewed in this light, choosing between emergence and symbolic 

computation in the study of intelligence is like choosing between metabolism and genetic replication in the 

study of life. Just as the metabolic system provides a substrate in which the genetic system can work, so an 

emergent system may provide a substrate in which the symbolic system can operate. 

Currently the metabolic system of life is far too complex for us to fully understand or reproduce it. By 

comparison the Mendelian rules of genetic replication are almost trivial, and it is possible to study them as 

a system unto themselves without worrying about the details of the metabolism that supports them. In the 

same sense, it seems likely that symbolic thought can be fruitfully studied and perhaps even recreated 

without worrying about the details of the emergent system that supports it. So far this has been the 

dominant approach in AI and the approach that has yielded the most progress. 

The other approach is to build a model of the emergent substrate of intelligence. This artificial 

substrate for thought would not need to mimic in detail the mechanisms of the biological system, but it 

would need to exhibit those emergent properties that are necessary to support the operations of thought. 

What is the minimum that we would need to understand in order to construct such a system? For one 

thing, we would need to know how big a system to build. Information theory suggests that the appropriate 

unit of measure is the number of binary digits, or bits, required to store the information. How many bits are 

required to store the acquired portion of human knowledge of a typical human? We need to know an 

approximate answer in order to construct an emergent intelligence with humanlike performance. Currently 

the amount of acquired information stored by an average human brain is not known to within even two 

orders of magnitude, but it can in principle be determined by experiment. There are at least three ways to 

estimate the storage requirements for emergent intelligence. 

One way would be through an understanding of the physical mechanisms of memory in the human 

brain. If information is stored primarily by modifications of synapses, then it would be possible to measure 

the information-storage capacity of the brain by counting the number of synapses. Elsewhere in this issue 

of Dædalus, Jacob T. Schwartz estimates that the brain contains roughly 1015 synapses. But even knowing 

the exact amount of physical storage in the brain would not completely answer the question of storage 

requirement, since much potential storage capacity might be unused or used inefficiently. But at least this 

method can help establish an upper bound on the requirements. 

A second method for estimating the storage requirements for emergent intelligence is to measure the 

information in symbolic knowledge by some form of statistical sampling. For instance, it is possible to 

estimate the size of an individual's vocabulary by testing him or her on words randomly sampled from a 

dictionary. The fraction of test words known by the individual is a good indication of the fraction of words 



that he or she knows in the complete dictionary. The estimated vocabulary size is the test fraction 

multiplied by the number of words in the dictionary. Such an experiment depends on having a predetermined 

body of knowledge against which to measure. For example, it would be possible to estimate how many 

facts in the Encyclopaedia Britannica were known by a given individual, but this would give no measure of 

facts known by the individual but not contained in the encyclopedia. This method is useful only in 

establishing a lower bound. 

A related experiment is the game of twenty questions, in which one player identifies an object chosen 

by another by asking a series of twenty yes-or-no questions. Since each answer provides no more than a 

single bit of information, and since skillful players generally need to ask almost all of the twenty questions 

to correctly identify the chosen object, we can estimate that the number of allowable choices known in 

common by the two players is on the order of 220, or about one million. Of course, this measure is 

inaccurate because the questions are not perfect and the choices of objects are not random. It is possible that 

a refined version of the game could be developed and used to provide another lower bound. 

A third approach to gauging the human brain's storage requirements for information in the symbolic 

portion of knowledge is to estimate the average rate of information acquisition and to calculate the amount 

that would accumulate over time. For example, experiments on memorizing random sequences of syllables 

indicate that the maximum rate of memorization of this type of knowledge is about one "chunk" per second. 

A chunk, in this context, can be safely assumed to contain less than 100 bits of information, so the results 

suggest that the maximum rate at which a human is able to commit information to long term memory is 

significantly less than 100 bits per second.2 If this is true, a twenty-year-old human learning at the 

maximum rate for sixteen hours a day (and never forgetting) would know less than 50 billion bits of 

information. I find this number surprisingly small. 

A difficulty with this estimate of the rate of acquisition is that the experiment measures only 

information coming through one sensory channel under one particular set of circumstances. The visual 

system sends more than a million times this rate of information to the optic nerve, and it is conceivable 

that all of this information is committed to memory. If it turns out that images are stored directly, it will 

be necessary to significantly increase the 100-bit-per-second limit, but there is no current evidence that this 

is the case. In experiments measuring the ability of exceptional individuals to store eidetic (i.e., 

extraordinarily accurate and vivid) images of random-dot stereograms, the subjects are given about five 

minutes to memorize an image formed in a square array of 100 x 100 dots.  Memorizing only a few hundred 

bits is probably sufficient to pass the test. 

I am aware of no evidence that more than a few bits per second of any type of information can be 

committed to long-term memory. Even if we accept reports of extraordinary feats of memory (such as those 

of Luria’s showman in Mind of the Mnemonist3) at face value, the average rate of commitment to memory 

never seems to exceed a few bits per second. Even if we knew the maximum rate of memorization exactly, 

the rate averaged over a lifetime would probably be very much less—but knowing the maximum rate would 

establish an upper bound on the requirements of storage. 

The sketchy data cited above suggests that an intelligent machine would require 109 bits of storage, 

plus or minus two orders of magnitude. This assumes that the information is encoded in such a way that it 

requires a minimum amount of storage; for the purpose of processing information, this would probably not 

be the most practical representation. As a would-be builder of thinking machines, I find this number 

encouragingly small, since it is well within the range of current electronic computers. As a human with an 

ego, I find it distressing: I do not like to think that my entire lifetime of memories could be placed on a reel 

of magnetic tape. It is to be hoped that experimental evidence will clear this up one way or another. 

There are a few subtleties in the question of storage requirements that involve defining the quantity of 

information in a way that is independent of its representation. Information theory provides a precise way of 

measuring information in terms of bits, but it requires a measure of the probabilities over the ensemble of 

possible states. That is, it requires assigning an a priori probability to each possible set of knowledge, 

which is the role of inherited intelligence. Inherited intelligence provides a framework in which the 

knowledge of acquired intelligence can be interpreted. Inherited intelligence defines what is knowable; 

acquired intelligence determines what of the knowable is known. 



Another potential difficulty is how to count the storage of information that can be deduced from other 

data. In the strict information-theoretical sense, data that can be inferred from other data add no information 

at all. An accurate measure would have to take into account the possibility that knowledge is inconsistent, 

and that only limited inferences are actually made. These are the kinds of issues currently being studied on 

the symbolic side of the field of artificial intelligence. 

One issue that does not need to be resolved to measure storage capacity is localized versus distributed 

representation—that is, whether each piece of information is stored in a specific place or spread 

“holographically” over a large area. Knowing what types of representation are used in what parts of the 

human brain is of considerable scientific interest, but it does not have a profound impact on the amount of 

storage in the system or on our ability to measure it. Nontechnical commentators have a tendency to 

attribute almost mystical qualities to distributed storage mechanisms such as those used in creating 

holograms and neural networks, but the limitations on the capacities of these storage mechanisms are well 

understood. 

When a holographic plate is cut in two, each half contains a slightly degraded version of the entire 

image. Distributed representations with properties similar to holograms are often used within conventional 

digital computers, and they are invisible to most users except in the system's capacity to tolerate errors. The 

error-correcting memory system used in most computers is a good example. The system is composed of 

many physically separate memory chips, but any single chip can be removed without losing any data. This 

is because the data are not stored in any one place, but in a distributed, nonlocal representation across all of 

the units. In spite of this "holographic" representation, the information storage capacity of the system is no 

greater than it would be with a conventional representation, in which each piece of data is stored in a single 

chip. In fact, it is slightly less. This is typical of distributed representations. 

Storage capacity offers one measure of the requirements of a humanlike emergent intelligence. Another 

measure is the required rate of computation. Here there is no agreed-upon metric, and it is particularly 

difficulty to define a unit of measure that is completely independent of representation. The measure 

suggested below is simple and important, if not sufficient. 

Given an efficiently stored representation of human knowledge, what rate of access to that storage (in 

bits per second) is required to achieve humanlike performance? Here, efficiently stored representation means 

any representation requiring only a multiplicative constant of storage over the number of bits of 

information. This is a mathematical restriction that eliminates, for example, any representation that stores a 

precomputed answer to every question. Such a restriction does limit the range of possible representations, 

but it allows most representations that we would regard as reasonable. In particular, it allows both 

distributed and local representations. 

The question of the memory bandwidth required for humanlike performance is accessible by experiment 

through approaches similar to those outlined for the question of storage capacity. If the time required for a 

primitive operation of human memory is limited by the firing time of a neuron, then the ratio of this "cycle 

time" to the total number of bits indicates what fraction of the memory is accessed simultaneously. This 

gives an indication of whether the brain is a parallel or serial device. In a serial device, data items are 

operated on sequentially, one at a time. In a parallel device, all data are operated on concurrently. Both serial 

and parallel behaviors are exhibited by the brain, but there is a question as to which model best describes the 

way that it reasons and accesses knowledge. Informed opinions differ greatly in this matter, but the bulk of 

the quantitative evidence favors serial computation. Memory retrieval times for items in lists, for example, 

depend on the position and the number of items in the list. Except for sensory processing, most successful 

artificial intelligence programs have been based on serial models of computation, although this may be a 

distortion caused by the common availability of serial machines. 

My own guess is that the reaction-time experiments are misleading and that human-level performance 

will require that large fractions of knowledge be accessed several times per second. Given a representation of 

acquired intelligence with a realistic representation efficiency of 10 percent, the 109 bits of memory 

mentioned earlier would require a memory bandwidth of about 1011 bits per second. This bandwidth seems 

physiologically plausible, since it corresponds to about a bit per second per neuron in the cerebral cortex. 



By way of comparison, the memory bandwidth of a conventional sequential computer is in the range of 

106 to 108 bits per second. This is less than 0.1 percent of the imagined requirement. For parallel computers 

the bandwidth is considerably higher. For example, a 65,536-processor Connection Machine can access its 

memory at approximately 1011 bits per second.4 It is not entirely coincidence that this fits well with the 

estimate above. 

Another important question is, What sensory-motor functions are necessary to sustain symbolic 

intelligence? An ape is a complex sensory-motor machine, and it is possible that much of this complexity 

is necessary to sustain intelligence. Large portions of the brain seem to be devoted to visual, auditory and 

motor processing, and it is unknown how much of this machinery is needed for thought. A person who is 

blind and deaf or totally paralyzed can undoubtedly be intelligent, but this does not prove that the portion of 

the brain devoted to these functions is unnecessary for thought. It may be, for example, that a blind person 

takes advantage of the visual processing apparatus of the brain for spatial reasoning. 

As we begin to understand more of the functional architecture of the brain, it should be possible to 

identify certain functions as being unnecessary for thought by studying patients whose cognitive abilities 

are unaffected by locally confined damage to the brain. For example, binocular stereo fusion is known to 

take place in a specific area of the cortex near the back of the head. Patients with damage to this area of the 

cortex have visual handicaps but show no obvious impairment in their ability to think. This is a simple 

example, and the conclusion is not surprising, but it should be possible by such experiments to establish 

that many sensory-motor functions are unnecessary. One can imagine metaphorically whittling away at the 

brain until it is reduced to its essential core. Of course, it is not quite this simple. Accidental damage rarely 

incapacitates a single area of the brain completely and exclusively. Also, it may be difficult to eliminate 

one function at a time because one mental capacity may compensate for the lack of another. 

It may be more productive to assume that all sensory-motor apparatus is unnecessary until proven 

useful for thought, but this is contrary to the usual point of view. Our current understanding of the 

phylogenetic development of the nervous system suggests a point of view in which intelligence is an 

elaborate refinement of the connection between input and output. This is reinforced by the experimental 

convenience of studying simple nervous systems, or of studying complicated nervous systems by 

concentrating on those portions most directly related to input and output. By necessity, most everything we 

know about the function of the nervous system comes from experiments on those portions that are closely 

related to sensory inputs or motor outputs. It would not be surprising to learn that we have overestimated 

the importance of these functions to intelligent thought. 

Sensory-motor functions are clearly important for the application of intelligence and for its evolution, 

but these issues are separate from whether sensory-motor functions are necessary for thought to exist. 

Intelligence would not be of much use without an elaborate system of sensory apparatus to measure the 

environment and an elaborate system of motor apparatus to change it, nor would it have been likely to 

evolve. But much more apparatus is probably necessary to exercise and evolve intelligence than to sustain 

it. One can believe in the necessity of the opposable thumb for the development of intelligence without 

doubting a human capacity for thumbless thought. It is quite possible that even the meager sensory-motor 

capabilities that we currently know how to create artificially would be sufficient for the fundamental 

operation of emergent intelligence. 

Although questions of capacity and scope are necessary in defining the magnitude of the task of 

constructing an emergent intelligence, the key question is one of understanding. While it is possible that we 

will be able to recreate the emergent substrate of intelligence without fully understanding the details of how 

it works, it seems likely that we would at least need to understand some of its principles. There are at least 

three paths by which such understanding could be achieved. One is to study the properties of specific 

emergent systems—to build a theory of their capabilities and limitations. This kind of experimental study 

is currently being conducted on several classes of promising man-made systems, including neural networks, 

spin glasses, cellular automata, evolutionary systems, and adaptive automata. Another possible path to 

understanding is the study of biological systems, which are our only real examples of intelligence and our 

only examples of an emergent system that has produced intelligence. The disciplines that have so far 

provided the most useful information of this type have been neurophysiology, cognitive psychology and 



evolutionary biology. A third path would be a theoretical understanding of the requirements of intelligence 

or of the phenomena of emergence. Relevant examples are theories of logic and computability, linguistics, 

and dynamical systems theory. Anyone who looks to emergent systems as a way of defending human 

thought from the scrutiny of science is likely to be disappointed. 

One cannot conclude, however, that a reductionist understanding is necessary for the creation of 

intelligence. Even a little understanding could go a long way toward the construction of an emergent 

system. A good example of this is how cellular automata have been used to simulate the emergent behavior 

of fluids. The whirlpools that form as fluid flows past a barrier are not well understood analytically, yet 

they are of great practical importance in the design of boats and airplanes. Equations that describe the flow 

of a fluid have been known for almost a century, but except for a few simple cases they cannot be solved. In 

practice the flow is generally analyzed by simulation. The most common method of simulation is the 

numerical solution of continuous equations. 

On a highly parallel computer it is possible to simulate fluids with even less understanding of the 

system by simulating billions of colliding particles that reproduce emergent phenomena such as vortices. 

Calculating the detailed molecular interactions of so many particles would be extremely difficult, but a few 

simple aspects of the system, such as conservations of energy and particle number, are sufficient to 

reproduce the large-scale behavior. A system of simplified particles that obey these two laws but are 

otherwise unrealistic can reproduce the same emergent phenomena as reality. For example, it is possible to 

use particles of unit mass that move only at unit speed along a hexagonal lattice, colliding according to the 

rules of billiard balls.5 Experiments show that this model produces laminar flow, vortex streams, and even 

turbulence that is indistinguishable from the behavior of real fluids. Although the detailed rules of 

interaction are very different from the interactions of real molecules, the emergent phenomena are the same. 

The emergent phenomena can be created without understanding the details of the forces between the 

molecules or the equations that describe the flow of the fluid. 

The recreation of intricate patterns of ebbs and flows within a fluid demonstrates that it is possible to 

produce a phenomenon without fully understanding it. But the model was constructed by physicists who 

knew a lot about fluids. That knowledge helped to determine which features of the physical system were 

important to implement and which were not. 

Physics is an unusually exact science. Perhaps a better example of an emergent system that we can 

simulate with only a limited understanding is evolutionary biology. We understand, in a weak sense, how 

creatures with Mendelian patterns of inheritance and different propensities for survival can evolve toward 

better fitness in their environments. In certain simple situations we can even write down equations that 

describe how quickly this adaptation will take place.6 But there are many gaps in our understanding of the 

processes of evolution. We can explain why flying animals have light bones in terms of natural selection, 

but we cannot explain why certain animals have evolved flight while others have not. We have some 

qualitative understanding of the forces that cause evolutionary change, but (except in the simplest cases) we 

cannot explain the rate or even the direction of change. 

In spite of these limitations, our understanding is sufficient to write programs of simulated evolution 

that show interesting emergent behaviors. For example, I have recently been using an evolutionary 

simulation to evolve programs to sort numbers. In this system, the genetic material of each simulated 

individual is interpreted as a program specifying a pattern of comparisons and exchanges. The probability of 

an individual survival in the system is dependent on the efficiency and accuracy of this program in sorting 

numbers. Surviving individuals produce offspring by sexual combination of their genetic material with 

occasional random mutation. After tens of thousands of generations, a population of hundreds of thousands 

of such individuals will evolve very efficient programs for sorting. Although I wrote the simulation that 

produced these sorting programs, I do not understand in detail how they were produced or how they work. If 

the simulation had not produced working programs, I would have had very little idea about how to fix it. 

The fluid flow and simulated evolution examples suggest that it is possible to make a great deal of use 

of a small amount of understanding. The emergent behaviors exhibited by these systems are a consequence 

of the simple underlying rules defined by the program. Although the systems succeed in producing the 

desired results, their detailed behaviors are beyond our ability to analyze and predict. One can imagine that if 



a similar process produced a system of emergent intelligence, we would have a similar lack of understanding 

about how it worked. 

My own guess is that such an emergent system would not be an intelligent system itself, but rather the 

metabolic substrate on which intelligence might grow. In terms of the apes and the songs, the emergent 

portion of the system would play the role of the ape, or at least that part of the ape that hosts the songs. 

This artificial mind would need to be inoculated with human knowledge. I imagine this process to be not so 

different from teaching a child. This would be a tricky and uncertain procedure because, like a child, this 

emergent mind would presumably be susceptible to bad ideas as well as good. The result would be not so 

much an artificial intelligence, but rather a human intelligence sustained within an artificial mind. 

Of course, I understand that this is just a dream, and I will admit that I am propelled more by hope than 

by the probability of success. But if this artificial mind can sustain itself and grow of its own accord, then 

for the first time human thought will live free of bones and flesh, giving this child of mind an earthly 

immortality denied to us. 
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