ISSCC, San Francisco, 2019-02-18

Deep Learning Hardware: Past, Present, & Future

Yann LeCun Facebook AI Research New York University http://yann.lecun.com

> facebook Artificial Intelligence Research

AI today is mostly supervised learning

- Training a machine by showing examples instead of programming it
- When the output is wrong, tweak the parameters of the machine

Works well for:

- ► Speech \rightarrow words
- ▶ Image \rightarrow categories
- ▶ Portrait \rightarrow name
- $\blacktriangleright Photo \rightarrow caption$
- Text \rightarrow topic

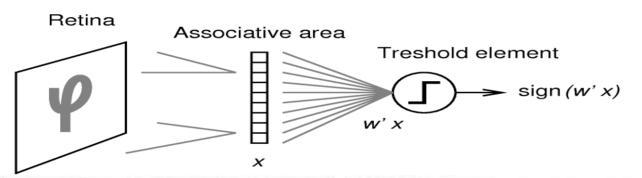
CAR

LANE

00

The History of Neural Nets is Inextricable from Hardware

- The McCulloch-Pitts Binar Neuron
 - Perceptron: weights are motorized potentiometers
 - Adaline: Weights are electrochemical "memistors"

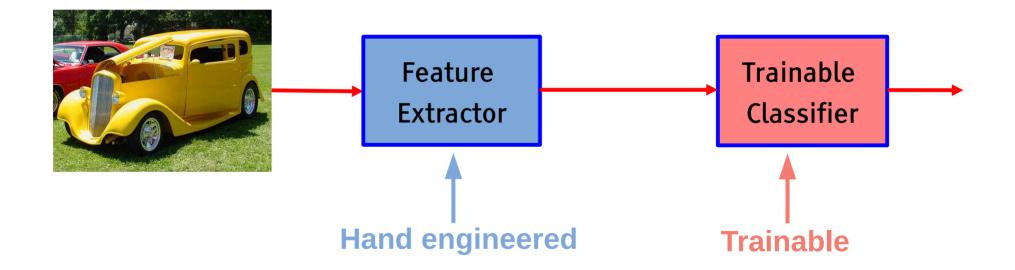


$$y = sign(\sum_{i=1}^{N} W_i X_i + b)$$

https://youtu.be/X1G2g3SiCwU

The Standard Paradigm of Pattern Recognition

…and "traditional" Machine Learning



$1969 \rightarrow 1985$: Neural Net Winter

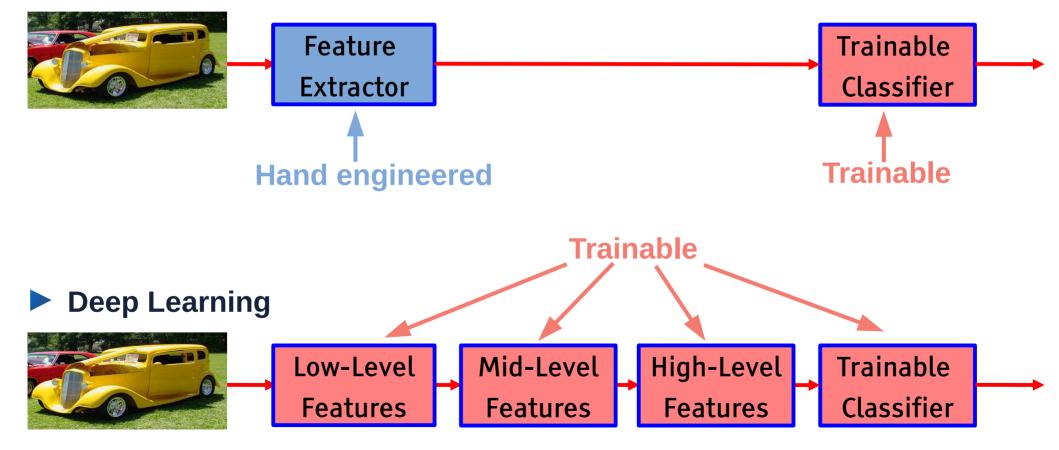
- **No learning for multilayer nets, why?**
 - People used the wrong "neuron": the McCulloch & Pitts binary neuron
 - Binary neurons are easier to implement: No multiplication necessary!
 - Binary neurons prevented people from thinking about gradient-based methods for multi-layer nets

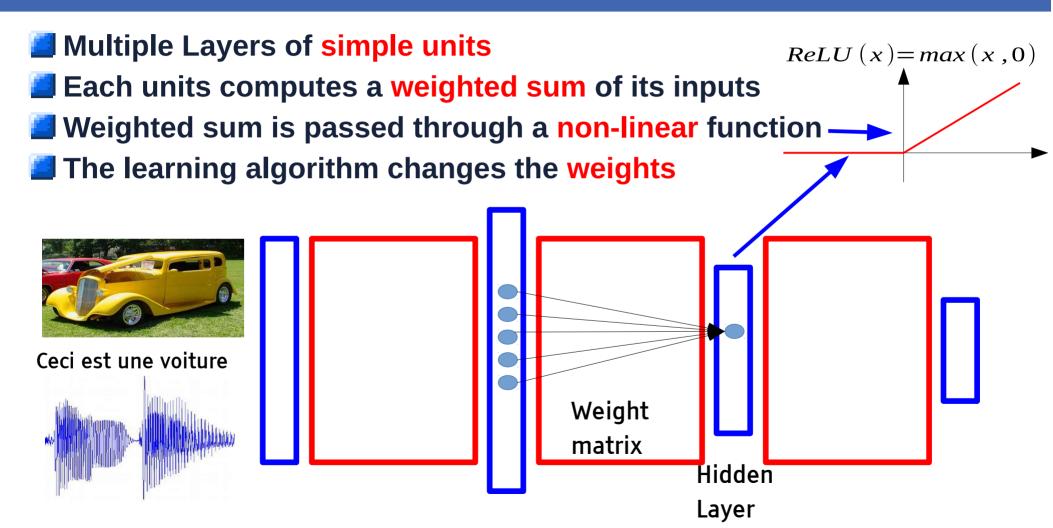
Early 1980s: The second wave of neural nets

- 1982: Hopfield nets: fully-connected recurrent binary networks
- ▶ 1983: Boltzmann Machines: binary stochastic networks with hidden units
- 1985/86: Backprop! Q: Why only then? A: sigmoid neurons!
 - Sigmoid neurons were enabled by "fast" floating point (Sun Workstations)

Multilayer Neural Nets and Deep Learning

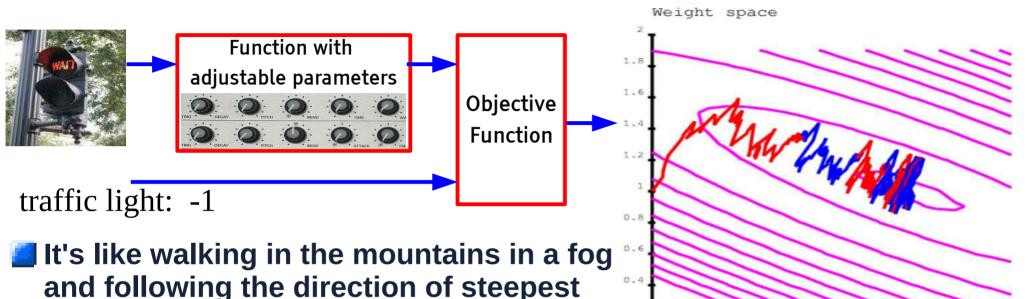
Traditional Machine Learning





Y. LeCun

Supervised Machine Learning = Function Optimization



0.2

 $W_i \leftarrow W_i - \eta \frac{\partial L(W, X)}{\partial W}$

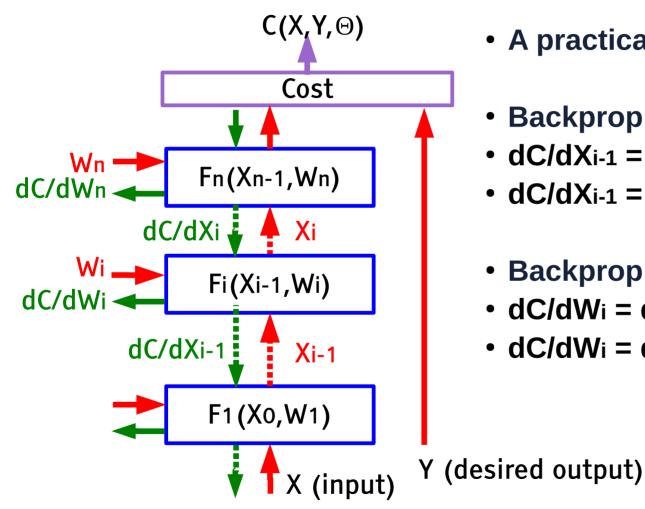
Y. LeCun

descent to reach the village in the valley

But each sample gives us a noisy estimate of the direction. So our path is a bit random.

Stochastic Gradient Descent (SGD)

Computing Gradients by Back-Propagation



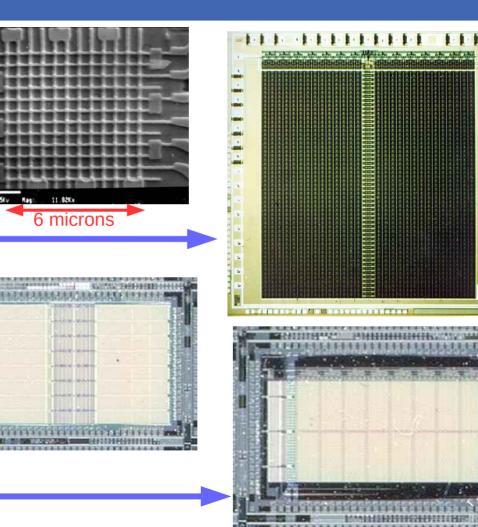
• A practical Application of Chain Rule

Y. LeCun

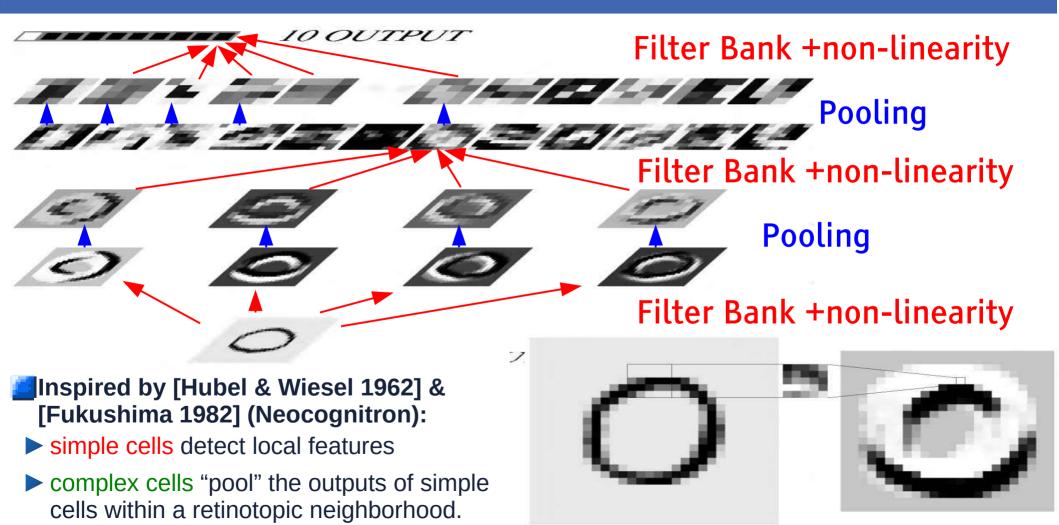
- Backprop for the state gradients:
- $dC/dX_{i-1} = dC/dX_i \cdot dX_i/dX_{i-1}$
- dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1
- Backprop for the weight gradients:
- dC/dWi = dC/dXi . dXi/dWi
- dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi

1986-1996 Neural Net Hardware at Bell Labs, Holmdel

- 1986: 12x12 resistor array —
 Fixed resistor values
 - E-beam lithography: 6x6microns
- 1988: 54x54 neural net
 - Programmable ternary weights
 - On-chip amplifiers and I/O
- 1991: Net32k: 256x128 net ->
 - Programmable ternary weights
 - ► 320GOPS, 1-bit convolver.
- 1992: ANNA: 64x64 net
 - ConvNet accelerator: 4GOPS
 - 6-bit weights, 3-bit activations



Convolutional Network Architecture [LeCun et al. NIPS 1989]

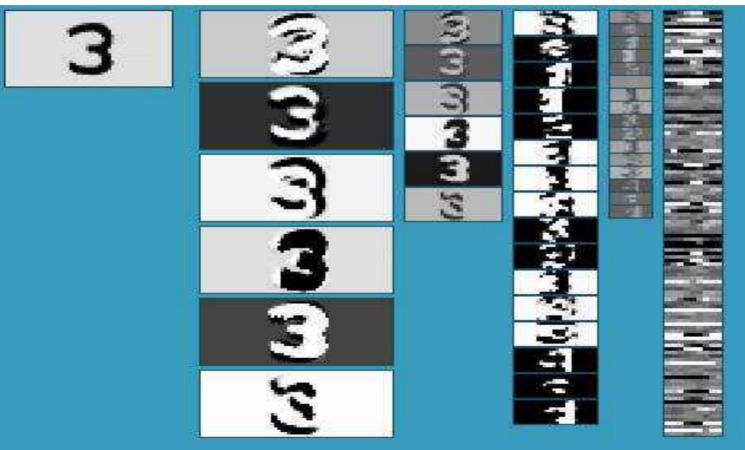


LeNet character recognition demo 1992

Running on an AT&T DSP32C (floating-point DSP, 20 MFLOPS)

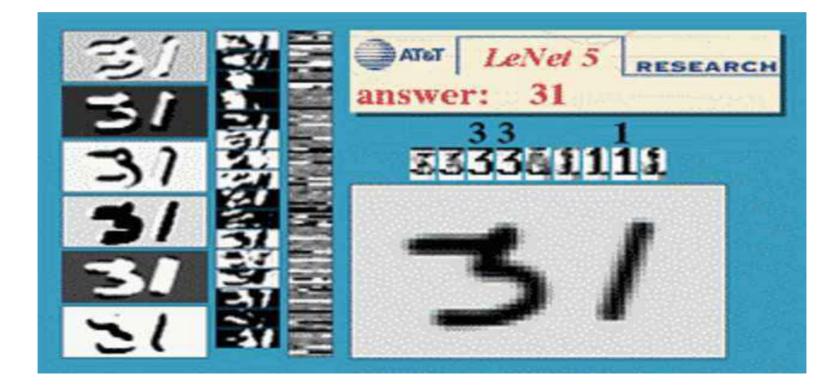
Convolutional Network (LeNet5, vintage 1990)

Example 7 Filters-tanh \rightarrow pooling \rightarrow filters-tanh \rightarrow pooling \rightarrow filters-tanh



ConvNets can recognize multiple objects

- All layers are convolutional
- Networks performs simultaneous segmentation and recognition



Check Reader (AT&T 1995)

Check amount reader

- ConvNet+Language Model trained at the sequence level.
- 50% percent correct, 49% reject, 1% error (detectable later in the process).
- Fielded in 1996, used in many banks in the US and Europe.
- Processed an estimated 10% to 20% of all the checks written in the US in the early 2000s.
- [LeCun, Bottou, Bengio ICASSP1997]
 [LeCun, Bottou, Bengio, Haffner 1998]

1996 \rightarrow 2006: 2nd NN Winter! Few teams could train large NNs

- Hardware was slow for floating point computation
 - Training a character recognizer took 2 weeks on a Sun or SGI workstation
 - A very small ConvNet by today's standard (500,000 connections)
- **Data was scarce and NN were data hungry**
 - ► No large datasets besides character and speech recognition
- Interactive software tools had to be built from scratch
 - We wrote a NN simulator with a custom Lisp interpreter/compiler
 - ► SN [Bottou & LeCun 1988] \rightarrow SN2 [1992] \rightarrow Lush (open sourced in 2002).
- Open sourcing wasn't common in the pre-Internet days
 - The "black art" of NN training could not be communicated easily

SN/SN2/Lush gave us superpowers: tools shape research directions

Lessons learned #1

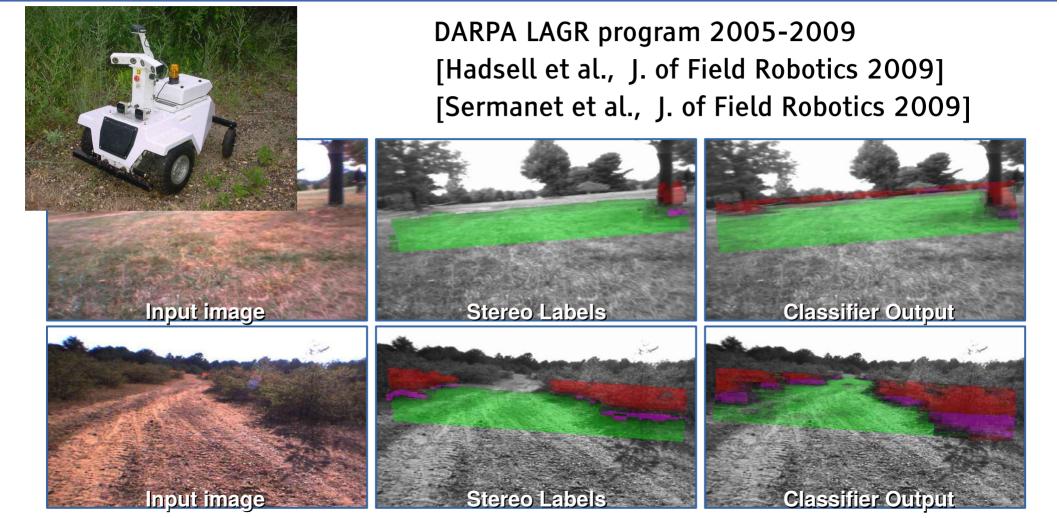
- **1.1:** It's hard to succeed with exotic hardware
 - \blacktriangleright Hardwired analog \rightarrow programmable hybrid \rightarrow digital
- **1.2:** Hardware limitations influence research directions
 - It constrains what algorithm designers will let themselves imagine
- **1.3:** Good software tools shape research and give superpowers
 - But require a significant investment
 - Common tools for Research and Development facilitates productization
- 1.4: Hardware performance matters
 - Fast turn-around is important for R&D
 - But high-end production models always take 2-3 weeks to train
- 1.5: When hardware is too slow, software is not readily available, or experiments are not easily reproducible, good ideas can be abandoned.

The 2nd Neural Net Winter (1995-2005) & Spring (2006-2012)

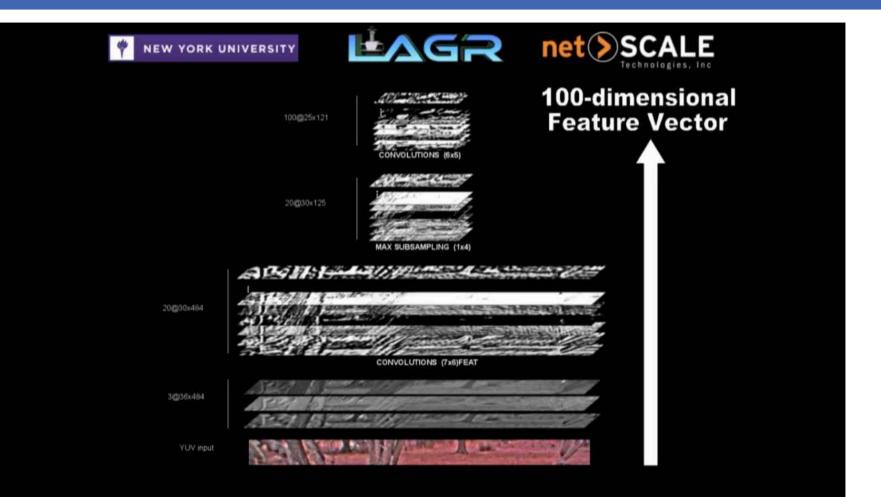
The Lunatic Fringe and the Deep Learning Conspircy

facebook Artificial Intelligence Research

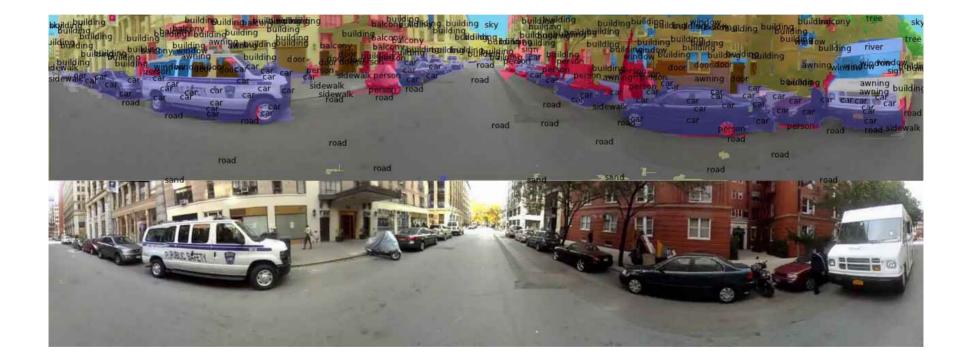
Semantic Segmentation with ConvNet for off-Road Driving



LAGR Video

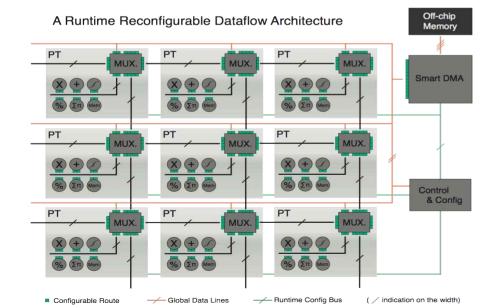


Semantic Segmentation with ConvNets (33 categories)

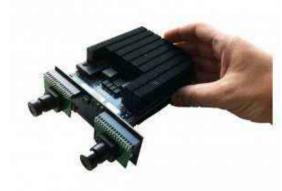


FPGA ConvNet Accelerator: NewFlow [Farabet 2011]

- NeuFlow: Reconfigurable Dataflow architecture
 - Implemented on Xilinx Virtex6 FPGA
 - > 20 configurable tiles. 150GOPS, 10 Watts
 - Semantic Segmentation: 20 frames/sec at 320x240
 - **Exploits the structure of convolutions**

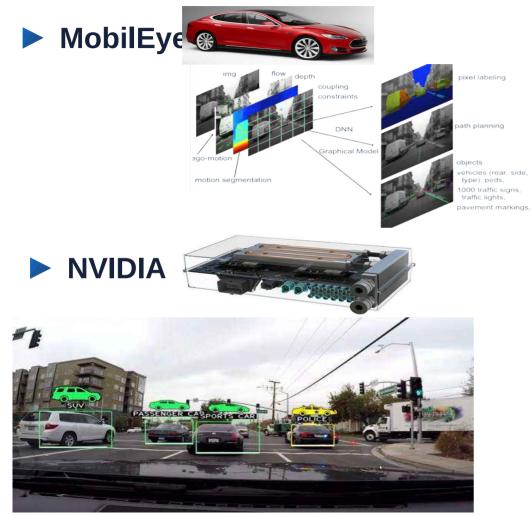


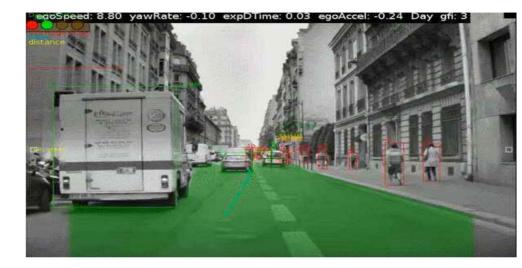
NeuFlow ASIC [Pham 2012] 150GOPS, 0.5 Watts (simulated) if a culator if a culator if a culator



Y. LeCun

Driving Cars with Convolutional Nets



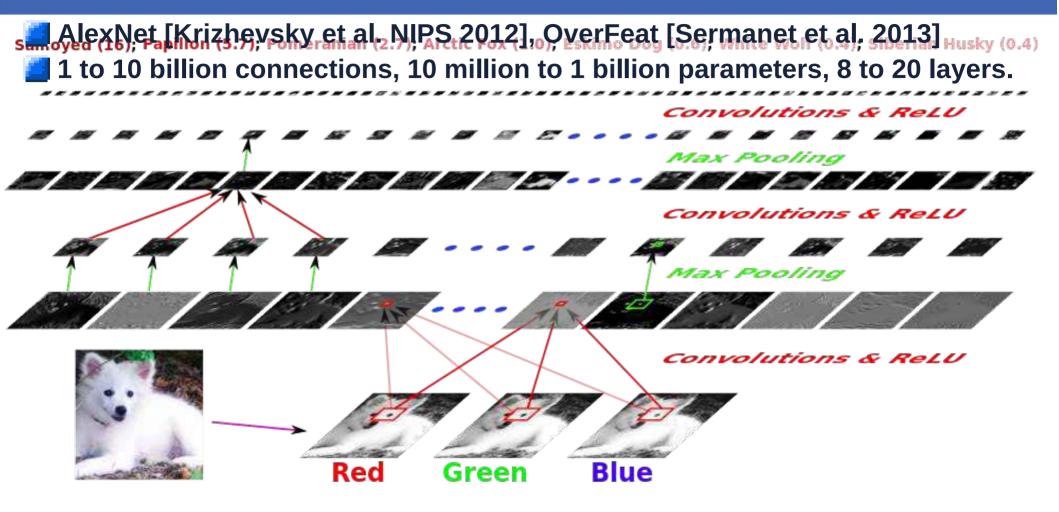


The Deep Learning Revolution

State of the Art

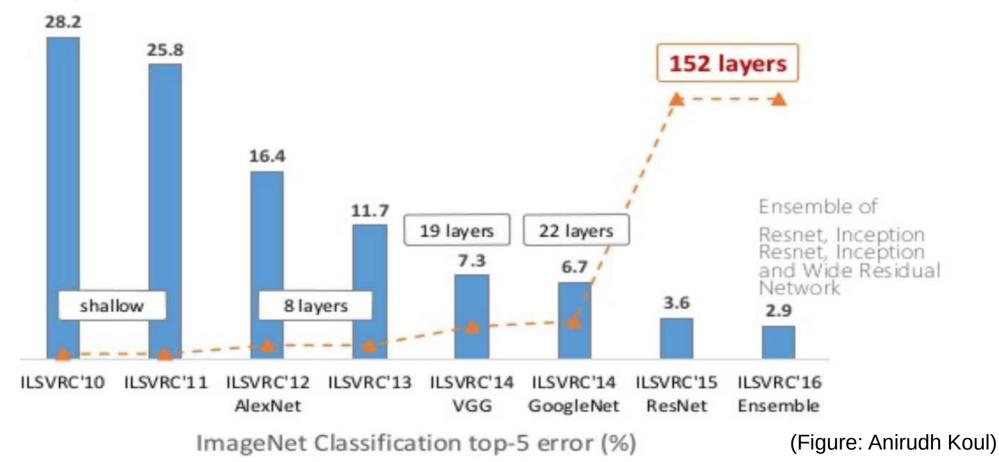
facebook Artificial Intelligence Research

Deep ConvNets for Object Recognition (on GPU)

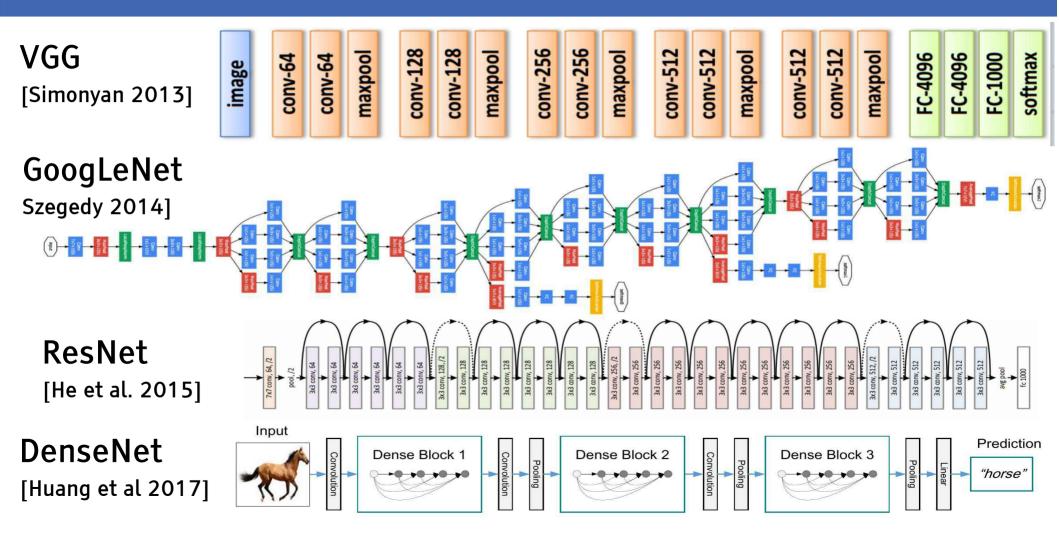


Error Rate on ImageNet

Depth inflation

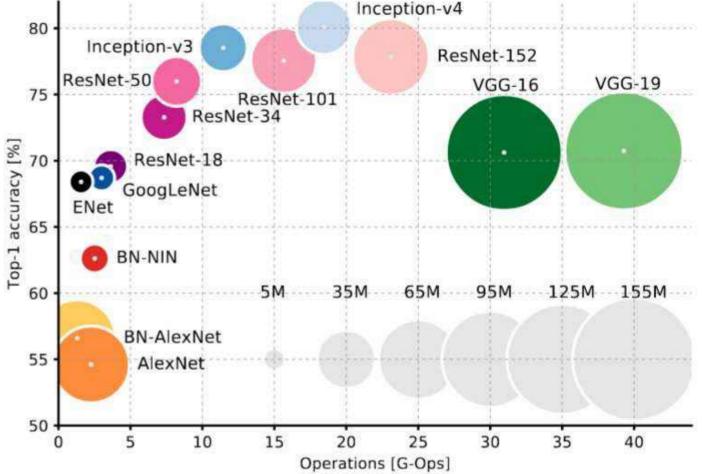


Deep ConvNets (depth inflation)



GOPS vs Accuracy on ImageNet vs #Parameters

- [Canziani 2016]
- ResNet50 and ResNet100 are used routinely in production.
- Each of the few billions photos uploaded on
 Facebook every day goes through a handful of ConvNets within 2 seconds.

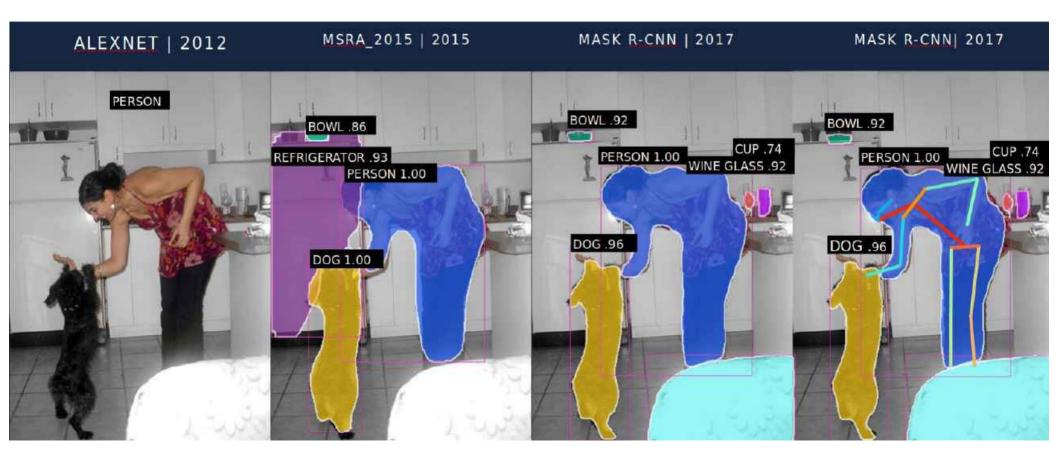


Y. LeCun

Y. LeCun

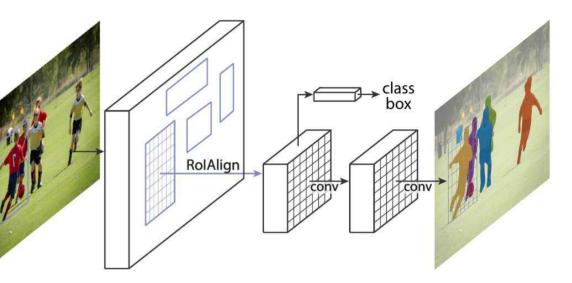
Progress in Computer Vision

▶ [He 2017]



Mask R-CNN: instance segmentation

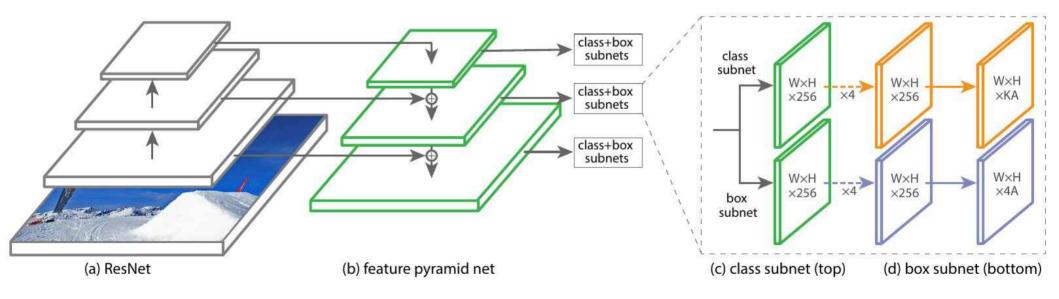
- [He, Gkioxari, Dollar, Girshick arXiv:1703.06870]
- ConvNet produces an object mask for each region of interest
- Combined ventral and dorsal pathways



	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
MNC [7]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [20] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [20] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

RetinaNet, feature pyramid network

One-pass object detection
 [Lin et al. ArXiv:1708.02002]



Y. LeCun

Mask-RCNN Results on COCO dataset

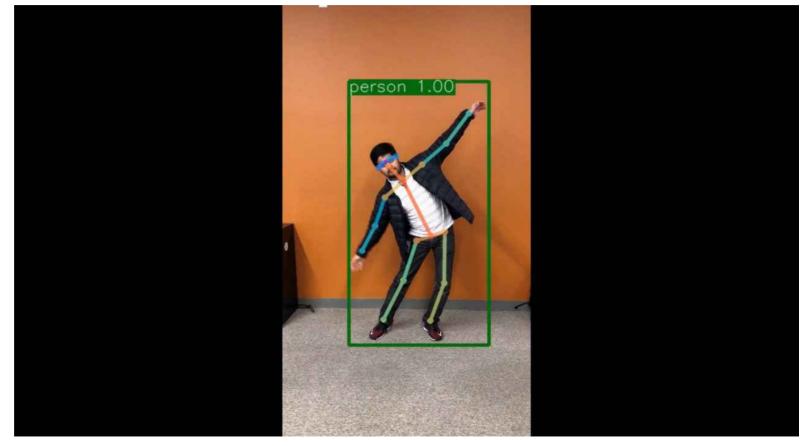
Individual objects are segmented.

Y. LeCun

Mask R-CNN Results on COCO test set

Real-Time Pose Estimation on Mobile Devices

Maks R-CNN running on Caffe2Go

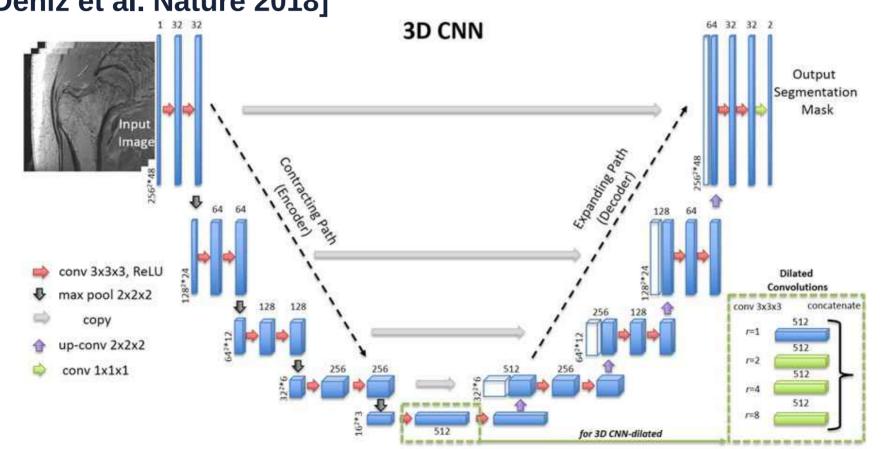


Detectron: open source vision in PyTorch

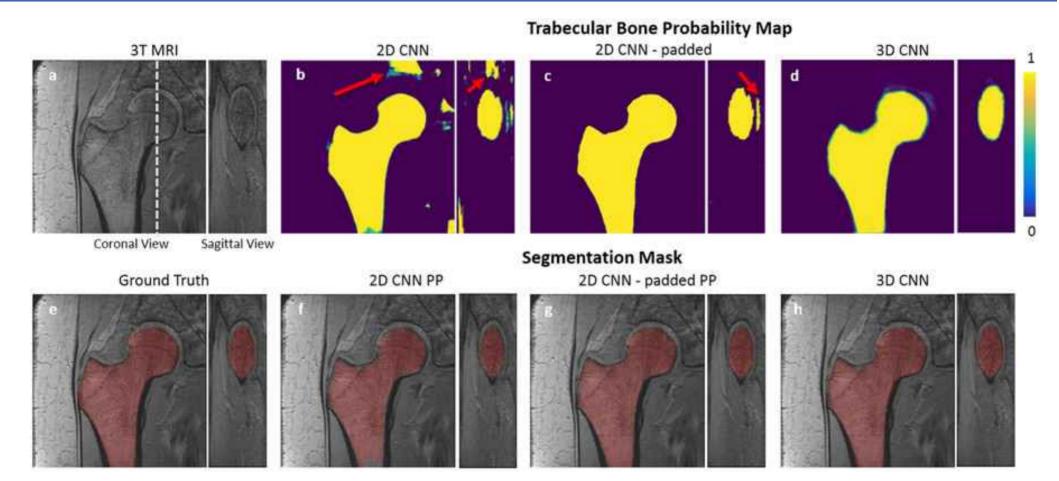
https://github.com/facebookresearch/maskrcnn-benchmark

3D ConvNet for Medical Image Analysis

Segmentation Femur from MR Images
 [Deniz et al. Nature 2018]



3D ConvNet for Medical Image Analysis



Y. LeCun

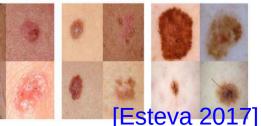
Applications of Deep Learning

- Medical image analysis
- **Self-driving cars**
- Accessibility
- **Face recognition**
- Language translation
- Virtual assistants*
- **Content Understanding for:**
- Filtering
- Selection/ranking
- Search
- Games
- Security, anomaly detection
- **Diagnosis**, prediction
- Science!

[Geras 2017]

Melanocytic lesions

Melanocytic lesions (dermoscopy



Lessons learned #2

- > 2.1: Good results are not enough
 - ► Making them easily reproducible also makes them credible.
- > 2.2: Hardware progress enables new breakthroughs
 - General-Purpose GPUs should have come 10 years earlier!
 - But can we please have hardware that doesn't require batching?
- > 2.3: Open-source software platforms disseminate ideas
 - But making platforms that are good for research and production is hard.
- 2.4: Convolutional Nets will soon be everywhere
 - Hardware should exploit the properties of convolutions better
 - There is a need for low-cost, low-power ConvNet accelerators
 - Cars, cameras, vacuum cleaners, lawn mowers, toys, maintenance robots...

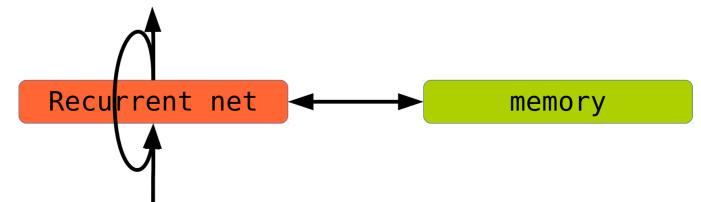
New DL Architectures

With different hardware/software requirements: Memory-Augmented Networks Dynamic Networks Graph Convolutional Nets Networks with Sparse Activations

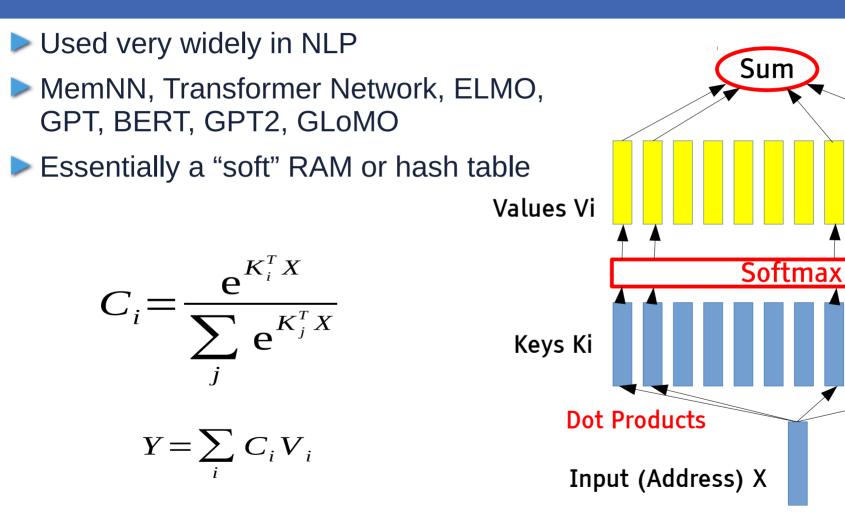
> facebook Artificial Intelligence Research

Augmenting Neural Nets with a Memory Module

- Recurrent networks cannot remember things for very long
 The cortex only remember things for 20 seconds
- We need a "hippocampus" (a separate memory module)
- LSTM [Hochreiter 1997], registers
- Memory networks [Weston et 2014] (FAIR), associative memory
- Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)
- Neural Turing Machine [Graves 2014],
- Differentiable Neural Computer [Graves 2016]



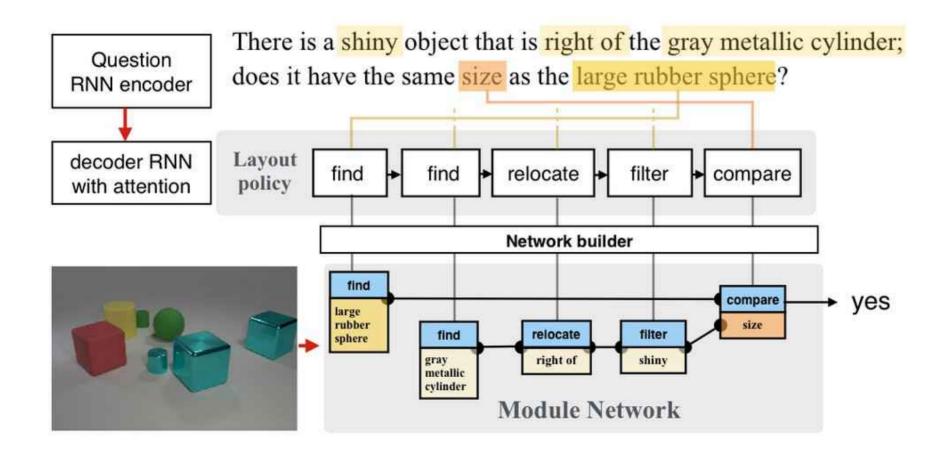
Differentiable Associative Memory



Y. LeCun

Learning to synthesize neural programs for visual reasoning

https://research.fb.com/visual-reasoning-and-dialog-towards-natural-language-conversations-about-visual-data/



PyTorch: differentiable programming

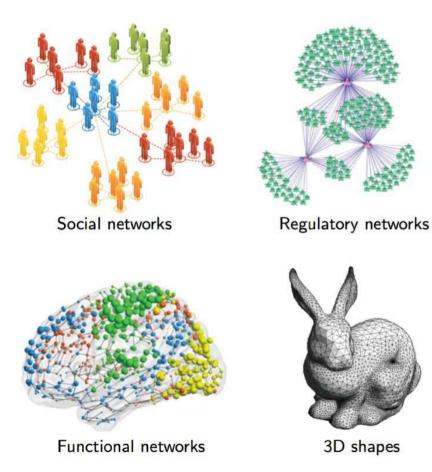
Software 2.0:

- The operations in a program are only partially specified
- They are trainable parameterized modules.
- The precise operations are learned from data, only the general structure of the program is designed.

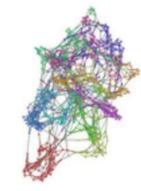
Dynamic computational graph

- Automatic differentiation by recording a "tape" of operations and rolling it backwards with the Jacobian of each operator.
- Implemented in PyTorch1.0, Chainer...
- Easy if the front-end language is dynamic and interpreted (e.g Python)
- Not so easy if we want to run without a Python runtime...

ConvNets on Graphs (fixed and data-dependent)



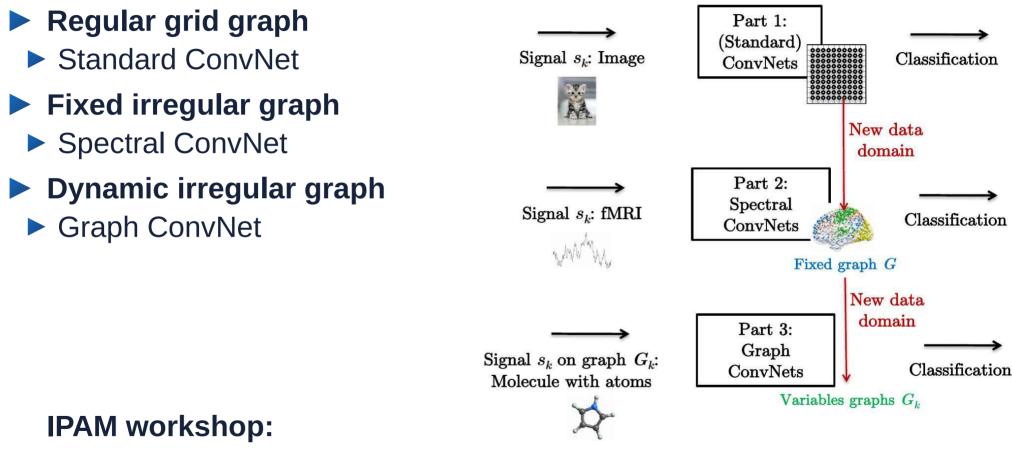
 Graphs can represent: Natural language, social networks, chemistry, physics, communication networks...



Graphs/ Networks

Review paper: "Geometric deep learning: going beyond euclidean data", MM Bronstein, J Bruna, Y LeCun, A Szlam, P Vandergheynst, IEEE Signal Processing Magazine 34 (4), 18-42, 2017 [ArXiv:1611.08097]

Spectral ConvNets / Graph ConvNets



http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/

Sparse ConvNets: for sparse voxel-based 3D data

- ShapeNet competition results ArXiv:1710.06104]
- Winner: Submanifold Sparse ConvNet
 - [Graham & van der Maaten arXiv 1706.01307]
 - PyTorch: https://github.com/facebookresearch/SparseConvNet

Y. LeCun

(a) Regular sparse convolution.

(b) Valid sparse convolution.

mean

86.00

85.49

84.32

82.29

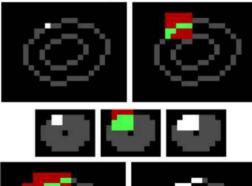
77.96

65.80

42.79

77.57

84.74



) Block with a strided, a valid, and a de-convolution.

			method
	in		SSCN
			PdNet
63			DCPN
		CTS.	PCNN
			PtAdLoss
	1		KDTNet
			DeepPool
			NN
	V		[19]

Lessons learned #3

- **3.1:** Dynamic networks are gaining in popularity (e.g. for NLP)
 - Dynamicity breaks many assumptions of current hardware
 - Can't optimize the compute graph distribution at compile time.
 - Can't do batching easily!
- **3.2: Large-Scale Memory-Augmented Networks...**
 - Will require efficient associative memory/nearest-neighbor search
- **3.3: Graph ConvNets are very promising for many applications**
 - Say goodbye to matrix multiplications?
 - Say goodbye to tensors?
- 3.4: Large Neural Nets may have sparse activity
 - How to exploit sparsity in hardware?

What About (Deep) Reinforcement Learning?

It works greatfor games and virtual environments

facebook Artificial Intelligence Research

Reinforcement Learning works fine for games

RL works well for games

- Playing Atari games [Mnih 2013], Go [Silver 2016, Tian 2018], Doom [Tian 2017], StarCraft...
- RL requires too many trials.
- 100 hours to reach the performance that a human can reach in 15 minutes on Atari games [Hessel ArXiv:1710.02298]
- RL often doesn't really work in the real world
- FAIR open Source go player: OpenGo https://github.com/pytorch/elf

Pure RL is hard to use in the real world

- Pure RL requires too many trials to learn anything
 - ▶ it's OK in a game
 - ▶ it's not OK in the real world
- RL works in simple virtual world that you can run faster than real-time on many machines in parallel.

Anything you do in the real world can kill you

You can't run the real world faster than real time

What are we missing to get to "real" AI?

What we can have

- ► Safer cars, autonomous cars
- Better medical image analysis
- Personalized medicine
- Adequate language translation
- Useful but stupid chatbots
- ► Information search, retrieval, filtering
- Numerous applications in energy, finance, manufacturing, environmental protection, commerce, law, artistic creation, games,.....

- What we cannot have (yet)
 - Machines with common sense
 - Intelligent personal assistants
 - "Smart" chatbots"
 - Household robots
 - Agile and dexterous robots
 - Artificial General Intelligence (AGI)

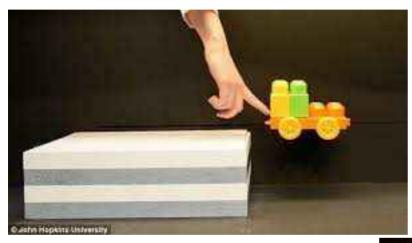
How do Humans and Animal Learn?

So quickly

facebook Artificial Intelligence Research

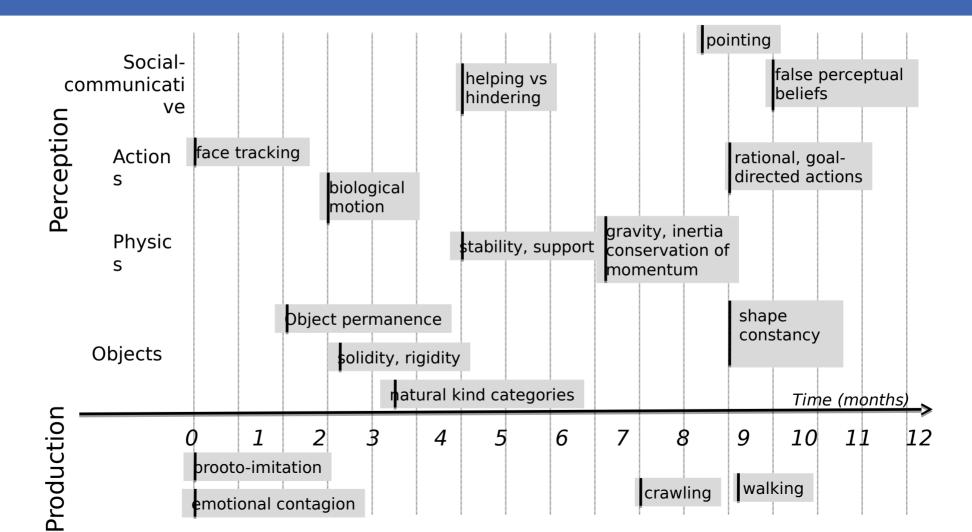
Babies learn how the world works by observation

Largely by observation, with remarkably little interaction.



Photos courtesy of Emmanuel Dupoux

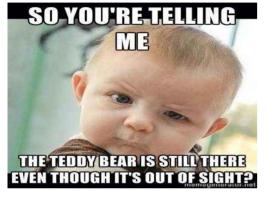
Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]

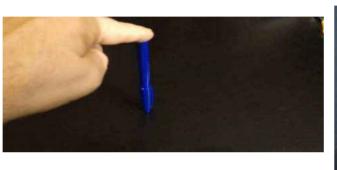


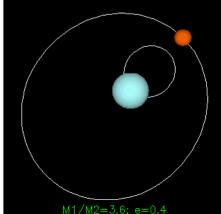
Y. LeCun

Prediction is the essence of Intelligence

We learn models of the world by predicting





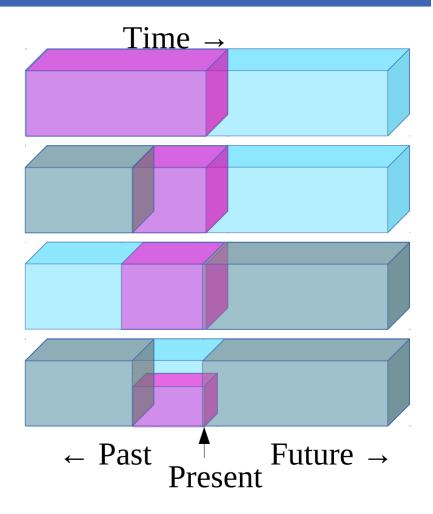


The Future: Self-Supervised Learning With massive amounts of data and very large networks

facebook Artificial Intelligence Research

Self-Supervised Learning

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
 Pretend there is a part of the input you don't know and predict that.



How Much Information is the Machine Given during Learning?

"Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a while.

A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ $10 \rightarrow 10,000$ bits per sample

Self-Supervised Learning (cake génoise)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos

Millions of bits per sample

Self-Supervised Learning: Filling in the Blanks



Huang et al. | 2014

Pathak et al. | 2016

Self-Supervised Learning works well for text

Input

Word2vec[Mikolov 2013]

Use the output of the masked word's position to predict the masked word

FastText[Joulin 2016]

BERT

- Bidirectional Encoder Representations from Transformers
 Randomly mask 15% of tokens
- ▶ [Devlin 2018]

0.1% Aardvark Possible classes: All English words 10% Improvisation 0% Zyzzyva FFNN + Softmax 2 512 3 BERT . . . 512 [MASK] skit to improvisation in [CLS]

Figure credit: Jay Alammar http://jalammar.github.io/illustrated-bert/

But it doesn't really work for high-dim continuous signals

Video prediction:

- Multiple futures are possible.
- Training a system to make a single prediction results in "blurry" results
- the average of all the possible futures

Y. LeCun

The Next AI Revolution

THE REVOLUTION WILL NOT BE SUPERVISED (nor purely reinforced)

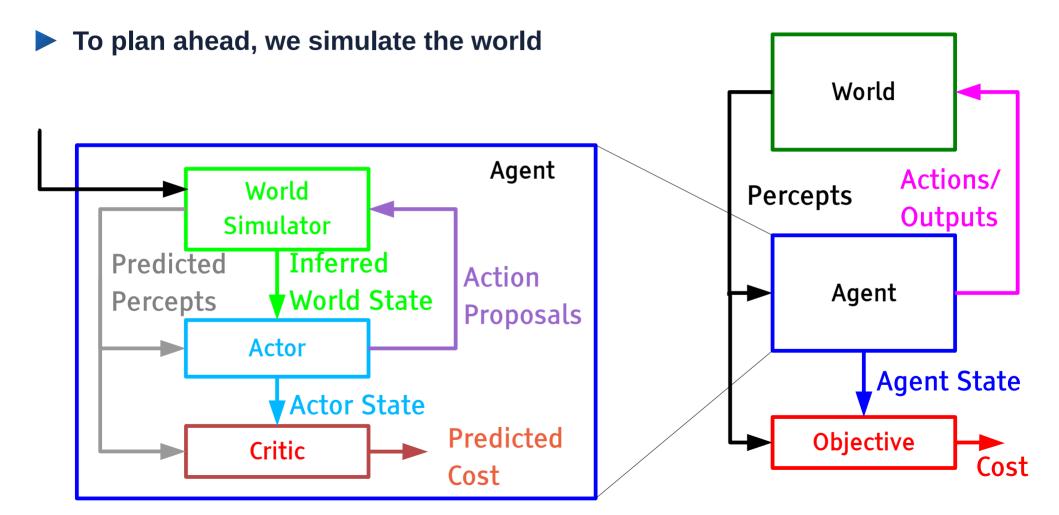
With thanks To Alyosha Efros

Learning Predictive Models of the World

Learning to predict, reason, and plan, Learning Common Sense.

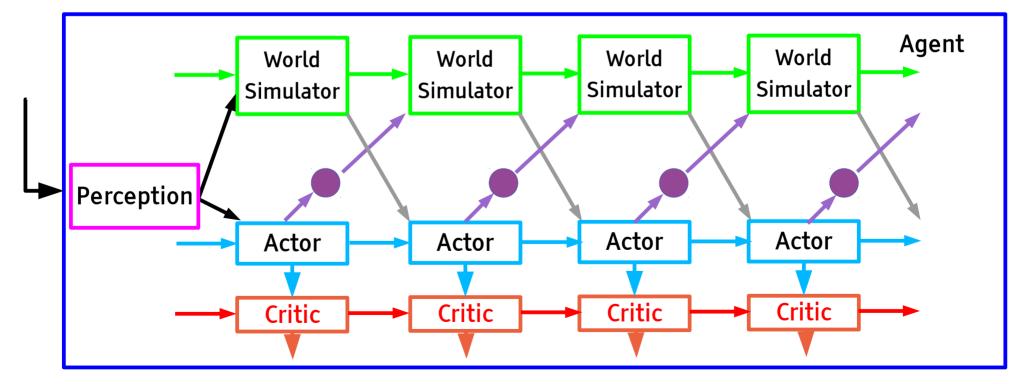
facebook Artificial Intelligence Research

Planning Requires Prediction



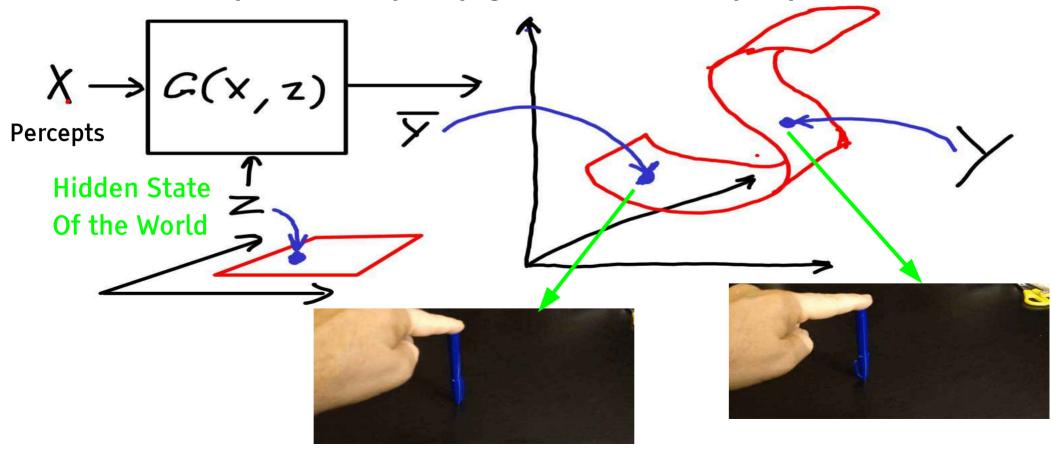
Training the Actor with Optimized Action Sequences

- 1. Find action sequence through optimization
- 2. Use sequence as target to train the actor
 - Over time we get a compact policy that requires no run-time optimization



The Hard Part: Prediction Under Uncertainty

Invariant prediction: The training samples are merely representatives of a whole set of possible outputs (e.g. a manifold of outputs).



Faces "invented" by a GAN (Generative Adversarial Network)

► Random vector → Generator Network → output image [Goodfellow NIPS 2014] [Karras et al. ICLR 2018] (from NVIDIA)

Generative Adversarial Networks for Creation

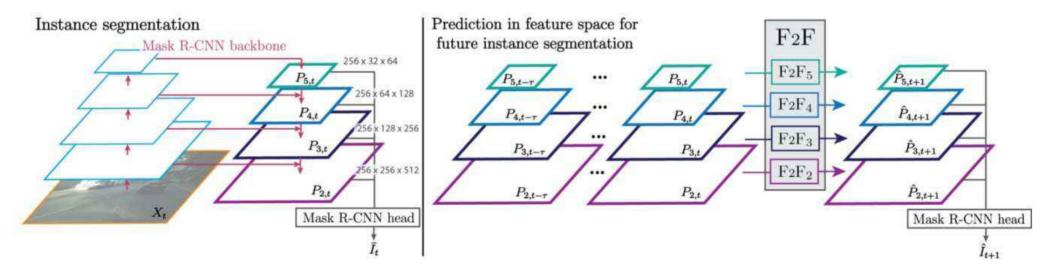
Self-supervised Adversarial Learning for Video Prediction

- Our brains are "prediction machines"
- Can we train machines to predict the future?
- Some success with "adversarial training"
- ▶ [Mathieu, Couprie, LeCun arXiv:1511:05440]
- But we are far from a complete solution.

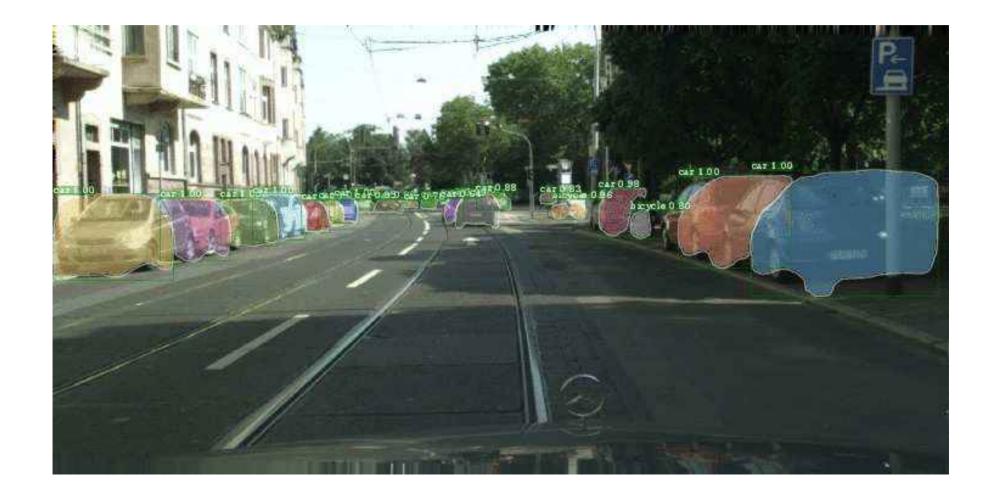
Y. LeCun

Predicting Instance Segmentation Maps

- [Luc, Couprie, LeCun, Verbeek ECCV 2018]
- Mask R-CNN Feature Pyramid Network backbone
- Trained for instance segmentation on COCO
- Separate predictors for each feature level



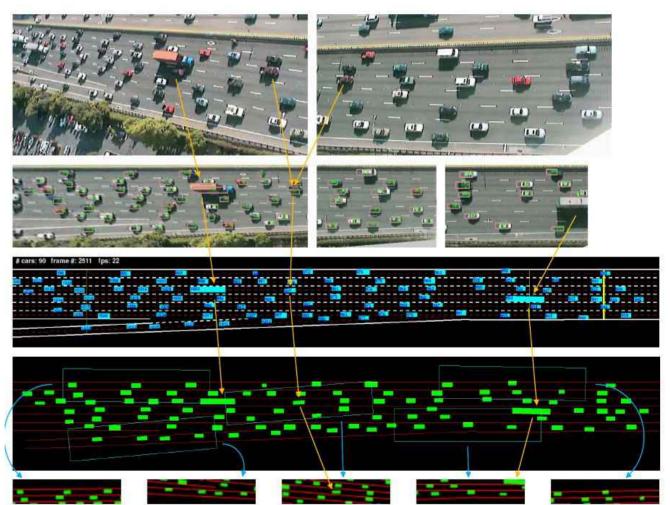
Predictions



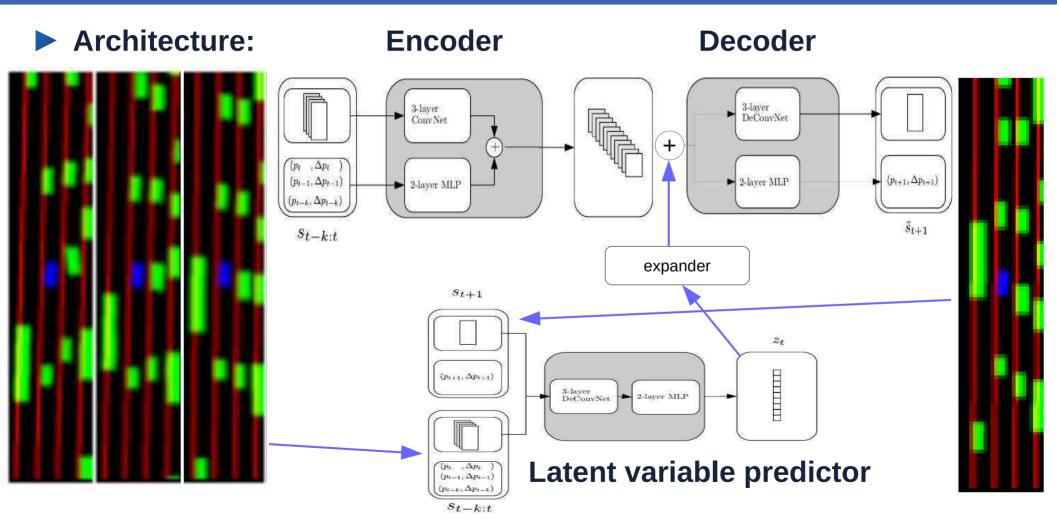
Long-term predictions (10 frames, 1.8 seconds)

Using Forward Models to Plan (and to learn to drive)

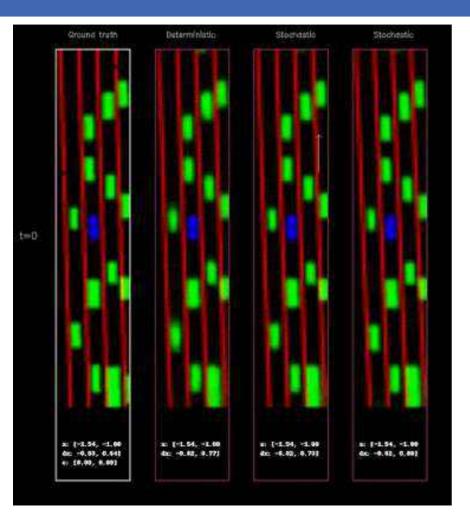
- Overhead camera on highway.
 - Vehicles are tracked
- A "state" is a pixel representation of a rectangular window centered around each car.
- Forward model is trained to predict how every car moves relative to the central car.
 - steering and acceleration are computed

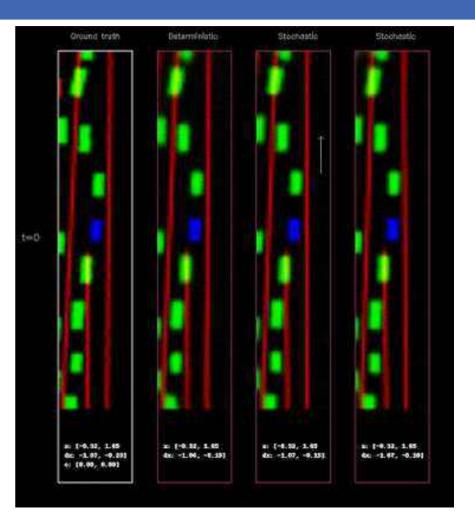


Forward Model Architecture



Predictions

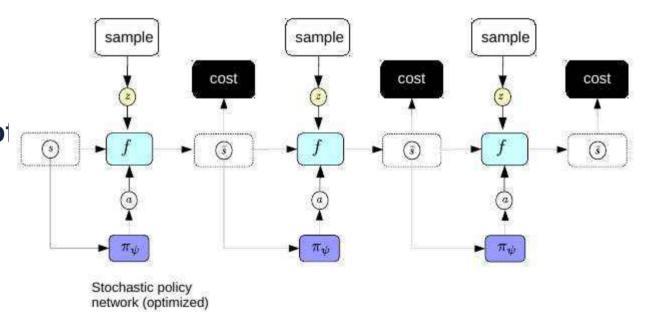




Learning to Drive by Simulating it in your Head

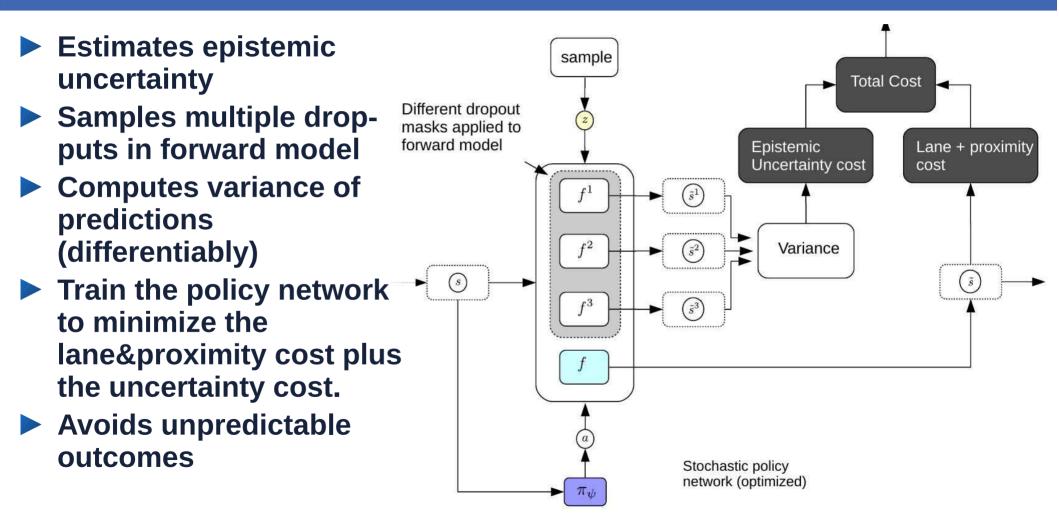
- Feed initial state
- Sample latent variable sequences of length 20
- Run the forward model with these sequences
- Backpropagate gradient of cost to train a policy network.
- Iterate

No need for planning at run time.

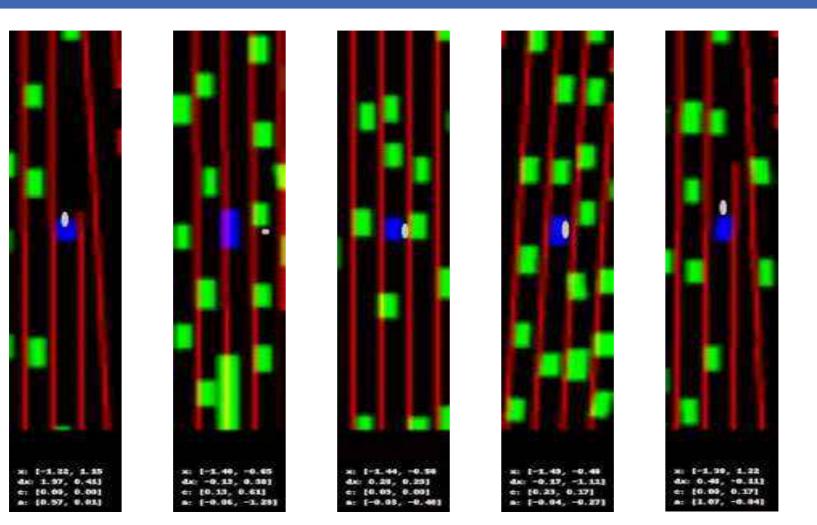


Y. LeCun

Adding an Uncertainty Cost (doesn't work without it)



Driving an Invisible Car in "Real" Traffic



Y. LeCun

Lessons learned #4

- 4.1: Self-Supervised learning is the future
 - Networks will be much larger than today, perhaps sparse
- 4.2: Reasoning/inference through minimization
- 4.3: DL hardware use cases
 - A. DL R&D: 32-bit FP, high parallelism, fast inter-node communication, flexible hardware and software.
 - **B.** Routine training: 16-bit FP, some parallelism, moderate cost.
 - C. inference in data centers: 8 or 16-bit FP, low latency, low power consumption, standard interface.
 - D. inference on embedded devices: low cost, low power, exotic number systems?
 - AR/VR, consumer items, household robots, toys, manufacturing, monitoring,...

Speculations

- Spiking Neural Nets, and neuromorphic architectures?
 I'm skeptical.....
 - ▶ No spike-based NN comes close to state of the art on practical tasks
 - ► Why build chips for algorithms that don't work?

Exotic technologies?

- Resistor/Memristor matrices, and other analog implementations?
 - Conversion to and from digital kills us.
 - No possibility of hardware multiplexing
- Spintronics?
- Optical implementations?

Thank you

facebook Artificial Intelligence Research