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Y. LeCun

AI today is mostly supervised learning                

Training a machine by showing examples instead of programming it

When the output is wrong, tweak the parameters of the machine 

PLANE

CAR

Works well for:

Speech→words

Image→categories

Portrait→ name

Photo→caption

Text→topic

….



Y. LeCun

The History of Neural Nets is Inextricable from Hardware

The McCulloch-Pitts Binar Neuron

Perceptron: weights are motorized potentiometers

Adaline: Weights are electrochemical “memistors”

y=sign(∑
i=1

N

W i X i+ b)

https://youtu.be/X1G2g3SiCwU
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The Standard Paradigm of Pattern Recognition    

...and “traditional” Machine Learning

Trainable 
Classifier

Feature 
Extractor

Hand engineered Trainable
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1969→1985: Neural Net Winter

No learning for multilayer nets, why?

People used the wrong “neuron”: the McCulloch & Pitts binary neuron

Binary neurons are easier to implement: No multiplication necessary!

Binary neurons prevented people from thinking about gradient-based 
methods for multi-layer nets

Early 1980s: The second wave of neural nets

1982: Hopfield nets: fully-connected recurrent binary networks

1983: Boltzmann Machines: binary stochastic networks with hidden units

1985/86: Backprop! Q: Why only then? A: sigmoid neurons!

Sigmoid neurons were enabled by “fast” floating point (Sun Workstations)
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Multilayer Neural Nets and Deep Learning

Traditional Machine Learning

Trainable 
Classifier

Feature 
Extractor

Deep Learning

Trainable 
Classifier

Low-Level
Features

Mid-Level
Features

High-Level
Features

Hand engineered Trainable

Trainable
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Multi-Layer Neural Nets

Multiple Layers of simple units

Each units computes a weighted sum of its inputs

Weighted sum is passed through a non-linear function

The learning algorithm changes the weights

Weight 
matrix

Ceci est une voiture

ReLU (x )=max (x ,0)

Hidden
Layer
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Supervised Machine Learning = Function Optimization

It's like walking in the mountains in a fog 
and following the direction of steepest 
descent to reach the village in the valley

But each sample gives us a noisy 
estimate of the direction. So our path is 
a bit random. 

traffic light:  -1

Function with 
adjustable parameters

Objective
Function Error

W i←W i−η
∂ L(W , X )

∂W i
Stochastic Gradient Descent (SGD)



Y. LeCun

Computing Gradients by Back-Propagation

● A practical Application of Chain Rule

● Backprop for the state gradients:
● dC/dXi-1 = dC/dXi . dXi/dXi-1 
● dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1 

● Backprop for the weight gradients:
● dC/dWi = dC/dXi . dXi/dWi 
● dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi 

Cost

Fn(Xn-1,Wn)

C(X,Y,Θ)

X (input) Y (desired output)

Fi(Xi-1,Wi)

F1(X0,W1)

Xi-1

Xi

dC/dXi-1

dC/dXi

dC/dWn
Wn

dC/dWi
Wi
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1986-1996 Neural Net Hardware at Bell Labs, Holmdel

1986: 12x12 resistor array

Fixed resistor values

E-beam lithography: 6x6microns

1988: 54x54 neural net

Programmable ternary weights

On-chip amplifiers and I/O

1991: Net32k: 256x128 net

Programmable ternary weights

320GOPS, 1-bit convolver.

1992: ANNA: 64x64 net

ConvNet accelerator: 4GOPS

6-bit weights, 3-bit activations

6 microns
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Convolutional Network Architecture [LeCun et al. NIPS 1989]

Inspired by [Hubel & Wiesel 1962] & 
[Fukushima 1982] (Neocognitron): 

simple cells detect local features

complex cells “pool” the outputs of simple 
cells within a retinotopic neighborhood. 

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity
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LeNet character recognition demo 1992

Running on an AT&T DSP32C (floating-point DSP, 20 MFLOPS)
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Convolutional Network (LeNet5, vintage 1990) 

Filters-tanh → pooling → filters-tanh → pooling → filters-tanh
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ConvNets can recognize multiple objects

All layers are convolutional

Networks performs simultaneous segmentation and recognition
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Check Reader (AT&T 1995)

Check amount reader

ConvNet+Language Model 
trained at the sequence level. 

50% percent correct, 49% reject, 
1% error (detectable later in the 
process).

Fielded in 1996, used in many 
banks in the US and Europe.

Processed an estimated 10% to 
20% of all the checks written in 
the US in the early 2000s.

[LeCun, Bottou, Bengio ICASSP1997]

[LeCun, Bottou, Bengio, Haffner 1998]
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1996→2006: 2nd NN Winter! Few teams could train large NNs

Hardware was slow for floating point computation

Training a character recognizer took 2 weeks on a Sun or SGI workstation

A very small ConvNet by today’s standard (500,000 connections)

Data was scarce and NN were data hungry

No large datasets besides character and speech recognition

Interactive software tools had to be built from scratch

We wrote a NN simulator with a custom Lisp interpreter/compiler

SN [Bottou & LeCun 1988] → SN2 [1992] →  Lush (open sourced in 2002).

Open sourcing wasn’t common in the pre-Internet days

The “black art” of NN training could not be communicated easily

SN/SN2/Lush gave us superpowers: tools shape research directions
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Lessons learned #1

1.1: It’s hard to succeed with exotic hardware 

Hardwired analog → programmable hybrid → digital

1.2: Hardware limitations influence research directions

It constrains what algorithm designers will let themselves imagine

1.3: Good software tools shape research and give superpowers

But require a significant investment

Common tools for Research and Development facilitates productization

1.4: Hardware performance matters

Fast turn-around is important for R&D

But high-end production models always take 2-3 weeks to train

1.5: When hardware is too slow, software is not readily available, or 
experiments are not easily reproducible, good ideas can be abandoned.



The 2nd Neural Net 

Winter (1995-2005)

& Spring (2006-2012)

The Lunatic Fringe and 

the Deep Learning Conspircy
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Semantic Segmentation with ConvNet for off-Road Driving

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

DARPA LAGR program 2005-2009
[Hadsell et al.,  J. of Field Robotics 2009] 
[Sermanet et al.,  J. of Field Robotics 2009] 
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LAGR Video
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Semantic Segmentation with ConvNets (33 categories)
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FPGA ConvNet Accelerator: NewFlow [Farabet 2011]

NeuFlow: Reconfigurable Dataflow architecture

Implemented on Xilinx Virtex6 FPGA

20 configurable tiles. 150GOPS, 10 Watts

Semantic Segmentation: 20 frames/sec at 320x240

Exploits the structure of convolutions

NeuFlow ASIC [Pham 2012] 

150GOPS, 0.5 Watts (simulated)



Y. LeCun

Driving Cars with Convolutional Nets

MobilEye

NVIDIA



The Deep Learning Revolution

State of the Art
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Deep ConvNets for Object Recognition (on GPU)

AlexNet [Krizhevsky et al. NIPS 2012], OverFeat [Sermanet et al. 2013]

1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.
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Error Rate on ImageNet

Depth inflation

(Figure: Anirudh Koul)
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Deep ConvNets (depth inflation)

VGG
[Simonyan 2013]

GoogLeNet
Szegedy 2014]

ResNet 
[He et al. 2015]

DenseNet 
[Huang et al 2017]
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GOPS vs Accuracy on ImageNet vs #Parameters

[Canziani 2016]

ResNet50 and 
ResNet100 are used 
routinely in 
production.

Each of the few 
billions photos 
uploaded on 
Facebook every day 
goes through a 
handful of ConvNets 
within 2 seconds.
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Progress in Computer Vision

[He 2017]
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Mask R-CNN: instance segmentation

[He, Gkioxari, Dollar, Girshick 

 arXiv:1703.06870]

ConvNet produces an object  
mask for each region of 
interest

Combined ventral and dorsal 
pathways
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RetinaNet, feature pyramid network

One-pass object detection

[Lin et al. ArXiv:1708.02002]
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Mask-RCNN Results on COCO dataset

Individual 
objects are 
segmented.
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Mask R-CNN Results on COCO test set
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Real-Time Pose Estimation on Mobile Devices

Maks R-CNN 

running on

Caffe2Go
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Detectron: open source vision in PyTorch

https://github.com/facebookresearch/maskrcnn-benchmark
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3D ConvNet for Medical Image Analysis

Segmentation Femur from MR Images

[Deniz et al. Nature 2018]



Trabecular Bone Probability Map
2D CNN - padded

    
Coronal View Sagittal View

Segmentation Mask
Ground Truth 2D CNN PP 2D CNN - padded PP

     

Y. LeCun

3D ConvNet for Medical Image Analysis



Y. LeCun

Applications of Deep Learning

Medical image analysis

Self-driving cars

Accessibility

Face recognition

Language translation

Virtual assistants*

Content Understanding for:

Filtering

Selection/ranking

Search

Games

Security, anomaly detection

Diagnosis, prediction

Science!
[Geras 2017]

[Mnih 2015]

[MobilEye]

[Esteva 2017]
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Lessons learned #2

2.1: Good results are not enough 

Making them easily reproducible also makes them credible.

2.2: Hardware progress enables new breakthroughs

General-Purpose GPUs should have come 10 years earlier!

But can we please have hardware that doesn’t require batching?

2.3: Open-source software platforms disseminate ideas

But making platforms that are good for research and production is hard.

2.4: Convolutional Nets will soon be everywhere

Hardware should exploit the properties of convolutions better

There is a need for low-cost, low-power ConvNet accelerators

Cars, cameras, vacuum cleaners, lawn mowers, toys, maintenance robots...



New DL Architectures

With different hardware/software requirements:

Memory-Augmented Networks

Dynamic Networks

Graph Convolutional Nets

Networks with Sparse Activations
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Augmenting Neural Nets with a Memory Module

Recurrent net memory

 Recurrent networks cannot remember things for very long

The cortex only remember things for 20 seconds

 We need a “hippocampus” (a separate memory module)

LSTM [Hochreiter 1997], registers

Memory networks [Weston et 2014] (FAIR), associative memory

Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)

Neural Turing Machine [Graves 2014], 

Differentiable Neural Computer [Graves 2016]
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Differentiable Associative Memory

Used very widely in NLP

MemNN, Transformer Network, ELMO, 
GPT, BERT, GPT2, GLoMO

Essentially a “soft” RAM or hash table

Input (Address) X

Keys Ki

Values Vi

Dot Products

Softmax

Sum

Y=∑
i

CiV i

Ci=
e
K
i

T
X

∑
j

e
K
j

T
X
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Learning to synthesize neural programs for visual reasoning

https://research.fb.com/visual-reasoning-and-dialog-towards-natural-language-conversations-about-visual-data/
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PyTorch: differentiable programming

Software 2.0:

The operations in a program are only partially specified

They are trainable parameterized modules.

The precise operations are learned from data, only the general structure 
of the program is designed.

Dynamic computational graph

Automatic differentiation by recording a “tape” of operations and rolling it 
backwards with the Jacobian of each operator.

Implemented in PyTorch1.0, Chainer…

Easy if the front-end language is dynamic and interpreted (e.g Python)

Not so easy if we want to run without a Python runtime...
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ConvNets on Graphs (fixed and data-dependent)

Graphs can represent: Natural 
language, social networks, chemistry, 
physics, communication networks...

Review paper: “Geometric deep learning: going 
beyond euclidean data”, MM Bronstein, J Bruna, Y 
LeCun, A Szlam, P Vandergheynst, IEEE Signal 
Processing Magazine 34 (4), 18-42, 2017 
[ArXiv:1611.08097]
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Spectral ConvNets / Graph ConvNets

Regular grid graph

Standard ConvNet

Fixed irregular graph

Spectral ConvNet

Dynamic irregular graph

Graph ConvNet

IPAM workshop:
http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/
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Sparse ConvNets: for sparse voxel-based 3D data

ShapeNet competition results ArXiv:1710.06104]

Winner:  Submanifold Sparse ConvNet

[Graham & van der Maaten arXiv 1706.01307]

PyTorch: https://github.com/facebookresearch/SparseConvNet
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Lessons learned #3

3.1: Dynamic networks are gaining in popularity (e.g. for NLP)

Dynamicity breaks many assumptions of current hardware

Can’t optimize the compute graph distribution at compile time.

Can’t do batching easily!

3.2: Large-Scale Memory-Augmented Networks...

...Will require efficient associative memory/nearest-neighbor search

3.3: Graph ConvNets are very promising for many applications

Say goodbye to matrix multiplications? 

Say goodbye to tensors?

3.4: Large Neural Nets may have sparse activity

How to exploit sparsity in hardware?



What About (Deep) 

Reinforcement Learning?

It works great … 

…for games and virtual environments
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Reinforcement Learning works fine for games

RL works well for games 

Playing Atari games [Mnih 2013], Go 
[Silver 2016, Tian 2018], Doom [Tian 
2017], StarCraft...

RL requires too many trials.

100 hours to reach the performance that 
a human can reach in 15 minutes on 
Atari games [Hessel ArXiv:1710.02298]

RL often doesn’t really work in the real 
world

FAIR open Source go player: OpenGo  

https://github.com/pytorch/elf
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Pure RL is hard to use in the real world

Pure RL requires too many 
trials to learn anything

it’s OK in a game

it’s not OK in the real world

RL works in simple virtual 
world that you can run faster 
than real-time on many 
machines in parallel.

Anything you do in the real world can kill you

You can’t run the real world faster than real time
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What are we missing to get to “real” AI?

What we can have

Safer cars, autonomous cars

Better medical image analysis

Personalized medicine

Adequate language translation

Useful but stupid chatbots

Information search, retrieval, filtering

Numerous applications in energy, 
finance, manufacturing, 
environmental protection, commerce, 
law, artistic creation, games,…..

What we cannot have (yet)

Machines with common sense

Intelligent personal assistants

“Smart” chatbots”

Household robots

Agile and dexterous robots

Artificial General Intelligence 
(AGI)



How do Humans 

and Animal  Learn?

So quickly
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Babies learn how the world works by observation 

Largely by observation, with remarkably little interaction.

Photos courtesy of 
Emmanuel Dupoux
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Early Conceptual Acquisition in Infants [from Emmanuel Dupoux]
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Time (months)

stability, support
gravity, inertia
conservation of
momentum

Object permanence

solidity, rigidity

shape 
constancy

crawling walking
emotional contagion

Social-
communicati
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rational, goal-
directed actions

face tracking

prooto-imitation

pointing

biological 
motion

false perceptual 
beliefs

helping vs
hindering

natural kind categories
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Prediction is the essence of Intelligence

We learn models of the world by predicting



The Future:

Self-Supervised Learning

With massive amounts of data 

and very large networks
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Self-Supervised Learning

Predict any part of the input from any 
other part.

Predict the future from the past.

Predict the future from the recent past.

Predict the past from the present.

Predict the top from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you 
don’t know and predict that.

← Past
Present

Time → 

Future → 
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How Much Information is the Machine Given during Learning?

“Pure” Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a 
while.

A few bits for some samples

Supervised Learning (icing)

The machine predicts a category or a few numbers 
for each input

Predicting human-supplied data

10→10,000 bits per sample

Self-Supervised Learning (cake génoise)

The machine predicts any part of its input for any 
observed part.

Predicts future frames in videos

Millions of bits per sample
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Self-Supervised Learning: Filling in the Blanks
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Self-Supervised Learning works well for text

Word2vec

[Mikolov 2013]

FastText

[Joulin 2016]

BERT

Bidirectional Encoder 
Representations from 
Transformers

[Devlin 2018]

Figure credit: Jay Alammar http://jalammar.github.io/illustrated-bert/
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But it doesn’t really work for high-dim continuous signals

Video prediction:

Multiple futures are possible.

Training a system to make a single 
prediction results in “blurry” results

the average of all the possible futures
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The Next AI Revolution

              THE REVOLUTION THE REVOLUTION 

WILL NOT BE SUPERVISEDWILL NOT BE SUPERVISED

          (nor purely reinforced)(nor purely reinforced)

With thanks
To

Alyosha Efros



Learning Predictive Models 

of the World

Learning to predict, reason, and plan,

Learning Common Sense.
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Planning Requires Prediction

To plan ahead, we simulate the world

World

Agent

Percepts

Objective
Cost

Agent State

Actions/
Outputs

Agent
World

Simulator

Actor

Predicted
Percepts

Critic Predicted 
Cost

Action
Proposals

Inferred
World State

Actor State
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Training the Actor with Optimized Action Sequences

1. Find action sequence through optimization

2. Use sequence as target to train the actor

Over time we get a compact policy that requires no run-time optimization

Agent
World

Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

Perception
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The Hard Part: Prediction Under Uncertainty

Invariant prediction: The training samples are merely representatives of a 
whole set of possible outputs (e.g. a manifold of outputs).

Percepts

Hidden State
Of the World
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Faces “invented” by a GAN (Generative Adversarial Network)

Random vector → Generator Network → output image [Goodfellow NIPS 2014]

[Karras et al. ICLR 2018] (from NVIDIA)
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Generative Adversarial Networks for Creation

[Sbai 2017]
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Self-supervised Adversarial Learning for Video Prediction

Our brains are “prediction machines”

Can we train machines to predict the future?

Some success with “adversarial training” 

[Mathieu, Couprie, LeCun arXiv:1511:05440]

But we are far from a complete solution.



Y. LeCun

Predicting Instance Segmentation Maps

[Luc, Couprie, LeCun, Verbeek ECCV 2018]

Mask R-CNN Feature Pyramid Network backbone

Trained for instance segmentation on COCO

Separate predictors for each feature level
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Predictions
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Y. LeCun

Long-term predictions (10 frames, 1.8 seconds)
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Using Forward Models to Plan (and to learn to drive)

Overhead camera on 
highway.

Vehicles are tracked

A “state” is a pixel 
representation of a 
rectangular window 
centered around each 
car.

Forward model is 
trained to predict how 
every car moves relative 
to the central car. 

steering and acceleration 
are computed
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Forward Model Architecture

Architecture:                Encoder                        Decoder

Latent variable predictor

expander

+
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Y. LeCun

Predictions
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Learning to Drive by Simulating it in your Head

Feed initial state

Sample latent variable 
sequences of length 20

Run the forward model 
with these sequences

Backpropagate gradient of 
cost to train a policy 
network.

Iterate

No need for planning at 
run time.
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Adding an Uncertainty Cost (doesn’t work without it)

Estimates epistemic 
uncertainty

Samples multiple drop-
puts in forward model

Computes variance of 
predictions 
(differentiably)

Train the policy network 
to minimize the 
lane&proximity cost plus 
the uncertainty cost.

Avoids unpredictable 
outcomes
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Y. LeCun

Driving an Invisible Car in “Real” Traffic
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Lessons learned #4

4.1: Self-Supervised learning is the future

Networks will be much larger than today, perhaps sparse

4.2: Reasoning/inference through minimization

4.3: DL hardware use cases

A. DL R&D: 32-bit FP, high parallelism, fast inter-node communication, 
flexible hardware and software.

B. Routine training: 16-bit FP, some parallelism, moderate cost.

C. inference in data centers: 8 or 16-bit FP, low latency, low power 
consumption, standard interface.

D. inference on embedded devices: low cost, low power, exotic number 
systems?

AR/VR, consumer items, household robots, toys, manufacturing, monitoring,...
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Speculations

Spiking Neural Nets, and neuromorphic architectures?

I’m skeptical…..

No spike-based NN comes close to state of the art on practical tasks

Why build chips for algorithms that don’t work?

Exotic technologies?

Resistor/Memristor matrices, and other analog implementations?

Conversion to and from digital kills us.

No possibility of hardware multiplexing

Spintronics?

Optical implementations?



Thank you
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