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Abstract

Language models (LMs) have gained dramatic improvement in

the past years due to the wide application of neural networks.

This raises the question of how far we are away from the per-

fect language model and how much more research is needed in

language modelling. As for perplexity giving a value for human

perplexity (as an upper bound of what is reasonably expected

from an LM) is difficult. Word error rate (WER) has the dis-

advantage that it also measures the quality of other components

of a speech recognizer like the acoustic model and the feature

extraction. We therefore suggest evaluating LMs in a generative

setting (which has been done before on selected hand-picked ex-

amples) and running a human evaluation on the generated sen-

tences. The results imply that LMs need about 10 to 20 more

years of research before human performance is reached. More-

over, we show that the human judgement scores on the gener-

ated sentences and perplexity are closely correlated. This leads

to an estimated perplexity of 12 for an LM that would be able

to pass the human judgement test in the setting we suggested.

Index Terms: language model, generative task, human judge-

ment score, performance gap

1. Introduction

Statistical language modelling is the attempt to estimate the

probability distribution over word sequences [1]. Recently,

deep learning and recurrent neural networks (RNN) have

greatly boosted language modelling research. In [2], by train-

ing on a larger corpus and exploiting modern GPUs, the best

single model improved the state-of-the-art perplexity from 51

down to 30. Benefited from the rapid development of language

modelling, remarkable advances have been witnessed over a lot

of natural language processing tasks. In speech recognition, re-

cent models have been reported to perform almost as well as

humans [3, 4]. In machine translation, purely neural network-

based models can already achieve performance comparable to

the traditional phrase-based machine translation system Moses

with a small vocabulary [5]. In text generation, coherent novel

sentences can be generated by learning a holistic representation

of every sentence [6].

Though much effort has been devoted to improve the per-

formance of language models, little research has been done to

examine how much exactly this improvement means on our way

to an ideal language model. Do we still have a long way to go

and all we have achieved is just a small portion of the total dis-

tance, or we are already quite close to the destination?

Perplexity [7] is usually used as a metric to measure the

quality of language models. Nontheless, direct estimate of the

inherent perplexity, which we expect from a perfect language

model, in a language is rather difficult. When a language model

can accurately estimate the probability of every word, its per-

plexity becomes the exponential of language entropy. The fa-

mous Shannon’s game [8], Cover and King’s variation [9] tried

estimating the entropy of English, but both were in character-

level based on pure human subjects. [10] proposed estimating

the upper bound for the entropy of English by training a word

trigram model, but it was also in character-level and language

models have made dramatic breakthroughs since then. WER in

speech recognition is shown strongly correlated with perplexity

regardless of the type of used LMs [11]. However, language

models serve only as an auxiliary component in speech recog-

nition, aiming at distinguishing probable word sequences from

all candidates. The signal quality, acoustic recognizer, scoring

algorithm and many other factors contribute to the final result.

Disentangling the effect of language modelling and thereby es-

timating the performance of an ideal model is infeasible.

In this paper, we propose estimating the gap between cur-

rent language models and the perfect model based on a variation

of Turing test [12]. Our assumptions are as follows.

• A perfect language model can fully understand the

mechanisms beneath a language and assign the word

probability in a way similar to the human intuition.

• When asked to complete sentences with provided con-

texts, by greedily generating the most probable word, the

generated sentences should be absolutely plausible.

• The generated sentences, when mixed with normal sen-

tences, should be at least indistinguishable or have even

higher scores with respect to plausibility.

On account of these assumptions, we first trained a variety of

language models, which range from the basic trigram count-

based model to the state-of-the-art multi-layer long short-term

memory (LSTM) networks. These models are applied to greed-

ily generate words given a sentence start with fixed 8 words.

The generated sentences, together with the original ones, are

then randomly shuffled and judged by humans. Every model

is assigned a human judgement score for its generated sen-

tences. Our experiment exhibits a strong correlation between

the language model performance and the human judgement

score. Based on the correlation, we estimated performance of a

human-comparable language model by polynomial regression.

It is worth mentioning that our estimated performance is just a

lower bound, not the exact value, of a perfect language model

as every assumption we propose is a necessary but not sufficient

condition of a previous one. Our experiment results show that

there still exists a discrepancy between the current best model

and our derived lower bound, implying more improvement is

clearly needed in language modelling.

2. Language Models

We divide the applied language models into 4 classes, ngram&

feedforward neural network (FFNN), maximum entropy (ME),

RNN with maximum entropy (RNNME) and RNN&LSTM.

This section will briefly go through the definitions of them.
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2.1. Ngram & Feedforward Neural Network

Traditionally, count-based models are used to approximate such

a probability based on the frequency information extracted from

training corpus[13]. With the Markov assumption[14] and

smoothing techniques, probability can be easily estimated from

the counting information of n-grams. We trained trigram and 5-

gram models with Chen and Goodmans modified Kneser-Ney

smoothing. Compared with the original KN smoothing, instead

of using a single discounting parameter D, it has three different

parameters D1, D2 and D3+ that are applied to n-grams with

one, two and three or more counts. Experiments showed that

this method outperformed other smoothing techniques [15].

FFNNs are the first neural network architecture introduced

to language modelling [16]. Similar to count-based models,

FFNNs assume only the most recent n− 1 preceding words are

considered for predicting the next word. Every word is mapped

from a one-hot vector to a distributed representation where more

semantic information can be encoded.

2.2. Maximum Entropy

Maximum entropy (ME) is another popular model. With fea-

tures and constraints, it tries to maximize the entropy of the

word probability distribution[17]. This model is computation-

ally expensive but more features could be added to improve the

performance. ME estimates the word probability as follows

P (x|h) =
e
∑

i
γifi(x,h)

Z(h)
(1)

f is the feature function, γ is the parameters to be learned and

Z is a normalizaiton term for a given history. We apply the

ME extension of the srilm toolbox[18] for training. In our case,

only up to 5-gram features are used and an l1 + l22 regulariza-

tion is added to prevent overfitting. For parameter optimization,

the Orthant-Wise Limited-memory Quasi-Newton (OWL-QN)

method through the libLBFGS library is applied[19].

2.3. RNN with Maximum Entropy

In comparison to FFNNs, the RNN architecture has a recurrent

layer to maintain the memory of all past information so that

it can learn longer-range dependencies than FFNNs. Maximum

entropy can also be incorporated as part of the RNN model (RN-

NME), which would further reduce the perplexity[20, 21]. The

RNN part includes an input layer x(t), a recurrent hidden layer

s(t) and an output layer y(t) for each time step t. To speed up,

we divides words into 50 classes and the output layer is factor-

ized as a class probability and a word probability[22]. Words

are assigned to classes simply proportionally respecting their

frequencies. RNNME trains ME as part of the RNN model.

Since ME models and the softmax outlayer layer are similar,

they can be viewed as a direct connection between input and

output layer and the direct parameters can be learned during the

training phase of RNN[21]. In our experiment, only bigram and

trigram features are used, a 1-billion-size hash[21] is used to

map such features in order to reduce the complexity and speed

up the training process.

2.4. Vanilla RNN & LSTM

The Vanilla RNN equals the RNNME without ME part. Though

theoretically powerful, the training of RNNs is much more com-

plex than FFNNs. Because of the gradient vanishing prob-

lem [23], vanilla RNNs fall short of learning weight param-

eters in a way that long-range dependencies can be captured.

To solve this problem, LSTM neural network was proposed in

[24] and further extended in [25] and [26]. The resulting struc-

ture utilized a gating mechanism to ensure backpropagation of

useful information through many time steps. Unlike vanilla

RNN, where the effective backpropagation ranges usually up

to 6 steps, LSTM can propagate errors for more than 20 steps

without losing validity.

We trained the FFNN, RNN and LSTM on multiple GPUs

by separating training data into sequences of fixed length. An

embedding layer and a projection layer is added to reduce com-

plexity. Batch noise contrastive estimation [27] (FFNN and

RNN) and Importance sampling [28] (LSTM) are implemented

to scale the large vocabulary size.

3. Human Judgement

After training, 400 sentences, each of which contains at least 16

words are extracted from the test corpus. Sentences containing

colons or quotation marks are filtered out beforehand because

our experiment shows these punctuations severely interfere with

human judgements and people themselves disagree with the use

of them. For each sentence, we keep the first 8 words and ap-

ply language models to complete it by greedily generating the

most probable word until an end token is reached. If a lan-

guage model has not outputted an end token within 50 words,

the generated sentence is regarded as incomplete. In our exper-

iment, only trigram models generated a fair amount of incom-

plete sentences, the other language models finished almost all

the sentences within the limit of 50 words. When incomplete

sentences are sent to human judgement, the ellipsis is appended

to the end. A snippet of sentence examples is shown in table 1

Context Wednesday was the first day at school for

Trigram the first time in the first time in the ...

5-gram the first time in the history of the world .

ME the first time in the history of the world .

RNN the first time .

RNNME the city ’s history .

LSTM the school ’s president , who has been ...

Original quadruplets Sarah , Peter , Lucy ...

Table 1: Example of generated sentences

All the generated sentences, together with the original ones

from the test corpus, are then randomly shuffled and judged on

the crowdsourcing website CrowdFlower1. People are told that

the first 8 words of these sentences is the fixed context, the next

words are generated either by human or machine. They should

try to identify them by assigning a score to each sentence. The

score is designed as a 4-level Likert scale [29] with 3 (clearly

human), 2 (slightly human), 1 (slightly unhuman) and 0 (clearly

unhuman). We adopted 4-level scale instead of the more com-

mon 5-level or 7-level in hope of forcing people to demonstrate

their preference rather than safely choosing neutral scores. For

the experiment participants, only English native people with the

highest trust level on Crowdflower are allowed to perform this

task. Each sentence is judged by at least 3 different participants

and the score supported by most people is adopted. If 3 partici-

pants all disagree with each other, more judgements are dynam-

ically collected until at least half of them get a consensus. Trust

Levels are accumulated based on their previous performance on

1http://www.crowdflower.com/
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Crowdflower. In total, 288 participants contributed to the hu-

man judgement task.

4. Experiments and Results

4.1. Experimental Setup

The experiments are performed on the 1B Word Benchmark

data set [30] collected from English newspapers with about

0.85B words. Sentences containing special tokens are pruned

out in advance as mentioned in Section 3. This leads to a cor-

pus containing approximately 0.7B words. We reserve a small

subset as the test corpus. The rest training corpus is then ran-

domly split into 100 segments. Since models are trained with

different data size, we fix the vocabulary as all tokens existing in

the first segment, which contains 158451 words. Other tokens

are mapped to a special UNK token.

We trained the trigram, 5-gram and ME on both the first

segment and the whole data set, this led to 6 language models

in total. A 5-gram 500-1500-600 FFNN was trained only on the

whole data, with 500, 1500 and 600 refer to the embedding size,

hidden layer size and projection size respectively. RNNME was

trained incrementally on the first 1, 3, 6 until 21 segments with

the hidden layer size fixed as 600, which formed totally 8 mod-

els. Since RNNME can only be run sequentially on CPUs, train-

ing it on the whole corpus is too time-consuming, so we stopped

at 21 segments, which constitutes around 20% of the whole cor-

pus. A 500-1500-600 vanilla RNN was trained on both the first

segment and the whole corpora. 7 LSTM models were trained

on the whole corpora, all of which share the same embedding

size 512 but differ in the state size, projection size and drop-out

rate. A full list of the applied language models is shown in Ta-

ble 2, where L-2-4096-1024-0.1 denotes a 2 (layer)-4096 (state

size)-1024 (projection size)-0.1 (drop-out rate) LSTM language

model. This is the largest model we were able to fit into a GPU

(Titan X) memory.

4.2. Uncertainty of Data

All data points in our experiment are assumed to be independent

with each other. According to central limit theorem, the arith-

metic mean of a sufficiently large number of independent ran-

dom variables is approximately Gaussian distributed[31] with

standard deviation as SDx̄ = σ√
n

. Here we use sample stan-

dard deviation s to approximate the population standard devia-

tion σ. The uncertainty of our measurement can then be defined

as x ± 2SDx̄. The factor 2 yields a confidence interval with

confidence 95%.

When dealing with functions, uncertainty can be trans-

formed by

∆f(z1...zn) =

√

√

√

√

N
∑

i=1

(
∂f

∂zi
)2(∆zi)2 (2)

where zi is the uncertainty of each parameter [32].

After fitting the data points with polynomial regression, we

measure the goodness of fit with adjusted R square [33]

R
2
adjusted = 1−

(1−R2)(N − 1)

N − k − 1
(3)

where R2 is the sampled R-square(coefficient of determina-

tion), N and K are the number of samples and regressors. Com-

pared with normal R2, R2
adjusted imposes a penalty as the num-

ber of regressors increases to prevent overfitting.

4.3. Metric-based Performance

We test the performance of langauge models with three auto-

matic evaluation metrics: perplexity, mean log rank and per-

centage of the target word’s probability being ranked as the 1st

place [34]. All of them are measured on the generated part

(the whole sentence excluding the first 8 words) of the origi-

nal 400 sentences. Table 2 contains all results of applied mod-

els. As can be seen, these three metrics are highly consistent

with each other. Language models with better scores on one

metric usually also perform better on the other two metrics. A

larger training data size significantly contributes to the improve-

ment of performance. For RNNME, increasing the size from

1 to 21 segments continuously brings the perplexity from 196

down to 78, with only one fall back in 18 segments. As ex-

pected, trigram performs worst among all the language models.

FFNN (83.0) performs even worse than 5-gram (73.7) despite

consuming much more training time. ME trained on the whole

corpus performs surprisingly well (68.8) with only up to 5-gram

features included. The best LSTM model takes 2 weeks to con-

verge and achieves a perplexity of 33.6, only slightly worse than

the reported record (30.0) in [2].

Model PPL Rank Top1(%) Score

Trigram-1 303.2 3.48 19.7 0.11

Trigram-all 112.2 2.75 24.0 0.16

5gram-1 281.0 3.43 21.1 0.24

5-gram-all 73.7 2.43 31.2 0.60

ME-1 286.5 3.46 21.2 0.27

ME-all 68.8 2.40 31.8 0.64

FFNN-all 83.0 2.56 26.3 0.56

RNN-1 211.1 3.28 21.5 0.33

RNN-all 45.7 2.12 31.9 2.08

RNNME-1 196.3 3.21 22.2 0.44

RNNME-3 136.0 2.93 23.7 0.41

RNNME-6 109.7 2.78 24.8 0.43

RNNME-9 107.5 2.76 25.4 0.42

RNNME-12 103.1 2.72 25.0 0.40

RNNME-15 91.3 2.63 26.1 0.48

RNNME-18 106.9 2.76 24.0 0.44

RNNME-21 78.9 2.52 26.9 0.71

L-1-512-512-0.1 63.2 2.41 30.0 1.36

L-1-1024-512-0.1 54.5 2.29 31.8 1.86

L-1-2048-512-0.1 45.3 2.19 33.1 2.39

L-1-8192-2048-0.5 35.9 1.95 33.8 1.54

L-1-8192-2048-0 37.5 1.97 34.8 2.60

L-2-2048-512-0.1 39.8 2.09 35.0 2.91

L-2-4096-1024-0.1 33.6 1.94 36.2 3.51

Human (estimated) 12.0 1.14 40.5 7.95

Table 2: Performance of Language Models

4.4. Human Judgement Score

Let ni denote the number of sentences being judged with score

i. We noticed n1 (slightly unhuman) or n2 (slightly human) are

quite similar over all language models. After manually exam-

ining these sentences, we found they were ambiguous and quite

difficult to be clearly judged. In consequence, we define the hu-

man judgement score as the ratio of n3 (clearly human) to n0

(clearly unhuman). We believe these two values are more reli-

able and good language models should achieve higher scores by
successfully fooling human judgers more often.
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Figure 1: Human Judgement Score wrt. Perplexity

Adjusted R-square: 0.953

The last column of Table 2 shows the human judgement

scores. We can see models with better metric scores normally,

though not always, have better chances of successfully fooling

humans. One major exception comes from the trigram model

trained on full corpus, who achieved a very low human judge-

ment score (0.16) with a mediate perplexity (112.22). Original

sentences received a human judgement score of 7.95, which is a

big lead over all language models, even to the best LSTM model

(3.51). It is worth noting that even for original sentences, quite a

few of them are judged as clearly unhuman since they are novel,

contain professional terms or noise distractions resulting from

the inappropriate tokenization. The real human performance

should be higher, which further explains why our estimation

stands only for a lower bound.

Figure 1-3 pictorize the correlation between human judge-

ment score and metric-based performance. The least square

polynomial fit[35] with degree 3 is applied to fit all the data

points (blue curve). The horizontal dash line stands for the hu-

man judgement score from original sentences. It can be viewed

as the lower bound of a perfect language model. The intersect-

ing point of the dash line and the fitted curve could then be

used to approximate the metric-based performance of such lan-

guage model. We further labelled the year number every model

is first applied so that the evolving development of language

modelling can be easily seen. Perplexity is scaled logarithmi-

cally for curve fitting while the other two metrics stay the same.

As shown in the figures, all curves fit the data points pretty well.

The adjusted R square is more than 0.9 for all three automatic

measurement metrics. The fitted curve suggests an estimated

perplexity 12 for a human-comparable language model in our

task. The estimated value for mean log rank and top 1 per-

centage is 1.14 and 40.5% respectively. Interestingly, given the

average word length of 5.5, Shannon estimated the lower bound

on human-level word perplexity as 20.648×5.5 = 11.8[8], which

is consistent with our result.

5. Conclusion and Future Work

This work attempts to detect and measure the gap between cur-

rent language models and human performance. In our sentence

Figure 2: Human Judgement Score wrt. Top 1 Percentage

Adjusted R-square: 0.955

Figure 3: Human Judgement Score wrt. Mean Rank

Adjusted R-square: 0.934

completion task, by defining a metric for human judgement

score and taking the original sentences as a target, this gap can

be estimated. Our findings show that neural networks do bring

a remarkable improvement to language models, whether for

metric-based performance or human judgement scores. How-

ever, current language models are still far from perfect, more

research is needed in this field.

This experiment is a preliminary study and a few shortcom-

ings exist. The human judgement task is rather unsupervised

and the results are subject to more uncertainty. In the future we

will collect more experiments and control the human judgement

in a more fine-grained way.
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