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N
atural language processing 

(NLP) is a theory-motivated 

range of computational tech-

niques for the automatic analysis and 

representation of human language. 

NLP research has evolved from the era 

of punch cards and batch processing (in 

which the analysis of a sentence could 

take up to 7 minutes) to the era of 

Google and the likes of it (in which 

millions of webpages can be processed 

in less than a second). This review 

paper draws on recent developments in 

NLP research to look at the past, pres-

ent, and future of NLP technology in a 

new light. Borrowing the paradigm of 

‘jumping curves’ from the field of  

business management and marketing 

prediction, this survey article reinter-

prets the evolution of NLP research as 

the intersection of three overlapping 

curves-namely Syntactics, Semantics, 

and Pragmatics Curves- which will 

eventually lead NLP research to evolve 

into natural language understanding.

I. Introduction

Between the birth of the Internet and 

2003, year of birth of social networks 

such as MySpace, Delicious, LinkedIn, 

and Facebook, there were just a few 

dozen exabytes of information on the 

Web. Today, that same amount of infor-

mation is created weekly. The advent of 

the Social Web has provided people 

with new content-sharing services that 

allow them to create and share their 

own contents, ideas, and opinions, in a 

time- and cost-efficient way, with virtu-

ally millions of other people connected 

to the World Wide Web. This huge 

amount of information, however, is 

mainly unstructured (because it is spe-

cifically produced for human consump-

tion) and hence not directly machine-

processable. The automatic analysis of 

text involves a deep understanding of 

natural language by machines, a reality 

from which we are still very far off.

Hither to, online information 

retrieval, aggregation, and processing 

have mainly been based on algorithms 

relying on the textual representation of 

web pages. Such algorithms are very 

good at retrieving texts, splitting them 

into parts, checking the spelling and 

counting the number of words. When 

it comes to interpreting sentences and 

extracting meaningful information, 

however, their capabilities are known to 

be very limited. Natural language pro-

cessing (NLP), in fact, requires high-

level symbolic capabilities (Dyer, 1994), 

including:

 ❏ creation and propagation of dynamic 

bindings;

 ❏ manipulation of recursive, constitu-

ent structures;

 ❏ acquisition and access of lexical, 

semantic, and episodic memories;

 ❏ control of multiple learning/process-

ing modules and routing of informa-

tion among such modules;

 ❏ grounding of basic-level language 

constructs (e.g., objects and actions) 

in perceptual/motor experiences;

 ❏ representation of abstract concepts.

All such capabilities are required to 

shift from mere NLP to what is usually 

referred to as natural language under-

standing (Allen, 1987). Today, most of 

the existing approaches are still based on 

the syntactic representation of text, a 

method that relies mainly on word co-

occurrence frequencies. Such algorithms 

are limited by the fact that they can pro-

cess only the information that they can 

‘see’. As human text processors, we do 

not have such limitations as every word 

we see activates a cascade of semantically 

related concepts, relevant episodes, and 

sensory exper iences, all of which 

enable the completion of complex 

NLP tasks—such as word-sense disam-

biguation, textual entailment, and 

semantic role labeling—in a quick and 

effortless way.

Computational models attempt to 

bridge such a cognitive gap by emulat-

ing the way the human brain processes 

natural language, e.g., by leveraging on 

semantic features that are not explicitly 

expressed in text. Computational mod-

els are useful both for scientific pur-

poses (such as exploring the nature of 

linguistic communication), as well as for 
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practical purposes (such as enabling 

effective human-machine communica-

tion). Traditional research disciplines do 

not have the tools to completely address 

the problem of how language compre-

hension and production work. Even if 

you combine all the approaches, a com-

prehensive theory would be too com-

plex to be studied using traditional 

methods. However, we may be able to 

realize such complex theories as com-

puter programs and then test them by 

observing how well they perform. By 

seeing where they fail, we can incre-

mentally improve them. Computational 

models may provide very specific pre-

dictions about human behaviors that 

can then be explored by the psycholin-

guist. By continuing this process, we 

may eventually acquire a deeper under-

standing of how human language pro-

cessing occurs. To realize such a dream 

will take the combined efforts of for-

ward-thinking psycholinguists, neuro-

scientists, anthropologists, philosophers, 

and computer scientists.

Unlike previous surveys focusing on 

specific aspects or applications of NLP 

research (e.g., evaluation criteria (Jones 

& Galliers, 1995), knowledge-based sys-

tems (Mahesh, Nirenburg, & Tucker, 

1997), text retrieval (Jackson & Moulin-

ier, 1997), and connectionist models 

(Christiansen & Chater, 1999)), this 

review paper focuses on the evolution of 

NLP research according to three differ-

ent paradigms, namely: the bag-of-

words, bag-of-concepts, and bag-of-nar-

ratives models. Borrowing the concept 

of ‘jumping curves’ from the field of 

business management, this survey article 

explains how and why NLP research has 

been gradually shifting from lexical 

semantics to compositional semantics 

and offers insights on next-generation 

narrative-based NLP technology.

The rest of the paper is organized as 

follows: Section 2 presents the historical 

background and the different schools of 

thought of NLP research; Section 3 dis-

cusses past, present, and future evolution 

of NLP technologies; Section 4 

describes traditional syntax-centered 

NLP methodologies; Section 5 illus-

trates emerging semantics-based NLP 

approaches; Section 6 introduces pio-

neering works on narrative understand-

ing; Section 7 proposes further insights 

on the evolution of current NLP tech-

nologies and suggests near future 

research directions; finally, Section 8 

concludes the paper and outlines future 

areas of NLP research.

2. Background

Since its inception in 1950s, NLP 

research has been focusing on tasks such 

as machine translation, information 

retrieval, text summarization, question 

answering, information extraction, topic 

modeling, and more recently, opinion 

mining. Most NLP research carried out 

in the early days focused on syntax, 

partly because syntactic processing was 

manifestly necessary, and partly through 

implicit or explicit endorsement of the 

idea of syntax-driven processing.

Although the semantic problems and 

needs of NLP were clear from the very 

beginning, the strategy adopted by the 

research community was to tackle syntax 

first, for the more direct applicability of 

machine learning techniques. However, 

there were some researchers who con-

centrated on semantics because they saw 

it as the really challenging problem or 

assumed that semantically-driven pro-

cessing be a better approach. Thus, Mas-

terman’s and Ceccato’s groups, for exam-

ple, exploited semantic pattern matching 

using semantic categories and semantic 

case frames, and in Ceccato’s work (Cec-

cato, 1967) particularly, world knowledge 

was used to extend linguistic semantics, 

along with semantic networks as a 

device for knowledge representation. 

Later works recognized the need for 

external knowledge in interpreting and 

responding to language input (Minsky, 

1968) and explicitly emphasized seman-

tics in the form of general-purpose 

semantics with case structures for repre-

sentation and semantically-driven pro-

cessing (Schank, 1975).

One of the most popular representa-

tion strategies since then has been first 

order logic (FOL), a deductive system 

that consists of axioms and rules of infer-

ences and can be used to formalize rela-

tionally-rich predicates and quantifica-

tion (Barwise, 1977). FOL supports 

syntactic, semantic and, to a certain 

degree, pragmatic expressions. Syntax 

specifies the way groups of symbols are 

to be arranged, so that the group of sym-

bols is considered properly formed. 

Semantics specifies what well-formed 

expressions are supposed to mean. Prag-

matics specifies how contextual informa-

tion can be leveraged to provide better 

correlations between different semantics, 

which is essential for tasks such as word 

sense disambiguation. Logic, however, is 

known to have the problem of monoto-

nicity. The set of entailed sentences will 

only increase as information is added to 

the knowledge base, but this runs the 

risk of violating a common property of 

human reasoning—the freedom and 

flexibility to change one’s mind. Solu-

tions such as default and linear logic 

serve to address parts of these issues. 

Default logic is proposed by Raymond 

Reiter to formalize default assumptions, 

e.g., “all birds fly” (Reiter, 1980). How-

ever, issues arise when default logic for-

malizes facts that are true in the majority 

of cases but are false with regards to 

exceptions to these ‘general rules’, e.g., 

“penguins do not fly”.

Another popular model for the 

description of natural language is pro-

duction rule (Chomsky, 1956). A pro-

duction rule system keeps a working 

memory of on-going memory assertions. 

This working memory is volatile and in 

turn keeps a set of production rules. A 

production rule comprises of an ante-

cedent set of conditions and a conse-

quent set of actions (i.e., IF <condi-

tions> THEN <actions>). The basic 

operation for a production rule system 

involves a cycle of three steps (‘recog-

nize’, ‘resolve conflict’, and ‘act’) that 

repeats until no more rules are applicable 

to the working memory. The step ‘recog-

nize’ identifies the rules whose anteced-

ent conditions are satisfied by the current 

working memory. The set of rules identi-

fied is also called the conflict set. The 

step ‘resolve conflict’ looks into the con-

flict set and selects a set of suitable rules 

to execute. The step ‘act’ simply executes 

the actions and updates the working 

memory. Production rules are modular. 
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Each rule is independent from the oth-

ers, allowing rules to be added and 

deleted easily. Production rule systems 

have a simple control structure and the 

rules are easily understood by humans. 

This is because rules are usually derived 

from the observation of expert behavior 

or expert knowledge, thus the terminol-

ogy used in encoding the rules tends to 

resonate with human understanding. 

However, there are issues with scalability 

when production rule systems become 

larger; a significant amount of mainte-

nance is required to maintain a system 

with thousands of rules.

Another instance of a prominent 

NLP model is the ontology Web lan-

guage (OWL) (McGuinness & Van 

Harmelen, 2004), an XML-based vocab-

ulary that extends the resource descrip-

tion framework (RDF) to provide a 

more comprehensive set for ontology 

representation, such as the definition of 

classes, relationships between classes, 

properties of classes, and constraints on 

relationships between classes and their 

properties. RDF supports the subject-

predicate-object model that makes 

assertions about a resource. RDF-based 

reasoning engines have been developed 

to check for semantic consistency which 

then helps to improve ontology classifi-

cation. In general, OWL requires the 

strict definition of static structures, and 

therefore is not suitable for representing 

knowledge that contains subjective 

degrees of confidence. Instead, it is more 

suited for representing declarative 

knowledge. Furthermore, yet another 

problem of OWL is that it does not 

allow for an easy representation of tem-

poral-dependent knowledge.

Networks are yet another well-

known way to do NLP. For example, 

Bayesian networks (Pearl, 1985) (also 

known as belief networks) provide a 

means of expressing joint probability 

distributions over many interrelated 

hypotheses. All variables are represented 

using directed acyclic graph (DAG). Arcs 

are causal connections between two 

variables where the truth of the former 

directly affects the truth of the latter. A 

Bayesian network is able to represent 

subjective degrees of confidence. The 

representation explicitly explores the 

role of prior knowledge and combines 

pieces of evidence of the likelihood of 

events. In order to compute the joint 

distribution of the belief network, there 

is a need to know Pr(P|parents(P)) for 

each variable P. It is difficult to deter-

mine the probability of each variable P 

in the belief network. Hence, it is also 

difficult to enhance and maintain the 

statistical table for large-scale informa-

tion processing problems. Bayesian net-

works also have limited expressiveness, 

which is only equivalent to the expres-

siveness of proposition logic. For this 

reason, semantic networks are more 

often used in NLP research.

A semantic network (Sowa, 1987) is 

a graphical notation for representing 

knowledge in patterns of interconnected 

nodes and arcs. Definitional networks 

focus on IsA relationships between a 

concept and a newly defined sub-type. 

The result of such a structure is called a 

generalization, which in turn supports 

the rule of inheritance for copying 

properties defined for a super-type to all 

of its sub-types. The information in defi-

nitional networks is often assumed to be 

true. Yet another kind of semantic net-

works is the assertional network, which 

is meant to assert propositions and the 

information it contains is assumed to be 

contingently true. Contingent truth is 

not reached with the application of 

default logic; instead, it is based more on 

Man’s application of common-sense. 

The proposition also has sufficient rea-

son in which the reason entails the 

proposition, e.g., “the stone is warm” 

with the sufficient reasons being “the 

sun is shining on the stone” and “what-

ever the sun shines on is warm”.

The idea of semantic networks arose 

in the early 1960s from Simmons (Sim-

mons, 1963) and Quillian (Quillian, 

1963) and was further developed in the 

late 1980s by Marvin Minsky within his 

Society of Mind theory (Minsky, 1986), 

according to which the magic of 

human intelligence stems from our vast 

diversity—and not from any single, per-

fect principle. Minsky theorized that the 

mind is made of many little parts that 

he termed ‘agents’, each mindless by 

itself but able to lead to true intelligence 

when working together. These groups 

of agents, or ‘agencies’, are responsible 

for performing some type of function, 

such as remembering, comparing, gen-

eralizing, exemplifying, analogizing, sim-

plifying, predicting, etc. Minsky’s theory 

of human cognition, in particular, was 

welcomed with great enthusiasm by the 

artificial intelligence (AI) community 

and gave birth to many attempts to 

build common-sense knowledge bases 

for NLP tasks. The most representative 

projects are: (a) Cyc (Lenat & Guha, 

1989), Doug Lenat’s logic-based reposi-

tory of common-sense knowledge; (b) 

WordNet (Fellbaum, 1998), Christiane 

Fellbaum’s universal database of word 

senses; (c) Thought-Treasure (Mueller, 

1998), Erik Mueller’s story understand-

ing system; and (d) the Open Mind 

Common Sense project (Singh, 2002), a 

second-generation common-sense data-

base. The last project stands out because 

knowledge is represented in natural  

TABLE 1 Most popular schools of thought in knowledge representation and NLP research.

APPROACH CHARACTERISTIC FEATURES REFERENCE

PRODUCTION RULE CYCLES OF `RECOGNIZE’, `RESOLVE  
CONFLICT’, `ACT’ STEPS

(CHOMSKY, 1956)

SEMANTIC PATTERN 
MATCHING

SEMANTIC CATEGORIES AND SEMANTIC  
CASE FRAMES

(CECCATO, 1967)

FIRST ORDER LOGIC 
(FOL)

AXIOMS AND RULES OF INFERENCES (BARWISE, 1977)

BAYESIAN NETWORKS VARIABLES REPRESENTED BY A PROBABILIS-
TIC DIRECTED ACYCLIC GRAPH

(PEARL, 1985)

SEMANTIC NETWORKS PATTERNS OF INTERCONNECTED NODES  
AND ARCS

(SOWA, 1987)

ONTOLOGY WEB  
LANGUAGE (OWL)

HIERARCHICAL CLASSES AND RELATION-
SHIPS BETWEEN THEM

(MCGUINNESS & VAN 
HARMELEN, 2004)
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language (rather than being based upon 

a formal logical structure), and informa-

tion is not hand-crafted by expert engi-

neers but spontaneously inserted by 

online volunteers. Today, the common-

sense knowledge collected by the Open 

Mind Common Sense project is being 

exploited for many different NLP tasks 

such as textual affect sensing (H. Liu, 

Lieberman, & Selker, 2003), casual con-

versation understanding (Eagle, Singh, & 

Pentland, 2003), opinion mining (Cam-

bria & Hussain, 2012), story telling 

(Hayden et al., 2013), and more.

3. Overlapping NLP Curves

With the dawn of the Internet Age, 

civilization has undergone profound, 

rapid-fire changes that we are experi-

encing more than ever today. Even 

technologies that are adapting, growing, 

and innovating have the gnawing sense 

that obsolescence is right around the 

corner. NLP research, in particular, has 

not evolved at the same pace as other 

technologies in the past 15 years.

While NLP research has made great 

strides in producing artificially intelli-

gent behaviors, e.g., Google, IBM’s Wat-

son, and Apple’s Siri, none of such NLP 

frameworks actually understand what 

they are doing—making them no differ-

ent from a parrot that learns to repeat 

words without any clear understanding 

of what it is saying. Today, even the most 

popular NLP technologies view text 

analysis as a word or pattern matching 

task. Trying to ascertain the meaning of 

a piece of text by processing it at word-

level, however, is no different from 

attempting to understand a picture by 

analyzing it at pixel-level.

In a Web where user-generated con-

tent (UGC) is drowning in its own out-

put, NLP researchers are faced with the 

same challenge: the need to jump the 

curve (Imparato & Harari, 1996) to 

make significant, discontinuous leaps in 

their thinking, whether it is about 

information retrieval, aggregation, or 

processing. Relying on arbitrary key-

words, punctuation, and word co-

occurrence frequencies has worked 

fairly well so far, but the explosion of 

UGCs and the outbreak of deceptive 

phenomena such as web-trolling and 

opinion spam, are causing standard NLP 

algorithms to be increasing less efficient. 

In order to properly extract and manip-

ulate text meanings, a NLP system must 

have access to a significant amount of 

knowledge about the world and the 

domain of discourse.

To this end, NLP systems will 

gradually stop relying too much on 

word-based techniques while starting 

to exploit semantics more consistently 

and, hence, make a leap from the  

Syntactics Curve to the Semantics 

Curve (Figure  1). NLP research has 

been interspersed with word-level 

approaches because, at first glance, the 

most basic unit of linguistic structure 

appears to be the word. Single-word 

expressions, however, are just a subset 

of concepts, multi-word expressions 

that carry specific semantics and sentics 

(Cambria & Hussain, 2012), that is, the 

denotative and connotative informa-

tion commonly associated with real-

world objects, actions, events, and 

people. Sentics, in particular, specifies 

the affective information associated 

with such real-world entities, which is 

key for common-sense reasoning and 

decision-making.

Semantics and sentics include com-

mon-sense knowledge (which humans 

normally acquire during the formative 

years of their lives) and common knowl-

edge (which people continue to accrue 

in their everyday life) in a re-usable 

knowledge base for machines. Common 

knowledge includes general knowledge 

about the world, e.g., a chair is a type of 

furniture, while common-sense knowl-

edge comprises obvious or widely 

accepted things that people normally 

know about the world but which are 

usually left unstated in discourse, e.g., 

that things fall downwards (and not 

upwards) and people smile when they are 

happy. The difference between common 

and common-sense knowledge can be 

expressed as the difference between 

knowing the name of an object and 

understanding the same object’s purpose. 

For example, you can know the name of 

all the different kinds or brands of ‘pipe’, 

but not its purpose nor the method of 

usage. In other words, a ‘pipe’ is not a 

pipe unless it can be used (Magritte, 

1929) (Figure 2).

It is through the combined use of 

common and common-sense knowl-

edge that we can have a grip on both 

high- and low-level concepts as well as 

nuances in natural language understand-

ing and therefore effectively communi-

cate with other people without having 

to continuously ask for definitions and 

explanations. Common-sense, in partic-

ular, is key in properly deconstructing 

natural language text into sentiments 

according to different contexts—for 

FIGURE 1 Envisioned evolution of NLP research through three different eras or curves.

NLP System Performance
Best Path

1950 2000

Syntactics Curve

(Bag-of-Words)

Semantics Curve

(Bag-of-Concepts)

Pragmatics Curve
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2050 2100 Time
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example, in appraising the concept ‘small 

room’ as negative for a hotel review and 

‘small queue’ as positive for a post office, 

or the concept ‘go read the book’ as 

positive for a book review but negative 

for a movie review.

Semantics, however, is just one layer 

up in the scale that separates NLP from 

natural language understanding. In 

order to achieve the ability to accu-

rately and sensibly process information, 

computational models will also need to 

be able to project semantics and sentics 

in time, compare them in a parallel and 

dynamic way, according to different 

contexts and with respect to different 

actors and their intentions (Howard & 

Cambria, 2013). This will mean jump-

ing from the Semantics Curve to the 

Pragmatics Curve, which will enable 

NLP to be more adaptive and, hence, 

open-domain, context-aware, and 

intent-driven. Intent, in particular, will 

be key for tasks such as sentiment anal-

ysis—a concept that generally has a 

negative connotation, e.g., small seat, 

might turn out to be positive, e.g., if the 

intent is for an infant to be safely seated 

in it.

While the paradigm of the Syntac-

tics Curve is the bag-of-words model 

(Zellig, 1954) and the Semantics 

Curve is characterized by a bag-of-

concepts model (Cambria & Hussain, 

2012), the paradigm of the Pragmatics 

Curve will be the bag-of-narratives 

model. In this last model, each piece 

of text will be represented by mini-

stor ies or interconnected episodes, 

leading to a more detailed level of text 

comprehension and sensible computa-

tion. While the bag-of-concepts model 

helps to overcome problems such as 

word-sense di sambiguat ion and 

semantic role labeling, the bag-of-nar-

ratives model will enable tackling 

NLP issues such as co-reference reso-

lution and textual entailment.

4. Poising on the Syntactics Curve

Today, syntax-centered NLP is still the 

most popular way to manage tasks such 

as information retrieval and extraction, 

auto-categorization, topic modeling, 

etc. Despite semantics enthusiasts hav-

ing argued the importance and inevita-

bility of a shift away from syntax for 

years, the vast major ity of NLP 

researchers nowadays are still trying to 

keep their balance on the Syntactics 

Curve. Syntax-centered NLP can be 

broadly grouped into three main cate-

gories: keyword spotting, lexical affinity, 

and statistical methods.

4.1. Keyword Spotting

Keyword Spotting is the most naïve 

approach and probably also the most 

popular because of its accessibility and 

economy. Text is classified into catego-

ries based on the presence of fairly 

unambiguous words. Popular projects 

include: (a) Ortony’s Affective Lexicon 

(Ortony, Clore, & Collins, 1988), which 

groups words into affective categories; 

(b) Penn Treebank (Marcus, Santorini, & 

Marcinkiewicz, 1994), a corpus consist-

ing of over 4.5 million words of Ameri-

can English annotated for part-of-

speech (POS) infor mat ion; (c) 

PageRank (Page, Brin, Motwani, & 

Winograd, 1999), the famous ranking 

algorithm of Google; (d) LexRank 

(GÜnes & Radev, 2004), a stochastic 

graph-based method for computing rel-

ative importance of textual units for 

NLP; finally, (e) TextRank (Mihalcea & 

Tarau, 2004), a graph-based ranking 

model for text processing, based on two 

unsupervised methods for keyword and 

sentence extraction. The major weakness 

of keyword spotting lies in its reliance 

upon the presence of obvious words 

which are only surface features of the 

prose. A text document about dogs 

where the word ‘dog’ is never men-

tioned, e.g., because dogs are addressed 

according to the specific breeds they 

belong to, might never be retrieved by a 

keyword-based search engine.

4.2. Lexical Affinity

Lexical Affinity is slightly more sophisti-

cated than keyword spotting as, rather 

than simply detecting obvious words, it 

assigns to arbitrary words a probabilistic 

‘affinity’ for a particular category (Bush, 

1999; Bybee & Scheibman, 1999; Krug, 

1998; Church & Hanks, 1989; Jurafsky 

et al., 2000). For example, ‘accident’ 

might be assigned a 75% probability of 

indicating a negative event, as in ‘car 

accident’ or ‘hurt in an accident’. These 

probabilities are usually gleaned from 

linguistic corpora (Kucera & Francis, 

1969; Godfrey, Holliman, & McDaniel, 

1992; Stevenson, Mikels, & James, 2007). 

Although this approach often outper-

forms pure keyword spotting, there are 

two main problems with it. First, lexical 

affinity operating solely on the word-

level can easily be tricked by sentences 

such as “I avoided an accident” (nega-

tion) and “I met my girlfriend by acci-

dent” (connotation of unplanned but 

lovely surprise). Second, lexical affinity 

probabilities are often biased toward text 

of a particular genre, dictated by the 

source of the linguistic corpora. This 

makes it difficult to develop a re-usable, 

domain-independent model.

4.3. Statistical NLP

Statistical NLP has been the mainstream 

NLP research direction since late 1990s. 

It relies on language models (Manning 

& SchÜtze, 1999; Hofmann, 1999; 

Nigam, McCallum, Thrun, & Mitchell, 

2000) based on popular machine-learn-

ing algorithms such as maximum-likeli-

hood (Berger, Della Pietra, & Della 

Pietra, 1996), expectation maximization 

(Nigam et al., 2000), conditional ran-

dom fields (Lafferty, McCallum, & 

Pereira, 2001), and support vector 

machines (Joachims, 2002). By feeding a 

large training corpus of annotated texts 

to a machine-learning algorithm, it is 

possible for the system to not only learn 

the valence of keywords (as in the key-

word spotting approach), but also to take 

into account the valence of other arbi-

trary keywords (like lexical affinity), 
FIGURE 2 A ‘pipe’ is not a pipe, unless 
we know how to use it.
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punctuation, and word co-occurrence 

frequencies. However, statistical methods 

are generally semantically weak, mean-

ing that, with the exception of obvious 

keywords, other lexical or co-occur-

rence elements in a statistical model 

have little predictive value individually. 

As a result, statistical text classifiers only 

work with acceptable accuracy when 

given a sufficiently large text input. So, 

while these methods may be able to 

classify text on the page- or paragraph-

level, they do not work well on smaller 

text units such as sentences or clauses.

5. Surfing the Semantics Curve

Semantics-based NLP focuses on the 

intrinsic meaning associated with natu-

ral language text. Rather than simply 

processing documents at syntax-level, 

semantics-based approaches rely on 

implicit denotative features associated 

with natural language text, hence step-

ping away from the blind usage of key-

words and word co-occurrence count. 

Unlike purely syntactical techniques, 

concept-based approaches are also able 

to detect semantics that are expressed 

in a subtle manner, e.g., through the 

analysis of concepts that do not explic-

itly convey relevant information, but 

which are implicitly linked to other 

concepts that do so. Semantics-based 

NLP approaches can be broadly 

grouped into two main categories: 

techniques that leverage on external 

knowledge, e.g., ontologies (taxonomic 

NLP) or semantic knowledge bases 

(noetic NLP), and methods that exploit 

only intrinsic semantics of documents 

(endogenous NLP).

5.1. Endogenous NLP

Endogenous NLP involves the use of 

machine-learning techniques to per-

form semantic analysis of a corpus by 

building structures that approximate 

concepts from a large set of documents. 

It does not involve prior semantic 

understanding of documents; instead, it 

relies only on the endogenous knowl-

edge of these (rather than on external 

knowledge bases). The advantages of this 

approach over the knowledge engineer-

ing approach are effectiveness, consider-

able savings in terms of expert man-

power, and straightforward portability to 

different domains (Sebastiani, 2002).

Endogenous NLP includes methods 

based either on lexical semantics, which 

focuses on the meanings of individual 

words, or compositional semantics, 

which looks at the meanings of sen-

tences and longer utterances. The vast 

ma jor i ty  o f  endogenous  NLP 

approaches is based on lexical semantics 

and includes well-known machine-

learning techniques. Some examples of 

this are: (a) latent semantic analysis 

(Hofmann, 2001), where documents are 

represented as vectors in a term space; 

(b) latent Dirichlet allocation (Porteous 

et al., 2008), which involves attributing 

document terms to topics; (c) MapRe-

duce (C. Liu, Qi, Wang, & Yu, 2012), a 

framework that has proved to be very 

efficient for data-intensive tasks, e.g., 

large scale RDFS/OWL reasoning and 

(d) genetic algorithms (D. Goldberg, 

1989), probabilistic search procedures 

designed to work on large spaces 

involving states that can be represented 

by strings.

Works leveraging on compositional 

semantics, instead, mainly include 

approaches based on Hidden Markov 

Models (Denoyer, Zaragoza, & Gallinari, 

2001; Frasconi, Soda, & Vullo, 2001), 

association rule learning (Cohen, 1995; 

Cohen & Singer, 1999), feature ensem-

bles (Xia, Zong, Hu, & Cambria, 2013; 

Poria, Gelbukh, Hussain, Das, & Ban-

dyopadhyay, 2013) and probabilistic gen-

erative models (Lau, Xia, & Ye, 2014).

5.2. Taxonomic NLP

Taxonomic NLP includes initiatives 

that aim to build universal taxonomies 

or Web ontologies for grasping the sub-

sumptive or hierarchical semantics asso-

ciated with natural language expres-

sions. Such taxonomies usually consist 

of concepts (e.g., painter), instances (e.g., 

“Leonardo da Vinci”), attributes and 

values (e.g., “Leonardo’s birthday is 

April 15, 1452”), and relationships (e.g., 

“Mona Lisa is painted by Leonardo”). 

In particular, subsumptive knowledge 

representations build upon IsA rela-

tionships, which are usually extracted 

through syntactic patterns for auto-

matic hypernym discovery (Hearst, 

1992) able to infer tr iples such as 

<Pablo Picasso-IsA-ar tist> from 

stretches of text like “...artists such as 

Pablo Picasso...” or “...Pablo Picasso 

and other artists...”.

In general, attempts to build taxo-

nomic resources are countless and 

include both resources crafted by 

human experts or community efforts, 

such as WordNet and Freebase (Bol-

lacker, Evans, Paritosh, Sturge, & Taylor, 

2008), and automatically built knowl-

edge bases. Examples of such knowl-

edge bases include: (a) WikiTaxonomy 

(Ponzetto & Strube, 2007), a taxonomy 

extracted from Wikipedia’s category 

links; (b) YAGO (Suchanek, Kasneci, & 

Weikum, 2007), a semantic knowledge 

base derived from WordNet, Wikipedia, 

and GeoNames; (c) NELL (Carlson et 

al., 2010) (Never-Ending Language 

Learning), a semantic machine-learning 

system that is acquiring knowledge 

from the Web every day; finally, (d) Pro-

base (Wu, Li, Wang, & Zhu, 2012), a 

research prototype that aims to build a 

unified taxonomy of worldly facts from 

1.68 billion webpages in Bing repository.

Other popular Semantic Web proj-

ects include: (a) SHOE (Heflin & Hen-

dler, 1999) (Simple HTML Ontology 

Extensions), a knowledge representa-

tion language that allows webpages to 

be annotated with semantics; (b) 

Annotea (Kahan, 2002), an open RDF 

infrastructure for shared Web annota-

tions; (c) SIOC (Breslin, Harth, Bojars, 

& Decker, 2005) (Semantically Inter-

linked Online Communities), an ontol-

ogy combining terms from vocabular-

ies that already exist with new terms 

needed to describe the relationships 

between concepts in the realm of 

online community sites; (d) SKOS 

(Miles & Bechhofer, 2009) (Simple 

Knowledge Organization System), an 

area of work developing specifications 

and standards to support the use of 

knowledge organization systems such 

as thesauri, classification schemes, sub-

ject heading lists and taxonomies; (e) 

FOAF (Br ickley & Miller, 2010) 

(Friend Of A Friend), a project devoted 
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to linking people and information 

using the Web; (f  ) ISOS (Ding, Jin, 

Ren, & Hao, 2013) (Intelligent Self-

Organizing Scheme), a scheme for the 

Internet of Things inspired by the 

endocr ine regulating mechanism; 

finally, (g) FRED (Gangemi, Presutti, & 

Reforgiato, 2014), a tool that produces 

an event-based RDF/OWL representa-

tion of natural language text. The main 

weakness of taxonomic NLP is in the 

typicality of their knowledge bases. The 

way knowledge is represented in tax-

onomies and Web ontologies is usually 

strictly defined and does not allow for 

the combined handling of differing 

nuanced concepts, as the inference of 

semantic features associated with con-

cepts is bound by the fixed, flat repre-

sentation. The concept of ‘book’, for 

example, is typically associated to con-

cepts such as ‘newspaper’ or ‘magazine’, 

as it contains knowledge, has pages, etc. 

In a different context, however, a book 

could be used as paperweight, doorstop, 

or even as a weapon. Another key 

weakness of Semantic Web projects is 

that they are not easily scalable and, 

hence, not widely adopted (Gueret, 

Schlobach, Dentler, Schut, & Eiben, 

2012). This increases the amount of 

time that has to pass before the initial 

customer feedback is even possible, and 

also slows down feedback loop itera-

tions, ultimately putting Semantic Web 

applications at a user-experience and 

agility disadvantage as compared to 

their Web 2.0 counterparts, because 

their usability inadvertently takes a 

back seat to the number of other com-

plex problems that have to be solved 

before clients even see the application.

5.3. Noetic NLP

Noetic NLP embraces all the mind-

inspired approaches to NLP that 

attempt to compensate for the lack of 

domain adaptivity and implicit seman-

tic feature inference of traditional algo-

rithms, e.g., first principles modeling or 

explicit statistical modeling. Noetic 

NLP differs from taxonomic NLP in 

which it does not focus on encoding 

subsumption knowledge, but rather 

attempts to collect idiosyncratic knowl-

edge about objects, actions, events, and 

people. Noetic NLP, moreover, per-

forms reasoning in an adaptive and 

dynamic way, e.g., by generating con-

text-dependent results or by discover-

ing new semantic patterns that are not 

explicitly encoded in the knowledge 

base. Examples of noetic NLP include 

paradigms such as connectionist NLP 

(Christiansen & Chater, 1999), which 

models mental phenomena as emergent 

processes of interconnected networks 

of simple units, e.g., neural networks 

(Collobert et al., 2011); deep learning 

(Martinez, Bengio, & Yannakakis, 2013); 

sentic computing (Cambria & Hussain, 

2012), an approach to concept-level 

sentiment analysis based on an ensem-

ble of graph-mining and dimensional-

ity-reduction techniques; and energy-

based knowledge representation 

(Olsher, 2013), a novel framework for 

nuanced common-sense reasoning.

Besides knowledge representation 

and reasoning, a key aspect of noetic 

NLP is also semantic parsing. Most cur-

rent NLP technologies rely on part-of-

speech (POS) tagging, but that is unlike 

the way the human mind extracts 

meaning from text. Instead, just as the 

human mind does, a construction-based 

semantic parser (CBSP) (Cambria, Raja-

gopal, Olsher, & Das, 2013) quickly 

identifies meaningful stretches of text 

without requiring time-consuming 

phrase structure analysis. The use of con-

structions, defined as “stored pairings of 

form and function” (A. Goldberg, 2003) 

makes it possible to link distributed lin-

guistic components to one another, eas-

ing extraction of semantics from linguis-

tic structures. Constructions are 

composed of fixed lexical items and cat-

egory-based slots, or ‘spaces’ that are 

filled in by lexical items during text pro-

cessing. An interesting example from the 

relevant literature would be the con-

struction [<ACTION> <OBJECT> 

<DIRECTION> <OBJECT>]. 

Instances of this include the phrases 

‘sneeze the napkin across the table’ or 

‘hit the ball over the fence’. Construc-

tions not only help understand how var-

ious lexical items work together to cre-

ate the whole meaning, but also give the 

parser a sense of what categories of 

words are used together and thus where 

to expect different words.

CBSP uses this knowledge to deter-

mine constructions, their matching lexi-

cal terms, and how good each match is. 

Each of CBSP’s constructions contrib-

utes its own unique semantics and car-

ries a unique name. In order to choose 

the best possible construction for each 

span of text, CBSP uses knowledge 

about the lexical items found in text. 

This knowledge is obtained from look-

ing individual lexical terms up in the 

knowledge bases so as to obtain infor-

mation about the basic category mem-

bership of that word.

It then efficiently compares these 

potential memberships with the catego-

ries specified for each construction in 

the corpus, finding the best matches so 

that CBSP can extract a concept from a 

sentence. An example would be the 

extraction of the concept ‘buy christmas 

present’ from the sentence “today I 

bought a lot of very nice Christmas 

gifts”. Constructions are typically nested 

within one another: CBSP is capable of 

finding only those construction overlaps 

that are semantically sensible, based on 

the overall semantics of constructions 

and construction slot categories, thus 

greatly reducing the time taken to pro-

cess large numbers of texts. In the big 

data environment, a key benefit of con-

struction-based parsing is that only small 

sections of text are required in order to 

extract meaning; word category infor-

mation and the generally small size of 

constructions mean that the parser can 

still make use of error-filled or conven-

tionally unparseable text.

6. Foreseeing the Pragmatics Curve

Narrative understanding and generation 

are central for reasoning, decision-mak-

ing, and ‘sensemaking’. Besides being a 

key part of human-to-human commu-

nication, narratives are the means by 

which reality is constructed and plan-

ning is conducted. Decoding how nar-

ratives are generated and processed by 

the human brain might eventually lead 

us to truly understand and explain 

human intelligence and consciousness.
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Computational modeling is a pow-

erful and effective way to investigate 

narrative understanding. A lot of the 

cognitive processes that lead humans to 

understand or generate narratives have 

traditionally been of interest to AI 

researchers under the umbrella of 

knowledge representation, common-

sense reasoning, social cognition, learn-

ing, and NLP. Once NLP research can 

grasp semantics at a level comparable to 

human text processing, the jump to the 

Pragmatics Curve will be necessary, in 

the same way as semantic machine 

learning is now gradually evolving from 

lexical to compositional semantics. 

There are already a few pioneering 

works that attempt to understand narra-

tives by leveraging on discourse struc-

ture (Asher & Lascarides, 2003), argu-

ment-suppor t  hierarchies  (Bex, 

Prakken, & Verheij, 2007), plan graphs 

(Young, 2007), and common-sense rea-

soning (Mueller, 2007). One of the 

most representative initiatives in this 

context is Patrick Winston’s work on 

computational models of narrative 

(Winston, 2011; Richards, Finlayson, & 

Winston, 2009), which is based on five 

key hypotheses:

 ❏ The inner language hypothesis: we 

have an inner symbolic language that 

enables event description.

 ❏ The strong story hypothesis: we can 

assemble event descriptions into stories.

 ❏ The directed perception hypothesis: 

we can direct the resources of our per-

ceptual faculties to answer questions 

using real and imagined situations.

 ❏ The social animal hypothesis: we 

have a powerful reason to express the 

thought in our inner language in an 

external communication language.

 ❏ The exotic engineering hypothesis: 

our brains are unlike standard left-to-

right engineered systems.

Essentially, Patrick Winston believes 

that human intelligence stems from our 

unique abilities for storytelling and 

understanding (Finlayson & Winston, 

2011). Accordingly, his recent work has 

focused on developing a computational 

system that is able to analyze narrative 

texts to infer non-obvious answers to 

questions about these texts. This has 

resulted in the Genesis System. Work-

ing with short story summaries pro-

vided in English, together with low-

leve l  common-sense ru les  and 

higher-level reflection patterns that are 

also expressed in English, Genesis has 

been successful in demonstrating sev-

eral story understanding capabilities. 

One instance of this is its ability to 

determine that both Macbeth and the 

2007 Russia-Estonia Cyberwar involve 

revenge, even though neither the word 

‘revenge’ nor any of its synonyms are 

mentioned in accounts descr ibing 

those texts.

7. Discussion

Word- and concept-level approaches to 

NLP are just a first step towards natural 

language understanding. The future of 

NLP lies in biologically and linguistical-

ly motivated computational paradigms 

that enable narrative understanding and, 

hence, ‘sensemaking’. Computational in-

telligence potentially has a large future 

possibility to play an important role in 

NLP research. Fuzzy logic, for example, 

has a direct relation to NLP (Carvalho, 

Batista, & Coheur, 2012) for tasks such 

as sentiment analysis (Subasic & 

Huettner, 2001), linguistic summariza-

tion (Kacprzyk & Zadrozny, 2010), 

knowledge representation (Lai, Wu, Lin, 

& Huang, 2011), and word meaning in-

ference (Kazemzadeh, Lee, & Narayanan, 

2013). Artificial neural networks can aid 

the completion of NLP tasks such as 

ambiguity resolution (Chan & Franklin, 

1998; Costa, Frasconi, Lombardo, & 

Soda, 2005), grammatical inference 

(Lawrence, Giles, & Fong, 2000), word 

representation (Luong, Socher, & Man-

ning, 2013), and emotion recognition 

(Cambria, Gastaldo, Bisio, & Zunino, 

2014). Evolutionary computation can be 

exploited for tasks such as grammatical 

evolution (O’Neill & Ryan, 2001), 

knowledge discovery (Atkinson-

Abutridy, Mellish, & Aitken, 2003), text 

categorization (Araujo, 2004), and rule 

learning (Ghandar, Michalewicz, 

Schmidt, To, & Zurbruegg, 2009).

Despite its potential, however, the 

use of computational intelligence tech-

niques till date has not been so active 

in the field of NLP. The first reason is 

that NLP is a huge field currently tack-

ling dozens of different problems for 

which specific evaluation metrics exist, 

and it is not possible to reduce the 

whole field into a specific problem, as it 

was done in early works (Novak, 1992). 

The second reason may be that power-

ful techniques such as support vector 

machines (Drucker, Wu, & Vapnik, 

1999), kernel principal component 

analysis (Schölkopf et al., 1999), and la-

tent Dirichlet allocation (Mukherjee & 

Blei, 2009) have achieved remarkable 

results on widely used NLP datasets, 

which are not yet met by computation-

al intelligence techniques. All such 

word-based algorithms, however, are 

limited by the fact that they can process 

only the information that they can ‘see’ 

and, hence, will sooner or later reach 

saturation. Computational intelligence 

techniques, instead, can go beyond the 

syntactic representation of documents 

by emulating the way the human brain 

processes natural language (e.g., by le-

veraging on semantic features that are 

not explicitly expressed in text) and, 

hence, have higher potential to tackle 

complementary NLP tasks. An ensem-

ble of computational intelligence tech-

niques, for example, could be exploited 

within the same NLP model for on-

line learning of natural language con-

cepts (through neural networks), 

concept classification and semantic fea-

ture generalization (through fuzzy sets), 

and concept meaning evolution and 

continuous system optimization 

(through evolutionary computation).

8. Conclusion

In a Web where user-generated content 

has already hit critical mass, the need for 

sensible computation and information 

aggregation is increasing exponentially, 

as demonstrated by the ‘mad rush’ in the 

industry for ‘big data experts’ and the 

growth of a new ‘Data Science’ disci-

pline. The democratization of online 

content creation has led to the increase 

of  Web debris, which is inevitably and 

negatively affecting information retrieval 

and extraction. To analyze this negative 

trend and propose possible solutions, this 
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review paper focused on the evolution 

of NLP research according to three dif-

ferent paradigms, namely: the bag-of-

words, bag-of-concepts, and bag-of-nar-

ratives models. Borrowing the concept 

of ‘jumping curves’ from the field of 

business management, this survey article 

explained how and why NLP research is 

gradually shifting from lexical semantics 

to compositional semantics and offered 

insights on next-generation narrative-

based NLP technology. 

Jumping the curve, however, is not 

an easy task: the origins of human lan-

guage has sometimes been called the 

hardest problem of science (Christiansen 

& Kirby, 2003). NLP technologies 

evolved from the era of punch cards and 

batch processing (in which the analysis 

of a natural language sentence could 

take up to 7 minutes (Plath, 1967)) to 

the era of Google and the likes of it (in 

which millions of webpages can be pro-

cessed in less than a second). Even the 

most efficient word-based algorithms, 

however, perform very poorly, if not 

properly trained or when contexts and 

domains change. Such algorithms are 

limited by the fact that they can process 

only information that they can ‘see’. 

Language, however, is a system where all 

terms are interdependent and where the 

value of one is the result of the simulta-

neous presence of the others (De Sau-

ssure, 1916). As human text processors, 

we ‘see more than what we see’ (David-

son, 1997) in which every word acti-

vates a cascade of semantically-related 

concepts that enable the completion of 

complex NLP tasks, such as word-sense 

disambiguation, textual entailment, and 

semantic role labeling, in a quick and 

effortless way.

Concepts are the glue that holds our 

mental world together (Murphy, 2004). 

Without concepts, there would be no 

mental world in the first place (Bloom, 

2003). Needless to say, the ability to 

organize knowledge into concepts is 

one of the defining characteristics of the 

human mind. A truly intelligent system 

needs physical knowledge of how 

objects behave, social knowledge of how 

people interact, sensory knowledge of 

how things look and taste, psychological 

knowledge about the way people think, 

and so on. Having a database of millions 

of common-sense facts, however, is not 

enough for computational natural lan-

guage understanding: we will need to 

teach NLP systems how to handle this 

knowledge (IQ), but also interpret emo-

tions (EQ) and cultural nuances (CQ).
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