
MIRI
MACHINE INTELLIGENCE

RESEARCH INSTITUTE

Algorithmic Progress in Six Domains

Katja Grace
MIRI Visiting Fellow

Abstract
We examine evidence of progress in six areas of algorithms research, with an eye to
understanding likely algorithmic trajectories after the advent of artificial general intelli-
gence. Many of these areas appear to experience fast improvement, though the data are
often noisy. For tasks in these areas, gains from algorithmic progress have been roughly
fifty to one hundred percent as large as those from hardware progress. Improvements
tend to be incremental, forming a relatively smooth curve on the scale of years.

Grace, Katja. 2013. Algorithmic Progress in Six Domains. Technical report 2013-3.
Berkeley, CA: Machine Intelligence Research Institute. Last modified December 9, 2013.

Contents

1 Introduction 1

2 Summary 2

3 A Few General Points 3
3.1 On Measures of Progress . 3
3.2 Inputs and Outputs . 3
3.3 On Selection . 4

4 Boolean Satisfiability (SAT) 5
4.1 SAT Solving Competition . 5

4.1.1 Industrial and Handcrafted SAT Instances 6
Speedup Distribution . 6
Two-Year Improvements . 8
Difficulty and Progress . 9

4.1.2 Random SAT Instances . 11
Overall Picture . 11
Speedups for Individual Problem Types 11
Two-Year Improvements . 11
Difficulty and Progress . 14

4.2 João Marques-Silva’s Records . 14

5 Game Playing 17
5.1 Chess . 17

5.1.1 The Effect of Hardware . 17
5.1.2 Computer Chess Ratings List (CCRL) 18
5.1.3 Swedish Chess Computer Association (SSDF) Ratings 19

Archived Versions . 19
Wikipedia Records . 20
SSDF via ChessBase 2003 . 20

5.1.4 Chess Engine Grand Tournament (CEGT) Records 20
5.1.5 Dr Dobb’s Article Estimates 21
5.1.6 Historical Estimates for Well-Known Chess Programs 23
5.1.7 A Note on Open-Source Engines 23

5.2 Go . 25
5.2.1 Hardware . 25
5.2.2 Efforts . 27

Algorithmic Progress in Six Domains

5.2.3 Ing Challenges . 27
5.2.4 Zen19 on KGS . 28
5.2.5 Educated Guesswork . 28
5.2.6 KGS Tournament Data . 29
5.2.7 Sensei’s Library . 31
5.2.8 Computer–Human Contests 31

6 Factoring 31

7 Physics Simulations 34

8 Operations Research 35
8.1 Linear Optimization . 35

8.1.1 CPLEX . 35
8.1.2 Gurobi Internal Testing . 36
8.1.3 Nonspecific Reports of Large Speedups 36

8.2 Scheduling . 37
8.2.1 University of Nottingham Employee Scheduling Benchmarks . 37

9 Machine Learning 39
9.1 General Impressions from the Field 39
9.2 Transcription . 41

9.2.1 Transcription NIST Automatic Speech Recognition Evaluations 41
9.2.2 Training Data . 41

9.3 Parsing . 41
9.4 Translation . 43
9.5 Vision . 44

9.5.1 Facial Recognition . 44
9.5.2 Object and Scene Recognition 44

Classification . 45
Detection . 45
Other Tasks . 47
Training Data . 48
Anecdotal Evidence on Jumps in Vision Progress 48

10 Conclusions and Future Work 49

References 51

ii

Katja Grace

List of Figures
1 Reduction in time taken for handcrafted and industrial Boolean satisfi-

ability (SAT) instances over two years 6
2 Fastest 2007 times to solve handcrafted and industrial SAT instances

completed in both 2007 and 2009, ordered from fastest to slowest 7
3 Fastest 2009 times to solve handcrafted and industrial SAT instances

completed in both 2009 and 2011, ordered from fastest to slowest 7
4 Fastest first-year times to solve handcrafted and industrial SAT instances

completed in two consecutive competitions between 2007 and 2011,
ordered from fastest to slowest . 8

5 Initial difficulty and fractional improvement over two years for each
handcrafted or industrial SAT problem 10

6 The 25th percentile of best solve times for all types of random SAT
problems solved in more than one contest 12

7 The 75th percentile of best solve times for all types of random SAT
problems solved in more than one contest 12

8 Fractional change in 25th percentile best times over two years 13
9 Fractional change in 75th percentile best times over two years 13
10 Initial difficulty and fractional improvement over two years for each

random problem type, using 25th percentile times 15
11 Initial difficulty and fractional improvement over two years for each

random problem type, using 75th percentile times 15
12 Solve times for historical state-of-the-art SAT instances 17
13 Elo ratings of the top chess-playing programs since 2006, with 95%

confidence intervals . 19
14 Elo ratings of the top chess-playing programs since 2007 20
15 Elo ratings of the best program on SSDF at the end of each year 21
16 Sonas’s account of SSDF rankings . 21
17 Top engine ratings over time with data from the CEGT 40/4 ratings list 22
18 Early chess progress according to L. Stephen Coles 22
19 Historical chess engines’ estimated Elo ratings from a variety of sources 23
20 Go Elo improvements with hardware 25
21 Go Elo improvements with hardware for a strong and weak program . . 26
22 The Elo rating system: the probability of the better player winning

versus the difference in Elo ratings . 27
23 Successful and unsuccessful Ing Challenge attempts 28
24 Zen19 ratings over time on KGS Go servers 29

iii

Algorithmic Progress in Six Domains

25 Rough estimates of historical Go bot abilities from Sensei’s Library and
David Fotland . 29

26 Go bot ratings from KGS computer Go tournaments in 2005 and 2006 . 30
27 Go bot ratings from KGS bot tournaments formal division 2006–2008 . 30
28 Go bot ratings from KGS bot tournaments 2009–2013 31
29 Progress of some highly rated Go bots on KGS Go Server 32
30 Factoring records by year and number of digits 32
31 CPU time to factor numbers . 33
32 Effective sustained speed progress in magnetic fusion energy simulations

from hardware and software improvements 34
33 Speedup between versions of CPLEX on 1,852 MIP problems 35
34 Speedups of Gurobi MIP solver between versions on problems of several

sizes . 36
35 Martin Grötschel’s account of speedup in one production-planning prob-

lem . 37
36 Algorithmic improvement relative to hardware improvement for an un-

specified class of linear programming problems 37
37 Scores achieved relative to worst recorded scores on the Employee Schedul-

ing Benchmarks . 38
38 NIST speech recognition testing results for a variety of transcription tasks 41
39 Word error rates by quantity of training data for a transcription task,

using three methods, extrapolated to perfection 42
40 Word error rates by quantity of training data for a transcription task,

using two methods, extrapolated to perfection 42
41 Across-year comparison of participants in the 2008 and 2009 NIST

open machine translation evaluations, for Arabic to English and Chi-
nese to English . 43

42 False nonmatch rate when the false match rate is 0.001 for state-of-the-
art facial recognition algorithms on three datasets 44

43 Progress in precision on classification tasks in PASCAL VOC challenges 45
44 Progress in maximum average precision for classification of various ob-

jects in PASCAL VOC challenges . 45
45 Progress in precision on detection tasks in PASCAL VOC challenges . . 46
46 Maximum average detection precision on a variety of objects over time . 46
47 Progress in segmentation in PASCAL VOC challenges 47
48 Progress in action classification in PASCAL VOC challenges 47
49 Effect of training samples on face recognition precision for various meth-

ods . 48

iv

Katja Grace

50 Effect of training samples on object recognition precision for various
methods . 48

List of Tables
1 Overall improvements between consecutive competitions 9
2 Improvements by problem difficulty 10
3 Mean improvements by problem type difficulty using the 25th and 75th

percentile of best times . 14
4 Improvements by problem difficulty 14
5 Historical times to solve assorted SAT instances 16
6 Times to solve assorted SAT instances using different historical solvers . 16

v

Katja Grace

1. Introduction
In the future, it is anticipated that the smartest creatures will have software minds.
At that point, their intelligence may improve quickly—as quickly as the underlying
algorithms can be improved (Muehlhauser and Salamon 2012; Yudkowsky 2013).

To understand how progress will proceed when intelligence becomes an algorithmic
problem, we might do well to look at how existing algorithms improve.

Several features of characteristic algorithmic improvement curves should interest us.
How fast is progress? Does it tend to be smooth or lumpy? Is there rapid progress
followed by diminishing returns, or does progress accelerate? How much of progress
comes immediately from large insights, and how much comes from tinkering later on?
Are there general patterns to be found?

Progress on human-level AI may be faster than progress on historical algorithmic
problems, because superhuman intelligences are likely to be more productive researchers
than their human counterparts. Moreover, mature AI will have unprecedented economic
value, and hence probably attract commensurately more investment. The population
will be larger, and technology will be better. As a result, raw improvement rates are
not necessarily strong indicators of what will happen after human-level AI is developed.
There is, however, great variation in how much effort is invested in different contempo-
rary problems, so investigating the current relationships between inputs and outputs in
algorithms should give us a better picture of what to expect when inputs are changed in
the future.

If we know more about the work that produced the algorithmic improvements, we
may be able to answer some other useful questions. How does the rate of progress
depend on the number of people working in an area? How much does information
sharing matter?

All these questions contribute to what we might expect in an intelligence explosion.
Speed tells us about the timescale over which we should expect an intelligence explosion.
If we see that algorithms robustly become twice as good in half a year to five years, we
might expect an intelligence explosion to take half a year to five years. Whether progress
speeds up or slows down, and how fast such changes occur, might help us predict whether
a sustained feedback loop could appear, whether parties who get ahead will tend to stay
ahead, and consequently whether such a transition is likely to be destructive. The sizes
of jumps in capability and the importance of large insights also say a lot about how
abrupt a transition might be, and the extent to which small competing entities can get
ahead of the competition and stay forever ahead. The extent to which progress tends
to be predictable tells us something about how likely an intelligence explosion is to be
surprising. If insights translate quickly to improvements in capabilities, this will allow

1

Algorithmic Progress in Six Domains

lucky entities to get ahead more than if gains from insights are returned spread out over
the long run. The effects of sharing between groups tell us something about whether
information transfer should undermine local takeoff scenarios. The extent to which
scaling up the size of a research team scales up progress tells us about the potential for
feedback from the creation of AI to AI research.

Each of these questions deserves a thoroughly researched answer, but much of the
information is probably visible in the first glance. This paper is a collection of first
glances: roughly what the history of algorithmic improvement looks like, focusing on
areas where improvement can be easily measured. Looking at what is readily apparent
raises some issues with selection effects, which we shall visit in the next section. This pa-
per will neither analyze the data extensively nor attempt to point out all of its interesting
implications.

2. Summary
This document presents empirical evidence regarding progress in six areas of algorithms
research. This section summarizes these findings, while the rest of the document details
them. Skimming the figures in this document should also constitute a good summary.

In recent Boolean satisfiability (SAT) competitions, SAT solver performance has in-
creased 5–15% per year, depending on the type of problem. However, these gains have
been driven by widely varying improvements on particular problems. Retrospective
surveys of SAT performance (on problems chosen after the fact) display significantly
faster progress.

Chess programs have improved by around fifty Elo points per year over the last four
decades. Estimates for the significance of hardware improvements are very noisy but are
consistent with hardware improvements being responsible for approximately half of all
progress. Progress has been smooth on the scale of years since the 1960s, except for the
past five.

Go programs have improved about one stone per year for the last three decades. Hard-
ware doublings produce diminishing Elo gains on a scale consistent with accounting for
around half of all progress.

Improvements in a variety of physics simulations (selected after the fact to exhibit per-
formance increases due to software) appear to be roughly half due to hardware progress.

The largest number factored to date has grown by about 5.5 digits per year for the last
two decades; computing power increased ten-thousand-fold over this period, and it is
unclear how much of the increase is due to hardware progress.

Some mixed integer programming (MIP) algorithms, run on modern MIP instances
with modern hardware, have roughly doubled in speed each year. MIP is an important

2

Katja Grace

optimization problem, but one which has been called to attention after the fact due to
performance improvements. Other optimization problems have had more inconsistent
(and harder to determine) improvements.

Various forms of machine learning have had steeply diminishing progress in percent-
age accuracy over recent decades. Some vision tasks have recently seen faster progress.

3. A Few General Points
3.1. On Measures of Progress
This report deals mostly with progress on well-defined, relatively easy to measure axes,
such as speed and accuracy. Such progress is not the only goal of algorithm developers;
algorithms are also optimized to be general, simple to maintain, and usable, among other
desiderata. These things will sometimes be traded off against one another, so algorithms
are not as fast as they would be if speed were the only goal, though it is not obvious how
this affects relative improvements. Some of the data here is from competitions, which
presumably helps to direct efforts toward specific, measurable benchmarks. Even so,
developers have goals beyond winning the present competition.

It is often challenging to determine whether progress is speeding up or slowing down.
Progress that is slowing by one measure is always accelerating by some other measure,
so such claims are highly dependent on context and on the performance benchmarks
we care about. For instance, if you double the speed of a chess algorithm, the number
of levels searched grows logarithmically, the number of board positions examined grows
exponentially, and the Elo rating grows linearly. It is tempting to use the most intuitive
measure, such as percentage instead of logarithm of percentage, but this is not always
related to what we really care about. For instance, progress in machine translation
appears to have slowed in terms of percentage accuracy, but improving accuracy by
a percentage point in the 90% regime arguably increases the usefulness of translation
software much more than improving accuracy by a point in the 30% regime. If we are
trying to predict whether a process of self-improvement would accelerate exponentially,
the interesting measure is probably the same one with which we measure inputs.

3.2. Inputs and Outputs
Ideally, we would like to know the relationships between inputs and outputs for algorith-
mic progress. For instance, we would like to know how much improvement is produced
by one year of an intelligent person’s time. Inputs are generally harder to measure than
outputs; even if you know that a chess project belongs to one person, it isn’t clear how
much of their time they spend on it, and how much of the relevant added insight they

3

Algorithmic Progress in Six Domains

produce personally rather than harvesting from a larger community. Consequently, most
of the data collected here is about outputs.

Outputs alone can still tell us a lot, especially as we already know some basic things
about inputs. For instance, even if we are unsure how many people work on a problem,
or how much of the intellectual work is done outside the apparent group working on it,
we can probably assume that these remain roughly stable over short spans of years. So,
if we see jumpy progress, we can tentatively attribute it to something else. Even if we
are unsure which hardware is used for particular applications, we know the rough rate at
which hardware gets better, and we can often assume state-of-the-art hardware is being
used. To estimate progress in software, we can take overall progress and subtract the
approximate contributions from hardware.

3.3. On Selection
The most salient algorithmic problems might be those for which progress is particularly
fast (or slow), so looking at algorithms that are being reported on might give us a
biased impression of the overall rate of progress. There are a few ways to mitigate
this difficulty. In general, we should pay attention to motives of authors. Reports
such as “A Science-Based Case for Large-Scale Simulation” (Keyes et al. 2004) might
intend to illustrate points by highlighting fast-improving algorithms. The existence of
benchmarks introduces a more ambiguous selection effect, which could nevertheless
significantly bias results. In many cases, we should treat estimates as being optimistic
rather than representative. We should rely more on assessments that are planned in
advance of knowledge about performance. Competitions are better than retrospective
analyses, and problems that were singled out early are better than problems that were
selected after some progress. For many purposes, it doesn’t matter much whether the
sample is representative; trends that hold robustly over a range probably continue to hold
outside of that range, and an optimistic sample can give us a better picture of the high
end of progress, as long as we interpret it correctly.

That which is easily measured may improve faster than more nebulous qualities,
particularly if such measures are being used to guide progress. Yet we may care about
the nebulous qualities. For instance, it is easier to measure progress in voice recognition
in specific circumstances than it is to measure the breadth of circumstances in which it
works well, weighted by how likely we are to want to use it there. Thus, progress on well-
defined metrics, such as most of what we will examine here, will tend to overestimate
the progress we care about.

4

Katja Grace

4. Boolean Satisfiability (SAT)
4.1. SAT Solving Competition
The Boolean satisfiability (SAT) solving competition has been held once every year or
two since 2002 and publishes detailed results. For instance, the 2007 competition pro-
duced 78,507 data points of time taken by a particular solver on a particular SAT instance
(problem) on fixed hardware. Some instances are taken from industrial applications,
some are handcrafted, and some are produced randomly from a distribution known to
be on the boundary of what is possible for existing algorithms. Each problem instance
is solved by a number of competing programs. This section presents data from the 2007,
2009, and 2011 competitions.

Over the three competitions investigated here, there were 190,074 data points for
3,015 different instances. The instances used each year change substantially;1 however,
there is overlap. Many specific industrial and handcrafted instances return in multiple
contests. Problems from the same random distributions also appear in multiple contests,
though never exactly the same problems.

Problems from the competitions are published, so it is possible that some progress
when problems are repeated comes from algorithms being optimized for known prob-
lems. This cannot be a factor in progress on the random instances, as they are changed
every year. Progress was greater for the random instances than for the handcrafted and
industrial instances, which suggests this is not a big effect.

The times recorded are total processing times (if multiple processors are used, the
times spent by each are added together). The same hardware was used between 2007
and 2009: Intel Xeon 3.00 GHz processors with 2 GB of RAM and a 2 MB cache. In
2011, the hardware was changed to Intel Xeon 2.67 GHz cores with 32 GB of RAM
and an 8 MB cache.2 The later processor is newer and has larger cache and RAM, so it
may be somewhat faster overall, notwithstanding the slower clock speed.

Every competition has time and memory limits. These are not necessarily the same
between competitions, or between sections of the same competition. Whether a solver
timed out or “memoried out” on a problem is recorded. In the following, timeouts are
treated as if they had taken infinite time to solve, but are excluded when calculating
average rates of progress (except via their effect on median times). This ensures that
changes in the set of feasible problems don’t directly bias the results.

1. One might fear selection bias here—e.g., problems may be disproportionately kept around for
another year if people anticipate they will remain in a particular band of difficulty.

2. For more extensive hardware details, see “launcher data” on benchmark pages, for instance in 2009
or 2011.

5

Algorithmic Progress in Six Domains

4.1.1. Industrial and Handcrafted SAT Instances
Of 1,294 industrial and handcrafted problems in the three-competition (five-year) data-
set, 279 were used in more than one competition, and fourteen were used in all three
competitions. We will focus on the 189 that were used in two consecutive competitions
and that were solved by at least one competitor.

Speedup Distribution
Figure 1 shows how much the best time improved on each problem between consecutive
contests (that is, over two years).3 As we can see, the distribution is almost uniform
between zero and one, with a small fraction taking much longer than before. There
is a flat spot: around six percent of problems’ times changed by less than one percent
between years.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
at

io
 o

f
la

st
 y

ea
r

ti
m

e
to

 fi
rs

t
ye

ar
 t

im
e

(T
1
/T

0
)

SAT instances

Figure 1: Reduction in time taken for handcrafted and industrial Boolean satisfiability (SAT) instances
over two years. The horizontal axis represents each of the 189 SAT instances compared, ordered from
largest to smallest improvement. The vertical axis represents the ratio of time to solve in later competition
(T1) to time to solve in earlier competition (T0). The graph is truncated at 2, though a few problems took
two to ten times longer in the second year.

For reference, figures 2–4 show the distribution of times in the first year of each of
the periods to be considered (2007–2009, 2009–2011, and these combined). Problems

3. Figures 1–10 and Tables 1–4 were created using data from the SAT Competition Organizers (2007–
2011).

6

Katja Grace

do not appear in the first-year times if they were not solved by any solver in the second
year.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

T
im

e
(s

ec
o

n
d

s)

SAT instances

Figure 2: Fastest 2007 times to solve handcrafted and industrial SAT instances completed in both 2007
and 2009, ordered from fastest to slowest.

0.1

1

10

100

1000

10000

T
im

e
(s

ec
o

n
d

s)

SAT instances

Figure 3: Fastest 2009 times to solve handcrafted and industrial SAT instances completed in both 2009
and 2011, ordered from fastest to slowest.

7

Algorithmic Progress in Six Domains

0.0001

0.001

0.01

0.1

1

10

100

1000

10000
T

im
e

(s
ec

o
n

d
s)

SAT instances

Figure 4: Fastest first-year times to solve handcrafted and industrial SAT instances completed in two
consecutive competitions between 2007 and 2011, ordered from fastest to slowest.

Two-Year Improvements
In order to measure overall improvement in a period, we need to combine the speedup
on many separate problems into a single indicator. This aggregation requires making
some assumptions about the distribution of problems that we care about. As can be
seen in figure 4, the competition uses problems with a broad distribution of difficulties,
spread across about six orders of magnitude. This means the total time to solve all of the
benchmarks will mostly depend on how much the most time-consuming benchmarks
got better, which is not a realistic indicator of the progress we are interested in. This
approximately uniform distribution over many orders of magnitude suggests the com-
petition organizers consider problems of different difficulties to be similarly important.
If we want to give equal weight to each problem in measuring the speedup, a better way
is to use a bundle of problems where we initially spend an equal amount of time on every
problem. The speedup on this bundle is just the mean time taken in the second period
when the first-period time is normalized to one unit. Table 1 shows this number for
2007–2009, 2009–2011, and both of these combined.

This scheme introduces a subtle bias into our estimates. Ideally, different SAT in-
stances would be weighted by underlying characteristics that determine their difficulty.
But, especially in the case of random problems, the actual time required to solve a
problem is a noisy indicator of its difficulty. The proposed weighting system tends to
overweight problems that happened to be solved unusually quickly, incorrectly supposing
that such problems appear more often in a representative basket. This means that this

8

Katja Grace

Table 1: Overall improvements between consecutive competitions, in terms of mean fraction of time
taken to solve a problem in a later year (T1) over the time taken in an earlier year (T0).

2007–2009 2009–2011 All
Mean T1/T0 0.75 0.41 0.65
Annual reduction 13% 36% 19%

weighting system systematically advantages earlier years, by overweighting problems
that happened to be solved quickly in the first year. As a consequence, the stated rate
of progress will be systematic underestimates of the real rate of progress. This effect will
be most pronounced when there is independent random variation in the solution times
for different instances.

As we can see, problems took on average 35% less time to solve after two years, or
19% less per year. Annual improvement in the 2009–2011 period was almost three times
that in the 2007–2009 period.4

Difficulty and Progress
Here we will look at the relationship between how long a problem initially takes and
how much this time is reduced in the following two years. This tells us whether progress
is overwhelmingly driven by very difficult things becoming easy, or by smaller improve-
ments across the range of problem difficulties. These would be quite different situations,
and might provide useful information about other important questions—for example,
the possibility of a sustained intelligence explosion or abrupt changes in capabilities.

The relationship between difficulty and improvement should also give us a better
picture of whether progress on specific problems gets faster or slower, without needing a
long series of data. If problems that are already quicker have reliably more improvement,
then we should expect to see accelerating progress on any given problem. On the other
hand, if it is the harder problems that improve more, we should see declining progress
on each problem.

The initial solution times fall roughly within six orders of magnitude (see figure
4). We can divide them into three buckets of roughly two orders of magnitude each.
Table 2 shows time improvement for each of these buckets, in each period, using the
same measure as above. Figure 5 shows the entire distribution of initial speed and

4. Note that the processor speed was slightly reduced in 2011, although available RAM and cache
were increased and the processor was newer. The difference between these annual speedups is probably
significantly greater than can be explained by the change in hardware between 2009 and 2011.

9

Algorithmic Progress in Six Domains

Table 2: Improvements by problem difficulty. Buckets contain problems of different lengths (T0 denotes
the earlier time). For each bucket and time period the table shows (1) the mean fraction of time taken in
the second competition compared to the first competition, (2) the number of problems in that class, and
(3) the annual time reduction for that bucket and period.

2007–2009 2009–2011 All
Bucket 1 (T0 < 1s) 0.85 18 8% 0.63 2 21% 0.83 20 9%
Bucket 2 (1s < T0 < 100s) 0.77 47 12% 0.63 12 21% 0.74 59 14%
Bucket 3 (100s < T0) 0.71 73 16% 0.32 37 43% 0.58 110 24%

improvement. Both suggest that problems that initially take longer tend to see faster
improvement. Though this effect is large, it is not overwhelmingly so—the easiest
problems in each competition see approximately half as much annual improvement as
the most difficult ones.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

R
at

io
 o

f
la

te
r

ti
m

e
to

 e
ar

li
er

 t
im

e

(T
1
/T

0
)

First period time (seconds)

Figure 5: Initial difficulty and fractional improvement over two years for each handcrafted or industrial
SAT problem. The horizontal axis shows how long the problem initially took; the vertical axis shows the
ratio of its time in the second competition (T1) to its time in the first competition (T0). We exclude five
outliers that initially took a long time and got up to ten times worse.

One might try to explain the different speedups in 2007–2009 and 2009–2011 by
changes in the distribution of problems. Compared to the first period, the second period
has disproportionately slower problems, which tend to see more improvement. This
reasoning doesn’t straightforwardly work, as each individual bucket in table 2 also sees
more improvement in the second period. However, the distribution of problems inside

10

Katja Grace

buckets also changes between periods, seemingly also toward longer problems in the
second period.

4.1.2. Random SAT Instances
The same distributions of random problems were included in consecutive competitions,
though new random problems were used each year. For each distribution, there are
a number of specific problems from that distribution each year. For each individual
problem, we find the fastest algorithm for that problem. Because the same problems are
not included in consecutive competitions, it is not trivial to make comparisons between
years. One approach would be to compare the best time for the median problem. In fact,
this works very poorly, because the distributions are chosen such that roughly half of
the problems are satisfiable and half are unsatisfiable, and these two categories require
very different amounts of time. This means that the median will jump around a lot
depending on whether it falls just in the satisfiable half or just in the unsatisfiable half.
To get roughly the same information while avoiding this problem, we will look at 25th
percentile and 75th percentile times; that is, for each problem type, in each year, we
will find the minimum times to solve every problem of that type, and take the 25th
percentile time. Nevertheless, different problems from the same distribution will still
have different difficulties, and this will complicate year-to-year comparisons.

Overall Picture
There were only twenty-five random problem types solved in more than one contest. A
few more were used, but could not be finished in more than one contest. Figures 6 and 7
show the best times for the 25th percentile problem of each type and the 75th percentile
problem of each type, respectively.

Speedups for Individual Problem Types
Figures 8 and 9 show speedups in order of size for all problems solved in consecutive
competitions (some problems will be repeated, because they were solved in all years).

Two-Year Improvements
Table 3 shows mean improvements in each two-year interval. As with the handcrafted
and industrial problems, there was much more improvement at both percentiles in the
second interval. Again, the harder problems saw bigger fractional improvements in time.

11

Algorithmic Progress in Six Domains

0.001

0.01

0.1

1

10

100

1000

10000

2007 2009 2011

T
im

e
(s

ec
o

n
d

s)

Year

Figure 6: The 25th percentile of best solve times for all types of random SAT problems solved in more
than one contest. Each line represents a different problem type.

1

10

100

1000

10000

2007 2009 2011

T
im

e
(s

ec
o

n
d

s)

Year

Figure 7: The 75th percentile of best solve times for all types of random SAT problems solved in more
than one contest. Each line represents a different problem type.

12

Katja Grace

0

0.5

1

1.5

2

2.5

3

R
at

io
 o

f
la

te
r

ti
m

e
to

 e
ar

li
er

 t
im

e
(T

1
:T

0
)

SAT instances

Figure 8: Fractional change in 25th percentile best times over two years, ordered from largest to smallest
improvement. Note that a number greater than one indicates slowdown.

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f
la

te
r

ti
m

e
to

 e
ar

li
er

 t
im

e
(T

1
:T

0
)

SAT instances

Figure 9: Fractional change in 75th percentile best times over two years, ordered from largest to smallest
improvement.

13

Algorithmic Progress in Six Domains

Table 3: Mean improvements by problem type difficulty using the 25th and 75th percentile of best times.
Buckets contain problems of different lengths (T0 denotes the earlier time).

Period 2007–2009 2009–2011 All
Percentile 25th 75th 25th 75th 25th 75th
Mean T1/T0 0.89 0.59 0.47 0.30 0.78 0.51
Annual reduction 6% 23% 31% 45% 12% 29%

Difficulty and Progress
Table 4 shows improvements for quicker and slower problem types separately. Fig-
ures 11 and 10 show the relationship between initial problem difficulty and progress
for individual problem types. For the 25th percentile problems, the previous trend is
clear: Problems that took longer to begin with saw more improvement. Problems that
initially took less than a second virtually all became slower (see figure 10), for an average
improvement of −25%. The longest problems became 76% quicker on average, and
none took longer than before. At the 75th percentile, there is no such pattern.
Table 4: Improvements by problem difficulty. Buckets contain problems of different lengths (T0 denotes
the earlier time). For each bucket and time period, the table shows (1) the mean fraction of time taken in
the second competition compared to the first competition, (2) the number of problems in that class, and
(3) the annual time reduction for that bucket and period.

Bucket 1 Bucket 2 Bucket 3
(T0 < 1s) (1s < T0 < 100s) (100s < T0)

25th percentile 1.57 10 −25% 0.45 10 33% 0.12 7 76%
75th percentile 0 0.28 4 47% 0.57 14 25%

4.2. João Marques-Silva’s Records
Table 5 shows a collection of historical times to solve SAT instances reported by João
Marques-Silva. The instances were selected to illustrate the fast progress made in SAT
solvers, in particular those targeting practical and industrial problems. The hardware
used is unclear. Marques-Silva later compared a set of algorithms from different times
on nine benchmark problems (Marques-Silva 2010, 59). The results of this are shown
in table 6. Figure 12 shows both of these sets of data graphically.

In this data, the largest speedups tend to be earlier. In particular, SAT solvers seem
to jump from timing out on an instance to solving it in a modest amount of time,
representing much greater improvement than in other periods.

14

Katja Grace

0

0.5

1

1.5

2

2.5

3

0.01 0.1 1 10 100 1000 10000

R
at

io
 o

f
la

te
r

ti
m

e
to

 e
ar

li
er

 t
im

e
(T

1
/T

0
)

First period time (seconds)

Figure 10: Initial difficulty and fractional improvement over two years for each random problem type,
using 25th percentile times. The horizontal axis shows how long the problem initially took (T0); the
vertical axis shows the ratio of its time in the second competition (T1) to its time in the first competition.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

R
at

io
 o

f
la

te
r

ti
m

e
to

 e
ar

li
er

 t
im

e
(T

1
/T

0
)

First period time (seconds)

Figure 11: Initial difficulty and fractional improvement over two years for each random problem type,
using 75th percentile times. The horizontal axis shows how long the problem initially took (T0); the
vertical axis shows the ratio of its time in the second competition (T1) to its time in the first competition.

15

Algorithmic Progress in Six Domains

Table 5: Historical times, in seconds, to solve assorted SAT instances, collected by João Marques-Silva.

Instance 1994 1996 1998 2001
ssa2670-136 40.66 1.2 0.95 0.02
bf1355-638 1805.21 0.11 0.04 0.01
pret150_25 >3000 0.21 0.09 0.01
dubois100 >3000 11.85 0.08 0.01
aim200-2_0-no-1 >3000 0.01 0 0
2dlx__bug005 >3000 >3000 >3000 2.9
c6288 >3000 >3000 >3000 >3000

Table 6: Times, in seconds, to solve assorted SAT instances using different historical solvers (Marques-
Silva 2010, 59). It is unclear whether the hardware used was historical or contemporary.

Instance Posit ’94 Grasp ’96 Chaff ’03 Minisat ’03 Picosat ’08
ssa2670-136 13.57 0.22 0.02 0.00 0.01
bf1355-638 310.93 0.02 0.02 0.00 0.03
design_3 >1800 3.93 0.18 0.17 0.93
design_1 >1800 34.55 0.35 0.11 0.68
4pipe_4_ooo >1800 >1800 17.47 110.97 44.95
fifo8_300 >1800 >1800 348.5 53.66 39.31
w08_15 >1800 >1800 >1800 99.1 71.89
9pipe_9_ooo >1800 >1800 >1800 >1800 >1800
c6288 >1800 >1800 >1800 >1800 >1800

16

Katja Grace

Three of the benchmarks in these datasets overlap, and the times listed for two of
them in overlapping years are different. This may be from using different top-of-the-line
algorithms for those years, and should give some idea of the variation in measurement.
In figure 12, the lower number is used for each.

0.001

0.01

0.1

1

10

100

1000

10000

1994 1996 1998 2000 2002 2004 2006 2008

S
o

lv
e

ti
m

e
(s

ec
o

n
d

s)

Year

Figure 12: Solve times for historical state-of-the-art SAT instances (combined data from tables 5 and 6).
Note that values of 1,800 represent a timeout and do not mean that the problem was solved in that time.
Times listed as zero are entered as 0.001. Each line represents a different instance.

5. Game Playing
5.1. Chess
5.1.1. The Effect of Hardware
To interpret historical comparisons between chess programs, it is useful to first under-
stand the effect of hardware on performance. Levy and Newborn (1991, 192) estimated
that a sixfold increase in speed allows a chess engine to search one level deeper in a tree of
moves. The effects of hardware on performance, however, are somewhat confusing. Levy
and Newborn report that in the 1970s, Thompson played versions of BELLE against
each other in an attempt to factor out all contributors to performance other than speed.
He found around a 200-point difference for each level searched between 1,400 and 2,000
Elo points. Above 2,000 Elo and seven levels, improvement per level slowed. Newborn
did a similar study over further levels and found a similar slowing of Elo gains from
searching more levels. However, the speed of this decline is not reported. For reference,
2,000 Elo is around the level of the best chess programs in 1980.

17

Algorithmic Progress in Six Domains

Levy and Newborn try to further substantiate the estimate of 200 Elo per level
searched by showing that historically each additional level searched due to hardware
improvement between 1978 and 1989 corresponded to a 200-point increase in Elo rating
of the best programs. This would require roughly zero software progress between 1978
and 1989, however, which seems implausible. Also, this period is largely after chess
programs had Elo ratings over 2,000, so the earlier data would predict smaller gains to
hardware.

To confirm that substantial software progress does occur, we can look at the CCRL
(2013) comparison of Rybka engines. Rybka 1.1 64-bit was the best of its time (the
year 2006), but on equivalent hardware to Rybka 4.1 it is rated 204 points worse (2,892
vs. 3,102), and on the main CCRL list we can see that Komodo CCT 64-bit—the
highest-rated engine using the same number of CPUs—is 256 points better than Rybka
1.1. Virtually all of the progress since 2006 seems to have occurred in one jump (see
figures 13, 14, 15, and 17), so rates of software progress in recent times are not obviously
generalizable to the longer term, where progress appears to have been steadier. However,
given the current contribution of software to progress, it would be surprising if hardware
accounted for virtually all progress in the past.

SSDF changed their hardware in 2008, doubling the processor speed, quadrupling
the number of cores, and moving from a 32-bit to a 64-bit operating system. This
produced an average rating increase of 120 points. The CCRL comparison of Rybka
engines suggests doubling the number of machines gives 30–60 Elo points, and moving
from a 32- to 64-bit operating system gives around 30 points. This leaves around 0–30
Elo points of the SSDF change to attribute to doubling processor speed. These numbers
are close to those found in forum folklore: 60 points for doubling processor speed and
40 points for doubling processors.

Go improves with hardware to a similar degree to that suggested here for chess. A
factor of six speedup gives around 260 Elo points in the middle of the range, but this
declines considerably (see figures 20 and 21).

5.1.2. Computer Chess Ratings List (CCRL)
CCRL is one of several chess engine ratings lists. The Swedish Chess Computer Associ-
ation (SSDF) and Chess Engine Grand Tournament (CEGT) below are others. Figure
13 shows the top ratings on versions of their list, archived since 2006. Hardware and
time are equivalent to 40 moves in 40 minutes on Athlon 64 X2 (2.4 GHz) (4,600+
rating since 18 January 2007, and 3,800+ before). The two large jumps in 2006 and
2008 correspond to changing versions of Rybka, though twelve other program changes
are not so visible (see red dots in the figure). Graham Banks (2013) of the CCRL project

18

Katja Grace

says the jumps toward the end are most likely the result of the CCRL’s experiments with
adjusting their rating methods.

2800

2900

3000

3100

3200

3300

3400

3500

2006 2007 2008 2009 2010 2011 2012 2013

E
lo

 r
at

in
g

Date

Figure 13: Elo ratings of the top chess-playing programs since 2006, with 95% confidence intervals. Red
dots indicate new engines taking the lead. Data from CCRL (2006–2013).

5.1.3. Swedish Chess Computer Association (SSDF) Ratings
Archived Versions
Figure 14 shows Elo ratings of the top chess-playing algorithms over time on the SSDF
site (available at the Internet Archive). This data covers roughly the same period as the
CCRL data above but paints a strikingly different picture: all of the progress is made in
one jump around the end of 2008. The jump perfectly corresponds to moving from all
programs running on an Arena 256 MB Athlon 1200 MHz to some programs running
on a 2 GB Q6600 2.4 GHz computer, suggesting the change in hardware accounts for
the observed improvement. However, it also corresponds perfectly to Deep Rybka 3
overtaking Rybka 2.3.1. This latter event corresponds to huge jumps in the CCRL
and CEGT records at around that time, and they did not change hardware then. The
average program in the SSDF list gained 120 points at that time (Karlsson 2008), which
is roughly the difference between the size of the jump in the SSDF records and the jump
in records from other rating systems. So it appears that the SSDF introduced Rybka and
new hardware at the same time, and both produced large jumps.

19

Algorithmic Progress in Six Domains

Other than the jump, ratings appear to be moving downward as often as upward.
This makes little sense as a model of the best abilities, as older programs continue to
exist.

2800

2900

3000

3100

3200

3300

3400

3500

2007 2008 2009 2010 2011 2012 2013

E
lo

 r
at

in
g

Date

Figure 14: Elo ratings of the top chess-playing programs since 2007. Data from SSDF (2007–2012).

Wikipedia Records
Wikipedia maintains a list of “year-end leaders,” illustrated in figure 15. Between 1985
and 2007, progress was fairly smooth, at 50 Elo per year.

SSDF via ChessBase 2003
Figure 16 is taken from a 2003 article by Jeff Sonas, also apparently from old SSDF
data. It appears to be a little bumpier than the Wikipedia account.

5.1.4. Chess Engine Grand Tournament (CEGT) Records
Figure 17 shows ratings of programs at the top of CEGT’s 40/4 ratings list over time,
collected from archived versions. The large drop at the start of 2012 can’t reflect reality,
as all of the software available at the end of 2011 should still have been available in
2012. Furthermore, all of the top engines dropped their ratings by around 200 points
at the same time in 2012, which suggests an adjustment of methods. The drop at first
appears to compensate for a similarly sized jump at the end of 2008 but, as noted earlier,

20

Katja Grace

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

3500

1980 1985 1990 1995 2000 2005 2010 2015

E
lo

 r
at

in
g

Year

Figure 15: Elo ratings of the best program on SSDF at the end of each year. Data from Wikipedia (2013).

Figure 16: Sonas’s account of SSDF rankings. Reprinted from Sonas (2003).

that jump coincides with jumps in CCRL and SSDF data, which suggests it reflects
something real.

5.1.5. Dr Dobb’s Article Estimates
In 1994, L. Stephen Coles produced figure 18, and calculated from it a roughly forty-
point per year growth rate in best computer Elo ratings since 1960.

21

Algorithmic Progress in Six Domains

2800

2900

3000

3100

3200

3300

3400

3500

2006 2007 2008 2009 2010 2011 2012

E
lo

 r
at

in
g

Date

Figure 17: Top engine ratings over time with data from the CEGT (2006–2012) 40/4 ratings list.

Figure 18: Early chess progress according to L. Stephen Coles. Reprinted from Coles (2002, fig. 1).

22

Katja Grace

5.1.6. Historical Estimates for Well-Known Chess Programs
Figure 19 shows some estimates of early chess ratings from a variety of sources compiled
in 2011 by Luke Muehlhauser, who comments:

Page 71 of Hans Moravec’s Robot (1998) is my source for Year and ELO data
on MacHack (1970), Chess 2.5, Chess 4.0, Chess 4.9, Cray Blitz, HiTech,
Chiptest, Deep Thought, Deep Thought II, and Deep Blue. Computer Mu-
seum Report, Vol. 20 is my source for Year and ELO data on MacHack (1965),
Chess 3.0, and Chess 4.6. The Wikipedia entry for “Swedish Chess Com-
puter Association” (accessed 10-09-2011) is my source for Fritz 6.0, Chess
Tiger 14.0, Deep Fritz 7.0, Shredder 8.0, Rybka 1.2, and Deep Rybka 3. I
excluded entries on these lists from before 1965 and after 2008. I also removed
a few entries to avoid clutter; these entries were not outliers. (Muehlhauser
2011)

The later years use the Wikipedia SSDF list shown above, but many of the earlier points
are new.

Figure 19: Historical chess engines’ estimated Elo ratings from a variety of sources. Reprinted from
Muehlhauser (2011).

5.1.7. A Note on Open-Source Engines
It is often claimed that good open-source engines heralded a burst of progress in com-
puter chess, due to sharing of insights. Verifying and quantifying such returns from
sharing would be interesting from the perspective of predicting the future of AI, in
particular the relative likelihoods of fast, local takeoff scenarios relative to slower, more
global ones.

23

Algorithmic Progress in Six Domains

Some people in the field say that open source programs have been very helpful. For
instance, Houdini is currently the top-rated chess program. Here are excerpts from an
interview with Robert Houdart, its author:

I started with this idea to build the best chess engine that I could—and I
was helped a lot by the open culture that has come with the Internet. You
know, two decades ago you had to invent every part of a chess engine from
zero (and I’ve done my fair share of that), but today we’re in a situation where
techniques, ideas and examples are readily available on the Internet. You can
call it a coming of age of the computer chess scene—as an engine author
you’re no longer obliged to sit in your corner reinventing the wheel. The
computer chess Wikipedia, some strong open source engines, and discussions
on Internet forums about chess programming techniques and ideas make the
design and development of a strong engine a lot easier than, say, twenty years
ago. . . .

How much do you owe to other programs and programmers? Did you collabo-
rate with anybody, did you receive any advice and assistance?

As I mentioned earlier, the Internet community is a great source of inspi-
ration and the information that is now available in seconds would have taken
ages to collect twenty years ago. Other than the Computer Chess Wiki, which
is an awesome resource for any aspiring chess engine developer, I must credit
the Stockfish open source engine, which was the inspiration for the multi-
threaded implementation of Houdini, and the IPPOLIT open source engine
that provided a whole array of search and evaluation techniques. The devel-
opment effort is done entirely by myself, but I’m supported by people from
around the world that send ideas for improvement, very often positions in
which Houdini doesn’t perform well. Some fans even have donated hardware
for engine testing. It’s amazing how supportive the community has been over
the past two years. (ChessBase 2013)

The front page for the Houdini engine website also credits open-source projects for much
of its strength:

Without many ideas and techniques from the open source chess engines IP-
POLIT and Stockfish, Houdini would not nearly be as strong as it is now.
(Houdart 2012)

However, the ratings data we have appears to show something like steady progress for
many decades, a large jump in 2008 at the start of Deep Rybka 3, and then no progress
since. Regardless of when we think open source came to fruition, there doesn’t seem to
be recent improved general progress to attribute to it.

24

Katja Grace

5.2. Go
5.2.1. Hardware
In order to make use of comparisons between Go programs, many of which have used
different hardware, we need to understand the effect of hardware on performance. This
is important because, for example, much of the available data on Go progress is from the
KGS Go Server, and programs that play on the KGS Go Server may be run on arbitrary
hardware and tend to use more impressive hardware for more important competitions.

Figure 20 is taken from a conference paper by Baudiš and Gailly (2011). The black
circles show the strength of the Go program Pachi as the number of Monte Carlo
simulations (“playouts”) Pachi is allowed to complete per move grows (Elo rating was
measured automatically against another Go program). The number of playouts is a very
good proxy for computational intensity. The colored curves represent similar experi-
ments on distributed clusters without fast, shared memory. These scale less well. In all
cases, iterated doublings of computational intensity result in diminishing Elo gains.

Figure 20: Go Elo improvements with hardware. Reprinted from Baudiš and Gailly (2011, fig. 4).

A 2008 project has very similar findings for two further Go programs, pictured below
in figure 21. MoGo was a top-of-the-range program at the time, whereas FatMan was
much weaker. Their initial hardware was adjusted to make them similarly strong (64
playouts for MoGo to 1,024 for FatMan), with each level indicated on the horizontal
axis representing a doubling of computations. Again, doubling hardware adds a dimin-
ishing number of Elo points in the region of 100 per doubling.

25

Algorithmic Progress in Six Domains

Figure 21: Go Elo improvements with hardware for a strong (red) and weak (green) program. Reprinted
from Dailey (2008).

26

Katja Grace

Relative Elo ratings correspond to probability of the better player winning. Figure
22 shows this correspondence. Around the middle of the spectrum, a Go program has
roughly a 65% chance of winning against the same program with half the computing
power.

50

55

60

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600

P
ro

b
ab

il
it

y
of

 b
et

te
r

p
la

ye
r

w
in

n
in

g
(%

)

Elo difference between players

Figure 22: The Elo rating system: the probability of the better player winning versus the difference in Elo
ratings.

5.2.2. Efforts
It appears that most Go programs are developed by individuals, pairs, or university-based
teams. For instance Zen, Crazy Stone, Pachi, Steenvreter, Aya, Leela, MyGoFriend,
Valkyria, and The Many Faces of Go are developed by individuals or pairs. Fuego,
Nomitan, Orego, Gommora, and MoGo are developed by university groups.

5.2.3. Ing Challenges
The Ing Cup was a computer Go competition that ran until 2000. It included a challenge
round where the winner of the cup was played against human “insei”—early teens with
ratings of about 6d (European) (Wedd 2013). There were increasingly large prizes for
programs winning under a series of increasingly small handicaps. Figure 23 shows
challenge attempts by year, handicap level played for, and whether it was won (black) or
lost (white). The programs should be among the best in the world at the time; the line
of top computer Go-playing ability goes roughly over the white points and under the
black points. Progress is a bit under a stone per year, but jumpy—in one year the record
changed from seventeen stones to thirteen stones, while in another three years it didn’t

27

Algorithmic Progress in Six Domains

progress at all (though recorded progress had to be in two-stone increments). Data for
hardware and time permitted are not readily available.

0

2

4

6

8

10

12

14

16

18

1988 1990 1992 1994 1996 1998 2000 2002

H
an

d
ic

ap
 in

 f
av

o
r

o
f

co
m

p
u

te
r

Year

Figure 23: Successful (black) and unsuccessful (white) Ing Challenge attempts. Data from Wedd (2013)
and Sensei’s Library (2008).

5.2.4. Zen19 on KGS
Figure 24 shows progress of Zen19, a variant of the state-of-the-art Go bot Zen, since
it began playing on KGS. The blue points are the mean of the program’s score at the
times it played tournament games each month. The score at that time is based on its
interactions with other human users on the site, not just on those tournaments. The pink
“×”s are median integer scores from inspecting some archived snippets of continuous
KGS ratings data (median integers are reported because other measures weren’t easily
extracted). Progress is close to one dan per year.

5.2.5. Educated Guesswork
Another source of data is what members of the computer Go community have histor-
ically believed the standards of play have been. Figure 25 shows estimates from two
sources: David Fotland—author of The Many Faces of Go, an Olympiad-winning Go
program—and Sensei’s Library, a collaborative Go wiki. David Fotland warns that the
data from before bots played on KGS is poor, as programs tended not to play in human
tournaments and so failed to get ratings. There seems to be general agreement that recent
measures on KGS (such as those for Zen19 above) are a good measure of strength.

28

Katja Grace

0

1

2

3

4

5

6

2009 2010 2011 2012 2013

M
ea

n
 r

at
in

g
(d

an
)

Year

Figure 24: Zen19 ratings over time on KGS Go servers. Data from KGS (2010, 2013a).

-20

-15

-10

-5

0

5

10

1980 1985 1990 1995 2000 2005 2010 2015

D
an

 (
o

r
k

yu
 f

o
r

0
an

d
 b

el
ow

)

Year

Fotland

SL

Figure 25: Rough estimates of historical Go bot abilities. Data from Sensei’s Library (2013) and Fotland
(2002).

5.2.6. KGS Tournament Data
When bots enter tournaments on KGS, their ratings are recorded. Figures 26, 27, and 28
show ratings of bots that entered three different KGS competitions since 2005. Ratings
are determined by play on KGS, not just the tournaments in question. Many other

29

Algorithmic Progress in Six Domains

0

5

10

15

20

25

30

35

(2
00

5)
 3

rd

(2
00

5)
 4

th

(2
00

5)
 5

th

(2
00

5)
 6

th

(2
00

5)
 7

th

(2
00

5)
 8

th

(2
00

5)
 9

th

(2
00

6)
 1

0t
h

(2
00

6)
 1

1t
h

(2
00

6)
 1

2t
h

(2
00

6)
 1

3t
h

(2
00

6)
 1

4t
h

(2
00

6)
 1

5t
h

(2
00

6)
 1

6t
h

(2
00

6)
 1

7t
h

(2
00

6)
 1

8t
h

K
yu

Tournament

Figure 26: Go bot ratings from KGS computer Go tournaments in 2005 and 2006 (measured in kyu;
note that larger numbers correspond to worse ratings). Each line represents a different Go bot. Data
from KGS (2013b).

-5

0

5

10

15

20

2006 2007 2008 2009

K
yu

Date

Figure 27: Go bot ratings from KGS bot tournaments formal division from 2006–2008 (measured in kyu;
note that larger numbers correspond to worse ratings). Each line represents a different Go bot. Data from
KGS (2013b).

30

Katja Grace

bots entered these competitions without ratings, presumably due to not having played
enough. Hardware was not fixed.

-6

-4

-2

0

2

4

6

2009 2010 2011 2012 2013 2014

D
an

 (
o

r
k

yu
 f

o
r

0
an

d
 b

el
ow

)

Date

Figure 28: Go bot ratings from KGS bot tournaments 2009–2013 (measured in dan, treating kyu ratings
as zero or below). Each line represents a different Go bot. This figure only includes bots that ever obtained
a dan rating (positive on this graph), excluding one improbable data point. Data from KGS (2013b).

5.2.7. Sensei’s Library
The KGS bot ratings page at Sensei’s Library (2013) lists “a few KGS bots and when
they achieved a rating and held it for at least 20 rated games in a row.” These are probably
obtained from KGS data in a different fashion from mine, so it is a reasonable sanity
check for my method. Figure 29 confirms progress has been around a stone per year.

5.2.8. Computer–Human Contests
Nick Wedd (2013) maintains a list of human–computer Go matches at his website. The
results are listed with the human’s score first. They are somewhat hard to interpret, as
one must account for the handicaps used, many of which are great.

6. Factoring
Figure 30 shows records for the factoring of large numbers. They come from data at
FactorWorld and approximate interpretations of Carl Pomerance’s A Tale of Two Sieves.

31

Algorithmic Progress in Six Domains

-6

-4

-2

0

2

4

6

2007 2008 2008 2009 2010 2011 2012

D
an

 (
o

r
k

yu
 f

o
r

0
an

d
 b

el
ow

)

Date

Figure 29: Progress of some highly rated Go bots on KGS Go Server (measured in dan, treating kyu
ratings as zero or below). Each line corresponds to a different Go bot. The black dashed line represents
the overall rating. Data from Sensei’s Library (2013).

0

50

100

150

200

250

1970 1975 1980 1985 1990 1995 2000 2005 2010

D
ig

it
s

fa
ct

o
re

d

Year

Figure 30: Factoring records by year and number of digits. Data from Contini (2010) and Pomerance
(1996).

32

Katja Grace

Many of the FactorWorld figures are originally from the RSA challenge, which ran
from 1991 to 2007. Since the 1970s, the numbers that can be factored have apparently
increased from around twenty digits to 222 digits, or 5.5 digits per year.

It is hard to find a good metric for progress in terms of returns on algorithmic
improvements, since factoring of larger numbers has also involved much larger inputs of
time, and there appear to have been no particular limits on time allowed for completion
of such challenges. Ideally, we would like to know something like how the feasible
number of digits has grown in fixed time. The scaling up of time spent, relative to that
predicted by Moore’s law making GHz-years quicker, suggests we have something like
feasible digits in fixed sidereal time. An alternative would be to know how fast required
time inputs are generally expected to grow with the number of digits, and measure
progress against that expectation. But finding a reasonable expectation to use is difficult.

Solving times vary widely, and are generally much larger for later solutions. Figure 31
shows CPU times for the FactorWorld records. These times have increased by a factor of
around ten thousand since 1990. At 2000 the data changes from being in MIPS-years to
1 GHz CPU-years. These aren’t directly comparable. The figure uses 1 GHz CPU-year
= 1,000 MIPS-years, because it is in the right ballpark and simple, and no estimates
were forthcoming. The figure suggests that a GHz CPU-year is in fact worth a little
more, given that the data seems to dip around 2000 with this conversion.

1

10

100

1000

10000

100000

1000000

10000000

1985 1990 1995 2000 2005 2010

C
P

U
 t

im
e

Year

Figure 31: CPU time to factor numbers. Measured in 1,000 MIPS-years before 2000, and in GHz-years
after 2000; note that these are not directly comparable, and the conversion here is approximate. Data
from Contini (2010).

33

Algorithmic Progress in Six Domains

7. Physics Simulations
Figure 32, from “A Science-based Case for Large-Scale Simulation, Volume 2” (Keyes et
al. 2004), shows progress in various scientific simulations. It is written with the apparent
agenda of encouraging support for projects such as these scientific simulations, so the
examples are likely selected to display progress.

It does not come with much explanation. Hardware improvements are shown as a
straight blue line. The other lines appear to correspond to progress in somewhat different
applications not attributable to hardware. It appears that effective gigaflops used by
these simulations have increased exponentially, and nonhardware improvements have
accounted for around as much of this as hardware improvements.

Figure 32: Effective sustained speed progress in magnetic fusion energy simulations from hardware and
software improvements. Reprinted from Keyes et al. (2004).

Anecdotally, algorithmic advances have also greatly sped up simulating model spin
systems:

Progress in computational materials science and nanoscience has tradition-
ally been advanced at least as much, and usually more, by breakthroughs
in algorithms than by increases in computing power as David Landau has
pointed out. Improvements in computer speed (Moore’s law) alone would

34

Katja Grace

account for three orders of magnitude increase in performance over the pe-
riod 1970–1995, whereas theoretical insights and algorithmic advances have
resulted in an additional seven orders of magnitude increase in the speed of
Monte Carlo algorithms for simulating the model spin systems. (Keyes et al.
2004, 114)

8. Operations Research
8.1. Linear Optimization
8.1.1. CPLEX
CPLEX is a mixed integer programming (MIP) solver. Versions of it were released
between 1988 and 2008. Most of these versions (1.2 to 11.0, released in 1991 to 2007)
were tested on a set of 1,852 MIP problems. The problems are “real-world” MIP
problems, taken from a library of 2,791 after removing many considered too easy, a few
considered too hard, and some duplicates (Bixby 2010). The details of the experiment
suggest that this was done at one time, on fixed hardware. The speedups between
versions are shown in figure 33.

Figure 33: Speedup between versions of CPLEX on 1,852 MIP problems. Note that the horizontal axis
is not to scale temporally, as versions were released at uneven intervals. Reprinted from Bixby (2010).

35

Algorithmic Progress in Six Domains

8.1.2. Gurobi Internal Testing
Gurobi is another MIP solver, developed in 2009. Figure 34 shows speedups in Gurobi
for a range of problem sizes between version 1.0 (May 2009), version 2.0 (Oct 2009), and
version 3.0 (April 2010), collected by Gurobi’s authors (Bixby 2010). Gurobi improved
its speed across a range of problem sizes by a smaller factor per time between versions
2.0 and 3.0 than 1.0 and 2.0.

Figure 34: Speedups of Gurobi MIP solver between versions on problems of several sizes. Reprinted
from Bixby (2010).

8.1.3. Nonspecific Reports of Large Speedups
Martin Grötschel points to one production-planning problem which he claims became
on average around twice as fast to solve every year between 1988 and 2003. Figure 35 is
taken from his (2009, p. 31) talk about this. His numbers translate to an average 2-times
speedup per year for 1988–1997, and 2.1-times speedup per year for 1997–2003. This
example was very likely chosen to exhibit large speedups.

Bixby (2010) cites 3,300-times speedups (figure 36) in a type of linear programming
(seemingly) over a non-specified time period before 2004, then little between 2004 and
2011. In the same earlier time, hardware improved times by a factor of 1,600, which
gives us an idea of the time frame. One could investigate further using the journal
information.

36

Katja Grace

Figure 35: Martin Grötschel’s account of speedup in one production-planning problem. Reprinted from
Grötschel (2009).

Figure 36: Algorithmic improvement relative to hardware improvement for an unspecified class of linear
programming problems. Reprinted from Bixby (2010).

8.2. Scheduling
8.2.1. University of Nottingham Employee Scheduling Benchmarks
The University of Nottingham maintains a dataset of performance of published algo-
rithms on instances from their own benchmark set, as reported in the papers where the
algorithms were published.

Below is the collected data. Figure 37 shows the best scores so far over time on
each of a set of benchmarks, divided by the worst score recorded in the dataset for
that benchmark. Dividing by the worst score is intended to make the scores more
comparable, as different benchmarks have different possible ranges of scores. A higher
score is worse, all things equal. However, note that authors often had goals other than
minimizing the score—for example, for their algorithm to work on a broad range of
problems.

37

Algorithmic Progress in Six Domains

0

0.2

0.4

0.6

0.8

1

1.2

1999 2001 2003 2005 2007 2009

R
a

ti
o

 o
f

b
e

s
t

ti
m

e
 t

o
 w

o
rs

t
ti

m
e

Year

Figure 37: Scores achieved relative to worst recorded scores on the Employee Scheduling Benchmarks.
Each line represents a different algorithm. Data from ASAP (2013).

Hardware was not kept constant, and generally was the standard hardware available
at the time.

The original dataset has forty-eight benchmarks and sixteen algorithms, published
over nine years; however, most of these combinations are missing. Benchmarks with
fewer than two data points are excluded, as are benchmarks which were already com-
pleted perfectly the earliest time they were measured, and benchmarks for which all the
data was for a single year. Note that the figure shows the best performance so far—often
there are cases of worse performance in later years, which are not visible in this format.
Also omitted is a single 1984 record of performance on the Musa benchmark. Its value
is used as the worst performance in the graph below; the line just doesn’t run back to
1984.

Note that flat progress generally means there were only two data points, and the
second one was worse than the first. This is arguably not much more evidence of slow
progress on a benchmark than only having a single data point, since algorithms that will
solve a given problem slowly always exist. Such benchmarks are included here, however,
while those with only one data point are not, because it suggests some effort was being
made on that benchmark, and that progress was not being made; where there is only
one data point, progress may just not have been reported.

38

Katja Grace

9. Machine Learning
9.1. General Impressions from the Field
Computer scientist Ernest Davis’s impression is that diminishing returns are a common
trend in both natural language understanding and computer vision:

For most tasks in automated vision and natural language processing, even
quite narrowly defined tasks, the quality of the best software tends to plateau
out at a level considerably below human abilities, though there are important
exceptions. Once such a plateau has been reached, getting further improve-
ments to quality is generally extremely difficult and extremely slow. (Davis
2012)

Roger K. Moore (2012) has investigated progress in transcription, and also claims it is
slowing. He says it appears to be approaching an asymptote with error rates of 20–50%
in conversational speech.

Davis expands upon the state of machine learning in natural language and vision in
an email message to Chris Hallquist:

A. Certainly startling improvements do sometimes occur. A notable recent
example was Geoff Hinton’s success at Pascal VOC which, I understand,
blew previous work and the competition out of the water.

B. My impression is mostly drawn from work in NLP and information
extraction. I see a fair amount of this, though I don’t follow it in technical
detail, and certainly don’t systematically keep track of numbers. My
impression is that a common pattern here is:

1. There is an almost trivial algorithm that sets a medium high baseline.
For instance, pronoun resolution to the most recent possible antecedent
works something like 75% or 80% of the time. Lexical ambiguity resolu-
tion to the most frequent meaning succeeds some significant fraction of
the time. The early (late ’50s, early ’60s) machine translation efforts got
promising results on toy corpora.

2. There are some low-hanging fruit that with a medium amount of work
will give you a notable improvement on (1). For instance, n-gram analysis
and some simple selectional restrictions will give you some significant
improvement on resolving lexical ambiguity.

3. With very substantial effort, tons of data, tons of statistical analysis, and
state-of-the art machine learning techniques, you can push (2) up some-

39

Algorithmic Progress in Six Domains

what. For instance, the work I’ve seen recently on machine translation
has involved using huge bitexts, extracting every pattern you can identify,
and then tuning like crazy using ML techniques. I don’t know to what
extent that applies to Google Translate, though.

4. And then things get really tough. All you can do in the current state of
things is push on (3), and my sense is you get steadily diminishing returns.
For example 3 or 4 years ago, we had some interviews by researchers in
machine translation, all of whom were pursuing some form or another of
(3). One of them had gotten a BLEU score of .37 where the competition
had gotten .35—that was the order of number, though I don’t remember
details. It didn’t seem very impressive to me, but my colleague Ralph
Grishman, who is the expert in our department, said that getting 2 points
on the BLEU score is really hard.
Another specific example: Jerry DeJong’s FRUMP (1979) was the first
information extraction [IE] system (before the term was coined). It
achieved something like 40% accuracy on the facts extracted from news-
paper stories about earthquakes and some other categories. Current IE
systems 35 years later achieve accuracies in the mid 60’s I think. Now,
these are quite different and incomparable numbers; I am not claiming
that FRUMP would score 40% under current NIST test conditions. It
was a proof-of-concept (i.e. toy) program. On the other hand, it was
written by a single graduate student as a doctoral thesis, and used no
statistical or ML techniques. And my impression is that improvement
here among state-of-the-art programs has been extremely slow. IE has
been a matter of very extensive study for at least the last 20 years; it is a
highly circumscribed form of the general natural language understanding
problem; and here we are still at 60%-ish depending on what task you’re
talking about.
In answer to [“Does this apply mainly to the ‘hard for computers, easy for
humans’ category of problems, or are there many cases of it applying to
other kinds of problems?”], I can’t think of any very convincing cases in
CS where this comes up outside AI. A couple of possible candidates, per-
haps worth some thought. [Mentions programming languages, software
engineering, educational software.]

40

Katja Grace

9.2. Transcription
9.2.1. Transcription NIST Automatic Speech Recognition Evaluations
Figure 38 shows a historical summary from the NIST Information Technology Labo-
ratory Information Access Division.

Figure 38: NIST speech recognition testing results for a variety of transcription tasks. Reprinted from
NIST (2009b).

9.2.2. Training Data
In two studies, word error rates decreased linearly with exponential training data (Lamel,
Gauvain, and Adda 2000, 2002). The task was transcription of continuous broadcast
news by state-of-the-art, large-vocabulary continuous speech recognition (LVCSR) sys-
tems. Extrapolations from a paper by Roger K. Moore (2003) suggest zero errors should
be attained in that task after between 600,000 and 10,000,000 hours of training data.
Figures 39 and 40 below show the results and extrapolations.

9.3. Parsing
Computerized parsing algorithms were first designed in the ’50s (Russell and Norvig
2010, p. 920), but empirical evaluations on real text prior to 1989 are not available.

41

Algorithmic Progress in Six Domains

Figure 39: Word error rates by quantity of training data for a transcription task, using three methods,
extrapolated to perfection. Reprinted from Moore (2003).

Figure 40: Word error rates by quantity of training data for a transcription task, using two methods,
extrapolated to perfection. Reprinted from Moore (2003).

A rough history of reported parsing accuracies:

• 1950s: first computerized parsing algorithms (Russell and Norvig 2010, p. 920)

• 1989: 60–77% accuracy (Salton and Smith 1989)

• 1992: 90% (Magerman and Weir 1992)

• 2005: 92.0% (Russell and Norvig 2010, p. 920)

• 2007: 90.6% (Russell and Norvig 2010, p. 920)

• 2008: 93.2% (Russell and Norvig 2010, p. 920)

42

Katja Grace

Regarding the last three, Russell and Norvig (2010) warn: “These numbers are not di-
rectly comparable, and there is some criticism of the field that it is focusing too narrowly
on a few select corpora, and perhaps overfitting on them.”

9.4. Translation
Figure 41 is taken from the NIST 2009 Open Machine Translation Evaluation. It
compares BLEU scores across years from sites that participated in both of the 2008
and 2009 NIST open machine translation evaluations, in either Arabic to English or
Chinese to English. Most of the sites scored better in 2009.

Figure 41: Across-year comparison of participants in the 2008 and 2009 NIST open machine translation
evaluations, for Arabic to English and Chinese to English. Reprinted from NIST (2009a).

43

Algorithmic Progress in Six Domains

9.5. Vision
9.5.1. Facial Recognition
Figure 42 shows the reduction in error rate for state-of-the-art face recognition over
the years according to the FERET, FRVT 2002, and FRVT 2006 evaluations (Grother,
Quinn, and Phillips 2011). Note that it documents the false nonmatch rate when the
false match rate is 0.001; for a higher false match rate, the false nonmatch rate should
be lower.

Figure 42: False nonmatch rate when the false match rate is 0.001 for state-of-the-art facial recognition
algorithms on three datasets. Data from Grother, Quinn, and Phillips (2011, fig. 28).

Efforts in this area have most likely increased in the last decade, as US government
support for biometrics has grown. Between the fiscal years 2007 and 2011, for instance,
annual US Department of Defense funding for biometrics grew every year, from $376.8
million to $769.7 million (GAO 2009).

9.5.2. Object and Scene Recognition
Object and scene recognition can be divided into several types of task. Classification
involves judging whether there is an object of some type in a given picture. Detection
involves determining where the object is in a given picture. Segmentation means simpli-
fying an image into parts, usually according to useful objects or boundaries.

44

Katja Grace

Classification
PASCAL Visual Object Classes (VOC) challenges began in 2004. In some years,
participating algorithms were run on datasets from previous years to allow comparison.
Figure 43 shows progress on classification since 2009 on the 2009 dataset. Figure 44
shows maximum average precision over time on the 2008 dataset.

Figure 43: Progress in precision on classification tasks in PASCAL VOC challenges. Reprinted from
Williams (2012).

Figure 44: Progress in maximum average precision for classification of various objects in PASCAL VOC
challenges. Reprinted from Everingham (2011a).

Detection
Figures 45 and 46 are analogous to the previous two figures. Progress was slow in 2011;
negative progress is highlighted.

45

Algorithmic Progress in Six Domains

Figure 45: Progress in precision on detection tasks in PASCAL VOC challenges. The 2009 dataset is
used in all years. Reprinted from Williams (2012).

Figure 46: Maximum average detection precision on a variety of objects over time. Reprinted from
Everingham (2011b).

46

Katja Grace

Other Tasks
Classification and detection are central parts of the PASCAL VOC challenge. Figures
47 and 48 show progress in some peripheral tasks included in some years.

Figure 47: Progress in segmentation accuracy percentage in PASCAL VOC challenges. All tests use their
2009 dataset. Reprinted from Williams (2012).

Figure 48: Progress in action classification in PASCAL VOC challenges. All tests use their 2011 dataset.
Reprinted from Williams (2012).

47

Algorithmic Progress in Six Domains

Training Data
Figures 49 and 50, taken from slides by Ramanan (2012), show some effects of more
training data on precision in object recognition.

Figure 49: Effect of training samples on face recognition precision for various methods. Reprinted from
Ramanan (2012).

Figure 50: Effect of training samples on object recognition precision for various methods. Reprinted
from Ramanan (2012).

Anecdotal Evidence on Jumps in Vision Progress
Le et al. (2012) claim a “15.8% accuracy for object recognition on ImageNet with 20,000
categories, a significant leap of 70% relative improvement over the state-of-the-art.” In
a 2013 email to Chris Hallquist, Yann LeCun says:

48

Katja Grace

The Google cat detector thing is totally passé. The recent defining moment
in computer vision is the smashing victory by Geoff Hinton and his team
on the ImageNet Large Scale Visual Recognition Challenge last October.
The entire CV community was stunned that they could get 15% error when
everyone else gets 25%. Google was stunned by the result and bought the
company Geoff formed with his students (what they bought was Geoff and
his students). The method they use is my good old convolutional net trained
with backprop (and a few tricks). What made their success is a ridiculously
efficient implementation on GPUs, which allowed them to train a model in
about a week on a single machine, and experiment with various tricks and
settings. That’s clearly a success of “big data” in the sense that they use a
relatively well established method whose complexity scales sub-linearly with
the data size, sped up the code, trained on a large dataset, and spent 8 months
trying out various tricks to improve the results.

10. Conclusions and Future Work
We have looked at progress in six areas of algorithms research. Many of these areas
have seen fast improvement, with algorithmic progress contributing 50–100% as much
as hardware progress. SAT solvers take in the realm of ten percent less time per year
on average. Mixed integer programming algorithms investigated here doubled in speed
every year. Chess tends to get better by around fifty Elo points per year, and Go by
a single stone per year. These point to algorithmic progress and hardware progress
contributing roughly equally. The physics simulations reported on are purported to
see roughly equal improvement from hardware and algorithms. Factoring has made
substantial progress, but it is unclear how much of this is accounted for by hardware.
In many areas, machine learning is making steeply diminishing progress in terms of
percentage accuracy.

Gains in particular years can vary substantially, though are rarely zero in any of these
areas. On the scale of a few years, chess, Go, and factoring seem to make fairly consistent
amounts of progress. Progress on different SAT problems varies widely between taking
almost as much time two years later, and taking a tiny fraction of the time. The current
data does not say a lot about long-term trajectories for particular problems, though—it
could be that some consistently see a lot of improvement, or that all of them occasionally
do. However, there seems to be a persistent trend of problems that initially take longer
seeing more progress than those that are initially faster. The small amount of data on
MIP progress says some software versions see more than five times as much progress as

49

Algorithmic Progress in Six Domains

other versions. The jumpiness of progress in physics simulations is ambiguous from the
present data.

This has been a preliminary survey. There are a number of ways to proceed. One is to
investigate other areas of algorithms in a similar manner—for instance, combinatorial
optimization, signal processing, or Scrabble. However, it may be better to get a surer
picture of progress on the algorithms here before venturing more tentative estimates.
There are many apparently promising sources of data on the current areas of algorithms
not investigated for this report.

This report investigated data from the SAT competition over three competitions,
but they hold data for seven. Analyzing this additional data would give a much clearer
picture of progress there. In general, ongoing competitions and challenges are valuable
sources of data.

For many of these areas there are papers comparing small numbers of algorithms,
published at different times. For instance, there is apparently a string of papers in SAT
conferences by Holger Hoos and his students and Chu Min Li’s group comparing state-
of-the-art solvers at different times, which may offer a somewhat independent check or
longer history.

Another approach to many of these areas is to acquire historical algorithms and run
them oneself on modern hardware. This could give more reliable data and also allow
hardware and software contributions to be identified.

For each of these algorithms, it would be useful to know more about the inputs that
produced the current progress, and about the social interactions surrounding them. This
may be difficult to determine accurately, but, for instance, sociological work on chess AI
researchers seems to exist, so a basic picture may be relatively cheap to acquire.

The current findings have interesting implications for AI trajectories. At this margin
there is much opportunity for further work and research.

50

Katja Grace

Acknowledgments
Many thanks to Paul Christiano and Luke Muehlhauser for helpful ideas, conversation,
and feedback. Thanks also to Chris Hallquist and Charmin Sia for collecting and
collating information, and to Benjamin Noble, Alex Vermeer, and Caleb Bell for help
editing and preparing this document. I am also grateful to many people for directing me
to useful information and helping me to interpret it; thanks for this to Nick Wedd, Petr
Baudis, Ed Lazowska, David Fotland, Brian Borchers, Hideki Kato, Daniel Le Berre,
Olivier Roussel, Tim Curtois, Martin Grötschel, Jesse Liptrap, João Marques-Silva,
Bart Selman, Holger Hoos, Hans Mittelman, Patrick Grace, Armin Biere, Niklas Een,
Robert Hyatt, Jonathan Chin, Russ Greiner, David Keyes, Jason Eisner, Carl Shulman,
and Kaj Sotala.

References
Automated Scheduling, Optimisation and Planning Group. 2013. “Employee Scheduling Benchmark

Data Sets.” University of Nottingham. Accessed July 22, 2013. http://www.cs.nott.ac.uk/
~tec/NRP/.

Banks, Graham. 2013. “Re: Questions for a Research Project.” CCRL Discussion Board. April 22.
Accessed July 22, 2013. http : / / kirill - kryukov . com / chess / discussion - board /
viewtopic.php?f=7&t=6999.

Baudiš, Petr, and Jean-loup Gailly. 2011. “PACHI: State of the Art Open Source Go Program.” In
Advances in Computer Games: 13th International Conference, ACG 2011, edited by H. Jaap van den
Herik and Aske Plaat, 24–38. Lecture Notes in Computer Science 7168. Tilburg, The Netherlands:
Springer, November 20–22. doi:10.1007/978-3-642-31866-5_3.

Bixby, Robert E. 2010. “Latest Advances in Mixed-Integer Programming Solvers.” Lecture given at the
Spring School on Combinatorial Optimization in Logistics, Université de Montréal, May 19. http:
//symposia.cirrelt.ca/system/documents/0000/0136/Bixby.pdf.

Chess Engines Grand Tournament. 2006–2012. “CEGT 40/4 (2Ghz): All Versions – Min. 30 Games.”
Archived versions. As revised July 1, 2006–March 1, 2012. http://web.archive.org/web/*/
http://www.husvankempen.de/nunn/40_4_Ratinglist/40_4_AllVersion/rangliste.
html.

ChessBase. 2013. “Houdini 3: The World’s Strongest Chess Engine in the Fritz Interface.” Interview with
Robert Houdart, author of Houdini, September 29. http://en.chessbase.com/home/TabId/
211/PostId/4008591.

Coles, L. Stephen. 2002. “Computer Chess: The Drosophila of AI.” Dr. Dobb’s Journal,October 30. http:
//www.drdobbs.com/parallel/computer-chess-the-drosophila-of-ai/184405171.

Computer Chess Rating Lists Team. 2006–2013. “CCRL 40/40: Complete List.” Archived versions.
As revised May 31, 2006–January 13, 2013. http://web.archive.org/web/*/http://
computerchess.org.uk/ccrl/4040/rating_list_all.html.

51

Algorithmic Progress in Six Domains

Computer Chess Rating Lists Team. 2013. “40/40 Downloads and Statistics: Rybka.” Accessed July 22,
2013. http://www.computerchess.org.uk/ccrl/4040/cgi/compare_engines.cgi?
family=Rybka&print=Rating+list&print=Results+table&print=LOS+table&print=
Ponder+hit+table&print=Eval+difference+table&print=Comopp+gamenum+table&
print=Overlap+table&print=Score+with+common+opponents.

Contini, Scott. 2010. “General Purpose Factoring Records.” FactorWorld. Accessed July 22, 2013. http:
//www.crypto-world.com/FactorRecords.html.

Dailey, Don. 2008. “9x9 Scalability study.” Computer Go Server. February 13. Accessed July 22, 2013.
http://cgos.boardspace.net/study/.

Davis, Ernest. 2012. “The Singularity and the State of the Art in Artificial Intelligence.” Working Paper,
New York, May 9. Accessed July 22, 2013. http://www.cs.nyu.edu/~davise/papers/
singularity.pdf.

Everingham, Mark. 2011a. “Overview and Results of the Classification Challenge.” Paper presented at the
PASCAL Visual Object Classes Challenge Workshop, ICCV 2011, Barcelona, Spain, November 7.
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/workshop/voc_cls.
pdf.

. 2011b. “Overview and Results of the Detection Challenge.” Paper presented at the PASCAL
Visual Object Classes Challenge Workshop, ICCV 2011, Barcelona, Spain, November 7. http:
//pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/workshop/voc_det.pdf.

Fotland, David. 2002. “David Fotland.” Smart Games. February 14. Accessed July 21, 2013. http :
//www.smart-games.com/david.html.

GAO (Government Accountability Office). 2009. Defense Biometrics: DOD Can Better Conform to
Standards and Share Biometric Information with Federal Agencies.Washington, DC, March 31. http:
//www.gao.gov/products/GAO-11-276.

Grother, Patrick J., George W. Quinn, and P J. Phillips. 2011. Report on the Evaluation of 2D Still-Image
Face Recognition Algorithms. NIST Interagency Report 7709. National Institute of Standards and
Technology, August 24. http://www.nist.gov/customcf/get_pdf.cfm?pub_id=905968.

Grötschel, Martin. 2009. “Combinatorial Optimization in Action.” Lecture given at the Winter 2009
MathAcrossCampus Colloquium, University of Washington, Seattle, WA, January 22. http://
www.math.washington.edu/mac/talks/20090122SeattleCOinAction.pdf.

Houdart, Robert. 2012. “Houdini Chess Engine.” Accessed July 22, 2013. http://www.cruxis.com/
chess/houdini.htm.

Karlsson, Thoralf. 2008. “Comments to the Swedish Rating List 1.” Swedish Chess Computer
Association. Archived version. As revised September 26. http : / / web . archive . org / web /
20081016112102/http://ssdf.bosjo.net/comment.htm.

Keyes, David, Robert Armstrong, David Bailey, John Bell, E. Wes Bethel, David Brown, Phillip Colella,
et al. 2004. A Science-Based Case for Large-Scale Simulation, Volume 2. New York: US Department of
Energy’s Office of Science, September 14. http://science.energy.gov/~/media/ascr/pdf/
program-documents/archive/Scales_report_vol2.pdf.

KGS Go Server. 2010. “KGS Game Archives: Games of KGS player zen19.” Archived version. As revised
December 3. http://web.archive.org/web/20101203045501/http://www.gokgs.com/
graphPage.jsp?user=Zen19.

52

Katja Grace

. 2013a. “KGS Game Archives: Games of KGS player zen19.” Accessed July 22, 2013. http:
//www.gokgs.com/gameArchives.jsp?user=zen19d.

. 2013b. “Tournament.” Accessed July 22, 2013. http : / / www . gokgs . com / help /
tournaments.html.

Lamel, Lori, Jean-Luc Gauvain, and Gilles Adda. 2000. “Lightly Supervised Acoustic Model Training.”
In Proceedings of the ISCA ITRW ASR2000: Automatic Speech Recognition: Challenges for the New
Millenium,edited by Martine Adda-Decker, 150–154. Paris, France: Nouvelle Imprimerie Laballery,
September 18–20. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.
2392&rep=rep1&type=pdf.

. 2002. “Lightly Supervised and Unsupervised Acoustic Model Training.” Computer Speech &
Language 16 (1): 115–129. doi:10.1006/csla.2001.0186.

Le, Quoc V., Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeff
Dean, and Andrew Y. Ng. 2012. “Building High-level Features Using Large Scale Unsupervised
Learning.” In Proceedings of the 29th International Conference on Machine Learning (ICML-12),edited
by John Langford and Joelle Pineau, 81–88. Edinburgh, Scotland: Omnipress, June 27–July 3. http:
//arxiv.org/pdf/1112.6209v5.pdf.

Levy, David, and Monty Newborn. 1991. How Computers Play Chess.1st ed. New York: Computer Science
Press.

Magerman, David M., and Carl Weir. 1992. “Efficiency, Robustness and Accuracy in Picky Chart
Parsing.” In Proceedings of the 30th Annual Meeting on Association for Computational Linguistics (ACL
’92),edited by Henry S. Thompson, 40–47. Newark, DE: Association for Computational Linguistics,
June 28–July 2. doi:10.3115/981967.981973.

Marques-Silva, João. 2010. “Boolean Satisfiability Solving: Past, Present & Future.” Presentation given at
the Microsoft Research International Workshop on Tractability, Cambridge, UK, July 5–6. http:
//research.microsoft.com/en-us/events/tractability2010/joao-marques-silva-
tractability2010.pdf.

Moore, Roger K. 2003. “A Comparison of the Data Requirements of Automatic Speech Recognition
Systems and Human Listeners.” In Eurospeech 2003 Proceedings: 8th European Conference on Speech
Communication and Technology, 2581–2584. Geneva, Switzerland: ISCA, September 1–4. http:
//www.dcs.shef.ac.uk/~roger/publications/Moore%20-%20Spoken%20language%
20interaction%20with%20intelligent%20systems.pdf.

. 2012. “Spoken Language Interaction with ’Intelligent’ Systems: How Are We Doing, and
What Do We Need to Do Next?” Presentation given at the EUCogII Workshop on Challenges
for Artificial Cognitive Systems II, Oxford, January 21. http : / / www . dcs . shef . ac . uk /
~roger/publications/Moore %20- %20Spoken %20language%20interaction% 20with%
20intelligent%20systems.pdf.

Muehlhauser, Luke. 2011. “Historical Chess Engines’ Estimated ELO Ratings.” Last revised October 9.
http://lukeprog.com/special/chess.pdf.

Muehlhauser, Luke, and Anna Salamon. 2012. “Intelligence Explosion: Evidence and Import.” In
Singularity Hypotheses: A Scientific and Philosophical Assessment, edited by Amnon Eden, Johnny
Søraker, James H. Moor, and Eric Steinhart. The Frontiers Collection. Berlin: Springer.

National Institute of Standards and Technology Multimodal Information Group. 2009a. “2009 Open
Machine Translation Evaluation: Official Release of Results.” October 27. Accessed July 22, 2013.
http://www.itl.nist.gov/iad/mig/tests/mt/2009/ResultsRelease/progress.html.

53

Algorithmic Progress in Six Domains

National Institute of Standards and Technology Multimodal Information Group. 2009b. “The History
of Automatic Speech Recognition Evaluations at NIST.” September 14. Accessed July 22, 2013.
http://www.itl.nist.gov/iad/mig/publications/ASRhistory/index.html.

Pomerance, Carl. 1996. “A Tale of Two Sieves.” Notices of the American Mathematical Society, December,
1473–1485. http://www.ams.org/notices/199612/pomerance.pdf.

Ramanan, Deva. 2012. “Deformable Part Models: Some Thoughts on Why They Work and What
Next.” Paper presented at the PASCAL Visual Object Classes Challenge Workshop, ECCV 2012,
Florence, Italy, October 12. http://pascallin.ecs.soton.ac.uk/challenges/VOC/
voc2012/workshop/deva.ramanan.pdf.

Russell, Stuart J., and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach. 3rd ed. Upper Saddle
River, NJ: Prentice-Hall.

Salton, G., and M. Smith. 1989. “On the Application of Syntactic Methodologies in Automatic Text
Analysis.” In Proceedings of the 12th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 137–150. Cambridge, MA.

SAT Competition Organizers. 2007–2011. “The International SAT Competitions Web Page.” Accessed
July 22, 2013. http://www.satcompetition.org/.

Sensei’s Library. 2008, s.v. “Ing Prize.” As revised September 19. http : / / senseis . xmp . net /
?IngPrize:v23.

. 2013, s.v. “Computer Go.” As revised May 26. http://senseis.xmp.net/?ComputerGo:
v142.

. 2013, s.v. “KGSBotRatings.” As revised January 7. http : / / senseis . xmp . net /
?KGSBotRatings:v182.

Sonas, Jeff. 2003. “Man vs Machine: Who is Winning?” ChessBase,October 8. http://en.chessbase.
com/home/TabId/211/PostId/4001229.

Swedish Chess Computer Association. 2007–2012. “The SSDF Rating List.” Archived versions. As
revised August 11, 2007–September 9, 2012. http : / / web . archive . org / web / * / http :
//ssdf.bosjo.net/list.htm.

Wedd, Nick. 2013. “Human-Computer Go Challenges.” Accessed July 22, 2013. http : / / www .
computer-go.info/h-c/.

Wikipedia. 2013, s.v. “Swedish Chess Computer Association.” Accessed May 12. http : / / en .
wikipedia.org/w/index.php?title=Swedish_Chess_Computer_Association&oldid=
554696080.

Williams, Chris. 2012. “Introduction: History and Analysis.” Introduction to Part II of VOC 2005-2012:
The VOC Years and Legacy. At the PASCAL Visual Object Classes Challenge Workshop, ECCV
2012, Florence, Italy, October 12. http://pascallin.ecs.soton.ac.uk/challenges/VOC/
voc2012/workshop/history_analysis.pdf.

Yudkowsky, Eliezer. 2013. Intelligence Explosion Microeconomics. Technical Report, 2013–1. Machine
Intelligence Research Institute, Berkeley, CA. http://intelligence.org/files/IEM.pdf.

54

	Abstract
	1 Introduction
	2 Summary
	3 A Few General Points
	3.1 On Measures of Progress
	3.2 Inputs and Outputs
	3.3 On Selection

	4 Boolean Satisfiability (SAT)
	4.1 SAT Solving Competition
	4.1.1 Industrial and Handcrafted SAT Instances
	Speedup Distribution
	Two-Year Improvements
	Difficulty and Progress

	4.1.2 Random SAT Instances
	Overall Picture
	Speedups for Individual Problem Types
	Two-Year Improvements
	Difficulty and Progress

	4.2 João Marques-Silva's Records

	5 Game Playing
	5.1 Chess
	5.1.1 The Effect of Hardware
	5.1.2 Computer Chess Ratings List (CCRL)
	5.1.3 Swedish Chess Computer Association (SSDF) Ratings
	Archived Versions
	Wikipedia Records
	SSDF via ChessBase 2003

	5.1.4 Chess Engine Grand Tournament (CEGT) Records
	5.1.5 Dr Dobb's Article Estimates
	5.1.6 Historical Estimates for Well-Known Chess Programs
	5.1.7 A Note on Open-Source Engines

	5.2 Go
	5.2.1 Hardware
	5.2.2 Efforts
	5.2.3 Ing Challenges
	5.2.4 Zen19 on KGS
	5.2.5 Educated Guesswork
	5.2.6 KGS Tournament Data
	5.2.7 Sensei's Library
	5.2.8 Computer–Human Contests

	6 Factoring
	7 Physics Simulations
	8 Operations Research
	8.1 Linear Optimization
	8.1.1 CPLEX
	8.1.2 Gurobi Internal Testing
	8.1.3 Nonspecific Reports of Large Speedups

	8.2 Scheduling
	8.2.1 University of Nottingham Employee Scheduling Benchmarks

	9 Machine Learning
	9.1 General Impressions from the Field
	9.2 Transcription
	9.2.1 Transcription NIST Automatic Speech Recognition Evaluations
	9.2.2 Training Data

	9.3 Parsing
	9.4 Translation
	9.5 Vision
	9.5.1 Facial Recognition
	9.5.2 Object and Scene Recognition
	Classification
	Detection
	Other Tasks
	Training Data
	Anecdotal Evidence on Jumps in Vision Progress

	10 Conclusions and Future Work
	References

