
126 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

Deep learning for visual unDerstanDing:
part 2

1053-5888/18©2018IEEE

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang

Model Compression and Acceleration
for Deep Neural Networks
The principles, progress, and challenges

In recent years, deep neural networks (DNNs) have received
increased attention, have been applied to different applica-
tions, and achieved dramatic accuracy improvements in many

tasks. These works rely on deep networks with millions or even
billions of parameters, and the availability of graphics process-
ing units (GPUs) with very high computation capability plays
a key role in their success. For example, Krizhevsky et al. [1]
achieved breakthrough results in the 2012 ImageNet Challenge
using a network containing 60 million parameters with five
convolutional layers and three fully connected layers. Usu-
ally, it takes two to three days to train the whole model on the
ImagetNet data set with an NVIDIA K40 machine. In another
example, the top face-verification results from the Labeled
Faces in the Wild (LFW) data set were obtained with networks
containing hundreds of millions of parameters, using a mix
of convolutional, locally connected, and fully connected layers
[2], [3]. It is also very time-consuming to train such a model
to obtain a reasonable performance. In architectures that only
rely on fully connected layers, the number of parameters can
grow to billions [4].

Introduction
As larger neural networks with more layers and nodes are
considered, reducing their storage and computational cost
becomes critical, especially for some real-time applications
such as online learning and incremental learning. In addition,
recent years witnessed significant progress in virtual real-
ity, augmented reality, and smart wearable devices, creating
unprecedented opportunities for researchers to tackle fun-
damental challenges in deploying deep-learning systems to
portable devices with limited resources [e.g., memory, central
processing units (CPUs), energy, bandwidth]. Efficient deep-
learning methods can have a significant impact on distributed
systems, embedded devices, and field-programmable gate ar-
ray (FPGA) for artificial intelligence (AI). For example, the
residual network-50 (ResNet-50) [5], which has 50 convolu-
tional layers, needs more than 95 megabytes of memory for
storage, and numerous floating number multiplications for

Digital Object Identifier 10.1109/MSP.2017.2765695
Date of publication: 9 January 2018

©Istockphoto.com/zapp2photo

127IEEE SIgnal ProcESSIng MagazInE | January 2018 |

calculating each image. After discarding
some redundant weights, the network still
works as usual but saved more than 75% of
parameters and 50% computational time.
For devices like cell phones and FPGAs
with only several megabyte resources, how
to compact the models used on them is
also important.

Achieving these goals calls for joint
solutions from many disciplines, including
but not limited to machine learning, opti-
mization, computer architecture, data com-
pression, indexing, and hardware design.
In this article, we review recent works on compressing and
accelerating DNNs, which attracted much attention from the
deep-learning community and has already achieved signifi-
cant progress in past years.

We classify these approaches into four categories:
1) Parameter pruning and sharing: The parameter pruning

and sharing-based methods explore the redundancy in the
model parameters and try to remove the redundant and
noncritical ones.

2) Low-rank factorization: Low-rank factorization-based
techniques use matrix/tensor decomposition to estimate the
informative parameters of the deep convolutional neural
networks (CNNs).

3) Transferred/compact convolutional filters: The trans-
ferred/compact convolutional filters-based approaches
design special structural convolutional filters to reduce the
storage and computation complexity.

4) Knowledge distillation (KD): The KD methods learn a dis-
tilled model and train a more compact neural network to
reproduce the output of a larger network.
In Table 1, we briefly summarize these four types of meth-

ods. Generally, the parameter pruning and sharing, low-rank
factorization, and KD approaches can be used in DNNs with
fully connected layers and convolutional layers, achieving
comparable performances. On the other hand, methods using
transferred/compact filters are designed for models with con-

volutional layers only. Low-rank factoriza-
tion and transferred/compact filters-based
approaches provide an end-to-end pipeline
and can be easily implemented in a CPU/
GPU environment, which is straightfor-
ward, while parameter pruning and sharing
use different methods such as vector quan-
tization, binary coding, and sparse con-
straints to perform the task. Usually, it will
take several steps to achieve the goal.

Regarding training protocols, models
based on parameter pruning/sharing low-
rank factorization can be extracted from

pretrained ones or trained from scratch, while the transferred/
compact filter and KD models can only support training from
scratch. These methods are independently designed and com-
plement each other. For example, transferred layers and pa-
rameter pruning and sharing can be used together, and model
quantization and binarization can be used together with low-
rank approximations to achieve further speedup. We will de-
scribe the details of each theme and their properties, strengths,
and drawbacks in the following sections.

Parameter pruning and sharing
An early work that showed that network pruning is effective in
reducing the network complexity and addressed the overfitting
problem is [6]. Since then, it has been widely studied to compress
DNN models, trying to remove parameters that are not crucial to
the model performance. These techniques can be further classi-
fied into three categories: model quantization and binarization,
parameter sharing, and structural matrix.

Quantization and binarization
Network quantization compresses the original network by
reducing the number of bits required to represent each weight.
Gong et al. [6] and Wu et al. [7] applied k-means scalar quanti-
zation to the parameter values. Vanhoucke et al. [8] showed that
8-bit quantization of the parameters can result in significant
speedup with minimal loss of accuracy. The work in [9] used

Table 1. A summary of different approaches for network compression.

Theme Name Description Applications More Details

Parameter pruning and sharing Reducing redundant parameters that
are not sensitive to the performance

Convolutional layer and
fully connected layer

Robust to various settings, can achieve
good performance, can support both train-
ing from scratch and pretrained model

Low-rank factorization Using matrix/tensor decomposition to
estimate the informative parameters

Convolutional layer and
fully connected layer

Standardized pipeline, easily implement-
ed, can support both training from scratch
and pretrained model

Transferred/compact
convolutional filters

Designing special structural convolutional
filters to save parameters

Only for convolutional layer Algorithms are dependent on applications,
usually achieve good performance, only
support training from scratch

KD Training a compact neural network with
distilled knowledge of a large model

Convolutional layer and
fully connected layer

Model performances are sensitive to
applications and network structure, only
support training from scratch

As larger neural networks
with more layers and
nodes are considered,
reducing their storage
and computational
cost becomes critical,
especially for some real-
time applications such
as online learning and
incremental learning.

128 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

16-bit fixed-point representation in stochastic rounding-based
CNN training, which significantly reduced memory usage and
float- point operations with little loss in classification accuracy.

The method proposed in [10] first pruned the unimportant con-
nections and retrained the sparsely connected networks. Then it
quantized the link weights using weight-sharing, and then applied
Huffman coding to the quantized weights as
well as the codebook to further reduce the
rate. As shown in Figure 1, it starts by learn-
ing the connectivity via normal network train-
ing, followed by pruning the small-weight
connections. Finally, the network is retrained
to learn the final weights for the remaining
sparse connections. This work achieves the
state-of-the-art performance among all param-
eter quantization-based methods. It was shown in [11] that Hes-
sian weight could be used to measure the importance of network
parameters and proposed to minimize Hessian-weighted quantiza-
tion errors on average for clustering network parameters. A novel
quantization framework was introduced in [12], which reduced the
precision of network weights to ternary values.

In the extreme case of 1-bit representation of each weight, i.e.,
binary weight neural networks, there are also many works that
directly train CNNs with binary weights; for instance, Binary-
Connect [13], BinaryNet [14], and XNORNetworks [15]. The
main idea is to directly learn binary weights or activations dur-
ing the model training. The systematic study in [16] showed that
networks trained with backpropagation could be robust against
(robust against or resilient to) specific weight distortions, includ-
ing binary weights.

Drawbacks
However, the accuracy of such binary nets is significantly low-
ered when dealing with large CNNs such as GoogleNet. Anoth-

er drawback of these binary nets is that existing binarization
schemes are based on simple matrix approximations and ignore
the effect of binarization on the accuracy loss. To address
this issue, the work in [17] proposed a proximal Newton algo-
rithm with diagonal Hessian approximation that directly mini-
mizes the loss with respect to the binary weights. The work in

[18] significantly reduced the time on float-
point multiplication in the training stage by
stochastically binarizing weights and con-
verting multiplications in the hidden state
computation to sign changes.

Pruning and sharing
Network pruning and sharing has been used
both to reduce network complexity and to

address the overfitting issue. An early approach to pruning was
biased weight decay [19]. The optimal brain damage [20] and
the optimal brain surgeon [21] methods reduced the number
of connections based on the Hessian of the loss function, and
their works suggested that such pruning gave higher accuracy
than magnitude-based pruning such as the weight decay meth-
od. Those methods supported training from scratch.

A recent trend in this direction is to prune redundant, non-
informative weights in a pretrained CNN model. For example,
Srinivas and Babu [22] explored the redundancy among neurons
and proposed a data-free pruning method to remove redundant
neurons. Han et al. [23] proposed to reduce the total number of
parameters and operations in the entire network. Chen et al. [24]
proposed a HashedNets model that used a low-cost hash function
to group weights into hash buckets for parameter sharing. The
deep compression method in [10] removed the redundant connec-
tions and quantized the weights and then used Huffman coding
to encode the quantized weights. In [25], a simple regularization
method based on soft weight-sharing was proposed, which

Original
Network

Train Connectivity

Prune Connections

Train Weights

Compressed
Network

Cluster the Weights

Generate Codebook

Quantize the Weights
with Codebook

Retrain Codebook

Encode Weights

Encode Index

Figure 1. The three-stage compression method proposed in [10]: pruning, quantization, and encoding. The input is the original model, and the output is
the compression model.

Network pruning and
sharing has been used
both to reduce network
complexity and to address
the overfitting issue.

129IEEE SIgnal ProcESSIng MagazInE | January 2018 |

included both quantization and pruning in one simple (re)train-
ing procedure. It is worth noting that the aforementioned prun-
ing schemes typically produce connection pruning in CNNs.

There is also growing interest in training compact CNNs
with sparsity constraints. Those sparsity constraints are
typically introduced in the optimization
problem as l0 or l1-norm regularizers.
The work in [26] imposed group sparsity
constraints on the convolutional filters to
achieve structured brain damage, i.e., prun-
ing entries of the convolution kernels in a
group-wise fashion. In [27], a group-sparse
regularizer on neurons was introduced
during the training stage to learn compact
CNNs with reduced filters. Wen et al. [28]
added a structured sparsity regularizer on
each layer to reduce trivial filters, chan-
nels, or even layers. In filter-level pruning, all of the afore-
mentioned works used l ,2 1-norm regularizers. The work in [29]
used l1-norm to select and prune unimportant filters.

Drawbacks
There are some potential issues of the pruning and sharing
works. First, pruning with l1 or l2 regularization requires
more iterations to converge. Furthermore, all pruning criteria
require manual setup of sensitivity for layers, which demands
fine-tuning of the parameters and could be cumbersome for
some applications.

Designing the structural matrix
In architectures that contain only fully connected layers, the
number of parameters can grow up to billions [4]. Thus, it is
critical to explore this redundancy of parameters in fully con-
nected layers, which is often the bottleneck in terms of memory
consumption. These network layers use the nonlinear transforms
(,) (),f x M Mxv= where ()v o is an element-wise nonlinear

operator, x is the input vector, and M is the m n# matrix of
parameters. When M is a large general dense matrix, the cost
of storing mn parameters and computing matrix-vector products
in ()O mn time. Thus, an intuitive way to prune parameters is to
impose x as a parameterized structural matrix. An m n# matrix
that can be described using much fewer parameters than mn is
called a structured matrix. Typically, the structure should not
only reduce the memory cost but also dramatically accelerate the
inference and training stage via fast matrix-vector multiplication
and gradient computations.

Following this direction, the work in [30] proposed a sim-
ple and efficient approach based on circulant projections,
while maintaining competitive error rates. Given a vector

(, , ,),r r rr d0 1 1f= - a circulant matrix R Rd d! # is defined as

 () : .

r
r

r
r

r
r
r

r

r
r

r

r

r
r

r
r

circR r
d

d

d

d

d

d

0

1

2

1

1

0

1

2

1

0

2

1

1

2

1

0

h

j

j

j

h

g

g

= =

-

-

-

-

-

-

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

 (1)

Thus the memory cost becomes ()dO instead of ().dO 2
This circulant structure also enables the use of fast Fou-
rier transform (FFT) to speed up the computation. Given a
d-dimensional vector ,r the 1-layer circulant neural network
in (1) has time complexity of ().logd dO

In [31], a novel adaptive fastfood trans-
form was introduced to reparameterize the
matrix-vector multiplication of fully con-
nected layers. The adaptive fastfood trans-
form matrix R Rn d! # was defined as

 .R SHG HBP= (2)

Here, , ,S G and B are random diago-
nal matrices. { , }0 1 d d!P # is a random
permutation matrix and H denotes the
Walsh–Hadamard matrix. Reparameteriz-

ing a fully connected layer with d inputs and n outputs using
the adaptive fastfood transform reduces the storage and the
computational costs from ()ndO to ()nO and from ()ndO to
(),logn dO respectively.
The work in [32] showed the effectiveness of the new notion

of parsimony in the theory of structured matrices. Their pro-
posed method can be extended to various other structured matrix
classes, including block and multilevel Toeplitz-like [33] matrices
related to multidimensional convolution [34].

Drawbacks
One potential problem of this kind of approach is that the struc-
tural constraint will cause loss in accuracy since the constraint
might bring bias to the model. On the other hand, how to find a
proper structural matrix is difficult. There is no theoretical way
from which to derive it.

Low-rank factorization and sparsity
As convolution operations constitute the bulk of all computations
in CNNs, simplifying the convolution layer would have a direct
impact on the overall speedup. The convolution kernels in a typi-
cal CNN is a four-dimensional tensor. The key observation is that
there might be a significant amount of redundancy in the tensor.
Ideas based on tensor decomposition seem to be a particularly
promising way to remove the redundancy. Regarding to the fully
connected layer, it can be viewed as a two-dimensional (2-D)
matrix and the low-rankness can also help.

Using low-rank filters to accelerate convolution has a long
history. Typical examples include high-dimensional discrete
cosine transform (DCT) and wavelet systems constructed
from one-dimensional (1-D) DCT transform and 1-D wave-
lets, respectively, using tensor products. In the context of
dictionary learning, Rigamonti et al. [35] suggested learning
separable 1-D filters. In [36], a few low-rank approximation
and clustering schemes for the convolutional kernels were
proposed. They achieved 2# speedup for a single convolu-
tional layer with 1% drop in classification accuracy. The
work in [37] suggested using different tensor decomposition
schemes, reporting a .4 5# speedup with 1% drop in accuracy

CNNs are parameter-efficient
due to exploring the
translation invariant property
of the representations to
input image, which is the key
to the success of training
very deep models without
severe overfitting.

130 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

in text recognition. In both works, the approximation was
done layer by layer. After one layer was approximated by
the low-rank filters, the parameters of that layer were fixed,
and the layers above were fine-tuned based on a reconstruc-
tion error criterion. These are typical low-rank methods for
compressing 2-D convolutional layers, which is described in
Figure 2. In [38], canonical polyadic (CP) decomposition of
the kernel tensors was proposed. Their work used nonlinear
least squares to compute the CP decomposition, which was
also based on the tensor decomposition idea. In [39], a new
algorithm for computing the low-rank tensor decomposition
and a new method for training low-rank constrained CNNs
from scratch were proposed. It used batch normalization (BN)
to transform the activations of the internal hidden units, and it
was shown to be an effective way to deal with the exploding
or vanishing gradients.

In principle, both the CP decomposition scheme and the
decomposition scheme in [39] (BN low-rank) can be used to
train CNNs from scratch. For the CP decomposition, finding
the best low-rank approximation is an ill-posed problem, and
the best rank-K approximation may not exist in the general

case. For the scheme in [39], the decom-
position always exists and can achieve
better performance than general CP.
Table 2 lists a performance comparison
of both methods. The actual speedup
and compression rates are used to mea-
sure the performances. We can see that
the BN version can achieve slightly bet-
ter performance while the CP version
gives higher compression rates.

Note that the fully connected layers
can be viewed as a 2-D matrix and thus
the aforementioned methods can also
be applied there. There are several clas-
sical works on exploiting low-rankness
in fully connected layers. For instance,
Misha et al. [40] reduced the number
of dynamic parameters in deep models

using the low-rank method. Reference [41] explored a low-rank
matrix factorization of the final weight layer in a DNN for
acoustic modeling.

Drawbacks
Low-rank approaches are straightforward for model compres-
sion and acceleration. The idea complements recent advances
in deep learning such as dropout, rectified units, and maxout.
However, the implementation is not that easy since it involves
a decomposition operation, which is computationally expen-
sive. Another issue is that current methods perform low-rank
approximation layer by layer, and thus cannot perform global
parameter compression, which is important as different lay-
ers hold different information. Finally, factorization requires
extensive model retraining to achieve convergence when com-
pared to the original model.

Transferred/compact convolutional filters
CNNs are parameter-efficient due to exploring the transla-
tion invariant property of the representations to input image,
which is the key to the success of training very deep models
without severe overfitting. Although a strong theory is cur-
rently missing, a large amount of empirical evidence sup-
ports the notion that both the translation invariant property
and convolutional weight-sharing are important for good
predictive performance. The idea of using transferred con-
volutional filters to compress CNN models is motivated by
recent works in [42], which introduced the equivariant group
theory. Let x be an input, ()$U be a network or layer, and
()T $ be the transform matrix. The concept of equivariance

is defined as

 ,x xT TU U=l ^ ^h h (3)

which says that transforming the input x by the transform
()T $ and then passing it through the network or layer (·)U

should give the same result as first mapping x through the
network and then transforming the representation. Note that,

Table 2. Comparisons between the low-rank models and their baselines
on ILSVRC-2012.

Model TOP-5 Accuracy Speedup Compression Rate

AlexNet 80.03% 1 1

BN low-rank 80.56% 1.09 4.94

CP low-rank 79.66% 1.82 5

VGG-16 90.60% 1 1

BN low-rank 90.47% 1.53 2.72

CP low-rank 90.31% 2.05 2.75

GoogleNet 92.21% 1 1

BN low-rank 91.88% 1.08 2.79

CP low-rank 91.79% 1.20 2.84

Original Framework Low-Rank
Factorization Framework

(b)(a)

Figure 2. A typical framework of the low-rank regularization method. (a) is the original convolutional
layer, and (b) is the low-rank constraint convolutional layer with rank-K.

131IEEE SIgnal ProcESSIng MagazInE | January 2018 |

in [42], the transforms ()T $ and ()T $l are not necessarily
the same as they operate on different objects. According to
this theory, it is reasonable to apply the transform to layers
or filters ()$U to compress the whole network models. From
empirical observation, deep CNNs also benefit from using a
large set of convolutional filters by applying a certain trans-
form ()T $ to a small set of base filters since it acts as a regu-
larizer for the model.

Following this trend, there are many recent works proposed
to build a convolutional layer from a set of base filters [42]–
[45]. What they have in common is that the transform ()T $
lies in the family of functions that only operate in the spatial
domain of the convolutional filters. For
example, the work in [44] found that the
lower convolution layers of CNNs learned
redundant filters to extract both positive and
negative phase information of an input sig-
nal, and defined ()T $ to be the simple nega-
tion function

 .W WT x x= -^ h (4)

Here, Wx is the basis convolutional filter
and Wx

- is the filter consisting of the shifts whose activation is
opposite to that of Wx and selected after max-pooling opera-
tion. By doing this, the work in [44] can easily achieve 2# com-
pression rate on all the convolutional layers. It is also shown that
the negation transform acts as a strong regularizer to improve
the classification accuracy. The intuition is that the learning
algorithm with pair-wise positive-negative constraint can lead
to useful convolutional filters instead of redundant ones.

In [45], it was observed that magnitudes of the responses
from convolutional kernels had a wide diversity of pattern rep-
resentations in the network, and it was not proper to discard
weaker signals with a single threshold. Thus, a multibias non-
linearity activation function was proposed to generate more
patterns in the feature space at low computational cost. The
transform ()T $ was define as

 ,x WT x dU = +l ^ h (5)

where d were the multibias factors. The work in [46] consid-
ered a combination of rotation by a multiple of 90° and hori-
zontal/vertical flipping with

 ,x WT TU = il ^ h (6)

where WTi was the transformation matrix that rotated the orig-
inal filters with angle { , , }.90 180 270!i In [42], the transform
was generalized to any angle learned from data, and i was
directly obtained from data. Both [46] and [42] can achieve
good classification performance.

Reference [43] defined ()T $ as the set of translation func-
tions applied to 2-D filters

 ,, ,T x y·xT , , , , , (,)x y k k x y 0 0U = f !! -l ^ ^ ^h h h" , (7)

where (·, ,)T x y denoted the translation of the first oper-
and by (,)x y along its spatial dimensions, with proper zero
padding at borders to maintain the shape. The proposed
framework can be used to 1) improve the classification accu-
racy as a regularized version of maxout networks and 2)
to achieve parameter efficiency by flexibly varying their
architectures to compress networks.

Table 3 briefly compares the performance of different
methods with transferred convolutional filters, using VGG-
Net (16 layers) as the baseline model. The results are report-
ed on the CIFAR-10 and CIFAR-100 data sets with top-five
error rates. It is observed that they can achieve reduction in

parameters with little or no drop in clas-
sification accuracy.

Drawbacks
There are several issues that need to be
addressed for approaches that apply transfer
information to convolutional filters. First,
these methods can achieve competitive per-
formance for wide/flat architectures (like
VGGNet) but not narrow/special ones (like
GoogleNet and ResNet). Second, the trans-

fer assumptions sometimes are too strong to guide the algo-
rithm, making the results unstable on some data sets.

Using a compact filter for convolution can directly reduce
the computation cost. The key idea is to replace the loose and
overparametric filters with compact blocks to improve the
speed, which significantly accelerate CNNs on several bench-
marks. Decomposing 3 3# convolution into two 1 1# con-
volutions was used in [47], which achieved state-of-the-art
acceleration performance on object recognition. SqueezeNet
[48] was proposed to replace 3 3# convolution with 1 1#
convolution, which created a compact neural network with
approximately 50 fewer parameters and comparable accuracy
when compared to AlexNet.

KD
To the best of our knowledge, exploiting knowledge transfer to
compress model was first proposed by Caruana et al. [49]. They
trained a compressed model with pseudo-data labeled by an
ensemble of strong classifiers and reproduced the output of the
original larger network. However, their work is limited to shal-
low models. The idea has been recently adopted in [50] as KD
to compress deep and wide networks into shallower ones, where

Table 3. Comparisons of different approaches based on transferred
convolutional filters on CIFAR-10 and CIFAR-100.

Model CIFAR-100 CIFAR-10 Compression Rate

VGG-16 34.26% 9.85% 1

MBA [45] 33.66% 9.76% 2

CRELU [44] 34.57% 9.92% 2

CIRC [42] 35.15% 10.23% 4

DCNN [43] 33.57% 9.65% 1.62

The basic idea of KD is to
distill knowledge from a
large teacher model into
a small one by learning
the class distributions
output by the teacher
via softened softmax.

132 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

the compressed model mimicked the function learned by the
complex model. The basic idea of KD is to distill knowledge
from a large teacher model into a small one by learning the
class distributions output by the teacher via softened softmax.

The work in [51] introduced a KD compression framework,
which eased the training of deep networks by following a student-
teacher paradigm, in which the student was penalized according
to a softened version of the teacher’s output. The framework
compressed an ensemble of deep networks (teacher) into a stu-
dent network of similar depth. To do so, the student was trained
to predict the output of the teacher, as well as the true classifica-
tion labels. Despite its simplicity, KD demonstrates promising
results in various image classification tasks. The work in [52]
aimed to address the network compression
problem by taking advantage of depth neural
networks. It proposed an approach to train
thin and deep networks, called FitNets, to
compress wide and shallower (but still deep)
networks. The method was rooted in KD and
extended the idea to allow for thinner and
deeper student models. To learn from the
intermediate representations of the teacher
network, FitNet made the student mimic the full feature maps of
the teacher. However, such assumptions are too strict since the
capacities of teacher and student may differ greatly. In certain
circumstances, FitNet may adversely affect the performance and
convergence. All the aforementioned methods are validated on
the MNIST, CIFAR-10, CIFAR-100, SVHN, and AFLW bench-
mark data sets, and simulation results show that these methods
match or outperform the teacher’s performance, while requiring
notably fewer parameters and multiplications.

There are several extensions along this direction of distilla-
tion knowledge. The work in [53] trained a parametric student
model to approximate a Monte Carlo teacher. The proposed
framework used online training and used DNNs for the student
model. Different from previous works, which represented the
knowledge using the softened label probabilities, [54] repre-
sented the knowledge by using the neurons in the higher hidden
layer, which preserved as much information as the label prob-
abilities, but are more compact. The work in [55] accelerated
the experimentation process by instantaneously transferring
the knowledge from a previous network to each new deeper
or wider network. The techniques are based on the concept
of function-preserving transformations between neural net-
work specifications. Zagoruyko et al. [56] proposed attention
transfer to relax the assumption of FitNet. They transferred the
attention maps that are summaries of the full activations.

Drawbacks
KD-based approaches can make deeper models thinner and
help significantly reduce the computational cost. However,
there are a few disadvantages. One of them is that KD can only
be applied to classification tasks with softmax loss function,
which hinders its usage. Another drawback is that the model
assumptions sometimes are too strict to make the performance
competitive with other types of approaches.

Other types of approaches
We first summarize the works utilizing attention-based
methods. Note that attention-based systems [57] can reduce
computations significantly by learning to selectively focus or
“attend to” a few, task-relevant input regions. The work in [57]
introduced the dynamic capacity network that combined two
types of modules: the small subnetworks with low capacity, and
the large ones with high capacity. The low-capacity subnetworks
were active on the whole input to first find the task-relevant areas
in the input, and then the attention mechanism was used to di-
rect the high-capacity subnetworks to focus on the task-relevant
regions in the input. By doing this, the size of the CNN model
could be significantly reduced.

Following this direction, the work in
[58] introduced the conditional computation
idea, which only computes the gradient for
some important neurons. It proposed a new
type of general-purpose neural network com-
ponent: a sparsely gated mixture-of-experts
(MoE) layer. The MoE consisted of a number
of experts, each a simple feed-forward neural
network, and a trainable gating network that

selected a sparse combination of the experts to process each input.
In [59], dynamic DNNs (D2NNs) were introduced, which were a
type of feed-forward DNN that selected and executed a subset of
D2NN neurons based on the input.

There have been other attempts to reduce the number of
parameters of neural networks by replacing the fully con-
nected layer with global average pooling [43], [60]. Network
architectures, such as GoogleNet or network in network,
can achieve state-of-the-art results on several benchmarks
by adopting this idea. However, transfer learning, i.e., reus-
ing features learned on the ImageNet data set and applying
them to new tasks, is more difficult with this approach. This
problem was noted by Szegedy et al. [60] and motivated
them to add a linear layer on top of their networks to enable
transfer learning.

The work in [61] targeted the ResNet-based model with a
spatially varying computation time, called stochastic depth,
which enabled the seemingly contradictory setup to train short
networks and used deep networks at test time. It started with
very deep networks and, while during training, for each mini-
batch, randomly dropped a subset of layers and bypassed them
with the identity function. This model is end-to-end trainable,
deterministic, and can be viewed as a black-box feature extrac-
tor. Following this direction, the work in [62] proposed a pyra-
midal residual network with stochastic depth.

Other approaches to reduce the convolutional overheads
include using FFT-based convolutions [63] and fast convolution
using the Winograd algorithm [64]. Those works only aim to
speedup the computation but not reduce the memory storage.

Benchmarks, evaluation, and databases
In the past five years, the deep-learning community has made
great efforts in benchmark models. One of the most well-
known models used in compression and acceleration for CNNs

The standard criteria
to measure the quality
of model compression
and acceleration are the
compression and the
speedup rates.

133IEEE SIgnal ProcESSIng MagazInE | January 2018 |

is Alexnet [1], which occasionally has been
used for assessing the performance of com-
pression. Other popular standard models
include LeNets [65], All-CNN-nets [66],
and many others. LeNet-300-100 is a fully
connected network with two hidden layers,
with 300 and 100 neurons each. LeNet-5 is
a convolutional network that has two convo-
lutional layers and two fully connected layers. Recently, more
state-of-the-art architectures are used as baseline models in
many works, including network in networks [67], VGGNets
[68], and ResNets [69]. Table 4 summarizes the baseline mod-
els commonly used in several typical compression methods.

The standard criteria to measure the quality of model com-
pression and acceleration are the compression and the speedup
rates. Assume that a is the number of the parameters in the
original model M and *a is that of the compressed model * ,M
then the compression rate *(,)M Ma of *M over M is

 *, .
*

M M
a
a

a =^ h (8)

Another widely used measurement is the index space saving
defined in several papers [70], [71] as

 *, ,
*

*M M
a

a a
b = -^ h (9)

where a and a are the number of the dimension of the index
space in the original model and that of the compressed
model, respectively.

Similarly, given the running time s of M and *s of * ,M the
speedup rate *(,)M Md is defined as

 s, .M M s
d =^ h (10)

Most work used the average training time per epoch to mea-
sure the running time, while in [70] and [71], the average
testing time was used. Generally, the compression rate and
speedup rate are highly correlated, as smaller models often
results in faster computation for both the training and the
testing stages.

Good compression methods are expected to achieve almost
the same performance as the original model with much smaller
parameters and less computational time. However, for differ-
ent applications with varying CNN designs, the correlation
between parameter size and computational time may be dif-
ferent. For example, it is observed that, for deep CNNs with
fully connected layers, most of the parameters are in the fully
connected layers; while for image classification tasks, float-
point operations are mainly in the first few convolutional lay-
ers since each filter is convolved with the whole image, which
is usually very large at the beginning. Different applications
should focus on different layers.

Discussion and challenges
In this article, we summarized recent works on compress-
ing and accelerating DNNs. Here we discuss more details

about how to choose different compression
approaches and possible challenges/solu-
tions in this area.

General suggestions
There is no golden rule to measure which one
of the four kinds of approaches is the best. How
to choose the proper approaches is really de-

pendent on the applications and requirements. Here, we provide
some general suggestions.

 ■ If the applications needs compacted models from pretrained
models, one can choose either pruning and sharing or low-
rank factorization-based methods. If end-to-end solutions
are needed for the problem, the low-rank and transferred
convolutional filters approaches are preferred.

 ■ For applications in some specific domains, methods with
human prior (like the transferred convolutional filters and
structural matrix) sometimes have benefits. For example,
when conducting medical images classification, transferred
convolutional filters should work well as medical images
(like organs) do have the rotation transformation property.

 ■ Usually, the approaches of pruning and sharing could give
a reasonable compression rate while not hurting the accu-
racy. Thus, for applications that require stable model accu-
racy, it is better to utilize pruning and sharing.

 ■ If a problem involves small- or medium-size data sets, one
can try the KD approaches. The compressed student model
can take the benefit of transferring knowledge from the
teacher model, making it a robust data set that is not large.

 ■ As we mentioned in the “Introduction,” techniques of the
four themes are orthogonal. It makes sense to combine two
or three of them to maximize the compression/speedup
rates. For some specific applications, like object detection,
which requires both convolutional and fully connected lay-
ers, one can compress the convolutional layers with low-
rank factorization and the fully connected layers with a
pruning method.

Table 4. A summary of baseline models used in
different representative works of network compression.

Baseline Models Representative Works

Alexnet [1] Structural matrix [30]–[32]

Low-rank factorization [39]

Network in network [67] Low-rank factorization [39]

VGGNets [68] Transferred filters [43]

Low-rank factorization [39]

ResNets [69] Compact filters [48], stochastic depth [61]

Parameter sharing [25]

All-CNN-nets [66] Transferred filters [44]

LeNets [65] Parameter sharing [25]

Parameter pruning [21], [23]

Proposing some general/
unified approaches is
one direction that can
be taken regarding
the use of CNNs in
small platforms.

134 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

Technique challenges
Techniques for deep model compression
and acceleration are still in the early stages,
and the following challenges still need to
be addressed.

 ■ Most of the current state-of-the-art ap -
proaches are built on well-designed
CNN models, which have limited free-
dom to change the configuration (e.g.,
network structural, hyperparameters).
To handle more complicated tasks, it should provide more
plausible ways to configure the compressed models.

 ■ Pruning is an effective way to compress and accelerate
CNNs. Current pruning techniques are mostly designed to
eliminate connections between neurons. On the other hand,
a pruning channel can directly reduce the feature map
width and shrink the model into a thinner one. It is efficient
but also challenging because removing channels might dra-
matically change the input of the following layer. It is
important to focus on how to address this issue.

 ■ As we mentioned previously, methods of structural matrix
and transferred convolutional filters impose prior human
knowledge to the model, which could significantly affect
the performance and stability. It is critical to investigate
how to control the impact of the imposed prior knowledge.

 ■ The methods of KD provide many benefits such as directly
accelerating the model without special hardware or imple-
mentations. It is still worth it to develop KD-based
approaches and explore how to improve the performance.

 ■ Hardware constraints in various of small platforms (e.g.,
mobile, robotic, self-driving cars) are still a major problem
that hinder the extension of deep CNNs. How to make full
use of the limited computational source available and how
to design special compression methods for such platforms
are still challenges that need to be addressed.

Possible solutions
To solve the hyperparameters configuration problem, we can
rely on the recent learning-to-learn strategy [72], [73]. This
framework provides a mechanism, allowing the algorithm to
automatically learn how to exploit structure in the problem of
interest. There are two different ways to combine the learning-
to-learn module with the model compression. The first designs
compression and learning-to-learn simultaneously, while the
second way first configures the model with learn-to-learning
and then prunes the parameters.

Channel pruning provides the efficiency benefit on
both CPUs and GPUs because no special implementation is
required. But it is also challenging to handle the input con-
figuration. One possible solution is to use the training-based
channel pruning methods [74], which focus on imposing sparse
constraints on weights during training, and could adaptively
determine hyperparameters. However, training from scratch
for such a method is costly for very deep CNNs.

Exploring new types of knowledge in the teacher models
and transferring it to the student models is useful for the KD

approaches. Instead of directly reducing
and transferring parameters from the teach-
er models, passing selectivity knowledge of
neurons could be helpful. One can derive
a way to select essential neurons related to
the task. The intuition is that, if a neuron
is activated in certain regions or samples,
this implies these regions or samples share
some common properties that may relate
to the task. Performing such steps is time-

consuming, thus efficient implementation is important.
For methods with convolutional filters and the structural

matrix, we can conclude that the transformation lies in the
family of functions that only operations on the spatial dimen-
sions. Hence, to address the imposed prior issue, one solution
is to provide a generalization of the aforementioned approach-
es in two aspects: 1) instead of limiting the transformation
to belong to a set of predefined transformations, let it be the
whole family of spatial transformations applied to 2-D filters
or the matrix, and 2) learn the transformation jointly with all
of the model parameters.

Proposing some general/unified approaches is one direction
that can be taken regarding the use of CNNs in small platforms.
Yuhen et al. [75] presented a feature map dimensionality reduc-
tion method by excavating and removing redundancy in feature
maps generated by different filters, which could also preserve
intrinsic information of the original network. The idea can be
extended to make CNNs more applicable for different platforms.
The work in [76] proposed a one-shot whole network compres-
sion scheme consisting of three components: rank selection, low-
rank tensor decomposition, and fine-tuning to make deep CNNs
work in mobile devices. From the systematic side, Facebook
released the platform Caffe2 [77], which employed a particularly
lightweight and modular framework and included mobile-specif-
ic optimizations based on the hardware design. Caffe2 can help
developers and researchers train large machine-learning models
and deliver AI on mobile devices.

Acknowledgments
We would like to thank the reviewers and broader community
for their feedback on this survey. In particular, we would like
to thank Hong Zhao from the Department of Automation of
Tsinghua University for her help on modifying this article.
This research is supported by National Science Foundation of
China, grant number 61401169. The corresponding author of
this article is Pan Zhou.

Authors
Yu Cheng (chengyu@us.ibm.com) received his bachelor’s
degree in automation from Tsinghua University, Beijing,
China, in 2010 and his Ph.D. degree in computer science
from Northwestern University, Evanston, Illinois in 2015.
Currently, he is a research staff member at AI Foundations Lab,
IBM T.J. Watson Research Center, Yorktown Heights, New
York. His research is focused on deep learning in general, with
specific interests in deep generative models and deep models

good compression
methods are expected
to achieve almost the
same performance as the
original model with much
smaller parameters and
less computational time.

135IEEE SIgnal ProcESSIng MagazInE | January 2018 |

compression. He also has published many works regarding the
applications of deep learning in computer vision and natural
language processing.

Duo Wang (d-wang15@mails.tsinghua.edu.cn) received the
B.S. degree in automation from the Harbin Institute of
Technology, China, in 2015, where he is currently pursuing his
Ph.D. degree in the Department of Automation, Tsinghua
University. His research interests are deep/machine learning and
their applications in computer vision and robotics vision.

Pan Zhou (panzhou@hust.edu.cn) received his B.S. degree
in the Advanced Class of Huazhong University of Science and
Technology (HUST), Wuhan China, and his M.S. degree in elec-
tronics and information engineering from the same university in
2006 and 2008, respectively. He received his Ph.D. degree from
the School of Electrical and Computer Engineering at the
Georgia Institute of Technology, Atlanta in 2011. Currently, he is
an associate professor with School of Electronic Information and
Communications, HUST. His research interests include big data
analytics and machine learning, security and privacy, and infor-
mation networks.

Tao Zhang (taozhang@mail.tsinghua.edu.cn) received his
B.S., M.S., and Ph.D. degrees from Tsinghua University,
Beijing, China, in 1993, 1995, and 1999, respectively, and his
Ph.D. degree from Saga University, Japan, in 2002, all in con-
trol engineering. He is a professor with the Department of
Automation, Tsinghua University. His current research inter-
ests include artificial intelligence, robotics, image processing,
control theory, and control of spacecraft.

References
[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proc. Conf. Neural Information Processing
Systems, 2012, pp. 1097–1105.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to
human-level performance in face verification,” in Proc. IEEE Conf. Computer
Vision Pattern Recognition, 2014, pp. 1701–1708.

[3] Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are sparse,
selective, and robust,” in Proc. IEEE Conf. Computer Vision Pattern Recognition,
2015, pp. pp. 2892–2900.

[4] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M.
Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng, “Large scale distributed deep
networks,” in Proc. Conf. Neural Information Processing Systems, 2012, pp.
1223–1231.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” Computing Res. Repository, vol. abs/1512.03385, 2015. [Online]. Available:
https://arxiv.org/pdf/1512.03385.pdf

[6] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, “Compressing deep convolutional
networks using vector quantization,” Computing Res. Repository, vol.
abs/1412.6115, 2014. [Online]. Available: https://arxiv.org/pdf/1412.6115.pdf

[7] Y. W. Q. H. Jiaxiang Wu, C. Leng, and J. Cheng, “Quantized convolutional neu-
ral networks for mobile devices,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, 2016, pp. 4820–4828.

[8] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural net-
works on cpus,” in Proc. Conf. Neural Information Processing Systems Deep
Learning and Unsupervised Feature Learning Workshop, 2011.

[9] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” in Proc. 32nd Int. Conf. Machine Learning,
2015, vol. 37, pp. 1737–1746.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and Huffman coding,” in Proc. Int.
Conf. Learning Representations, 2016.

[11] Y. Choi, M. El-Khamy, and J. Lee, “Towards the limit of network quantiza-
tion,” Computing Res. Repository, vol. abs/1612.01543, 2016. [Online]. Available:
https://arxiv.org/abs/1612.01543

[12] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” arXiv
Preprint, arXiv:1612.01064, 2016.

[13] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep neu-
ral networks with binary weights during propagations,” in Proc. Advances Neural
Information Processing Systems Annu. Conf., 2015, pp. 3123–3131.

[14] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks
with weights and activations constrained to +1 or −1,” Computing Res. Repository,
vol. abs/1602.02830, 2016. [Online]. Available: https://arxiv.org/abs/1602.02830

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in Proc. European Conf.
Computer Vision, 2016, pp. 525–542.

[16] P. Merolla, R. Appuswamy, J. V. Arthur, S. K. Esser, and D. S. Modha, “Deep
neural networks are robust to weight binarization and other non-linear distortions,”
Computing Res. Repository, vol. abs/1606.01981, 2016. [Online]. Available: https://
arxiv.org/abs/1606.01981

[17] L. Hou, Q. Yao, and J. T. Kwok, “Loss-aware binarization of deep networks,”
Computing Res. Repository, vol. abs/1611.01600, 2016. [Online]. Available: https://
arxiv.org/abs/1611.01600

[18] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks with
few multiplications,” Computing Res. Repository, vol. abs/1510.03009, 2015.
[Online]. Available: https://arxiv.org/abs/1510.03009

[19] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network con-
struction with back-propagation,” Adv. Neural Inform. Process. Syst. 1, 1989, pp.
177–185.

[20] Y. L. Cun, J. S. Denker, and S. A. Solla, “Advances in neural information pro-
cessing systems 2,” in Optimal Brain Damage, D. S. Touretzky, Ed. San Mateo,
CA: Morgan Kaufmann, 1990, pp. 598–605.

[21] B. Hassibi, D. G. Stork, and S. C. R. Com, “Second order derivatives for
network pruning: Optimal brain surgeon,” in Advances in Neural Information
Processing Systems, vol. 5. San Mateo, CA: Morgan Kaufmann, 1993, pp. 164–
171.

[22] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural net-
works,” in Proc. British Machine Vision Conf., 2015, pp. 31.1–31.12.

[23] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connec-
tions for efficient neural networks,” in Proc. 28th Int. Conf. Neural Information
Processing Systems, 2015, pp. 1135–1143.

[24] W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing
neural networks with the hashing trick,” in Proc. Machine Learning Research
Workshop Conf., 2015, pp. 2285–2294.

[25] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural network
compression,” Computing Res. Repository, vol. abs/1702.04008, 2017. [Online].
Available: https://arxiv.org/abs/1702.04008

[26] V. Lebedev and V. S. Lempitsky, “Fast convnets using group-wise brain dam-
age,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 2554–
2564.

[27] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact
CNNs,” in Proc. European Conf. Computer Vision, 2016, pp. 662–677.

[28] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in
deep neural networks,” Adv. Neural Inform. Process. Syst., vol. 29, pp. 2074–2082,
2016.

[29] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” Computing Res. Repository, vol. abs/1608.08710, 2016.
[Online]. Available: https://arxiv.org/abs/1608.08710

[30] Y. Cheng, F. X. Yu, R. Feris, S. Kumar, A. Choudhary, and S.-F. Chang, “An
exploration of parameter redundancy in deep networks with circulant projections,” in
Proc. Int. Conf. Computer Vision, 2015, pp. 2857–2865.

[31] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song, and Z.
Wang, “Deep fried convnets,” in Proc. Int. Conf. Computer Vision, 2015, pp. 1476–
1483.

[32] V. Sindhwani, T. Sainath, and S. Kumar. (2015). Structured transforms for
small-footprint deep learning. Advances in Neural Information Processing
Systems, 28, pp. 3088–3096. [Online]. Available: http://papers.nips.cc/paper/5869-
structured-transforms-for-small-footprint-deep-learning.pdf

[33] J. Chun and T. Kailath, Generalized Displacement Structure for Block-
Toeplitz, Toeplitz-Block, and Toeplitz-Derived Matrices. Berlin, Germany:
Springer, 1991, pp. 215–236.

[34] M. V. Rakhuba and I. V. Oseledets. (2015). Fast multidimensional convolution
in low-rank tensor formats via cross approximation. SIAM J. Sci. Comput., 37(2).
[Online]. Available: http://dx.doi.org/10.1137/140958529

[35] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, “Learning separable filters,”
in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2013, pp. 2754–
2761.

136 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

[36] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting lin-
ear structure within convolutional networks for efficient evaluation,” Adv. Neural
Inform. Process. Syst. vol. 27, pp. 1269–1277, 2014.

[37] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neu-
ral networks with low rank expansions,” in Proc. British Machine Vision Conf.,
2014, pp. 1–13.

[38] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky,
“Speeding-up convolutional neural networks using fine-tuned CP-decomposition,”
Computing Res. Repository, vol. abs/1412.6553, 2014. [Online]. Available: https://
arxiv.org/abs/1412.6553

[39] C. Tai, T. Xiao, X. Wang, and E. Weinan, “Convolutional neural networks
with low-rank regularization,” Computing Res. Repository, vol. abs/1511.06067,
2015.

[40] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. D. Freitas. (2013).
Predicting parameters in deep learning. Advances in Neural Information
Processing Systems, 26, 2148–2156. [Online]. Available: http://media.nips.cc/nips-
books/nipspapers/paper_files/nips26/1053.pdf

[41] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
“Low-rank matrix factorization for deep neural network training with high-dimen-
sional output targets,” in Proc. IEEE Int. Conf. Acoustics Speech Signal
Processing, 2013, pp. 6655–6659.

[42] T. S. Cohen and M. Welling, “Group equivariant convolutional networks,”
arXiv Preprint, arXiv:1602.07576, 2016.

[43] S. Zhai, Y. Cheng, and Z. M. Zhang, “Doubly convolutional neural networks,” in
Proc. Advances Neural Information Processing Systems, 2016, pp. 1082–1090.

[44] W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and improving con-
volutional neural networks via concatenated rectified linear units,” arXiv Preprint,
arXiv:1603.05201, 2016.

[45] H. Li, W. Ouyang, and X. Wang, “Multi-bias non-linear activation in deep neural
networks,” arXiv Preprint, arXiv:1604.00676, 2016.

[46] S. Dieleman, J. D Fauw, and K. Kavukcuoglu, “Exploiting cyclic symmetry in
convolutional neural networks,” in Proc. 33rd Int. Conf. Machine Learning, 2016, vol.
48, pp. 1889–1898.

[47] C. Szegedy, S. Ioffe, and V. Vanhoucke. (2016). Inception-v4, inception-resnet and
the impact of residual connections on learning, Computing Res. Repository, vol.
abs/1602.07261. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1602.
html#SzegedyIV16

[48] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Unified, small, low
power fully convolutional neural networks for real-time object detection for autono-
mous driving,” Computing Res. Repository, vol. abs/1612.01051, 2016. [Online].
Available: https://arxiv.org/abs/1612.01051

[49] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. (2006). Model compression.
Proc. 12th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, pp. 535–
541. [Online]. Available: http://doi.acm.org/10.1145/1150402.1150464

[50] J. Ba and R. Caruana, “Do deep nets really need to be deep?” Adv. Neural Inform.
Process. Syst., vol. 27, pp. 2654–2662, 2014.

[51] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-
work,” Computing Res. Repository, vol. abs/1503.02531, 2015. [Online]. Available:
https://arxiv.org/abs/1503.02531

[52] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
“Fitnets: Hints for thin deep nets,” Computing Res. Repository, vol. abs/1412.6550,
2014. [Online]. Available: https://arxiv.org/abs/1412.6550

[53] A. Korattikara Balan, V. Rathod, K. P. Murphy, and M. Welling. (2015). Bayesian
dark knowledge. Advances in Neural Information Processing Systems, 28, 3420–3428.
[Online]. Available: http://papers.nips.cc/paper/5965-bayesian-dark-knowledge.pdf

[54] P. Luo, Z. Zhu, Z. Liu, X. Wang, and X. Tang, “Face model compression by dis-
tilling knowledge from neurons,” in Proc. 30th AAAI Conf. Artificial Intelligence,
2016, pp. 3560–3566.

[55] T. Chen, I. J. Goodfellow, and J. Shlens, “Net2net: Accelerating learning via
knowledge transfer,” Computing Res. Repository, vol. abs/1511.05641, 2015. [Online].
Available: https://arxiv.org/abs/1511.05641

[56] S. Zagoruyko and N. Komodakis. (2016). Paying more attention to attention:
Improving the performance of convolutional neural networks via attention transfer,
Computing Res. Repository, vol. abs/1612.03928. [Online]. Available: http://arxiv.org/
abs/1612.03928

[57] A. Almahairi, N. Ballas, T. Cooijmans, Y. Zheng, H. Larochelle, and A. C.
Courville, “Dynamic capacity networks,” in Proc. 33rd Int. Conf. Machine Learning,
2016, pp. 2549–2558.

[58] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean.
(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. [Online]. Available: https://openreview.net/pdf?id=B1ckMDqlg

[59] D. Wu, L. Pigou, P. Kindermans, N. D. Le, L. Shao, J. Dambre, and J.
Odobez, “Deep dynamic neural networks for multimodal gesture segmentation and
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 8, pp. 1583–
1597, 2016.

[60] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich. (2015). Going deeper with convolutions. Proc. IEEE
Computer Vision Pattern Recognition. [Online]. Available: http://arxiv.org/
abs/1409.4842

[61] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks
with stochastic depth,” Computing Res. Repository, vol. arXiv:1603.09382,
2016.

[62] Y. Yamada, M. Iwamura, and K. Kise. (2016). Deep pyramidal residual networks
with separated stochastic depth, Computing Res. Repository, vol. abs/1612.01230.
[Online]. Available: http://arxiv.org/abs/1612.01230

[63] M. Mathieu, M. Henaff, and Y. Lecun, “Fast training of convolutional networks
through FFTs,” Computing Res. Repository, vol. arXiv:1312.5851, 2014.

[64] A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,”
in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 4013–
4021.

[65] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. IEEE, pp. 2278–2324, 1998.

[66] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller, “Striving for
simplicity: The all convolutional net,” Computing Res. Repository, vol. abs/1412.6806,
2014. [Online]. Available: https://arxiv.org/abs/1412.6806

[67] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proc. Int. Conf.
Learning Representations, 2014. [Online]. Available: https://arxiv.org/abs/
1312.4400

[68] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” Computing Res. Repository, vol. abs/1409.1556, 2014.
[Online]. Available: https://arxiv.org/abs/1409.1556

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” arXiv Preprint, arXiv:1512.03385, 2015.

[70] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. N. Choudhary, and S. Chang, “An
exploration of parameter redundancy in deep networks with circulant projections,” in
Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 2857–2865.

[71] M. Moczulski, M. Denil, J. Appleyard, and N. de Freitas, “ACDC: A structured
efficient linear layer,” in Proc. Int. Conf. Learning Representations, 2016.

[72] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T.
Schaul, and N. de Freitas, “Learning to learn by gradient descent by gradient
descent,” in Proc. Neural Information Processing Systems Conf., 2016, pp. 3981–
3989.

[73] D. Ha, A. Dai, and Q. Le, “Hypernetworks,” in Proc. Int. Conf. Learning
Representations, 2016.

[74] J. M. Alvarez and M. Salzmann, “Learning the number of neurons in deep net-
works,” in Proc. Neural Information Processing Systems Conf., 2016, pp. 2270–
2278.

[75] Y. Wang, C. Xu, C. Xu, and D. Tao, “Beyond filters: Compact feature map for
portable deep model,” in Proc. 34th Int. Conf. Machine Learning, 2017, pp. 3703–
3711.

[76] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep
convolutional neural networks for fast and low power mobile applications,” Computing
Res. Repository, vol. abs/1511.06530, 2015. [Online]. Available: https://arxiv.org/
abs/1511.06530

[77] Facebook, Inc. Caffe2: A new lightweight, modular, and scalable deep learning
framework. (2016). [Online]. Available: https://caffe2.ai/

 SP

