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Abstract--The computational power of  formal models for networks of  spiking neurons is compared with that of  other 

neural network models based on McCulloch Pitts neurons (i.e., threshold gates), respectively, sigmoidal gates. In 

particular it is shown that networks of  spiking neurons are, with regard to the number of  neurons that are needed, 

computationally more powerful than these other neural network models. A concrete biologically relevant function is 

exhibited which can be computed by a single spiking neuron (for biologically reasonable values o f  its parameters), but 

which requires hundreds of  hidden units on a sigmoidal neural net. On the other hand, it is known that any function that 

can be computed by a small sigmoidal neural net can also be computed by a small network of  spiking neurons. This 

article does not assume prior knowledge about spiking neurons, and it contains an extensive list o f  references to the 

currently available literature on computations in networks of  spiking neurons and relevant results from neurobiology. 
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1. D E F I N I T I O N S  AND M O T I V A T I O N S  

If one classifies neural network models according to their 

computational units, one can distinguish three different 

generations. The f irst  generation is based on 

M c C u l l o c h - P i t t s  neurons as computational units. 

These are also referred to as perceptrons or threshold 

gates. They give rise to a variety of  neural network mod- 

els such as multilayer perceptrons (also called threshold 

circuits), Hopfield nets, and Boltzmann machines. A 

characteristic feature of  these models is that they can 

only give digital output. In fact they are universal for 

computations with digital input and output, and every 

boolean function can be computed by some multilayer 

perceptron with a single hidden layer. 

The second generation is based on computational units 

that apply an "activation function" with a continuous set 

of  possible output values to a weighted sum (or poly- 

nomial) of  the inputs. Common activation functions are 

the s igmoid func t ion  a(y) = 1/(1 + e -y) and the linear 
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saturated function 7r with 7r(y) = y for 0 --< y --< 1, 7r(y) = 

0 for y < 0, lr(y) = 1 for y > 1. Besides piecewise 

polynomial activation functions we consider in this 

paper also "piecewise exponential" activation func- 

tions, whose pieces can be defined by expressions invol- 

ving exponentiation (such as the definition of  a). Typical 

examples for networks from this second generation are 

feedforward and recurrent sigmoidal neural nets, as well 

as networks of  radial basis function units. These nets are 

also able to compute (with the help of  thresholding at the 

network output) arbitrary boolean functions. Actually it 

has been shown that neural nets from the second genera- 

tion can compute certain boolean functions with f e w e r  

gates than neural nets from the first generation (Maass, 

Schnitger, & Sontag, 1991; DasGupta & Schnitger, 

1993). In addition, neural nets from the second genera- 

tion are able to compute functions with analog input and 

output. In fact they are universal for analog computations 

in the sense that any continuous function with a compact 

domain and range can be approximated arbitrarily well 

(with regard to uniform convergence, i.e., the L= - 

norm) by a network of  this type with a single hidden 

layer. Another characteristic feature of  this second 

generation of  neural network models is that they support 

learning algorithms that are based on gradient descent 

such as backprop. 
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F IGURE 1. S imul taneous  recordings (over 4 sec) of the f ir ing t imes of 30 neurons f rom m o n k e y  striate cortex by Kri iger & Aiple  (1988).  

Each f ir ing is denoted by a short  vertical bar, with a separate  row for each neuron.  For compar ison  we have marked the length of an 

interval of 100 msec by  two vertical lines. This t ime span is known to suff ice for the comple t ion  of some complex  mult i layer  cortical 

computat ions .  

For a biological interpretation of neural nets from the 

second generation one views the output of a sigmoidal 

unit as a representation of the current firing rate of a 

biological neuron. Since biological neurons, especially 

in higher cortical areas, are known to fire at various 

intermediate frequencies between their minimum and 

maximum frequency, neural nets from the second gen- 

eration are, with regard to this "firing rate interpreta- 

tion", biologically more realistic than models from the 

first generation. 

However, at least with regard to fast analog computa- 

tions by networks of neurons in the cortex, the "firing 

rate interpretation" itself has become questionable. Per- 

rett, Rolls, and Caan (1982) and Thorpe and Imbert 

(1989) have demonstrated that visual pattern analysis 

and pattern classification can be carried out by humans 

in just 100 msec, in spite of the fact that it involves a 

minimum of 10 synaptic stages from the retina to the 

temporal lobe (see Figure 1.) The same speed of visual 

processing has been measured by Rolls and Tovee (1994) 

in macaque monkeys. Furthermore, they have shown that 

a single cortical area involved in visual processing can 

complete its computation in just 20-30 msec (Rolls, 

1994; Rolls & Tovee, 1994). On the other hand, the 

firing rates of neurons involved in these computations 

are usually below 100Hz, and hence at least 20-  

30 msec would be needed just to sample the current 

firing rate of a neuron. Thus a coding of analog variables 

by firing rates seems quite dubious in the context of fast 

cortical computations. 

On the other hand, experimental evidence has accu- 

mulated during the last few years which indicates that 

many biological neural systems use the timing of single 

action potentials (or "spikes")  to encode information 

(Abeles, 1991; Abeles, Bergman, Margalit, & Vaadia, 

1993; Aertsen, 1993; Arbib, 1995; Bair, Koch, News- 

ome, & Britten, 1994; Bialek & Rieke, 1992; Ferster & 

Spruston, 1995; Hopfield, 1995; Kempter, Gerstner, van 

Hemmen, & Wagner, 1996; Lestienne, 1996; Rieke, 

Warland, van Stevenick, & Bialek, 1996; Sejnowski, 

1995; Singer, 1995; Softky, 1994; Thorpe & Imbert, 

1989). 

These experimental results from neurobiology have 

lead to the investigation of a third generation of neural 

network models which employ spiking neurons (or 

"integrate-and-fire neurons") as computational units. 

Recently, one has also started to carry out experiments 

with related new types of electronic hardware such as 

pulse stream VLSI (see, e.g., DeYong, Findley, & Fields, 

1992; Douglas, Koch, Mahowald, Martin, & Suarez, 

1995; Horinchi, Lazzaro, Moore, & Koch, 1991; 

Jahnke, Roth, & Klar, 1996; Jiu & Leong, 1996; 

Mahowald, 1992, 1994; Mead, 1989; Meador, Wu, 

Cole, Nintunze, & Chintrakulchai, 1991; Murray & 
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FIGURE 2. Typical shape of response functions (EPSP and IPSP) 

of a biological neuron. 

Tarassenko, 1994; Northmore & Elias, 1996; Pratt, 1989; 

Zaghloul, Meador, & Newcomb, 1994). In these new 

chips one can encode analog variables by time differ- 

ences between pulses, which has practical advantages 

over other encoding methods. The goal of  understanding 

the capabilities and limitations of  this new type of  analog 

neural hardware provides additional motivation for 

theoretical investigation of  the third generation of  

neural network models. 

One may also view threshold circuits (i.e., neural nets 

from the first generation) as abstract models for digital 

computation on networks of  spiking neurons, where the 

bit 1 is coded by the firing of  a neuron within a certain 

short time window, and 0 by the non-firing of  this neuron 

within this time window (see e.g., Valiant, 1994). How- 

ever, under this coding scheme a threshold circuit pro- 

vides a reasonably good model for a network of  spiking 

neurons only if the firing times of  all neurons that provide 

the input bits for another spiking neuron are synchronized 

(up to a few msec). Apparently such strongly synchro- 

nized activity does occur in biological neural systems 

(see Abeles et al., 1993; Bair et al., 1994) but many 

argue that it is not their typical mode of  operation. 

Mathematical models for ' 'integrate-and-fire 

neurons" (or "spiking neurons" as they have been 

called more recently) can be traced back to Lapique 

(1907) (see Tuckwell, 1988). There exist a number of  

variations of  this model, which are described and com- 

pared in a recent survey (see Gerstner, 1995). With 

regard to the relationship of  these mathematical models 

to the known behaviour of  biological neurons we refer to 

Abeles (1991); Aertsen (1993); Arbib (1995); Bower and 

Beeman (1995); Churchland and Sejnowski (1993); 

Hopfield (1995); Johnston and Wu (1995); Rieke et al. 

(1996); Shepherd (1990, 1994); Tuckwell (1988); and 

Taylor and Alavi (1993). These mathematical models 

for spiking neurons do not provide a complete descrip- 

tion of  the extremely complex computational function of  

a biological neuron. Rather, like the computational units 

of  the previous two generations of  neural network 

models, these are simplified models that focus on just a 

few aspects of  biological neurons. However, in compar- 

ison with the previous two models they are substantially 

more realistic. In particular, they describe much better 

the actual output  of a biological neuron, and hence they 

allow us to investigate on a theoretical level the possibi- 

lities of  using time as a resource for computation and 

communication. Whereas the timing of  computation 

steps is usually "trivialized" in the models from the 

preceding two generations (either through an assumed 

synchronization, or through an assumed stochastic asyn- 

chronicity), the timing of  individual computation steps 

plays a key role for computations in networks of  spiking 

neurons. In fact, the output of  a spiking neuron v consists 

of the set Fv C R + of  points in time when v "f ires" 

(where R + = {x E R: x--> 0}). 

In the simplest (deterministic) model of  a spiking 

neuron one assumes that a neuron v fires whenever its 

"potential"  Pv (which models the electric membrane 

potential at the "trigger zone"  of  neuron v) reaches a 

certain threshold ®v. This potential Pv is the sum of 

so-called excitatory postsynaptic potentials ( "EPSPs" )  

and inhibitory postsynaptic potentials ( " IPSPs") ,  which 

result from the firing of  other neurons u that are 

connected through a "synapse"  to neuron v. The firing 

of  a "presynaptic"  neuron u at time s contributes to the 

potential Pv at time t an amount that is modelled by the 

term wu,:eu, v(t - s), which consists of  a "we igh t "  wu,~ >- 0 

and a response funct ion  eu,~(t - s). Biologically realistic 

shapes of  such response functions are indicated in 

Figure 2. 

The "weigh t"  w,,~ --> 0 in the term Wu,:eu,v(t - s) 

reflects the "s t rength" (called "eff icacy"  in neuro- 

biology) of  the synapse between neuron u and neuron 

v. In the context of  learning one can replace Wu, v by a 

funct ion Wu, v(t). In addition it has been conjectured that 

rapid changes of  the value of  w~,~(t) are also essential for 

computations in biological neural systems. However for 

simplicity we view here Wu,v just as a constant. 

The restriction of  Wu, v to non-negative values is moti- 

vated by the assumption that a biological synapse is 

either "exci ta tory"  or " inhibi tory",  and that it does 

not change its " s ign"  in the course of  a "learning pro- 

cess".  In addition, for most biological neurons u, either 

all response functions e u,~(t - s) for postsynaptic neurons 

v are "exci tatory" (i.e., positive), or all of  them are 

" inhibi tory" (i.e., negative). Obviously these constraints 
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FIGURE 3. Typical shape of the threshold function of a biological 

neuron. 

have basically no impact on theoretical complexi ty 

investigations (just consider pairs of excitatory and inhi- 

bitory neurons instead of  single neurons), unless one 

cares about small constant factors in the size of  networks, 

or one wants to model  the actual architecture of cortical 

circuits (see Douglas et al., 1995; Shepherd, 1990). 

It is mathematical ly more convenient to assume that 

the potential Pv has value 0 in the absence of postsyn- 

aptic potentials, and that the threshold value O v is always 

> 0. In a " t y p i c a l "  biological  neuron the resting mem- 

brane potential is around - 7 0  mV, the firing threshold of  

a " r e s t ed"  neuron is around - 5 0  mV, and a postsynaptic 

potential (i.e., EPSP or IPSP) changes the membrane 

potential temporari ly by at most a few mV. 

If a neuron v has fired at time t ' ,  it will not fire again 

for a few msec after t ' ,  no matter how large its current 

potential Pv(t) is ( "abso lu t e  refractory pe r iod" ) .  Then 

for a few further msec it is still " re luc tan t"  to fire, i.e., a 

firing requires a larger value of Pv(t) than usual ( " r e l a -  

tive refractory p e r i o d " ) .  Both of these refractory effects 

are modelled by a suitable " threshold  func t ion"  0 v(t - t '), 

where t '  is the time of  the most recent firing of  v. In the 

deterministic (i.e., noise-free) version of  the spiking 

neuron model  one assumes that v fires whenever P,.(t) 

crosses from below the function Ov(t - t ') .  A typical 

shape of the function O~(t - t ' )  for a biological neuron 

is indicated in Figure 3. We assume that O,,(t - t ' )  = 

® ~,(0) for large values of  t - t ' .  We will consider in this 

article only computations in models for networks of spik- 

ing neurons where can assume that each neuron v did not 

fire for a while (i.e., t - t '  is large); hence, its threshold 

function has returned to its "rest ing va lue"  O~.(0). 

Therefore, the shape of  Ov is not relevant for these argu- 

ments, provided that O v(x) = O ~,(0) for sufficiently large x. 

A formal Spiking Neuron  Ne two rk  ( S N N ) - - w h i c h  

was introduced in Maass (1995b, 1996a)- -cons is t s  of a 

finite set V o f s p i k i n g  neurons,  a set E C_ V × V o f  

synapses,  a weight  Wu, v >-- 0 and a response func t ion  

su, v:R + ~ R for each synapse < u,v > E E (where 

R+: = {x E R:x --> 0}), and a threshold func t ion  O~.: 

R + ---* R + for each neuron v E V. 

If F~ C R + is the set of f i r ing  t imes of a neuron u, then 

the potent ia l  at the trigger zone of neuron v at time t is 

given by 

Pv(t) : = Z ~:<~, v>eE Z seF°:s<Y~, v'a~, v(t -- S). 

In a noise-free model a neuron v fires at time t as soon as 

Pv(t) reaches O~,(t - t ') ,  where t '  is the time of  the most 

recent firing of v. 

For some specified subset Vinpu t (~ V of input neurons 

one assumes that the firing times ( " sp ike  t ra ins")  Fu for 

neurons u ~ Vmput are not defined by the preceding con- 

vention, but are given from the outside. The firing times 

Fv for all other neurons v ~ V are determined by the 

previously described rules, and the output of  the network 

is given in the form of  the spike trains Fv for the neurons 

v in a specified set of  output  n e u r o n s  Voutput C V. 

Experiments have shown that in vitro biological 

neurons fire with slightly varying delays in response to 

repetitions of the same current injection (Aertsen, 1993). 

Only under certain conditions neurons are known to fire 

in a more reliable manner (Mainen & Sejnowski,  1995). 

Therefore one also considers the stochast ic  or noisy 

version of  the SNN model (Maass, 1996b), where the 

difference P,( t )  - Ov(t  - t ')  just  governs the probabi l i ty  

that neuron v fires at time t. The choice of  the exact firing 

times is left up to some unknown stochastic processes, 

and it may for example occur that v does not fire in a time 

interval I during which Pv(t) - Ov(t - t ' )  > 0, or that v 

fires spontaneously at a time t when Pv( t) - 0 ~,( t - t ') < O. 

The previously described noisy version of  the SNN 

model is basically identical with the spike response 

model  in Gerstner (1995) (see also Gerstner & van 

Hemmen, 1994), and with the other common mathe- 

matical models  for networks of spiking neurons (see, 

e.g., Abeles et al., 1993; Arbib,  1995; Tuckwell,  1988). 

Subtle differences exist between these models with 

regard to their treatment of the refractory effects and 

the " r e se t "  of  the membrane potential after a firing. 

But these differences will be irrelevant for the results 

that are considered in this article. 

For theoretical results about stable states, synfire 

chains, associative memory,  etc. in networks of spiking 

neurons we refer to Abeles (1991); Aityuan and Barrow 

(1993); Bienenstock (1995); Crair and Bialek (1990); 

Gerstner (1991); Gerstner and van Hemmen (1994); 

Gerstner, Ritz, and van Hemmen (1993); Herrmann, 

Hertz, and Priigel-Bennett (in press); Hopfield and 

Herz (1995); Ritz, Gerstner, Fuentes, and van Hemmen 

(1994). Results about computations with stochastic 

spiking neurons in firing rate coding can be found in 

Koch and Poggio (1992); Shawe-Taylor,  Jeavons, and 

Van Daalen (1991), and results about the information 

transmitted by spiking neurons in Stevens and Zador 

(1996). Computations with a somewhat different model 

of a stochastic spiking neuron are studied in Judd and 

Aihara (1993) (see also the discussion in Maass, 1996a; 

Shawe-Taylor  et al., 1991; Zhao, 1995). The possible use 

of phases of  periodically firing neurons for the dynamic 

binding of variables is investigated in Shastri and 

Ajjanagadde (1993). 

We use in this article the terms analog, numerical  and 

real-valued interchangeably to denote variables that 

range over R or an interval of  R. For simplicity we 
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assume that all neural nets from the first two generations 

that are considered in the following have a feedforward 

architecture. 

2. S I M U L A T I O N  AND S E P A R A T I O N  R E S U L T S  

The mathematically simplest one within the range of  

SNN models is the one where the firing is deterministic, 

and both the response functions and the threshold func- 

tions are piecewise constant (i.e., "step functions") as 

indicated in Figure 4. In the following we refer to this 

version as type A. This version of  the SNN model 

actually captures quite well the intended capabilities of  

artificial spiking neurons in pulse stream VLSI. 

We will later also discuss SNN models of  type B, 

where we assume that response and threshold functions 

are continuous and piecewise linear. Examples for the 

simplest non-trivial response functions of  type B are 

indicated in Figure 5. By using four or five linear seg- 

ments one can approximate quite well the response and 

threshold functions of  biological neurons with con- 

tinuous piecewise linear functions (and hence with 

spiking neurons of  type B). 

2.1. Computation of  Boolean Functions 

We first observe that for the case of  boolean input this 

model is computationally at least as powerful as neural 

nets from the first generation. We assume that n input bits 

x l ..... xn are given to the SNN via n input neurons 

al ..... an, where ai fires at a specific time Ti,p~t i f x i  = 1, 

and a i does not fire at all if xi ---- 0. We assume that the 

output bit of  the SNN is given by the firing or non-firing 

of  a specified output neuron during some specified time 

window. One can then simulate any layered feedforward 

neural net N from the first generation by an SNN N'  of  

type A which has basically the same architecture as N. 

~,~  (t-s) 

i i 
s s+Au, v 

) 

t 

Oo (t-t') 

> 

t 

FIGURE 4. Response and threshold functions of a spiking neu- 

ron of type A. 

Only if one wants to respect in N'  the biologically 

motivated constraint that each neuron in N '  should 

only trigger EPSPs, or only IPSPs, then each gate of  N 

has to be simulated by a pair consisting of  an excitatory 

and an inhibitory spiking neuron that both get the same 

input. In N' one need not make use of  the possibility to 

assign different values to the delays Au, v of  a neuron v 

(which model the time that passes until a firing of  u has 

an effect on Pv(t); see Figure 4) for different neurons u 

with < u,v > ~ E. For a biological neuron, these delays 

Au,~ may very well be different, depending on the length 

of  the axon of  u and the distance from the synapse to the 

trigger zone of  v, but also on the distribution of  ion 

channels in the dendritic tree of  v. In fact, it is frequently 

assumed that the delays Au, v ---- A~,~(t) are parameters that 

are tuned by some learning algorithm in biological neural 

systems (see, e.g., Kempter et al., 1996). Recent theore- 

tical results (Maass & Schmitt, 1997) indicate that the 

expressive power of  a neuron of  type A with n variable 

delays is larger than that of  a neuron of  type A with n 

variable weights: its VC-dimension is @(n log n) in the 

former case, but only @(n) in the latter case. 

If  one makes use of  the possibility to employ for 

certain neurons v different delays A~, v for different 

neurons u, then one can show that an SNN of type A is 

in fact computationally more powerful than neural nets of 

the same or similar size from the first or second 

genration. For that purpose we consider the concrete 

boolean function CDn: {0, 1} 2n ~ {0,1}, which is 

defined by 

1, if x i =y i  = 1 

C O n ( x  1 . . . . .  X n , y  I . . . . .  y n ) =  for some i ~ { 1 . . . . .  n} 

O, otherwise. 

This function appears to be relevant in a biological con- 

text, since it formalizes some form of pattern-matching, 

respectively, coincidence-detection. 

A single spiking neuron v of type A (or of  any other 

"reasonable" type) can compute CDn. One just has to 

choose the delays to v from the input nodes al, . . . ,an (for 

x 1 . . . . .  Xn)  and the input nodes bl ..... bn (for Yl . . . . .  Yn) in 

such a way that Aai,v ---- Ab~,v for i = 1 ..... n, and A%v is so 

much larger than Aa,,v fo r j  > i that the non-zero parts of  

the response functions eaj, v and ea,, v do not overlap if aj 

and ai fire simultaneously. All weights can be chosen 

equal to 1. 

On the side, we would like to point out that a single 

spiking neuron of  type A (or of  type B) can compute this 

function CDn in a noise-robust fashion, where small 

deviations in the firing times of  the input neurons 

al ..... an, in the delays from these input neurons, in the 

weights or in the firing threshold do not affect the 

correctness of  the output. To achieve this, it suffices to 

assign to the firing threshold 19 v(0) of  the spiking neuron 

a value such as 1.5.(maximal value of an EPSP). 
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THEOREM 1. 1. Any threshold circuit Nthat  computes CD~ 

has at least nllog(n + 1) gates. 

2. Any sigmoidal neural net N with piecewise poly- 

nomial activation functions that computes CDn has 

O(n 1/2) gates. For the case of  piecewise exponential acti- 

vation functions (such as o) one gets a lower bound of 
~(n 1/4). 

Proof. Let al  . . . . .  an, bl . . . . .  bn be the input nodes of N 

where it receives the values xl . . . . .  xn, Yl . . . . .  y ,  of  its 2n 

input variables. We  show in fact a slightly stronger result 

than claimed: The lower bounds hold already for the 

numbers of  those gates in N that have a direct edge 

from at least one of the input nodes b~ . . . . .  bn. Thus in 

the case of layered neural nets these are lower bounds for 

the number of  gates on the first hidden layer. 

We  consider computations of  N where some " f ixed"  

vector q E { 0,1 } n is assigned to the input nodes b 1 .... , bn, 

so that the output of N m a y  be viewed as a function of the 

assignments to the input nodes a~ . . . . .  an. We only con- 

sider the set S of  those n assignments _e i . . . . .  e_,, C { 0,1 } n to 

a~ . . . . .  an where exactly one of  the n input variables has 

the value 1. Since N c o m p u t e s  CDn, it is obvious that for 

the 2 n different choices of  q ~ {0,1 } n the network com- 

putes 2 n different functions from S into {0,1 }. 

For the proof  of  Part 1 we fix a linear order < on the 

computation nodes in N so that each computation node g 

receives (apart from input nodes a l . . . . .  an and b~ . . . . .  bn) 

only edges from other computation nodes in N that pre- 

cede g in this linear order. Consider some arbitrary com- 

putation node g in 9~, and a set Q of  assignments q c 

{0,1 }" to b~ . . . . .  bn so that every computation node before 

g computes a function from S into { 0,1 } (with regard to 

assignments of  inputs from S to the input nodes a~ .. . . .  

an), which is the same for each of  the assignments q E Q 

to b~ . . . . .  bn. Note that for the first computation node in N 

we can set Q: = {0,1} n. 

Then for assignments from S to a j . . . . .  an, the values 

received by gate g from other computation nodes do not 

depend on the chosen assignment q ~ Q to bj . . . . .  bn. 

Hence, the weighted sum of the values received by g via 

direct edges from the input nodes a l . . . . .  an, and from 

computation nodes that precede g in < , assumes at 

most n different values r~ --< ... --< r,, for the n different 

assignments from S to a~ . . . . .  a,, and arbitrary assign- 

ments from Q to b~ .. . . .  bn. Obviously the output of g 

depends only on the value of this weighted sum and on 

the weighted sum r of  those values that g receives via 

direct edges from input nodes b~ . . . . .  bn. If ® is the 

threshold of  the threshold gate g, then the minimal i 

such that rg ÷ r --> ® can assume at most n + 1 different 

values (including the value i : n + 1 if r ,  + r < ®). 

Consequently, with different fixed assignments of  q @ Q 

to b~ . . . . .  b ,  the node g can compute at most n + 1 dif- 

ferent functions from S into {0,1 }. This yields a partition 

of  Q into n + 1 equivalence classes, and one can apply 

the same a r g u m e n t - - f o r  each of these equivalence 

c l a s s e s - - t o  the next node in N (with regard to the 

linear order < ). 

If one starts this construction with Q = { 0,1 } n for the 

first computation node in 9~ after the k th node one gets a 

partition of  Q into at most (n + 1) k equivalence classes. 

On the other hand the fact that N c o m p u t e s  CDn implies 

that the output node of  N computes for each assignment 

to bl . . . . .  bn a different function from S into {0,1 }, i.e., it 

partitions {0,1 }" into 2" different equivalence classes Q. 

Hence, the number s of  computation nodes in N tha t  have 

a direct edge from at least one of the input nodes b 1 . . . . .  bn 

satisfies (n + 1) "5 --> 2 n, i.e., s >- nllog(n + 1). 

In the proof of Part 2 we construct from N a related 

sigmoidal neural net N '  for which we can show that it has 

" h i g h "  VC-dimension,  and hence must contain a sub- 

stantial number of sigmoidal gates. Such proof structure 

was first used by Koiran (1996), in a somewhat different 

context. 

If  one considers just a l . . . . .  an as input nodes of ?~, then 

different fixed assignments to b~ . . . . .  bn can only shift the 

threshold of those s computation nodes in N that have 

direct edges from b j . . . . .  bn. We now consider a variation 

N '  of N w h e r e  the input nodes bl  . . . . .  bn are deleted, and 

the thresholds of the abovementioned s gates in N are 

viewed as the only "programmable  parameters"  (or 

" w e igh t s " )  in the usual sense of VC-dimension theory 

for neural networks (for a brief survey see Maass 

(1995a)). The fact that N computes CDn implies that 

N '  shatters S (with regard to different assignments to 

these s programmable parameters). Thus, N '  has a VC- 

dimension of  at least n. On the other hand, the results of 

Goldberg & Jerrum (1995) and Karpinski & Macintyre 

(in press) imply that in this case the number s of pro- 

grammable parameters in N satisfies n = O(s 2) in the 

case of  piecewise polynomial  activation functions, 

respectively n : O(s 4) in the case of piecewise exponen- 

tial activation functions. 

2.2. Computation of Functions with Analog Input and 

Boolean Output 

We have already shown that for boolean inputs a network 

of  spiking neurons of  type A has the full computational 

power of  a neural net from the first generation of similar 

size, and is in fact more powerful. However,  neural nets 

from all three generations are also able to process numer- 

ical inputs from R n or [0,1]", instead of just  boolean 

inputs from {0,1 } n. For networks of spiking neurons it 

is natural to encode a numerical input variable xi E R by 

the firing time Tinpu  t - -  Xi'C of input neuron ai (see also 

Hopfield, 1995), where c > 0 is some constant and Tinpu  t 

is a parameter  that depends on the time when the input 

arrives, but not on the values of  the input variables Xg, 

Similarly one expects that a numerical output y ~ R is 

realized in an SNN by the firing of  a certain "output  

neuron"  at time Toutput --  y'c where Toutput ~ Tinpu t is 

independent from the values Xl . . . . .  xn of  the input 
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variables. We will refer to this method of  encoding 

analog variables by the t iming of  single spikes as 

" l inear  temporal cod ing" .  For the computation of  func- 

tions with boolean output one can either employ the same 

output convention as before, or apply rounding (i.e., one 

considers a firing of  the output neuron before a certain 

fixed time T as an output of  " 1 " ) .  

A concrete example for an interesting function with 

analog input and boolean output is the "element  distinct- 

ness funct ion" ED,  : (R+) "---~ {0,1} defined by 

ED,(xj  . . . . .  x,,) 

1, 

~--- O, 

arbitrary, 

if  xi =x j  for some i 4: j 

if  Ixi - xjl ~ 1 for all i , j  with i 4: j 

otherwise. 

If one encodes the value of  input variable xi as the firing 

time Tinpot - xi'c (of input n e u r o n  ai) ,  then for suffi- 

ciently large values of  the constant c > 0 a single 

spiking neuron v can compute EDn (even with Aai ,  v = 

Aaj, v for all i,j ~ { l . . . . .  n}). This holds for any reason- 

able type of  response function, e.g., type A, or the type B 

considered below. 

We also would like to point out that ED,  can be com- 

puted by a single spiking neuron in a very noise-robust 

fashion. Let emax be the maximal  value that is assumed by 

an EPSP, and let e(c) be the maximal  value that can be 

achieved by the sum of  two EPSPs that arrive with a 

temporal difference of  at least c. By choosing the value 

2.~o,~,, + &) for the firing threshold of  a " r e s t ed"  Or(0) = 2 

neuron v one achieves that v definitely fires if  xi = xj for 

some i :~j,  and that it does definitely not fire if Ix~ - xj] --> 1 

for any two different inputs x~, xj given in temporal 

coding. In addition with this choice of  ®v(0) the 

neuron v gives the correct output even if its membrane 

potential, its firing threshold, and the arrival times of  its 

input-EPSPs are subject to noise. Furthermore, its 

"safety  marg in"  of 2"emax--e(c) 2 can be increased up to 

the value ...... if c is chosen so large that e(c) = ema x. 
2 

This noise-robust computation of  ED~ by a spiking 

neuron is made possible through the way in which this 

function ED,  is defined: if min{ Ixi - xil: i 4: j}  has a 

value between 0 and 1 for some input < x~ .. . . .  x ,  > E R n, 

then it does not matter whether the neuron fires or not. 

Thus, the clause "arb i t ra ry"  in the definition of ED~ 

makes sure that "hair-tr igger situations" can be avoided 

by a spiking neuron that computes EDn. 

THEOREM 2. Any layered threshold circuit N that com- 

putes ED,  has ~(n.log n) gates on its first hidden layer. 

Proof. Let k be the number of  gates in N on the first 

hidden layer. The corresponding k halfspaces partition 

the input space R n into at most 2 k different polytopes 

(i.e., intersections of  halfspaces) so that N gives the 

same output for all inputs from the same polytope. For 

this consideration one has to allow polytopes that are 

intersections of  closed and open halfspaces. 

We now consider those n! inputsxn = < 7 r ( l ) , . .  "or(n)> E 

{ 1 . . . . .  n}" that represent all n! permutations 7r of 

{ 1 . . . . .  n }, It suffices to show that each _x~ lies in a dif- 

ferent polytope,  since this implies that 2 k --> n!. Thus 

assume for a contradiction that two permutations x_~ 

and x_# lie in the same polytope P. By construction the 

threshold circuit N gives the same output for all x_ ~ P. 

Since P is convex, N gives not only the same output for 

x_~ and x_#, but also for all points on the line L that con- 

nects these two points. This yields a contradiction, since 

EDn(x~) = EDn(x_#) = 0, but ED~(x) = 1 for some point x_ 

on this line L. 

In order to analyse the complexi ty of  functions with 

boolean output on sigmoidal neural nets, one needs to fix 

a suitable convention for rounding the real-valued output 

of  such nets. In order to make our subsequent lower 

bound result as strong as possible, one may assume 

here the weakest possible rounding convention, where 

for some arbitrary parameter  @ the real-valued output r 

of the output node of the net is rounded to 1 i f  r --> @. No 

separating interval is required between outputs that are 

rounded to 0 respectively 1. 

In the same way as for CDn one can show that any 

neural net from the second generation that computes ED,  

needs to have ~2(n 1/4) gates. This lower bound will be 

improved to ( n  - 1)/4 in the following theorem. The 

proof  of  this stronger separation result exploits, instead 

of  a bound for the VC-dimension,  Sontag 's  better upper 

bound o f2w + 1 (Sontag, 1997) for the maximal number 

d such that every set of  d different inputs in general 

position can be shattered by a sigmoidal neural net 

with w programmable parameters. In order to apply his 

result in our lower bound argument one has to construct 

from an arbitrary sigmoidal neural net which computes 

E D n a  related net that shatters every set of  n - 1 inputs. 

THEOREM 3. Any sigmoidal neural net N that computes 

EDn has at least ~ 2 -~4 - 1 hidden units. 

Proof. Let N be an arbitrary sigmoidal neural net with k 

gates that computes EDn. 

Consider any set S C_ R + of  size n - 1. Let )~ > 0 be 

sufficiently large so that the numbers in X.S have pair- 

wise distance --> 2. Let A be a set of  n - 1 numbers > 

max0~-S) -4- 2 with pairwise distance --> 2. 

By assumption N can decide for n arbitrary inputs 

from X.S t3 A whether they are all different. Let ~ ,  be 

a variation of  N where all weights on edges from the first 

input variable are multiplied by X. Then by assigning 

suitable fixed sets of  n - 1 pairwise different numbers 

from ~,.S t3 A to the other n - 1 input variables, Nx 

computes any characteristic function over S. 

Thus, if one considers as programmable parameters of 

N the -< k weights on edges from the first input variable 

of  N a n d  the <-- k thresholds of  gates that are connected to 
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some of the other n - 1 input variable, then N shatters S 

with 2k programmable parameters. Actually in the more 

general setting of the subsequent argument we have only 

k + 1 programmable parameters, since the k occurrences 

of the factor X in the weights may be counted as a single 

programmable parameter. 

Since the set S C R + of size n - 1 was chosen 

arbitrarily, we can now apply the result from Sontag 

(1997), which implies that n - 1 --< 2(k + 1) + 1, 

hence k --> (tl - 4)/2. Thus, ~ has at least (1l - 4)/2 

computation nodes, and therefore at least (n - 4)/2 - 1 

hidden units. 

REMARK 4. 

1. The lower bound of fRn) in Theorem 3 is the largest 

lower bound for the size of sigmoidal neural nets that 

has so far been achieved (not just for ED,, but for any 

concrete function). The best previously known lower 

bound was f~(n I/4) .['or some other fitnction, due to 

Koiran (1996). 

2. The result of Section 4 in Sontag (1997) implies that 

his zq)per bound, and hence the lower bound of the 

preceding Theorem 3, remain valid if the neural net '.~ 

computing ED,, employs both sigmoidal gates and 

threshold gates'. 

Apparently for most neurons v in the cortex it is not 

likely that the "we igh t s "  w,.,. of  its synapses are large 

enough such that just two synchronous EPSPs suffice to 

increase the potential P ,  over the firing threshold O,.(0) 

of a " r e s t ed"  neuron v. In that regard the common math- 

ematical model for a spiking neuron "overes t imates"  the 

computational capabili t ies of a biological  neuron. It is 

more realistic to assume that six simultaneously arriving 

EPSPs can cause a neuron to fire (see the discussion in 

Valiant, 1994). Therefore, we consider the following 

variation E~D,, : (R + )l, ---, 0, 1 of the function ED,:  

ED,, (& . . . . .  r,, ) 

1, 

, 

arbitrary, 

if there exists some k --> 1 such that 

X 1, X,2, x 3 ,  X3k + I, X3k + 2, x3k + 3 all have 

the same value 

if every interval I C R + of  length 1 

contains the values of  at most 

3 input variables xi 

otherwise. 

In the common model of a spiking neuron the membrane 

potential P,,(t) is assumed to be a linear sum of the post- 

synaptic potentials. This is certainly an idealization, 

since isolated EPSPs that arrive at synapses far away 

from the trigger zone (which is located at the beginning 

of the axon) are subject to an exponential decay on their 

way to the trigger zone. Hence, such isolated EPSPs have 

hardly any impact on the membrane potential P,.(t) at the 

trigger zone. On the other hand, EPSPs that arrive syn- 

chrononsly at adjacent synapses are "boos ted"  at "ho t  

spots"  of the dendritic tree, and hence may have a sig- 

nificant impact on the membrane potential P~.(t)at the 

trigger zone (Shepherd, 1994). We have defined ED~ in 

such a way that, in spite of  these nonlinear effects in the 

integration of EPSPs, i t i s  quite plausible that a biological 

neuron can compute ED,, in temporal coding for a fairly 

large value of n. A neuron computing ED,  needs to fire 

only when two " b l o c k s "  consisting of three adjacent 

synapses all receive synchronous EPSPs. Furthermore, 

a "ha i r - t r igger"  situation is avoided, since 17o require- 

ments are made for the case when the neuron receives 

just  four or five synchronous (or almost synchronous) 

EPSPs. Non-firing is required only in the case when the 

neuron receives at most three EPSPs during any time 

interval of  length c. 

In order to prove a lower bound for the number of 

hidden units in arbitrary neural nets ~ that compute 

ED,, with sigmoidal and threshold gates, one proceeds 

as in the proof  of  Theorem 3. One now considers arbi- 

trary sets S C R t of size [(tl - 3)/3] and divides the 

remaining n - 3 input variables into [(n - 3)/3J blocks 

of three variables that always receive the same input 

value. Let '-:k~ be a variation of N which identifies the 

first three input variables, and multiplies all their weights 

by a common factor X. Since N computes DE,,, the net- 

work ~ with k computation nodes shatters S with the 

help of k + 1 programmable parameters. Hence, Sontag 's  

result (Sontag, 1997) yields [(n - 3)/3] <-- 2(k + 1) + 1, 

i.e., k -> 07 - 15)/6. 

If one plugs in a common estimate for the number n of 

synapses at a biological neuron, such as n = 10000, the 

preceding inequality yields a lower bound of  1663 for the 

number k - 1 of hidden units in N. Hence, even if one 

prefers to plug in somewhat different values for some of 

the_ abovementioned constants, the preceding proof for 

ED~ (respectively, for a variation of ED,, that reflects 

different choices of the parameters involved) still 

yields a lower bound of several hundreds for the minimal 

size of  a sigmoidal neural net which computes the same 

function. Thus we have demonstrated a substantial dif- 

ference between the computational power of biological 

neurons and sigmoidal "neurons" (i.e., computational 

units from the second generation). 

For numerical inputs our previously sketched simula- 

tion of threshold circuits (i.e., neural nets from the first 

generation) by a network of spiking neurons of type A 

fails. More surprisingly, one can prove that no such simu- 

lation is possible. Let f: N --* N be any function. Then for 

numerical inputs there exists no way of simulating an 

arbitrary threshold circuit with s gates by a network of 

.f(s) spiking neurons of type A. Consider a threshold 

circuit that outputs 1 for inputs Xl, x2, x3 ¢ [0, 1] 

if x~ + x2 = x> and 0 else. Obviously this can be 
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achieved by a circuit with just three threshold gates: the 

circuit outputs 1 if (xj + x2 ----- x3 AND Xl + x2 --> x3). 

However, it has been shown that this function from 

[0, 1] 3 into {0, 1 } (as well as any restriction to [0,3/] 3 for 

some 3' > 0) cannot be computed by any network of 

spiking neurons of  type A, no matter how many neurons 

and how much computation time it employs. This fol- 

lows from a general characterization of  the computa- 

tional power of  networks of  spiking neurons of type A 

for numerical inputs in terms of the computational power 

of  a restriction called N = RAM of the common model of 

a random access machine (RAM) that is given in Maass 

& Ruf (1995). 

Thus, we have arrived here at a limit of  the computa- 

tional power of  spiking neurons of  type A for numerical 

inputs. The question arises whether this limitation indi- 

cates a weakness of spiking neurons in general, or just a 

weakness of the extremely simple response and threshold 

functions of  type A. For answering this question let us 

consider spiking neurons with continuous piecewise 

linear (instead of  piecewise constant) response and 

threshold functions, to which we refer as spiking neurons 

of  type B. Examples for the simplest non-trivial response 

functions for the type A spiking neuron are indicated in 

Figure 5. 

With regard to the computational power of spiking 

neurons of  type B it does not make much difference 

whether one allows here piecewise constant, piecewise 

linear, or more general types of threshold functions 19~., 

as long as we consider only feedforward computations 

and the threshold functions 19v have the value " ~ "  for 

small arguments. In addition the, concrete shape of the 

response functions of  type B will be irrelevant in the 

following. 

One can show that in contrast to the abovementioned 

negative result about neural nets of  type A, a network of  

O(1) spiking neurons with response functions of  type B 

(e.g., as indicated in Figure 5) can simulate any threshold 

gate even for n real-valued input variables. This simula- 

tion exploits an important effect of spiking neurons of 

type B that cannot be realized with spiking neurons of  

type A: incoming EPSPs and IPSPs can shift the firing 

time of  a neuron in a continuous manner (Maass, 1997). 

More precisely, for a certain range of  the parameters 

involved, the firing time t,. of  a neuron v in response to 

the firings of  presynaptic neurons u at times T i n p u  t - -  Xu.C 

can be written in the form 

t u = T o u t p u t  - ~ . .  sign(%,v).wu, v.x" (1) 
u:(u, v)~E 

where Toutput does not depend on the values of  the x,, and 

where sign(e,,0 = - 1  in the case of  an EPSP and 

sign(e,.0 = - 1  in the case of an IPSP. Thus, neuron v 

outputs the weighted sum 

~ .  sign(e,, ,,).w,, ~,-x, 
u: <u,  v > E E  

V 

••.• (t-s) - ~  

s+Au, v t 

V 

s+Au.v 

s t 
t-s) 

FIGURE 5. Response functions (EPSP and IPSP) of a spiking 

neuron of type B. The particular shape of the 'triangle' is not 

important for results in this article. 

in temporal coding (in response to analog inputs x,  given 

in temporal coding). 

Equation (1) reveals the somewhat surprising fact that, 

in the context of temporal coding, the "weights"  w,,,~, of 

synapses of  spiking neurons are able to play the same 

role as those of computational units of  the first two gen- 

erations of neural network. 

All subsequent layers after the first hidden layer in a 

layered neural net from the first generation receive just 

boolean inputs, even if the network inputs are real- 

valued. Hence, these subsequent layers can easily be 

simulated by spiking neurons of  type A (as indicated 

before). However, a subtle but serious problem arises if 

one wants to simulate threshold circuits with boolean 

inputs and outputs (or any other type of  boolean circuit) 

with spiking neurons of  type B, e.g., with response func- 

tions as in Figure 5, which are substantially closer to the 

biological prototypes in Figure 2 than response functions 

of  type A. It is obvious that a spiking neuron of type B 

can simulate a boolean gate only if it receives synchro- 

nized input spikes. The problem is that even if a layer of 

spiking neurons of  type B receives boolean input via 

synchronized input spikes (e.g., in a coding where a 

spike corresponds to " 1 "  and no spike corresponds to 

" 0 " ) ,  the neurons on this layer will not fire in a synchro- 

nized manner, but at slightly different times that depend 

on their concrete input "bi ts" .  The root of  this problem 

(which does not arise for spiking neurons of type A) is 

the fact that a potential P~(t) that is the sum of several 

EPSPs and IPSPs of  type B will itself be continuous and 

piecewise linear, and that the slopes of its linear pieces 

will depend in particular on the number of EPSPs that it 

receives simultaneously (hence on the concrete 

"boolean"  input in our interpretation). Thus, the precise 

time when P,(t) crosses the threshold ®v(0) will in 
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general depend on the "boolean"  input of the spiking 

neuron. This causes a serious problem for the simulation 

of multilayer threshold circuits (or other multilayer 

boolean circuits) by SNNs of type B, because if those 

neurons v on the considered layer that are firing (and 

hence represent a " 1 "  in the simulation of  a boolean 

circuit) do not fire in a synchronized manner, the simula- 

tion of threshold gates, or even of simpler boolean gates 

(such as AND), by the next layer of spiking neurons of 

type B becomes impossible. 

THEOREM 5. Any threshold circuit o f  s gates having real- 

valued inputs f rom [0, 1] n can be simulated by a network 

o f  O(s) spiking neurons o f  ~pe  B. 

Proo]i Consider first an arbitrary threshold gate G 

with inputs < x~ .... ,x, > from [0, 1] " that outputs 1 if 

~'i'- l e~ixi >-- o~c~, and 0 otherwise. We show that G can be 

simulated by a network having a constant number (i.e., 

O(1)) of  spiking neurons of type B with regard to temporal 

coding of  network inputs X l .... ,x,, (for a sufficiently small 

value of the constant c). One employs here the same con- 

struction as for the simulation of  a linear (respectively 

sigmoidal) gate given in Maass (1997), which yields a 

spiking neuron v whose firing time represents the 

weighted sum ~'}= 1 e~/xi in temporal coding. In particular 

v fires at or before a fixed time T (which does not depend 

on x l ..... x,,) if Y'7= 10liXi ~ Olo, and after time Totherwise. 

We arrange that the resulting EPSP from v arrives at a 

subsequent spiking neuron v', which receives in addition 

an EPSP from an auxiliary spiking neuron whose firing 

time depends o n  Tinput, but not on x ~ .... ,,c~. With a suitable 

choice of  weights and delays for v', the neuron will fire if 

and only if v fires at or before time T. 

Obviously one can simulate in the same way the whole 

first layer of any given threshold circuit C. In order to 

simulate the subsequent layers of  C with spiking neurons 

of type B, one can employ the construction from Maass 

(1996a). The previously described spiking neurons v' 

represent the outputs of  gates from the first layer of C 

by firing if and only if the corresponding gate in C out- 

puts 1. However, the precise time at which v' fires in this 

case depends on x~,...,xn. Hence, before one can use the, 

"boolean"  outputs of these gates v' as inputs for other 

spiking neurons of  type B to simulate the subsequent 

layers of C according to the construction in Maass 

(1996a), one has to employ a synchronization module 

as constructed in the proof of  Theorem 2.1 in Maass 

(1996a). 

2.3. Further Results for Networks of Spiking Neurons 

of Type B 

We have shown in the preceding section that in contrast 

to SNNs of type A, networks of spiking neurons of type B 

can simulate neural nets from thefirst  generation even for 

the case of real-valued network input. Hence, the 

question arises whether networks of spiking neurons of 

type B can also simulate (respectively approximate) 

neural nets from the second generation which have 

real-valued input and output. This question is answered 

affirmatively in Maass (1997), by showing that, with 

regard to temporal coding of real-valued variables x, 

any continuous function F: [0, 1]" ---, [0, 1] k can be 

approximated arbitrary closely (with regard to uniform 

convergence, i.e., L~) by a one hidden layer network of 

spiking neurons of type B. 

In fact, this result holds not just for the simple scheme 

of  linear temporal coding described at the beginning of 

Section 2.2, but also for any other scheme of coding 

analog variables by the timing of single spikes that is 

"continuously related" to this scheme. Thus for 

example, it also holds if a neuron that fires at time 

T - x.c does not encode the analog number x, but instead 
e -x o r  X 3. 

In addition there exists evidence that many practically 

relevant analog function F can be approximated by small 

networks of spiking neurons of type B. A large number of 

results regarding practical applications of learning with 

backprop on sigmoidal neural nets suggest that the 

relevant target functions F for these applications can be 

learned (and hence approximated) by sigmoidal neural 

nets with a rather small number of sigmoidal gates. Addi- 

tional empirical evidence suggests that the precise form 

of the sigmoidal activation function is not important for 

the number of sigmoidal gates that are needed. Thus one 

can argue that the target functions F: [0, 1 ]"---* [0, 1] k that 

arise in application problems can in general be approxi- 

mated quite well by sigmoidal neural nets with a small 

number s of sigmoidal units that employ the following 

linear saturated activation function ~r: 

0, i f y < O  

7v(y)= y, if0--<y--< 1 

1, i f y >  1. 

The approximation result of Leshno, Lin, Pinkus, and 

Schocken (1993) implies that in this case F can also be 

approximated quite well by a network of O(s) spiking 

neurons of type B. 

Thus, one may say that with regard to circuit complex- 

ity for computing analog functions, networks of spiking 

neurons of type B are at least as powerful as neural nets 

from the second generation. Furthermore, our previously 

described lower bounds for the size of neural nets from 

the first two generat~ns (for nets that compute the func- 

tions CD,, ED,, or ED,,) imply that networks of spiking 

neurons of type B are in fact strictly more powerfid than 

neural nets from the first two generations: in order to 

achieve separation results between SNNs of (vpe B and 

neural nets from the first two generations it just remains 

to verify that instead of a single spiking neuron of type A 

also a single spiking neuron of type B can compute CD,,, 

ED,, and ED,~. 
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We refer to Maass (1996a, 1997) for details of the 

proofs of the abovementioned simulation results. It can 

be seen from these proofs that - - for  positive results about 

the computational power of SNNs of type B- - they  do 

not actually require that the response or threshold func- 

tions are piecewise linear (i.e., of type B). Rather it 

suffices to assume that EPSPs have some small linearly 

increasing segment and IPSPs have some small linearly 

decreasing segment. These properties are approximately 

satisfied by EPSPs and IPSPs of biological neurons (see 

Figure 2). In Maass (1995a, c) a complete characteriza- 

tion of the computational power of SNNs of type B is 

given in terms of a restriction (called N-RAM) of the 

familiar model of a random access machine. 

In addition it is shown in Maass (1997) that the simu- 

lation of sigmoidal neural nets by SNNs can also be 

carried out with the biologically more realistic model 

of a stochastic or noisy spiking neuron. It is easy to see 

that the functions CDn, ED,, and ED,, considered here, 

can be computed by a single noisy spiking neuron of type 

A or B. Furthermore, it is shown in Maass (1996b) that 

even with very noisy spiking neurons of type A or B one 

can in principle carry out arbitrary digital computations 

with any desired degree of reliability. However, noise 

certainly affects the computational power of networks 

of spiking neurons for analog input, and we refer to 

Maass and Orponen (1997) with regard to limits of the 

computational power of networks of noisy spiking 

neurons with analog input. 

3. CONCLUSIONS 

We have analysed in this article the computational power 

of networks of spiking neurons with regard, to temporal 

coding with single spikes. It turns out that this computa- 

tional model has at least the same computational power 

as neural nets from the first two generations (i.e., multi- 

layer perceptions and sigmoidal neural nets) of a similar 

size. Furthermore we have exhibited concrete functions 

which require for their computation significantly fewer 

neurons in a network of spiking neurons. 

The proof of Theorem 3 appears to be of independent 

interest in the theory of sigmoidal neural nets, since it 

provides the strongest lower bound result for sigmoidal 

neural nets that is currently known. It improves the 

largest previously known lower bound ~(nl/4) (Koiran, 

1996) to ft(n). This new lower bound result is also of 

interest from the technical point of view, since it provides 

the first known application of recent results Sontag 

(1997) about the "Sontag dimension" of neural nets. 

This is a new notion of a "dimension" for a neural net 

that is in a certain sense dual to the familiar concept of 

the Vapnik-Chervonenkis dimension of a neural net (one 

replaces "there exists a set S of d inputs.. ." by "for  all 

sets S of d inputs. . ." in the definition of the dimension). 

As the references in this article indicate, the theoretical 

investigation of networks of spiking neurons is not a new 

research topic. In fact it has a long tradition in theoretical 

neurobiology, biophysics, and theoretical physics. How- 

ever, a mathematically rigorous analysis of the computa- 

tional power of networks of spiking neurons has so far 

been missing. We believe that such analysis will be help- 

ful in understanding the organization of computations in 

complex biological neural systems. 

In addition such analysis appears to be helpful for 

evaluating the potential capabilities of various designs 

of "artificial networks of spiking neurons", in particular 

of silicon implementations of integrated circuits that 

compute with pulses (DeYong et al., 1992; Douglas 

et al., 1995; Horinchi et al., 1991; Jahnke et al., 1996; 

Jiu & Leong, 1996; Mahowald, 1994; Mead, 1989; 

Meador et al., 1991; Murray & Tarassenko, 1994; North- 

more & Elias, 1996; Pratt, 1989; Zaghloul et al., 1994; 

Zhao, 1995). For example, the results of this article and 

those in Maass and Ruf (1995) show that there exist 

drastic differences between the computational capabil- 

ities of networks of spiking neurons that operate with 

rectangular pulses (i.e., type A) and those that operate 

with triangular pulses (i.e., type B). 

REFERENCES 

Abeles, M. (1991). Corticonies: Neural circuits of the cerebral cortex. 

Cambridge: Cambridge University Press. 

Abeles, M., Bergman, H,  Margalit, E., & Vaadia, E. (1993). Spatio- 

temporal firing patterns in the frontal cortex of behaving monkeys. 

Journal of Neurophilosiology, 70, 1629-1638. 

Aertsen, A. (Ed.) (1993). Brain theoo': spatio-temporal aspects of brain 

function. Elsevier. 

Aityan, S. K., & Barrow, D. L. (1993). Paradigm, logical performance, 

and training of recurrent refractory neural networks. Neural, 

Parallel & Scientific Computations, 1, 3-28. 

Arbib, M. A. (1995). The handbook of brain theo O" and neural net- 

works. Cambridge: MIT Press. 

Bair, W., Koch, C., Newsome, W., & Britten, K. (1994). Reliable 

temporal modulation in cortical spike trains in the awake monkey. 

In Proceedings of the Symposium on Dynamics of Neural Pro- 

cessing. Washington, DC. 

Bialek. W., & Rieke, F. (1992). Reliability and information transmis- 

sion in spiking neurons. Trends in Neuroscience, 15, 428-434. 

Bienenstock, E. (1995). A model of neocortex. Network: Computation 

in Neural Systems, 6, 179-224. 

Bower, J. M., & Beeman, D. (1995). The book of GENESIS: exploring 

realistic neural models with the General Neural Simulation System. 

New York: Springer. 

Churchland, P. S., & Sejnowski, T. J. (1993). The computational brain. 

Cambridge: MIT Press. 

Crair, M. C., & Bialek, W. (1990). Non-Boltzmann dynamics in net- 

works of spiking neurons. In Advances in neural information 

processing systems, Vol. 2 (pp. 109-116). San Mateo: Morgan 

Kaufmann. 

DasGupta, B., & Schnitger, G. (1993). The power of approximating: a 

comparison of activation functions. In Advances in neural informa- 

tion processing systems, Vol. 5 (pp. 615-622). San Mateo: Morgan 

Kaufmann. 

DeYong, M. R., Findley, R. L., & Fields, C. (1992). The design, fab- 

rication, and test of a new VLSI hybrid analog-digital neural pro- 

cessing element. IEEE Transcripts on Neural Networks, 3, 363- 

374. 



1670 W. Maass  

Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C., & Suarez. H. 

H. (1995). Recurrent excitation in neocortical circuits. Science, 269. 

981-985. 

Ferster, D., & Spruston, N. (1995). Cracking the neuronal code. 

Science. 270, 756-757. 

Gerstner, W. (1991). Associative memory in a network of "biological 

neurons". In Advances in neural information processing systems, 

Vol. 3 (pp. 84-90). San Mateo: Morgan Kaufmann. 

Gerstner, W. (1995). Time structure of the activity in neural network 

models. Physics Review E, 51, 738-758. 

Gerstner, W.. & van Hemmen, J. L. (1994). How to describe neuronal 

activity: spikes, rates, or assemblies. In Advances in neural infor- 

mation processing systems, Vol. 6 (pp. 463-470). San Mateo: 

Morgan Kaufinann. 

Gerstner. W., Ritz, R., & van Hemmen, J. L, (1993). A biologically 

motivated and analytically soluble model of collective oscillations 

in the cortex: I. Theory of weak locking. Biological Cybernetics. 68, 

363-374. 

Goldberg, P. W., & Jerrum, M. R. (1995). Bounding the Vapnik 

Chervonenkis dimension of concept classes parameterized by real 

numbers. Muehine Learning, 18, 131-148. 

Herrmann, M., Hertz, J. A., & Priigel-Bennett, A. (in press). Analysis of 

synfire chains. Nordita Preprint. 

Hopfield, J. J. (1995). Pattern recognition computation using action 

potential timing for stimulus representations. Nature, 376, 33 36. 

Hopfield, J. J., & Herz, A. V.M. (1995). Rapid local synchronization of 

action potentials: towards computation with coupled integrate-and- 

fire neurons. Proceedings of  the National Academy of Science, 92, 

6655-6662. 

Horinchi, T., Lazzaro, J., Moore, A., & Koch, C. (1991). A delay-line 

based motion detection chip. In Advances in neural il!fi)rmation 

ptweessing systems, Voh 3 (pp. 406 412). San Mateo: Morgan 

Kaufmann. 

Jahnke, A., Roth, U., & Klar, H. (1996). A SIMD/dataltow architecture 

for a neurocomputer for spike-processing neural networks 

(NESPINN). MicroNeuro, 232-237. 

Jim C. T.. & Leong, P. H. W. (1996). An analog VLSI time-encoded 

pattern classifier. In Proeeedings q[ the 7th Australian Col~[erenee 

on Neural Networks (pp. 212-215). Canberra. 

Johnston, D., & Wu, S. M. (1995). Foundations Of" cellular neuro- 

phisiology. Cambridge: MIT Press. 

Judd, K. T., & Aihara, K. (1993). Pulse propagation networks: a neural 

network model that uses temporal coding by action potentials. 

Neural Networks, 6, 203 215. 

Karpinski, M., & Macintyre, A. (in press). Polynomial bounds for VC- 

dimension of sigmoidal and general Pfaffian neural networks. 

Journal qf  Computer and System Sciences. 

Kempter, R., Gerstner, W., van Hemmen, J. L., & Wagner, H. (1996). 

Temporal coding in the sub-millisecond range: model of barn owl 

auditory pathway. In Advances in neural information processing 

systems. Vol. 8 (pp. 124 130). Cambridge: MIT Press. 

Koch, C., & Poggio, T. (1992). Multiplying with synapses and neurons. 

In T. McKenna, J. Davis, & S. F. Zornetser (Eds.), Single neuron 

computation (pp. 315-346). Boston: Academic Press. 

Koiran, P. (1996). VC-dimension in circuit complexity. In Proceedings 

of  the Co~!ferenee on Computational Complexi(v (pp. 81-85). 

Krtiger, J., & Aiple, F. (1988). Multielectrodc investigation of monkey 

striate cortex: spike train correlations in the infragranular layers. 

Journal of  Neurophysiology, 60. 798-828. 

Lapique, L. (1907). Recherches quantitatives sur l'excitation electrique 

des nerfs traitee comme une polarization. Journal qfPhysiology and 

Pathololgy, 9, 620 635. 

Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer 

feedforward networks with a nonpolynomial activation function can 

approximate any function. Neural Networks, 6, 861-867. 

Lestienne, R. (1996). Determination of the precision of spike timing in 

the visual cortex of anaesthetised cats. Biological C~vbernetics, 74, 

55 61. 

Maass, W. (1995a). Vapnik-Chervonenkis dimension of neural nets. In 

M. A. Arbib (Ed.), The handbook of bruin theory and neural 

networks (pp. 1000 1003). Cambridge: MIT Press. 

Maass, W. (1995b). On the computational complexity of networks of 

spiking neurons. In Advames in neural infi,'mation processing 

systems, Vol. 7 (183-190). Cambridge: MIT Press. 

Maass, W. (1995cl. Analog computations on networks of spiking 

neurons. In Proceedings of  the 7th Italian Workshop on Neural 

Nets. World Scientific Press, 99-104. 

Maass, W. (1996a). Lower bounds for the computational power of 

networks of spiking neutrons. Neural Computation, 8( I ), 1-40. 

Maass, W. (1996b). On the computational power of noisy spiking 

neurons. In Advames in neural it~rmation processing svstemx, 

Vol. 8 (pp. 211-217). Cambridge: MIT Press. 

Maass, W. (1997). Fast sigmoidal networks via spiking neurons. Neural 

Contlnttution. 9, 279 304. 

Maass, W., & Orponen, P. (1997). On the effect of analog noise in 

discrete-time analog computations. Advances in neural iq[btTnation 

t)rocessing systems, Vol. 9. Cambridge: MIT Press. 

Maass, W.. & Ruf, B. (1995). On the relevance of the shape of post- 

synaptic potentials for the computational power of spiking Neurons. 

Proceedings qf the hTtenTational Con[krenee on Artificial Neurul 

Networks, ICANN'95 (pp. 515-520). Paris: EC2&-Cie. 

Maaas, W., & Schmitt, M. (I 997). On the complexity of learning for a 

spiking neuron. Proc. of the 10th Conference on Computational 

Learning Theory 1997, ACM-Press, New York, Forthcoming. 

Maass, W., Schnitger, G.. & Sontag, E. (1991). On the computational 

power of sigmoid versus boolean threshold circuits. In Proceedings 

Of the 32nd Annual IEEE Symposium on Foundation~ off Computer 

Science (pp. 767-776). 

Mahowald, M. (1992). VLSI. Analogs of neuronal visual processing: a 

s3nthesis qf.[brm and.function. Ph.D. dissertation, California Insti- 

tute of Technology. 

Mahowald, M. (1994). An analog VLSI system/br stereoscopic vision. 

Boston: Kluwer. 

Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in 

neocortical neurons. Science, 268. 1503-1506. 

Mead, C. (1989), Anolog VLSI and neural systems. Reading: Addison- 

Wesley. 

Meador, J. L., Wu, A., Cole, C., Nintunze, N., & Chintrakulchai. P. 

( 1991 ). Programmable impulse neural circuits. 1EEE Transcripts on 

Neural Networks, 2, 101 109. 

Murray, A. and Tarassenko, L. (1994). Analogue neural VLSI: a pulse 

stream approach. Chapman and Hall. 

Northmore, D. P., & Elias, J. G. (1996). Discrimination of spike patterns 

by dendritic processing in a network of silicon neuromorphs. In 

Proceedings of the 5th Annual Conflerenee on Computational 

Neuroseience. San Diego: Academic Press. 

Perrett. D. 1., Rolls, E. T., & Caan, W. C. (1982). Visual neurons 

responsive to faces in the monkey temporal cortex. Experimental 

Brain Research, 4Z 329-342. 

Pratt, G. A. (1989). Pulse computation. Ph.D. thesis, MIT, Cambridge. 

Rieke, F., Warland. D.. van Stevenick, R.. & Bialek, W. (1996). 

SPIKES." exploring the neural code. Cambridge: MIT Press. 

Ritz. R., Gerstner, W., Fuentes, U., & van Hemmen, L. (1994). A 

biologically motivated and analytically soluble model of collective 

ascillations in the cortex: II. Applications to binding and pattern 

segmentation. Biological Cybernetics, 71, 49-358. 

Rolls, E. T. (1994). Brain mechanism for invariant visual recognition 

and learning. Behaviourol Processes, 33. 113-138. 

Rolls, E. T., & Tovee, M. J. (1994). Processing speed in the cerebral 

cortex, and the neurophysiology of visual backward masking. 

Proceedings of the Royal Society q[Britain, 257, 9 15. 

Sejnowski, T. J. (1995). Time for a new neural code?. Nature, 376, 21 22. 

Shastri, L., & Ajjanagadde, V. (1993). From simple associations to 

systematic reasoning: a connectionist representation of rules, 

variables and dynamic bindings using temporal synchrony. 

Behavioural and Brain Sciences, 16, 417-494. 



Networks of  Spiking Neurons: The Third Generation of  Neural Network Models 1671 

Shawe-Taylor, J., Jeavons, P., & Van Daalen, M. (1991). Probabilistic 

bit stream neural chip: theory. Connection Science, 3, 317-328. 

Shepherd, G. M. (Ed.) (1990). The synaptic organization of the brain 

(3rd ed.). New York: Oxford University Press. 

Shepherd, G. M. (1994). Neurobiology (3rd ed.). New York: Oxford 

University Press. 

Singer, W. (1995). Synchronization of neuronal responses as a putative 

binding mechanism. In M. A. Arbib (Ed.), The handbook of brain 

theoo" and neural networks (pp. 960-964). Cambridge: MIT Press. 

Softky, W. (1994). Sub-millisecond coincidence detection in active 

dendritic tree. Neuroscience, 58, 13-41. 

Sontag, E. D. (1997). Shattering all sets of k points in "general position" 

requires (k - 1)/2 parameters, Neural Computation, 9, 337-348. 

C. F. Stevens, & Zador, A. (1996). Information through a spiking 

neuron. In Advances in neural information processing systems, 

Vol. 8 (pp. 75 81). Cambridge: MIT Press. 

Taylor, J. G., & Alavi, F. N. (1993). Mathematical analysis of a com- 

petitive network for attention. In J. G. Taylor (Ed.), Mathematical 

approaches to neural network (pp. 341-382). Amsterdam: North 

Holland. 

Thorpe, S. T., & lmbert, M. (1989). Biological constraints on con- 

nectionist modelling. In R. Pfeifer, Z. Schreter, F. Fogelman- 

Souli~, & L. Steels (Eds.), Connectionism in perspective (pp. 63-  

92). Amsterdam: Elsevier, North Holland. 

Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. Vols. 

1 and 2. Cambridge: Cambridge University Press. 

Valiant, L. G. (1994). Circuits of the mind. Oxford University Press. 

Zaghloul, M. L., Meador, J. L., & Newcomb, R. W. (Eds.) (1994). 

Silicon implementations of pulse coded neural network. Kluwer. 

Zhao, J. (1995). Stochastic bit stream neural networks: theory'. 

simulations and applications. Ph.D. thesis, University of London, 

London. 


