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standard double reading in the Mammography Screening 
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blinded, screening accuracy study

Kristina Lång, Viktoria Josefsson, Anna-Maria Larsson, Stefan Larsson, Charlotte Högberg, Hanna Sartor, Solveig Hofvind, Ingvar Andersson, 

Aldana Rosso

Summary
Background Retrospective studies have shown promising results using artificial intelligence (AI) to improve 
mammography screening accuracy and reduce screen-reading workload; however, to our knowledge, a randomised 
trial has not yet been conducted. We aimed to assess the clinical safety of an AI-supported screen-reading protocol 
compared with standard screen reading by radiologists following mammography.

Methods In this randomised, controlled, population-based trial, women aged 40–80 years eligible for mammography 
screening (including general screening with 1·5–2-year intervals and annual screening for those with moderate 
hereditary risk of breast cancer or a history of breast cancer) at four screening sites in Sweden were informed about 
the study as part of the screening invitation. Those who did not opt out were randomly allocated (1:1) to AI-supported 
screening (intervention group) or standard double reading without AI (control group). Screening examinations 
were automatically randomised by the Picture Archive and Communications System with a pseudo-random 
number generator after image acquisition. The participants and the radiographers acquiring the screening 
examinations, but not the radiologists reading the screening examinations, were masked to study group allocation. 
The AI system (Transpara version 1.7.0) provided an examination-based malignancy risk score on a 10-level scale 
that was used to triage screening examinations to single reading (score 1–9) or double reading (score 10), with AI 
risk scores (for all examinations) and computer-aided detection marks (for examinations with risk score 8–10) 
available to the radiologists doing the screen reading. Here we report the prespecified clinical safety analysis, to be 
done after 80 000 women were enrolled, to assess the secondary outcome measures of early screening performance 
(cancer detection rate, recall rate, false positive rate, positive predictive value [PPV] of recall, and type of cancer 
detected [invasive or in situ]) and screen-reading workload. Analyses were done in the modified intention-to-treat 
population (ie, all women randomly assigned to a group with one complete screening examination, excluding 
women recalled due to enlarged lymph nodes diagnosed with lymphoma). The lowest acceptable limit for safety in 
the intervention group was a cancer detection rate of more than 3 per 1000 participants screened. The trial is 
registered with ClinicalTrials.gov, NCT04838756, and is closed to accrual; follow-up is ongoing to assess the primary 
endpoint of the trial, interval cancer rate.

Findings Between April 12, 2021, and July 28, 2022, 80 033 women were randomly assigned to AI-supported screening 
(n=40 003) or double reading without AI (n=40 030). 13 women were excluded from the analysis. The median age was 
54·0 years (IQR 46·7–63·9). Race and ethnicity data were not collected. AI-supported screening among 
39 996 participants resulted in 244 screen-detected cancers, 861 recalls, and a total of 46 345 screen readings. Standard 
screening among 40 024 participants resulted in 203 screen-detected cancers, 817 recalls, and a total of 83 231 screen 
readings. Cancer detection rates were 6·1 (95% CI 5·4–6·9) per 1000 screened participants in the intervention group, 
above the lowest acceptable limit for safety, and 5·1 (4·4–5·8) per 1000 in the control group—a ratio of 1·2 (95% CI 
1·0–1·5; p=0·052). Recall rates were 2·2% (95% CI 2·0–2·3) in the intervention group and 2·0% (1·9–2·2) in the 
control group. The false positive rate was 1·5% (95% CI 1·4–1·7) in both groups. The PPV of recall was 28·3% 
(95% CI 25·3–31·5) in the intervention group and 24·8% (21·9–28·0) in the control group. In the intervention group, 
184 (75%) of 244 cancers detected were invasive and 60 (25%) were in situ; in the control group, 165 (81%) of 
203 cancers were invasive and 38 (19%) were in situ. The screen-reading workload was reduced by 44·3% using AI.

Interpretation AI-supported mammography screening resulted in a similar cancer detection rate compared with 
standard double reading, with a substantially lower screen-reading workload, indicating that the use of AI in 
mammography screening is safe. The trial was thus not halted and the primary endpoint of interval cancer rate will 
be assessed in 100 000 enrolled participants after 2-years of follow up.
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Introduction
European guidelines recommend double reading of 
screening mammograms to ensure high sensitivity.1 A 
meta-analysis suggested that double reading resulted in 
0·44 more cancers being detected per 1000 people 
screened than with single reading;2 however, this comes 
at the expense of a large screen-reading workload and 
can potentially increase false positives.3,4 Double reading 
can also be difficult to sustain because of a shortage of 
breast radiologists in many countries.5 In addition, 
despite double reading, some cancers might be missed 
and diagnosed as interval cancers.6 Interval cancers 
generally have a worse prognosis than screen-detected 
cancers, and the interval cancer rate is therefore an 
important indicator of screening efficacy.1,6 In 
retrospective studies, about 20–30% of interval cancers 
have been shown to display highly suspicious signs of 
malignancy at the preceding screening mammogram,6–8 
suggesting that mammography alone could have been 
sufficient for detection—ie, without the need for 
supplementary imaging methods. Establishing a more 
efficient and effective mammography screening 
programme is therefore warranted.

Recently developed image analysis tools based on 
artificial intelligence (AI) have promising applications in 
mammography screening, such as facilitating triage of 
screening examinations according to risk of malignancy 
or supporting detection with computer-aided detection 

(CAD) marks highlighting suspicious findings.9 
Retrospective studies suggest that the accuracy of AI is 
similar to or better than that of breast radiologists.10–13 AI 
has also been shown to be able to identify examinations 
that were normal (ie, true negatives), and, since the vast 
majority of women who attend screening do not have 
breast cancer, adapting single and double reading to AI 
risk scores could allow more efficient screen reading.14–17 
Additionally, AI has been shown to retrospectively 
classify screening examinations as high risk before a 
diagnosis of interval cancer, and could, therefore, help 
radiologists to reduce false negative screening results 
when used as detection support.16,18,19 Taken together, the 
evidence suggests that use of AI could potentially benefit 
mammography screening by reducing the screen-
reading workload and the number of interval cancers, 
but randomised trials are needed to assess the efficacy of 
AI-supported screening.13

In the randomised, controlled Mammography 
Screening with Artificial Intelligence trial (MASAI), we 
investigate an AI-supported screen-reading procedure 
involving triage of screening examinations to single or 
double reading, along with detection support. Here we 
report a prespecified safety analysis, the objective of 
which was to assess the safety of using AI-supported 
screening compared with standard double reading by 
determining the effect on cancer detection, which could 
be used to inform new trials or programme-based 

Research in context

Evidence before this study

We searched MEDLINE for studies published in English between 

Jan 1, 2015, and Dec 31, 2020, that included “breast cancer 

screening” or “mammography screening”, and “artificial 

intelligence” or “machine learning” in the title or abstract. No 

prospective trials were identified. There were several 

retrospective accuracy studies using screening data or enriched 

datasets. We found no systematic reviews on test accuracy. The 

retrospective studies, using different artificial intelligence (AI) 

software and mammography devices, indicated that AI could 

be used to differentiate between screening examinations with 

low and high probability of malignancy, which could potentially 

be used to improve the efficacy of screening and reduce the 

workload, especially the requirement for double reading.

Added value of this study

To our knowledge, this is the first randomised controlled trial 

investigating the use of AI in mammography screening. In this 

first report, the objective was to assess the safety of an AI-

supported screen-reading procedure, involving triage and 

detection support. AI-supported screening resulted in 20% 

more cancers being detected and exceeded the lowest 

acceptable limit for safety compared with standard double 

reading without AI, without affecting the false positive rate. 

The AI supported screen-reading procedure enabled a 44·3% 

reduction in the screen-reading workload. The results indicate 

that the proposed screening strategy is safe.

Implications of all the available evidence

The results from this randomised trial support the findings of 

earlier retrospective studies, indicating a general potential of AI 

to improve screening efficacy and reduce workload. The clinical 

safety analysis concludes that the AI-supported screen-reading 

procedure can be considered safe. Implementation of AI in 

clinical practice to reduce the screen-reading workload could 

therefore be considered to help address workforce shortages. 

The assessment of the primary endpoint of interval cancer rate, 

together with a characterisation of detected cancers in the 

entire study population, will provide further insight into the 

efficacy of screening, possible side-effects such as overdiagnosis, 

and the prognostic implications of using AI in mammography 

screening, taking cost-effectiveness into account.

Funding Swedish Cancer Society, Confederation of Regional Cancer Centres, and the Swedish governmental funding 
for clinical research (ALF).
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evaluations. In addition, we compared recalls, false 
positives, positive predictive value of recalls, and screen-
reading workload for the two screen-reading procedures.

Methods
Study design and participants
The MASAI trial was designed as a randomised, parallel, 
non-inferiority, single-blinded, controlled, screening 
accuracy study to compare AI-supported mammography 
screening with standard double reading without AI. The 
study was done within the Swedish national screening 
programme and participants were recruited at four 
screening sites in southwest Sweden (Malmö, Lund, 
Landskrona, and Trelleborg). Screen reading and further 
assessment of recalled participants were done at a single 
site, the Unilabs Mammography Unit at Skåne University 
Hospital (Malmö, Sweden).

The inclusion criterion was women (defined here as 
people registered with a female Swedish personal identity 
number indicating female gender, which can include 
trans women who have changed their legal gender) 
eligible to participate in population-based mammography 
screening, which also includes those with moderate 
hereditary risk of breast cancer and those with a history 
of breast cancer. No exclusion criteria were applied. The 
Swedish population-based mammography screening 
programme invites women aged 40–74 years for 
screening at intervals of 1·5–2 years. Those younger than 
55 years are first screened at 1·5-year intervals, and those 
aged 55 years or older are screened at 2-year intervals. 
Annual screening is done for people considered to have a 
moderate hereditary risk of breast cancer (lifetime risk 
18–29%) and for those with a history of breast cancer (for 
10 years after surgery, with an upper age limit of 80 years). 
Information about the study was included in screening 
invitation letters and in SMS text message reminders 
before scheduled appointments, with a link to a website 
containing detailed study information in Swedish and 
English. People eligible for screening who did not wish 
to participate in the trial were asked to opt out at the time 
of the screening visit and received standard of care. 
Information about the race or ethnicity of participants 
was not collected.

The study was approved by the Swedish Ethical Review 
Authority (2020-04936), which also waived the need for 
written informed consent. The study protocol (versions 1.1 
and 1.2) and the statistical analysis plan are available at 
the Lund University website. The protocol was updated 
to improve clarity; there were no changes in the trial 
procedures nor analyses in the statistical analysis plan 
from those described in the first and updated protocol 
versions.

Randomisation and masking
Randomisation was based on a single sequence of 
random assignments (1:1). After screening mammo-
grams were acquired, examinations were automatically 

randomised in the Picture Archive and Communications 
System (PACS; Sectra, Linköping, Sweden) to AI-
supported screening (intervention group) or standard 
double reading without AI (control group) with a pseudo-
random number generator. The people screened and the 
radiographers acquiring the screening examinations 
were masked to study group allocation, since the 
automatic randomisation was not visible on the 
radiographer’s PACS interface. The screen readers were 
not masked to the results of the allocation.

Procedures
A single-vendor mammography system was used for the 
screening examinations (Senographe Pristina, GE 
Healthcare, Freiburg, Germany). Standard screening 
examination included two views per breast with the 
addition of implant-displacement views for people with 
breast implants. The examinations randomised to the 
intervention group were analysed using Transpara  version 
1.7.0 (ScreenPoint Medical, Nijmegen, Netherlands). This 
system uses deep learning to identify and interpret 
mammographic regions suspicious for cancer. It was 
developed with more than 200 000 examinations for 
training and testing, which were obtained from multiple 
institutions in more than ten countries covering a range 
of populations, modality manufacturers, and variations in 
screening and diagnostic workflows. Annotations of more 
than 10 000 cancers in the database are based on biopsy 
results and include regions marked in previous 
mammograms in which cancers were visible but not 
detected by radiologists.

The AI system provided an examination-based 
malignancy risk score on a continuous scale ranging 
from 1 to 10. The risk scores were also presented on a 
discrete 10-level scale, calibrated to assign approximately 
a tenth of screening examinations to each risk score. 
Examinations were considered to be low risk (risk 
score 1–7), intermediate risk (risk scores 8 and 9), or high 
risk (risk score 10). Cancer prevalence increases sharply 
in the group with a risk score of 10, and retrospective 
studies using the same AI version as in this trial have 
reported 87–90% of screen-detected cancers and 45% of 
interval cancers to be in this group.16,17 The AI system also 
provided CAD marks at suspicious regional findings of 
calcifications and soft-tissue lesions, with a regional risk 
score on a discrete scale from 1 to 98. To limit the number 
of CAD marks that could potentially disturb the screen 
reading or lead to an increase in false positives, the AI 
system was preconfigured for CAD marks to be available 
only for examinations with risk scores of 8, 9, and 10, 
accounting for approximately 30% of all examinations 
(regional risk score threshold >42). The AI system was 
also configured to analyse implant-displacement views in 
screening examinations of people with breast implants. 
The PACS was customised with separate worklists for 
single and double reading. Examinations with the 
highest 1% risk, classified as extra high risk, were flagged 

For more on Transpara see 

https://screenpoint-medical.com

For the study protocol and 

statistical analysis plan see 

https://portal.research.lu.se/en/

projects/mammography-

screening-with-artificial-

intelligence
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in the high-risk worklist as 10H. A risk score threshold 
of 9·8, which was determined from the observed risk 
score distribution in the screening population, was used 
to select this group. Screening examinations in the 
control group were not analysed with AI at any timepoint.

In the intervention group, examinations with risk 
scores of 1–9 (low and intermediate risk) underwent 
single reading and examinations with risk scores of 10 
(high risk) underwent double reading (figure 1). Double 
reading was done by two different breast radiologists. 
The second reader had access to the first reader’s 
assessment (unblinded double reading), which is the 
standard of care in the regional screening programme in 
the Skåne region. Readers were aware of the examination 
risk score (for all examinations), presented both in the 
PACS worklists and on the image monitor. Readers first 
read the examination without CAD marks and then with 
CAD marks, if available (ie, for examinations with risk 
scores of 8–10). The readers were instructed to recall 
cases with the highest 1% risk, except for obvious false 
positives. In the control group, screening examinations 
were read with standard unblinded double reading 
without AI. The outcomes of the screen reading were 
either no suspicion of malignancy or recall. Participants 
could be recalled due to mammographic findings or self-
reported symptoms. Current practice in the screening 
programme is to recall participants with self-reported 
symptoms, such as a lump, when the mammogram 
cannot safely be classified as normal. Before the final 
decision, readers had the option of referral to a 
consensus meeting or to a technical recall (eg, due to 
poor image quality), or both. Consensus meetings are 
common practice in screening programmes with double 
reading; in these meetings, difficult or equivocal findings 
are reassessed by two radiologists, with a joint decision 
made to recall or clear of suspicion of malignancy.3 The 
images acquired at technical recall were by default 
randomised de novo due to the technical setup; however, 
participants were assessed according to their originally 
assigned group. Screening examinations allocated to the 
intervention group that failed to be processed by AI 
underwent standard-of-care reading.

16 breast radiologists at the Unilabs Mammography 
Unit at Skåne University Hospital were involved in the 
screen reading, of whom 15 had more than 2 years of 
experience in breast imaging and 14 had more than 
5 years of experience. 12 of the radiologists had a yearly 
reading volume of at least 5000 cases. Three radiologists 
had a yearly reading volume of 1000–3000 cases, and one 
radiologist read on average 700 cases per year. Based on 
the group composition, only readers with more than 
2 years of experience were allowed to read from the 
single-reading worklist. Before each screen-reading 
session, the radiologist rolled a six-sided die to randomly 
allocate themselves to either of the two groups: numbers 
1–3 allocated them to the control group and 4–6 to the 
intervention group.

Participants could withdraw from the study at any time, 
at which point all personal data would be removed and 
they would be excluded from analyses. True positive cases 
were initially identified through linkage with the Regional 
Cancer Registry (on Sept 12, 2022); to compensate for a 
delay in registry reporting, all recalled participants were 
manually assessed with use of patient records, and true 
positives were validated by histopathology reports on 
surgical samples or core-needle biopsies.

Outcomes
The primary outcome measure of the MASAI trial is 
interval cancer rate, which will be assessed after the 
full study population of 100 000 screened participants 
have had at least a 2-year follow-up (estimated 
December, 2024). Secondary outcome measures are 
early screening performance (cancer detection rate, 
recall rate, false positive rate, and positive predictive 
value [PPV] of recall), screen-reading workload (number 
of screen-readings and consensus meetings), detection 
in relation to tumour type and stage, proportion of 
interval cancers by cancer type and stage, sensitivity and 
specificity, and incremental cost-effectiveness ratio. In 
the current clinical safety analysis, the secondary 
outcome measures of early screening performance of 
cancer detection rate (number of cancers detected per 
1000 participants screened), recall rate (proportion of 
screened participants who were recalled), false positive 
rate, PPV of recall, type of detected cancer (invasive or in 
situ), and screen-reading workload were assessed. The 
screen-reading workload was reported as the sum of all 
screen readings, including those made at consensus 
meetings. The number and proportion of screenings 
that resulted in a consensus meetings (consensus 
meeting rate) were also reported separately.

Statistical analysis
The intention-to-treat population comprised all participants 
who underwent breast screening. The modified intention-
to-treat (mITT) population comprised participants with a 
complete screening examination, excluding those who 
were asked to attend a technical recall but did not attend. 
Participants recalled due to bilateral enlarged lymph nodes 
and diagnosed with lymphoma were also excluded from 
the mITT population, since they were not recalled due to 

Figure 1: Overview of trial intervention

AI=artificial intelligence.

Double reading without AI

Double reading plus AI 

Single reading plus AI  

AI triage

Randomisation

Risk score 10

Risk score 1–9

Control group 

Intervention group  
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suspicion of breast cancer. Participants were analysed in 
their allocated group regardless of the actual reading 
procedure (treatment policy strategy).

The hypothesis for the primary analysis was the non-
inferiority of AI-supported mammography screening 
compared with standard double reading, in terms of 
interval cancer rate, with a secondary hypothesis of 
superiority. Considering the interplay of screen-reading 
workload and the number of interval cancers, the non-
inferiority margin for the primary endpoint was set at the 
intervention yielding at most 20% more interval cancers 
than in the control group. The sample size calculations 
were done with use of Fisher’s exact test to compare the 
risk ratio based on the observed interval cancer rate in 
the current screening programme. A total sample size of 
100 000 (intention-to-treat population) was expected to 
have at least 80% statistical power to show that the ratio 
of the interval cancer rate is at most 1·2 in the intervention 
group compared with the control group. The mITT 
population among the 100 000 enrolled participants will 
be used in the primary analysis. The sample size 
calculation for the clinical safety analysis was based on a 
worst case scenario of the intervention yielding a cancer 
detection rate of 3 per 1000 screened participants (based 
on the assumption that single reading could lead to 
reduced detection), at which rate the study could be 
halted, compared with a detection rate of 5 per 
1000 screened participants in the control group (reflecting 
the observed rate in the current screening programme). 
According to Fisher’s exact test, a sample size of 80 000 

(intention-to-treat population) was needed to show with a 
power greater than 80% that the proportion of detected 
cancer did not reach the worst case scenario. The mITT 
population among the 80 000 enrolled participants was 
used in the clinical safety analysis. Throughout the study, 
the overall recall rate was monitored as part of the 
institutional quality assurance reports to ensure that the 
recall rate did not drop below what was observed in 
the clinic 6 months before the start of the trial (average 
recall rate 2·1%), which could indicate a reduction in 
cancer detection. The number of enrolled participants 
was monitored monthly. Trial data were extracted from 
PACS on Sept 12, 2022, which was 1·5 months after 
roughly 80 000 participants had been enrolled, to ensure 
sufficient time for the screen reading and initial 
investigations of recalled participants. Participants were 
matched with the Regional Cancer Registry on the same 
day as data extraction and a rapid preliminary analysis of 
cancer detection was available 1 week later, which was 
used to inform the decision to continue the trial.

Descriptive statistics were used to summarise study 
population characteristics. Frequencies and percentages 
were calculated for categorical data. 95% CIs were 
calculated with the Clopper-Pearson method. The cancer 
detection rate, recall rate, false positive rate, and PPV of 
recall were calculated separately for the intervention and 
control groups. The cancer detection rate was compared 
with Fisher’s exact test and the ratio of the proportions 
with corresponding 95% CIs were reported. A two-sided 
p value of less than 0·05 was considered to indicate 
statistical significance. The numbers of screen readings 
and consensus meetings were calculated separately for 
the intervention and the control groups.

In a post-hoc analysis, the distribution of AI risk scores 
by screening examinations, screen-detected cancers, 
recalls, and PPV of recall were reported with descriptive 
statistics. This analysis was included to describe AI 
performance and no inferential statistical analyses 
were done.

All statistical analyses were done with Stata IC 17.0 
software and Python 3.8.5. The trial is registered with 
ClincialTrials.gov, NCT04838756.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
Between April 12, 2021, and July 28, 2022, 80 160 women 
presented for screening and 127 (0·2%) opted out of the 
trial. 80 033 participants were randomly assigned: 
40 003 (50·0%) to undergo AI-supported screening 
(intervention group) and 40 030 (50·0%) to undergo 
double reading without AI (control group). 39 996 partici-
pants in the intervention group and 40 024 in the control 
group were included in the clinical safety analysis (mITT 

Figure 2: Trial profile

AI=artificial intelligence.

40 003 allocated to AI-supported screening

39 673 received screening as allocated

24 received standard of care at technical 

recall

306 not analysed by AI due to software 

failure and received standard of care

7 excluded from analysis

4 declined technical recall

1 with current breast cancer invited to

screening by mistake 

1 recalled due to enlarged lymph nodes 

and diagnosed with lymphoma 

1 withdrew consent

39 996 included in final analysis

80 033 randomly assigned

80 160 women screened by mammography

127 declined to participate 

40 030 allocated to double reading without AI

40 004 received screening as allocated

26 analysed by AI at technical recall

6 excluded from analysis

5 declined technical recall 

1 recalled due to enlarged lymph nodes 

and diagnosed with lymphoma

40 024 included in final analysis
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population; figure 2). The median age of participants in 
the mITT population was 54·0 years (IQR 46·7–63·9). 
The age distribution and indication for screening 
was similar between groups (table 1). The AI system 
did not to provide a risk score for 306 (0·8%) of 
39 996 participants in the intervention group. There were 
38 (0·1%) technical recalls among 40 003 participants 
in the intervention group and 46 (0·1%) among 
40 030 participants in the control group.

Early screening performance and workload measures 
are presented in table 2. Based on the rapid preliminary 
analysis of cancer detection internally reported on 
Sept 20, 2022, among the 39 996 participants screened 
with AI, 244 cancers were detected and 861 participants 
were recalled. Among the 40 024 participants in the 
control group, 203 cancers were detected and 817 partici-
pants were recalled. The cancer detection rate was 6·1 
(95% CI 5·4–6·9) per 1000 participants for AI-supported 
screening (ie, above the lower safety limit) and 5·1 
(4·4–5·8) per 1000 for double reading without AI, a 
ratio of 1·2 (95% CI 1·0–1·5; p=0·052). The absolute 
difference in cancer detection per 1000 screened 
participants was 1·0 (95% CI 0·0–2·1). The false positive 
rate was the same in both groups. 36 886 fewer screen 
readings were done in the intervention group than in the 
control group, representing in a 44·3% reduction in the 
screen-reading workload.

Of the 244 cancers detected in the intervention group, 
184 (75%) were invasive, among which 152 (83%) were 
stage T1 (tumour diameter ≤20 mm). In the control 
group, 165 (81%) of 203 cancers were invasive, of which 
129 (78%) were stage T1. In situ cancers constituted 
60 (25%) detected cancers in the intervention group and 
38 (19%) in the control group.

The distribution of AI risk scores in the intervention 
group and early screening performance measures per 
risk score are presented in table 3 (post hoc). The cancer 
detection rate in the high-risk group (ie, those with a 
risk score of 10 that underwent double reading) 
was 72·3 per 1000 participants screened (208 of 
2875 participants), a frequency of one cancer per 
14 screening examinations. In the high-risk group, 
11 (2·6%) of 416 recalls were due to self-reported 
symptoms. Of the 490 screening examinations flagged 
as extra high risk by AI (highest 1% risk), 189 (38·6%) 
were recalled—ie, 22·0% of all 861 recalls in the 
intervention group. Of the 189 recalled participants 
classified as being extra high risk, 136 had cancer (PPV 
of recall 72·0%), resulting in a cancer detection rate of 
277·6 per 1000 screening examinations in the extra-
high-risk category. Thus, the 1·2% of screening 
examinations flagged as extra high risk contained 
55·7% of all screen-detected cancers in this group. 
36 815 (92·0%) of 39 996 screening examinations were 
those with risk scores of 1–9 (which underwent single 
reading), among which there were 440 (1·2%) recalls 
(51·1% of all 861 recalls), including 114 (25·9%) recalls 

based on self-reported symptoms. 36 cancers were 
detected by screening in the single-reading with AI 
group (14·8% of all 244 screen-detected cancers), with 
an overall cancer detection rate of 1·0 per 
1000 participants screened. There was a considerable 
difference in cancer detection rate between those with 
risk scores of 1–7 (0·2 per 1000 participants screened; 
six cancers detected among 30 464 participants) and 
those with risk scores of 8–9 (4·7 per 1000; 30 cancers 
detected among 6351 partici pants), meaning that, 
to detect one cancer, radiologists had to read 

Intervention 

group (n=39 996)

Control group 

(n=40 024)

Age, years

Mean (SD) 55·3 (10·2) 55·3 (10·2) 

Range 39·6–80·1 39·5–79·9

<45 7568 (18·9%) 7607 (19·0%)

45–49 7155 (17·9%) 7209 (18·0%)

50–54 6505 (16·3%) 6559 (16·4%)

55–59 5021 (12·6%) 4822 (12·0%)

60–64 5007 (12·5%) 5214 (13·0%)

65–69 4345 (10·9%) 4265 (10·7%)

≥70 4395 (11·0%) 4348 (10·9%)

Screening indication

General screening 38 969 (97·4%) 38 951 (97·3%)

History of breast cancer 984 (2·5%) 1017 (2·5%)

Moderate hereditary risk 43 (0·1%) 56 (0·1%)

Data are mean (SD), range, or n (%).

Table 1: Baseline population characteristics, modified intention-to-treat 

population

Intervention group 

(n=39 996)

Control group 

(n=40 024)

Early screening performance 

Number of recalls 861 817

Recall rate, % 2·2% (2·0–2·3) 2·0% (1·9–2·2)

Number of screen-

detected cancers

244 203

Cancer-detection rate, 

per 1000 participants 

screened 

6·1 (5·4–6·9) 5·1 (4·4–5·8)

False positive rate, % 1·5% (1·4–1·7) 1·5% (1·4–1·7)

Positive predictive 

value of recall, %

28·3% (25·3–31·5) 24·8% (21·9–28·0)

Workload

Number of screen 

readings

46 345 83 231

Number of consensus 

meetings

1584 1576

Consensus meeting rate 4·0% (3·8–4·2) 3·9% (3·8–4·1)

Data are n or point estimate (95% CI). 

Table 2: Early screening performance and workload measures, modified 

intention-to-treat population
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5000 examinations in the group with scores of 1–7 and 
212 examinations in the group with scores of 8–9.

Discussion
This clinical safety analysis showed that a screen-reading 
procedure using an AI tool to triage screening 
examinations to single or double reading and with use of 
AI as detection support in mammography screening 
was safe, because the cancer detection rate (6·1 per 
1000 participants screened) was above the prespecified 
lower limit for safety, and was similar to that of double 
reading without AI (5·1 per 1000). The use of AI did not 
influence the rates of recalls, false positives, or consensus 
meetings, while the screen-reading workload was 
reduced by almost half.

The MASAI trial aims to answer two key questions on 
the use of AI in mammography screening. The first 
question regards whether AI can be safely used to reduce 
the screen-reading workload with sustained performance, 
which we addressed in the current report. The second 
key question regards the effect on screening outcome, 
with a primary outcome of interval cancer rate, a central 
indicator of screening efficacy.1,6 The full study population 
of 100 000 screened participants and a 2-year follow-up is 
needed to investigate this endpoint.

The MASAI trial proposes one of several possible 
strategies of integrating AI in the screen-reading 
pathway.13,20 In European screening programmes, in which 
double reading is standard, AI has been suggested to 
replace one of the readers, to be used as a standalone 
reader for examinations with low AI risk scores, to force 
examinations with high AI risk scores to a consensus 
meeting or to arbitration, or to automatically recall cases 
above a specific threshold. Different strategies can also be 
considered regarding reader access to AI information: 

having it available at the time of screening or, for example, 
only at the consensus meeting to limit automation bias. 
Our strategy was to use AI to triage examinations to single 
or double reading and to let radiologists have access to AI 
information in the form of risk scores and CAD marks at 
the time of screen reading. The rationale underlying this 
design was to take advantage of the bias introduced by AI. 
We hypothesised that, in addition to the benefit of CAD 
marks as detection support, knowledge of disease 
prevalence would influence radiologists’ operator point 
and thereby reduce false positives when reading low-risk 
examinations (in addition to single reading itself leading 
to fewer false positives4) and reduce false negatives when 
reading high-risk examinations.21 Access to risk scores and 
CAD marks did not seem to introduce a detrimental 
automation bias, since the false positive rate remained 
unchanged. This finding emphasises the importance 
of radiologists having the final decision to recall, 
which, besides reducing false positives, constitutes a 
practical approach to meeting established medicolegal 
requirements, as opposed to the current ethical and legal 
uncertainties of using AI as a standalone reader. However, 
if results from prospective studies show that use of AI in 
screen reading is safe, it could potentially lead to over-
reliance on AI and cause an increased risk of detrimental 
automation bias over time. In our study, access to AI 
information also enabled the fast and safe handling of 
screening examinations with a very high probability of 
cancer. These examinations were flagged in the PACS 
worklist and could therefore be prioritised for a timely and 
scrutinised screen reading. This approach was effective as 
indicated by the findings that the 1·2% of screening 
examinations flagged as extra high risk contained 
55·7% of all screen-detected cancers in this group. 

AI-supported screening resulted in 20% more cancers 
(244 vs 203) being detected than with standard screening. 
152 stage T1 invasive cancers were detected in the 
intervention group compared with 129 in the control 
group, which might indicate an increase in early detection 
without the need for supplementary imaging methods. 
The incremental increase was, however, not as large as 
that observed with digital breast tomosynthesis screening 
in a previous study.22 Still, the higher cancer detection 
with tomosynthesis compared with mammography in 
screening has not convincingly been shown to translate 
into a reduction of interval cancers,22 which could 
question its clinical importance since it is also a more 
resource-demanding technique. The clinical significance 
of the additional detected invasive cancers in our study 
remains to evaluated. The evolution of AI over time could 
affect all available tests for breast cancer screening, but 
the use of AI in tomosynthesis screening has not yet been 
evaluated in a prospective study.

We also found increased detection of in situ cancers 
with AI-supported screening compared with standard 
screening (60 vs 38), which could be concerning in terms 
of overdiagnosis. The risk of overtreating an in situ 

Participants 

screened 

(N=39 996) 

Participants 

recalled 

(n=861)

Screen-

detected 

cancers 

(n=244)

Positive 

predictive 

value of 

recalls

10 2875 (7·2%) 416 (48·3%) 208 (85·2%) 50·0%

9 3212 (8·0%) 116 (13·5%) 23 (9·4%) 19·8%

8 3139 (7·8%) 65 (7·5%) 7 (2·9%) 10·8%

7 3075 (7·7%) 36 (4·2%) 1 (0·4%) 2·8%

6 3193 (8·0%) 41 (4·8%) 1 (0·4%) 2·4%

5 3503 (8·8%) 52 (6·0%) 0 0%

4 3697 (9·2%) 35 (4·1%) 1 (0·4%) 2·9%

3 4247 (10·6%) 30 (3·5%) 1 (0·4%) 3·3%

2 4368 (10·9%) 31 (3·6%) 1 (0·4%) 3·2%

1 8381 (21·0%) 34 (3·9%) 1 (0·4%) 2·9%

Missing 

score 

306 (0·8%) 5 (0·6%) 0 0%

Data are n (%) or %. 

Table 3: Distribution of artificial intelligence examination risk scores and 

early screening performance measures, intervention group (post-hoc 

analysis)
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cancer is more likely with low-grade cancers, since they 
might never progress into a clinically relevant event 
during the patient’s lifetime.23 Hence, the planned 
characterisation of detected cancers in the full study 
population will bring some clarity to possible 
overdiagnosis with AI-supported screening. Fenton and 
colleagues showed a 34% increase in the detection of in 
situ cancers (from 1·17 to 1·57 per 1000 screening 
mammograms, p=0·09) after the implementation of 
conventional CAD in screening but without a parallel 
increase in the detection of invasive cancer.24 Conventional 
CAD was also shown to increase false positives and 
related costs, and its use in screening could ultimately 
not be justified.2,24–27 AI thus seems to have improved 
performance compared with that of conventional CAD, 
but could still have hypersensitivity to calcifications, a 
typical presentation of in situ cancers.13 Subsequent 
screening will show whether the relatively higher 
detection observed in our trial is a result of screening 
with a more sensitive technique for the first time (ie, a 
prevalence effect), causing an initial high incidence that 
levels out during subsequent screening rounds.28

We found that the benefit of AI-supported screening in 
terms of screen-reading workload reduction was 
considerable. The actual time saved was not measured, 
but, if we assume that a radiologist reads on average 
50 screening examinations per hour, it would have 
taken one radiologist 4·6 months less to read the 
46 345 screening examinations in the intervention group 
compared with the 83 231 in the control group. There was 
concern about whether AI would lead to an increase in 
cases referred to consensus meetings, considering the 
eventual need to discuss CAD findings and the possible 
reader anxiety arising from single reading. Consensus 
meetings constitute an important step to increase the 
specificity, but are resource demanding.3 Contrary to 
expectations, the proportion of screenings that led to a 
consensus meeting was not affected by the use of AI.

These results are promising and can be used to inform 
new trials and programme-based evaluations to address the 
radiologist shortage. However, we still need to improve our 
understanding of what the implications are for patient 
outcome—most importantly, the effect on interval cancer 
rates. We also need to investigate whether the higher 
detection of small invasive cancers will lead to a subsequent 
reduction of prognostically significant cancers and whether 
the frequency of in situ cancers detected will be reduced at 
subsequent screenings. An analysis of the prognostic 
characteristics of cancers detected in the full study 
population of the MASAI trial is underway. Furthermore, 
AI systems come at a financial cost, and, while the market 
and its business models might develop, the willingness to 
pay to reduce the workload must be determined. Cost-
effectiveness can be determined only when the downstream 
cost of the intervention has been assessed.

The MASAI trial is, to our knowledge, the first 
randomised trial investigating AI in mammography 

screening and can thus provide evidence for clinical 
implementation. A strength of the study is the close 
resemblance to a real screening setting, since no exclusion 
criteria were applied and few people invited for screening 
opted out. The main limitation of this study is that it was 
conducted at a single centre in the Swedish screening 
programme. The study was also limited to the combination 
of one type of mammography device and one AI system. 
AI system performance will inevitably vary with technical 
factors such as AI algorithms and image processing,12 but 
will probably be of less importance than the variability of 
radiologists. Our screening strategy emphasises the 
central role of the radiologist to make the final decision to 
recall a patient, and the present results are dependent on 
the performance of the participating radiologists. The 
radiologists participating in this trial were, overall, 
moderately to highly experienced in breast imaging, 
which could also limit the generalisability of our findings 
to some settings (eg, those with predominantly less-
experienced screen readers, which have been shown to 
have a higher rate of false positives29), and the qualification 
for single reading with AI is likely to require revision. 
Only readers with more than 2 years of experience were 
allowed to conduct single reading in the intervention 
group, which could have introduced a bias in reader 
performance in relation to the control group. Because 
only one of the 16 participating radiologists had less than 
2 years of experience, we do not believe this factor would 
have had a major influence on the results. Another 
limitation of the reported results was that the true false 
positive rate requires a follow-up period in case of later 
interval cancer diagnosis. Because this is an uncommon 
event, we do not expect the false positive rate to change 
substantially.

Results from this study must be considered in the 
context of AI being a constantly evolving field with 
continuously updated algorithms and machine learning 
models, and the related challenge of the transparency 
of these updates.30 To mitigate the implications of 
these updates and estimate the effect on screening 
performance, mammograms from the MASAI trial will 
be stored in a data warehouse to enable a reanalysis with 
updated algorithms using the trial outcome data as a 
reference. More importantly, implementing AI systems 
would require having a monitoring system of algorithm 
performance in place.

In summary, this clinical safety analysis of the MASAI 
trial, in which an AI system was used to triage screening 
examinations to single or double reading and as detection 
support, showed that AI-supported mammography 
screening can be considered safe, since it resulted in a 
similar rate of screen-detected cancer—exceeding the 
lowest acceptable limit for safety—without increasing 
rates of recalls, false positives, or consensus meetings, 
and while substantially reducing the screen-reading 
workload compared with screening by means of standard 
double reading.
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