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a b s t r a c t

As deep neural net architectures minimize loss, they accumulate information in a hierarchy of learned

representations that ultimately serve the network’s final goal. Different architectures tackle this

problem in slightly different ways, but all create intermediate representational spaces built to inform

their final prediction. Here we show that very different neural networks trained on two very different

tasks build knowledge representations that display similar underlying patterns. Namely, we show that

the representational spaces of several distributional semantic models bear a remarkable resemblance

to several Convolutional Neural Network (CNN) architectures (trained for image classification). We use

this information to explore the network behavior of CNNs (1) in pretrained models, (2) during training,

and (3) during adversarial attacks. We use these findings to motivate several applications aimed at

improving future research on CNNs. Our work illustrates the power of using one model to explore

another, gives new insights into the function of CNN models, and provides a framework for others

to perform similar analyses when developing new architectures. We show that one neural network

model can provide a window into understanding another.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Convolutional Neural Networks (CNNs) extract information in

the pixels of images by applying a hierarchy of learned func-

tions, and can even outperform humans for some tasks (Karpathy,

2014). While CNNs have become incredibly accurate, they have

also become deeper and more complex, making it more difficult

to understand why they work, and how they fail. It is not always

clear why one CNN architecture outperforms another, and when

we design new networks, the architectural decisions and innova-

tions can be ad hoc, mostly verified by trial and error. And when

CNNs fail (as they do under adversarial attack) it can be difficult to

determine where the network went wrong, or even that it went

wrong.

In this paper, we present several new methods for studying

CNNs, both pretrained and during training, as well as during

an adversarial attack. We track the accumulation of information

through the layers of a CNN, and offer insights into the function

and performance of CNNs. We then describe how our study

of CNN hidden representations could be used to operationalize

the building of new CNN architectures, or build CNNs that are

more robust to adversarial attack. The methodology is inspired

by techniques originally developed to study the brain’s semantic
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representations via neuroimaging data, and we have shown it to

be useful for understanding CNNs (Dharmaretnam & Fyshe, 2018).

Our contributions are:

(1) Evaluation using 5 times more concepts than our previ-

ous work (Dharmaretnam & Fyshe, 2018), including exper-

iments with 3 architectures (ResNet50, Inception-v3, and

FractalNet), and two datasets (ImageNet, CIFAR-100).

(2) An exploration of the behavior of hidden layers during train-

ing that shows that different layers learn more during early

and late training epochs.

(3) An application of the technique to describe hidden represen-

tations for adversarial images.

Each of these points illustrate how DS (Distributional Semantic)

models can help us to understand CNNs, but also how we might

use DS models to train better, more robust CNNs. We illustrate

here a framework for understanding the behavior of CNNs in a

variety of settings, and then illustrate how this technique could be

used to imagine and test better architectures, and possibly protect

against adversarial attacks.

2. Related work

Distributional models of word meaning (word embeddings)

use patterns of word co-occurrence to estimate vector repre-

sentations for words. These vectors have proven useful for a
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variety of Natural Language Processing tasks, and have been

shown to correlate strongly to human judgments of word sim-

ilarity (Bruni & Baroni, 2013; Hill, Reichart, & Korhonen, 2015),

and behavioral norms (Hollis, Westbury, & Lefsrud, 2017). In fact,

several DS models include both text and images to create one

joint model (Anderson, Bruni, Bordignon, Poesio, & Baroni, 2013;

Bruni & Baroni, 2013). However, the idea of using DS models to

understand CNNs has been largely untouched.

Distributional models have been used in conjunction with

CNNs in a variety of ways. CNNs have been trained to predict

word vector dimensions as output instead of discrete classifica-

tion (Frome, Corrado, & Shlens, 2013). Predicting into a space

shared with the word vectors allows CNNs to predict for classes

not seen during training (zero shot learning) (Lazaridou, Bruni,

& Baroni, 2014; Socher, Ganjoo, & Sridhar, 2013). Previously,

we used distributional semantic models to explore CNNs (Dhar-

maretnam & Fyshe, 2018). Compared to our previous work, this

paper includes 5 times more concepts, new architectures (Fractal-

Net), additional datasets (CIFAR-100), and additional explorations

of the behavior of the hidden layers during training, and for

adversarial examples.

The interpretation of CNNs has taken many forms, but most

have relied on visual exploration of the images that most ‘‘excite’’

a neuron (Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015), or the

areas of an image that most contribute to a prediction (Alber

et al., 2019; Wagner et al., 2019; Zeiler & Fergus, 2014). Semantic

parts (e.g. wheels, legs) have also been identified within CNN

representations (Gonzalez-Garcia, Modolo, & Ferrari, 2018), an-

other piece of evidence that CNNs capture semantic meaning.

There have also been several variants of Canonical Correlation

Analysis (CCA) proposed to project the hidden layers into a shared

representational space with either the raw image pixels or the

layers of another CNN (Morcos, Raghu, & Bengio, 2018; Raghu,

Gilmer, Yosinski, & Sohl-Dickstein, 2017; Saini & Papalexakis,

2018).

Because CNNs can be so hard to interpret, some methods

actually train additional models on top of the CNN representa-

tions to facilitate interpretation. Zhang, Yang, Ma, and Wu (2019)

developed a method that uses decision trees to identify semantic

parts of the object in the image, assign importance to each of

the parts, and relate these parts to the representations within

the CNN. Bologna (2019) developed a method which extracts

rules from a CNN model, allowing for a more natural interpre-

tation. The rules were generated by a Multi Layer Perceptron,

and centroids of the generated rules are quite interpretable, thus

assisting practitioners as they explore the origins of a particular

CNN prediction.

In this work, we use an independent model trained on very

different data (text) as a sort of ‘‘third-party’’ evaluation of the

information that exists in the layers of the CNN. This allows us to

move beyond the similarities that exist in image space (e.g. many

animals are pictured in outdoor scenes) and instead correlate to

another notion of semantics built from the usage of the word

associated with the concept. In addition, our technique uses raw

correlation, which avoids the overhead of training a new model,

making our approach quick and easy to implement.

3. Methodology

Our experiments analyze three popular CNNs, two popular

image classification datasets, and six DS models. We explore two

networks pretrained on ImageNet (Deng et al., 2009): ResNet-

50, and Inception-v3; and FractalNet, which we train on CIFAR-

100 (Krizhevsky & Hinton, 2009).

3.1. Convolutional neural networks

ResNet-50. The ResNet architecture (He, Zhang, Ren, & Sun, 2015)

was introduced as an entry to the 2015 Large Scale Visual Recog-

nition Challenge (Russakovsky et al., 2015; Szegedy et al., 2015).

ResNet introduces residual blocks, which contain residual con-

nections that give each block’s final layer access to the block’s

original input. This helps both with stability during training, and

also with predictive accuracy. We study ResNet-50, the 50 layer

variant that achieved a top-5 error rate of 5.25% on the ILSVRC

2015 test dataset. We studied the 49 activation layers spread

across 16 residual blocks in this network.

Inception-v3. Inception-v3 is a variant of the original GoogLeNet

architecture (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2015).

It has 94 convolutional blocks followed by ReLU activations. The

network has nine inception modules, which process the input

with differently sized convolutional filters. The outputs of each

branch within an inception module are concatenated before they

are passed to the next inception layer. We studied both activation

and filter concatenation layers (mixed layers in Keras, Chollet

et al., 2015).

FractalNet. FractalNet is an interesting architecture trained with

both deep and shallow connection paths made up of fractal

expansions of the same base architecture (Larsson, Maire, &

Shakhnarovich, 2016). Unlike ResNet (a network with comparable

deep and shallow connection paths), the FractalNet architecture

continues to improve with added depth (though with diminishing

returns).

3.2. Distributional semantic models

We present several Distributional Semantic (DS) models for

studying the semantic representations in CNNs. SkipGram is part

of the Word2vec package, and the vectors we used are 300-

dimensional, and are trained on the Google News dataset to pre-

dict context words given a central word (Mikolov, Chen, Corrado,

& Dean, 2013). Glove is a regression-based model that incor-

porates both local and global co-occurrence information. This

300-dimensional model was trained on the English Wikipedia

and Gigaword 5 corpora combined (Pennington, Socher, & Man-

ning, 2014). The word vectors from Elmo are derived from a

bi-directional language model (Peters et al., 2018). Elmo is de-

signed to take context into account, but can also be used to create

vectors for single words, which is what we do here. Elmo is

trained on a random sample of Wikipedia and the common crawl,

and we use an average of the three 512-dimensional output

layers. Lexvec uses matrix factorization to compress a matrix

of co-occurrence counts for words appearing together within a

window of four words (Salle, Idiart, & Villavicencio, 2016). The

Lexvec model has 300 dimensions and is trained on the common

crawl. Fasttext is based on SkipGram, but operates on character

n-grams, and thus is able to capture morphological informa-

tion (Bojanowski, Grave, Joulin, & Mikolov, 2017). Fasttext is

trained on a combination of Wikipedia 2017, the UMBC webbase

corpus and data from . We use a model with 300 dimensions.

The Non-distributional model is based on hand-crafted linguistic

resources like WordNet (Fellbaum, 1998b) and FrameNet (Baker,

Fillmore, & Lowe, 1998). These vectors are of very high dimension

(171,839) because they are quite sparse. This is an interesting

model to compare against because it is not built from a cor-

pus (unlike every other model in this list) (Faruqui, Tsvetkov,

Yogatama, Dyer, & Smith, 2015).
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Fig. 1. An overview of the 2 vs. 2 test, using an example with 10 concepts (c1. . . c10). (1) Using the representations for each concept (illustrated as vectors above

the matrices), calculate the correlation of representations in Image and Distributional Semantics space. The blue matrix represents CI , the correlation of CNN hidden

representations computed from images of concepts (c1. . . c10). The pink matrix is CD , the correlation of word embeddings for concepts (c1. . . c10). (2) An example of

the 2 vs. 2 test for concepts c1 and c2. Select the rows of the correlation matrices CI and CD corresponding to c1 and c2. (3) Remove the columns corresponding to

the self- and cross-correlation of c1 and c2. (4) Compare correlation of vectors when matching c1 and c2 vectors (Eq. (A)) to the correlation of mismatched vectors

(Eq. (B)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.3. Concept selection

Two of the CNNs used in our study are pretrained on Ima-
geNet (Deng et al., 2009) which has 1000 labeled image classes
organized to align with the WordNet hierarchy (Fellbaum, 1998a).
ImageNet classes often are a list of synonymous concepts
(e.g. class 286: ‘‘cougar, puma, catamount, mountain lion, painter,
panther, Felis concolor’’). For these cases, we use the vector of
the first word that matches a word in the DS model, resulting
in hundreds of vectors (e.g. 838 ImageNet classes for SkipGram
alone, and 646 classes common to all six DS models). Matching
word vectors to CIFAR-100 was more straightforward, as most of
the classes are single words (or could be represented as a single
word), and all 100 were present in the DS word lists.

3.4. Analyzing learned representations, and the 2 vs. 2 test

Following our previous work (Dharmaretnam & Fyshe, 2018),
we randomly selected images for each of the w matched concepts
from the ImageNet cross-validation dataset (Russakovsky et al.,
2015). All images were rescaled to 224 × 224 for ResNet-50 and
VGG-16, and 299 × 299 for Inception-v3. After resizing, the pixel
values were mean normalized.

We then generated representations at each layer1 of each CNN,
recording the activation values for every image. At each layer, we

1 A layer can be any node in the computation graph. Here, we focus on

activation and concatenation layers.

produce a matrix I ∈ R
w∗k, where k is the dimension of the

flattened CNN layer and w is the number of concepts. Each row in

the matrix I represents the hidden representation of one image

extracted from one layer of the CNN. Fig. 1 shows an overview of

the 2 vs. 2 test, illustrated with 10 concepts. The vectors atop the

two matrices correspond to rows in the matrix I .

We then compute the Pearson correlation of every concept

with every other concept in I , resulting in a correlation matrix

CI ∈ R
w∗w (blue matrix in Fig. 1). Thus, every element CI (i, j) rep-

resents the similarity of the hidden representation for an image

depicting concept i and the hidden representation for an image

depicting concept j. To ensure a fair comparison, we repeat the

above steps with 5 randomly selected sets of w images, resulting

in 5 CNN correlation matrices CI per layer.

We extract the DS vectors for the same w concepts, resulting

in a matrix D ∈ R
w∗n, where w is the number of concepts and n is

the dimension of the DS vectors. We then compute the Pearson

correlation of every word vector with every other word vector

resulting in the correlation matrix CD ∈ R
w∗w (pink matrix in

Fig. 1). CD(i, j) represents the similarity of word i with word j in

the space defined by a specific DS model. Now we have matrices

CI and CD which represent the similarity of concepts in CNN and

DS space.

How can we compare the similarities between representations

in CI and CD? We could just compute the correlation of the upper

triangle of CI and CD, but this would obfuscate which concepts

are best represented in each layer. Instead, we use the 2 vs. 2

65



D. Dharmaretnam, C. Foster and A. Fyshe Neural Networks 137 (2021) 63–74

test (Dharmaretnam & Fyshe, 2018), which allows us to explore

the representations at the level of individual concepts. For the 2

vs. 2 test, we select the rows corresponding to two concepts (i

and j) from both correlation matrices CI and CD, for a total of four

vectors (Fig. 1 part 2). We then omit columns i and j from all four

vectors, as they represent the cross- and self-correlation of the

concepts, resulting in vectors with w −2 elements (Fig. 1 part 3).

These vectors represent the correlation of the representations of

concepts i and j to every other concept, both in CNN and in DS

space. Let us rename the reduced vectors as C
(i)

I , C
(j)

I from the CNN

correlation matrix, and C
(i)

D , C
(j)

D from the DS correlation matrix.

In a 2 vs. 2 test, we calculate the correlation of the correlations,

testing if the correctly matched pairs (i to i and j to j):

corr(C
(i)

I , C
(i)

D ) + corr(C
(j)

I , C
(j)

D ) (A)

have greater correlation than the mismatched pairs (i to j and j

to i):

corr(C
(i)

I , C
(j)

D ) + corr(C
(j)

I , C
(i)

D ) (B)

This is also illustrated in Fig. 1 part 4. A 2 vs. 2 test is considered

to pass if Eq. (A) is greater than Eq. (B). The test is repeated for

all possible pairs of concepts in our set of w concepts. This results

in
(

w

2

)

tests. The 2 vs. 2 accuracy is the percentage of 2 vs. 2 tests

passed, and chance is 50%. Note that this method is based entirely

on correlation, and so can only detect linear relationships. Still we

were impressed with the results this simple approach yielded. Fu-

ture work might consider learning a (possibly non-linear and/or

regularized) mapping to further explore the relationship between

representational spaces.

The 2 vs. 2 tests were repeated for the 5 CI matrices inde-

pendently, and the scores were averaged to get a single score

for a given layer of the CNN. This accounts for variability across

images for a single concept in ImageNet (though in practice we

found the average variation across the 5 matrices to be very small,

e.g. 0.0064 for Inception-v3). The whole process is then repeated

for each layer in each CNN, and for every DS model.

4. Studying adversarial examples

We were interested in studying when and how CNNs fail in

the face of adversarial attack. For this, we explore adversarial

images designed to mislead CNNs. We search through the hierar-

chical layers of the CNN to identify layers where misclassifications

emerge, illustrating the vulnerabilities in CNN architectures, and

providing a road map to debug and improve CNNs.

To study adversarial examples, we randomly selected 100

source concepts. For each source concept, we select 6 target con-

cepts for a total of 600 adversarial targets. That is, we selected 100

‘‘true’’ images, and altered them to become adversarial examples

likely to be misclassified into 6 different target classes.

We were interested in how the similarity between source

and target classes might affect the performance of an adversarial

example. For this reason, we selected the six targets with varying

similarity to the source concept, based on the correlation of the

source and target word vectors. We select six target concepts

including the most similar target concept, the least similar target

concept, and four other target concepts spaced evenly between.

For each source and target pair, we perform a targeted adversarial

attack against Inception-v3 using v2.0.0 of Cleverhans (Papernot

et al., 2017). Our attack algorithm is the Momentum Iterative

Method with an L∞ norm perturbation bound of ϵ = 0.3 using

a decay factor of µ = 1.0 over 20 iterations (Dong et al., 2017).

We then tested each of the 600 adversarial images and discarded

four images that were not predicted to be the target class (failed

attacks), resulting in 596 total adversarial images. Examples of the

adversarial images are available in Appendix A.

4.1. The 1 vs. 2 test

Using the hidden representation generated by an adversarial

image, we can generate a vector of correlations that represents

the adversarial image in CNN space. This will essentially substi-

tute in for the vector C
(i)

I from the 2 vs. 2 test. We cannot simply

use a row of CI because the images we tested are altered to be

adversarial. To ensure the validity of the correlation vector for

the adversarial image, we need to calculate the correlation using

correctly classified unaltered (i.e. non-adversarial) images. We

randomly sampled 100 correctly classified images, and extracted

hidden layer representations for each. This resulted in a matrix

Icorrect ∈ R
100∗k where k is the dimension of the flattened CNN

layer. Similarly, word vectors corresponding to the same 100

image labels were extracted from the DS model. Let us call this

matrix Dcorrect ∈ R
100∗n where n is the dimension of the DS

model’s word vectors. The 100 concepts represented in Icorrect and

Dcorrect never include the source or target concepts.

Then, using the hidden representations generated from adver-

sarial images, we computed the correlations with all 100 concepts

in Icorrect resulting in the vector iadversarial ∈ R
100. Now iadversarial

is essentially the equivalent of C
(i)

I from the 2 vs. 2 test. The

word vectors corresponding to the source and target classes were

also extracted, and correlations computed with every concept

in Dcorrect resulting in two vectors dsource and dtarget, both of

dimension 100. The vector iadversarial represents the correlation of

concepts in CNN vector space, whereas dsource and dtarget represent

correlation of concepts in word vector space. We then check to

see if the iadversarial is more correlated to dsource or dtarget:

corr(iadversarial, dsource)
?
> corr(iadversarial, dtarget) (1)

which tells us if the hidden representation of the adversarial

image ‘‘looks’’ more like the source or target concept. This is the

1 vs. 2 test (Dharmaretnam & Fyshe, 2018), and like the 2 vs. 2

test, chance accuracy is 50%. The test is repeated for all adversarial

images, which gives us a measure of if the semantic information

of the source class exists anywhere in the CNN’s hierarchy during

the processing of the adversarial image.

4.2. Testing for statistical significance

The 2 vs. 2 and 1 vs. 2 tests were designed to study the

relationship between concepts in different vector spaces. The

chance accuracy for both these tests is 50%, but we need to

calculate a confidence interval around 50%, outside of which

results are significant. We do this by running 1000 permuta-

tion tests (Wasserman, 2004), approximating p-values for the

observed 2 vs. 2 and 1 vs. 2 accuracy, and correcting for multi-

ple comparisons using Benjamini–Hochberg–Yekutieli (BHY) false

discovery rate correction (Benjamini & Yekutieli, 2001). This is

standard practice for estimating significance, while making very

few statistical assumptions.

5. Results and discussion

Figs. 2 and 3 show the 2 vs. 2 accuracy (and standard deviation

over the five independent samples) through the layers of both

the convolutional networks (see also the annotated architecture

diagrams in Appendices B and C). These results are similar to our

previous findings (Dharmaretnam & Fyshe, 2018). However, here

we tested more nodes in the CNN hierarchy, and were able to see

that the increase in 2 vs. 2 accuracy through the CNN hierarchy is

not monotonic, especially for Inception-v3. Rather there are peaks

and troughs, discussed more below.

We also observed that the 2 vs. 2 accuracy of all six DS models

follows a similar trend, though LexVec dominates, and Elmo
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Fig. 2. 2 vs. 2 accuracy for the activation layers of ResNet-50 and several

DS models. Shaded area represents one standard deviation over the five

independent samples.

Fig. 3. 2 vs. 2 accuracy for the activation layers of Inception-v3 and several DS

models. Inception module boundaries are marked with vertical lines. Between

adjacent vertical lines the values plotted may represent parallel representations

from within the same module. Shaded area represents one standard deviation

over the five independent samples.

and the Non-distributional models trend lower. Elmo vectors are
meant to operate on words in context (e.g. in a sentence), and we
did not supply any context to our single word concepts. Thus, it is
not surprising that Elmo performs so poorly. It should be noted,
however, that finding the highest scoring DS model is not a goal
of this paper. Rather, we are looking for patterns in the 2 vs. 2
accuracy that tell us something about information accumulating
in the CNN. As all the 2 vs. 2 results have similar shapes and
are all within one standard deviation of each other, it would be
reasonable to use any of the top few models. For this reason,
the experiments in subsequent sections proceed with SkipGram
vectors.

In Fig. 2, we observed that the 2 vs. 2 accuracy in the layer
immediately before or after a residual block is always higher
than the layers inside a residual block. For example, this can be
seen in layer 19 of Fig. 2 (the end of a residual block) when
the 2 vs. 2 accuracy vastly improves. This may be explained by
residual learning theory. The ResNet-50 architecture is composed
of residual blocks which contain convolutional layers internally
and a skip-connection that connects the input of the residual

block to the final layer (He et al., 2015). Conceptually, each

residual block is a module that calculates a small change F (x)

for a given input x to the residual block. The add layer at the

end of residual blocks combines F (x) with original input x via

the skip connections. Combining F (x) with x provides additional

information to the activation layer after a residual block. This

effect is also very clear in the annotated ResNet-50 architecture

diagram (Fig. C.8). These results provide a semantic argument for

the effectiveness of residual learning theory, and illustrate the

power of the 2 vs. 2 technique.

Fig. 3 shows the 2 vs. 2 accuracy of activation layers of

Inception-v3. The Inception-v3 architecture consists of three dif-

ferent types of inception modules occurring in series (Szegedy,

Vanhoucke, Ioffe, Shlens, & Wojna, 2015). Within each module,

multiple convolutional and pooling operations happen in parallel

that are concatenated at the end of the module. Because of these

parallel connections, the layers (x axis in Fig. 3) cannot be linearly

ordered. For this reason, we indicate the module boundaries using

vertical lines (i.e. all activations within a module appear in be-

tween adjacent vertical lines, and thus between adjacent vertical

lines, the plotted points may actually appear in parallel). Note

that within an inception module, the 2 vs. 2 accuracy decreases

and increases again as the block ends. This implies that the power

of the module may be from combining multiple computational

streams.

5.1. Training CNNs

Our ability to track the accumulation of semantic information

during model training also offers additional insights. We trained

FractalNet (Larsson et al., 2016) on CIFAR-100 (Krizhevsky &

Hinton, 2009), using methods and hyperparameters described in

the original FractalNet paper. At every five epochs during the

training process, we extracted the hidden layers of the network

and performed 2 vs. 2 tests using SkipGram and the images from

the CIFAR-100 training set. The results for the first 60 epochs

appears in Fig. 4, and Appendix D shows all 400 epochs. Note

that the initial layers of the CNN learn semantics before the later

layers, and that they learn semantics within the first few epochs

of training. The 2 vs. 2 accuracy for the initial layers remains

constant throughout the remainder of training, and the 2 vs. 2

accuracy for the later layers continues to increase until the end

of the first 60 epochs. Thus, a significant part of later learning

is driven by the middle and later layers of the CNN. We also

measured the 2 vs. 2 accuracy for test images, and found it to

be 2%–3% lower than the accuracy on train images.

We also noted that as the network starts to overfit, the 2 vs. 2

accuracy curve becomes noisy (see Fig. C.10), raising the question

of what the 2 vs. 2 accuracy would look under the regime of

permuted labels (Zhang, Bengio, Hardt, Recht, & Vinyals, 2016).

We trained FractalNet after randomly permuting both the train

and test image labels, and trained the until we achieved 99.9%

training accuracy. As expected, the test accuracy was close to

chance (1%). We conducted the 2 vs. 2 tests for various layers

of CNN. We found that, even though the network achieves close

to perfect classification accuracy on train images, the 2 vs. 2

accuracy stays consistently low. This points to another method

for identifying overfitting during CNN training: a network fitting

to noise does not learn semantics.

5.2. Analysis of misclassifications

No CNN is perfect, so every CNN misclassified some images.

We were interested in quantifying the magnitude of the mistakes

made by a particular CNN. Again, we found we could use DS

models to assist us in this task.
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Fig. 4. The emergence of semantic information during training of FractalNet on CIFAR-100. Left: Training and test error for the first 60 epochs training. Right: The

2 vs. 2 accuracy using SkipGram vectors for layers of FractalNet during training. We show 2 vs. 2 accuracy at the first convolutional layer, the end of every second

fractal network block, and the last fully connected layer. The initial layers of the CNN learn semantics before the later layers, but later layers continue to improve

in later epochs.

For each misclassified image, we computed the cosine simi-

larity of word vectors representing the true and predicted class.

Word vectors for similar concepts will have high cosine similarity.

Thus, if the cosine similarity between the true and predicted

class is large (i.e. the true and predicted classes are similar),

then the mistake is less egregious (and vice-versa). We computed

the aggregate cosine similarity over all images misclassified by a

given CNN. We found that VGG-16 makes more egregious classi-

fication mistakes (average of 0.22 cosine similarity) as compared

to Inception-v3 and ResNet-50 (0.27 and 0.29 cosine similarity,

respectively).

A small number of mistakes made by these CNNs were se-

lected manually for further analysis, and are shown in Fig. 5.

In Fig. 5. The misclassifications represented by images 1–4 are

less serious than those represented by images 5–8. For example,

in image 1, both catamaran and trimaran are similar in visual

appearance, and their semantic similarity means they are likely

used in similar contexts in the corpora on which the DS models

are trained.

On the other hand, the swing classified as a prison by VGG16 in

image 8 is a major mistake. Swing and Prison are very dissimilar

concepts which are unlikely to be used in the same text context,

and thus have a very small cosine similarity score of 0.02.

Some examples of mistakes made by ResNet50 and Inception-

v3 are shown under images 1–4. Interestingly, in image 3, the

CNN misclassified the image of a wheelbarrow, labeling it shovel.

However, there is a shovel present in the image along with a

wheelbarrow. Furthermore, the CNN does indeed predict wheel-

barrow correctly in the top 5 predictions. This implies that seman-

tic signals related to both wheelbarrow and shovel were present in

the CNN activations.

Another type of scenario typically seen in the misclassification

by VGG16 is shown in image 4 (true: washer, predicted: tabby).

Here the predicted and true class are very dissimilar, but both the

concepts are present in the image, and both appear in the top 5

predictions. Again, this could mean that semantic signals related

to both washer and tabby were present in the CNN activations.

5.3. Adversarial examples

Adversarial examples are one of the more serious threats to

the adoption of CNNs for practical use, and the vulnerability of

neural systems to relatively minor perturbations is a growing

concern. We used SkipGram to explore the hidden represen-

tations of Inception-v3 when exposed to adversarial examples.

This allowed us to better understand the internal representation

of CNNs during adversarial attacks. We focus on the Inception-

v3 model here as it has the highest ImageNet challenge top-1

accuracy of the three models (Canziani, Paszke, & Culurciello,

2016; Russakovsky et al., 2015). We use the 1 vs. 2 test, which

passes if the source class (dsource) is closer than the adversarial

class (dtarget ) to the CNN correlation vector (iadversarial).

Fig. 6 shows the 1 vs. 2 accuracy through layers of Inception-

v3 for the 596 adversarial examples, broken down into six target

concept classes (based on the correlation between the target and

source word vectors). For simplicity here, we show only the 1 vs.

2 accuracy for ‘‘Mixed’’ layers, which join the result of several

parallel paths within a module. On average, in earlier layers of

the network, the 1 vs. 2 accuracy is higher, but by the later

layers of the network, the hidden representations have become

more similar to the adversarial class (dtarget ), pushing the 1 vs.

2 accuracy below 50. Below 50, the hidden representations are

more similar to the target concept than to the source concept.

Compared to the five other target concepts, the most similar

target concept has 1 vs. 2 accuracy that hovers around 0.5 through

most layers of the CNN. This is likely because the semantic rep-

resentation for two highly related concepts is more difficult to

disambiguate, so the 1 vs. 2 accuracy will be closer to chance.

For all other target concepts, which are less related to the source

concept, we see a pattern much more similar to the average:

high 1 vs. 2 accuracy in early layers, and lower 1 vs. 2 accuracy

for later layers. This implies that later layers are being targeted

by adversarial attacks, probably by an accumulation of small

perturbations through the network. We will explore one possible

use of this discovery in Section 6.2.

6. Utility and examples

Much of the work presented here is expository, and so here

we describe several possible practical applications for the infor-

mation shared here.

6.1. Improving CNN architecture design

CNNs have made an impressive mark on the computer vi-

sion community, but progress in creating new CNN architectures
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Fig. 5. A qualitative analysis of the classifications mistakes of CNNs. The images above were manually selected to illustrate misclassifications from VGG16, Inception-v3,

and ResNet50. We consider a classification error to be more serious if the cosine similarity between the word vectors for the true and predicted class is small.

Images (1–4) are sampled from mistakes made by Inception-v3 and ResNet50. They are considered to be small mistakes due to high cosine similarity between true

and predicted class. Images (5–8) are sampled from mistakes made by VGG16, and represent more serious misclassifications.

Fig. 6. 1 vs. 2 accuracy through layers of Inception-v3 for adversarial examples. When the accuracy is above 0.5, there is more evidence for the true class than the

adversarial class. Left: Average 1 vs. 2 accuracy for the six categories of adversarial targets. Right: average 1 vs. 2 accuracy for all six categories of adversarial targets.

ACT: activation layer, Mixed: concatenation block at the end of a module.

is still often a very experimental process guided by intuition

and trial-and-error. It can be difficult to know what tricks to

try next, and hard to determine which features of an architec-

ture are contributing most to the accuracy of a model. Here we

explore the architecture of ResNet-50 and Inception-v3 using

our methodology to identify those architectural features that are

likely contributing to the success of the architecture, and identify

some features which may not be as beneficial. Importantly, the

techniques here are easy to operationalize, and do not require

the manual examination of images in the training set. Thus,

the suggestions included here may be more practical, especially

during the rapid prototyping stages of network development.

Recall our results on ResNet-50 (Figs. 2 and C.8) that the 2

vs. 2 accuracy in the layer immediately before or after a residual

block tends to be higher than the layers inside the residual block.

Recall also that each residual block is supplied with some input

representation x. Each residual block ends by combining both

F (x) (the function learned as part of that block) as well as the

original x, and both pieces of information are supplied as input

into the next residual block. Because the intermediate stages in
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Fig. A.7. A sample of eight targeted adversarial examples.

computing F (x) do not appear to add much to the 2 vs. 2 accuracy,

it is likely that the residual connections in ResNet-50 are very

important, and are a good candidate feature to include in future

CNN architectures. Researchers designing new CNN architectures

should consider including such residual connections, not only

because they improve gradients at train time, but also because

they appear to improve the representations at test time.

Figs. 3 and C.9 show the 2 vs. 2 accuracy of activation layers of

Inception-v3. Similar to ResNet-50, within an inception module

we see 2 vs. 2 accuracy decrease and increase again at the end

of the module when mixing the various parallel convolution op-

erations together (this is most clear in the architecture diagram,

Fig. C.9). Interestingly, shallower parallel connections seem to

maintain 2 vs. 2 accuracy better than paths with many convo-

lutions, which implies that the lower-dimensional convolutions

may be driving some of the early performance. Thus, a researcher

might experiment with omitting the higher-dimensional convo-

lutions in early layers of the CNN, as they do not appear to

be adding to the early increases in accuracy. It should also be

noted that the average pooling at the end of the last inception

module also provides a tremendous boost in network perfor-

mance while reducing the number of parameters. These two case

studies show how our framework allows us to quantitatively

measure which CNN architectural innovations are truly benefiting

the performance of a particular CNN.

6.2. Defense against adversarial attack

In Fig. 6 we saw that even under adversarial attack, early layers

of the network contain the information necessary to identify

the source class (that is, the 1 vs. 2 accuracy is above 0.5).

In fact, for very dissimilar target classes, the evidence for the

source class outweighs the target class until quite late in the CNN

hierarchy. Recall also the results for non-adversarial examples

in Figs. 2 and 3, which show that 2 vs. 2 accuracy increases as

we move through the CNN hierarchy. Because adversarial attacks

work through minor perturbations that leverage the details of

the network’s decision boundary, the correlation of the hidden

layers may display a pattern of 2 vs. 2 accuracy that differs from

non-adversarial images. Thus, researchers may be able to develop

techniques to defend against adversarial attack by looking for

changes in the correlation of the predicted word vector to the

image’s hidden representations at different layers of the CNN.

Because the DS models are an external and independent source of

information, defense that incorporate a DS model may be difficult

to evade.

Conversely, this also suggests researchers pursue a mechanism

for strengthening adversarial attacks. Current adversarial attacks

suffer from transferability problems, possibly because they ex-

ploit the noisiness of decision boundaries, which can vary widely

between networks (Liu, Chen, Liu, & Song, 2017). All three neural

networks we studied learn representations that produce high 2

vs. 2 results against a variety of DS models. Thus, researchers may

be able to implement an adversarial attack which is regularized

towards producing hidden representations that are more corre-

lated to the word vector of the target class, rather than one purely

optimized to exploit the network’s decision boundary. Such an

attack may prove to generalize better across networks.

6.3. Improved training

In Section 5.1, we showed that early in training the first layers

of the CNN learn quickly, and after the first 10 epochs they

change very little. The majority of movement towards semantic

representations at the end of training happens in the later layers

of the CNN. This finding has many implications, including possible

new regularization schemes where DS models are used to guide

CNN training (similar to the regularization schemes in Federer,

Xu, Fyshe, & Zylberberg, 2020). This result also implies that we

could improve training time by freezing the weights of early

layers after the first few epochs of training.

7. Implications for artificial intelligence and neuroscience

Our work has uncovered what is a surprising and otherwise

unreported convergence of two very different neural network

research areas: language modeling and computer vision. The net-

works we study here differ in many ways: prediction task, data,

and architecture. Yet they produce representations that are re-

markably similar. This pattern holds across multiple CNNs and

multiple DS models. From a scientific standpoint, this is evidence

that the information being extracted and computed by CNNs

represents true semantic information that faithfully reflects pat-

terns in the natural world. As we move towards incorporating

CNNs into more everyday technology, this sort of convergence of

evidence will help us trust and further validate our models.
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Fig. C.8. The architecture diagram of ResNet-50 colored to indicate the 2 vs.

2 accuracy using SkipGram word-vectors (He et al., 2015). This is a high

resolution image and is best viewed electronically at great magnification. (For

interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

We can use Marr’s levels of analysis to more deeply un-

derstand our findings. Marr breaks down the understanding of

an information processing system into three main levels: com-

putational (the thing to be computed), algorithmic (how it is

Fig. C.9. The architecture diagram of Inception-v3 (Szegedy, Vanhoucke, Ioffe,

Shlens, & Wojna, 2015) colored to indicate 2 vs. 2 accuracy using SkipGram

word-vectors. This is a high resolution image and is best viewed electronically

at great magnification. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

computed), and implementational (the physical realization of that

computation, i.e. the hardware). The two systems in question

(a DS model and a CNN) trivially share their implementational

levels in that they both can run on typical computers. However,
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the systems do not share a top level computational goal; they

are trained for different prediction tasks. It is also clear, based

on the architectural differences between the models considered,

much of the algorithmic level is also not shared. Nevertheless,

the two systems actually do have some overlap at the algorith-

mic level, because their computed representations encode similar

relationships between concepts. Though so much of the systems

are different, they compute intermediate representational states

that are strikingly similar.

But, Marr developed his levels of analysis because he was

interested in understanding the human brain as an information

processing system. How can our work assist in that goal? There

are several lines of research showing that the human brain also

shares representational states with DS models (Jain & Huth, 2018;

Pereira et al., 2018) and with CNNs (Horikawa & Kamitani, 2017;

Khaligh-Razavi & Kriegeskorte, 2014). Clearly these models do

not share their implementational level with the human brain,

which computes using neurons, not transistors. Though primates

certainly are doing more with their visual systems than simple

object detection, like in a CNN, object detection is one of the

visual systems goals. So, we can grant that the top level com-

putational goal is shared in some instances. Though we do not

yet understand the intricacies of the primate visual system, it is

likely that to accomplish object recognition, each of the CNNs we

considered uses an algorithm that differs from the brains. And

yet, again, there is a connection between the representations that

a CNN learns, and those recorded in the brain using both fMRI

and direct recordings. Something about what the brain is doing

is shared with what CNNs learn to do. Furthermore, Horikawa

and Kamitani (2017) find that early layers in a CNN correlate to

the V1–V3 area of the human brain, and layers closer to the final

classification layer correlate more strongly with the higher-order

areas of the human brain (e.g. fusiform face area, parahippocam-

pal place area). So, even though there is so much that differs

architecturally, these CNN models are producing representations

in a hierarchical fashion that resembles what the hierarchy of the

human visual system is computing.

But what about the DS models? The DS models we considered

here are trained on a variety of tasks (e.g. SkipGram: predicting

context words, Glove: regression-based model to predict local

and global patterns of word co-occurrence), none of which is

a good match for the tasks the human brain engages in while

understanding language. So, they do not share a top-level com-

putational goal. Several of the DS model architectures are so

simple that it is highly unlikely that they share much algorithmic

overlap with the human brain. And yet, again, there is a strong

resemblance between the representations in these DS models

and the human brain’s representations. Even for their simplified

language goals, the information these models extract is organized

using representations that look like the human brains.

Our work brings together these two disparate lines of work,

and shows that CNNs and DS model representations are corre-

lated. There is some evidence that the visual system is involved in

the understanding of language (Sudre et al., 2012), and our work

lends credence to that finding. Our work hints that vision and

language are linked, and that there are deep connections between

the neural processing of the two information streams. Because

language is so new, evolutionarily speaking, it has been argued

that human language processing is performed by brain areas that

evolved for other tasks (Lieberman, 2002). Our work is evidence

that we ought to consider vision when studying language, and

vice versa, because information processing systems for the two

tasks show large degrees of overlap.

8. Summary

Here, we studied the representations learned by CNNs, using

the representations from several DS models. We measured the

behavior of fully trained networks, a network during training, and

during the processing of adversarial images. Our results point to

several new avenues for training CNNs, and also for characterizing

their behavior during failure modes. This is a new approach

to understanding CNNs that brings quantifiable interpretability

without requiring the visual inspection of images or activation

patterns. This method of analysis could further operationalize the

development of deep learning architectures by providing a frame-

work within which to reason about changes to an architecture,

and what each new architectural innovation brings in our quest

to help computers understand our world.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Acknowledgments

Chris Foster was supported by the NSERC (Natural Sciences

and Engineering Research Council) CGSM program. Alona Fyshe

is a fellow in the CIFAR (Canadian Institute for Advanced Re-

search) Learning in Machines and Brains program, holds a Canada

CIFAR AI Chair, and is funded by NSERC (Natural Sciences and

Engineering Research Council). The computational work was sup-

ported in part by infrastructure made available by WestGrid

(https://www.westgrid.ca/) and Compute Canada (https://www.

computecanada.ca/).

Appendix A. Generated adversarial examples

We generated a series of targeted adversarial examples against

InceptionV3 using adversarial attacks as described in Section 4.

In Fig. A.7 we show eight example images from the attack with

our chosen parameters. While the pixel changes to the image

are visually detectable, they are minor and the true semantic

concepts of the images are clearly retained.

Appendix B. Annotated ResNet architecture diagram

We created a network architecture diagram graphic of ResNet-

50 which is shown in Fig. C.8. We annotated the activations on

the architecture diagram using a color gradient correlating to the

2 vs 2 accuracy for that layer. Layers which are more strongly

represent the semantics of the true label score higher on the 2 vs

2 test. We can see here that the semantic representation becomes

stronger as the ResNet network becomes deeper.

However, a unique feature of interest is the skip connections

in ResNet. A consistent pattern through the layers augmented

with skip connections is that the semantic representation will de-

crease through the branch, until the final add layer with the skip

connection which leads to a higher semantic representation than

before the branch. This provides evidence that skip connections

are useful techniques for passing along semantic representation

in deeper networks.
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Fig. C.10. The emergence of semantic information during training of FractalNet on CIFAR-100. Left: training and test error for the 400 epochs of training. Right: the

2 vs. 2 accuracies for layers of FractalNet during training.

Appendix C. Annotated InceptionV3 architecture diagram

We created a network architecture diagram graphic of Incep-

tion-v3 which is shown in Fig. C.9. We annotated the activations

on the architecture diagram using a color gradient correlating to

the 2 vs 2 accuracy for that layer. Layers which are more strongly

represent the semantics of the true label score higher on the 2

vs 2 test. As with the prior two networks, we continue to see

a general pattern of increasing semantic representation through

later layers of the network.

Inception-v3 has a complicated architecture, which makes it

a good candidate for exploration using this semantic annotation

method. We see a similar pattern to ResNet-50, where parallel

layers within Inception-v3 blocks may decrease in semantic rep-

resentation before increasing again at the mixing layer of the

block. However, not all parallel layers decreasing in semantic

representation suggesting some parallel layers may provide more

semantic value than others within the block.

Of particular note in this network is the very large decrease

in semantic representation in the final layers for some parallel

components of the block. This annotation method may be a useful

tool for identifying steps in the network which are not improving

semantic representation, and removal or adjustment or those

layers may provide a positive affect on classification accuracy.

Appendix D. FractalNet 2 vs. 2 accuracy for 400 epochs

Fig. C.10 shows the train/test error and 2 vs. 2 accuracy for

all 400 epochs during FractalNet training. The change in behavior

around 200 epochs corresponds to a reduction in learning rate.
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