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The global burden of diabetes is rapidly increasing, from  
451 million people in 2019 to 693 million by 20451. The insid-
ious onset of type 2 diabetes delays diagnosis and increases 
morbidity2. Given the multifactorial vascular effects of diabe-
tes, we hypothesized that smartphone-based photoplethys-
mography could provide a widely accessible digital biomarker 
for diabetes. Here we developed a deep neural network 
(DNN) to detect prevalent diabetes using smartphone-based 
photoplethysmography from an initial cohort of 53,870 indi-
viduals (the ‘primary cohort’), which we then validated in 
a separate cohort of 7,806 individuals (the ‘contemporary 
cohort’) and a cohort of 181 prospectively enrolled individu-
als from three clinics (the ‘clinic cohort’). The DNN achieved 
an area under the curve for prevalent diabetes of 0.766 in the 
primary cohort (95% confidence interval: 0.750–0.782; sen-
sitivity 75%, specificity 65%) and 0.740 in the contemporary 
cohort (95% confidence interval: 0.723–0.758; sensitivity 
81%, specificity 54%). When the output of the DNN, called 
the DNN score, was included in a regression analysis along-
side age, gender, race/ethnicity and body mass index, the 
area under the curve was 0.830 and the DNN score remained 
independently predictive of diabetes. The performance of the 
DNN in the clinic cohort was similar to that in other valida-
tion datasets. There was a significant and positive associa-
tion between the continuous DNN score and hemoglobin A1c 
(P ≤ 0.001) among those with hemoglobin A1c data. These 
findings demonstrate that smartphone-based photoplethys-
mography provides a readily attainable, non-invasive digital 
biomarker of prevalent diabetes.

Globally, half of all people living with diabetes are undiagnosed 
(~224 million), and 79% live in low- and middle-income countries1. 
Diabetes causes both macrovascular and microvascular multi-organ 
disease, including coronary heart disease, stroke, neuropathy and 
kidney disease, among others3. A readily attainable, non-invasive dig-
ital biomarker of diabetes could facilitate disease detection by mak-
ing it easier to identify at-risk individuals who would benefit from 
confirmatory diagnostic testing using hemoglobin A1c (HbA1c) 
data. Such a tool would have particular impact in underserved popu-
lations and those out of reach of traditional medical care.

Photoplethysmography (PPG) is a non-invasive optical tech-
nique that detects blood flow changes through a vascular bed4. It 
involves shining light into tissue, such as the fingertip or wrist, and 
quantifying the backscattered light that corresponds with changes in 

blood volume4. PPG has long been used clinically to measure heart 
rate (HR) and peripheral blood oxygen saturation4, and research 
applications have ranged from detection of hypertension5 to detec-
tion of various cardiovascular abnormalities6,7. Until recently, PPG 
recording required specialized equipment; however, technological 
developments have enabled PPG measurement from sensors on 
smart devices, such as smartphones and fitness trackers. The rapid 
worldwide adoption of smart devices over the past decade8 provides 
an opportunity to develop non-invasive, widely scalable digital bio-
markers for diseases such as diabetes9.

PPG is uniquely positioned to capture the multifactorial sequelae 
of diabetes resulting from a variety of pathophysiologic mecha-
nisms. PPG readily captures sequential heartbeats, enabling not 
only its long-standing use for HR measurement, but also analysis 
of HR variability (HRV), which is impacted by diabetic autonomic 
and neural regulatory effects10–12. Recently, a shared genetic etiology 
between resting HR and diabetes was identified, implicating mech-
anisms ranging from metabolism to endothelial aging13. Indeed, 
endothelial dysfunction is an early hallmark of diabetic vascular 
disease, and is readily detectable in the PPG waveform14. Similarly, 
diabetes-related microvascular arteriosclerosis6,15 and neuropathy 
can affect PPG16. Given the multitude of mechanisms by which 
diabetes impacts PPG, algorithmic analysis of PPG should ideally 
leverage the complete PPG recording and all of the morphologic 
and temporal information contained therein. DNNs are a class of 
algorithms17 that have successfully achieved complex pattern recog-
nition for various medical tasks18–20. DNNs provide the advantage 
of being agnostic to specific sets of predetermined PPG features 
suspected to predict diabetes, and instead detect patterns using the 
full PPG record. We therefore hypothesized that PPG obtained from 
commercially available smartphones and analyzed using a DNN 
could identify individuals with and without diabetes.

In this study, we first developed and validated a DNN to detect 
prevalent diabetes in a ‘primary cohort’, composed of 53,870 Health 
eHeart study21 participants who contributed 2,589,448 PPG record-
ings between 1 April 2014 and 30 April 2018 (Fig. 1a). Participants 
self-reported diabetes status and measured PPG by placing an index 
fingertip on the smartphone camera using the Azumio Instant Heart 
Rate iOS application (Azumio, Inc; Fig. 1b). The primary cohort 
was randomly split into training (70%, n = 37,709) and development 
(10%, n = 4,848) datasets—used to train and tune the DNN, respec-
tively—and a test dataset (20%, n = 11,313), used for DNN valida-
tion. The DNN outputs a ‘DNN score’ between 0 and 1, with higher 
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scores suggesting greater likelihood of diabetes (see Methods). Since 
many participants contributed >1 recording, we reported DNN 
performance using the area under the receiver operating character-
istic curve (AUC)22 at both the ‘recording level’, which treats each 
recording independently, and the ‘user level’, which averages the 
DNN score for all recordings provided by a user; user-level assess-
ment was preferred when possible since clinical application calls for 
classifying a user as having diabetes or not.

In the primary cohort, 3,564 participants (6.6%) had self-reported 
diabetes and 50,306 (93.3%) did not (Extended Data Figs. 1 and 2).  
Compared to those without diabetes, those with diabetes were 
older, male, had a higher HR and body mass index (BMI), and were 
less likely to be non-Hispanic white. In the hold-out test dataset, 
the DNN’s AUC to detect diabetes was 0.766 at the user level (95% 
confidence interval (CI): 0.750–0.782; recording-level AUC = 0.680, 
95% CI: 0.678–0.683; Table 1 and Fig. 2a). At the chosen cutoff 
threshold (DNN score = 0.427), user-level sensitivity was 75% and 
specificity was 65%. Owing in part to the low prevalence of dia-
betes in our cohort (6.6%), the positive predictive value (PPV) of 
the DNN score at the user level and recording level was 13% and 
10%, while the negative predictive value (NPV) was 97% and 96%, 
respectively (Table 1). DNN performance in the development data-
set was not significantly different from the test dataset (user-level 
AUC = 0.766, 95% CI: 0.740–0.792; recording-level AUC = 0.694, 
95% CI: 0.691–0.698).

In addition to validating DNN performance in the primary 
cohort test dataset, we used two additional validation cohorts 
(Fig. 1a), providing three total examples of algorithm generaliz-
ability to datasets distinct from the training dataset23. The first 
was the ‘contemporary cohort’, composed of PPG recordings from 
7,806 participants newly enrolled into Health eHeart from 1 May 
to 31 December 2018. This temporally distinct validation cohort 
exhibits the DNN’s robustness to secular changes, such as new 
smartphone models and cameras, that could affect PPG record-
ing. Then, to validate our approach in a real-world clinical setting, 
we prospectively enrolled an in-person ‘clinic cohort’ composed 
of 181 consecutive patients referred to three cardiovascular pre-
vention clinics (two in San Francisco, one in Montreal) between 

1 November 2018 and 30 July 2019 (Fig. 1a and Extended Data 
Fig. 3). The DNN’s user-level AUC to detect diabetes in the con-
temporary cohort was similar to that in the primary cohort: 0.740 
(95% CI: 0.723–0.758; recording-level AUC = 0.661, 95% CI: 
0.664–0.667); the DNN had higher sensitivity, but lower specific-
ity, versus the primary cohort (Table 1).

In the prospectively enrolled in-person clinic cohort, 38 patients 
(21.0%) had medical-record-confirmed diabetes (Extended Data 
Fig. 3). Compared with the primary cohort, the clinic cohort was 
substantially older, more male and had more comorbidity. The 
clinic cohort recording-level AUC (0.682, 95% CI: 0.605–0.755) was 
similar to the recording-level AUC in the test dataset and contem-
porary cohorts (Table 1). Compared with the test dataset, there was 
higher sensitivity and PPV, but lower specificity and NPV. When 
clinic cohort patients with a prior diabetes diagnosis were excluded 
(n = 17), 21 patients remained who were newly diagnosed by 
HbA1c during the clinic visit. In this subset of patients with newly 
diagnosed diabetes, the DNN AUC was 0.644 (95% CI: 0.546–0.744; 
Table 1); the DNN correctly identified 16 out of 21 patients with 
newly diagnosed diabetes (Extended Data Fig. 4f).

To investigate whether PPG was predictive of diabetes inde-
pendently of other predictors and comorbidities, we built nested 
logistic regression (LogReg) models in the test dataset with and 
without the inclusion of the DNN score (Table 2). After adjustment 
for age, gender, race and BMI, the DNN score remained indepen-
dently and significantly predictive of prevalent diabetes (Table 2 
and Supplementary Table 1); the AUC for this prediction model 
was 0.830 (95% CI: 0.787–0.873; Fig. 2a). The DNN score was 
also strongly predictive of diabetes independently of all examined 
comorbidities, including hypertension, hypercholesterolemia and 
coronary artery disease, among others (Table 2; LogReg model 5); 
the AUC for this prediction model was 0.830 (95% CI: 0.815–0.844; 
Fig. 2a). In all models, the DNN score was a strong diabetes predic-
tor and was only slightly attenuated after adjustment (Table 2 and 
Supplementary Table 1). HRV was no longer a significant predictor 
of diabetes after the DNN score was added, while HR was attenu-
ated (Table 2; LogReg model 4). Compared to participants with 
a DNN score below the cutoff (<0.427), those with a DNN score 
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Fig. 1 | consort diagram describing the study cohorts and screenshots from the smartphone app used for PPG acquisition. a, Description of the datasets 

used for algorithm development and validation. The DNN was trained using the training and development dataset of the primary cohort (left), and 

validated using the test dataset of the primary cohort. We additionally validated the DNN in the temporally distinct contemporary cohort (middle) and the 

prospectively enrolled, in-person clinic cohort (right). The blue outlines indicate datasets used for model development and training. The yellow outlines 

indicate datasets used for model validation. All datasets are completely separate and do not contain overlapping participants. b, Screenshots from the 

smartphone app used to acquire user-measured PPG recordings using a smartphone app and camera.
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above the cutoff differed demographically and were nearly twice as 
likely to have any medical condition (69.4% versus 37.3%; P < 0.001; 
Supplementary Table 2).

We performed several sensitivity analyses for hypertension spe-
cifically, since it is comorbid with diabetes and may directly cause 
PPG-measurable vascular changes. A subset of test dataset partici-
pants provided Bluetooth-linked, home-measured blood pressures 
within 3 months of a PPG recording, totaling 13,007 PPG-blood 
pressure recording pairs (55 patients with diabetes, 527 patients 
without diabetes). Although the systolic (but not diastolic) value was 
a significant univariate predictor of diabetes, after the DNN score 
and other (non-hypertension) comorbidities were added into a 
multivariable model, systolic blood pressure was no longer a signifi-
cant diabetes predictor; the DNN score, however, remained strongly 
independent (odds ratio: 3.53, 95% CI: 2.20–5.67; P < 0.001). 
Furthermore, after excluding those with self-reported hypertension 
from the test dataset, DNN performance remained similar to that in 
the full test dataset at both user and recording levels.

Owing to the limitations of relying on self-reported diabetes in 
our primary analysis, we performed additional sensitivity analy-
ses aimed at addressing this. We identified Health eHeart par-
ticipants who had laboratory-confirmed diabetes based on fasting 
glucose or HbA1c drawn within 180 days of diabetes self-report 
(n = 12,073). In this subset, the PPV of self-reported diabetes was 
81.8% (1,816/2,220) and the NPV was 88.9% (8,767/9,853). We 
additionally examined the performance of the DNN amongst par-
ticipants who had laboratory-confirmed diabetes within 180 days 
of a PPG measurement in the test dataset (n = 152 users; 9,327 
measurements) and contemporary cohort (n = 94 users; 3,659 
measurements). Sampling up to five measurements per partici-
pant, the DNN’s recording-level AUCs were similar when using 
laboratory-confirmed diabetes or self-reported diabetes in both 
the test dataset (0.670, 95% CI: 0.629–0.710; versus 0.650, 95% CI: 
0.606–0.694) and the contemporary cohort (0.669, 95% CI: 0.618–
0.719; versus 0.705, 95% CI: 0.657–0.754).

In these laboratory-confirmed diabetes subsets (n = 246), there 
was also evidence for a significant linear association between the 
continuous DNN score and both HbA1c and fasting glucose: a 
1-s.d. increase in DNN score was associated with 0.32% increase in 
HbA1c (beta coefficient = 2.28, 95% CI: 1.27–3.29; P ≤ 0.001) and 
0.11 mmol l−1 increase in fasting glucose (beta coefficient = 0.82,  

95% CI: 0.30–1.34; P ≤ 0.001). Similarly, among clinic cohort patients 
with an HbA1c measured within seven days of the visit (n = 93), 
there was a positive, borderline association between the DNN score 
and HbA1c values (beta coefficient = 1.58, 95% CI: −0.021 to 3.187; 
P = 0.053). Since long-standing poor glycemic control can adversely 
affect the vasculature and therefore PPG, we also performed a sen-
sitivity analysis comparing DNN performance between HbA1c 
strata. Among test dataset participants with an HbA1c 7.0–8.0% 
within 6 months of a PPG measurement, we observed similar 
recording-level AUC = 0.636 (95% CI: 0.587–0.686) to that in those 
with an HbA1c >8.0%, AUC = 0.632 (95% CI: 0.585–0.679), sug-
gesting similar DNN performance regardless of glycemic control. 
We also examined the diagnostic odds ratio for a positive DNN 
prediction across different test dataset strata of gender, age, time of 
day, recording length and HR (Fig. 2b and Extended Data Fig. 5). 
DNN performance was the highest in those with >6 recordings and 
HR < 100 beats per minute (b.p.m.).

Finally, we performed several analyses to help illuminate the 
mechanisms by which PPG may capture diabetes-related informa-
tion. We plotted activation maps from inner DNN layers that illus-
trate how it encodes input PPG recordings, and its behavior in the 
presence of artifacts (Extended Data Figs. 6 and 7). To investigate 
the role of PPG morphology to predict diabetes in isolation, we 
trained a separate DNN using a single-cardiac-cycle PPG waveform 
as the sole input; user-level AUC = 0.691 (95% CI: 0.680–0.700) and 
recording-level AUC = 0.605 (95% CI: 0.600–0.610). To investigate 
the role of HR and its derivatives in isolation, we trained a separate 
DNN using only peak-to-peak PPG intervals as the sole input (which 
removes all PPG morphology information); user-level AUC = 0.721 
(95% CI: 0.703–0.740) and recording-level AUC = 0.645 (95% CI: 
0.642–0.647).

discussion
In this large-scale study and validation across three distinct cohorts, 
we show that smartphone-measured PPG, analyzed with deep learn-
ing, can serve as an independent, non-invasive digital biomarker of 
prevalent diabetes. Importantly, the ability of this PPG biomarker 
to predict diabetes was independent of standard risk factors and 
comorbidities, and discrimination further improved when add-
ing easily obtainable covariates such as age, gender, race/ethnicity 
and BMI. Our validation of this digital biomarker in three cohorts  

Table 1 | Performance of the dNN to detect diabetes using PPG in three validation datasets

Auc (95% ci) Sensitivitya Specificitya PPVa NPVa

Test dataset, n = 11,313

User level 0.766 
(0.750–0.782)

75.0% (72.0–77.8%) 65.4% (64.6–66.3%) 13.3% 
(12.3–14.3%)

97.4% 
(97.0–97.7%)

Recording level 0.680 
(0.678–0.683)

66.2% (65.8–66.7%) 60.2% (60.1–60.3%) 10.2% 
(10.0–10.3%)

96.3% 
(96.3–96.4%)

contemporary cohort, n = 7,806

User level 0.740 
(0.722–0.756)

80.7% (77.7–83.6%) 54.4% (53.2–55.5%) 14.5% 
(13.3–15.5%)

96.7% 
(96.2–97.2%)

Recording level 0.664 
(0.661–0.667)

72.8% (72.2–73.3%) 51.6% (51.4–51.8%) 14.6% 
(14.5–14.8%)

94.3% 
(94.2–94.4%)

clinic cohort, n = 181

Recording level 0.682 
(0.605–0.755)

81.7% (69.2–93.1%) 53.4% (45.8–61.1%) 31.9% 
(22.9–40.7%)

91.6% 
(85.7–97.0%)

Newly diagnosed diabetes, recording level 
(n = 164)

0.644 
(0.546–0.744)

75.9% (56.3–92.9%) 53.0% (45.2–61.2%) 19.1% (11.2–28.3%) 93.8% 
(88.2–98.4%)

Sample sizes shown indicate numbers of individual people. User-level performance metrics are reported based on the average DNN score for all recordings from an individual user. Recording-level 

performance metrics are calculated treating each recording independently. Since clinic cohort participants received only one measurement, only the recording-level metric is reported for this cohort. 
aMetrics are reported at a threshold of DNN score = 0.427; this threshold can be altered to optimize DNN performance on specific metrics as suitable for future applications.
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demonstrated that the DNN generalizes to prospectively enrolled 
and real-world clinical populations. This digital biomarker of 
diabetes could serve as a readily attainable complement to other 
established tools, providing novel information about vascular and 
autonomic sequelae of diabetes for clinical applications ranging 
from screening to therapeutic monitoring. However, additional 
research will be needed to determine its utility in these scenarios.

Our work effectively helps to expand the clinical utility of the 
PPG modality, since physicians do not currently interpret PPG in 
the context of diabetes. Prior work has reported associations between 
individually derived PPG features and diabetes-related physiologic 
changes, mostly using clinic-based pulse oximeters. The physi-
ologic changes most commonly invoked include HRV24, endothelial  

dysfunction14, arterial stiffness15 and combinations thereof24,25, provid-
ing important early indications that aspects of the PPG waveform con-
tain diabetes-related information. Our study extends these findings, 
demonstrating that it is not necessary to derive (and be limited to) par-
ticular predefined PPG features; rather, the complete PPG recording— 
containing all of the physiologic information—can be analyzed 
using a DNN to detect diabetes with strong predictive performance. 
This PPG-derived DNN biomarker is independent of comorbidities 
and can be augmented with clinical data, when available, to further 
improve performance. One of the real-world challenges of using 
remote-sensor data to identify disease biomarkers in ambulatory 
patients is the multiple potential sources of environmental noise, user 
error and demographic heterogeneity. Our study makes this crucial 
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Fig. 2 | comparison of model performance to detect diabetes in the test dataset. a, Receiver operating characteristic curves for detection of diabetes, as 

assessed for the DNN score alone or for the output of LogReg model 5, which includes comorbidities, with and without the DNN score. DNN performance 

is calculated at either the recording level, which treats each recording independently, or at the user level, which is averaged across all recordings of an 

individual user. The DNN score cutoff used (0.427) is indicated by a black dot on each curve. Inset: bar chart showing the AUC point estimate values for 

diabetes in the test dataset by the indicated models; 95% CIs are shown as error bars. b, DNN sensitivity, specificity, diagnostic odds ratio and AUC to 

detect prevalent diabetes in the test dataset, as reported across ranges of age, gender and number of recordings. The test dataset sample size is 11,313 

individuals. Counts are provided in parentheses for all subgroup metrics. The diagnostic odds ratio was quantified as the ratio of the positive likelihood 

ratio (sensitivity/(1 – specificity)) to the negative likelihood ratio ((1 – sensitivity)/specificity), with the associated 95% CI. The diagnostic odds ratio 

is presented at the user level for strata of age, gender and number of recordings. The interaction P values were calculated using two-sided Wald tests 

between the DNN score and the respective covariates for diabetes.
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Table 2 | Performance of LogReg models for prediction of prevalent diabetes with and without the dNN score in the test dataset

Predictor Multivariable-adjusted OR without 
dNN score (95% ci)

P valuea Multivariable-adjusted OR with 
dNN score (95% ci)

P valuea

LogReg model 1a: age: Auc = 0.691 (95% ci: 0.672–
0.710) (n = 11,313)

LogReg model 1b: 1a + dNN score: Auc = 0.770 (95%  
ci: 0.754–0.786) (n = 11,313)

Age, years 1.04 (1.04–1.05) <0.001 1.01 (1.01–1.02) <0.001

DNN score, per s.d. – – 2.69 (2.41–2.99) <0.001

LogReg model 2a: age, gender and race: Auc = 0.698 
(95% ci: 0.674–0.722) (n = 7,851)

LogReg model 2b: 2a + dNN score: Auc = 0.777  
(0.757–0.798) (n  =  7,851)

Age, years 1.04 (1.04–1.05) <0.001 1.01 (1.00–1.02) 0.013

Gender

 Males Ref. – Ref. –

 Females 0.99 (0.82–1.21) 0.996 0.65 (0.53–0.79) <0.001

Race/ethnicity 0.003 0.17

 Non-Hispanic white, n (%) Ref. – Ref. –

 Black or African American, n (%) 1.87 (1.11–3.15) 0.001 1.40 (0.82–2.38) 0.213

 Hispanic, Latino or Spanish origin/
ancestry, n (%)

0.73 (0.49–1.07) 0.106 0.69 (0.46–1.01) 0.058

 Asian, n (%) 1.86 (1.30–2.67) 0.001 1.46 (1.01–2.12) 0.047

 Multi-ethnic, n (%) 1.27 (0.78–2.07) 0.344 1.29 (0.78–2.13) 0.314

 Other, n (%) 0.97 (0.49–1.95) 0.941 0.86 (0.42–1.74) 0.674

DNN score, per s.d. – – 2.88 (2.51–3.31) <0.001

LogReg model 3a: age, gender, race and BMi: Auc = 0.801  
(95% ci: 0.752–0.850) (n = 1,033)

LogReg model 3b: 3a + dNN score: Auc = 0.830  
(95% ci: 0.787–0.873) (n = 1,033)

Age, years 1.04 (1.02–1.06) <0.001 1.01 (0.99–1.04) 0.189

Gender

 Males Ref. – Ref. –

 Females 0.67 (0.39–1.13) 0.130 0.51 (0.30–0.88) 0.015

Race/ethnicity 0.232 0.415

 Non-Hispanic white Ref. – Ref. –

 Black or African American 0.33 (0.04–2.63) 0.294 0.32 (0.04–2.63) 0.291

 Hispanic, Latino or Spanish origin/
ancestry

1.22 (0.45–3.35) 0.696 1.08 (0.38–3.05) 0.884

 Asian or Pacific Islander 2.82 (0.97–8.22) 0.058 2.36 (0.77–7.24) 0.135

 Multi-ethnic 0.42 (0.12–1.45) 0.168 0.46 (0.13–1.59) 0.218

 Other/prefer not to disclose 0 (0) 0.999 0 (0) 0.999

BMI 1.15 (1.11–1.19) <0.001 1.08 (1.04–1.12) <0.001

DNN score, per s.d. – – 2.12 (1.53–2.94) <0.001

LogReg model 4a: HR and HRV: Auc = 0.586  
(95% ci: 0.565–0.606) (n = 11,313)

LogReg model 4b: 4a + dNN score: Auc = 0.765  
(0.748–0.782) (n = 11,313)

HR, b.p.m. 1.02 (1.01–1.02) <0.001 1.01 (1.00–1.01) 0.024

HRV (RMSSD), per 10 ms 0.97 (0.94–0.99) 0.027 1.02 (1.00–1.05) 0.068

DNN score, per s.d. – – 2.92 (2.65–3.21) <0.001

LogReg model 5a: comorbidities: Auc = 0.784  
(0.766–0.802) (n = 11,313)

LogReg model 5b: 5a + dNN score: Auc = 0.830  
(0.815–0.844) (n = 11,313)

Hypertension, n (%) 3.49 (2.93–4.16) <0.001 2.57 (2.15–3.07) <0.001

Hypercholesterolemia, n (%) 2.44 (2.05–2.89) <0.001 1.97 (1.66–2.34) <0.001

Coronary artery disease, n (%) 1.35 (1.04–1.76) 0.024 1.22 (0.94–1.59) 0.144

Prior MI, n (%) 1.04 (0.74–1.48) 0.815 1.06 (0.74–1.50) 0.765

CHF, n (%) 2.39 (1.67–3.42) <0.001 2.09 (1.46–2.98) <0.001

PVD, n (%) 1.49 (1.00–2.21) 0.051 1.43 (0.97–2.11) 0.075

Prior stroke, n (%) 1.91 (1.39–2.61) <0.001 1.74 (1.27–2.38) 0.001

Sleep apnea, n (%) 2.06 (1.72–2.46) <0.001 1.85 (1.54–2.22) <0.001

DNN score, per s.d. – – 2.22 (2.00–2.46) <0.001

All models are shown without (‘a’) and with (‘b’) inclusion of the DNN score as a predictor. Models 1–3 are nested models, containing incrementally more demographic predictors and BMI. Model 4 adjusts 

for HR and HRV. Model 5 adjusts for common cardiovascular comorbidities. Sample sizes shown indicate numbers of individual people. OR, diagnostic odds ratio; RMSSD, root mean square of successive 

peak-to-peak interval differences; MI, myocardial infarction; CHF, congestive heart failure; PVD, peripheral vascular disease. Independent variables were standardized using the Z score. Ref. denotes the 

reference category used for categorical predictors. Bold indicates P < 0.05. aThe P value was calculated using the Wald test for the multivariable-adjusted odds ratio (two-sided).
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translational step by using remotely measured PPG signals from com-
mercially available smartphones in a free-living population.

There are various potential applications for a PPG-based digital 
biomarker of diabetes. Diabetes has numerous characteristics that 
make it an ideal candidate for screening, such as a prolonged asymp-
tomatic period and the availability of disease-modifying therapy. 
However, since population-wide screening is not currently recom-
mended, a widely accessible smart-device-based tool could be used 
to identify and encourage individuals at higher risk of having preva-
lent diabetes to seek medical care and obtain a low-cost confirmatory 
diagnostic test such as HbA1c26–28. Leveraging smart devices to per-
form diabetes risk prediction without requiring clinic visits would 
substantially lower barriers to access given the widespread owner-
ship of smartphones, facilitating measurement amongst many of the 
224 million people living globally with undiagnosed diabetes1. The 
discriminative performance of our PPG biomarker is comparable to 
that of other commonly used tests such as mammography for breast 
cancer (AUC range 0.67–0.74)29 or cervical cytology for cervical 
cancer (AUC range 0.81–0.86)30. It compares favorably to existing 
diabetes-specific risk scores that have AUCs between 0.74 and 0.85, 
some of which require serum glucose measurement and none of 
which is in common clinical use23. Reported AUCs of serum-based 
diagnostic tests such as HbA1c or fasting plasma glucose depend on 
the gold-standard comparator used, but for prevalent microvascular 
complications range from 0.82 to 0.96 (ref. 31). Comparatively, the 
ease and non-invasiveness of PPG make it widely scalable, and its 
painlessness makes it attractive for repeated testing. Furthermore, 
since the PPG biomarker is predictive independently of the demo-
graphic and comorbidity components comprising most risk scores, 
it could also be used to supplement existing scores by capturing 
complementary vascular and autonomic information.

Of the various mechanisms by which PPG may detect diabetes, 
PPG likely captures the majority of the HR and HRV information 
as relates to diabetes10–13,32. Both predictors were attenuated in the 
presence of the DNN score, and peak-to-peak PPG interbeat inter-
vals had only modestly lower AUC (0.721) than the full PPG record 
(0.766). While interbeat intervals likely contain the predominant 
predictive information for diabetes, waveform morphologies likely 
additionally capture information on diabetic vascular changes rang-
ing from endothelial dysfunction14 to arterial stiffening15.

Our study has several limitations. Participants elected to down-
load the iOS smartphone app and therefore may have higher 
socioeconomic status, technological competence or health literacy 
relative to the general population. Our reliance on self-reported 
diabetes is another limitation. However, our results generalized to 
the unselected clinic cohort, which had medical-record-confirmed 
diabetes, and sensitivity analysis suggested high PPV/NPV against 
laboratory-confirmed diabetes. Also, misclassification due to 
self-report at the algorithm training stage would be expected to bias 
DNN performance toward the null during validation. In analyses 
that used laboratory or blood pressure measurements, the time 
windows we used were large and mainly informative as sensitivity 
analyses. Future studies are needed to confirm this, and whether 
PPG signals from other sources, such as smartwatches, or obtained 
from anatomic locations such as the toe or ear would perform 
similarly. Given the lower overall prevalence of diabetes, the PPV 
of our PPG biomarker ranged from 10% to 32%, which is similar 
to existing diabetes risk scores whose PPVs mostly range between 
10% and 25% depending on the population and threshold used23,33. 
While false positives are a concern, confirmatory HbA1c testing is 
relatively cost-effective; and since individuals with positive DNN 
predictions were also more likely to have cardiometabolic condi-
tions, they would likely benefit from medical contact. Depending 
on the intended use of the biomarker, the DNN score threshold can 
also be altered to maximize sensitivity or specificity for the intended 
application. The cross-sectional nature of our study design limited 

direct investigation of PPG as a diabetes screening tool, or predic-
tion of incident diabetes. We also did not have sufficient data in the 
primary cohort on the type, severity or medication use for diabe-
tes. The DNN score did perform similarly, however, in clinic cohort 
subsets with newly diagnosed diabetes and between HbA1c strata. 
Finally, we were limited in our attempts to compare our approach 
against standard diabetes risk scores owing to the lack of neces-
sary variables in our cohort. These data availability limitations, 
however, serve to illuminate the difficulty providers also encounter  
when deploying existing questionnaire-based prediction mod-
els, underscoring a strength of non-invasive, objective PPG-based  
diabetes detection.

In summary, we demonstrate that PPG recorded using 
consumer-owned smartphones can provide a readily attainable digi-
tal biomarker of prevalent diabetes that is independent of standard 
risk factors and comorbidities. Remote capture of diabetes-predictive 
PPG information from ambulatory users is feasible and provides an 
easily scalable, non-invasive complement to diabetes risk prediction. 
The linear association of the DNN score with HbA1c suggests that 
PPG may additionally capture information about diabetes severity 
and control, but this requires further investigation. Although this 
study leverages a large dataset, additional research is needed ide-
ally in targeted intended-use populations to determine how to best 
incorporate this digital biomarker into existing practice recommen-
dations for diabetes screening and care—particularly in light of the 
potential for its wide deployment using existing smart devices out-
side the purview of traditional medical care.
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Methods
Data sources and study population. The primary cohort. The primary cohort was 
derived from 55,433 Health eHeart participants aged ≥18 years, who self-reported 
a diabetes diagnosis by a healthcare provider and made at least one PPG recording 
between 1 April 2014 and 30 April 2018 (Fig. 1a). Health eHeart is a worldwide, 
Internet-based, longitudinal electronic cohort of English-speaking adults21. 
PPG waveforms were obtained by placing an index fingertip on the smartphone 
camera (Fig. 1b and Extended Data Fig. 8). To assess self-reported diabetes status, 
participants were asked, “Have you ever been told by a doctor, nurse or other 
healthcare provider that you have diabetes?” and provided the answer options of 
“Yes”, “No” or “Don’t know/prefer not to state”. Participants who answered “Don’t 
know/prefer not to state” were excluded from our analysis. Participants completed 
additional surveys regarding demographics, anthropometrics and medical history 
to varying degrees. We have demonstrated previously21 that self-reported past 
medical history in Health eHeart is strongly correlated with the medical record.

The primary cohort was randomly split into training (70%, n = 37,709), 
development (10%, n = 4,848) and test (20%, n = 11,313) datasets (Extended Data 
Fig. 2 and Life Sciences Reporting Summary). The training dataset was used for 
DNN development and training, and DNN hyperparameters were tuned in the 
development dataset. Final model performance is reported in the test dataset, 
which was kept completely separate until the final evaluation step.

Two additional validation cohorts. In addition to validating the performance of 
the DNN algorithm in the primary cohort test dataset, we additionally reported 
DNN performance in two validation cohorts (Fig. 1a), providing three examples of 
validation in datasets separate from training data23. The first was the ‘contemporary 
cohort’, which was composed of PPG recordings from 7,806 participants newly 
enrolled into Health eHeart between 1 May 2018 and 31 December 2018 (Extended 
Data Fig. 3 and Supplementary Table 3). This temporally distinct validation cohort 
helps to account for secular changes, such as changes in smartphone models 
and cameras, that could affect PPG recording. Then, to test the validity of our 
approach in a real-world clinical setting, we prospectively enrolled an in-person 
‘clinic cohort’ composed of 181 consecutive patients referred to 3 cardiovascular 
prevention clinics (2 in San Francisco, 1 in Montreal) between 1 November 
2018 and 30 July 2019 (Extended Data Fig. 3 and Supplementary Table 4). Clinic 
cohort participants were consented, and assessed for height, weight and BMI, and 
a trained coordinator obtained at least 15 s of a single PPG recording using an 
iPhone and determined diabetes status by medical chart review. For the subset of 
clinic cohort patients who also had fasting glucose and HbA1c obtained within 
seven days of the in-clinic visit, we used the American Diabetes Association 
diagnosis criteria to classify participants as having/not having diabetes34.

The University of California, San Francisco Institutional Review Board 
approved the study and all participants gave informed consent.

PPG waveform acquisition and preprocessing. PPG waveforms were obtained by 
placing the index fingertip35 on the smartphone camera using the Azumio Instant 
Heart Rate iOS smartphone application. Although the app is available for Android 
and iOS operating systems, data were limited to iOS app versions in this study 
owing to data availability in Health eHeart. Changes in reflected light intensity 
recorded by the smartphone camera are interpreted as pulsatile blood volume 
change. The waveforms were pre-processed by the Azumio algorithm for camera 
artifact removal, utilizing standard detrending and low-pass-filter techniques (Fig. 1).  
A low-pass ~0.4-Hz, second-order, zero-phase-shift infinite impulse response 
(IIR) filter is used to find the trend; the trend is subtracted to get the detrended 
signal. Another low-pass ~10-Hz, second-order, zero-phase-shift IIR filter is used 
to remove high-frequency noise. Individual beats corresponding to cardiac cycles 
were identified using the rising edge of the PPG signal. If the recording did not 
have at least 5 s of continuous discernible peak-to-peak intervals, it was removed. 
Waveforms with a length under 5 s or with an amplitude of 0, indicating a null 
signal, were also removed. We excluded outlier PPG measurements defined as 
HR values of outside the biologically plausible range of 20–220 b.p.m. We limited 
waveforms in our dataset to those collected at either 100 Hz or 120 Hz, and 
upsampled recordings of 100 Hz to 120 Hz using the standard polyphase method36 
to minimize variance due to sampling frequency. We derived the onset of each 
cardiac cycle by identifying the rising edge of the waveform, used to determine HR 
and HRV (using the RMSSDs).

DNN development and performance. We built a 39-layer convolutional DNN 
to detect prevalent diabetes (Extended Data Fig. 9). The DNN takes the PPG 
waveform as the sole input, which consists of 2,560 samples equivalent to ~21.3 s 
(approximately the mean signal duration), and outputs a DNN score between 0 and 
1 per signal; higher scores suggest greater likelihood of diabetes. Shorter signals 
were zero-padded up to the fixed length and longer examples were cropped. All 
PPG waveforms were standardized using the mean and s.d. values of the entire 
training dataset. The network architecture had 39 layers organized in a block 
structure, consisting of convolutional layers with an initial filter size of 15 and filter 
number of 16. The size of the filters decreased, and the number of filters increased, 
as network depth increased. After each convolutional layer, we applied batch 
normalization37, rectified linear activation38 and dropout39 with a probability of 0.2.  

The final flattened and fully connected softmax layer produced a distribution 
across the classes of diabetes/no diabetes40. Weights were initialized randomly as 
described by He et al.41.

We used grid-search to tune the network hyperparameters by searching over 
the best optimizer, the best initializer, the number of convolutional layers, the 
stride size, the filter length, the number of filters, the class weight, the learning 
rate, the input length of the signal, the batch size, the dropout, the early stopping 
criteria and the amount of cropping of the start/end of the signal, based on the 
recording-level development dataset performance. The best performance was 
achieved by cropping two beats from the beginning and one beat from the end 
of the signal; this was applied to all PPG records. For all of the models presented, 
we used the Rectified ADAM optimizer with the default parameters42, and a 
mini-batch size of 512. The learning rate was initialized at 1 × 10−3 and was 
adjusted on the basis of the effects of variance and momentum during training42. 
We halted training after an absence of improvement in the loss within the 
development set for eight consecutive epochs. A class weight of 10:1 for diabetes 
to non-diabetes recordings was applied to our loss function. The best performing 
model was chosen on the basis of the development dataset recording-level AUC 
performance and was then applied to all validation sets. We explored different 
architectures involving recurrent layers, such as long-short-term memory cells 
and residual blocks (ResNet), and with age or hour of the day added as additional 
inputs to the DNN, but found no improvement in AUC despite substantial 
increases in model complexity and runtime. The DNN was trained for 18 epochs.

Grid-search of hyperparameters. We performed a systematic search of 
hyperparameters among these values:

•	 Model architecture: convolutional neural network, ResNet, LSTM
•	 Number of convolutional layers: 7, 15, 19, 25, 29, 35, 39
•	 Filter length: 5, 7, 9, 11, 13, 15
•	 Number of filters to start: 8, 16, 32, 64
•	 Optimizer: Adam, Rectified Adam
•	 Class weight for ‘diabetes’: 5, 10, 15, 20
•	 Initializer: Glorot, He
•	 Learning rate: 10 × 10−1, 10 × 10−2, 10 × 10−3, 10×10−4, 10×10−5

•	 Input shape [2,560, 1]; [2,048, 1]
•	 Batch size: 64, 128, 256, 512
•	 Dropout: 0.2, 0.4, 0.6
•	 Early stopping criteria: 6, 8, 12, 20
•	 (Preprocessing) Number of beats cropped at the start of the signal: 0, 1, 2, 3
•	 (Preprocessing) Number of beats cropped at the end of the signal: 0, 1, 2, 3

We reported DNN performance using the AUC22 in three separate test datasets: 
the primary cohort test dataset; the contemporary cohort; and the in-person 
clinic cohort. Since many participants contributed >1 recording, we assessed 
model performance both at the ‘recording level’, which treats each recording 
independently, and at the ‘user level’, which averages the DNN score for all 
recordings provided by an individual user. Our primary aim was to evaluate the 
user-level DNN score, since the clinical goal would be to classify a patient as having 
diabetes or not. Clinic cohort patients have only recording-level performance since 
only a single recording was obtained per patient during their visit. We also plotted 
the activation maps of several hidden convolutional layers of the trained DNN43 
from an example PPG record to help illuminate some of the higher-level PPG 
features derived by the DNN (Extended Data Figs. 8 and 9).

Sensitivity analyses. To better ascertain the reliability of self-reported diabetes 
in the primary cohort, we described the PPV and NPV of self-reported diabetes 
in the larger Health eHeart study21 using fasting glucose or HbA1c drawn within 
180 days of self-reported diabetes; if >1 laboratory value was available, the 
value closest in time to self-report was used. Laboratory-confirmed diabetes 
was defined according to the American Diabetes Association guidelines: 
HbA1c ≥ 7.0%, fasting glucose (fasting glucose ≥ 126 mg dl−1 or 7.0 mmol l−1)34 or 
non-diabetic range of HbA1c/fasting glucose but self-report of taking diabetes 
medications. We also examined DNN performance among the subset of test 
dataset and contemporary cohort participants who had laboratory-confirmed 
diabetes using laboratory values drawn within 180 days of a PPG measurement. 
For those with multiple measurements, we randomly sampled up to five 
measurements. To understand the performance of the DNN according to 
glycemic control in the laboratory-confirmed diabetes cohort, we examined 
DNN performance in strata of HbA1c above and below 8.0%. Additionally, in 
the clinic cohort, we examined DNN performance after excluding those with a 
prior diagnosis of diabetes. Linear regression models were fitted with the DNN 
score as the predictor and either HbA1c or glucose value as the dependent 
variable in the test dataset and contemporary cohort. To investigate the role 
of HR in isolation, we trained a separate DNN to detect diabetes using only 
peak-to-peak intervals as input and the same architecture and training data as 
the primary DNN. To investigate the role of the PPG waveform in isolation, we 
trained a separate DNN using the PPG waveform from a single cardiac cycle, 
removing the time-domain contribution from consecutive cardiac cycles. In the 
clinic cohort, we also modeled the DNN score against HbA1c as the dependent 
variable with linear regression.
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Statistical analysis. Basic demographics and previous medical conditions are 
presented for each dataset, and continuous data are presented as mean ± s.d. The 
‘DNN score’ is the final layer of the DNN, which is an output distribution for 
diabetes based on the PPG input. We identified a discrimination threshold for the 
DNN score that maximized the macro average sensitivity between the ‘diabetes’ 
and ‘no diabetes’ classes in the training dataset44; this threshold is applied to all 
relevant performance metrics. We present sensitivity, specificity, PPV and NPV 
for each of our test datasets22. CIs for these metrics were derived by bootstrapping 
80% of the test data over 1,000 iterations to obtain the 5th and 95th percentile 
values. The diagnostic odds ratio (odds ratio) is a measure of the effectiveness of 
a diagnostic test and is defined as the ratio of the odds of the DNN score being 
positive for diabetes if the subject has diabetes, relative to the odds of the DNN 
score being positive if the subject does not have diabetes45. Odds ratios, two-sided 
P values for interaction (between the DNN score, the covariates and diabetes, 
calculated by the Wald test), sensitivity and specificity were calculated separately 
between different strata of age, gender and PPG recording characteristics.

To understand the incremental contribution of PPG-based predictions 
alongside commonly available demographic and clinical predictors of diabetes, 
we built nested LogReg models for prevalent diabetes both with and without 
the inclusion of the standardized DNN score. LogReg model 1 included age as 
a covariate; LogReg model 2 additionally included gender and race/ethnicity; 
LogReg model 3 additionally included BMI. Since HR12,13 and HRV46 are known 
independent predictors of diabetes and can be derived from the PPG signal, we 
examined the specific role of HR in the PPG-based prediction of diabetes by 
including the per-record average HR and HRV (calculated using the RMSSDs) 
as covariates in LogReg model 4. Finally, in LogReg model 5 we included clinical 
comorbidities commonly known to co-occur with diabetes, to ascertain the 
independent value of the PPG DNN score for identifying diabetes. All continuous 
logistic regression variables were standardized using the Z score to allow 
comparison between odds ratios and we used complete-case analysis, excluding 
individuals with missing covariates. Tests for normality were performed and  
met by all continuous predictors, and there were no adjustments made for  
multiple comparisons.

A two-sided P value <0.05 was considered significant. The convolutional 
neural network was built in Python 2.7 using Keras (version 2.0.3) and TensorFlow 
(version 1.13.2). The LogReg models and AUC were derived in SPSS v24.0 (IBM).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The data that support the findings of this study are available from the authors and 
Azumio, but restrictions apply to the availability of these data, which were used 
under license for the current study, and so are not publicly available. Data are 
however available from the authors upon reasonable request and with permission 
of Azumio.

code availability
The code that supports this work is copyright of the Regents of the University of 
California and can be made available through license.
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Extended Data Fig. 1 | Baseline characteristics of the primary cohort by diabetes status. Primary cohort sample size was 53,870 individual people. 

Where data was only available for subgroups of the full cohort, subgroup sample size is denoted by N. Differences in means of continuous variables 

between 2 groups were compared using the two-sample t-test. Differences in proportions of categorical variables between 2 groups were compared using 

the Chi-Squared test. Tests of significance were 2 sided. Abbreviations: bpm: beats per minute; CAD: Coronary artery disease; CHF: Congestive heart 

failure; COPD: Chronic obstructive pulmonary disease; HR: Heart rate, MI: Myocardial Infarction; PVD: Peripheral Vascular Disease.
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Extended Data Fig. 2 | Baseline characteristics in the primary cohort training, development and test datasets. Primary cohort sample size was 53,870 

individual people. Where data was only available for subgroups of the full cohort, subgroup sample size is denoted by N. Differences in means of 

continuous variables between 2 groups were compared using two-sample t-test. Differences in means of continuous variables between 3+ groups were 

compared using one-way ANOVA. Differences in proportions of categorical variables between the 2+ groups were compared using Chi-Squared. Tests of 

significance were 2 sided. a, b, c: Each subscript letter denotes a subset of dataset categories whose column proportions do not differ significantly from each 

other at the 0.05 level. Post-hoc analysis was performed using Fisher’s least significant differences to compare means of continuous variables between 

groups. Abbreviations: SD: Standard deviation; CAD: Coronary artery disease; CHF: Congestive heart failure; COPD: Chronic obstructive pulmonary 

disease; HR: Heart rate, MI: Myocardial Infarction; PVD: Peripheral Vascular Disease.
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Extended Data Fig. 3 | Baseline characteristics of the primary, contemporary and clinic cohorts. Where data was only available for subgroups of the full 

cohorts, subgroup sample size is denoted by N. Differences in means of continuous variables between 2 groups were compared using two-sample t-test. 

Differences in means of continuous variables between 3+ groups were compared using one-way ANOVA. Differences in proportions of categorical variables 

between the 2+ groups were compared using Chi-Squared. Tests of significance were 2 sided. a, b, c: Each subscript letter denotes a subset of dataset 

categories whose column proportions do not differ significantly from each other at the 0.05 level. Post-hoc analysis was performed using Fisher’s least 

significant differences to compare means of continuous variables between groups. Abbreviations: SD: Standard deviation; CAD: Coronary artery disease; 

CHF: Congestive heart failure; COPD: Chronic obstructive pulmonary disease; HR: Heart rate, MI: Myocardial Infarction; PVD: Peripheral Vascular Disease.
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Extended Data Fig. 4 | confusion matrices for dNN performance in three validation datasets. Confusion matrices for the predictions of the DNN in the 

Test Dataset (a, b), Contemporary Cohort (c, d), and Clinic Cohort (e, f), at both the recording and user-level. Total number of patients are presented in 

parentheses. The DNN Score cutoff used was 0.427.
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Extended Data Fig. 5 | dNN performance to predict diabetes according to time of day, recording length and heart rate in the test dataset. DNN 

sensitivity, specificity, diagnostic odds-ratio and AUC to detect prevalent diabetes are presented across strata of age, gender and number of recordings. 

The Test Dataset sample size is 11,313 individuals. Counts are provided in parentheses for all subgroup metrics. The diagnostic odds-ratio is the ratio of 

positive likelihood ratio (sensitivity / (1–specificity)) to the negative likelihood ratio ((1–sensitivity)/specificity). The diagnostic odds-ratio is presented 

at the recording-level with the associated 95% confidence interval. Interaction p-values are two-sided Wald tests for interaction between the DNN Score 

and the respective covariates for diabetes. Abbreviations: DNN: deep neural network; OR: diagnostic odds ratio; AUC: area under the curve; CI: confidence 

interval; BPM: beats per minute.
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Extended Data Fig. 6 | Activation maps from several hidden convolutional layers of the trained deep neural network (dNN) for one 

photoplethysmography (PPG) record. a, An example of a PPG recording which serves as the input into the DNN. b, The activation map of one example 

filter (out of 16) from the first convolutional layer of the neural network. This activation map is obtained after the example PPG recording is fed into the 

trained DNN. Each lighter colored band illustrates “activation” of a model parameter. At this early layer of the neural network, the lighter colored bands 

correspond directly to each cardiac cycle of the PPG waveform. Thicker lines likely indicate morphological features of the waveform. c, Visualization of the 

activation maps of the 16 filters from the first convolutional layer of the neural network, obtained after the input PPG is fed into the trained DNN. Each of 

the 16 filters can learn different sets of “features” from the input PPG recording. Filters with more purple bands have more inactive neurons, as compared 

to those with lighter colors (green being the strongest activation and dark purple being the weakest activation). Six filters appear completely inactivated 

(all purple), suggesting that the features these filters focus on are not present in this example input PPG. d, Visualization of the activation maps of the 7th 

convolutional layer of the DNN, comprised of 32 filters. Broadly, these activation maps from the 7th layer of the DNN are more complex compared to those 

from the 1st layer (b, c), demonstrating how deeper layers of the DNN encode increasingly abstract information representing higher level interactions and 

complex features.
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Extended Data Fig. 7 | Activation maps from hidden convolutional layers of the trained deep neural network (dNN) for an example 

photoplethysmography (PPG) recording with artifacts. a, An example PPG recording with 2 artifacts (blue and orange rectangles) which serves as the 

input into the DNN. b, Activation maps of the 16 filters from the first convolutional layer of the DNN. Each lighter colored band illustrates “activation” of a 

model parameter. Orange and blue arrow are placed on filters denoting the location of artifacts, highlighted by orange and blue rectangles (a), respectively. 

Some filters, such as the 4th image in the top row, seem to not have activation at the location of the artifactual beats (hollow orange and blue arrows), 

suggesting that the DNN is “ignoring” data from these artifact locations. Whereas other filters are have activation, suggested by lighter color bars, in the 

locations of the artifacts (full orange and blue arrows), such as the 2nd filter from the left in the top row, suggesting that the DNN is using data from these 

artifact locations. Some filters, such as the 2nd from the left in the bottom row “ignore” the artifactual beats by having uniform activation throughout the 

signal length (except where there are artifacts) likely representing the cardiac cycle. These findings suggest that the DNN is able to identify artifactual 

beats and differentiate them from good quality waveforms.
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Extended Data Fig. 8 | Example photoplethysmography (PPG) waveforms. a, Examples of raw PPG recordings from individuals with and without 

diabetes (red/green recordings, respectively), which serve as inputs to the deep neural network. DNN Scores predicted for each recording are shown. PPG 

recordings are either cropped or zero-padded to the same fixed length (~20.3 seconds) before being input into the DNN. The “flat line” in three examples 

is a demonstration of zero-padding shorter records to the fixed length. DNN: Deep Neural Network; ms: milliseconds.
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Extended Data Fig. 9 | deep neural network architecture. The neural network had 39 layers organized in a block structure, consisting of convolutional 

layers with an initial filter size of 15 and filter number (N) of 16. The size of the filters decreased, and the number of filters increased as network depth 

increased, as shown. After each convolutional layer, we applied batch normalization, rectified linear activation and dropout with a probability of 0.2. The 

final flattened and fully connected softmax layer produced an output distribution across the classes of diabetes/no diabetes. This output distribution is 

referred to as the DNN Score. PPG: photoplethysmography; DNN: Deep Neural Network; Hz: Hertz.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The Azumio Instant Heart Rate app is a commercial, freely-available smartphone application by Azumio Inc, which was used to collect 

PPG recordings. The PPG waveforms were pre-processed by an Azumio algorithm for camera artifact removal, utilizing standard de-

trending and low pass filter techniques. Web-based data collection in the Health eHeart study is supported by custom code for the 

Health eHeart web portal and smartphone application. 

Data analysis The convolutional neural network was built in Python 2.7 using Keras (version 2.0.3) and TensorFlow (version 1.0.1). The logistic 

regression models and AUC were derived in SPSS v22.0 (IBM). Custom code for data processing and analysis (including the neural 

network) used in this study is copyright of the Regents of the University of California and can be made available through license.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The data that support the findings of this study can be made available upon reasonable request from the authors, but restrictions apply to the availability of these 

data which were used under license for the current study and due to their containing information that could compromise participant privacy/consent. 
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For Primary and Contemporary cohorts, the largest sample size available during the inclusion period was used in order to maximize the 

sample size for neural network training and validation. Similarly to maximize validation sample size, we aimed for the largest enrollment in the 

Clinic Cohort given the time and resource constraints associated with prospective in-person enrollment.

Data exclusions Participants in all cohorts were included if they made at least one PPG recording. Based on our prior data exploration and analysis using 

similar PPG data (doi:10.1038/s41746-019-0134-9), we prespecified exclusions for low sampling rate (<100 Hz; which is based on smartphone 

model), invalid date of birth or average PPG heart rate outside of 20-220 beats per minute which we assumed are not physiologic and thus 

predominantly erroneous/artifactual signals). PPG recordings of <5 seconds were excluded, as were individuals who answered "I don't know" 

to the self-reported diabetes question.

Replication We replicated our results in a total of three test datasets, including a hold-out test dataset from the Primary cohort, a temporally distinct 

cohort enrolled into Health eHeart after initial data-lock ("Contemporary Cohort"), and a prospectively enrolled in-person clinic cohort ("Clinic 

Cohort"). 

Randomization Participants in the Primary cohort were divided into training, development and test datasets randomly, and all datasets are disjoint. 

Blinding Investigators were not blinded to group allocation, however all three test datasets were kept separate and not used during model 

development. Blinding is not relevant in this study since the exposure of deployment of the trained neural-network on test dataset(s) PPG 

data occurs without investigator input.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics A total of 3,564 participants (6.6%) had self-reported diabetes and 50,306 (93.4%) did not have self-reported diabetes. 

Compared to those without diabetes, those with diabetes were older (mean±SD): 54.6±14.7 vs 45.0±15.1, p<0.001), more likely 

male (59.3% vs 52.8%; p<0.001), had a higher BMI (32.1±7.0 vs 27.3±5.9; p<0.001), less likely non-Hispanic whites (Table 1) and 

had higher HR (83.8.±14.5 vs 79.9±15.1 bpm; p<0.001). 

Recruitment Health eHeart (HeH) Study is a worldwide, internet-based, longitudinal eCohort; English-speaking adults, 18 years or order, with 

an email address were eligible to join. Participants were actively recruited through a variety of campaigns at 

UCSF (through clinics and electronically delivered invitations) and by partner organizations (e.g., American Heart Association), 

and passively recruited through word of mouth and press releases. Existing users of the Azumio Instant Heart Rate app were also 

invited to join Health eHeart. Since all study participants voluntarily enrolled into Health eHeart and elected to download the 

Azumio smartphone app, there is likely to be selection bias in our Primary and Contemporary cohorts, as we describe in 

limitations. The Clinic Cohort enrolled consecutive patients referred to three cardiovascular prevention clinics who consented to 

participate in the study. We opted to perform our additional validation in the Clinic Cohort precisely because it does not likely 
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exhibit the selection bias of the model derivation cohort, providing a test of external generalizability of the neural network 

performance.

Ethics oversight The University of California San Francisco Institutional Review Board approved this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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