Research

JAMA Dermatology | Original Investigation

Association Between Surgical Skin Markings in Dermoscopic
Images and Diagnostic Performance of a Deep Learning
Convolutional Neural Network for Melanoma Recognition
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Editorial
IMPORTANCE Deep learning convolutional neural networks (CNNs) have shown a Supplemental content
performance at the level of dermatologists in the diagnosis of melanoma. Accordingly, further
exploring the potential limitations of CNN technology before broadly applying it is of special

interest.

OBJECTIVE To investigate the association between gentian violet surgical skin markings in
dermoscopic images and the diagnostic performance of a CNN approved for use as a medical
device in the European market.

DESIGN AND SETTING A cross-sectional analysis was conducted from August 1, 2018,

to November 30, 2018, using a CNN architecture trained with more than 120 000
dermoscopic images of skin neoplasms and corresponding diagnoses. The association of
gentian violet skin markings in dermoscopic images with the performance of the CNN was
investigated in 3 image sets of 130 melanocytic lesions each (107 benign nevi, 23
melanomas).

EXPOSURES The same lesions were sequentially imaged with and without the application
of a gentian violet surgical skin marker and then evaluated by the CNN for their probability
of being a melanoma. In addition, the markings were removed by manually cropping the
dermoscopic images to focus on the melanocytic lesion.

MAIN OUTCOMES AND MEASURES Sensitivity, specificity, and area under the curve (AUC)
of the receiver operating characteristic (ROC) curve for the CNN's diagnostic classification
in unmarked, marked, and cropped images.

RESULTS Inall, 130 melanocytic lesions (107 benign nevi and 23 melanomas) were imaged.
In unmarked lesions, the CNN achieved a sensitivity of 95.7% (95% Cl, 79%-99.2%) and a
specificity of 84.1% (95% Cl, 76.0%-89.8%). The ROC AUC was 0.969. In marked lesions, an
increase in melanoma probability scores was observed that resulted in a sensitivity of 100%
(95% Cl, 85.7%-100%) and a significantly reduced specificity of 45.8% (95% Cl,
36.7%-55.2%, P < .001). The ROC AUC was 0.922. Cropping images led to the highest
sensitivity of 100% (95% Cl, 85.7%-100%), specificity of 97.2% (95% Cl, 92.1%-99.0%),
and ROC AUC of 0.993. Heat maps created by vanilla gradient descent backpropagation
indicated that the blue markings were associated with the increased false-positive rate.

CONCLUSIONS AND RELEVANCE This study's findings suggest that skin markings significantly

interfered with the CNN's correct diagnosis of nevi by increasing the melanoma probability

scores and consequently the false-positive rate. A predominance of skin markings in

melanoma training images may have induced the CNN's association of markings with a Author Affiliations: Author
melanoma diagnosis. Accordingly, these findings suggest that skin markings should be affiliations are listed at the end of this
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ncidence rates of malignant melanoma are increasing in many

countries of the world.! Despite much progress being made

regarding public awareness, basic research, and clinical care
for treating malignant melanoma, mortality rates are still high.?
Therefore, there is a continuous need for improvements in the
methods for the early detection of malignant melanoma. When
diagnosed early, melanoma may be cured by surgical excision,
whereas the prognosis of more advanced cases is limited. In clini-
cal routine, a high sensitivity for the detection of melanoma is
of utmost importance; nevertheless, the number of excised be-
nign nevi should be limited.> Dermoscopy was shown to signifi-
cantly improve the diagnostic sensitivity and specificity com-
pared with that obtained by naked eye examination.**® Various
dermoscopic features have been associated with the diagnoses
of melanoma,” and a number of simplified algorithms have been
defined and validated to support dermatologists in deciding
which lesions to excise.®1°

As in other fields of medicine, automated and computer-
ized deep learning systems are emerging for the diagnosis of
skin cancer.! Deep learning is defined as a form of machine
learning in which large data sets (eg, dermoscopic images) and
corresponding classification labels (eg, diagnoses of nevi or
melanomas) are fed into a neural network for training pur-
poses. Within the network, which is composed of many se-
quential layers, input images are assessed on a pixel level for
the presence of “good representations™ (here, dermoscopic fea-
tures) of the input classification. With the increasing number
of training images, the network assembles and weights image
features that are useful for differentiating nevi from melano-
mas. Therefore, deep learning could be described as a hierar-
chical feature learning. Deep learning convolutional neural net-
works (CNNs) form a subcategory of deep learning algorithms
that have shown strong performance in image classification.
To date, deep learning CNNs have demonstrated a diagnostic
performance at the level of experienced physicians in the evalu-
ation of medical images from the fields of dermatology,'**
radiology,'® ophthalmology,'® and pathology.'”

While a single physician with alow diagnostic performance
in the detection of melanoma may cause serious harm, the ef-
fect of abroadly applied neural network with inherent “diagnos-
tic gaps” or unknown pitfalls would be even more detrimental.
In dermoscopicimages, artifacts such as air bubbles, hair, or over-
layed rulers have previously been reported to present some of
the difficulties in automated image evaluation.!! Because sus-
picious lesions are often routinely marked with gentian violet sur-
gical skin markers, our study investigated whether highlighting
lesions with a skin marker may alter the evaluation scores of a
computerized deep learning CNN for melanoma recognition.

Methods

This noninterventional study was approved by the ethics com-
mittee of the medical faculty of the University of Heidelberg,
Heidelberg, Germany, and performed in accordance with the
Declaration of Helsinki'® principles. Informed consent of pa-
tients was waived by the ethics committee because all im-
ages were acquired as part of clinical routine procedures and
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Key Points

Question Are surgical skin markings in dermoscopic images
associated with the diagnostic performance of a trained and
validated deep learning convolutional neural network?

Findings In this cross-sectional study of 130 skin lesions, skin
markings by standard surgical ink markers were associated with
a significant reduction in the specificity of a convolutional neural
network by increasing the melanoma probability scores,
consequently increasing the false-positive rate of benign nevi by
approximately 40%.

Meaning This study suggests that the use of surgical skin markers
should be avoided in dermoscopic images intended for analysis
by a convolutional neural network.

only deidentified data were used. The study was conducted
from August 1, 2018, to November 30, 2018. A pretrained CNN
architecture (Inception-v4; Google)!® was used that was ad-
ditionally trained with more than 120 000 dermoscopic im-
ages and corresponding labels (Moleanalyzer-Pro; FotoFinder
Systems GmbH). Details on the CNN architecture and train-
ing have been described earlier.'

For the present study, 3 image sets were created, with each
including 130 melanocytic lesions (107 benign nevi and 23
melanomas). Dermoscopic images of nevi with and without
skin markings were prospectively and sequentially acquired
in clinical routine with a mobile digital dermatoscope at-
tached to a smartphone (Handyscope; FotoFinder Systems
GmbH). The diagnoses of benign nevi were not based on
histopathologic findings but rather on the absence of any
melanoma-associated clinical and dermoscopic features in
combination with an uneventful follow-up over the past 2
years. Skin markings included variable dots, streaks, or circles
made with a gentian violet skin marker (Devon Surgical Skin
Marker; Cardinal Health or pfm medical skin marker; pfm medi-
cal ag) to the skin adjacent to the nevi. All nevi were first im-
aged as unmarked lesions, after which they were marked in
vivo and imaged again as marked lesions (Figure 1). Mela-
noma images without markings were randomly selected from
the image library of the Department of Dermatology, Univer-
sity of Heidelberg. All melanoma cases were validated by his-
topathologic analysis with additional information on localiza-
tion, Breslow thickness, and patient data being available. To
allow for corresponding analyses of melanomas, the skin mark-
ings were digitally superimposed on the melanoma images with
the use of photograph manipulation software (Photoshop CS6,
version 13.0.1x32; Adobe Inc). For a statistical comparison, 20
nevi from the test set were used to demonstrate that electroni-
cally superimposed markings provide comparable results to
in vivo markings. In 20 unmarked benign nevi, the CNN’s mean
melanoma probability score was 0.15 (95% CI, 0.01-0.29). Mela-
noma probability scores can range from O to 1; higher scores
indicate a higher probability of the measured lesion being a
melanoma. In vivo markings increased the mean score to 0.52
(95% CI, 0.31-0.74), whereas electronically superimposed mark-
ings led to a comparable mean score of 0.59 (95% CI, 0.39-
0.79). The Mann-Whitney test did not reveal a significant dif-
ference between in vivo and electronically marked nevi
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Figure 1. Convolutional Neural Network (CNN) Classification and Melanoma Probability Scores
for Dermoscopic Images of Unmarked, Marked, and Cropped Benign Nevus and Melanoma

E] Unmarked benign nevus Marked benign nevus

Cropped benign nevus image

[F] Cropped melanoma image A gentian violet surgical skin marker

was used to highlight the marked

./0

examples. A, CNN classification:
benign; score, 0.001. B, CNN
classification: malignant; score,
0.981. C, CNN classification: benign;
score, 0.001. D, CNN classification:
malignant; score, 0.999. E, CNN
classification: malignant; score,
0.999. F, CNN classification:

malignant; score, 0.999.

(P = .78). Moreover, in each of the 20 nevi, the CNN classifi-
cation of in vivo and electronically marked lesions showed
consistent results. For more details, refer to the eMethods and
eFigures 1 and 2 in the Supplement. All dermoscopic images
were then cropped to reduce the background and to focus
solely on the melanocytic lesions. The aforementioned steps
resulted in 3 complete sets of the same 130 dermoscopic im-
ages, namely, set 1 with unmarked lesions, set 2 with marked
lesions, and set 3 with cropped images.

Heat Maps
Deep learning CNNs do not provide any information about why
a certain classification decision was reached. There are many
different interpretability approaches that may help to more
clearly visualize the information “learned” by the model.?°
Heat maps were created to identify the most important pix-
els for the CNN’s diagnosis to better explain how much each
pixel of the image contributes to the diagnostic classification.
These heat maps were derived by vanilla (meaning “basic”)
gradient descent backpropagation.

Statistical Analysis

The primary outcome measures were sensitivity, specificity, and
area under the curve (AUC) of receiver operating characteristic
(ROC) curves for the diagnostic classification of lesions by the
CNN. The CNN accorded a malignancy probability score between
Oand 1, and a validated a priori cutoff greater than 0.5 for the di-
chotomous classification of malignant vs benign lesions was ap-
plied. Descriptive statistical measures, such as frequency, mean,
range, and SD, were used. Mann-Whitney tests were performed
to assess the differences in the melanoma probability scores be-
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tween the 3 sets of images. A 2-sample McNemar test was per-
formed to compare the sensitivities and specificities attained by
the CNN.22 Results were considered statistically significant at the
P < .05level (2-sided). All analyses were carried out using SPSS
version 24 (IBM).

|
Results

Characteristics of Imaged Lesions

In all, 130 melanocyticlesions (107 benign nevi and 23 melano-
mas) were imaged. Of the 23 imaged melanomas, 18 (78.3%) were
localized on the trunk and extremities, 3 (13.0%) on the facial skin,
1 (4.3%) on the scalp, and 1 (4.3%) on the palmoplantar skin
(eTable in the Supplement). Nineteen melanomas (82.6%) were
invasive (mean thickness, 1 mm [range, 0.2-5.6 mm]) and 4
(17.4%) in situ. The analysis of melanoma subtypes revealed the
following subtypes: 15 superficial spreading melanomas, 2 len-
tigo maligna melanomas, 1 nodular melanoma, and 1 acrolentigi-
nous melanoma. Of the 4 in situ melanomas, 1 was classified as
lentigo maligna (eTable in the Supplement). The 123 imaged be-
nign nevi showed no clinical or dermoscopic criteria associated
with the presence of melanoma and had an uneventful follow-
up for at least 2 years (Figure 1).

CNN's Melanoma Probability Scores

Box plots in Figure 2 show the distribution of the CNN melanoma
probability scores for the 3 different sets of images (unmarked,
marked, and cropped). Skin markings significantly increased the
mean melanoma probability scores of the classifier in benign
nevi from 0.16 (95% CI, 0.10-0.22) to 0.54 (95% CI, 0.46-0.62)
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Figure 2. Box Plots Representing Convolutional Neural Network (CNN)'s Melanoma Probability Scores

for Benign Nevi, In Situ Melanomas, and Invasive Melanomas
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Probability scores are presented for unmarked lesions, lesions marked by a
gentian violet ink surgical pen, and cropped lesion images. Probability scores
range from O to 1; scores closer to 1indicate a higher probability of melanoma.
The top and bottom borders of the boxes indicate the 75th and 25th

percentiles, respectively, while the horizontal line in the box represents the
median. The whiskers indicate the full range of the probability scores. Statistical
analyses revealed significantly different melanoma probability scores when
comparing benign lesions with in situ or invasive melanomas (P < .001).

Figure 3. Heat Maps of 2 Benign Nevi With Unchanged Melanoma Probability Scores

After Addition of In Vivo Skin Markings
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The heat maps were created by
vanilla (meaning basic) gradient
descent backpropagation. Aand E,
Unmarked input images. Band F,
Heat maps reveal relevant pixels for
the convolutional neural network’s
(CNN’s) prediction of benign nevi.
Cand G, Marked input images. D and
H, Heat maps reveal that skin
markings are “ignored” by the CNN,
thus leaving the CNN's prediction of
benign nevi unchanged.

E Marked

(P < .001). Figure 3 and Figure 4 show heat maps of representa-
tive unmarked and marked nevi in which the most important pix-
els for the CNN’s diagnostic classifications were identified by va-
nilla gradient descent backpropagation.? In nevi images that were
cropped to reduce the background, the mean melanoma prob-
ability scores were significantly reduced to 0.03 (95% CI, 0-0.06)
compared with those in unmarked (0.16; 95% CI, 0.10-0.22) and
marked (0.54; 95% CI, 0.46-0.62) images (P < .001). In melanoma
images we also observed an increase of the mean melanoma
probability scores in unmarked vs electronically marked images
from 0.94 (95% CI, 0.85-1.00) t0 1.00 (95% CI, 0.99-1.00). How-
ever, as unmarked melanoma images already showed mean
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scores close to the maximum score of 1, the induced changes did
not reach statistical significance (P = .10). Irrespective of mark-
ups or cropping, the statistical differences in melanoma prob-
ability scores between benign nevi vs melanomas remained
significant across all image sets. At the same time, no significant
difference was observed between the melanoma probability
scores of in situ melanomas vs invasive melanomas across all
image sets.

CNN's Sensitivity, Specificity, and ROC AUC
At the a priori operation point of 0.5, the sensitivity of the CNN
in the unmarked image set was 95.7% (95% CI, 79%-99.2%)
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Figure 4. Heat Maps of 2 Benign Nevi With Major Increase in Melanoma Probability Scores

After Addition of In Vivo Skin Markings
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and the specificity was 84.1% (95% CI, 76%-89.8%). When le-
sions were marked, the sensitivity changed to 100% (95% CI,
85.7%-100%) and the specificity to 45.8% (95% CI, 36.7%-
55.2%). In cropped images, the CNN showed a sensitivity
of 100% (95% CI, 85.7%-100%) and a specificity of 97.2%
(95% CI, 92.1%-99%). A pairwise comparison of the CNN’s sen-
sitivities in unmarked, marked, or cropped images revealed no
significant differences. A pairwise comparison of the speci-
ficities showed significant differences between unmarked and
marked images (84.1%; 95% CI, 76.0%-89.8% Vs 45.8%;
95% ClI, 36.7%-55.2%; P < .001), unmarked and cropped im-
ages (84.1%; 95% CI, 76.0%-89.8% vs 97.2%; 95% CI, 92.1%-
99.0%; P = .003), and marked and cropped images (45.8%;
95% CI, 36.7%-55.2% Vs 97.2%; 95% CI, 92.1%-99.0%; P < .001).

The ROC AUC in unmarked images was 0.969 (95% CI,
0.935-1.000), in marked images was 0.922 (95% CI, 0.871-
0.973), and in cropped images was 0.993 (95% CI, 0.984-
1.000). All 3 ROC curves that were calculated for the 3 image
sets are depicted in Figure 5 and illustrate a significant reduc-
tion in specificity of nearly 40% in marked vs unmarked le-
sions as well as the outperformance of the CNN when using
cropped lesions.

|
Discussion

Deep learning CNNs have recently been applied to different di-
agnostic tasks in medical image recognition and classifica-
tion (eg, ophthalmology,'® radiology,' histopathology,'” and
dermatology?®). Several landmark studies compared human
and machine accuracy in skin cancer detection.?*2> Two re-
cent publications reported an expert dermatologist-level clas-
sification of dermoscopic images of benign melanocytic nevi
and cutaneous melanomas,'>!* and a first deep learning CNN

jamadermatology.com

nevus itself is mostly ignored.

Figure 5. Receiver Operating Characteristic (ROC) Curves
of the Performance of the Convolutional Neural Network (CNN)
Diagnostic Classification

1.0+
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ROC curves of CNN
024 Cropped image
) Unmarked image
Marked image
0,
T T T T T 1
0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Shown are ROC curves of the CNN in the original unmarked image set vs marked
and cropped images (dichotomous classification). The sensitivity and specificity
of the CNN for each image set at the a priori operation point are indicated by a
circle on the curve and were as follows: (1) unmarked images: sensitivity, 95.7%:
specificity, 84.1%; area under the curve (AUC), 0.969; (2) marked images:
sensitivity, 100%; specificity, 45.8%; AUC, 0.922; and (3) cropped images:
sensitivity, 100%; specificity, 97.2%; AUC, 0.993.

for classification of skin neoplasms has gained market access
in Europe as a medical device (Moleanalyzer-Pro). While these
achievements represent major successes, further exploring the
limitations of deep learning CNNs is important before consid-
ering a broader application worldwide.
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It has previously been shown that artifacts in dermo-
scopicimages, such as dark corners (caused by viewing through
the tubular lens of the dermatoscope), gel bubbles, superim-
posed color charts, overlayed rulers, and occluding hair, may
impede image segmentation and classification by automated
algorithms.-2¢ Various methods have been reported for the
removal of such artifacts,?”?® and strategies for preprocess-
ing of images were described to improve the classification out-
comes of CNNs.2° However, the removal of artifacts by image
preprocessing may ultimately alter the original image and it-
self be prone to error. Therefore, a major advantage of deep
learning CNNs is that the raw RGB dermoscopic image may be
used as an input, thus bypassing preprocessing.>°

This study investigated the possible association of surgi-
cal skin markers as artifacts in dermoscopic images with the
classification outcomes by a deep learning CNN. In clinical rou-
tine, suspicious lesions are frequently marked before being ex-
cised or photographed. Our attention was drawn to this issue
when evaluating dermoscopic images of benign nevi under se-
quential digital dermoscopy follow-up. We observed that se-
quentially imaged benign nevi, although largely unchanged,
were frequently labeled as being malignant by the CNN when
ink markers were visible at the periphery of the dermoscopic
image. To systematically and prospectively investigate our ob-
servation, 3 sets of dermoscopic images (unmarked, marked,
and cropped) of the same 130 melanocytic lesions were cre-
ated. Our assessments of these images with the CNN showed
that skin markings at the periphery of benign nevi were asso-
ciated with an increase in the melanoma probability scores that
increased the false-positive rate by approximately 40%. To
prove that this association may be attributed solely to the der-
moscopic background and not the melanocytic lesion itself, the
dermoscopic images were cropped manually. This procedure
reversed the negative association of skin markings with the di-
agnostic performance of the CNN. Overall, image preprocess-
ing by manually cropping images led to the best diagnostic
performance of the CNN, achieving a sensitivity of 100%, speci-
ficity of 97.2%, and ROC AUC of 0.993. The CNN’s specificity
in the cropped images (97.2%) was significantly improved com-
pared with that in the unmarked images (84.1%). However,
cropping was done manually by experienced dermatologists,
and the results may deteriorate with automated cropping by
a formal preprocessing step using border segmentation algo-
rithms.

When reviewing the open-access International Skin
Imaging Collaboration database, which is a source of training
images for research groups, we found that a similar percent-
age of melanomas (52 of 2169 [2.4%]) and nevi (214 of 9303
[2.3%]) carry skin markings. Nevertheless, it seems conceiv-
able that either an imbalance in the distribution of skin mark-
ings in thousands of other training images that were used in
the CNN tested herein or the assignment of higher weights
to blue markings only in lesions with specific (though un-
known) accompanying features may induce a CNN to associ-
ate skin markings with the diagnosis of melanoma. The latter
hypothesis may also explain why melanoma probability scores
remained almost unchanged in many marked nevi while being
increased in others.
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The fact that blue markings are associated with changes
in melanoma probability scores while the underlying mecha-
nisms remain unclear highlights the lack of transparency in the
classification process of neural network models. Thus, al-
though not being dependent on manmade criteria for classi-
fication has opened a new level of performance, it may im-
pede the insights into a mechanistic understanding. The CNN
tested in this study applies the melanoma probability score as
asoftmax output classifier. Recently, content-based image re-
trieval has been shown to provide results comparable to soft-
max classifiers.' In this alternative approach, the CNN gen-
erates several images that are visually similar to the input image
along with the corresponding diagnoses. The displayed out-
put images are retrieved from the compiled training images
based on overlapping features identified by the neural net-
work. This strategy has been hypothesized to increase the ex-
plainability for clinicians.

There are several approaches to the problem of bias in-
duced by skin markings. Avoiding markings in images that are
intended for analysis seems the most straightforward solu-
tion for the CNN tested in our study. Avoiding markings in train-
ing images (eg, by cropping images before training) is logical
with regard to future algorithms. In contrast, teaching the CNN
to ignore parts of the image that may or may not be artificial
skin markings appears rather difficult. Because there are many
more types of artifacts in images other than blue surgical skin
markers, some artifacts may still be undetected. At the same
time, other parts of images may erroneously be interpreted as
artifacts that preclude them from analysis by the CNN. More-
over, as stated above, automated segmentation with border de-
tection of the lesion of interest may be another option to im-
prove evaluation.?”

Limitations

Our study has some limitations. First, benign melanocytic nevi
were not excised for histologic verification, but rather were se-
lected from patients under follow-up and showed no changes
during the past 2 years. Second, dermoscopic images of mela-
nomas were extracted from a validated database; thus, skin
markings could not be added in vivo. Alternatively, skin mark-
ings were electronically duplicated from digital images and su-
perimposed on the melanoma background. This procedure and
its association with changes in the classification by the CNN
were extensively tested with images of benign nevi. In all these
cases, no differences were found between the melanoma prob-
ability scores attained with the CNN in images with “in vivo”
markings vs images with electronically superimposed mark-
ings. Third, most images included in this study were derived
from fair-skinned patients residing in Germany; therefore, the
findings may not be generalized for lesions of patients with
other skin types and genetic backgrounds.

|
Conclusions

In summary, the results of our investigation suggest that skin
markings at the periphery of dermoscopic images are signifi-
cantly associated with the classification results of a deep learn-
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ing CNN. Melanoma probability scores of benign nevi appear
to be significantly increased by markings causing a strong in-
crease in the false-positive rate. In clinical routine, these le-
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