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Risk stratification is central to identifying and managing groups 
at risk for cardiovascular disease, which remains the leading 
cause of death globally1. Although the availability of cardio-

vascular disease risk calculators, such as the Pooled Cohort equa-
tions2, Framingham3–5 and Systematic COronary Risk Evaluation 
(SCORE)6,7, is widespread, there are many efforts to improve 
risk predictions. Phenotypic information, particularly of vascu-
lar health, may further refine or reclassify risk prediction on an 
individual basis. Coronary artery calcium is one such example, 
for which it has been shown that additional signals from imaging 
improve risk stratification8. The current standard-of-care for the 
screening of cardiovascular disease risk requires a variety of vari-
ables derived from the patient’s history and blood samples, such 
as age, gender, smoking status, blood pressure, body mass index 
(BMI), glucose and cholesterol levels9. Most cardiovascular risk 
calculators use some combination of these parameters to identify 
patients at risk of experiencing either a major cardiovascular event 
or cardiac-related mortality within a pre-specified time period, such 
as ten years. However, some of these parameters may be unavail-
able. For example, in a study from the Practice INNovation And 
CLinical Excellence (PINNACLE) electronic-health-record-based 
cardiovascular registry, the data required to calculate the 10-year 
risk scores were available for less than 30% of the patients10. This 
was largely due to missing cholesterol values10, which is not surpris-
ing given that a fasting blood draw is required to obtain these data. 
In this situation, BMI can be used in the place of lipids for a prelimi-
nary assessment of cardiovascular health11–13. We therefore explored 
whether additional signals for cardiovascular risk can be extracted 
from retinal images, which can be obtained quickly, cheaply and 
non-invasively in an outpatient setting.

Markers of cardiovascular disease, such as hypertensive reti-
nopathy and cholesterol emboli, can often manifest in the eye. 
Furthermore, because blood vessels can be non-invasively visual-
ized from retinal fundus images, various features in the retina, 
such as vessel calibre14–20, bifurcation or tortuosity21, microvascular 

changes22,23 and vascular fractal dimensions24–26, may reflect the sys-
temic health of the cardiovascular system as well as future risk. The 
clinical utility of such features still requires further study. In this 
work, we demonstrate the extraction and quantification of multiple 
cardiovascular risk factors from retinal images using deep learning.

Machine learning has been leveraged for many years for a vari-
ety of classification tasks, including the automated classification 
of eye disease. However, much of the work has focused on ‘feature 
engineering’, which involves computing explicit features specified 
by experts27,28. Deep learning is a family of machine-learning tech-
niques characterized by multiple computation layers that allow an 
algorithm to learn the appropriate predictive features on the basis 
of examples rather than requiring features to be hand-engineered29. 
Recently, deep convolutional neural networks—a special type of 
deep-learning technique that has been optimized for images—have 
been applied to produce highly accurate algorithms that diagnose 
diseases, such as melanoma30 and diabetic retinopathy31,32, from 
medical images, with comparable accuracy to that of human experts.

Results
We developed deep-learning models using retinal fundus images 
from 48,101 patients from the UK Biobank (http://www.ukbio-
bank.ac.uk/about-biobank-uk) and 236,234 patients from EyePACS 
(http://www.eyepacs.org) and validated these models using images 
from 12,026 patients from the UK Biobank and 999 patients from 
EyePACS (Table 1). The mean age was 56.9 ±  8.2 years on the UK 
Biobank clinical validation dataset and 54.9 ±  10.9 years in the 
EyePACS-2K clinical validation dataset. The UK Biobank popula-
tion was predominantly Caucasian, while the EyePACS patients 
were predominantly Hispanic. Haemoglobin A1c (HbA1c) mea-
surements were available only in 60% of the EyePACS population. 
Because this population consisted of mostly diabetic patients pre-
senting for diabetic retinopathy screening, the mean HbA1c level of 
this population was 8.2 ±  2.1%—well above the normal range. UK 
Biobank participants were recruited from a UK general population, 
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rather than a diabetic population presenting for diabetic retinopa-
thy screening. Fasting glucose, HbA1c levels and other laboratory-
based methods for determining diabetes status were not available 
at the time of this study. However, approximately 5% of the UK 
Biobank population self-identified as having 'diabetes diagnosed by 
doctor' (without further specification of type). Additional patient 
demographics are summarized in Table 1.

First, we tested the ability of our models to predict a variety of 
cardiovascular risk factors from retinal fundus images (Tables 2  
and 3). Because of the lack of an established baseline for predict-
ing these features from retinal images, we use the average value as 
the baseline for continuous predictions (such as age). The mean 
absolute error (MAE) for predicting the patient’s age was 3.26 years 
(95% confidence interval (CI): 3.22 to 3.31) versus baseline (7.06; 
95% CI: 6.98 to 7.13) in the UK Biobank validation dataset. For the 
EyePACS-2K, the MAE was 3.42 (95% CI: 3.23 to 3.61) versus base-
line (8.48; 95% CI: 8.07 to 8.90). The predicted age and actual age 

have a fairly linear relationship (Fig. 1a), which is consistent over 
both datasets. The algorithms also predicted systolic blood pressure 
(SBP), BMI and HbA1c better than baseline (Table 2). However, 
these predictions had low coefficient of determination (R2) values, 
suggesting that—although better than baseline—the algorithm is 
not able to predict these parameters with high precision. The pre-
dicted SBP increased linearly with actual SBP until approximately 
150 mmHg, but levelled off above that value (Fig. 1b).

To further characterize the performance of the algorithms, we 
examined how frequently the algorithms’ predictions fell within a 
given error margin and compared this with the baseline accuracy 
(Table 3). Although the models were not optimized for this task 
(for instance, for age they were optimized to minimize MAE rather 
than to predict age within specific error margins), we found that the 
algorithm performed significantly better than baseline for age, SBP, 
diastolic blood pressure (DBP) and BMI. For example, we found 
that in 78% of the cases the predicted age was within a ± 5-year  

Table 1 | Baseline characteristics of patients in the development and validation sets

Characteristics Development set Clinical validation set

uK Biobank eyePACS uK Biobank eyePACS-2K

Number of patients 48,101 236,234 12,026 999

Number of images 96,082 1,682,938 24,008 1,958

Age: mean, years (s.d.) 56.8 (8.2), n =  48,101 53.6 (11.6), n =  234,140 56.9 (8.2), n =  12,026 54.9 (10.9), n =  998

Gender (% male) 44.9, n =  48,101 39.2, n =  236,212 44.9, n =  12,026 39.2, n =  999

Ethnicity 1.2% Black, 3.4% Asian/PI, 
90.6% White, 4.1%  
Other n =  47,785

4.9% Black, 5.5% Asian/PI, 
7.7% White, 58.1% Hispanic, 
1.2% Native American, 1.7% 
Other n =  186,816

1.3% Black, 3.6% Asian/PI, 
90.1% White, 4.2% Other  
n =  11,926

6.4% Black, 5.7% Asian/PI, 
11.3% White, 57.2% Hispanic, 
0.7% Native American, 2% 
Other n =  832

BMI: mean (s.d.) 27.31 (4.78), n =  47,847 n/a 27.37 (4.79), n =  11,966 n/a

Systolic BP: Mean, mmHg 
(s.d.)

136.82 (18.41), n =  47,918 n/a 136.89 (18.3), n =  11,990 n/a

Diastolic BP: Mean, mmHg 
(s.d.)

81.78 (10.08), n =  47,918 n/a 81.76 (9.87), n =  11,990 n/a

HbA1c: mean, % (s.d.) n/a 8.23 (2.14), n =  141,715 n/a 8.2 (2.13), n =  737

Current Smoker: % 9.53%, n =  47,942 n/a 9.87%, n =  11,990 n/a

n/a indicates that the characteristic was not available for that dataset. n is the number of patients for whom that measurement was available. PI, Pacific Islander.

Table 2 | Algorithm performance on predicting cardiovascular risk factors in the two validation sets

Predicted risk factor  
(evaluation metric)

uK Biobank validation dataset (n =  12,026 patients) eyePACS-2K validation dataset (n = 999 patients)

Algorithm Baseline Algorithm Baseline

(95% Ci) (95% Ci)

Age: MAE, years (95% CI) 3.26 (3.22,3.31) 7.06 (6.98,7.13) 3.42 (3.23,3.61) 8.48 (8.07,8.90)

Age: R2 (95% CI) 0.74 (0.73,0.75) 0.00 0.82 (0.79,0.84) 0.00

Gender: AUC (95% CI) 0.97 (0.966,0.971) 0.50 0.97 (0.96,0.98) 0.50

Current smoker: AUC (95% CI) 0.71 (0.70,0.73) 0.50 n/a n/a

HbA1c: MAE, % (95% CI) n/a n/a 1.39 (1.29,1.50) 1.67 (1.58,1.77)

HbA1c: R2 (95% CI) n/a n/a 0.09 (0.03,0.16) 0.00

SBP: MAE, mmHg (95% CI) 11.35 (11.18,11.51) 14.57 (14.38,14.77) n/a n/a

SBP: R2 (95% CI) 0.36 (0.35,0.37) 0.00 n/a n/a

DBP: MAE, mmHg (95% CI) 6.42 (6.33,6.52) 7.83 (7.73,7.94) n/a n/a

DBP: R2 (95% CI) 0.32 (0.30,0.33) 0.00 n/a n/a

BMI: MAE (95% CI) 3.29 (3.24,3.34) 3.62 (3.57,3.68) n/a n/a

BMI: R2 (95% CI) 0.13 (0.11,0.14) 0.00 n/a n/a

95% CIs on the metrics were calculated with 2,000 bootstrap samples (Methods). For continuous risk factors (such as age), the baseline value is the MAE of predicting the mean value for all patients.
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margin of the actual age, whereas baseline predictions only fell into 
the 5-year window 44% of the time. Notably, the model could not 
predict HbA1c at an accuracy that was better than baseline. We also 
found that our approach was able to infer ethnicity, which is another 
potential cardiovascular risk factor2 (κ  score of 0.60 (95% CI: 0.58 to 
0.63) in the UK Biobank validation dataset and 0.75 (95% CI: 0.70 
to 0.79) in the EyePACS-2K validation dataset).

We also examined the effect that retinal eye disease such as dia-
betic retinopathy may have on the performance of the algorithms 
using the EyePACS-2K dataset, which has diabetic retinopathy 
grades that have been adjudicated by retinal specialists in a process 
previously described33. We stratified the model’s performance by 

diabetic retinopathy severity and found no significant difference 
between the groups (Table 4).

Because retinal images alone were sufficient to predict sev-
eral cardiovascular risk factors to varying degrees, we reasoned 
that the images could be correlated directly with cardiovascular 
events. Therefore, we trained a model to predict the onset of major 
adverse cardiovascular events (MACE) within five years. This out-
come was available only for one of our datasets—the UK Biobank. 
Because data in the UK Biobank come from a fairly recent study 
that recruited relatively healthy participants, MACE were rare (631 
events occurred within 5 years of retinal imaging, 150 of which were 
in the clinical validation dataset). Despite the limited number of 

Table 3 | Model accuracy versus baseline for predicting various continuous risk factors within a given margin

Predicted risk 
factor

uK Biobank validation dataset eyePACS-2K validation dataset

(n =  12,026 patients) (n =  999 patients)

error 
margin

Model  
accuracy (%)

Baseline 
accuracy (%)a

P value error 
margin

Model  
accuracy (%)

Baseline 
accuracy (%)a

P value

Age (years) ± 1 20 11 < 0.0001 ± 1 20% 13% < 0.0001

± 3 54 29 < 0.0001 ± 3 56% 28% < 0.0001

± 5 78 44 < 0.0001 ± 5 79% 43% < 0.0001

SBP (mmHg) ± 5 29 22 < 0.0001

± 10 53 43 < 0.0001

± 15 72 60 < 0.0001

DBP (mmHg) ± 3 30 25 < 0.0001

± 5 46 41 < 0.0001

± 10 79 71 < 0.0001

BMI ± 1 21 20 0.02

± 3 57 54 < 0.0001

± 5 80 77 < 0.0001

HbA1c (%) ± 0.5 31 35 0.995

± 1 54 54 0.486

± 2 79 78 0.255
aBaseline accuracy was generated by sliding a window with a size equal to the error bounds (for example, size 10 for ± 5) across the population histogram and then taking the maximum of the summed 
histogram counts. This provides the maximum possible ‘random’ accuracy (by guessing the centre of the sliding window corresponding to the maximum). P values were obtained using a one-tailed 
binomial test with n =  number of patients, with the baseline accuracy as the chance probability of a correct prediction.
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Fig. 1 | Predictions of age and SBP. a, Predicted and actual age in the two validation datasets. For the UK Biobank dataset, age was calculated using the 
birth year because birth months and days were not available. In the EyePACS-2K dataset, age is available only in units of whole years. b, Predicted and 
actual SBP in the UK Biobank validation dataset. The lines represent y =  x values.
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events, our model achieved an area under the receiver operating 
characteristic curve (AUC) of 0.70 (95% CI: 0.648 to 0.740) from 
retinal fundus images alone, comparable to an AUC of 0.72 (95% 
CI: 0.67 to 0.76) for the composite European SCORE risk calculator 
(Table 5). As a comparison, AUCs were also generated using indi-
vidual risk factors alone. Not surprisingly, the combination of these 
risk factors was better at predicting MACE than individual risk  
factors alone.

Next, we used soft attention (Methods) to identify the anatomi-
cal regions that the algorithm might have been using to make its 
predictions. A representative example of a single retinal fundus 
image with accompanying attention maps (also called saliency 
maps34) for each prediction is shown in Fig. 2. In addition, for each 
prediction task, ophthalmologists blinded to the prediction task of 
the model assessed 100 randomly chosen retinal images to identify 
patterns in the anatomical locations highlighted by the attention 
maps for each prediction (Table 6). Encouragingly, the blood ves-
sels were highlighted in the models trained to predict risk factors, 
such as age, smoking and SBP. Models trained to predict HbA1c 
tended to highlight the perivascular surroundings. Models trained 
to predict gender primarily highlighted the optic disc, vessels and 
macula, although there appeared to be signal distributed through-
out the retina as well. For other predictions, such as SBP and BMI, 
the attention masks were non-specific, such as uniform ‘attention’ 
or highlighting the circular border of the image, suggesting that 
the signals for those predictions may be distributed more diffusely 
throughout the image.

Discussion
Our results indicate that the application of deep learning to retinal 
fundus images alone can be used to predict multiple cardiovas-
cular risk factors, including age, gender and SBP. That these risk 
factors are core components used in multiple cardiovascular risk 
calculators indicates that our model can potentially predict cardio-
vascular risk directly. This is supported by our preliminary results 
for the prediction of MACE, which achieve a similar accuracy to 
the composite SCORE risk calculator. This is also consistent with 
previous studies that suggest that retinal imaging contains infor-
mation about cardiovascular risk factors such as age and blood 
pressure35 as well as MACE18,20,22. Building on this body of work, 
we demonstrate not only that these signals are present in the ret-
ina, but that they are also quantifiable to a degree of precision not 
reported before.

Encouragingly, the corresponding attention maps also indicate 
that the neural-network model is paying attention to the vascular 
regions in the retina to predict several variables associated with car-
diovascular risk. These attention data, together with the fact that 
our results are consistent in two separate validation datasets, suggest 
that the predictions are likely to generalize to other datasets, and 
provide indications of pathological phenomena that can be studied 
further. For example, our results show strong gender differences in 
the fundus photographs and may help guide basic research inves-
tigating the anatomical or physiological differences between male 
and female eyes. Similarly, our findings may aid the scientific com-
munity in advancing its understanding of how cardiovascular dis-
ease processes or risk factors affect the retinal vasculature or optic 
disc in patients.

Despite the promising results, our study has several limitations. 
First, it only used images with a 45º field of view, and future work 
could examine the generalizability of these findings to images with 
either smaller or larger fields of view. In addition, the overall size 
of the dataset is relatively small for deep learning. In particular, 
although the AUC for cardiovascular events was comparable to 
that of SCORE, the CIs for both methods were wide. A signifi-
cantly larger dataset or a population with more cardiovascular 
events may enable more accurate deep-learning models to be 
trained and evaluated with high confidence. Another limitation is 
that some important inputs to existing cardiovascular risk calcula-
tors were missing from the datasets. In particular, lipid panels were 
not available for either the UK Biobank or the EyePACS datasets 
and a ‘gold standard’ diagnosis of diabetic status was not avail-
able in the UK Biobank dataset. Adding such input data is likely 
to improve the performance of cardiovascular risk prediction for 
both existing models and those we propose. Similarly, risk factors 
such as blood pressure and HbA1c were only available in one of the 
datasets (Table 2). Furthermore, some variables such as smoking 
status were self-reported and may be biased. In particular, because 
former smokers were grouped with never-smokers, it is possible 

Table 4 | Performance of the algorithm stratified by the severity of diabetic retinopathy according to the international clinical 
diabetic retinopathy scale

No DR Mild DR Moderate DR Severe DR Proliferative DR

Number of patients 734 81 101 32 11

Age: MAE(95% CI) 3.27 (3.06,3.49) 2.88 (2.31,3.50) 3.41 (2.82,4.06) 3.06 (2.42,3.75) 5.50 (2.64,8.92)

Age: R2(95% CI) 0.84 (0.81,0.87) 0.87 (0.80,0.92) 0.73 (0.58,0.82) 0.85 (0.69,0.91) 0.51 (–0.45,0.92)

Gender: AUC (95% CI) 0.98 (0.97,0.99) 0.95 (0.89,0.99) 0.95 (0.90,0.99) 0.97 (0.90,1.00) 1.00 (NA)

HbA1c: MAE (95% CI) 1.28 (1.17,1.41) 1.63 (1.19,2.11) 1.77 (1.52,2.06) 1.59 (1.23,1.99) 1.33 (0.51,2.30)

HbA1c: R2(95% CI) 0.02 (–0.04,0.08) –0.02 (–0.31,0.20) –0.08 (–0.36,0.13) 0.23 (–0.28,0.45) 0.51 (–3.36,0.65)

MAE and R2 for age, gender and HbA1c are stratified by diabetic retinopathy (DR) status for the EyePACS-2K validation dataset. Categories such as severe and proliferative DR have very few patients, 
leading to wide CIs. NA, not applicable.

Table 5 | Predicting five-year MACe in the uK Biobank 
validation dataset using various input variables

Risk factor(s) or model used for the prediction AuC (95% Ci)

Age only 0.66 (0.61,0.71)

SBP only 0.66 (0.61,0.71)

BMI only 0.62 (0.56,0.67)

Gender only 0.57 (0.53,0.62)

Current smoker only 0.55 (0.52,0.59)

Algorithm only 0.70 (0.65,0.74)

Age +  SBP +  BMI +  gender +  current smoker 0.72 (0.68,0.76)

Algorithm +  age +  SBP +  BMI +  gender +  current 
smoker

0.73 (0.69,0.77)

SCORE6,7 0.72 (0.67,0.76)

Algorithm +  SCORE 0.72 (0.67,0.76)

Of the 12,026 patients in the UK Biobank validation dataset, 91 had experienced a previous cardiac 
event before retinal imaging and were excluded from the analysis. Of the 11,835 patients in the 
validation dataset without a previous cardiac event, 105 experienced a MACE within 5 years of 
retinal imaging. 95% CIs were calculated using 2,000 bootstrap samples.
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that the AUC of the model might change if there were different or 
finer groupings of patients on the basis of length of previous smok-
ing history. Additional validation of our models on other datasets 
would be beneficial for all these predictions. Training with larger 
datasets and more clinical validation will also help determine 
whether retinal fundus images may be able to augment or replace 
some of the other markers, such as lipid panels, to yield a more 
accurate cardiovascular risk score.

In summary, we have provided evidence that deep learning may 
uncover additional signals in retinal images that will allow for bet-
ter cardiovascular risk stratification. In particular, they could enable 
cardiovascular assessment at the population level by leveraging the 
existing infrastructure used to screen for diabetic eye disease. Our 
work also suggests avenues of future research into the source of 
these associations, and whether they can be used to better under-
stand and prevent cardiovascular disease.

Methods
Study participants. We used two datasets in this study. Data in the first dataset—
the UK Biobank—were generated in an observational study that recruited 
500,000 participants, aged 40–69 years, across the UK between 2006 and 2010. 
Each participant gave consent and went through a series of health measurements 
and questionnaires. Participants were then followed for health outcomes, such 

as hospitalizations, mortality and cause of death. The study was reviewed and 
approved by the North West Multi-Centre Research Ethics Committee.

Detailed protocols for obtaining the measurements from participants are 
available on the UK Biobank website at www.ukbiobank.ac.uk. Briefly, smoking 
status was obtained via a survey that was administered using a touchscreen 
interface. Participants were asked to self-identify as a current smoker, former 
smoker or never-smoker. Those who had a smoking history were then asked for 
additional details. For the purpose of this study, the population was binarized 
into those who were current smokers and those who were not. In addition, 
measurements of resting blood pressure were obtained with the participant seated 
using an automated Omron 705-IT electronic blood pressure monitor (Omron 
Healthcare Europe). Automated blood pressure was obtained twice and the average 
of the two was used in our study. Each participant also provided blood, urine and 
saliva samples (http://www.ukbiobank.ac.uk/about-biobank-uk). However, glucose, 
cholesterol and HbA1c measurements were not available at the time of this study. 
A total of 67,725 patients (http://www.ukbiobank.ac.uk/eye-vision-consortium/) 
subsequently underwent paired retinal fundus and optical coherence tomography 
imaging using a Topcon 3D OCT-1000 MKII (Topcon Corporation). Fundus 
images from this dataset consisted of images with a 45º primary field of view. We 
divided the UK Biobank dataset into a development dataset to develop our models 
(80%) and a validation dataset to assess our models' performance (20%). Images 
of poor quality were filtered out before training and validation. This accounted for 
approximately 12% of patients in the UK Biobank dataset.

The second dataset—EyePACS—was generated by a US-based teleretinal-
services provider that offers screening for diabetic eye disease to over 300 clinics 
worldwide. EyePACS images were acquired as part of routine clinical care for 
diabetic retinopathy screening, and approximately 40% of the images were 
acquired with pupil dilation. A variety of cameras were used, including CenterVue 
DRS, Optovue iCam, Canon CR1/DGi/CR2 and Topcon NW using 45º fields 
of view. In most cases, each eye was imaged three times to capture the primary 
(roughly macula-centred), nasal (roughly disc-centred) and temporal (temporal to 
macula) fields. A subset of the EyePACS clinics recorded HbA1c at each visit. All 
images and data were de-identified according to the Health Insurance Portability 
and Accountability Act 'Safe Harbor' before transfer to investigators. Ethics review 
and Institutional Review Board exemption was obtained via the Quorum Review 
Independent Review Board (Seattle, WA, USA).

Retinal fundus images from the EyePACS dataset collected between 2007 and 
2015 were used as our development dataset. For the clinical validation dataset 
(EyePACS-2K), we used a random sample of macula-centred images taken at 
EyePACS screening sites between May 2015 and October 2015 with HbA1c 
measurements (Table 1). There was no overlap in patients between the EyePACS 
development dataset and the EyePACS-2K validation dataset. This development–
validation split ratio was chosen to match the clinical validation dataset used 
in a previous report33. No image-quality filtering was applied to the EyePACS 
development and clinical validation datasets.

Model development. A deep-neural-network model is a sequence of mathematical 
operations applied to the input, such as pixel values in an image. There can be 
millions of parameters (weights) in this mathematical function36. Deep learning 
is the process of learning the correct parameter values (training), such that this 
function performs a given task. For example, the model can output a prediction 
of interest from the pixel values in a fundus image. The development dataset 
is divided into two components: a ‘training’ dataset and a ‘tuning’ dataset (the 
‘tuning’ dataset is also commonly called the validation dataset, but we wish to avoid 

Original Age Gender

Actual: 57.6 years
Predicted: 59.1 years

Actual: female
Predicted: female

Smoking HbA1c BMI

Actual: non-smoker
Predicted: non-smoker

Actual: non-diabetic
Predicted: 6.7%

Actual: 26.3 kg m–2

Predicted: 24.1 kg m–2

SBP DBP

Actual: 148.5 mmHg
Predicted: 148.0 mmHg

Actual: 78.5 mmHg
Predicted: 86.6 mmHg

Fig. 2 | Attention maps for a single retinal fundus image. The top left 
image is a sample retinal image in colour from the UK Biobank dataset. The 
remaining images show the same retinal image, but in black and white. The 
soft attention heat map (Methods) for each prediction is overlaid in green, 
indicating the areas of the heat map that the neural-network model is using 
to make the prediction for the image. For a quantitative analysis of what 
was highlighted, see Table 6. HbA1c values are not available for UK Biobank 
patients, so the self-reported diabetes status is shown instead.

Table 6 | Percentage of the 100 attention heat maps for which 
doctors agreed that the heat map highlighted the given feature

Risk factor Vessels (%) optic disc 
(%)

Non-specific 
features

Age 95 33 38

Gender 71 78 50

Current smoker 91 25 38

HbA1c 78 32 46

SBP 98 14 54

DBP 29 5 97

BMI 1 6 99

Heat maps (n =  100) were generated for each risk factor and then presented to three 
ophthalmologists who were asked to check the features highlighted in each image (n =  300 
responses for each risk factor). The images were shuffled and presented as a set of 700, and the 
ophthalmologists were blinded to the output prediction of the heat maps and the ground-truth 
label. For the variables that were present in both datasets (age and gender), the most commonly 
highlighted features were identical in both datasets.
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confusion with a clinical validation dataset, which consists of data the model did 
not train on). During the training process, the parameters of the neural network 
are initially set to random values. Then, for each image, the prediction given 
by the model is compared with the known label from the training dataset, and 
parameters of the model are then modified slightly to decrease the error on that 
image (stochastic gradient descent). This process is repeated for every image in 
the training dataset until the model ‘learns’ how to accurately compute the label 
from the pixel intensities of the image for all images in the training dataset. With 
appropriate tuning and sufficient data, the result is a model general enough to 
predict the labels (for example, cardiovascular risk factors) on new images. In this 
study, we used the Inception-v3 neural-network architecture37 to predict the labels.

We pre-processed the images for training and validation and trained the neural 
network following a previously reported procedure31, but for multiple predictions 
simultaneously: age, gender, smoking status, BMI, SBP, DBP and HbA1c. Input 
images were scale-normalized by detecting the circular mask of the fundus image 
and resizing the diameter of the fundus to be 587 pixels wide. Images for which the 
circular mask could not be detected or those that were of poor quality were excluded 
from training. The optimization algorithm used to train the network weights was a 
distributed-stochastic-gradient-descent implementation38. To speed up the training, 
batch normalization39, as well as pre-initialization using weights from the same 
network trained to classify objects in the ImageNet dataset40, were used.

To keep the loss functions on consistent scales, we trained three separate 
models—a ‘classification model’ for predicting the binary risk factors (gender and 
smoking status), a ‘regression model’ for the continuous risk factors (age, BMI, 
blood pressures and HbA1c) and a third classification network for predicting 
MACE. The MACE model was separated from the classification model because 
the scarcity of the outcome prompted us to augment the binary variables with 
discretized (binned) versions of the continuous variables as additional prediction 
heads. Specifically, we used the following cut-offs: < 120, 120–140, 140–160 and ≥ 
160 for SBP; < 50, 50–60 and ≥ 60 for age; and < 18.5, 18.5–25, 25–30, 30–35, 35–40 
and ≥ 40 for BMI. To optimize for generalizability, we pooled the UK Biobank and 
EyePACS datasets for model development. The MACE model was only trained 
using the UK Biobank dataset because MACE outcomes were only available for 
that dataset.

Because the network in this study had a large number of parameters 
(22 million), we used early stopping criteria41 to help avoid overfitting: the 
termination of training when the model performance (such as AUC; see 'Statistical 
analysis' in Methods) on a ‘tuning dataset’ stopped improving. The tuning 
dataset was a random subset of the development dataset that was used as a small 
evaluation dataset for tuning the model rather than to train the model parameters. 
This tuning dataset comprised 10% of the UK Biobank dataset and 2.1% of the 
EyePACS dataset. To further improve the results, we averaged the results of ten 
neural-network models that were trained on the same data (ensembling42).

TensorFlow (http://tensorflow.org), an open-source software library for 
machine intelligence, was used in the training and evaluation of the models.

Evaluating the algorithm. To evaluate the model performance for continuous 
predictions (age, SBP, DBP and HbA1c), we used the MAE and the coefficient of 
determination (R2). For binary classification (gender and smoking status), we used 
the AUC. For multiclass classification, we used a simple Cohen’s κ . Images in the 
clinical validation dataset were all 45º fundus photographs with a primary field of 
view. Images of poor quality were excluded from the clinical validation datasets.

Statistical analysis. To assess the statistical significance of the results, we used the 
non-parametric bootstrap procedure: from the validation dataset of n patients, we 
sampled n patients with replacement and evaluated the model on this sample. By 
repeating this sampling and evaluation 2,000 times, we obtained a distribution of 
the performance metric (such as AUC) and reported the 2.5 and 97.5 percentiles 
as 95% CIs.

To further assess the statistical significance of the performance of the models 
for predicting continuous risk factors such as age and SBP, we used a one-tailed 
binomial test for the frequency of the model’s prediction lying within several error 
margins for each prediction. The baseline accuracy (corresponding to the null 
hypothesis) was obtained by sliding a window of size equal to the error bounds 
(for example, size 10 for ± 5) across the population histogram and then taking the 
maximum of the summed histogram counts. This provides the maximum possible 
‘random’ accuracy (by guessing the centre of the sliding window containing the 
maximum probability mass).

Mapping attention. To better understand how the neural-network models arrived 
at the predictions, we used a deep-learning technique called soft attention43–45. 
Briefly, we used the following architecture: the input images were 587 ×  587 pixels 
and the saliency map was originally 73 ×  73 pixels. There were 3 2 ×  2 maxpool 
layers and 4 3 ×  3 convolutional layers before the saliency map, as well as 3 reverse 
maxpool layers to upscale the saliency map from 73 ×  73 pixels back to 587 ×  587 
pixels. The convolutional layers contained 64, 128, 256 and 512 filters. The path 
from input image to saliency map is described in Supplementary Table 1. The first 
two dimensions are image size. The third is number of filters (or channels in the 
case of the input image).

This technique is described in more detail elsewhere42. These small models are 
less powerful than Inception-v3. They were used only for generating attention heat 
maps and not for the best performance results observed with Inception-v3. For 
each prediction shown in Fig. 2, a separate model with identical architecture was 
trained. The models were trained on the same training data as the Inception-v3 
network described above, and the same early stopping criteria were used.

To provide a qualitative assessment of the features that are highlighted in 
the heat maps, we generated 100 images for each of the predicted factors from 3 
image sets for a total of 700 images. For the BMI, current smoker, SBP and DBP 
predictions, we randomly sampled 100 images for each of these predictions from 
the UK Biobank dataset. For HbA1c, we randomly sampled 100 images from the 
EyePACS dataset. For age and gender, we randomly sampled 50 images from the 
EyePACS dataset and 50 from the UK Biobank dataset. The 700 images were shown 
to three ophthalmologists in the same (randomized) order using a survey form 
(see Supplementary Fig. 1 for a screenshot of the form) for a total of 300 responses 
per prediction. On the basis of feedback from the ophthalmologists, we aggregated 
their responses so that veins, arteries, arterioles, venules and vessel surroundings 
were reported as ‘vessels’, optic disc and optic-disc edges were reported as ‘optic 
disc’ and image edges and ‘nothing in particular’ were reported as ‘non-specific 
features’. The macula was not one of the checkbox options, but ophthalmologists 
repeatedly reported highlighting of the macula for the gender predictions.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. The machine-learning models were developed and deployed 
using standard model libraries and scripts in TensorFlow. Custom code was 
specific to our computing infrastructure and mainly used for data input/output and 
parallelization across computers.

Data availability. The data that support the findings of this study are available, 
with restrictions, from UK Biobank and EyePAC.
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    Experimental design
1.   Sample size

Describe how sample size was determined. On the basis of our previous experience and published literature, we know that 
deep learning requires on the order of tens of thousands or hundreds of thousands 
of examples. As such, we included as much available data as possible from these 
datasets. 

2.   Data exclusions

Describe any data exclusions. For the validation set, we excluded any images that were of poor quality or with 
missing data. These are pre-established exclusions.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We ensured that our results generalized over two distinct datasets that were not 
used for training.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Samples were randomly allocated to training, test, and validation datasets.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

This is a retrospective study. Splits for validation were random and automatically 
generated. No blinding was necessary.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

TensorFlow and python scripts.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No cell lines were used.

b.  Describe the method of cell line authentication used. No cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Retina fundus images were obtained from an adult diabetic-screening population 
in the US (EyePACS) and from the general population in the UK.
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