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Medical imaging is expanding globally at an unprecedented 
rate1,2, leading to an ever-expanding quantity of data that 
requires human expertise and judgement to interpret and 

triage. In many clinical specialities there is a relative shortage of this 
expertise to provide timely diagnosis and referral. For example, in 
ophthalmology, the widespread availability of optical coherence 
tomography (OCT) has not been matched by the availability of 
expert humans to interpret scans and refer patients to the appro-
priate clinical care3. This problem is exacerbated by the marked 
increase in prevalence of sight-threatening diseases for which OCT 
is the gold standard of initial assessment4–7.

Artificial intelligence (AI) provides a promising solution for such 
medical image interpretation and triage, but despite recent break-
through studies in which expert-level performance on two-dimen-
sional photographs in preclinical settings has been demonstrated8,9, 
prospective clinical application of this technology remains stymied 
by three key challenges. First, AI (typically trained on hundreds of 
thousands of examples from one canonical dataset) must generalize 
to new populations and devices without a substantial loss of perfor-
mance, and without prohibitive data requirements for retraining. 
Second, AI tools must be applicable to real-world scans, problems 
and pathways, and designed for clinical evaluation and deployment. 
Finally, AI tools must match or exceed the performance of human 
experts in such real-world situations. Recent work applying AI to 

OCT has shown promise in resolving some of these criteria in isola-
tion, but has not yet shown clinical applicability by resolving all three.

Results
Clinical application and AI architecture. We developed our 
architecture in the challenging context of OCT imaging for oph-
thalmology. We tested this approach for patient triage in a typi-
cal ophthalmology clinical referral pathway, comprising more 
than 50 common diagnoses for which OCT provides the defini-
tive imaging modality (Supplementary Table 1). OCT is a three-
dimensional volumetric medical imaging technique analogous to 
three-dimensional ultrasonography but measuring the reflection 
of near-infrared light rather than sound waves at a resolution for 
living human tissue of ~5 µ m10. OCT is now one of the most com-
mon imaging procedures with 5.35 million OCT scans performed 
in the US Medicare population in 2014 alone (see https://www.cms.
gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/Medicare-Provider-Charge-Data/Physician-and-Other-
Supplier.html). It has been widely adopted across the UK National 
Health Service (NHS) for comprehensive initial assessment and tri-
age of patients requiring rapid non-elective assessment of acute and 
chronic sight loss. Rapid access ‘virtual’ OCT clinics have become 
the standard of care11,12. In such clinics, expert clinicians interpret 
the OCT and clinical history to diagnose and triage patients with 
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pathology affecting the macula, the central part of the retina that is 
required for high-resolution, color vision.

Automated diagnosis of a medical image, even for a single dis-
ease, faces two main challenges: technical variations in the imaging 
process (different devices, noise, ageing of the components and so 
on), and patient-to-patient variability in pathological manifestations 
of disease. Existing deep learning approaches8,9 tried to deal with all 
combinations of these variations using a single end-to-end black-box 
network, thus typically requiring millions of labeled scans. By con-
trast, our framework decouples the two problems (technical varia-
tions in the imaging process and pathology variants) and solves them 
independently (see Fig. 1). A deep segmentation network (Fig. 1b)  
creates a detailed device-independent tissue-segmentation map. 
Subsequently, a deep classification network (Fig. 1d) analyses this 
segmentation map and provides diagnoses and referral suggestions.

The segmentation network (Fig. 1b) uses a three-dimensional 
U-Net architecture13,14 to translate the raw OCT scan into a tis-
sue map (Fig. 1c) with 15 classes including anatomy, pathology 
and image artefacts (Supplementary Table 2). It was trained with 
877 clinical OCT scans (Topcon 3D OCT, Topcon) with sparse 
manual segmentations (dataset 1 in Supplementary Table 3, see 
Methods ‘Manual segmentation’ and ‘Datasets’ for full breakdown 
of scan dataset). Only approximately three representative slices 
out of the 128 slices of each scan were manually segmented (see 
Supplementary Table 4 for image sizes). This sparse annotation pro-
cedure14 allowed us to cover a large variety of scans and pathologies 
with the same workload as approximately 21 dense manual segmen-
tations. Examples of the output of our segmentation network for 
illustrative pathologies are shown in Fig. 2.

The classification network (Fig. 1d) analyses the tissue-seg-
mentation map (Fig. 1c) and as the primary outcome provides 
one of four referral suggestions currently used in clinical practice 
at Moorfields Eye Hospital (please see Supplementary Table 1 for a 

list of retinal conditions associated with these referral suggestions). 
Additionally, it reports the presence or absence of multiple, con-
comitant retinal pathologies (Supplementary Table 5). To construct 
the training set for this network, we assembled 14,884 OCT scan 
volumes obtained from 7,621 patients who were referred to the hos-
pital with symptoms suggestive of macular pathology (see Methods 
‘Clinical labeling’). These OCT scans were automatically segmented 
using our segmentation network. The resulting segmentation maps 
with the clinical labels built the training set for the classification 
network (dataset 3 in Supplementary Table 3, illustrated in Fig. 1d).

A central challenge in OCT-image segmentation is the presence 
of ambiguous regions, where the true tissue type cannot be deduced 
from the image, and thus multiple equally plausible interpreta-
tions exist. To address this issue, we trained not one but multiple 
instances of the segmentation network. Each network instance cre-
ates a full segmentation map for the given scan, resulting in mul-
tiple hypotheses (see Supplementary Fig. 1). Analogous to multiple 
human experts, these segmentation maps agree in areas with clear 
image structures but may contain different (but plausible) interpre-
tations in ambiguous low-quality regions. These multiple segmen-
tation hypotheses from our network can be displayed as a video, 
in which the ambiguous regions and the proposed interpretations 
are clearly visible (see Methods ‘Visualization of results in clinical 
practice’; use of this viewer across a range of challenging macular 
diseases is illustrated in Supplementary Videos 1–9).

Achieving expert performance on referral decisions. To evaluate 
our framework, we first defined a gold standard. This used infor-
mation that is not available at the first patient visit and OCT scan, 
by examining the patient clinical records to determine the final 
diagnosis and optimal referral pathway in the light of the (subse-
quently obtained) information. Such a gold standard can only be 
obtained retrospectively. Gold standard labels were acquired for 
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Fig. 1 | Our proposed Ai framework. a, Raw retinal OCT scan (6 ×  6 ×  2.3 mm³ around the macula). b, Deep segmentation network, trained with manually 
segmented OCT scans. c, Resulting tissue segmentation map. d, Deep classification network, trained with tissue maps with confirmed diagnoses and 
optimal referral decisions. e, Predicted diagnosis probabilities and referral suggestions.
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997 patients that were not included in the training dataset (data-
set 5 in Supplementary Table 5). We then tested our framework on 
this dataset. For each patient, we obtained the referral suggestion 
of our framework plus an independent referral suggestion from 
eight clinical experts, four of whom were retina specialists and four 
optometrists trained in medical retina (see Supplementary Table 
6 for more information). Each expert provided two separate deci-
sions, one (like our framework) from the OCT scan alone (dataset 
7 in Supplementary Table 5); and one from the OCT plus fundus 
image and clinical notes (dataset 8 in Supplementary Table 5, see 
Supplementary Fig. 2), in two separate sessions spaced at least two 
weeks apart. We compared each of these performances (framework 
and two expert decisions) against the gold standard.

Our framework achieved and in some cases exceeded expert per-
formance (Fig. 3). To illustrate this, Fig. 3a displays performance 
on ‘urgent referrals’, the most important clinical referral decision 
(mainly for pathologies that cause choroidal neovascularization; 
see Supplementary Table 1) versus all other referral decisions as 
a receiver operating characteristic (ROC) plot (plots for the other 
decisions are shown in Supplementary Fig. 3). Performance of our 
framework matched our two best retina specialists and had a sig-
nificantly higher performance than the other two retinal special-
ists and all four optometrists when they used only the OCT scans 
to make their referral suggestion (Fig. 3a, filled markers). When 
experts had access to the fundus image and patient summary notes 
to make their decision, their performance improved (Fig. 3a, empty 
markers) but our framework remained as good as the five best 
experts and continued to significantly outperform the other three 
(see Supplementary Information).

To provide a more complete picture, the overall performance 
of our framework on all four clinical referral suggestions (urgent, 
semi-urgent, routine and observation only) compared to the two 
highest performing retina specialists is displayed in Fig. 3b. The 
framework performed comparably to the two best-performing 
retina specialists, and made no clinically-serious wrong decisions 
(top right element of each matrix; that is, referring a patient who 
needs an urgent referral to observation only). Confusion matri-
ces for the assessments of the other human experts are shown in 
Supplementary Fig. 4. The aggregated number of wrong referral 
decisions is displayed as error rate (1 −  accuracy) for our framework 
and all experts in Fig. 3c. Our framework (5.5% error rate) per-
formed comparably to the two best retina specialists (6.7% and 6.8% 
error rate) and significantly outperformed the other six experts in 
the ‘OCT only’ setting. Significance thresholds (3.9% for higher per-
formance and 7.3% for lower performance) were derived by a two-
sided exact binomial test, incorporating uncertainty from both the 
experts and the algorithm (see Methods ‘Statistical analysis’). When 
experts additionally used the fundus image and the summary notes 
of the patient, five approached the performance of our framework 
(three retina specialists and two optometrists), which continued to 
significantly outperform the remaining three (one retina specialist 
and two optometrists).

Our framework uses an ensemble of five segmentation and 
five classification model instances (see Supplementary Fig. 1) to 
achieve these results. Beside the benefits of an uncertainty measure, 
ensembling also significantly improves overall performance com-
pared to a single model instance. Error rates for different ensemble 
sizes are shown in Supplementary Fig. 5. With more segmentation 
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Fig. 2 | Results of the segmentation network. Three selected two-dimensional slices from the n =  224 OCT scans in the segmentation test set (left)  
with manual segmentation (middle) and automated segmentation (right; detailed color legend in Supplementary Table 2). a, A patient with diabetic 
macular edema. b, A patient with choroidal neovascularization resulting from age-related macular degeneration (AMD), demonstrating extensive 
fibrovascular pigment epithelium detachment and associated subretinal fluid. c, A patient with neovascular AMD with extensive subretinal hyperreflective 
material. Further examples of the variation of pathology with model segmentation and diagnostic performance can be found in Supplementary Videos 1–9. 
In all examples the classification network predicted the correct diagnosis. Scale bars, 0.5 mm.
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Fig. 3 | Results on the patient referral decision. Performance on an independent test set of n =  997 patients (252 urgent, 230 semi-urgent, 266 routine, 
249 observation only). a, ROC diagram for urgent referral (for choroidal neovascularization (CNV)) versus all other referrals. The blue ROC curve is created 
by sweeping a threshold over the predicted probability of a particular clinical diagnosis. Points outside the light blue area correspond to a significantly 
different performance (95% confidence level, using a two-sided exact binomial test). The asterisk denotes the performance of our model in the ‘balanced 
performance’ setting. Filled markers denote experts’ performance using OCT only; empty markers denote their performance using OCT, fundus image and 
summary notes. Dashed lines connect the two performance points of each expert. b, Confusion matrices with patient numbers for referral decision for our 
framework and the two best retina specialists. These show the number of patients for each combination of gold standard decision and predicted decision. 
The numbers of correct decisions are found on the diagonal. Wrong decisions due to overdiagnosis are in the bottom-left triangle, and wrong decisions 
due to underdiagnosis are in the top-right triangle. c, Total error rate (1 −  accuracy) on referral decision. Values outside the light-blue area (3.9–7.3%) are 
significantly different (95% confidence interval, using a two-sided exact binomial test) to the framework performance (5.5%). AUC, area under curve.
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model instances and more classification model instances, perfor-
mance increases. The bottom right cells in that table illustrate that 
performance differences between 4 ×  4 model instances and 5 ×  5 
model instances are only marginal, so we do not expect significant 
changes by adding more instances. The accumulated number of 
diagnostic errors does not fully reflect the clinical consequences 
that an incorrect referral decision might have for patients, which 
depends also on the specific diagnosis that was missed. For example,  
failing to diagnose sight-threatening conditions could result in 
rapid visual loss3,15,16, which is not the case for many other diagno-
ses. For an initial quantitative estimation of these consequences, 
we weighted different types of diagnostic errors according to the 
judgement of our clinical experts of the clinical impact of errone-
ous classification (expressed as penalty points; see Supplementary 
Fig. 6a). We derived a score for our framework and each expert 
as a weighted average of all wrong diagnoses. This revealed that 
our framework achieved a lower average penalty score than any 
of our experts (Supplementary Fig. 6b). We further optimized the 
decisions of our framework to minimize this specific score (see 
Methods ‘Optimizing the ensemble output for sensitivity, speci-
ficity and penalty scores’) which further improved performance 
(Supplementary Fig. 6b). Therefore, expert performance of our 
framework is not achieved at the cost of missing clinically impor-
tant sight-threatening diagnoses.

To examine how our proposed two-stage architecture compared to 
a traditional single-stage architecture, we trained an end-to-end clas-
sification network with the same architecture as our second stage to 
directly map from a raw OCT scan to a referral decision (see Methods 
‘End-to-end classification network’). The error rate achieved with an 
ensemble of five network instances was 5.5%, which was not signifi-
cantly different from the performance of the two-stage architecture. 
This validates our choice of the two-stage architecture that offers sev-
eral clinical advantages (see Supplementary Fig. 7).

Achieving expert performance on retinal morphology. The referral 
decision recommended by our framework is determined by the most 
urgent diagnosis detected on each scan (Supplementary Table 1).  
Patients may also have multiple concomitant retinal pathologies. 
These additional pathologies do not change the referral decision, 
but may have implications for further investigations and treat-
ment. Our framework was therefore also trained to predict the 
probability of a patient having one or more of several pathologies 
(Supplementary Table 5).

To evaluate performance on diagnosing multiple pathologies, 
a ‘silver standard’ for each scan was established by majority vote 
from the eight experts who evaluated the OCT scan, fundus image 
and patient summary notes (dataset 6 in Supplementary Table 3). 
This majority vote biases the assessment against our framework. 
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network (color legend in Supplementary Table 2). Right, resulting performance on a new test set of n =  116 patients. The confusion matrix shows patient 
numbers for the referral suggestion. b, All five segmentation hypotheses from our original network. The strong variations show the large uncertainty. c, High 
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Nevertheless, our framework demonstrated an area under the 
ROC curve that was over 99% for most of the pathologies (and 
over 96% for all of them; Supplementary Table 7), on par with the 
performance of the experts on OCT only. As with earlier evalu-
ations, performance of the experts improved when they were 
provided also with the fundus image and patient summary notes. 
This improvement was most marked in pathologies classed as ‘rou-
tine referral’, for example geographic atrophy and central serous 
retinopathy. Many of these pathologies are conditions for which 
the fundus photograph or demographic information would be 
expected to provide important information, indicating that there is 
scope for future work to improve the model. However even in the 
worst case our framework still performed on par with at least one 
retinal specialist and one optometrist (Supplementary Table 6 and 
Supplementary Fig. 8).

Generalization to a new scanning device type. A key benefit of 
our two-stage framework is the device independence of the second 
stage. Using our framework on a new device generation thus only 
requires retraining of the segmentation stage to learn how each 

tissue type appears in the new scan, whereas the knowledge about 
patient-to-patient variability in pathological manifestation of differ-
ent diseases, which it had learned from the approximately 15,000 
training cases, can be reused. To demonstrate this generalization, we 
collected an independent test set of clinical scans from 116 patients 
(plus confirmed clinical outcomes) recorded with a different 
OCT scanner type from a different vendor (Spectralis, Heidelberg 
Engineering,; hereafter ‘device type 2’). This dataset is listed as 
dataset 11 in Supplementary Table 3 (see Methods ‘Datasets’). We 
selected this device type for several reasons. It is the second most 
used device type at Moorfields Eye hospital for these examinations, 
giving rise to a sufficient number of scans. It has a similar worldwide 
market share as device type 1. But most importantly, this device type 
provides a large difference in scan characteristics compared to the 
original device type (see Supplementary Fig. 9).

To evaluate the effect of a different scanning device type, we ini-
tially fed the OCT scans from device type 2 into our framework, 
which was trained only on scans from device type 1 (Fig. 4a). 
The segmentation network was clearly ‘confused’ by the changed 
appearance of these structures and attempted to explain them as  
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First–third rows, thickness maps of the 10 relevant tissue types from segmentation model instance 2. The two healthy tissue types (high level retina and 
RPE) are displayed in a black–blue–green–brown–white color map, the pathological tissues (all others) are displayed as overlay on a projection of the raw 
OCT scan. The thin white line indicates the position of slice 80. Fourth row, slice 80 from the OCT scan and the segmentation map from segmentation 
model instance 2. Detailed tissue legend in Supplementary Table 2. The slice and model instance can be interactively selected (see Supplementary Video 1).
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additional retinal layers (Fig. 4a, middle). Consequently, perfor-
mance was poor with a total error rate for referral suggestions of 46.6%  
(Fig. 4a, right). Uncertainty of the segmentation network on these 
(never seen) types of images resulted in five strongly different seg-
mentation hypotheses (Fig. 4b).

We next collected an additional segmentation training set with 
152 scans (527 manually segmented slices in total) from this device 
(dataset 9 in Supplementary Table 3), and retrained the segmenta-
tion network with both the training scans from the original device 
type 1 and the new device type 2 (see Methods ‘Segmentation net-
work’). The classification network was not modified.

Our retrained system (adapted segmentation network and 
unchanged classification network) now achieved a similarly high 
level of performance on device type 2 as on the original device  
(Fig. 4c). It suggested incorrect referral decisions for 4 out of the 116 
cases, a total error rate of 3.4%. Owing to the small number of cases 
in the new test set, this is not significantly different from the error rate 
of 5.5% on device type 1 (P(4 out of 116 <  55 out of 997) =  0.774; see 
Methods ‘Statistical analysis’). For continuity with our previous evalu-
ation, we also measured performance against retina specialists access-
ing OCT scans plus fundus images and clinical notes (dataset 12 in 
Supplementary Table 3). Our experts achieved the following error 
rates (all with access to imaging and clinical notes): retinal specialist 
one: 2 errors =  1.7% error rate; retinal specialist two: 2 errors =  1.7% 
error rate; retinal specialist three: 4 errors =  3.4% error rate; retinal 
specialist four: 3 errors =  2.6% error rate; retinal specialist five: 3 
errors =  2.6% error rate. These differences in performance between 
our framework and the best human retina specialists did not reach 
statistical significance (P(4 out of 116 >  2 out of 116) =  0.776).

To verify that device type 2 provides the greatest difference in 
scan characteristics, we performed a feasibility study on the small 
number of OCT scans from Cirrus HD-OCT 5000 with AngioPlex 
(Carl Zeiss Meditec) devices available in Moorfields Eye Hospital 
(dataset of 61 scans; not included here). Applying our original net-
work to these images, we already obtained an error rate of 16.4%. 
This rate was much lower than that originally obtained with device 
type 2 (46.6%), consistent with the claim that device type 2 pro-
vides a larger difference in scan characteristics from device type 1. 
Retraining of the segmentation network with 6 manually segmented 
scans reduced the error rate to 9.8%.

Table 1 summarizes our results. For device type 1, our archi-
tecture required 877 training scans with manual segmentations 
and 14,884 training scans with gold standard referral decisions to 
achieve expert performance on referral decisions (5.5% error rate). 
For device type 2, we only required 152 additional training scans 
with manual segmentations and not a single additional training 
scan with gold standard referral decisions to achieve the same per-
formance on referral decisions on this device type (3.4% error rate).

Discussion
Recent work in which AI is used for the automated diagnosis of 
OCT scans shows encouraging results; however, until now such 
studies have relied on selective and clinically unrepresentative OCT 
datasets. For example, several authors17–21 report high performance 
on automated classification of age-related macular degeneration 
(AMD) from OCT scans. However, they tested their algorithms on 
smaller datasets that exclude other pathologies. By contrast, here we 
demonstrate expert performance on multiple clinical referral sug-
gestions for two independent test datasets of 997 and 116 clinical 
OCT scans that include a wide range of retinal pathologies.

Several recent studies used deep learning-based architectures 
to deliver successful segmentation of OCT scans22–25. This earlier 
work focused on a subset of diagnostically relevant tissues types 
(for example, intraretinal fluid) and applied two-dimensional mod-
els in samples of between 10 and 42 patients. In the present work, 
we go beyond these earlier studies by applying three-dimensional 

models, segmenting a much larger range of diagnostically relevant 
tissue types, and connect such segmentation to clinically relevant 
real-world referral recommendations.

We evaluated our framework on a broad range of real-world 
images from routine clinical practice at 32 different Moorfields Eye 
Hospital sites, which cover diverse populations within London and 
surrounding areas, using 37 individual OCT devices (28 device type 
1 and 9 device type 2). The two device types that we tested are both 
used widely in routine clinical practice at Moorfields Eye Hospital, 
the largest eye hospital in Europe and North America, and provided 
a large difference in scan characteristics.

Our framework has a number of potential benefits. The deriva-
tion of device-independent segmentation of the OCT scan creates 
an intermediate representation that is readily viewable by a clini-
cal expert and integrates into clinical workflows (see Fig. 5 for the 
clinical results viewer). Moreover, the use of an ensemble of five seg-
mentation network instances allows us to present ambiguities aris-
ing from the imaging process to the decision network (and could 
potentially be used for automated quality control).

The ‘black box’ problem has been identified as an impediment 
to the application of deep learning in healthcare26. Here we cre-
ated a framework with a structure that closely matches the clini-
cal decision-making process, separating judgements about the scan 
itself from the subsequent referral decision. This allows a clinician 
to inspect and visualize an interpretable segmentation, rather than 
simply being presented with a diagnosis and referral suggestion. 
Such an approach to medical imaging AI offers potential insights 
into the decision process, in a fashion more typical of clinical prac-
tice. For example, an interpretable representation is particularly 
useful in difficult and ambiguous cases. Such cases are common in 
medicine and even expert medical practitioners can find it difficult 
to reach consensus (for example, our eight experts only agreed on 
63.5% of cases even when accessing all information).

Our segmentation map assigns only one label per pixel, and it 
may not be possible to use the framework directly in other clinical 
pathways for which the tissue-segmentation map does not contain 
all required information for a diagnosis (for example, in certain 
radiomics applications). To keep the advantages of the intermedi-
ate device-independent representation in such applications, future 
work can potentially augment the tissue-segmentation map with 
multiple labels per pixel to encode local tissue features, or with 
additional channels that encode continuous features such as an 
inflammatory reaction. This may be of particular value for other 
components of the retina, such as the nerve fibre layer, and may 
be of importance for multiple ocular and brain disorders, such as 
glaucoma and dementia.

Although we have demonstrated the performance of our frame-
work in the domain of a clinical treatment pathway, the approach 
has potential utility in clinical training in which the medical pro-
fessionals must learn to read medical images. In addition, a wide 

Table 1 | Number of training scans and achieved performance on 
the two device types

Training scans  
with sparse 
manual 
segmentations

Training 
scans 
with gold 
standard 
referral 
decision

Test 
performance 
on referral 
decision (error 
rate)

Test 
performance 
on urgent 
referral 
(AuC)

Device 
type 1

877 14,884 55 out of 997 
(5.5%)

99.21

Device 
type 2

152(+ 877 scans 
from device type 1)

0 4 out of 116 
(3.4%)

99.93
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variety of non-medically qualified health professionals have an 
interest in appropriately reading and understanding medical images.  
Our framework produces a visualizable segmentation and achieves 
expert performance on diagnosis and referral decisions for a large 
number of scans and pathologies. This therefore raises the intrigu-
ing possibility that such a framework could be evaluated as a tool for 
effectively training healthcare professionals to expert levels.

The segmentation output itself can also be used to quantify retinal 
morphology and derive measurements of particular pathologies (for 
example, the location and volume of fibrovascular pigment epithe-
lium detachment and macular edema). Some of these measurements 
(such as retinal thickness and intraretinal fluid) can currently be 
derived automatically27,28, used to investigate correlations with visual 
outcomes27 and as an end point in clinical trials of therapies for reti-
nal disease29–32. Our framework can be used to define and validate a 
broader range of automatically derived quantitative measurements.

Our framework can triage scans at first presentation of a patient 
into a small number of pathways used in routine clinical practice 
with a performance matching or exceeding both the expert retina 
specialists and optometrists who staff virtual clinics in a UK NHS 
setting. Future work can now directly seek evidence for the efficacy 
of such a framework in a randomized controlled trial. The output 
of our framework can be optimized to penalize different diagnostic 
errors, and thus for other clinically important metrics. For example, 
the potential improvement to patient quality of life of different diag-
nostic decisions, or avoiding the harm of unnecessary investigation 
that might come from a false-positive diagnosis, could all be incor-
porated into future work.

Globally, ophthalmology clinical referral pathways vary, and the 
range of diseases that can potentially be diagnosed by OCT includes 
pathologies additional to the macular diseases that were studied 
here. We studied a major clinical referral pathway in a global center 
of clinical excellence focusing on 53 key diagnoses relevant to the 
national (NHS) referral pathways. Our work opens up the possi-
bility of testing the clinical applicability of this approach in other 
global settings and clinical pathways, such as emergency macular 
assessment clinics in the UK NHS, triage and assessment in com-
munity eye care centers and the monitoring of disease during 
treatment regimes. Furthermore, devices such as binocular OCT33 
have the potential to increase accessibility in emerging economies. 
Images produced by such devices will differ in resolution, contrast 
and image quality from the state-of-the-art devices studied here, 
and existing AI models trained on current state-of-the-art devices 
may perform poorly on such new devices. Our proposed two-stage 
model offers exciting possibilities that enable the use of models 
more efficiently in countries where state-of-the-art OCT devices 
are too costly for widespread adoption.

In conclusion, we present a novel framework that analyses clini-
cal OCT scans and makes referral suggestions to a standard that 
is comparable to clinical experts. Although we focussed on one 
common type of medical imaging, future work can address a much 
wider range of medical imaging techniques, and incorporate clinical 
diagnoses and tissue types well outside the immediate application 
that was demonstrated here.
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Methods
Ethics and information governance. This work and the collection of data on 
implied consent received national Research Ethics Committee (REC) approval 
from the Cambridge East REC and Health Research Authority approval (reference 
16/EE/0253); it complies with all relevant ethical regulations. Deidentification 
was performed in line with the Information Commissioner’s Anonymization: 
managing data protection risk code of practice (https://ico.org.uk/media/1061/
anonymisation-code.pdf), and validated by the Moorfields Eye Hospital 
Information Technology and Information Governance departments, respectively. 
Only deidentified retrospective data were used for research, without the active 
involvement of patients.

Visualization of results in clinical practice. To facilitate viewing of the results in 
routine clinical practice, we display the obtained three-dimensional segmentation 
maps as two-dimensional thickness maps overlaid on a projection of the raw OCT 
scan (Fig. 5a). The thickness maps for all tissue types are displayed side-by-side 
in our interactive OCT viewer (Fig. 5b and Supplementary Video 1). Our system 
also provides measures for its degree of certainty on both overall referral decision, 
and each specific retinal disease feature. In most common clinical scenarios, the 
algorithm will both provide the diagnosis with a high degree of certainty and 
highlight classical disease features (for example, ‘wet’ AMD; Supplementary Video 2). 
This visualization may be particularly useful for difficult and ambiguous cases, such 
as the diagnosis of choroidal neovascularization formation in cases of chronic central 
serous retinopathy (Supplementary Videos 5, 7) or in advanced geographic atrophy 
due to AMD (Supplementary Video 6). Such visualization may also allow clinicians 
to discard an automated diagnosis or referral suggestion in obvious failure cases, such 
as when poor image quality leads to erroneous segmentation results (Supplementary 
Video 8). Furthermore, in a screening context the tissue segmentation map can 
facilitate quality assurance procedures, whether in normal cases (Supplementary 
Video 3) or in disease cases (for example, diabetic macular edema in the context of 
diabetic retinopathy screening, Supplementary Video 4).

Datasets and clinical taxonomy. Datasets. Data were selected from a retrospective 
cohort of all patients who attended Moorfields Eye Hospital NHS Foundation 
Trust, a world renowned tertiary referral center with 32 clinic sites serving an 
urban, mixed socioeconomic and ethnicity population centered around London, 
United Kingdom, between 1 June 2012 and 31 January 2017, who received OCT 
imaging (Topcon 3D OCT, Topcon; Spectralis, Heidelberg Engineering) as part 
of their routine clinical care. Conditions with fewer than ten cases, and data from 
patients who had manually requested that their data should not be shared, were 
excluded before research began. OCT scan sets containing severe artefacts or 
marked reductions in signal strength to the point at which retinal interfaces could 
not be identified were also excluded from the study (Supplementary Fig. 10), as 
such scans are non-diagnostic and in practice would usually be retaken. Scans to 
which no diagnostic label could be attached (as described below) were excluded 
from the present study. For OCT examinations that were labeled as urgent or semi-
urgent in the Moorfields OpenEyes electronic health record only scans taken prior 
to treatment beginning were included; during treatment, resolution of pathology 
invalidates the database labels. The dataset selection and stratification process is 
displayed in a CONSORT flow diagram in Supplementary Fig. 11.

Two OCT device types were selected for investigation. 3D OCT-2000 (Topcon, 
Japan) was selected as device type 1, because of its routine use in the clinical 
pathway that we studied. For device type 1, a total of 15,877 OCT scans from 7,981 
individual patients (mean age 69.5; 3,686 male, 4,294 female, 1 gender unknown) 
were eligible for inclusion in the work (datasets 3 and 4 in Supplementary Table 3).  
To create a test set representative of the real-world clinical application, 997 
additional patients (mean age 63.1; 443 male, 551 female, 3 gender unknown) 
presenting to Moorfields with visual disturbance during the retrospective period 
were selected and only their referral OCT examination was selected for inclusion in 
the test set (dataset 5 in Supplementary Table 3); a sample size requirement of 553 
to detect sensitivity and specificity at 0.05 marginal error and 95% confidence was 
used to inform the number included. To demonstrate the generalizability of our 
approach, Spectralis OCT (Heidelberg Engineering) was chosen as ‘device  
type 2’. For generalizability experiments, a second test set of clinical OCT 
scans from 116 patients (mean age 58.2; 59 male, 57 female) presenting in the 
same manner were selected using the same methodology and selection criteria 
(dataset 11 in Supplementary Table 3). Examples of differences between the two 
devices types are shown in Supplementary Fig. 9. Supplementary Table 8 shows a 
breakdown of patients and triage categories in the datasets.

Clinical taxonomy. OCT examinations were mapped from individual diagnoses 
and treatment information to specific triage decisions (urgent referral, semi-urgent 
referral, routine referral and observation only) to a medical retina clinic setting 
(Supplementary Table 1). Where possible, the presence or absence of additional 
pathologies was added as a label (Supplementary Table 5). The dataset represents 
the full variety of medical retina patients presenting and receiving treatment at 
Moorfields Eye Hospital. Although the exact mapping was chosen to be relevant 
to the triage decisions at Moorfields Eye Hospital where the research work took 
place, the framework is generalizable to other systems at centers with different 

triage requirements (for example, optometrists working in a high-street clinic 
setting or ophthalmologists without subspecialty retinal expertise). Scans meeting 
the exclusion criteria were removed from the database before splitting the data into 
training, validation and test sets. Supplementary Figure 12 provides an example of 
variation within the ‘urgent referral’ label class.

Clinical labeling. Clinical labels for the 14,884 scans in dataset 3 in Supplementary 
Table 3 were assigned through an automated notes search with trained 
ophthalmologist and optometrist review of the OCT scans. The presence or 
absence of choroidal neovascularization, referable macular edema, normal and 
other pathologies visible on the OCT scan were recorded. In addition, patients with 
choroidal neovascularization or macular edema confirmed through treatment were 
labeled directly from the Moorfields OpenEyes electronic health record.  
A validation subset of 993 scans (993 patients) was graded separately by three 
junior graders (ophthalmologists specializing in medical retina) with disagreement 
in clinical labels arbitrated by a senior retinal specialist with over 10 years of 
experience and image reading center certification for OCT segmentation (dataset 
4 in Supplementary Table 3). The test set was further verified by full review of 
the notes with access to follow up data with both junior and senior grader review. 
Junior and senior graders were separate to those participating in the evaluation of 
expert performance.

Manual segmentation. A subset of 1,101 scans from device type 1 and a set of 
264 scans from device type 2 were manually segmented using the segmentation 
editor plugin for ImageJ (Fiji)34 (datasets 1, 2, 9 and 10 in Supplementary Table 3). 
The segmentation labels were chosen to distinguish all relevant diagnoses for the 
referral decision, as well as potential artefacts that may affect the diagnostic quality 
of the whole or part of the scan. In particular, the current state of art does not 
differentiate between the three different types of pigment epithelial detachment, 
or segment out areas of fibrosis scarring or blood as hyperreflective material27,28. 
Anatomical delineations and nomenclature are consistent with standard 
grading criteria for the evaluation of OCT35–37. The segmentation examples were 
selected and segmented by ophthalmologists specializing in medical retina as 
representative cases for pathological features. These were reviewed and edited 
by a senior ophthalmologist with over 10 years of experience and image reading 
center certification for OCT segmentation. Per OCT, 3–5 slices were chosen for 
segmentation, which best represented the pathological features (Supplementary 
Tables 2, 9 and Supplementary Fig. 13).

Evaluating the expert performance. To evaluate expert performance on the test set, 
eight clinical experts were recruited for an evaluation study. Participants included 
four consultant ophthalmologists at Moorfields Eye Hospital with fellowship-level 
subspecialty training in medical retinal disease and extensive clinical experience 
(21, 21, 12.5 and 11.5 years of experience) and four optometrists at Moorfields Eye 
Hospital with specialist training in OCT interpretation and retinal diseases (15, 9, 
6 and 2.5 years of experience). These are referred to as retinal specialists 1–4 and 
optometrists 1–4 in the rest of the paper (Supplementary Table 10). Each expert 
was instructed to provide a triage decision (Supplementary Table 1) and to record 
the presence or absence of defined pathological features (Supplementary Table 5).

To assess the performance in a realistic clinical environment, all scans were 
read in a random order twice with at least a week between readings. During the 
initial review, only the OCT scan was presented (dataset 7 in Supplementary Table 
3). During the second review, participants were presented with all the information 
available at the time of triage: OCT and fundus scans, age, gender, ethnicity and 
where available information on visual acuity and a short clinical vignette (dataset 8 
in Supplementary Table 3). The model only received the OCT scan.

To assess the difference between the test set for device type 1 and device type 
2, five clinical experts were recruited for a further evaluation study (dataset 12 
in Supplementary Table 3). Participants were five consultant ophthalmologists 
at Moorfields Eye Hospital with fellowship-level subspecialty training in 
medical retinal disease (21, 21, 12.5, 11.5 and 11 years of experience). Four were 
participants in the device type 1 evaluation study, while the other was a new 
participant for this study and is referred to as retina specialist five.

Network architectures and training protocol. Segmentation network. The first 
stage of our framework consists of a segmentation network that takes as input part 
of the OCT scan, and outputs a part of a segmentation map. That is, it predicts for 
each voxel one tissue type out of the 15 classes described in Supplementary Table 2. 
At training time, the input of the network consists of 9 contiguous slices of an OCT, 
and the goal of the network is to segment the central slice. The input is therefore a 
448 ×  512 ×  9 voxels image, and the output is an estimated probability over the 15 
classes, for each of the 448 ×  512 ×  1 output voxels. None of the convolutions made 
across the slices (z dimension) adds padding to its input. As a result, we can exploit 
shared computations at inference time to predict any number of contiguous slices 
in parallel, which was only limited by the memory capacity of the system.

The structure of the segmentation convolutional neural network model is 
shown in Supplementary Fig. 14. It uses a three-dimensional U-Net architecture14, 
consisting of an analysis (downwards) path, a synthesis (upwards) path, and 
shortcut connections between blocks of the same level and different paths.  
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We applied four variations over it. First, we used 3 ×  3 ×  1 convolutions with 
padding and 1 ×  1 ×  3 convolutions without padding instead of 3 ×  3 ×  3 
convolutions without padding. Second, downsampling and upsampling operations 
were carried out through parameter-free bilinear interpolation, replacing max-
pooling and up-convolution. Third, we introduced one extra residual connection 
within each block of layers, so that the output of each block consists of the sum of 
the features of the last layer, and the first layer of the block in which the features 
dimensions match. Finally, the middle block of layers between the analysis and 
synthesis paths is composed of a sequence of fully connected layers. The first 
variation allows us to control the receptive field for z separately and is furthermore 
less computationally intensive. The second and third variation aimed at improving 
the gradients flow throughout the network, which makes the training process 
easier. The last variation extends the receptive field such that each pixel in the 
output effectively has the whole input contained within its receptive field.

We used per-voxel cross entropy as the loss function, with 0.1 label-smoothing 
regularization38. We have neither used dropout nor weight decay as regularization 
means, as preliminary experiments showed that this did not improve the 
performance. We trained the model in TensorFlow39 with the Adam optimizer40 
for 160,000 iterations on 8 graphics processing units (GPUs) with dataset 1 in 
Supplementary Table 3. The initial learning rate was 0.0001 and set to 0.0001/2 
after 10% of the total iterations, 0.0001/4 after 20%, 0.0001/8 after 50%, 0.0001/64 
after 70%, 0.0001/256 after 90% and finally 0.0001/512 for the final 5% of training. 
All decisions and hyperparameters above were selected on the basis of their 
performance on a validation set (dataset 2 in Supplementary Table 3).

To improve the generalization abilities of our model, we augmented the data 
by applying affine and elastic transformations jointly over the inputs and ground-
truth segmentations13,14. Intensity transformations over the inputs were also 
applied.

Our segmentation network for device type 2, which is shown in Supplementary 
Fig. 15, is trained on scans from both devices (datasets 1 and 9 in Supplementary 
Table 3) with the aim of leveraging the large number of labeled instances for device 
type 1. It has three changes compared to the architecture for device type 1. First, 
we subsample the input from device type 1 (128 slices) to match the resolution of 
device type 2 (49 slices) and apply slight padding in height to the scans of device 
type 2 to give them of the same shape in height and width as the scans of device 
type 1. Second, the input first goes through one of two ‘device adaptation branches’, 
depending on the device type of the input scan. The architecture of this branch 
consists of three convolutions with padding, with one residual connection as in the 
other blocks, and is identical for both device types (see Supplementary Fig. 15).  
The network can then simply learn to compensate for the changes between device 
types early on and map them to a common representation. Lastly, the number 
of feature maps on the first level of the analysis path is halved from 32 to 16 
such that the overall architecture still has fewer parameters than the architecture 
for device type 1. During training, the network was presented with a ratio of 
2.5: 1 for training samples from device type 2:device type 1. All decisions and 
hyperparameters above were selected on the basis of their performance on a 
validation set (datasets 2 and 10 in Supplementary Table 3).

Classification network. The classification network learned to map a segmentation 
map to the four referral decisions and the ten additional diagnoses (see 
Supplementary Fig. 16). For device type 1, it takes as input a 300 ×  350 ×  43 
subsampling of the original 448 ×  512 ×  128 segmentation map created by the 
segmentation network described above. The output is a 14-component vector. For 
device type 2, for which the scans originally were 448 ×  512 ×  49, we first upscaled 
the segmentation map to the same resolution as for device type 1 and then proceed 
identically as for device type 1. The architecture uses a three-dimensional version 
of the dense blocks described previously41 using 3 ×  3 ×  1 and 1 ×  1 ×  3 convolutions. 
The details of its structure are shown in Supplementary Fig. 16. We found using 
dense convolution blocks to be critical for training classification networks on large 
three-dimensional volumes. The inputs are one-hot encoded and augmented by 
random three-dimensional affine and elastic transformations14. The loss was the 
sum of the softmax cross entropy loss for the first four components (multi-class 
referral decision) and the sigmoid cross entropy losses for the remaining ten 
components (additional diagnoses labels). We also used a small amount (0.05) 
of label-smoothing regularization38 and added some (1 ×  10−5) weight decay. 
We trained the model in TensorFlow39 with the Adam optimiser40 for 160,000 
iterations of batch size 8 spread across 8 GPUs with 1 sample per GPU with 
dataset 3 in Supplementary Table 3. The initial learning rate was 0.02 and set to 
0.02/2 after 10% of the total iterations, 0.02/4 after 20%, 0.02/8 after 50%, 0.02/64 
after 70%, 0.02/256 after 90% and finally 0.02/512 for the final 5% of training. All 
decisions and hyperparameters described above were selected on the basis of their 
performance on a validation set (dataset 4 in Supplementary Table 3).

Ensembling. For both of these networks we trained five instances. We trained the 
same network with a different order of the inputs and different random weight 
initializations42. Previously published experiments42 suggest that five instances are 
sufficient in most settings, so we also used this number. For our experiments, we 
applied the five instances of our segmentation model to the input scan resulting in 
five segmentation maps. The five instances of our classification model were then 

applied to each of the segmentation maps, resulting in a total of 25 classification 
outputs per scan, as illustrated in Supplementary Fig. 1. The results reported are 
obtained after averaging the probabilities estimated by these models.

Optimizing the ensemble output for sensitivity, specificity and penalty scores. 
For different applications, the preferred compromise between a high hit rate 
(sensitivity) and a low false alarm rate (1 −  specificity) can be different. For 
the binary diagnosis decisions, we computed an optimal rescaling factor a 
for the pseudo-probabilities, such that a 50% threshold achieves maximal 
(sensitivity +  specificity)/2 on the validation set (dataset 4 in Supplementary 
Table 3). The rescaling was done by p = aq/(aq +  (1 −  a)(1 −  q)), where q 
denotes the ensemble output and p the reweighted probability. We used 
(sensitivity +  specificity)/2 instead of the total accuracy to avoid the bias due to the 
low number of patients with a positive condition in the validation set (and in the 
test set). For a balanced set with equal numbers of positive and negative samples 
this term is exactly the accuracy.

For the four-way referral decision (where the highest probability wins), we 
optimized four scaling factors using the validation set to reduce the overall cost 
specified by the misclassification penalty matrix (Supplementary Fig. 6). A first 
set of factors was optimized for a balance between high accuracy and low penalty 
points (referred to as "our model (1)" in Supplementary Figure 6), a second set 
of factors was optimized for penalty cost only (referred to as "our model (2)" in 
Supplementary Figure 6). The cost matrix for the balanced performance was 
computed by averaging the normalized cost matrix for accuracy (a matrix with 0 
in the diagonal elements and 1 in the off-diagonal elements) and the normalized 
penalty cost matrix. Normalization was performed by dividing the matrix by the 
sum of all elements. The optimization of the four factors was done with the Adam 
optimiser using a softmax layer and a weighted cross-entropy loss layer.

End-to-end classification network. The network architecture for the end-to-end 
classification experiments was identical to the architecture of the classification 
network in the two-stage approach (see ‘Classification network’ and Supplementary 
Fig. 16) with a small adaption. To roughly obtain the same number of parameters, 
we added a dense layer (two convolutions with seven channels output each) that 
translates the single-channel raw OCT to a 14-channel feature map. All selected 
hyperparameters and augmentation strategies were identical to the original 
classification network. We trained five network instances on the training set with 
14,884 raw OCT scans from device type 1 (dataset 13 in Supplementary Table 3).  
Each network instance was initialized with different random weights and was 
presented with the training images in a different order. After training, we also 
computed an optimal reweighting on the validation set (as we did for the two-stage 
model) and tested the ensemble on the test set.

Statistical analysis. Significant differences using a two-sided exact binomial test. 
The comparison of our model’s performance to the expert’s performance is based 
on the assumption that our model and the expert have an unknown but constant 
performance. That is, every inspected eye scan is correctly diagnosed by our model 
with the probability pmod, and correctly diagnosed by the expert with probability 
pexp. For N eye scans the number of correct diagnoses k is therefore binomially 
distributed with Pr(k) =  B(k|p,N). If our model achieves kmod correct diagnoses and 
the expert achieves kexp correct diagnoses, the probability that the true performance 
of our model pmod is higher than the true performance of the expert pexp is
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The probability for a lower performance, that is Pr(pmod <  pexp|kmod, kexp, N) is derived 
analogously. For all comparisons, a confidence level of 95% was used. The formula 
was numerically integrated using in-house code.

Further details on the methods are described in a published protocol describing 
the DeepMind collaboration with Moorfields Eye Hospital43.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The code base for the deep-learning framework makes use of 
proprietary components and we are unable to publicly release the full code base. 
However, all experiments and implementation details are described in sufficient 
detail in the Methods and in the Supplementary Figs. to enable independent 
replication with non-proprietary libraries. The three-dimensional augmentation 
code (using the caffe framework) is available as part of the three-dimensional 
U-net source code at https://lmb.informatik.uni-freiburg.de/resources/
opensource/unet.en.html. Additionally, although we are unable to make all the 
Google proprietary components available, we are in the process of making the 
augmentation operations for TensorFlow available in the official TensorFlow code.
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Data availability. The clinical data used for the training, validation and test sets 
were collected at Moorfields Eye Hospital and transferred to the DeepMind data 
center in the UK in deidentified format. Data were used with both local and 
national permissions. They are not publicly available and restrictions apply to their 
use. The data, or a test subset, may be available from Moorfields Eye Hospital NHS 
Foundation Trust subject to local and national ethical approvals.
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    Experimental design
1.   Sample size

Describe how sample size was determined. A sample size requirement of 553 to detect sensitivity and specificity at 0.05 
marginal error and 95% confidence was used to inform the number included in the 
test set. A sample of 997 patients were selected to be part of the gold standard 
test set against which the human experts and the model were compared. 
 
The  total of 15,877 TopCon 3D OCT 2000 scans from 7981 individual patients were 
eligible for inclusion in the work. An additional 268 Heidelberg Spectralis scans 
were selected in order to conduct generalisability experiments. The total sample 
size for training and validation sets was informed by the existing literature and by 
DeepMind’s previous work in the field of machine learning (Mnih et al., 2015; Silver 
et al., 2016). Today’s most powerful deep neural networks can have millions or 
billions of parameters, so large amounts of data are needed to automatically infer 
those parameters during learning. Most problems in the medical domain are highly 
complex as they arise as an interplay of many clinical, demographic, behavioural 
and environmental factors that are correlated in non-trivial ways. This is even more 
true for state-of-the art deep learning methodologies that are expected to give the 
best results (Szegedy et al., 2014).

2.   Data exclusions

Describe any data exclusions. OCT image sets with no diagnostic labels, those containing severe artefacts, or 
significant reductions in signal strength to the point where retinal interfaces could 
not be identified were excluded from the present study. Conditions with fewer 
than ten cases, and data from patients who had manually requested that their data 
should not be shared, were excluded before research began. For the test set 
patients who had previously been treated in clinic by the evaluation study 
participants were excluded from the test set. For more detail please refer to the 
manuscript methods section.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

All 997 patients in the test set for the first device type were randomly selected and 
were not correlated in any way. The experiments can be interpreted as 997 
replicas of a single patient diagnosis. Without retraining the classification network 
in our framework performance was reproduced on a new test dataset from a 
second device type of 116 OCT scans. The performance in each case is as follows: 
Device Type 1 error rate: 55 out of 997 = 5.5%; Device Type 2 error rate: 4 out of 
116 = 3.4%.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Samples meeting the inclusion criteria were randomly allocated to training or 
validation sets. A separate group of patients were randomly selected before 
creation of the training and validation datasets as an independent test set which 
was kept separate during model development. Randomisation was on individual 
patients rather than OCT images: where there were multiple scans for a single 
patient these were allocated to only one of training, validation or test. For more 
detail please refer to the manuscript methods section.
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5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Participants in the clinical evaluation of the models were blinded to the ground 
truth and were not involved in dataset collection; patients who had previously 
been treated in clinic by the participants were excluded from the test set.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The networks used the TensorFlow library with custom extensions (see methods 
section). Analysis was performed with custom code written in Python.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

The clinical data used for the training, validation and test sets were collected at 
Moorfields Eye Hospital and transferred to DeepMind data centre in the UK in de-
identified format. Data were used with both local and national permissions. They 
are not publicly available and restrictions apply to their use. The data, or a test 
subset, may be available from Moorfields Eye Hospital subject to local and national 
ethical approvals.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used in the study.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Data were selected from a retrospective cohort of all patients attending Moorfields 
Eye Hospital NHS Foundation Trust, a world renowned tertiary referral centre with 
multiple clinic sites serving an urban, mixed socioeconomic and ethnicity 
population centred around London, U.K., between 01/06/2012 and 31/01/2017, 
who had OCT imaging (Topcon 3D OCT, Topcon, Japan; Spectralis, Heidelberg, 
Germany) as part of their routine clinical care. For more details please refer to the 
manuscript methods section. 
 
Two OCT device types were selected for investigation. 3D OCT-2000 (Topcon, 
Japan) was selected as “device type 1” due to its routine use in the clinical pathway 
we studied. For device type 1, a total of 15,877 OCT scans from 7981 individual 
patients (mean age 69.5; 3686 male, 4294 female, 1 gender unknown) were 
eligible for inclusion in the work (Datasets #3 + #4 in Supplementary Table 3). To 
create a test set representative of the real-world clinical application, 997 additional 
patients (mean age 63.1; 443 male, 551 female, 3 gender unknown) presenting to 
Moorfields with visual disturbance during the retrospective period were selected 
and only their referral OCT examination was selected for inclusion in the test set 
(Dataset #5 in Supplementary Table 3); a sample size requirement of 553 to detect 
sensitivity and specificity at 0.05 marginal error and 95% confidence was used to 
inform the number included. To demonstrate the generalizability of our approach, 
Spectralis OCT (Heidelberg Engineering, Germany) was chosen as “device type 2”. 
For generalisability experiments, a second test set of clinical OCT scans from 116 
patients (mean age 58.2; 59 male, 57 female) presenting in the same manner were 
selected using the same methodology and selection criteria (Dataset #11 in 
Supplementary Table 3). Examples of differences between the two devices types 
are shown in Supplementary Fig. 9. Supplementary Table 8 shows a breakdown of 
patients and triage categories in the datasets.
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