
My Mother began to lose her hearing 

while I was away at college. I would return home 

to share what I’d learned, and she would lean 

in to hear. Soon it became difficult for her to 

hold a conversation if more than one person 

spoke at a time. Now, even with a hearing aid, 

she struggles to distinguish the sounds of each 

voice. When my family visits for dinner, she still 

pleads with us to speak in turn.

My mother’s hardship reflects a classic prob-

lem for hearing aid manufacturers. The human 

auditory system can naturally pick out a voice 

in a crowded room, but creating a hearing aid 

that mimics that ability has stumped signal 

processing specialists, artificial intelligence 

experts, and audiologists for decades. British 

cognitive scientist Colin Cherry first dubbed this 

the “cocktail party problem” in 1953.

More than six decades later, less than 25 per-

cent of people who need a hearing aid actually 

use one. The greatest frustration among poten-

tial users is that a hearing aid cannot distinguish 

between, for example, a voice and the sound of 

a passing car if those sounds occur at the same 

time. The device cranks up the volume on both, 

creating an incoherent din.

It’s time we solve this problem. To produce a 

better experience for hearing aid wearers, my lab 

at Ohio State University, in Columbus, recently 

applied machine learning based on deep neu-

ral networks to the task of 

segregating sounds. We 

have tested multiple ver-

sions of a digital filter that 

not only amplifies sound 

but can also isolate speech 
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from background noise and automatically 

adjust the volumes of each separately.

We believe this approach can ultimately 

restore a hearing-impaired person’s com-

prehension to match—or even exceed—

that of someone with normal hearing. 

In fact, one of our early models boosted, 

from 10 to 90 percent, the ability of some 

subjects to understand spoken words 

obscured by noise. Because it’s not nec-

essary for listeners to understand every 

word in a phrase to gather its meaning, 

this improvement frequently meant the 

difference between comprehending a 

sentence or not.

Without a better hearing aid, the 

world’s hearing will get worse. The 

World Health Organization estimates 

that 15 percent of adults, or roughly 

766 million people, suffer from hearing 

loss. That number is rising as the popula-

tion expands and the proportion of older 

adults becomes larger. And the poten-

tial market for an advanced hearing aid 

isn’t limited to people with hearing loss. 

Developers could use the technique to 

improve smartphone speech recogni-

tion. Employers could use it to help work-

ers on noisy factory floors, and militaries 

could equip soldiers to hear one another 

through the noisy chaos of warfare.

Satisfying all those new customers, 

though, means finding a way to put the 

cocktail party problem behind us. At 

last, deep neural networks are pointing 

the way forward.

For decades, electrical and computer 

engineers tried and failed to achieve 

speech isolation through signal process-

ing. The most popular approach has been 

to use a voice-activity detector to identify 

gaps between people’s utterances as they 

speak. In this approach, the system des-

ignates the sounds captured within those 

gaps as “noise.” Then, an algorithm sub-

tracts the noise from the original record-

ing—leaving, ideally, noise-free speech.

Unfortunately this technique, known 

as spectral subtraction, is notorious for 

removing too much speech or too lit-

tle noise. Too often, what results is an 

unpleasant artifact (called musical noise) 

that makes the audio sound as if it were 

recorded underwater. The problems are 

so serious that even after many years of 

development, this method does little or 

nothing to improve people’s ability to 

recognize speech in noisy environments.

I realized we had to take a different 

approach. We began with a theory from 

Albert Bregman, a psychologist at McGill 

University, in Montreal, who proposed 

in 1990 that the human auditory system 

organizes sounds into distinct streams. A 

stream essentially corresponds to sound 

emitted from a single source, such as a 

nearby friend. Each sound stream is 

unique in its pitch, volume, and the direc-

tion from which it comes.

Altogether, many streams—such as that 

friend speaking over the roar of a hockey 

game—make up what Bregman calls an 

“auditory scene.” If sounds share the 

same frequency band at the same time, 

the loudest sound in a scene overpowers 

the others—a useful principle known as 

auditory masking. For example, some-

one may not notice a clock ticking in the 

corner of the room if rain is pattering on 

the roof. This principle, among others, 

is exploited in MP3 files to shrink the 

files to one-tenth of their original size 

by removing masked sounds (such as 

the ticking clock, in this case) without 

users noticing the omission.

Recalling Bregman’s work, we won-

dered if we could build a filter to deter-

mine whether one sound stream 

dominates others at a given moment 

inside a specific frequency band. Psycho-

acousticians, who study sound perception, 

divide the average human’s hearing range 

into about two dozen bands between 

 20  hertz and 20,000 Hz. We wanted a 

filter to tell us whether a sound stream 

containing speech or noise was stronger 

at certain times within these bands, as a 

first step toward separating the two.

My lab was the first, in 2001, to design 

such a filter, which labels sound streams 

as dominated by either speech or noise. 

With this filter, we would later develop 

a machine-learning program that sepa-

rates speech from other sounds based 

on a few distinguishing features, such 

as amplitude (loudness), harmonic 

structure (the particular arrangement 

of tones), and onset (when a particular 

sound begins relative to others).

This original filter was what we called 

the ideal binary mask. It labels noise and 

speech that it finds within segments 

of sound called time-frequency units, 

a noisy World: Thanks in part to its 
odd shape, the human ear captures many 
sound streams at once. A stream is all 
the sound waves that emanate from a 
single source, such as a dog. Together, 
these streams make up an auditory scene 
(barking + siren + talking). 

[ Siren ]

[ Talking ]

[ Barking ]

[ Auditory scene ]
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which designate a particular brief inter-

val within a specific frequency band. The 

filter analyzes each time-frequency unit 

in a sample of noisy speech and marks 

each as either 1 or 0. It records a 1 if the 

“target” sound (in this case, speech) is 

louder than noise, and a 0 if the target 

sound is softer. The result is a set of 1s 

and 0s that represent the dominance of 

noise or speech within a sample. Then, 

the filter tosses out all units labeled 0 

and reconstructs the speech from those 

that scored 1. To reconstruct an intelli-

gible sentence from noisy speech, a cer-

tain percentage of time-frequency units 

must be labeled 1.

We began testing the ideal binary mask 

in 2006 with the U.S. Air Force Research 

Laboratory, in Ohio. Around the same 

time, a team from Syracuse University, 

in New York, independently evaluated 

the ideal binary mask. In those trials, 

the filter helped people with a hearing 

impairment and also listeners with nor-

mal hearing to better understand sen-

tences mixed with noise.

We had, basically, created a speech 

filter that performed flawlessly in the 

lab. But this filter enjoyed an unrealistic 

advantage. By design, we had provided 

it with samples of speech and noise sepa-

rately and then tested it using mixtures 

of those same samples. Because it had 

been given the answers (that’s why it’s 

“ideal”), the filter knew when the speech 

was louder than the background noise. A 

practical speech filter must, entirely on 

its own and on the fly, separate a voice 

from the noise in a room.

Nevertheless, the fact that the ideal 

binary mask dramatically improved 

speech comprehension for both 

 hearing-impaired listeners and those with 

normal hearing had a profound implica-

tion. It demonstrated that the technique of 

classification, a form of supervised learn-

ing, could be employed to approximate 

the ideal binary mask as a way of separat-

ing speech from noise. With classification, 

a machine mimics human learning, in 

effect, by completing exercises, receiving 

feedback, and drawing and remember-

ing lessons from its experiences. That’s 

essentially the same way people learn 

from a young age to treat apples as a class 

distinct from oranges.

In the following years, my lab made 

the first attempt to approximate the ideal 

binary mask through classification. At 

about the same time we were developing 

our original classifier, a group at Carnegie 

Mellon University, in Pittsburgh, devised 

their own method, based on machine 

learning, to classify time- frequency units 

for another purpose: to improve auto-

matic speech recognition. Later, a group 

at the University of Texas at Dallas led 

by the late Philipos Loizou used a differ-

ent classification method. It became the 

first to show meaningful improvement in 

speech intelligibility for people with nor-

mal hearing by relying on only monau-

ral features (as opposed to the binaural 

ones captured by two ears).

But these early machine-learning 

methods applied classification tech-

niques that were not powerful or accu-

rate enough to help hearing aid wearers. 

They could not yet handle the complex 

and unpredictable mixture of noises 

and voices that occur in the world. In 

order to do that, we would need some-

thing far more powerful.

Having demonstrated promising 

initial results with our early classifica-

tion algorithms, we decided to take the 

next logical step—to improve the system 

so it could function in noisy real-world 

environments, and without training for 

specific noises and sentences. This chal-

lenge prompted us to try to do something 

that had never been done before: build a 

machine-learning program that would 

run on a neural network and separate 

speech from noise after undergoing a 

sophisticated training process. The pro-

gram would use the ideal binary mask 

to guide the training of the neural net-

work. And it worked. In a study involv-

ing 24 test subjects, we demonstrated 

that this program could boost the com-

prehension of hearing-impaired people 

by about 50 percent.

Basically, a neural network is a soft-

ware system constructed of relatively sim-

ple elements that can achieve complex 

levels of processing by working together. 

(The system’s structure is roughly mod-

eled on how neurons and their networks 

work in the brain.) When presented with 

new examples, neural networks, like 

human brains, can “learn” by adjusting 

the weights of their connections.

Clean speeCh: To separate speech from noise, a machine-learning program breaks 
a noisy speech sample into a collection of elements called time-frequency units. Next, it 
analyzes these units to extract 85 features known to distinguish speech from other sounds. 
Then, the program feeds the features into a deep neural network trained to classify the 
units as speech or not, based on past experience with similar samples. Lastly, the program 
applies a digital filter that tosses out all the nonspeech units to leave only separated speech.   

Noisy speech

Time-frequency
representation

Feature
extraction

Deep-neural-network 
classification

Segregated speech

Filtering
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Neural networks come in many shapes 

and sizes and with varying degrees of 

complexity. Deep neural networks are 

defined as having at least two “hidden” 

processing layers, which are not directly 

connected to a system’s input or output. 

Each hidden layer refines the results fed 

to it by previous layers, adding in new 

considerations based on prior knowledge.

For example, a program designed 

to verify a customer’s signature might 

begin by comparing a new signature to a 

sample included in a training database. 

However, that program also knows from 

its training that the new signature does 

not need to precisely match the original. 

Other layers can determine if the new 

signature shares certain qualities that 

tend to remain consistent in a person’s 

signature, such as the angle of slant, or 

the failure to dot the letter i. 

To build our own deep neural net-

work, we began by writing algorithms 

to extract features that could distinguish 

voices from noise based on common 

changes in amplitude, frequency, and 

the modulations of each. We identified 

dozens of attributes that could help our 

program discriminate between speech 

and noise to some extent, and we used 

all 85 of them to make the algorithms as 

powerful as possible. Among the most 

important attributes we identified were 

the frequencies of the sounds and their 

intensities (loud or soft).

Next, we trained the deep neural net-

work to use these 85 attributes to distin-

guish speech from noise. This training 

occurred in two phases: First, we set the 

program’s parameters through unsuper-

vised learning. This means we loaded 

many examples of the attributes into 

the program in order to prime it for the 

types of signals it would later have to 

classify on the fly.

Then we used samples of noisy speech 

and their corresponding results on the 

ideal binary mask to complete the sec-

ond phase of training, which was the 

supervised learning. In particular, the 

set of 1s and 0s that make up the ideal 

binary mask was like an answer sheet 

that we used to test and improve our pro-

gram’s ability to separate speech from 

noise. For each new sample, the program 

would extract a set of attributes from 

the noisy speech. Then, after analyzing 

these attributes—frequencies, intensities, 

and so on—the filter performed a provi-

sional classification—was it speech? was it 

noise?—and compared the result to what 

the ideal binary mask would determine 

in the same situation. If the result was 

different from the 1s and 0s within our 

perfect binary mask filter, we tweaked 

the neural network’s parameters accord-

ingly, so that the network would produce 

results closer to the 1s and 0s of the ideal 

binary mask on its next try.

To make these adjustments, we first cal-

culated the error of the neural network, 

measured as the discrepancy between the 

ideal binary mask and the result at the neu-

ral network’s final layer, which is known as 

the output layer. Once we computed this 

error, we would then use it to change the 

weights of the neural network’s connec-

tions so that if the same classification was 

carried out again, the discrepancy would 

be reduced. The training of the neural net-

work consisted of performing this proce-

dure thousands of times.

One important refinement along the 

way was to build a second deep neural 

network that would be fed by the first 

one and fine-tune its results. While 

that first network had focused on label-

ing attributes within each individual 

 time-frequency unit, the second net-

work would examine the attributes of 

several units near a particular one. In 

other words, the second network pro-

vided the first network with extra context 

about the speech and noise it processed 

and further improved its classification 

accuracy. For example, a syllable may 

span many time-frequency units, but the 

background noise could change abruptly 

while it was being spoken. In our case, 

having contextual clues could help the 

program to more accurately separate 

speech from noise within the syllable.  

At the end of the supervised train-

ing, the deep-neural-network classi-

fier proved to be far superior to earlier 

methods at separating speech from 

noise. In fact, this algorithm was the 

first, of any technique relying on mon-

aural techniques, to achieve major 

improvements in hearing-impaired lis-

teners’ ability to make sense of spoken 

phrases obscured by noise.

To test it with human subjects, we 

asked 12 hearing-impaired people and 

12 with normal hearing to listen through 

sMart layers: A deep 
neural network consists 
of two or more process-
ing layers in between 
the input layer, through 
which information is fed 
into the system [left], and 
the output layer, which 
reveals the results [right]. 
To improve performance, 
researchers can adjust 
the system’s parameters 
and tweak the connec-
tions between layers.  

1880 to 1920

1921 to 1953

1984 to present

Input layer Hidden layer 2

Hidden layer 3Hidden layer 1

Output 
layer
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headphones to samples of noisy sen-

tences. The samples were in pairs: first 

the speech and noise occurring together, 

and then the same sample after it had 

been processed by our program running 

on the deep neural networks. The sen-

tences, which included phrases such as 

“It’s getting cold in here” and “They ate 

the lemon pie,” were cluttered by two 

types of noise—a steady humming noise 

and the babble of many people talking at 

once. The steady noise was similar to the 

sound of a refrigerator running, in which 

the audio waves are repetitive and the 

shape of the frequency spectrum does 

not change over time. We created the 

noisy background babble by adding utter-

ances from four male and four female 

speakers, to mimic a cocktail party.

People in both groups showed a big 

improvement in their ability to com-

prehend sentences amid noise after the 

sentences were processed through our 

program. People with hearing impair-

ment could decipher only 29 percent of 

words muddled by babble without the 

program, but they understood 84 per-

cent after the processing. Several went 

from understanding only 10 percent of 

words in the original sample to compre-

hending around 90 percent with the 

program. There were similar gains for 

the steady-noise scenario with hearing- 

impaired subjects—they went from 

  36 percent to 82 percent comprehension.

Even people with normal hearing 

were able to better understand noisy 

sentences, which means our program 

could someday help far more people 

than we originally anticipated. Listen-

ers with normal hearing understood 

37 percent of the words spoken amid 

steady noise without the program and 

80 percent with it. For the babble, their 

performance improved from 42 percent 

of the words to 78 percent.

One of the most intriguing results of 

our experiment came when we asked, 

Could people with hearing impairment 

who are assisted by our program actually 

outperform those with normal hearing? 

Remarkably, the answer is yes. Listen-

ers with hearing impairment who used 

our program understood nearly 20 per-

cent more words in the babble and about 

15 percent more words in steady noise 

than those with normal hearing who 

relied solely on their own auditory sys-

tem to separate speech from noise. With 

these results, our program built from 

deep neural networks has come the clos-

est to solving the cocktail party problem 

of any effort to date.

There are, of course, limits to the pro-

gram’s abilities. For example, in our sam-

ples, the type of noise that obscured 

speech was still quite similar to the type 

of noise the program had been trained 

to classify. To function in real life, a pro-

gram will need to quickly learn to filter 

out many types of noise, including types 

different from the ones it has already 

encountered. For example, the hiss of a 

ventilation system is different from the 

hum of a refrigerator compressor. Also, 

the noisy samples we used did not fea-

ture reverberations from the walls and 

objects in a room, which compounds 

the noise problem at any cocktail party.

Since we published those early results, 

we’ve purchased a database of sound 

effects designed for filmmakers and 

used its 10,000 noises to further train 

the program. Last year, we found that 

the retrained program could encounter 

completely new noises and achieve mean-

ingful improvement in comprehension 

for both hearing-impaired listeners and 

those with normal hearing. Now, with 

funding from the National Institute on 

Deafness and Other Communication Dis-

orders, we are pushing the program to 

operate in more environments and test it 

with more listeners who have hearing loss.  

Eventually, we believe the program 

could be trained on powerful computers 

and embedded directly into a hearing 

aid, or paired with a smartphone via a 

wireless link, such as Bluetooth, to feed 

the processed signal in real time to an 

earpiece. Periodically, hearing aid wear-

ers could update their devices as man-

ufacturers release new versions after 

retraining the system on new noises. We 

have filed several patents for the tech-

nique and are working with partners 

to commercialize it, including Starkey 

Hearing Technologies, in Eden Prairie, 

Minn., a leading hearing aid manufac-

turer in the United States.

With this approach, the cocktail party 

problem does not look nearly as daunt-

ing as it did just a couple of years ago. We, 

and others, can now create software that 

we expect will ultimately overcome it 

through more extensive training in more 

noisy situations. In fact, I suspect this 

process is similar to the way children 

learn to separate speech from noise early 

in life—through repeated exposure to a 

wide range of both. With more experi-

ence, the approach can only get better. 

That’s the beauty of it. As is also true 

for a youngster, time is on our side.  n

Fine tuning: Over the past 150 years, 
technology has improved hearing aid 
performance. Early conversation tubes 
[top left] relied entirely on acoustic 
amplification. The first electric hearing 
aids [top right] used a carbon diaphragm to 
amplify sounds. Hearing aids with vacuum 
tubes [middle left] processed frequencies 
differently depending on the wearer’s 
type of hearing loss. With transistors 
came the first hearing aids worn behind 
the ear [middle right]. Cochlear implants 
[bottom left] have revolutionized treatment 
of profound hearing loss. Today’s digital 
hearing aids [bottom right] transform 
sound waves into digital binary code for 
processing, and then back to an analog 
signal for the wearer to hear. 
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