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Abstract

Datasets are an integral part of contemporary object

recognition research. They have been the chief reason for

the considerable progress in the field, not just as source

of large amounts of training data, but also as means of

measuring and comparing performance of competing algo-

rithms. At the same time, datasets have often been blamed

for narrowing the focus of object recognition research, re-

ducing it to a single benchmark performance number. In-

deed, some datasets, that started out as data capture efforts

aimed at representing the visual world, have become closed

worlds unto themselves (e.g. the Corel world, the Caltech-

101 world, the PASCAL VOC world). With the focus on

beating the latest benchmark numbers on the latest dataset,

have we perhaps lost sight of the original purpose?

The goal of this paper is to take stock of the current state

of recognition datasets. We present a comparison study us-

ing a set of popular datasets, evaluated based on a number

of criteria including: relative data bias, cross-dataset gen-

eralization, effects of closed-world assumption, and sample

value. The experimental results, some rather surprising,

suggest directions that can improve dataset collection as

well as algorithm evaluation protocols. But more broadly,

the hope is to stimulate discussion in the community regard-

ing this very important, but largely neglected issue.

1. Introduction

It is a capital mistake to theorize before one has data.

SHERLOCK HOLMES

Let’s play a game we call Name That Dataset! Shown in

Figure 1 are three most discriminable (to be explained in a

moment) images from twelve popular recognition datasets.

The goal is to guess which images came from which dataset

(go ahead, try it, we will wait... finished? Now check your

answers below1). In theory, this should be a very difficult

task, considering that the datasets contain thousands to mil-

lions of images. Moreover, most of these datasets were col-

lected with the expressed goal of being as varied and rich as

possible, aiming to sample the visual world “in the wild”.

Yet in practice, this task turns out to be relatively easy for

Figure 1. Name That Dataset: Given three images from twelve

popular object recognition datasets, can you match the images

with the dataset? (answer key below)

anyone who has worked in object and scene recognition (in

our labs, most people got more than 75% correct).

Intrigued, we decided to perform a toy experiment: to

train a classifier to play Name That Dataset. We randomly

sampled 1000 images from the training portions of each of

the 12 datasets, and trained a 12-way linear SVM classi-

fier. The classifier was tested on 300 random images from

each of the test sets, repeated 20 times. Figure 2(left) shows

classifier performance for four popular image descriptors

(32x32 thumbnail, both grayscale and color [18], gist [13],

and bag of HOG [1] visual words) as a function of training

set size (log scale). Curiously, the best classifier performs

rather well at 39% (chance is 1/12 = 8%), and what is even

more intriguing – there is no evidence of saturation as more

training data is added.

1Answer key: 1) Caltech-101, 2) UIUC, 3) MSRC, 4) Tiny Images, 5)

ImageNet, 6) PASCAL VOC, 7) LabelMe, 8) SUNS-09, 9) 15 Scenes, 10)

Corel, 11) Caltech-256, 12) COIL-100.
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Figure 2. Computer plays Name That Dataset. Left: classification

performance as a function of dataset size (log scale) for different

descriptors (notice that performance does not appear to saturate).

Right: confusion matrix.

Figure 2(right) shows the confusion matrix, grouped by

similarity. Apart from two outliers (UIUC test set is not the

same as its training set and COIL is a lab-based dataset),

there is strong grouping of scene-centric datasets vs. object-

centric datasets (in the latter, Caltech101 and Caltech256

are predictably confused with each other). Still, despite the

small sample size, there is a clearly pronounced diagonal,

suggesting that each dataset possesses a unique, identifiable

“signature”. We can try to visualize this signature by look-

ing at the most discriminable images within each dataset,

i.e. the images placed furthest from the decision bound-

ary by the SVM. That is, in fact, what we did for Figure 1.

We could also do the opposite: for a given dataset, look at

the images placed closest to the decision boundary separat-

ing it from another dataset (Figure 3). This shows how one

dataset can “impersonate” a different dataset.

The lesson from this toy experiment is that, despite the

best efforts of their creators, the datasets appear to have a

strong build-in bias. Of course, much of the bias can be ac-

counted for by the divergent goals of the different datasets:

some captured more urban scenes, others more rural land-

scapes; some collected professional photographs, others the

amateur snapshots from the Internet; some focused on en-

tire scenes, others on single objects, etc. Yet, even if we

try to control for these capture biases by isolating specific

objects of interest, we find that the biases are still present in

some form. As a demonstration, we applied the same anal-

ysis that we did for full images to object crops of cars from

five datasets where car bounding boxes have been provided

(PASCAL, ImageNet, SUN09, LabelMe, Caltech101). In-

terestingly, the classifier was still quite good at telling the

different datasets apart, giving 61% performance (at 20%

chance). Visually examining the most discriminable cars

(Figure 4), we observe some subtle but significant differ-

ences: Caltech has a strong preference for side views, while

ImageNet is into racing cars; PASCAL have cars at non-

canonical view-points; SUNS and LabelMe cars appear to

be similar, except LabelMe cars are often occluded by small

objects, etc. Clearly, whatever we, as a community, are try-

ing to do to get rid of dataset bias is not quite working.

Figure 4. Most discriminative cars from 5 datasets

Hence the aim of this paper is two-fold. First, to try to

understand some of the subtle ways in which bias sneaks

into our datasets and affects detection and classification per-

formance. Second, to raise awareness in the recognition

community about this important issue that is, sadly, not get-

ting the attention it deserves.

2. Prologue: The Promise and Perils of Visual

Datasets

We are in the midst of a data revolution. Ubiquitous ac-

cess to image datasets has been responsible for much of the

recent progress in object recognition [14] after decades of

proverbial wandering in the desert. For instance, it was the

availability of face training data (both positive and nega-

tive), more than the perceived advances in machine learn-

ing, that produced the first breakthrough in face detec-

tion [15] (while neural networks were central to [15], sub-

sequent approaches showed similar performance with very

different techniques). And it is the dataset of millions of

photographs of consumer products, as much as the clever

feature matching, that allowed visual search engines like

GOOGLE GOGGLES to become reality. Datasets have also

played the leading role in making object recognition re-

search look less like a black art and more like an experi-

mental science. The fact that today, unlike just a few years

ago, it is virtually impossible to publish a CVPR paper in

recognition without a quantitative evaluation attests to the

sea-change brought forward by data.

Alas, like any proper revolution, this one has brought

with it new problems to replace the old ones. Many people

are worried that the field is now getting too obsessed with

evaluation, spending more time staring at precision-recall

curves than at pixels. There is concern that research is be-

coming too incremental, since a completely new approach

will initially have a hard time competing against estab-
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Figure 3. Dataset Look-alikes: Above, ImageNet is trying to impersonate three different datasets. Here, the samples from ImageNet that

are closest to the decision boundaries of the three datasets are displayed. Look-alikes using PASCAL VOC are shown below.

lished, carefully fine-tuned methods. For instance, one ma-

jor issue for many popular dataset competitions is “creeping

overfitting”, as algorithms over time become too adapted

to the dataset, essentially memorizing all its idiosyncrasies,

and losing ability to generalize [14]. Fortunately, this prob-

lem can be greatly alleviated by either changing the dataset

regularly (as done in PASCAL VOC 2005-2007), or with-

holding the test set and limiting the number of times a team

can request evaluation on it (as done in PASCAL VOC

2008+ and Caltech Pedestrian benchmark [4]).

Another concern is that our community gives too much

value to “winning” a particular dataset competition, regard-

less of whether the improvement over other methods is sta-

tistically significant. For PASCAL VOC, Everingham et

al [6] use the Friedman/Nemenyi test, which, for example,

showed no statistically significant difference between the

eight top-ranked algorithms in the 2010 competition. More

fundamentally, it may be that the right way to treat dataset

performance numbers is not as a competition for the top

place, but rather as a sanity check for new algorithms and

an efficient way of comparing against multiple baselines.

This way, fundamentally new approaches will not be forced

to compete for top performance right away, but will have a

chance to develop and mature.

Luckily, the above issues are more behavioral rather than

scientific, and should be alleviated as our field develops

benchmarking best practices similar to those in other fields.

However, there is a more fundamental question: are the

datasets measuring the right thing, that is, the expected

performance on some real-world task? Unlike datasets in

machine learning, where the dataset is the world, com-

puter vision datasets are supposed to be a representation

of the world. Yet, what we have been witnessing is that

our datasets, instead of helping us train models that work

in the real open world, have become closed worlds unto

themselves, e.g. the Corel world, the Caltech101 world, the

PASCAL VOC world, etc. This is particularly unfortunate

since, historically, the development of visual datasets has

been driven, in no small part, by the desire to be a better,

more authentic representation of the visual world.

2.1. The Rise of the Modern Dataset

Any good revolution needs a narrative of struggle against

perceived unfairness and bias, and the history of dataset de-

velopment certainly provides that. From the very begin-

ning, every new dataset was, in a way, a reaction against

the biases and inadequacies of the previous datasets in ex-

plaining the visual world. The famous single-image-dataset

Lena, one of the first “real” images (digitized in 1972 from

a PLAYBOY centerfold) was a reaction against all the care-

fully controlled lab stock images, the “dull stuff dating back

to television standards work” [10]. In the same spirit, the

COIL-100 dataset [12] (a hundred household objects on

a black background) was a reaction against model-based

thinking of the time (which focused mostly on staplers), and

an embrace of data-driven appearance models that could

capture textured objects like Tylenol bottles. Professional

collections like Corel Stock Photos and 15 Scenes [13] were

a reaction against the simple COIL-like backgrounds and

an embrace of visual complexity. Caltech-101 [7] (101

objects mined using Google and cleaned by hand) was

partially a reaction against the professionalism of Corel’s

photos, and an embrace of the wilderness of the Internet.

MSRC [19] and LabelMe [16] (both researcher-collected

sets), in their turn, were a reaction against the Caltech-like

single-object-in-the-center mentality, with the embrace of

complex scenes with many objects [14]. PASCAL Visual

Object Classes (VOC) [6] was a reaction against the lax

training and testing standards of previous datasets [14]. Fi-

nally the batch of very-large-scale, Internet-mined datasets

– Tiny Images [18], ImageNet [3], and SUN09 [20] – can

be considered a reaction against the inadequacies of train-

ing and testing on datasets that are just too small for the

complexity of the real world.

On the one hand, this evolution in the development of

datasets is perhaps a sign of progress. But on the other hand,
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one could also detect a bit of a vicious cycle. Time and

again, we as a community reject the current datasets due to

their perceived biases. Yet time and again, we create new

datasets that turn out to suffer from much the same biases,

though differently manifested. What seems missing, then,

is a clear understanding of the types and sources of bias,

without which, we are doomed to repeat our mistakes.

3. Measuring Dataset Bias

Granted, it makes little sense to talk about a bias-free

representation of the visual world without specifying the

observer and the task (e.g. a wandering human perceives

a completely different visual reality than, say, a wandering

bird). Still, for the purposes of object recognition, most ex-

isting datasets assume roughly the same general task: given

the typical visual environments encountered by people, to

detect commonly occurring objects. Using that as the defi-

nition of our visual world, can we evaluate how well does a

particular dataset represent it? Alas, to correctly measure a

dataset’s bias would require comparing it to the real visual

world, which would have to be in form of a dataset, which

could also be biased... so, not a viable option. So, here we

will settle for a few standard checks, a diagnostic of dataset

health if you will.

3.1. Crossdataset generalization

The biggest warning sign that something is rotten in the

state of today’s datasets is that there are virtually no pa-

pers demonstrating cross-dataset generalization, e.g. train-

ing on ImageNet, while testing on PASCAL VOC (but

see [4] for an encouraging study). Surely, if our datasets

were truly representative of the real world, this would be

a very easy thing to do, and would give access to more of

the much needed labelled data. To be sure, there are meth-

ods for transferring a model learned on one dataset onto an-

other [21, 5, 17], where the target dataset is considered to

be in a different “domain”. But from our perspective, all the

datasets are really trying to represent the same domain – our

visual world – and we would like to measure how well or

badly they do it.

So, we would like to ask the following question: how

well does a typical object detector trained on one dataset

generalize when tested on a representative set of other

datasets, compared with its performances on the “native”

test set? To answer this question, we picked a set of six

representative datasets that are: 1) in active research use

today, and 2) have some annotated objects in common:

SUN09 [20], LabelMe [16], PASCAL VOC 2007 [6], Ima-

geNet [3], Caltech-101 [7], and MSRC [19]. Since each of

the datasets has objects labeled with bounding boxes, two

testing regimes are possible: a) classification – find all im-

ages containing the desired object; and b) detection – in all

images, find all bounding boxes containing the desired ob-

ject. Notice that the detection task is basically the same as

classification if you think of bounding boxes as images –

Figure 5. Cross-dataset generalization for “car” classification (full

image) task, trained on MSRC and tested on (one per row): SUN,

LabelMe, PASCAL, ImageNet, Caltech-101, and MSRC.

those that contain the object are positives, these that don’t

are negatives. Importantly, for detection the number of neg-

atives is naturally much larger and more diverse.

For the object detection task, we use the most standard,

off-the-shelf approach of Dalal&Triggs [1] (HOG detec-

tor followed by a linear SVM), that has been quite popu-

lar in recent years, and is the basis of the currently best-

performing detector of Felzenszwalb et al [8]. Likewise, for

the classification task, we used the most standard and popu-

lar bag-of-words approach with a non-linear SVM (Gaus-

sian kernel). We picked two objects that were common

among all the datasets and are also popular with various

algorithms: “car” and “person”. Each classifier was trained

with 500 positive and 2000 negative for the classification

task and 100 positive and 1000 negative examples for the

detection task for each dataset (these numbers were the

maximum ones possible because some of the datasets are

quite small). The test was performed with 50 positive and

1000 negative examples for classification and 10 positive

and 20000 negative for detection. For testing, each classi-

fier was run 20 times and the results averaged.

Table 1 shows a summary of results. Each column cor-

responds to the performance obtained when testing on one

dataset and training on all datasets. Each row corresponds

to training on one dataset and testing on all the others. Note

that since our training and testing protocol is necessarily

different from the ones traditionally used for each of the

datasets, the actual performance numbers will not be too

meaningful; rather it’s the differences in performance which

are telling. The first observation is that, as expected, the best

results are typically when training and testing on the same

dataset. By looking at the values across one row, we can

evaluate how good is one dataset at generalizing over the

others. By looking at the values across each column, we can

evaluate how easy is one dataset for the other datasets. As
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Table 1. Cross-dataset generalization. Object detection and classification performance (AP) for “car” and “person” when training on one

dataset (rows) and testing on another (columns), i.e. each row is: training on one dataset and testing on all the others. “Self” refers to

training and testing on the same dataset (same as diagonal), and “Mean Others” refers to averaging performance on all except self.

task
Train on:

Test on:
SUN09 LabelMe PASCAL ImageNet Caltech101 MSRC Self

Mean

others

Percent

drop

“
ca

r”
cl

a
ss

ifi
ca

ti
o

n

SUN09 28.2 29.5 16.3 14.6 16.9 21.9 28.2 19.8 30%

LabelMe 14.7 34.0 16.7 22.9 43.6 24.5 34.0 24.5 28%

PASCAL 10.1 25.5 35.2 43.9 44.2 39.4 35.2 32.6 7%

ImageNet 11.4 29.6 36.0 57.4 52.3 42.7 57.4 34.4 40%

Caltech101 7.5 31.1 19.5 33.1 96.9 42.1 96.9 26.7 73%

MSRC 9.3 27.0 24.9 32.6 40.3 68.4 68.4 26.8 61%

Mean others 10.6 28.5 22.7 29.4 39.4 34.1 53.4 27.5 48%

“
ca

r”
d

et
ec

ti
o

n

SUN09 69.8 50.7 42.2 42.6 54.7 69.4 69.8 51.9 26%

LabelMe 61.8 67.6 40.8 38.5 53.4 67.0 67.6 52.3 23%

PASCAL 55.8 55.2 62.1 56.8 54.2 74.8 62.1 59.4 4%

ImageNet 43.9 31.8 46.9 60.7 59.3 67.8 60.7 49.9 18%

Caltech101 20.2 18.8 11.0 31.4 100 29.3 100 22.2 78%

MSRC 28.6 17.1 32.3 21.5 67.7 74.3 74.3 33.4 55%

Mean others 42.0 34.7 34.6 38.2 57.9 61.7 72.4 44.8 48%

“
p

er
so

n
”

cl
a

ss
ifi

ca
ti

o
n

SUN09 16.1 11.8 14.0 7.9 6.8 23.5 16.1 12.8 20%

LabelMe 11.0 26.6 7.5 6.3 8.4 24.3 26.6 11.5 57%

PASCAL 11.9 11.1 20.7 13.6 48.3 50.5 20.7 27.1 -31%

ImageNet 8.9 11.1 11.8 20.7 76.7 61.0 20.7 33.9 -63%

Caltech101 7.6 11.8 17.3 22.5 99.6 65.8 99.6 25.0 75%

MSRC 9.4 15.5 15.3 15.3 93.4 78.4 78.4 29.8 62%

Mean others 9.8 12.3 13.2 13.1 46.7 45.0 43.7 23.4 47%

“
p

er
so

n
”

d
et

ec
ti

o
n

SUN09 69.6 56.8 37.9 45.7 52.1 72.7 69.6 53.0 24%

LabelMe 58.9 66.6 38.4 43.1 57.9 68.9 66.6 53.4 20%

PASCAL 56.0 55.6 56.3 55.6 56.8 74.8 56.3 59.8 -6%

ImageNet 48.8 39.0 40.1 59.6 53.2 70.7 59.6 50.4 15%

Caltech101 24.6 18.1 12.4 26.6 100 31.6 100 22.7 77%

MSRC 33.8 18.2 30.9 20.8 69.5 74.7 74.7 34.6 54%

Mean others 44.4 37.5 31.9 38.4 57.9 63.7 71.1 45.6 36%

one could expect, both Caltech 101 and MSRC are the eas-

iest datasets (column averages) across all tasks. PASCAL

and ImageNet are, most of the time, the datasets that gener-

alize the best (row averages), although they score higher in

object-centric datasets such as Caltech 101 and MSRC, than

in scene-centric datasets such as SUN09 and LabelMe. In

general there is a dramatic drop of performance in all tasks

and classes when testing on a different test set. For instance,

for the ”car” classification task the average performance

obtained when training and testing on the same dataset is

53.4% which drops to 27.5%. This is a very significant drop

that would, for instance, make a method ranking first in the

PASCAL competition become one of the worst. Figure 5

shows a typical example of car classification gone bad. A

classifier trained on MSRC “cars” has been applied to six

datasets, but it can only find cars in one – MSRC itself.

Overall the results look rather depressing, as little gener-

alization appears to be happening beyond the given dataset.

This is particularly surprising given that most datasets are

collected from the same source – the Internet. Why is this

happening? There are likely several culprits. First, there is

clearly some selection bias, as we’ve shown in Section 1 –

datasets often prefer particular kinds of images (e.g. street

scenes, or nature scenes, or images retrieved via Internet

keyword searches). Second, there is probably some capture

bias – photographers tending to take pictures of objects in

similar ways (although this bias might be similar across the

different datasets). Third, there is category or label bias.

This comes from the fact that semantic categories are of-

ten poorly defined, and different labellers may assign dif-

fering labels to the same type of object [11] (e.g. “grass”

vs. “lawn”, “painting” vs. “picture”). Finally, there is the

negative set bias. The negative set defines what the dataset

considers to be “the rest of the world”. If that set is not

representative, or unbalanced, that could produce classifiers

that are overconfident and not very discriminative. Of all

the above, the negative set bias seems to receive the least at-

tention, so in the next section we will investigate it in more

detail.

3.2. Negative Set Bias

Datasets define a visual phenomenon (e.g. object, scene,

event) not just by what it is (positive instances), but also

by what it is not (negative instances). Alas, the space of

all possible negatives in the visual world is astronomically

large, so datasets are forced to rely on only a small sample.
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Figure 6. Cross-dataset generalization for “car” detection as func-

tion of training data

But is this negative sample representative or even sufficient?

To answer the first question, we designed an experiment

to evaluate the relative bias in the negative sets of differ-

ent datasets (e.g. is a “not car” in PASCAL different from

“not car” in MSRC?). The idea is to approximate the real-

world negative set by a super-set of dataset negatives via

combining the negative sets of each of the 6 datasets in the

evaluation pool. First, for each dataset, we train a classi-

fier on its own set of positive and negative instances. Then,

during testing, the positives come from that dataset, but the

negatives come from all datasets combined. The number

of negatives is kept the same as the number of negatives of

the original test, to keep chance performance at the same

level. We ran a detection task with 100 positives and 1000

negatives. For testing, we did multiple runs of 10 positive

examples for 20,000 negatives.

The results for “car” and “person” detection are shown

in Table 2. Each column shows performance obtained when

training on each of the 6 datasets evaluated, and testing on

1) the original test set and 2) on a new negative test super-

set. For three popular datasets (SUN09, LabelMe and PAS-

CAL) we observe a significant (20%) decrease in perfor-

mance, suggesting that some of the new negative exam-

ples coming from other datasets are confounded with pos-

itive examples. On the other hand, ImageNet, Caltech 101

and MSRC do not show a drop. The reasons for this lack

of change are likely different for each dataset. ImageNet

benefits from a large variability of negative examples and

does not seem to be affected by a new external negative set,

whereas Caltech and MSRC appear to be just too easy.

A much harder question is whether the negative data

sample is sufficient to allow a classifier to tease apart the

important bits of the visual experience. This is particularly

important for classification tasks, where the number of neg-

atives is only a few orders of magnitude larger than the num-

ber of positives for each class. For example, if we want to

find all images of “boats” in a PASCAL VOC-like classifi-

cation task setting, how can we make sure that the classifier

focuses on the boat itself, and not on the water below, or

shore in the distance (after all, all boats are depicted in wa-

ter)? This is where a large negative set (including rivers,

lakes, sea, etc, without boats) is imperative to “push” the

lazy classifier into doing the right thing. Unfortunately, it’s

not at all easy to stress-test the sufficiency of a negative set

in the general case since it will require huge amounts of

labelled (and unbiased) negative data. While beyond the

scope of the present paper, we plan to evaluate this issue

more fully, perhaps with the help of Mechanical Turk.

4. Measuring Dataset’s Value

Given a particular detection task and benchmark, there

are two basic ways of improving the performance. The first

solution is to improve the features, the object representa-

tion and the learning algorithm for the detector. The second

solution is to simply enlarge the amount of data available

for training. However, increasing the amount of training

data might be harder than it seems. The first issue is that

to achieve a significant improvement in performance, the

increase in training data must be very significant (perfor-

mance has an annoying logarithmic dependency on amount

of training data). The second issue is that, as discussed in

the previous section, if we add training data that does not

match the biases of the test data this will result in a less

effective classifier.

These two problems are illustrated in Fig. 6. As shown,

performance increases with increasing dataset size (note the

log scaling for the horizontal axis), and the performance us-

ing data from another dataset almost always under the per-

formance with the original training dataset. The vertical

gap between two curves represents the decrease in perfor-

mance resulting from training on a different dataset. The

horizontal shift corresponds to the increase in amount of

data needed to reach the same level of performance. One

could also expect that different datasets saturate at different

points, but there are no signs of saturation in the experi-

ments we performed, with a linear relationship, in a log-log

plot, between the amount of training data, log(n), and the

error log(1−AP ), with AP being average precision-recall.

Let’s say we decide to increase the amount of training

data available in PASCAL VOC. We will undoubtedly first

check what alternative sources of data are available, e.g. can

we use, say, LabelMe to improve our performance? The

question is: what is the relative value of a training example

from LabelMe with respect to the value of a training exam-

ple from PASCAL?
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Table 2. Measuring Negative Set Bias.

task
Negative Set:

Positive Set:
SUN09 LabelMe PASCAL ImageNet Caltech101 MSRC Mean

“car”

detection

self 67.6 62.4 56.3 60.5 97.7 74.5 70.0

all 53.8 51.3 47.1 65.2 97.7 70.0 64.1

percent drop 20% 18% 16% -8% 0% 6% 8%

“person”

detection

self 67.4 68.6 53.8 60.4 100 76.7 71.1

all 52.2 58.0 42.6 63.4 100 71.5 64.6

percent drop 22% 15% 21% -5% 0% 7% 9%

Table 3. “Market Value” for a “car” sample across datasets

SUN09 market LabelMe market PASCAL market ImageNet market Caltech101 market

1 SUN09 is worth 1 SUN09 0.91 LabelMe 0.72 pascal 0.41 ImageNet 0 Caltech

1 LabelMe is worth 0.41 SUN09 1 LabelMe 0.26 pascal 0.31 ImageNet 0 Caltech

1 pascal is worth 0.29 SUN09 0.50 LabelMe 1 pascal 0.88 ImageNet 0 Caltech

1 ImageNet is worth 0.17 SUN09 0.24 LabelMe 0.40 pascal 1 ImageNet 0 Caltech

1 Caltech101 is worth 0.18 SUN09 0.23 LabelMe 0 pascal 0.28 ImageNet 1 Caltech

Basket of Currencies 0.41 SUN09 0.58 LabelMe 0.48 pascal 0.58 ImageNet 0.20 Caltech

Given the performance AP j

i (n) obtained when training

on dataset i and testing on dataset j as a function of the

number of training samples n, we define the sample value

(α) as Apj

j(n) = Apj

i (n/α). In the plots of Fig. 6 this

corresponds to a horizontal shift and can be estimated as

the shift needed to align each pair of graphs. For instance,

1 LabelMe car sample is worth 0.26 PASCAL car sam-

ples on the PASCAL benchmark. This means that if we

want to have a modest increase (maybe 10% AP) in per-

formance on the car detector trained with 1250 PASCAL

samples available on PASCAL VOC 2007, we will need

1/0.26 × 1250 × 10 = 50000 LabelMe samples!

Table 3 shows the “market value” of training samples

from different datasets2. One observation is that the sample

values are always smaller than 1 – each training sample gets

devalued if it is used on a different dataset. There is no

theoretical reason why this should be the case and it is only

due to the strong biases present in actual datasets. So, what

is the value of current datasets when used to train algorithms

that will be deployed in the real world? The answer that

emerges can be summarized as: “better than nothing, but

not by much”.

5. Discussion

Is it to be expected that when training on one dataset and

testing on another there is a big drop in performance? One

could start by arguing that the reason is not that datasets are

bad, but that our object representations and recognition al-

gorithms are terrible and end up over-learning aspects of the

visual data that relates to the dataset and not to the ultimate

visual task. In fact, a human learns about vision by living

in a reduced environment with many potential local biases

and yet the visual system is robust enough to overcome this.

However, let us not put all the blame on the algorithms, at

least not yet. If a dataset defines a “car” to be the rear view

2We have also experimented with “incremental market value” – how

much does data from other datasets help after using all the original data.

We found that this quickly converges to the absolute “market value”.

of a race-car, then there is no reasonable algorithm that will

say that a side view of a family sedan is also a “car”.

So, how well do the currently active recognition datasets

stack up overall? Unsurprisingly, our results show that

Caltech-101 is extremely biased with virtually no observed

generalization, and should have been retired long ago (as ar-

gued by [14] back in 2006). Likewise, MSRC has also fared

very poorly. On the other hand, most modern datasets, such

as PASCAL VOC, ImageNet and SUN09, have fared com-

paratively well, suggesting that perhaps things are starting

to move in the right direction.

Should we care about the quality of our datasets? If the

goal is to reduce computer vision to a set of feature vectors

that can be used in some machine learning algorithm, then

maybe not. But if the goal is to build algorithms that can

understand the visual world, then, having the right datasets

will be crucial. In next section we outline some recommen-

dations for developing better datasets.

6. Epilogue

Is there any advice that can be offered to researchers

thinking of creating a new dataset on how to detect and

avoid bias? We think that a good first step would be to

run any new dataset on the battery of tests that have been

outlined in this paper (we will be happy to publish all code

and data online). While this will not detect all potential

sources of bias, it might help finding the main problematic

issues quickly and early, not years after the dataset has been

released. What about tips on how to avoid, or at least min-

imize, the effects of bias during the dataset construction it-

self? Here we briefly go over a few suggestions for mini-

mizing each type of bias:

Selection Bias: As suggested by Figure 2, datasets that

are gathered automatically fare better than these collected

manually. However, getting images from the Internet does

not in itself guarantee a fair sampling, since keyword-based

searches will return only particular types of images. Obtain-

ing data from multiple sources (e.g. multiple search engines
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from multiple countries [3]) can somewhat decrease selec-

tion bias. However, it might be even better to start with a

large collection of unannotated images and label them by

crowd-sourcing.

Capture Bias: Professional photographs as well as pho-

tos collected using keyword search appear to suffer consid-

erably from the capture bias. The most well-known bias

is that the object is almost always in the center of the im-

age. Searching for “mug” on Google Image Search will

reveal another kind of capture bias: almost all the mugs has

a right-facing handle. Beyond better data sampling strate-

gies, one way to deal with this is to perform various data

transformations to reduce this bias, such as flipping images

left-right [8, 9] (but note that any text will appear the wrong

way), or jittering the image [2], e.g. via small affine trans-

formations [18]. Another fruitful direction might be gener-

ating various automatic crops of the image.

Negative Set Bias: As we have shown, having a rich and

unbiased negative set is important to classifier performance.

Therefore, datasets that only collect the things they are in-

terested in might be at a disadvantage, because they are not

modeling the rest of the visual world. One remedy, pro-

posed in this paper, is to add negatives from other datasets.

Another approach, suggested by Mark Everingham, is to

use a few standard algorithms (e.g. bag of words) to actively

mine hard negatives as part of dataset construction from a

very large unlabelled set, and then manually going through

them to weed out true positives. The down side is that the

resulting dataset will be biased against existing algorithms.

This paper is only the start of an important conversation

about datasets. We suspect that, despite the title, our own bi-

ases have probably crept into these pages, so there is clearly

much more to be done. All that we hope is that our work

will start a dialogue about this very important and underap-

prechiated issue.
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