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Fig. 1. Our framework colorizes a sketch with two stages. The first stage renders the sketch into a rough color draft image. To refine the color draft, we

introduce a second stage to identify mistakes and refine them, in order to obtain the final result. © AU (DeviantArt artist).

Sketch or line art colorization is a research field with significant market
demand. Different from photo colorization which strongly relies on texture
information, sketch colorization is more challenging as sketches may not
have texture. Even worse, color, texture, and gradient have to be generated
from the abstract sketch lines. In this paper, we propose a semi-automatic
learning-based framework to colorize sketches with proper color, texture as
well as gradient. Our framework consists of two stages. In the first drafting
stage, our model guesses color regions and splashes a rich variety of colors
over the sketch to obtain a color draft. In the second refinement stage, it
detects the unnatural colors and artifacts, and try to fix and refine the result.
Comparing to existing approaches, this two-stage design effectively divides
the complex colorization task into two simpler and goal-clearer subtasks.
This eases the learning and raises the quality of colorization. Our model
resolves the artifacts such as water-color blurring, color distortion, and dull
textures.
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We build an interactive software based on our model for evaluation. Users
can iteratively edit and refine the colorization. We evaluate our learning
model and the interactive system through an extensive user study. Statistics
shows that ourmethod outperforms the state-of-art techniques and industrial
applications in several aspects including, the visual quality, the ability of
user control, user experience, and other metrics.
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1 INTRODUCTION

Coloring is one of the most important but time-consuming steps dur-
ing the art creation. Creating an impressive and expressive painting
requires a nice color composition and also proper usage of texture
and shading. Achieving the task is not trivial, as it requires both
the sense of aesthetics and the experience in drawing. Even pro-
fessionals may spend a significant amount of time and effort in
producing the right color composition and fine texture and shading
details. An automatic or semi-automatic colorization system can
greatly benefit the community. With the system, novice artists can
learn how to color and texture, while experienced artists can try out
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Fig. 2. The interface of our interactive software. Users can achieve high-quality results step-by-step through our software. They firstly make a color draft

with the draft color tool. After that, they put some more hint points on the generated draft canvas to control details and achieve the final result. © ecosia (a),

kumantang (all in b).

different color compositions and save much time on the tedious col-
orization. However, there are multiple challenges in achieving such
automation. Firstly, automatic understanding of sketches is difficult
due to their unlimited subjects and drawing styles. Furthermore,
sketches are usually expressed in a simplified and abstract form.
Texture or smooth shading cues are seldom available for guiding
the colorization.
Due to the effectiveness of deep learning in image processing

tasks, several learning-based methods have been proposed and de-
veloped. For examples, PaintsChainer [TaiZan 2016] and Comicol-
orization [Furusawa et al. 2017] provide an easy-to-use colorization
frameworks and create some impressive results. However, their re-
sults often contain obvious color mistakes and artifacts, such as
watercolor blurring, color bleeding and color distortion1. Although
these methods accept user input to adjust the color, such color
adjustment is usually not precise, and hurting the ability of user
control. As a result, the community still prefers traditional coloring
techniques over getting assistance from intelligent methods.
In this paper, we propose a semi-automatic method that allow

users to precisely control over colorization on real-world sketches.
No extensive input is required from the users. To achieve this, we
borrow the idea of drafting from the artist painting practices. Pro-
fessional artists like to make drafts before the detail painting on
sketches [Hart 2015]. Drafting determines the initial color compo-
sition and bridges the simple sketch and fine painting. We hence
propose a two-stage CNN-based framework for colorization accord-
ingly. The first drafting stage aggressively splashes colors over the
canvas to create a color draft, with the goal of enriching the color
variety (Fig. 1(a)). The draft may contain mistakes and blurry tex-
tures, but is usually dressed with a rich and vivid color composition.

1Watercolor blurring refers to blurry textures as if the results are painted with a
watercolor pen. Color bleeding refers to color leakage across the boundaries. Color
distortion refers to wrong or distorted colors across a region.
* indicates equal contribution

The second refinement stage corrects the color mistakes, refines
details and polishes blurry textures to achieve the final output. This
two-stage design effectively divides the complex colorization prob-
lem into two relatively simpler and goal-clearer subtasks. With this
design, the learning is more effective and the learned model is more
robust in handling a wide range of real-world sketches of different
content and different drawing styles. We also found that this refine-
ment stage can also be used independently and applied to refine the
results from other methods such as PaintsChainer [TaiZan 2016].

We developed a GUI software based on our model (Fig. 2). Users
can paint over the sketch in a two-step manner. In the first step,
users can instantly preview the global color composition of the
painting (draft) with a few hints. Then they can progressively refine
the local details of the painting by adding more hints in the second
step. Comparing to the PaintsChainer family [TaiZan 2016, 2017a,b],
our two-stage design achieves better visual quality as well as better
user experiences. Besides, our software can better follow the user
hints and hence more precise user control.

We validate the effectiveness of our method by testing it over a set
of challenging real-world sketches with a wide range of content and
styles. We also conduct a multi-dimensional user study and compare
our results to state-of-the-art methods/systems from both academic
and industry. The statistics shows that our method outperform
existing ones in terms of the visual quality, the color vividness, and
the user experience. Our contribution can be summarized as follows:

• We present a two-stage model that can achieve high-quality
colorization over real-world challenging sketches.

• Our solution can robustly refine the common artifacts in
existing learning-based sketch colorization, e.g., watercolor
blurring and color bleeding.

• We develop an interactive software to realize our model and
offer precise user control.

2 RELATED WORK
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Fig. 3. Overview of our framework, including data preparation, the training and testing pipeline. © Senor-G (mouse), style2paints (girl).

Color Propagation. Traditional methods strongly rely on texture
or gradient information to propagate the user specified colors. Qu
et al. [2006] proposed to colorize the manga based on the local
texture information. Lazy Brush [Sykora et al. 2009] performs a
smart color flood filling. However, these methods simply colorize
the whole region with a single color specified by the user. They do
not automatically choose colors, nor synthesize color shading or
textures to produce enriched content.

Learning-based Sketch Colorization. There exists tailormade solu-
tions for sketch colorization. Scribbler [Sangkloy et al. 2017] learns
to generate different scenes on sketches, especially bedroom, with
user hints. Furusawa et al. [2017] proposed to colorize manga with
a given different color palette. Deepcolor [Frans 2017] and Auto-
painter [Liu et al. 2017b] introduce adversarial losses to achieve bet-
ter line arts colorization. Commercial product PaintsChainer [TaiZan
2016, 2017a,b] achieves state-of-the-art visual quality among these
learning-based methods. It reads the sketch input and automatically
creates colored painting according to the user hints. Although these
learning-based methods can generate texture and color gradient, the
results are not convincing due to the existence of many color mis-
takes and artifacts. Methods like [Frans 2017; Liu et al. 2017b] can
only produce low-quality results with obviously mistake color and
texture. PaintsChainer V1 [TaiZan 2016] has the watercolor problem
and lack of color vividness, while PaintsChainer V2 [TaiZan 2017b]
has the problem of color bleeding and dull texture. PaintsChainer
V3 [TaiZan 2017a] improves the clearness and sharpness of the
painting but suffers from the color bleeding, and the line and color

distortions. In contrast, our framework is capable of detecting, re-
fining mistakes and minimizing these artifacts.

In addition, an off-line coloration method [Hensman and Aizawa
2017] is proposed. The method requires an off-line training for
every single manga colorization task. Paired color reference for
every manga is also needed, which is relatively hard to collect. In
the field of sketch processing, [Simo-Serra et al. 2018a,b, 2016] are
proposed to simplify sketches, while [Li et al. 2017] is proposed to
extract structural lines from mangas.

Image Style Manipulation. Style transfer is also widely used in col-
orization tasks. Neural style transfer [Gatys et al. 2016] can colorize
images by transferring low-level colored features to grayscale im-
ages. Meanwhile, deep image analogy [Liao et al. 2017] can also be
applied for colorization, by matching correspondences between the
colored and the grayscale image. Some style transfer methods are de-
signed for colorizing sketches, such as anime style transfer [Zhang
et al. 2017a] and Comicolorization [Furusawa et al. 2017]. They can
deal with sketches to certain degree, but the results are not so vivid.
We believe one major reason, that current style transfer methods
are inferior to colorize sketches, is probably due to the fact the VGG
classifier [Simonyan and Zisserman 2014] used in these methods are
trained with natural images, instead of line drawings in our case. In
addition, precise user control another major drawback of the style
transfer methods due to their limited user interaction.

Generic image-to-image translation methods can also be used for
colorization, such as paired image translations [Chen and Koltun
2017; Isola et al. 2017; Wang et al. 2018b,a] and unpaired image
translations [Bousmalis et al. 2017; Donahue et al. 2017; Kim et al.
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Fig. 4. Network architectures of all mentioned models. An 1× 1× 1024 vector is extracted from ImageNet Inception [Szegedy et al. 2015] after its first global

average pooling. All scale transformations are implemented by subsampling and upsampling. The add operation is done by matrix broadcasting. All weights

are trainable. Rectified Linear Units [Nair and Hinton 2010] are used as activations. We do not use normalization layers (except for pretrained Inception).

2017; Liu et al. 2017a; Yi et al. 2017; Zhu et al. 2017]. These methods
show the potential of transforming images across categories, e.g.
maps to aerials, edges to cats, and in our case, sketches to paintings.
However, in real-world sketch colorization, both high-frequency
features are sparse and low-frequency semantics are noisy, applying
these generic methods to sketch colorization is not satisfactory. The
resultant color is usually dull, and artifacts like watercolor blurring
and color bleeding remain. We compare these methods to ours in
later section.

Photo Colorization. Several optimization-based methods [Levin
et al. 2004] and learning-based methods [Iizuka et al. 2016; Larsson
et al. 2016; Zhang et al. 2016, 2017b] have been proposed to suc-
cessfully colorize grayscale photos. They can create very realistic
color photos even without known priors. However, these methods
cannot be applied to our sketch colorization application, because
they heavily rely on texture and gradient information existing in the
photos. In our case, both texture and gradients seldom exist. Instead
our goal is to synthesize the texture and shading, in addition to the
color.

3 OVERVIEW

The two-stage framework consists of the drafting and the refinement

stages. Given an input sketch and the initial set of user hints, the
drafting stage is trained to determine the color composition and
predict a color draft with the goal of painting vividly. After that,
the refinement stage identifies incorrect color regions and refines
them with an additional set of user hints. The two models behind
the two stages are trained independently. During the testing phase,

the two stages are connected together to generate the final output.
Fig. 3 illustrates the framework. This two-stage design narrows the
gap between sketch and painting, by dividing the complex coloriza-
tion task into two simpler and goal-clear subtasks, drafting and
refinement. This can simplify the learning and raise the quality of
colorization results. On the other hand, existing single-stage col-
orization methods are less capable of identifying unnatural coloring
and fixing the artifacts, due to the learning difficulty.
To prepare the training data, we use the publicly available Dan-

boroo database [DanbooruCommunity 2018] as the painted im-
ages in training data. The corresponding sketches in the training
data are extracted from the paintings, using the line extractor from
PaintsChainer [TaiZan 2016]. To simulate discrete point-wise user in-
put, we adopt the method described in [Zhang et al. 2017b]. The neu-
ral network models for both the drafting and the refinement stages
are essentially generative adversarial networks (GANs) [Goodfel-
low et al. 2014]. Fig. 3 shows their connection among the stacking
layers and their dimensions. For most of all training, we use the
Adam optimizer [Kingma and Ba 2014] with β1 = 0.9, β2 = 0.99
and lr = 1e − 5. We update weights on the NVIDIA Tesla P100
card till the convergence of the models, with a batch size of 16.
Training samples are randomly cropped into 224 × 224 patches. As
all our models are fully convolutional, the proposed colorization
framework supports arbitrary input size during the testing phase.

4 THE DRAFTING STAGE

In this stage, our deep network model learns to determine the global
color composition of the input sketch and predicts a color draft.
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Fig. 5. Random region proposal and pasting.We randomly extract im-

age pieces and paste them onto the original image, to simulate the color

mistakes. © Senor-G (all images).

The network is not required to produce high-quality results, but it
should follow the user hints and aggressively splash over the sketch
with the goal of enriching the color variety. To achieve this, we
propose a drafting network G to create the color draft prediction
ŷm from the sketch x and the user hints ui . The detailed network
parameters can be found in Fig. 4(a). Note that some other methods
such as PaintsChainer [TaiZan 2016] may also be used to generate
the color drafts. But their technical details are not disclosed. In the
following discussion, we show that our simple and effective drafting
model achieves the state-of-the-art performance, when compared to
other learning-based industrial models, e.g. PaintsChainer, if they
are used for drafting purpose.
For any sketch x and user hints ui , we get the feed-forward

prediction ofG(x ,ui ) as ŷm and optimize the network by optimizing
the loss function (Eq. 1) (λ = 0.01):

argmin
G

max
D
Ex,ui ,yf ∼Pdata(x,ui ,yf )[| |yf −G(x ,ui )| |1+

αL(G(x ,ui )) − λ log(D(yf )) − λ log(1 − D(G(x ,ui )))]
(1)

Furthermore, we introduce the positive regulation loss to encour-
age the color richness of the color draft G(x ,ui ),

L(x) = −

3∑

c=1

1

m

m∑

i=1

(xc,i −
1

m

m∑

i=1

xc,i )
2 (2)

where xc,i is the i-th element on the c-th channel,m is image width
× height. This loss function encourages the increase of the color
variance in RGB space of the generated color draft, making the
model positively generates saturated and bright colors.

5 THE REFINEMENT STAGE

However, the color draft from the previous stage is not ready for
industrial use, as they may contain color mistake and artifact. To
refine the painting, we have to identify the problematic regions

Fig. 6. Random transform.We apply random transform to the image to

simulate the blurry and the distorted colors. The directions of the transform

are marked by red arrows. © Senor-G.

and fix them. Moreover, we need to provide users a precise control
over the local details. To achieve this, we propose another deep
neural model which learns to detect and refine the problematic
color regions. The model reads a new set of user hints to introduce
new colors to the draft. Simultaneously, incorrect colors and artifacts
in the draft are detected and removed.

However, it is difficult to gather proper training samples for our
task. One possible option is to ask experienced artists to help with
refining these color drafts into near-realistic paintings, but this
is tedious and time-consuming. Also, the diversity of the content
cannot be guaranteed. Another idea is to use the prediction directly
from the first stage. However, this approach is not appropriate as
the second stage may be overfitted to some specific types of color
drafts and hence looses its generalization ability. Even worse, using
the results from the previous stage is equivalent to train the two
different stages of the framework jointly. As the two stages are
intentionally designed for different purposes, joint training is not an
option. We demonstrate this in our evaluation and ablation study.
Instead, we introduce an automatic method to synthesize a rich

dataset of {color draft, refined painting} pairs. The synthesis helps
to improve the generalization ability of the refinement model and
teaches the model to refine different kinds of artifacts. To achieve
this, we first summarize the potential artifacts in a color draft. Based
on observation, the major types of artifacts include:

• Color mistakes: mistakenly filled colors such as a blue sun,
green human faces and so on.

• Color bleeding: color leakage to surrounding but irrelevant
regions. For example, the skin color leaks into the background.

• Blurring and distortion: the results are watercolor blurred
with low saturation or the regions are over-textured, messing
up some structural lines.

In the rest of this section, we discuss these artifacts and propose
a novel approach to synthesize a dataset with these artifacts.

5.1 Random Region Proposal and Pasting

To simulate color mistakes, as in Fig. 5, we firstly crop random
rectangular patches from the color images to obtain the pieces. The
sizes of the pieces are uniformly distributed over the range from
64 × 64 to 256 × 256. To increase the randomness and diversity of
color mistakes, we also use region proposal methods to acquire
patches of irregular shapes. The regions are extracted based on
the edge map of the input image. We first calculate the difference
between Gaussian blurred image and the original image. We clip
the results to obtain a sharp and clean edge map. Then we clip the
obtained map, compute the average value of the map and use it as
a threshold to obtain the binarized edge. Finally, we implement a
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Fig. 7. Random color spray. We randomly spray colors to an image to

simulate the color bleeding artifact. The sampling points and paths are

marked in circles and lines. © Senor-G.

trapped-ball segmentation [Hensman and Aizawa 2017] to obtain
the color region mask for extracting the pieces with irregular shapes.
With the combination of these two methods, we extract altogether
10,000 distinct image pieces. We randomly rotate and paste these
pieces to overlay onto the paintings in order to simulate the color
mistake.

5.2 Random Transform

We use the transform to simulate the blurry and the distorted col-
ors, as demonstrated in Fig. 6. Firstly, we generate the randomized
2 × 3 matrix Tθ (G), where all matrix elements θmn are normally
distributed random values in the range [0, 0.12]. Then, we use the
Spatial Transform Layer (STL) as described in [Jaderberg et al. 2015]
to transform images. This transform can blur the local patterns and
add global noises simultaneously.

5.3 Random Color Spray

We simulate the artifact of color bleeding via spraying random colors
over the canvas, as in Fig. 7. Firstly, a random color is chosen from
the image. Then we spray the selected color with a relatively large
spread of randomly selected width r , along several random linear
paths, where r is a value uniformly distributed over the range of
[64,128]. The cross-sectional profile of spray is designed to mimic
the color bleeding. Please refer to the supplemental material for
details of the spray texture.

5.4 Model Optimization

The model architecture and parameters can be found in Fig. 4. We
synthesize the erroneous color draftsym by simultaneously applying
the three methods mentioned above. The sketch x , user hints uii
and the synthesized color draft ym are regarded as inputs, and
ŷf are the outputs. The ground truth painting yf is regarded as
the label. We train our model with mean absolute error (MAE)
and the adversarial loss. We use the pretrained ImageNet [Fei-Fei
2010] inception V1 [Szegedy et al. 2015] as the initial weights of the
encoder for synthesized color draftym . Combining all loss functions,
the final optimization can be written as (λ = 0.01):

argmin
G

max
D
Ex,uii ,ym,yf ∼Pdata(x,uii ,ym,yf )[−λ log(D(yf ))

− λ log(1 − D(G(x ,uii ,ym ))) + | |yf −G(x ,uii ,ym )| |1]
(3)

6 EVALUATION

To evaluate the performance of ourmethod, we first prepare a testing
set. The set consists of 53 real-world sketches from various artists
collected from the internet. The content of the sketches ranges
from human character, animal, plant, to landscape. The test set is
never used in training our model. To avoid similar images appear
in the training data, we go through all testing data and remove top
3 similar training images for each testing image. The similarity is
computed by scaling the testing and training images to the same
size and calculating the Mean Square Error (MSE). These similar
images are all removed from the training session.

6.1 User Interface

For building a more convenient painting environment, we design a
user interface that assists the users to do the two-stage colorization
as in Fig. 2. The user interface includes three canvases, a toolbar, and
a color picker. The three canvases are for input sketch, color draft,
and final result. Different from previous methods, e.g. [Zhang et al.
2017b], our method presents results from the two stages separately
and accepts hint inputs for both stages. In our study, this can speed
up the colorization procedure and improve the user experience. We
discuss more about the design in the later section.

6.2 Visual Comparison

We first visually compare the results from our method to that of
other methods. As some methods are trained with scribble hints
while others are trained with point hints, we manually sample from
a continuous colorization hint and create the proper hint map for
each method. To have a fair comparison, the identical hint maps
are fed to our both stages. Note that, using different hint maps can
further improve the quality of our results.

Color Propagation Methods. We compare our method to TVPaint
11 LazyBrush [Sykora et al. 2009], which is a trapped-ball flood-
filling method based on color propagation and edge detection. Their
results are shown in Fig. 8. We can see the method can only lay
plain colors on the canvas without any spatially varying shading
and texture. Also, as it is based on simple flood-filling, it may cause a
severe color-bleeding problem. For example, the snake in Fig. 8(c) is
unexpectedly filled with solid black color. The headwear of the girl
in Fig. 8(e) exhibits the same problem. In comparison, our method
can generate proper texture and shading according to the user hint,
with much more appropriate filling according to the context.

Learning-based Sketch Colorization Methods. Next, we compare
our method to learning-based colorization methods tailored for
sketches. Firstly, we compare to Comicolorization [Furusawa et al.
2017], an automatic neural model to colorize manga images with no
input hint. It is apparent that their method fails to colorize sketches.
It mainly paints random grayness over the sketches. Next, we com-
pare to the state-of-the-art industrial systems, PaintsChainer (V1 to
V3) [TaiZan 2016, 2017a,b]. Their results are shown in the columns
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Fig. 8. Visual comparison.We compare the colorization results on a simple character (a), a male character with a detailly drawn animal, and (b) a girl in a

dress of complex pattern and fine decoration (d). Note that Comicolorization [Furusawa et al. 2017] is fully automatic and require no user input. For our
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(a) (b) (c)

Fig. 9. Results of automatic colorization. (a) PaintsChainer V2; (b)

PaintsChainer V3; and (c) uurs. No human hints are provided. Zoom for

details. © karen, style2paints.

5 to 7 in Fig. 8. All methods from the PaintsChainer family suffers
from the color bleeding problem. The color of the snake leaks to the
background (Fig. 8(b)) and the color of the girl’s headdress (Fig. 8(e))
leaks as well. Besides, PaintsChainer V1 [TaiZan 2016] has the wa-
tercolor blurry problem. The results are blurry with low saturation
colors. PaintsChainer V2 [TaiZan 2017b] improves the color vivid-
ness but is not satisfactory in generating textures. For example, the
snake in 8(b) is colored with less texture than the previous version.
The hair of the girl in 8(d) is colored with nearly solid colors with-
out fine texture and shading. PaintsChainer V3 [TaiZan 2017a] has
improvement on painting texture and shading to a certain degree,
but the details and lines are distorted. Some detail regions are col-
orized with oversaturated and distorted colors, like the headdress
in Fig. 8(e). In comparison, our method identifies suitable regions
according to the user hint and colorize the regions with the sense
of layering and highlights. In Fig. 8(a,b,d), the hairs and clothes are
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Fig. 10. Results on real-world sketches gathered from our user study. All sketches are from real artists. We use these real-world results to demonstrate

the generalization ability of our model. The squared color hints are from the drafting stage and circular hints are from the refinement stage. © left to right:

kumantang, kumantang, VictoriaDAEDRA (DeviantArt), shinji (DeviantArt), shinji (DeviantArt), Perez, style2paints, kumantang, style2paints.

vividly colored with consistent and smooth highlights and shad-
ows. We show a challenging case in Fig. 8(c), where all existing
methods fail to colorize the head of the snake properly. Our method
successfully colorizes the snake with a clear and mottled texture.
Furthermore, with the refinement stage, our results are free from
the color bleeding problem.

Here, we discuss a special scenario, automatic colorization. Learning-
based colorization methods can colorize without any human input
and is useful when there is no particular preference in colorization,
or the user simply wants to get some inspiration before painting.
In Fig. 9, we present a comparison between PaintsChainer V2, V3
and ours on colorization of male and female characters on auto-
matic colorization. We observe the same color bleeding problem
in Fig. 9(a),(b). Due to the absence of human inputs, we also find
wrong or oversaturated colors in their results. Benefiting from the
refinement stage, our framework has a chance to refine the details
and thus generate visually better results with fewer artifacts, which
are shown in Fig. 9(c).

Image Style Manipulation Methods. Style transfer approaches are
also capable of colorizing sketches by applying styles from the ref-
erence (style) image. In Fig. 12, we present a comparison between
our proposed method to four style transfer methods: neural style
transfer [Gatys et al. 2016], deep image analogy [Liao et al. 2017],
anime sketch colorization [Zhang et al. 2017a], and Comicoloriza-
tion [Furusawa et al. 2017]. From the results, all state-of-the-art style
transfer methods are not satisfactory for sketch colorization. Deep
image analogy tries to apply the color distribution in the style image

but causes incomplete coloring in their results. The method also
exhibits the color bleeding problem. [Gatys et al. 2016] and [Zhang
et al. 2017a] fail to create visually pleasing colorization results be-
cause they basically fill the reference image colors randomly over
the sketches. [Furusawa et al. 2017] performs better by successfully
colorizing the hairs, but it still lacks vivid color and proper shading.
The clothes are mostly ignored during the colorization. In contrast,
our method achieves more reasonable results by color hint sampled
from the style images. Even though our method is semi-automatic
and may not cover all the colors in the style image, our method
still obtains high quality outputs with better obedience to the color
composition of the reference image.
Image-to-image translation methods such as Pix2Pix [Isola et al.

2017] can also translate sketches into paintings. We present a com-
parison between ours and [Isola et al. 2017] in Fig. 13. As demon-
strated, [Isola et al. 2017] can only generate paintings with relatively
low saturation and have the watercolor problem.
The real-time user-guided colorization [Zhang et al. 2017b] fol-

lows the idea of image translation and colorize photos given the
user input. We train the system of [Zhang et al. 2017b] with our
dataset and compare it to ours in Fig. 13. As [Zhang et al. 2017b]
focuses on colorization of natural images, it is not suitable for sketch
colorization, with noticeable wrong colors and severe color bleed-
ing problem. Our results are significantly better in terms of texture
generation and color leak-proofing.
Besides a side-by-side comparison to other methods, we also

demonstrate the robustness of our framework in Fig. 10, by showing
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11. Colorization on various drawing styles. We try to colorize a sketch consisting of abstracted eyes and complex cloth patterns. (a) Input sketch and

user hints; (c) deepcolor; (e,b,d) PaintsChainer V1, V2, V3; and (f) ours. Same hints are used for fairness. © paintschainer [TaiZan 2016] comparison.

Our colorization with hints of colors extracted from images 

Liao et. al. Gatys et. al. Zhang et. al. Furusawa et. al.

style

style

color

picker

color

picker

Fig. 12. Comparison with style transfer methods. © xiaoshou (the con-

tent image), [Liao et al. 2017] (the style images).

a gallery of our results over a rich variety of real-world sketches
including, male and female characters, landscape, animal, flower,
and even imaginary creature. These sketches have different subjects
and drawing styles, but our model can still robustly colorize them.
Fig. 24 shows another gallery of results done by professional artists.
Another challenge in real-world sketches colorization is to un-

derstand various drawing styles. Different artists have different
drawing habit and may draw the same character and object in an
entirely different style. For example, some artists prefer to draw
very detailed and textured eyes, while others prefer only simple
circles to represent eyes (Fig. 11) and intentionally to ignore to draw
the pupil. Such habit is quite common among Asian artists. At the
same time, some artists like to draw complex patterns on the sketch,
which may confuse the neural networks. The diverse drawing styles
increase the difficulty of generating proper texture and gradients.
Fig. 11 shows that our competitors fail to render the color of the eyes
and unable to generate texture over detailed-drawing areas, while
our method can deal with all these complications satisfactorily. Our
robustness is accounted by the introduction of the two-stage design,

(a)

(b)

(c)

Fig. 13. Comparison with generic image translation and photo col-

orization. Results of (a) Pix2Pix [Isola et al. 2017] trained with our dataset;

(b) user-guided colorization [Zhang et al. 2017b] trained with our dataset;

and (c) ours. © Ruoqiyinv-G.

which separates the complex colorization task into two relatively
simpler and goal-clear tasks. This effectively reduces the complexity
of colorization. It allows the refinement stage to focus only on the
refinement of detailed color and texture. The refinement stage also
earns a second chance to improve the output quality. Hence, our
model can robustly handle these tricky drawing.

6.3 User study

We first conduct a user study to validate the effectiveness of our
framework quantitatively. To evaluate the user experience and sat-
isfaction of our model, we invite 10 participants to use our GUI
software in an interactive colorization session. Each participant is
given a simple tutorial and asked to colorize a set of 5 randomly
selected sketches, using our method and three competitors (the
PaintsChainer family). They can use any hints. We also record the
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(a)

(c)(b)

(d) (e)

PaintsChainerV1

(a)

(c)(b)

(d) (e)

PaintsChainerV2

(a)

(c)(b)

(d) (e)

PaintsChainerV3

(a)

(c)(b)

(d) (e)

Ours

0.52

0.42
0.31

0.42

0.37

0.52

0.37 0.30

0.33
0.34

0.62

0.35
0.34

0.39 0.38

0.56

0.70 0.69

0.70
0.78

Fig. 14. Visualization of our user study. (a) Timing; (b) user experience;

(c) regional obedience; (d) color obedience; and (e) visual quality. We here

present the normalized average scores.

time used for colorizing each sketch for each participant. Then a
multi-dimensional survey is conducted (Fig. 14). Five dimensions
of scores in the range of [0,1] are scored by the participants in this
survey. To validate the significance of the difference among different
methods, we also conduct a paired student’s T-test. The results are
shown in Table 1. More details can be found in the supplementary
document.

Visual quality. Participants are asked score their own coloriza-
tion work. To calibrate their scoring, we show them several sample
paintings with scores attached.

Timing.We record the colorization time of every sketch and use
a tailored function described in the supplementary document to
normalize the duration to the scale of [0, 1].

User experience. Next, we ask them to score their user experi-
ence during the colorization process. To calibrate the scoring, we
present them a table of evaluation rules of user experiences.
Regional obedience.Weask the participants to evaluatewhether

a user hint can accurately identify the region to colorize. When mul-
tiple color hints are entered, an effective model should distinguish
and colorize the corresponding regions accordingly. This metric also
implicitly evaluates how well the model can avoid color bleeding
and fusing problems.

Color obedience. This evaluates if the model can accurately
follow the gamut and color tones of the user hints. When the par-
ticipant enters a red hint, an effective model should fill the region
with a bright red color, instead of orange or purple one.

According to the statistics, our results have a better visual qual-
ity and create more vivid paintings than that of the PainsChainer
Family. Moreover, our model is more likely to obey users hint with
significantly less color bleeding problem. One drawback is that our
model consumes more time than our competitors. We believe this is
also due to the effectiveness of our ability in precise coloring control.

1

2

3

4

5 4.77

2.66
2.11

4.22

1.22

Fig. 15. Comparison of regional obedience. We compare the average

ranking of regional obedience among LazyBrush [Sykora et al. 2009], the

PaintsChainer family [TaiZan 2016, 2017a,b], and ours.

(a) (b) (c)input

Fig. 16. Visual comparison of color and regional obedience. (a)

PaintsChainer V2; (b) PaintsChainer V3; (c) ours. In a small and delicate

area, a white color hint is surrounded by three black color hints. Our model

can properly spread the color without introducing color distortion. © Golb

(DeviantArt).

T-test Time UE RO CO VQ

PC1 VS. PC2 0.979 0.474 0.538 0.779 0.62
PC1 VS. PC3 0.201 0.297 0.659 0.580 0.91
PC2 VS. PC3 0.253 0.805 0.236 0.360 0.46
Ours VS. PC1 0.559 0.0001 8e-7 3e-9 1e-9

Ours VS. PC2 0.616 7e-6 2e-8 1e-10 5e-12

Ours VS. PC3 0.357 1e-7 1e-8 5e-10 3e-14

Table 1. Results of the paired student’s T-test. We use paired student’s

T-test to measure whether the differences between methods are significant.

Scores lower than 1e −2 are bolded. UE, RO, CO, VQ refer to user experience,

regional obedience, color obedience and visual quality accordingly.

As our model is more effective in controlling the fine detail coloring,
the participants tend to keep fine-tune the colorization until they
are satisfied. While our competitors are less effective in fine detail
coloring, participants tend to give up earlier, and hence shorter time
in coloring. To illustrate the significance of user hint obedience, we
present a visual comparison in Fig. 16. Both PaintsChainer V2 & V3
fail to follow the user hint. Also, their colorization results are blurry
and are unable to follow the boundaries. In contrast, our method can
distinguish different regions and accurately colorize them according
to the user hint.

To further evaluate the regional obedience, we conduct a separate
experiment dedicated on region obedience. This time we include
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Proposed full method

Jointly training with 

MAE and GAN loss

Stage II trained w/o random spray

Stage II trained w/o random pasting

Stage II trained w/o random 

affine transform

Stage II trained on 

50% stage I prediction 

and 50% simulated drafts

Stage II trained only w/ random 

2D primitives drafts

Full method + random 

2D primitives drafts

Stage I trained w/o 

positive regulation loss

Candidates:

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(A) (B) (C)

(F)

(I)(H)(G)

(D) (E)

(A) 9 1

(B) 2 8

(C) 1 9

(D) 2 8

(E) 2 8

(F) 7 3

(G) 1 9

(H) 6 4

(I) 1 9

Fig. 17. Ablation Study. To seek for a decent training configuration, we train several colorization pipelines with the configurations on the left column. All

involved 90 results can be found in the supplementary material. © Zodiac.

Fig. 18. Correctionwith unnatural colors.We ask users to produce color

draft with unnatural colors (upper row). Without further color hints given

to the refinement stage, our refinement model can automatically correct

the unnatural facial colors. The corresponding final results are shown in the

lower row. © Ravinage.

(a) (b) (c) (d) (e)

Fig. 19. Colorizationwith unnatural colors. If the user insists to colorize

with unnatural color and repetitively provide such color hint in both stages

(d), the model will follow the user hint and generate result as (e). The

squared color hints are from the drafting stage and circular hints are from

the refinement stage. © Ravinage (DeviantArt).

one more competitor, LazyBrush [Sykora et al. 2009] (it is not in-
cluded before as its colorization quality is too bad). The participants
are asked rank all 5 methods in terms of the accuracy of region
obedience. The best is ranked number 1, while the worst is number

(a) (b) (c) (d) (e)

Fig. 20. Impact of the positive regulation loss (PRL). (a) The input; (b)

color draft without PRL; (c) final result without PRL; (d) color draft with

PRL; and (e) final result with PRL. © Henjo.

5. Fig. 15 plots the average ranking scores. Our method achieves the
highest rank in terms of region obedience.

6.4 Discussions and Limitation

Here, we discuss the effectiveness and significance of different com-
ponents of our method.

Positive Regulation Loss. We first demonstrate the significance of
the positive regulation loss (PRL) in our drafting model. Fig. 20 visu-
alizes its effect. Without this regulation, the drafting model tends to
predict the average colors of the dataset, resulting in low-saturation
output. Although the refinement model can remove incorrect col-
ors and refine the details, the global color tone remains dull. The
positive regulation loss helps to improve the color vividness and
diversity in the drafting stage, and leads to richer color composition
in the final results.

Alternatives for Drafting. As mentioned above, the drafting model
of our colorization framework can be replaced by existing coloriza-
tionmethods. Here, we utilize the three generations of PaintsChainer
(V1-V3) to replace our drafting model, and form three alternative
combinations, (PaintsChainerV1 + our refinement), (PaintsChain-
erV2 + our refinement), and (PaintsChainerV3 + our refinement).
To evaluate the performance of such combinations, we visually
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Sketch&

scribble hints

PaintsChainerV1 

(scribble hints)

PaintsChainerV2 

(scribble hints)

PaintsChainerV3 

(scribble hints)

Sketch&

point hints

PaintsChainerV1 + 

Refinement model

PaintsChainerV2 + 

Refinement model

PaintsChainerV3 + 

Refinement model
Ours

Fig. 21. Results of combining existing colorization model and our refinement model. PaintsChainer v1-v3 can replace our drafting model and work

together with our refinement model, to achieve closer performance as our proposed model. © xNamii, xueshiwang.
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Fig. 22. Time used for colorization with different UI settings. #1-#8

are 8 different sketches.

compare them to ours in Fig. 21. Thanks to the robustness of our
refinement model, all three combinations can achieve comparable
performance as our original model. Both hair and the body in these
results are properly shaded, with only slight difference in colors.
We also conduct a user study of ranking of different combinations.
The result (Fig. 23) also confirms such comparable performance. All
combinations are much closer to our model in ranking. This is be-
cause PaintsChainer V1 - V3 also try to improve the color vividness
and diversity, but just not quite able to refine the details and fix
incorrect coloring. While the PaintsChainer family has not disclosed
its technical details, our drafting model is revealed in this paper, and
reproducible. Through this experiment, we also find that our refine-
ment model can be executed independently as a color refinement
tool, and cope with other existing colorization methods to achieve
high-quality results.

Training Configurations. Given the unstable nature of GAN train-
ing and the complexity of our color draft simulation, a decent train-
ing configuration is critical to produce high-quality results. To study

PC1 + RM

1

2

3

4 3.88

PC2 + RM PC3 + RM Ours

2.22 2.0 1.89

Fig. 23. Average ranking of the alternative combinations. łPCž refers

to PaintsChainer, while łRMž refers to our refinement model.

the contribution of each component in the training pipeline, we
perform an ablation study to evaluate 9 different training configura-
tions.

These configurations include leave-one-out tests
and those specially designed experiments. In par-
ticular, to evaluate the importance of data prepa-
ration techniques in the refinement stage training,
we introduce another baseline method by simu-
lating color mistakes using simple 2D shape prim-

itives (such as ellipses, triangles, and boxes, as in the embedded
figure) of random colors. We also test with joint training configura-
tion, and refinement stage training with 50% of drafting stage output.
A complete list of the training configurations are listed in the left
panel of Fig. 17. To evaluate the performance of each configuration,
we ask 7 participants to colorize 10 sketches. Participants get the
visual feedback from all configurations and stop the colorization
once they find any satisfying results. We ask the participants to
answer if the colorization is acceptable and gather the statistics for
each configuration. The final score is shown in the right subfigure
of Fig. 17. More study details are revealed in the supplementary
document.

According to the result, configurations A, F and H receive much
more preference than others. The preferred configurations all en-
sure the diversity of simulated mistakes when preparing training
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Fig. 24. Colorization results by professionals. Squared color hints are from the drafting stage, while circular color hints are from the refinement stage. ©

wuse (huaban), arinacchi (twitter), style2paints, kumantang.

examples. On the other hand, if some components of the training are
missing, the model may lose its ability to detect mistakes and finally
result in color bleeding or distortion problems. We also find that,
although simulating mistakes with only 2D primitives is simpler, its
performance in fixing artifacts is not satisfactory, as demonstrated
in Fig. 17(G). In addition, this simple 2D primitive simulation pro-
vided seems not only ineffective in improving the performance,
but instead deteriorate a bit the performance, as demonstrated in
Fig. 17(H) and (A).

Effectiveness of Correcting Colors. To validate the effectiveness of
the color refinement in the second stage, we ask our participants to
create incorrect color drafts with unnatural input to test its robust-
ness of the color mistake recognition and correction. As shown in
Fig. 18, our model can correct all unnatural colors to obtain a more
sensible result. On the other hand, our model also allows users to
create unnatural colors if they insist. If the unnatural skin color is
given in both stages, the user hint can override the auto-correction
and the region is colorized as user instructed, as in Fig. 19.

Effectiveness of Two-Stage User Interface. We believe the two-stage
UI design gives the user a chance to edit global color tone and local
color details simultaneously, and hence shortens the overall coloring

time. To validate the significance of this two-stage UI design, we
conduct a user study and ask our participants to colorize 7 randomly
selected sketches with different UI settings. The results are shown
in Fig. 22. We can see that the two-stage design helps to speed up
the coloring process. Please refer to the supplementary document
for more experimental details.

Limitations. When the sketch is very complex, messy or distorted,
our method may fail to incorrectly identify image features as mis-
takes, and get confused in coloring these regions. For example in
Fig. 25, our model occasionally tries to change some proper colors
or user hints to incorrect colors. Another limitation of our method is
that the color propagation is not strictly constrained as in statistical
methods like LazyBrush [Sykora et al. 2009]. This can sometimes
lead to the slight diverge from the user hint in the final results.

7 CONCLUSION

In this paper, we introduce a two-stage learning-based framework
for sketch colorization. The two-stage effectively breaks down the
complex colorization into two relatively simpler and goal-clear
stages, drafting and refinement. This both reduces the learning
difficulty and raises the quality of the final colorization results. Our
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Sketch&

point hints

Sketch&

scribble hints

PaintsChainerV1 

(scribble hints)

PaintsChainerV2 

(scribble hints)

PaintsChainerV3 

(scribble hints)

Ours 

(point hints)

Fig. 25. Limitation. Our model gets confused when the content of the sketch is very complex, uncommon, and messy. In this example, the model fails to

recognize the content of the sketch and rejects some proper coloring, even the user hint are given. © style2paints.

colorization system and results achieve the state-of-the-art user
experience and visual quality. The proposed refinement model can
work independently as a color refinement tool to fix/refine the
colorization results of other colorization models. We believe this
drafting+refinement approach can inspire further study along this
direction in the generative modeling of sketch/painting.
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