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ABSTRACT

The lack of information provided by line arts makes user guided-

colorization a challenging task for computer vision. Recent contri-

butions from the deep learning community based on Generative

Adversarial Network (GAN) have shown incredible results com-

pared to previous techniques. These methods employ user input

color hints as a way to condition the network. The current state of

the art has shown the ability to generalize and generate realistic

and precise colorization by introducing a custom dataset and a new

model with its training pipeline. Nevertheless, their approach relies

on randomly sampled pixels as color hints for training. Thus, in

this contribution, we introduce a stroke simulation based approach

for hint generation, making the model more robust to messy inputs.

We also propose a new cleaner dataset, and explore the use of a

double generator GAN to improve visual fidelity.

CCS CONCEPTS

· Computing methodologies → Reconstruction; Image pro-

cessing; ·Applied computing→Media arts; ·Human-centered

computing → User studies.
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Figure 1: PaintsTorch guided colorization on line art.

PaintsTorch takes two inputs: a grayscale lineart and a color

hint. It outputs a colored illustration following the color

hints and prior knowledge learned from a custom illustra-

tion dataset.

1 INTRODUCTION

Line Art colorization plays a critical part in the artists, illustrators

and animators work. The task is labor intensive, redundant, and

exhaustive, especially in the animation industry, where artists have

to colorize every frame of the animated product. The process is

often executed by hand for traditional animation or via the use of

image editing software such as Photoshop, PaintMan, PaintToolSai,

ClipStudio, and Krita. Therefore, one can see automatic colorization

pipelines as a way to improve the artist’s workflow, and such a

system has recently been implemented into ClipStudio.

Automatic user-guided colorization is a challenging task for com-

puter vision as black and white line arts does not provide enough

semantic information. As colorization represents an essential part

of the artist process, and directly influences the final art piece, au-

tomatic approaches require to produce aesthetically pleasing and

consistent results while conserving enough texture and shading

material.
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Previous contributions from the deep learning community have

explored image colorization [Ci et al. 2018; Frans 2017; Furusawa

et al. 2017; Hensman and Aizawa 2017; Liu et al. 2017; Networks

2017; Sangkloy et al. 2016; Zhang et al. 2017a,b]. While first works

focused on user-guided gray scale images colorization [Furusawa

et al. 2017; Hensman and Aizawa 2017; Zhang et al. 2017b] and could

not handle sparse inputs, others explored color strokes colorization

[Frans 2017; Liu et al. 2017; Sangkloy et al. 2016]. Nevertheless, none

of these methods yield suitable generalization on unseen images

nor generate pleasing enough images. More recent works addressed

these issues and enabled for the first time the use of such pipelines

in production environments, providing qualitative results [Ci et al.

2018; Networks 2017]. The current state of the art [Ci et al. 2018]

introduced a new model and its training pipeline. The authors also

stated that, based on a previous paper, randomly sampled pixels to

generate color hints for training is enough to enable user strokes

input for inference. One issue is that this statement is based on gray

scale images colorization [Zhang et al. 2017b], a task close yet far

enough from the one of line art colorization.

Our contributions include:

• The use of stroke simulation as a substitute for random pixel

sampling to provide color hints during training.

• The introduction of a cleaner and more visually pleasing

dataset containing high-quality anime illustration filtered

by hand.

• The exploration of a double generator GAN for this task pre-

viously studied by contributions for multi-domain training.

The name "PaintsTorch" has been chosen to refer to this work.

"Paints" stands for painting and "Torch" for the Pytorch deep learn-

ing framework. The name analogous by the "PaintsChainer" tool

[Networks 2017], where "Chainer" refers to the Chainer deep learn-

ing library.

2 RELATED WORK

As previous works in the literature has exhaustively described

none deep learning based approaches, these are not explained in

this paper. Nowadays, deep learning approaches to the line art

colorization problem have shown to be the trend and outperform

previous methods.

2.1 Synthetic Colorization

Previous works have studied gray scale mapping [Furusawa et al.

2017; Hensman and Aizawa 2017; Zhang et al. 2017b]. It usually

consists of trying to map gray scale images to colored ones using a

Convolutional Neural Network (CNN) or a generative model such

as GAN [Goodfellow et al. 2014]. By using high-level and low-level

semantic information, such models generate photo-realistic and

visually pleasing outputs. Moreover, previous works also explored

direct mapping between human sketches and realistic images while

providing a way to generate multiple outputs out of one sketch.

However, as explained before, semantic information for black

and white line art colorization is not conceivable, and these models

do not explore all the entire output space.

2.2 Generative Adversarial Network

GAN models [Goodfellow et al. 2014] are responsible for successful

contributions in computer vision generation tasks such as super-

resolution, high-definition image synthesis, image inpainting, and

image denoising [Johnson et al. 2016; Kupyn et al. 2017; Ledig et al.

2016]. This architecture has often been described as one of the most

beautiful ideas of the deep learning field. It consists of training

two networks against each other, one being a discriminative model

and the other a generative one. Hopefully, at some point, the dis-

criminator is fooled by the generator, and we consider the model

trained.

While being able to generate good quality results, the vanilla

implementation of GAN [Goodfellow et al. 2014] suffers from mode

collapse, vanishing gradient issues, and others. Improvement of the

former model has been discussed in the literature introducing a

gradient penalty [Gulrajani et al. 2017] and a new loss based on the

Wasserstein-1 distance [Arjovsky et al. 2017]. When conditioned

on external information such as class labels, the model referred

to cGAN [Mirza and Osindero 2014] can generate higher quality

output as well as enabling natural controls on the generator.

The current state of the art for user-guided line art colorization

[Ci et al. 2018] used such a model referred to cWGAN-GP to obtain

their results. As well as introducing a deeper model compared to

previous work, they introduce the use of a local feature network

described in Section 3.3, thus providing semantic like information

to the generator and the discriminator models. Furthermore, Their

method manage to train a GAN with training data, illustrations,

different from the inference one, line arts.

2.3 Double Generator GAN

The task of cross-domain training has been studied by previous

works such as StarGAN [Choi et al. 2017] and DualGAN [Tang

et al. 2019]. StarGAN translates an image to another domain using

one generator inspired by the classical image-to-image GAN .[Isola

et al. 2016] As their work handle discrete labels as target domains,

our work considers hint matrices and features vector from a local

feature network as continuous labels. This capacity is essential to

the artistic field.

DualGAN goes a step further and introduces a double Generator.

Their first Generator is used for translation and their second one

for reconstruction. The two generators share only a few parameters.

As this contribution allows better visually perceptive results, we

consider the approach interesting enough to be explored for the

task of line art colorization.

3 PROPOSED METHOD

All the models presented in the paper are trained following the next

instructions. In Section 3.1 we describe the dataset used for training

and evaluation, Section 3.2 the prepossessing pipeline, Section 3.3

the model architecture, Section 3.3 the loss used to train the models,

and Section 3.5 the training process.

3.1 Dataset

As stated by the current state of the art, datasets for colorization

are available on the web. However, if we consider two of the most

known and large datasets, Nico-opendata [Furusawa et al. 2017;
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Figure 2: The illustration describes the entire transformation pipeline of the model’s inputs. The pipeline outputs a lineart

and corresponding color hint image from an input illustration. The process can be applied to any given illustration dataset.

Table 1: The Table describes the dataset composition. The

Paper Line Arts and Paper Colored lines refer to the dataset

of the current state of the art while the Ours Colored refers

to our image dataset adding up to the Total.

Source Images

Paper Line Arts 2 780

Paper Colored 21 931

Ours Colored 21 930

Total Colored 43 861

Total 43 641

Ikuta et al. 2016; Kataoka et al. 2017] and Danbooru2017 or Dan-

booru2018 [Anonymous 2019], they both contain messy illustra-

tions, and line arts are mixed with colored illustrations. In this sense,

Ci et al. [Ci et al. 2018] gathered their custom dataset containing

21 930 colored illustrations for training and 2 780 high-quality line

arts for evaluation.

Nevertheless, after investigation, we found images that cannot

be qualified as illustrations, and the quality of the paintings is not

consistent over the entire set of colored images. To this end, we

collected a custom training dataset composed of 21 930 consistent,

high-quality anime like illustrations. These illustrations have been

filtered by hand to ensure some subjective quality standards. On

the other hand, the line art set used for evaluation is not subject to

these critics. The exact composition of the dataset can be found in

Table 1.

3.2 Preprocessing

3.2.1 Synthetic Line Art. Illustrations do not often come with their

corresponding high-quality line arts. To counter this issue, previ-

ous works use synthetics line arts to train their model. To generate

high-quality fake line arts out of colored illustrations, Extended Dif-

ference of Gaussians (xDoG) [Winnemöller et al. 2012] has proven

to be one of the best methods. xDoG produces realistic enough

sketches as it can be observed in Figure 3. In this work, we use the

same set of parameters as the previous state of the art: γ = 0.95,

ϕ = 1e9, k = 4.5, ϵ = −1e−1, σ ∈ {0.3; 0.4; 0.5}.

Figure 3: xDoG fake line art on the left generated out of the

illustration on the right with parameters described in Sec-

tion 3.2.1 and σ = 0.4

3.2.2 Simulated Hint Strokes. As mentioned, the current state of

the art [Ci et al. 2018] stated that randomly sampled pixels hint

during training is enough to enable natural interaction using user

strokes as input for inference. Their assumption is based on Zhang

et al. contribution [Zhang et al. 2017b] which deals with gray scale

image colorization. As their problem is not entirely the same, we

explored the use of simulated strokes as a substitute for hint gener-

ation.

We simulated human strokes using the PIL drawing library with

a round brush. To this end, we define four parameters: the number

of strokes nstrokes ∈ [0; 120], the brush thickness tbrush ∈ [1; 4],

the number of waypoints per stroke npoints ∈ [1; 5] and a square

of widthwranдe ∈ [0; 10] which defines the range of movement of

one brush stroke. By doing so, we aim to make the model robust

to messy user inputs. An example of a brush stroke simulation

generated from an illustration can be found in Figure 5.

3.2.3 Model Inputs Transformations. To be handled by the deep

learning model, all inputs are preprocessed and follow certain trans-

formations. First, the illustration input is randomly flipped to the
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Figure 4: The Figure shows the Generator and Discriminator Convolutional Neural Network architectures. Both are composed

of ResNet Xt Blocks (violet) and Pixel Shuffle Blocks (orange). The Generator uses residual connections in the form of a UNet.

Figure 5: Example of a simulated brush stroke hint on the

right generated from the left illustration left. The strokes

are supposed to represent a normal usage of the software.

Their density and thickness varies randomly to make the

model more robust int its usage.

left or the right. Then, the image is scaled to match 512 pixels on

its smaller side before being randomly cropped to a 512 by 512

pixels image. The obtained resized and cropped illustration is then

used to generate the synthetic gray scale line art (512x512x1). The

same transformed illustration is then resized to a 128 by 128 pixels

and used to generate a stroke simulated hint and its corresponding

black and white mask to finally obtain the hint image used for

training (128x128x4). All pixel data except the one coming from

the black and white mask is normalized with an [0.5,0.5,0.5] std

and mean, and the mask is normalized to map the [0;1] range. The

entire transformation pipeline can be observed in Figure 2.

3.3 Model

Regarding the model architecture, the GAN we used is similar to

the one used by Ci et al. [Ci et al. 2018]. This model is shown in

the Figure 4 but a more detailed explanation of the model can be

found in their paper. The Generator G1 is a deep U-Net model

Figure 6: The illustration describes the overall model archi-

tecture from a higher perspective. Arrows describe the path

of the data through the models to the losses. The colors al-

low distinguishing between each path and each piece of the

architecture. Green arrows refer to connectionswith the loss

modules, plain blue ones for the inputmodules, red ones for

the generators, and violet for the discriminator.

[Ronneberger et al. 2015] composed of ResNetXt [He et al. 2015]

blocks with dilated convolutions to increase the receptive field of

the network. LeakyReLU [Xu et al. 2015] is used as activation with

a 0.2 slope except for the last layer using a Tanh activation. The

Discriminator is inspired by the SRGAN one but upgraded with

the same kind of blocks as the generator without any dilation and

using more layers. They also introduced the use of a Local Feature

Network F1. This network is an Illustration2Vec [Saito and Matsui

2015] model able to tag illustrations. These tags are passed through
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the Generator and the Discriminator along with the hint image as

a way to condition and give semantic information to the GAN.

Our contribution introduces the use of a second Generator G2

using the same architecture as G1. This second Generator is re-

sponsible for the generation of a synthetic line art out of the fake

illustration inferred by the first one. This kind of approach has been

used for cross-domain training [Tang et al. 2019]. By doing so, we

aim for improving the overall perceptive quality of the generated

illustration as well as giving G1 further insight and better training

objective. A schematic of the whole architecture can be found in

Figure 6.

3.4 Loss

As indicated in Ci et al. paper [Ci et al. 2018], the loss functions are

a combination of all GAN’s improvements described earlier in the

paper. We want the second Generator to back propagate its signal

to the first one, so we add a new term to the Generator loss, which

relies on a simple MSE. In this Section, we describe each loss used

to train the model.

First, we define the global Generator loss as a combination of

three components: a content component, an adversarial one, and a

reconstruction one.

LG = Lcont
︸ ︷︷ ︸

content loss

+ λ1 .Ladv
︸     ︷︷     ︸

adv loss

+ Lr econ
︸  ︷︷  ︸

recon loss
︸                                     ︷︷                                     ︸

total loss

(1)

The adversarial part is computed thanks to the local feature

network F1 used as conditional input, and WGAN-GP [Gulrajani

et al. 2017] used to distinguish fake examples from real ones. The

component is weighted by parameter λ1 = 1e−4

Ladv = −EG1(X ,H,F1(X ))∼Pд [D(G1(X ,H ,F1(X )),F1(X ))] (2)

A perceptual loss is used for the content loss, which relies on

an L2 difference between generated output and target CNN feature

map coming from the fourth convolution activation of a pretrained

VGG16 [Simonyan and Zisserman 2014] on ImageNet [Deng et al.

2009].

Lcont =
1

chw
∥F2(G1(X ,H ,F1(X ))),F2(X )∥22 (3)

The loss signal we call reconstruction loss describes the ability

of generator G2 to produce a fake line art out of the fake illustration

generated by G1 as close from the xDoG synthetic line art used for

training. As the output does not contain multi-channel information,

the difference is computed with a mean squared error.

Lr econ = MSE [G2(G1(X ,H ,F1(X )),H ,F1(X )), X ] (4)

Concerning the Discriminator loss, it is a combination of the

Wasserstein loss and the penalty loss.

LD = Lw
︸︷︷︸

critic loss

+ Lp
︸︷︷︸

penalty loss
︸                    ︷︷                    ︸

total loss

(5)

The critic loss is described in the WGAN paper [Arjovsky et al.

2017].

Lw = EG1(X ,H,F1)∼Pд [D(G1(X ,H ,F1(X ))),F1(X )]−

EY∼Pr )[D(Y ,F1(X )))]
(6)

The penalty term, as described in the current state of the art [Ci

et al. 2018], is composed of two components, a penalty term and

an extra constraint from Karras et al [Karras et al. 2017] The two

parts are weighted by parameters λ2 = 10 and ϵdr if t = 1e−3.

Lp = λ2 . EŶ∼Pr
[(

∇

Ŷ
D(Ŷ ,F1(X )),F1(X )]



2
− 1)2]+

ϵdr if t . EŶ∼Pr
[D(Y ,F1(X ))2]

(7)

Table 2: The Table compares the FID of multiple models

trained over 100 epochs. [Paper] refers to the colored images

used for training by Ci et al. [Ci et al. 2018], [Custom] to the

images dataset we collected, and [Custom + Paper] to the

combination of both. Lower value is better. STD stands for

standard deviation to the mean.

Model and Options FID STD

(Paper) Random, Simple 104.07 0.016

(Paper) Strokes, Simple 68.28 0.048

(Paper) Strokes, Double 83.25 0.019

(Custom) Random, Simple 82.23 0.022

(Custom) Strokes, Simple 64.81 0.035

(Custom) Strokes, Double 65.15 0.006

(Custom + Paper) Strokes, Double 75.71 0.032

Table 3: The Table compares the FID of our model trained

over 100 epochs for different batch sizes: 4, 16, and 32. A

higher batch size returns lower FID values. Lower value is

better. STD stands for standard deviation to the mean.

Batch Sizes FID STD

4 74.53 0.003

16 64.35 0.061

32 65.15 0.006

3.5 Training

The models are trained on an Nvidia DGX station using four V100

GPUs with 32Go of dedicated RAM each. The ADAM optimizer

[Kingma and Ba 2014] is used with parameters: learning rate α =

1e−4 and betas β1 = 0.5, β2 = 0.9. The same training pipeline as

previous work has been applied. One gradient descent step is first

applied to train the Discriminator D, then to train Generator G1

and finally G2. For comparison, all models have been trained for

100 epochs. However, the final one is trained on 300 epochs.



CVMP ’19, December 17–18, 2019, London, United Kingdom Yliess et al.

4 RESULTS

In our contribution, we trained and experimented different model

pipelines. To evaluate and compare these models, we realized mul-

tiple evaluations. In this Section, we describe our results.

4.1 FID Evaluation

Figure 7: The graph compares the FID on a logarithmic scale

of every model trained over 100 epochs.

Figure 8: The graph compares the FID on a logarithmic scale

for different batch size, 32, 16 and 4 over 100 epochs.

Peak Signal-to-Noise Ratio (PSNR), as stated by Ci et al. [Ci et al.

2018], does not assess joint statistics between targets and results.

Moreover, our dataset does not provide colored illustrations with

their corresponding line arts. In that sense, measuring similarities

between the two data distributions, synthetic colorized line arts,

and authentic line arts is more appropriate to evaluate the model’s

performances. The FID can measure intra-class dropping, diversity,

and quality. A small FID means that two distributions are similar.

The FID evaluation is performed the same way as Ci et al. [Ci

et al. 2018] between the colored illustrations train set and the line

arts test set. It extracts features from intermediate layers of a pre-

trained Inception Network to model the data distribution using a

Multivariate Gaussian Process.

Results of the FID evaluations can be found in Tables 2, 3 and

Figures 7, 8. This objective evaluation allows us to infer some insight

about the different model training pipelines we tried during our

experimentation. Stroke simulation, instead of randomly sampled

pixels for hint generation provides the most notable positive impact

on the FID value. The overall quality improvement of the training

illustrations also yields better results. Though, we cannot deduce if

the double generator visually improves the output with this kind of

evaluation as art is a completely subjective matter. Finally, greater

batch size does not have that much of an impact on the FID value,

but allows faster training.

Table 4: The Table describes the MOS for every model we

compared in our study. PaperRS stands for current state

of the art illustration data with randomly sampled pixels

and one generator, CustomSS for our illustration data with

stroke simulation with one generator and CustomSD for

double generator. STD stands for Standard Deviation to the

mean

Model MOS STD

PaperRS 1.60 0.85

CustomSS 2.95 0.92

CustomSD 3.10 1.02

4.2 MOS Evaluation

It is generally challenging to evaluate art results as the artistic

perception is different for every person, and the FID is not good

at assessing the model’s quality in this context. Thus, as previous

works did, we also conducted a MOS evaluation of the different

model’s pipelines. This evaluation aims at quantifying the recon-

struction of perceptually convincing line art colorization. To do

so, we asked 16 users to score synthetic illustrations between one

and five corresponding to bad quality and excellent quality. The

evaluation is composed of 160 randomly selected line art from the

validation set. Corresponding hint images have been created by

hand by non-professional users and used to generate 160 corre-

sponding illustrations for each of the three models we compared.

Thus, the overall number of images to rate per user is 480. Examples

of the illustrations shown to the users are available in Figure 10.

Our results show in Table 4 and Figure 9 that our models are

perceptively better when compared to the previous state of the

art. We realized a unilateral Student test with a significance level

α = 0.001 to compare the MOS mean of our model to the current

state of the art with a sample size n = 16. We obtained a t value

of 4.525, approximately equivalent to a p −value inferior to 0.001.

Statistically, our study validates that our contributions improve the

model described by Ci et al. [Ci et al. 2018]. This evaluation score

also allows us to conclude on the use of a double generator. The
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Figure 9: The heatmap compares the MOS ratings for every

model we study. PaperRS stands for current state of the art

illustration data with randomly sampled pixels and one gen-

erator, CustomSS for our illustration data with stroke simu-

lation with one generator and CustomSD for double genera-

tor.

dual generator seems to slightly improve the illustration quality

and provides higher contrast with misplaced colors.

4.3 Visual Improvements

The differences in our approach results in visibly perceptive im-

provements. As it can be observed in Figure 11, training the models

using simulated strokes improves the general ability to fill the inner

part of forms as well as allowing the user’s inputs to be messier.

When the user’s strokes exceed the outer part of the area slightly,

the current state of the art fails at capturing the user’s will only to

fill the inner part. As shown in Figure 11, color gradients are also

visually more pleasant using our contribution.

5 APPLICATION

In this Section, we discuss the possible use of this kind of application

and the web app we developed to ease the experiments.

In order to use the models, we developed a web application to

allow real-time user interactions with our contribution with simple

tools such as a brush pen, an eyedropper, and an eraser with various

brush sizes. Visual of the app can be found in Figure 13. It has been

created using a dockerized flask rest API to serve the PyTorch mod-

els on the DGX station we used for training. The web application

performs API calls each time the user’s touch to the canvas end. To

ease the production of the Figures for this contribution, and allow

users to share their creations, we also provide some tools to save

the illustration and the hint.

As shown in Figure 15, this kind of tool can be included in an

artist’s workflow saving time and providing new types of creativity.

While the contribution can be useful to professionals illustrators, it

can also leverage the power of digital colorization to the beginners

through natural interaction. As it can be used for finalized art pieces,

it is also a way to prototype quickly. The field of animation could

also benefit from this kind of application if the model can allow

temporally stable outputs.

6 LIMITATIONS

PaintsTorch enables natural interaction when painting illustrations.

Even though our solution provides visually pleasing colored illus-

trations, it sometimes fails to some extent.

When too many strokes are included in the hint image, or when

colors are highly saturated, the network tends to produce artifacts,

as Figure 14 shows. These artifacts can be the result of the dataset

color distribution. It could be resolved by introducing data augmen-

tation on the source and hint images such as changing the hue,

saturation, and contrast, but also by allowing more strokes per hint

map in the stoke simulation.

Moreover, in some cases, our network does not always apply the

exact same colors as the given ones. As it can be observed in Figure

15, it failed to capture the artist’s intent to make the eyes pinkish.

Finally, our pipeline does not use any layer system like painting

software such as Photoshop, Krita, and others do. Digital artists

usually work with multiple layers. Some are used for the sketch,

others for the lineart, and colors. PaintsTorch only delivers a final

illustration, including the lineart. The colors cannot be separated by

the artist afterward and force him to paint directly on the produced

colored illustration.

7 CONCLUSION

Guided line art colorization is a challenging task for the computer

vision domain. Previous works have shown that deep learning

yield better results than previous methods. In our contribution,

we propose three changes that can improve the current state of

the art’s results. Our first contribution is the introduction of stroke

simulations as a way to replace random pixels activation to generate

the hint used for training. Our second contribution is the use of a

custom, high resolution, and quality controlled dataset for training

illustrations. Our third contribution is the exploration for the use

of a second generator, which is in charge of generating synthetic

lines art based on the produced artificial illustrations. These three

contributions, as the study shows, allow for improved perceptive

results compared to previous works.

Our results allow to produce quality illustrations on unseen line

arts and the used of different input stroke sizes. However, the model

still suffers from small artifacts. Moreover, it does not always seem

to use the exact color information provided by the user’s hints. The

model could also provide increased robustness to thinner or thicker

line arts and color strokes by changing few training parameters.

One extension of this work could be studying the impact of

using a more massive and diversified dataset. We are also planning

to make the model stable temporally to be used for animation

purposes.
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Figure 10: The illustrations shows examples generated from our contribution model using the line art on the left and the hint

in the middle.

Figure 13: The Figure is a screen-shot of the web app envi-

ronment created to use our model. On the left, there is a

tool bar with a color selector, an eyedropper, a pen, an eraser,

and sizes for the brush. On the right the tool bar allows to

import a line art, save the colored illustration and save the

hint canvas. The top right tool box is used to select a model

to use. These models are the one described in the study. The

left canvas is the one the user can draw onwhereas the right

one displays the illustration results.

Figure 14: The illustration shows the appearance of artifacts

on the output image of our model in the presence of highly

saturated colors or densely populated hint images.

Figure 11: The illustrations compare the previous state of

the art (top) to our results (bottom) in coloring a 3 simple

tasks: filling a circle without hint, filling a circle with on the

edge brush stokes, and performing gradients using messy

inputs.



PaintsTorch CVMP ’19, December 17–18, 2019, London, United Kingdom

Figure 15: The Figure is a representation of how an artist would naturally embed our contribution in his workflow.

Figure 12: The illustrations shows the differences between

PaintsChainer and our model when the brush strokes are

thin versus when the hint is made out of thicker strokes.

time to participate to our study, and the Pytorch team for provid-

ing such a useful and accessible framework for deep learning on

multi-GPU machines.
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