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Abstract. The progress of artificial intelligence is reaching a point
that some research questions that were only relevant for human and
other animal agents are becoming relevant for artificial agents as
well. One of those questions comes from human intelligence research
and is known as Spearman’s Law of Diminishing Returns (SLODR).
Charles Spearman, the father of factor analysis and the g factor (a
dominant factor explaining most of the variance in cognitive tests for
human populations), observed that when the analysis was restricted
to the subpopulation of most able subjects, the relevance of this dom-
inant factor diminished, as if the power of general intelligence were
saturated or not fully used by the most able individuals. In about a
century, there have been numerous theoretical explanations and ex-
periments to confirm or reject Spearman’s hypothesis. However, all
of them have been based on human or animal populations. In this
paper, we analyse for the first time whether the SLODR makes sense
for artificial agents and what its role should be in the analysis of
general-purpose AI. We use a synthetic scenario based on modified
elementary cellular automata (ECA) where the ECA rules work as
tasks and the population of agents is generated with an agent policy
language. Different slices of the population by ability and of the tasks
by difficulty are analysed, showing that SLODR does not really ap-
pear. Indeed, even if very slightly, we find the reverse, i.e., that more
correlation takes place for more able subpopulations, what we con-
jecture as the Universal Law of Augmenting Returns (ULOAR).

1 INTRODUCTION

While more and more specific applications are being successfully
solved by AI systems, the field is also progressing in the development
of systems that are able to solve a wider range of problems, usually
after a long training. Reinforcement learning [49], cognitive develop-
mental robotics [6] and machine learning in general incarnate —or
are integrated into— autonomous agents that solve a range of tasks.
Some recent developments have displayed significant performance in
a variety of tasks, at least in some domains. For instance, [39] com-
bine reinforcement learning and deep learning to attempt a diverse set
of Atari 2600 videogames. Although the system has to relearn from
scratch when the game changes slightly, it is still a general-purpose
technique, which can be evaluated for a range of tasks.

Despite the great number of competitions in AI for particular ap-
plications, some competitions and benchmarks are also moving in
the direction of more general-purpose systems (see [23]for a full ac-
count). These include the general game playing AAAI Competition
[17, 18], the reinforcement learning competition [54, 10] (includ-
ing, e.g., the ‘polyathlon’, with several domains), the genetic pro-
gramming benchmarks [38, 53], the general video game competition
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[43, 42], and the arcade learning environment [2, 43] (including the
Atari 2600 videogames mentioned above).

However, there are some questions that arise when one considers a
wide range of tasks, both when designing systems to behave well for
them or when designing tests to evaluate these systems. This discus-
sion is especially controversial when one wants to consider all possi-
ble tasks. On one hand, if one considers every possible problem’s out-
put as equally likely (technically known as “block uniformity” [29],
with the uniform distribution being a special case) then we have the
conditions for the so-called no-free-lunch theorems [57, 56], leading
to the conclusion that, on average, no method can be better than any
other. According to this, a general-purpose system and, indeed, the
very concept of ‘general intelligence’ would be impossible [14]. On
the other hand, if one considers problems as programs, then a uni-
form distribution is not possible. Instead, any universal distribution
can be assumed, which leads to the theory of universal prediction
using algorithmic probability developed by Solomonoff in the 1960s
[44, 45]. This has influenced several approaches based on algorithmic
information theory about how tasks can be generated and weighted
in definitions of intelligence [11, 19, 33, 25, 13, 30] and how theo-
retically general agents can be defined [28], only if weakly optimal
or suboptimal in general [41, 34]. Nevertheless, the idea of general
intelligence makes sense theoretically in this context: some agents
can be better than others in general.

The experimental and theoretical analysis of AI agents that are de-
vised and evaluated for a range of tasks has led to an approaching
to some similar ideas from the area of human intelligence evalua-
tion. The use of IQ tests for the evaluation of AI systems has been
advocated for by some [5, 4] but it has been criticised by others for
being anthropocentric [12, 27]). But other concepts and tools from
psychometrics, such as item response theory and the use of task dif-
ficulty to analyse the landscape of problems, are being vindicated in
artificial intelligence as well, under the term universal psychomet-
rics [26, 24]. In fact, one of the problems of the use of a universal
distribution of tasks for defining the general problem of intelligence
can be addressed differently if one considers a uniform distribution
of difficulties, a uniform distribution of policies per difficulty with
finally leaving the universal distribution to the conditional probabil-
ity of a task given an acceptable policy [21]. This replaces the notion
of a task-general intelligence (the so-called universal intelligence) as
addressing a diversity of tasks to that of a policy-general addressing a
diversity of solutions, expressed under a policy description language.

This debate replicates the controversy in psychometrics between
the IQ scores (results of the IQ tests, which depend on the task distri-
bution used in a test) and the g scores (a magnitude derived from the
estimated value of a latent factor, the g factor, which is more inde-
pendent to the particular task distribution used in a test). The g factor
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derives from the so-called positive manifold, one of the most repli-
cated experimental findings in the analysis of human intelligence.
The positive manifold indicates that given any test composed of a
set of (abstract) cognitive tasks we will find a high correlation in the
results produced by a human population. In other words, those who
perform well on some tasks will usually perform well on any other.
This supports the idea of general intelligence.

For artificial intelligence, this suggests the following question: if
we aim at building more general AI systems, will it be the case that
those that are better for some tasks will also be better for other tasks?
Is that a necessary or a contingent property? In order to study this
question, however, there is an important consideration: two equally-
general systems may have different levels of ability (or general in-
telligence). It is for those that are more intelligent we expect this
property to hold stronger. To put an extreme negative case, a random
agent is completely general, but not intelligent. We do not expect this
property to hold for random agents, despite their ‘generality’. This
suggests that the positive manifold will only start to be observed for
artificial agents when we have a population of minimally intelligent
agents. As long as AI progresses towards more generally intelligent
agents, this positive manifold would start to appear and then become
stronger. Surprisingly, in the realm of human intelligence, Spearman
found exactly the reverse observation. By taking subpopulations of
more able humans, the positive manifold was weaker, something
that was later known as Spearman’s Law of Diminishing Returns
(SLODR).

In this paper, we introduce a simple, but effective, setting to anal-
yse these questions for artificial agents. We adapt a class of tasks
consistent of elementary cellular automata (ECA) where we have in-
troduced an agent that interacts within these worlds (the ECA rules),
as done in [20]. Using this simple world and an elementary agent
language, we can analyse all tasks and all possible policies (solu-
tions) up to a certain size (determining the difficulty of the policy),
so really having a diversity of solutions to analyse whether some de-
gree of positive manifold appears. More interestingly, we can easily
analyse different subsets according to their average performance on
all policies (or slices of appropriate difficulty) and study whether the
SLODR holds or not.

The rest of the paper is organised as follows. Section 2 reviews the
notions of positive manifold, g factor and Spearman’s Law of Dimin-
ishing Returns (SLODR) and some of the explanations and experi-
ments performed to support or reject the law. Section 3 introduces the
environments and agents used for the analysis, describing how they
work and showing a few examples. Section 4 performs two different
experiments with the goal of discovering whether the SLODR holds
or not. Section 5 discusses the results and its implications. Finally,
Section 6 closes the paper with new questions and future work.

2 SPEARMAN’S LAW OF DIMINISHING
RETURNS (SLODR)

There are many kinds of cognitive tests that can be applied to hu-
mans. Some of them compose the popular IQ tests, whose develop-
ment started about a century ago. Charles Spearman was one of the
pioneers of a numerical analysis of human intelligence, by compiling
the results of several tests on human populations. He started to use
the recently introduced notion of correlation to analyse the results.
He found one important phenomenon: when he analysed a set of dif-
ferent tests taken by the same population, he found a positive aver-
age correlation in their results. In other words, the individuals that
obtained good results for some tests usually obtained good results

for the rest. This correlation was stronger the more culture-fair and
abstract the tests were. This phenomenon was known as the ‘positive
manifold’ [46, 47].

It is important to clarify that this phenomenon is not a property
of the tests alone nor a property of the population alone. A correla-
tion is clearly an effect that takes place for two subjects for a set of
tests, but the average correlation is calculated from the correlation
matrix, thereby involving both the population and the tests. Never-
theless, the positive manifold appeared again and again for different
human populations and different sets of tests, provided they were not
too linked to particular cultural or educational backgrounds (e.g., a
chess-playing test and a Korean vocabulary test). Spearman tried to
understand the findings through the invention of a rudimentary factor
analysis. He identified a dominant latent factor that explained much
of the variance, and called it the g factor. Since then, this factor has
been one of the most relevant (and replicated) findings in psychomet-
rics [31, 48] and has been found to predict many facets of life, from
academic performance to (lack of) religiosity in humans.

The dominance of g and its explanatory character for the positive
manifold led to the association of g with general intelligence, a la-
tent factor that pervaded or dominated all other factors and facets of
intelligence. Of course, this interpretation has been challenged many
times, even if g appears again and again.

Still more controversial than the interpretation of the g factor is an-
other finding that Spearman discovered. He calculated the strength of
g on subpopulations of different abilities. In particular, in one of the
analysis, he separated the results of several tests on a human popula-
tion into two groups, group A with normal abilities and B with low
abilities. After the split, he analysed the correlation matrices sepa-
rately. The result was that the mean correlations for group A were
0.47 but the mean correlations for group B was 0.78. Note that this
does not mean that group A had worse results (in fact, it was pre-
cisely the group with highest average results), but rather that the pro-
portion of the variance explained by g for the low-ability group was
much higher than for the normal-ability group. This result was strik-
ing, especially if g is understood as general intelligence. It looked as
if the more intelligent a population is, the less important g would be,
in relative terms, to explain its variability. This observation turned
to be known as Spearman’s Law of Diminishing Returns (SLODR).
The finding was replicated many times since then with different ex-
perimental settings [9, 8, 50]).

Spearman looked for an explanation and found it in the law of di-
minishing returns in economics. Many processes that are affected by
many factors do not grow continuously as the result of the increase
of one factor, so the influence of a single, albeit dominant, factor
can become less relevant at a given point, being saturated. Spearman
expressed it in this way: “the more ‘energy’ a person has available
already, the less advantage accrues to his ability from further incre-
ments of it” [47, p. 219].

But this simile was not an explanation. Spearman postulated the
“ability level differentiation”, which considered that challenging
items (those that can only solve the more able individuals) require
the combination of many skills, and the prevalence of g would be
slower. Basically, for the easy items, the general intelligence or some
general resources would be the only available skills for low-ability
subpopulations. Detterman and Daniel [9] argued similarly that if
“central processes are deficient, they limit the efficiency of all other
processes in the system. So all processes in subjects with deficits
tend to operate at the same uniform level. However, subjects without
deficits show much more variability across processes because they
do not have deficits in important central processes”. Other explana-
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tions were introduced, such as that the “genetic contribution is higher
at low-ability levels” [8] .

On the other hand, not only the above explanations but the exper-
imental evidence itself have been contested. One common counter-
explanation of the phenomenon argues that it is not that g is less
important for able subjects, but that they find many of the problems
in the tests less challenging than the normal population and then they
are not forced to use general intelligence as they can solve the prob-
lems without deep thinking, i.e., more mechanically. In other words,
the use of the same tests for both groups would be creating the effect.
In fact, Fogarty and Stankov [16] performed an experiment where the
more able group had to solve problems of higher difficulty whereas
the less able group had to solve problems of lower difficulty. Under
these conditions SLODR did not only appear but even the more able
group showed higher correlations! This seems to agree with the idea
that general intelligence is used when the individual finds a problem
challenging. It is important, however, to check that the difficult prob-
lems are created without the use of spurious complications, in order
to prevent that more difficult items are more specialised than the sim-
ple items. For instance, in number series problems, one can create a
complex series by using the Fibonacci series. This, however, will just
assess whether the subject has some particular mathematical knowl-
edge, not really expecting that the subject is going to discover the
Fibonacci series from scratch. This was already warned by Jensen,
pointing out “that it is the highly g-loaded tests that differ the least
in their loadings across different levels of ability, whereas the less
g-loaded tests differ the most” [32]. Usually, problems featuring ab-
stract thinking (inductive inference, analogies, etc.) are those with
higher g loadings.

Nevertheless, one of the most relevant criticisms (or explanations),
which will reappear later on in this paper, had a more statistical char-
acter. Jensen [31, p. 587] argued that the subgroups with higher abili-
ties had lower variance than the subgroups with lower variance. This
may be caused by the way the tests are designed to cover a wide
range of subjects or the way the two groups are split, but the differ-
ent variances were generally the case. As a consequence, the relative
relevance of g would be lower for more able groups as there is less
variance to explain.

All of the above suggests that there are several methodological
problems about the analysis of SLODR in human intelligence, start-
ing from putting into question all results for which both groups do
not have the same variance and also those that include spurious prob-
lems or sample the populations in ways to get the same variance by
introducing some other confounding factors. In the end, Murray et
al. argue that SLODR could just be “a statistical artifact” [40].

In what follows we take a different perspective of the debate by
using artificial tasks and artificial subjects. This can help us to rule
out some of the confounding factors by focussing on a controlled ex-
periment, where we can play with the population of agents and the
choice of tasks more freely. Nevertheless, our interest is to analyse
whether SLODR happens or not for artificial agents, and see whether
the results can tell us something about the construction and evalua-
tion of general-purpose AI agents.

3 A SETTING FOR ARTIFICIAL TASKS AND
AGENTS

In this section, we are going to adapt the simple setting introduced
in [20]. This is an appropriate scenario for practical reasons. First, it
is more illustrative to use minimalistic environments where the num-
ber of observations and actions are extremely reduced, while still

having some relatively rich phenomena with very simple transition
functions. Second, we are interested in simplistic policy languages
in order to be able to evaluate a large amount of agents quickly.

3.1 Agent-populated elementary cellular
automata: definition and examples

The environments we will work with are composed of an elemen-
tary cellular automaton (ECA) [55] for the space S and the transition
function τ , but we will let an agent see and modify part of the usual
behaviour of the automaton. The following definition specifies the
complete behaviour of this kind of environment:

Definition 1 A single-agent elementary cellular automaton
(SAECA) is a tuple

�
S, τ, ρ, π, �σ0, ν, p0

�
. The state space

S is represented by a one-dimensional array of bits or cells
�σ � �σ1, σ2, . . . , σm�, also known as configuration. We consider
the array to be finite (��σ� � m) but circular in terms of neigh-
bourhood (σ0 � σm and σm�1 � σ1). There is an initial array
�σ0, also known as seed. The transition function τ is given by a
number ν, as any of the 22

3

� 256 rules that can be defined looking
at each cell and its two neighbours according to the numbering
scheme convention introduced in [55]. For instance, the following
transitions for each triplet define an ECA rule:

111 110 101 100 011 010 001 000
0 1 1 0 1 1 0 1

The digits of the second row represent the new state for the middle
cell after each transition, depending on the triplet. In the above case,
01101101, in binary, corresponds to decimal number 109, the ECA
rule number with Wolfram’s convention. Given this rule, the array
01100 would evolve in the following way, looping at the end:

01100
01101
01111
11001
01001

�11001
Given the behaviour of the space, we consider just one agent π.
The agent is located at one cell (its position p) with 1 � p � m,
which is initially p0. The set of observations O is given by two bits
�σp�1, σp�1� representing the contents of the left and right neigh-
bouring cells respectively, i.e., σp�1 and σp�1. The actions A are
given by a ‘move’ and an ‘upshot’, denoted by the pair �V, U�. The
ordered set of moves is given by � left=0, stay=1, right=2
�, and the ordered set of upshots is � keep=0, swap=1, set0=2,
set1=3 �, which respectively mean that the content of the cell where
the agent is does not change, the content of the cell is swapped
(0 � 1, 1 � 0), the content is set to 0 and the content is set to
1. The rewards are calculated in the following way. If the agent is at
position p at time t, then we use this formula:

rt 	
�

j�1..�m�2�

σt
p�j 
 σt

p�j

2j�1

which counts the number of 1s which are in the neighbourhood of the
agent, weighted by their proximity. It is easy to see that 0 � rt � 1.
Basically, the goal of the agent is to be surrounded by the highest
number of 1s possible, by creating them or by exploiting the changes
performed by the ECA rule.

The order of events for each step in the system is: observations
are produced, actions are performed, the automaton is updated and
finally, rewards are produced.

J. Hernández-Orallo / Is Spearman’s Law of Diminishing Returns (SLODR) Meaningful for Artificial Agents? 473



Note that the environment is parametrised by the original contents
of the array σ0, the ECA rule number ν, and the original position
of the agent p0. Given an environment and a computable agent, the
evolution of the system is computable and deterministic.

Let us see a few examples of how these environments work.
Figure 1 shows the evolution of several environments with seed
“010101010101010101010”, and several values of ν. We do not in-
clude any agent in the trials in this first figure. As a result, the space-
time diagram after 200 iterations is the same as a classical elementary
cellular automaton with each number ν (see, e.g., [55]).

3.2 Including agents: an agent policy language

Let us now explore what happens when we include agents in these
environments. We new a language for expressing the agents. There
are a few agent languages in the literature (see, e.g., [3, 35, 1]),
but they are too oriented towards the architecture, are too focussed
on Markov Decision Processes or are not sufficiently minimalistic
for bounding their size and having some interesting programs. We
present a very minimalist language, also taking into account the min-
imalist environment.

Definition 2 The agent policy language APL is given by a mem-
ory (or history) binary array mem, initially empty (and not circu-
lar), and an ordered set of instructions I = � back=0, fwd=1,
Vaddm=2, Vadd1=3, Uaddm=4, Uadd1=5 �. The numbers on the
right will be used as shorthand for the instruction. For instance, the
string 22142335 represents a program in APL. A program or policy
π is a sequence of instructions ι1, ι2, ..., ι�mem� in I. The interpreter
works on its memory by using two accumulators V and U , and the
action is given by the result of the accumulators at the end of the
process. Namely:

1. Read the observation �σp�1, σp�1� and its elements being ap-
pended to the history array mem.

2. Place the memory pointer b at the end of mem.
3. V � stay
4. U � keep
5. forall ι � π
6. case ι:
7. back : b � max�b� 1, 1	
8. fwd : b � min�b
 1, �mem�	
9. Vaddm : V � �V 
memb	 mod 3

10. Vadd1 : V � �V 
 1	 mod 3
11. Uaddm : U � �U 
memb	 mod 4
12. Uadd1 : U � �U 
 1	 mod 4
13. end case
14. endfor
15. return �V, U�

Let us see an example. If an agent is located at the fifth position
of the configuration 000110111 and has a current history mem �
111010 then the observations 1 and 0 will be appended to mem,
leading to mem � 11101010. If the policy 20242335 is applied, we
start with b � 8, V � 0 � stay and U � 0 � keep, and we have
the following execution:

1. ι1 � 2 � Vaddm, V � �V 
mem8	 mod 3 � 1 � stay.
2. ι2 � 0 � back, b � max�8� 1, 1	 � 7.
3. ι3 � 2 � Vaddm, V � �V 
mem7	 mod 3 � 2 � right.
4. ι4 � 4 � Uaddm, U � �U 
mem7	 mod 4 � 1 � swap.
5. ι5 � 2 � Vaddm, V � �V 
mem7	 mod 3 � 0 � left.

6. ι6 � 3 � Vadd1, V � �V 
 1	 mod 3 � 1 � stay.
7. ι7 � 3 � Vadd1, V � �V 
 1	 mod 3 � 2 � right.
8. ι8 � 5 � Uadd1, U � �U 
 1	 mod 4 � 2 � set0.

After this program, which is run internally, we obtain the action
that the agent will perform on the environment, which is given by
�V, U� = �2, 2� = �right, set0�. This means that the agent will
move right and set the content of the cell to 0.

While the class of policies generated by this language is infinite,
the language is still not universal, and all (finite) programs end. The
goal of this language is to be able to express some simple policies
that may be useful in the environment.

Figure 2 shows how the environment with elementary cellular au-
tomaton number 110 varies for several agent policies. The resulting
space-time diagram patterns are different. Similar things (where dif-
ferences are more visible with respect to the corresponding diagram
in Figure 1) happen with rule number 164 (Figure 3).

We define R as the (expected) response (the result) of agent π in
task μ, which is calculated as an average of the rewards rt for the 200
steps t. For instance, in Figure 3 policy 23555 for rule 164 seems to
have higher R than policy 24 for the same rule.

After introducing the environments (tasks) and agents (policies),
in the following section we explore SLODR using subpopulations.

4 ANALYSIS OF SUBPOPULATIONS

Using the agent policy language APL defined above we gener-
ated 400 agents with their instructions chosen uniformly from the
instruction set and a program length also uniformly distributed
between 1 and 20. We evaluated each agent with all the 256
possible ECA rules, with 21 cells, fixed initialisation (seed) of
”010101010101010101010”, using 100 of iterations per trial.

4.1 Experiment 1: confounding factors

From the 256 400 results, we scaled them task per task so that for
each task (ECA rule) we had mean 0 and standard deviation 1. As
we will work with Pearson (linear) correlations, this scaling does not
affect the correlations, but allows a better aggregation to determine
the abilities of each agent. Also from the results, we calculated the
256 256 correlation matrix for the 256 rules. From all the correla-
tions ( 256�255

2
� 32640), 29612 were positive. The average corre-

lation was 0.146. Then we averaged the results for each agent to get
their average score. We sorted agents per score and split the agent
population according to different quantiles (from best to worst). This
is shown in Figure 4.

Different size of the bins (subpopulations) were used for the quan-
tiles. On the left figure, the black cross on top represents one bin
with the whole population (400 agents), with an average correlation
of 0.146, as said above. The second shape (using orange triangles)
is formed by the 51 possible bins using agents 1..350, 2..351, . . . ,
51..400. For smaller bins underneath we see that the average corre-
lation decreases (in other colours). If we look at the concave shapes
we clearly see that the average correlation is not the same for the
whole range, with smaller values for middle quantiles (around 0.5 on
the x-axis). In fact, we see correlations are higher for the more able
group (high performance, lower quantiles) and the less able group
(low performance, higher quantiles).

Trying to interpret these first results, we can recall Jensen’s crit-
icism in section 2. What we observe can be easily explained by the
choice of best or worst subsamples. These have a tendency to agree
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Figure 1. Space-time diagram (evolution for t � 200 steps) of several elementary cellular automata without agent. The initial array (seed) is always
010101010101010101010, whose length is 21 bits.

on more tasks and should not be interpreted as any common factor.
In fact, the right plot shows the variance for each bin, which explains
most of what happens on the left plot.

Nevertheless, this first experiment still shows several things. Using
some quantiles split by performance, there are important differences.
Of course this is not supporting any law of diminishing returns for
the middle quantiles, but just a consequence of the different vari-
ances, as argued by Jensen. Also interesting is the fact that we get
some positive, albeit small, average correlations, even if we are us-
ing randomly-generated agents for all possible tasks (all ECA rules).
This is given by the reward mechanism, which is the same for all
tasks (having 1s in the surrounding cells) and there are some agents
that go well for this reward criterion disregarding the task.

In order to analyse the relevance of the reward criterion, we per-
form a second experiment where the reward mechanism is being mir-
rored half of the times (so agents cannot specialise to it). By mirror-
ing we mean changing the sign of the reward, so now the goal is
to be surrounded by as many 0s as possible. Also, the agent pol-
icy language is modified so that agents can now see the rewards.
These small changes lead to very important changes in Figure 5 (left),
where we now used 256 agents instead of 400. The top black cross
uses all tasks (256) and all agents (256) together. The second shape
(orange triangles) shows 17 bins, using agents 1..240, 2..241, . . . ,
17..256, and so on for the other shapes, according to the sizes shown
in the legend.

4.2 Experiment 2: variance and difficulty

The average correlation almost disappears. It is now just 0.004.
Again, Figure 5 (left) slices the agents in bins by their average abili-
ties and we have shapes that are similar to the previous experiment.

However, we now do an extra change in our analysis. Figure 5

(right) also slices the tasks by difficulty. We evaluate the more able
agents with more difficult tasks. In order to do this, we calculate dif-
ficulty of a task following [22], where we simplify the estimation of
difficulty here by only considering the length of the policies (and not
the execution steps as all policies have a finite execution time):

�
�ε��μ� � min

π�A�ε��μ�
L�π� (1)

i.e., the difficulty of a task μ is the length of shortest policy π that
is acceptable for the task. Note that this is not the Kolmogorov com-
plexity of the task (i.e., the shortest description for the task) but rather
the shortest description of any (acceptable) solution for the task. Ac-
ceptability is defined using a tolerance ε:

A�ε��μ� � �π : R�π, μ� � 1� ε� (2)

i.e., the set of all acceptable policies for a task μ is given by those
policies whose expected response is above a threshold, given by the
tolerance ε. Recall that we defined expected response R as the aver-
age reward result of agent π in task μ.

Given this approximation to difficulty, we chose tolerance to be
the response that separates the 10% best agents for each task and
we sliced tasks by difficulty, using the same bin size than for the
agents. As we only generated 256 agents in this experiment, the sizes
where also the same. In summary, Figure 5 (right) shows different
shapes. As mentioned above, the top black cross uses all tasks (256)
and all agents (256) together, with 0.004 correlation, and the second
shape (orange triangles) shows 17 bins, using agents 1..240, 2..241,
. . . , 17..256, and so on. But now, for each of the bins, we also slice
the problems (tasks) according to their difficulty. For instance, for
the first bin of the orange triangles, the most able agents 1..204, we
calculate the correlation with only the most difficult tasks 1..204.
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Figure 2. Space-time diagram (evolution for t � 200 steps) with different agent policies for the elementary cellular automaton with rule 110. The initial array
(seed) is always 010101010101010101010, whose length is 21 bits. The agent is represented by a red dot when the cell has a 0 (like the white ones) and by a
green dot when the cell has a 1 (like the black ones). The leftmost diagram is the empty policy (�stay, keep�).

The slicing by ability and corresponding difficulty for each group
now shows a very different picture. Figure 5 (right) shows some slope
in the distribution of results, where we find higher correlations for
higher abilities (lower quantiles). This is exactly the reverse of Spear-
man’s Law of Diminishing Returns.

5 DISCUSSION

Before jumping into any conclusion, let us first analyse the results
of this particular experiment. We are generating agents with a very
simple policy language. Still, it can now access the rewards and com-
pute actions with them so that meaningful policies are generated. For
instance, the policy that repeats the previous action if the reward is
good and do another action otherwise can be coded with a relatively
short program in this language. Nevertheless, we cannot expect any
agent that is especially good. Accordingly, many agents are com-
pletely lost in the environments. However, it is precisely a basic sce-
nario we wanted to explore first, resembling some kind of minimal
artificial life situation where we can consider all agents up to a cer-
tain complexity and see if any correlation appears, even if small. The
simplicity of the policies was also useful for a second, very impor-
tant thing. Difficulties are estimated from first principles also using
the agent policy language. As seen in eq. 1, difficulty is calculated
as the length of the shortest acceptable policy. This can only be esti-
mated in a reasonable amount of time with standard hardware if pro-
grams do not get very large. Of course, the simple scenario leads to
very small correlations, since we have very simple agents, and even

very small correlations (once the rewards were mirrored), but the re-
sults are consistent to a low expectation about the abilities of these
agents. This low correlation is also consistent to the very intuition
under ULOAR.

However, the interesting point is that we can study task correlation
in a very controlled experiment and find some trends by slicing per
ability and difficulty. If we focus on the more able agents, it is not
that they are just better for a random sample of tasks, but that they
have a slight higher chance of getting more difficult problems right.
The positive manifold starts appearing, the embryo of some kind of
general ability may be appearing here. This suggests the hypothe-
sis that given a population of agents, the more generally intelligent
and diverse they are, the stronger the positive manifold will be. We
can call this hypothesis the universal law of augmenting returns

(ULOAR) as the opposite to SLODR. In fact, as argued before, the
ULOAR makes more sense for AI, there is no reason to think that
for artificial agents we may find some kind of saturation, once the
tendency is initially found at very low degrees of general ability.

Of course, we cannot extrapolate from a single experiment that just
shows a slightly higher (yet very small) correlation for the more able
groups, but this contributes to the intuition that, for artificial agents,
SLODR may not hold in general. Also, we cannot extrapolate this for
human populations, and it is still unclear whether SLODR holds for
humans or, more precisely, whether it holds for some human popula-
tions with some distributions of tests. But when one conceives artifi-
cial agents of a wide range of resources and algorithms, the existence
of SLODR looks very counterintuitive in hindsight.
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Figure 3. Same as Figure 2, with rule 164 and other policies.
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Figure 4. Average correlations for 400 agents (randomly-generated programs) and 256 tasks (all the ECA rules). Left: average correlation per quantiles using
several bin sizes where agents are sorted by overall performance. Right: the variance of the bins.

6 CONCLUSION

In this paper we have argued that some questions that have been rele-
vant for human intelligence may become soon important for artificial
intelligence as well. One of these questions is the existence of general
intelligence and how it can be measured and distinguished from the
performance in particular skills. Given the notion of general intelli-
gence as performance in a range of tasks, we have followed the recent
theoretical and experimental analysis of the problem in AI (from the
no-free-lunch theorems to algorithmic information theory) and fo-

cussed on one particular phenomenon found in human populations,
known as Spearman’s Law of Diminishing Returns: the positive man-
ifold (the positive correlation of results for a set of cognitive tasks)
has been shown to be stronger for less able subpopulations than more
able subpopulations.

The choice of this phenomenon responds to its controversy in hu-
man intelligence research but also to the counterintuitive character
that it would have for artificial intelligence. If SLODR were true in
AI we would have that as long as we construct more general-purpose
AI systems, we would have that they show less correlation in perfor-
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Figure 5. Average correlations for 256 agents (randomly-generated programs) and 256 tasks (all the ECA rules), using mirrored rewards for half of the trials).
Left: average correlation per quantiles using several bin sizes, where results are sorted by agent performance. Right: each bin is only evaluated with the tasks of
that quantile of difficulty.

mance among a range of tasks thus, in a way, becoming less general.
We have not only challenged that possibility but also analysed

whether a reverse universal law of augmenting returns (ULOAR)
may appear in a very simple setting of tasks and agents, even with
agents of very reduced ability. Closely related to the methodological
issues of the analysis of SLODR in human intelligence, we have seen
how important it is to perform the analysis in the right way, by using
difficulty to have an appropriate level of challenging tasks for each
subpopulation to account for the variances. The advantages of this
artificial experimentation setting is that we can rule out many other
confounding factors that appear in human intelligence, such as the
existence of some tasks that have been more common in our evolu-
tionary history or culture, the existence of more efficient specialised
modules in our brain predisposed for them, etc.

It is too soon to see whether the current questions and the method-
ology used here can have any effect in the way general-purpose AI
agents will be developed and evaluated in the future, including multi-
agent architectures, for which the environment and policies can be
extended relatively easily [20]. However, there are some areas in AI
that can benefit from some of the issues raised in this paper more im-
mediately. For instance, the ULOAR can suggest new ways of em-
pirically analysing AI systems, to devise new benchmarks and com-
petitions and, most especially, to analyse their results. Of course, in
these cases, the tasks and agents would be less minimal (more real-
istic), but would have more issues about how arbitrarily they have
been chosen: many benchmarks include many tasks for which re-
searchers have specialised during decades, and the agents would be
a biased subpopulation composed of the participants of the compe-
titions. Another issue for real competitions would be the estimation
of difficulty, which is necessary to make the analysis properly. We
advocate for principled approaches, based on the policy descriptions,
as done here, but other approaches such as Item Response Theory
could be used [15, 7, 37].

Some competitions in AI would be better suited than others to
the concept of generality. For instance, while we can understand the
notion of generality for a planning competition [36] (i.e., a general
planner would be the one that is good for a wide range of planning
problems), it is for general-purpose agents where the notion of a gen-
eral factor is more intuitive and closer to the original notions in hu-
man intelligence. For instance, the reinforcement learning competi-

tion [54, 10] or the general video game competition [43, 42] would
have similar interpretations of results as those discussed here. Never-
theless, the use of correlation matrices for whatever AI competition
may show some general factors appearing. We could also investigate
whether they grow stronger or not, as the discipline advances.

Finally, an area that can be particularly suitable for this kind of
analysis is machine learning. There are already several ‘experiment
databases’ [51, 52] whose results can be used to analyse correlations,
positive manifolds and whether SLODR (or ULOAR) is taking place
there. The interpretation of the results will likely be intriguing but
the scope and implications may be fascinating.
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