
Order Number 0116256

Copycat: A computer model o f high-level perception and
conceptual slippage in analogy-making

M itch e ll, M elan ie, P h .D .

The University of Michigan, 1990

C opyrigh t © 1990 by M itchell, M elanie. A ll r ig h ts reserved.

UM-I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

THE ORIGINAL DOCUMENT RECEIVED BY U.M.I. CONTAINED PAGES
WITH SLANTED PRINT. PAGES WERE FILMED AS RECEIVED.

THIS REPRODUCTION IS THE BEST AVAILABLE COPY.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C O P Y C A T :

A C O M P U T E R M O D E L O F

H IG H -L E V E L P E R C E P T IO N A N D C O N C E P T U A L S L IP P A G E

IN A N A L O G Y -M A K IN G

by

Melanie Mitchell

A dissertation subm itted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Com puter and Communication Sciences)

in The University of Michigan
1990

Doctoral Committee:

Professor Douglas R. H ofstadter, Co-Chair
Professor John H. Holland, Co-Chair
Professor A rthur W. Burks
Professor Keki B. Irani
Assistant Professor Steven L. Lytinen
Professor Edward E. Smith

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RULES REGARDING THE USE OF

MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations sub
mitted to The University of Michigan and m ade available through
University Microfilms International or The University of Michigan are
open for inspection, but they are to be used only with due regard for the
rights of the author. Extensive copying of the dissertation or publication
of material in excess of standard copyright limits, whether or not the
dissertation has been copyrighted, m ust have been approved by the
author as well as by the Dean of the Graduate School. Proper credit must
be given to the author if any material from the dissertation is used in
subsequent written or published work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Melanie Mitchell 1990
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

My advisor, Douglas Hofstadter, was the prime mover behind the Copycat project: he

created the domain and formulated the program ’s architecture, and he has guided every

aspect of my work. Any success this project has had is due primarily to his insight and

original thinking about thought. It was his book, Godel, Escher, Bach, th a t originally

convinced me to go into this field, and he has been an inspiring teacher as well as a true

friend and supporter throughout my years in graduate school. His influence will without

doubt continue to be strong and pervasive in my future work in artificial intelligence and

cognitive science.

Two other professors a t the University of Michigan have inspired and influenced me

in significant ways: John Holland has taught me a great deal about complex systems,

adaptation , and how to build computer models, and Stephen Kaplan has strongly influenced

how I look at cognition. Both have had lasting effects on my view of w hat it is to be a

scientist.

The other members of my doctoral committee—A rthur Burks, Keki Irani, Steven Lyti-

nen, and Edward Smith—have given me m any im portant suggestions for my research and

for this dissertation. In particular, Edward Smith has helped me to th ink about how to

dem onstrate the model’s psychological validity. David Pisoni and John Logan of Indiana

University also helped me to design and run some of the psychological experiments described

in this dissertation.

Robert French has been my closest cohort in graduate school. He has provided invaluable

assistance on the Copycat project, and has also been a continual source of friendship,

intellectual companionship, and moral support.

This project has been assisted and influenced in many ways by the other past and

present members of Douglas Hofstadter’s research group, including David Chalmers, Gray

Clossman, Daniel Defays Liane G abora (who wrote the statistics-gathering program for

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Copycat), Greg Huber, Helga Keller, Kevin Kinnell, David Leake, Roy Leban, Alejandro

Lopez, Gary McGraw, David Rogers, Peter Suber, and Henry Velick. Other fellow past

and present graduate students a t Michigan and elsewhere, including Jonathan Amsterdam,

Lashon Booker, Stephanie Forrest, James Levenick, Wayne Loofbourrow, Rick Riolo, and

Mark Weaver, have helped me in various ways in thinking about the issues in this disserta

tion. In particular, James Levenick read most of the chapters and provided m any valuable

comments.

I am very grateful to my parents, Norma and Jack Mitchell, for their unending love

and support, as well as for their weekly “pep talks” , which helped enormously to keep up

my morale while I was writing this dissertation. My aunt, Faith Dunne, has also been a

constant source of good advice and loving prodding throughout this process.

Finally, I want to thank David Moser, to whom I am more grateful than I can express,

in part for many discussions about this project and for many helpful comments on this

dissertation, but more im portantly for being my most patient listener, my most enthusiastic

supporter, and my dearest friend and companion.

My research has been financially supported by a University of Michigan Regents’ Fel

lowship, and by grants to Douglas Hofstadter’s research group from the National Science

Foundation (grant DCR 8410409); the University of Michigan; Mitchell Kapor, Ellen Poss,

and the Lotus Development Corporation; Apple Com puter, Inc.; and Indiana University.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

A C K N O W L E D G M E N T S .. ii

L IS T O F F IG U R E S .. vii

L IS T O F A P P E N D IC E S .. viii

C H A P T E R

I. O V E R V IE W , P U R P O S E , A N D G O A L S O F T H E C O P Y C A T
P R O J E C T ... 1

1.1 Introduction ... 1
1.2 High-level Perception, Conceptual Slippage, and Analogy-Making . . 6

I I . H IG H -L E V E L P E R C E P T IO N , C O N C E P T U A L S L IP P A G E , A N D
A N A L O G Y -M A K IN G IN A M IC R O W O R L D .. 16

2.1 Copycat’s M ic ro w o rld .. 16
2.2 Abilities Required for High-Level Perception and Analogy-Making . . 22
2.3 The Issue of R e t r ie v a l .. 30
2.4 Defense of the Microworld .. 31
2.5 Specific Goals of This Dissertation and C riter ia for Success 34

2.5.1 General Issues in Determining Criteria for S u ccess................. 34
2.5.2 Artificial-Intelligence Criteria: W hat Problem s the Program Can

Deal W i t h .. 36
2.5.3 Psychological Criteria: More Detailed Comparisons of Copycat’s

Behavior W ith People’s Behavior ... 37

I I I . T H E A R C H IT E C T U R E O F C O P Y C A T ... 40

3.1 Jum bo 40
3.2 Broad Overview of Copycat ... 46
3.3 The S l ip n e t .. 56
3.4 Perceptual S t r u c tu r e s .. 62

3.4.1 W hat the Program Starts O ut W ith .. 62
3.4.2 General Description of Structure-Building .. 65
3.4.3 How Copycat Decides to S t o p .. 67
3.4.4 Strengths of S tru c tu re s ... 69
3.4.5 Im portance, Happiness, and Salience of O b j e c t s 74

3.5 Codelets ... 75

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.1 General Comments about Codelets and Structure-Building 75
3.5.2 Codelet T y p e s ... 77

3.6 T e m p e ra tu re 84
3.7 Main Loop of the Program .. 87

IV . C O P Y C A T ’S P E R F O R M A N C E O N T H E F IV E T A R G E T
P R O B L E M S ... 89

4.1 Introduction .. 89
4.2 Frequency and Average Final Temperature of Answers for the Five

Target P ro b le m s .. 91
4.3 Screen Dumps from Runs on the Five Target Problem s 99
4.4 S u m m a ry .. 151

V . C O P Y C A T ’S P E R F O R M A N C E O N V A R IA N T S O F T H E F IV E
T A R G E T P R O B L E M S ... 153

5.1 Introduction .. 153
5.2 Variants of “a b c => a b d , i jk =» ?” .. 155
5.3 Variants of “a b c ^ a b d , iy jk k => ?” ... 165
5.4 Variants of “a b c =► a b d , k ji =► ?” .. 170
5.5 Variants of “a b c => a b d , m rr j j j => ?” ... 172
5.6 Variants of “a b c => a b d , xyz =>■ ?” .. 178
5.7 S u m m a ry .. 183

5.7.1 Summary of the Comparisons W ith P e o p le ... 184

V I. S O M E P R O B L E M S W IT H T H E M O D E L .. 189

6.1 Problems with Top-Down Forces and Focus of A t te n t io n 189
6.2 Problems with S e lf-W atch in g .. 193

V II . R E S U L T S O F S E L E C T E D ‘‘L E S IO N S ’’ O F C O P Y C A T 197

7.1 Experiment 1: Suppression of Terraced S c a n n in g 197
7.2 Experiment 2: Suppression of Breaker C o d e le ts 200
7.3 Experiment 3: Suppression of Different Conceptual-Depth Values . . . 201
7.4 Experiment 4: Suppression of Dynamic L ink-L engths............................. 204
7.5 Experiment 5: Clamping Tem perature a t 100 ... 208
7.6 Experiment 6: Clamping Tem perature at 1 0 .. 209
7.7 S u m m a ry ... 211

V I I I . C O M P A R IS O N S W IT H R E L A T E D W O R K .. 212

8.1 Comparisons W ith O ther Research on A n a lo g y -M ak in g 212
8.1.1 Gentner et a l... 213
8.1.2 Holyoak and T h a g a rd ... 221
8.1.3 How Real Are These “Real World” A n a lo g ie s? 225
8.1.4 E v a n s .. 226

8.2 Comparisons W ith Related Artificial-Intelligence Architectures 231
8.2.1 Seek-W hence... 231

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2.2 Simon and Kotovsky ... 233
8.2.3 H e a rs a y - I I ... 235
8.2.4 Semantic Networks ... 237
8.2.5 Connectionist and Classifier-System Models, and Copycat’s Place

in the Symbolic/Subsymbolic S p e c tru m ... 240

IX . C O N C L U S IO N .. 246

9.1 Summary of Dissertation ... 246
9.2 Proposals for Future W o rk 250
9.3 Contributions of This R e se a rc h ... 253

A P P E N D I C E S ... 256

B I B L IO G R A P H Y .. 292

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure

3.1 A schematic diagram of Copycat’s architecture... 47

3.2 A small part of Copycat’s Slipnet... 47

3 .3 Copycat’s Slipnet.. 57

3 .4 The initial descriptions given to the letters in “a b c =>■ a b d , ijjjk k

3 .5 A possible sta te of Copycat’s Workspace, w ith several types of structures shown. 66

3 .6 Illustration of internal coherence of concept-mappings first => last and
leftmost =}> rightmost.. 72

5.1 The final configuration of the Workspace on a run leading to the farfetched
solution “a b c => a b d , h h w w q q =» h h x x r r” ... 166

6 .1 A “bad-grouping” answer... 190

6 .2 Another bad-grouping answer... 191

6 .3 A third bad-grouping answer.. 191

8.1 Water-flow and heat-flow situations (from Falkenhainer, Forbus, & Gentner,
1989).. 213

8 .2 The predicate-logic representations for the water-flow and heat-flow situations
(from Falkenhainer, Forbus, & Gentner, 1989)... 214

8 .3 A sample problem from Evans’ geometric-analogy dom ain....................................... 227

8 .4 A problem th a t requires grouping, and th a t Evans’ program would not be able
to solve.. 229

A .l Final configuration of the Workspace for a strange route to the answer
a a b a b c d .. 260

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

LIST OF APPENDICES

A p p e n d ix

A . A Sampler of Copycat A n a lo g ie s ... 257

B . Param eters and F o rm u la s .. 265

C . More Detailed Descriptions of Codelet T y p e s .. 272

D . Results of Further Experim ents on P e o p le .. 282

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

O V E R V IE W , P U R P O S E , A N D G O A L S O F T H E C O P Y C A T P R O J E C T

To have a command of m etaphor... is the mark of genius; for to coin good
m etaphors involves an insight into the resemblances between objects th a t are
superficially unlike.

—Aristotle, The Poetics (Cooper, 1913, p. 76)

A cautious man should above all be on his guard against resemblances; they are
a very slippery sort of thing.

— Plato, The Sophist (Cornford, 1935, p. 180)

1.1 In tro d u c tio n

This dissertation describes a computer program, called “Copycat” , th a t is an implementa

tion of a number of ideas about the mental mechanisms underlying high-level perception,

conceptual slippage, and analogy-making in humans. T he Copycat project was originally

conceived by Douglas Hofstadter (1984a, 1985a) as part of a continuing research program in

cognitive science, whose long-term goal is to understand the mechanisms underlying what

Hofstadter calls the “fluidity” of concepts: their overlapping and associative nature, their

indistinct boundaries, their dynamic and graded (rather th an static and all-or-nothing) rel

evance in a given situation, their flexibility as a function of context—in short, their fluid

rather than rigid adaptability to different situations. Such fluidity is a hallmark of human

thought and its source is not well understood.

Hofstadter and his research group have been investigating this fluidity of concepts for

many years and in a num ber of different domains, including pattern recognition, analogies,

counterfactuals, speech and action errors, humor, translation between languages, and the

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

creation and recognition of different styles in such domains as typefaces, music, and art

(H ofstadter, 1987). W hat is striking is th a t some of the same or similar m ental mechanisms

seem to underlie these seemingly disparate m ental activities; in particular, central to all of

them is the phenomenon of “conceptual slippage” , in which certain descriptions in some

m ental representation are not held fixed, but are allowed to “slip”—th a t is, to be replaced

by conceptually related descriptions in response to various kinds of pressures present in

the situation a t hand. For example, when we try to determine who the F irst Lady of

G reat Britain is (Hofstadter, 1985a), the usual definition “wife of the president” won’t

work, since, for one thing, Great Britain has no president. Thus the usual description

of “F irst Lady” cannot be applied literally (unless you want to rigidly assert th a t Great

B ritain has no First Lady since it has no president). The concept has to be treated liberally,

allowing some slippages. For instance, you might feel that the “president” of Great Britain

is the prim e minister, Margaret Thatcher, and th a t her “wife” is actually her husband,

Denis. Thus, given the pressure of certain differences between the United States and Great

B ritain , the concepts president and wife slip to prim e minister and husband respectively;

these different concepts play the same roles in their respective situations. (People have also

suggested numerous other candidates for the British F irst Lady, including Queen Elizabeth,

and even her husband Prince Philip.) This notion of fluidly exporting roles (such as “First

Lady”) from one situation to another is fundam ental to the mental phenom ena th a t we are

a ttem pting to model.

Underlying this entire research program is a belief in the ubiquity and centrality of

conceptual slippage in all aspects of thought, from basic and ordinary acts of recognition

and categorization to rare and seemingly mystical feats of insight and creativity. Thus we

believe th a t it is extremely im portant for researchers in cognitive science to isolate and

study th is phenomenon; the Copycat project is one attem pt to do so.

Tw o previous projects carried out by Hofstadter and his graduate students— “Jum bo”

and “Seek-Whence”—investigated certain aspects of perception and conceptual slippage,

bu t each had a number of lim itations, which will be discussed later in this dissertation. The

particu lar goal of the Copycat project is to further develop ideas from these projects by

building a model of how perception interacts with concepts to engender appropriate—and

sometimes creative—conceptual slippages in the realm of analogy-making, a realm in which

the necessity of constructing fluid and adaptable mental representations is particularly

apparent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

T he Copycat program interprets and makes analogies between situations in an idealized

microworld (involving letter-string analogy problems). The program ’s architecture brings

together many ideas, some inspired by other a ttem pts a t modeling perception, some inspired

by naturally-occurring self-organizing systems. These ideas (to be explained more fully

la ter) include:

• A parallel and self-organizing approach to building perceptual descriptions via the

interaction of large numbers of independent “perceptual agents” , with no global exec

utive controlling the system’s processing (inspired in part by the self-organizing mecha

nisms of metabolic processes in living cells and by the Hearsay-II speech-understanding

program, Erm an et al., 1980).

• A model of the concepts in which the composition of concepts, in term s of what

conceptual slippages can be made, is not explicitly defined b u t rather emerges in

response to w hat is perceived in the situation a t hand. In this model, concepts a tta in

various levels of activation in response to what is perceived, resulting in shaded—rather

than black-and-white—levels of “presence” or “relevance” of various concepts in the

situation a t hand. Activated concepts spread activation to conceptual neighbors, and

a concept’s conceptual proximity to other concepts is dynamic and context-sensitive

(changing according to current perceptions). Such a model has aspects in common

with certain types of semantic networks, since concepts are modeled by nodes and links

in a network, as well as with connectionist networks, since the degree of activation

of nodes, the degree of association between nodes, and the constitution of concepts

themselves are emergent outcomes of the interaction of the network as a whole with

what is being perceived in the environment.

• An interaction of bottom -up (environment-driven) and top-down (concept-driven)

modes of constructing perceptual descriptions, and a gradual transition from dom

inance of a bottom -up mode to dominance of a top-down mode, as organizing themes

emerge from what has already been perceived.

• A notion of a parallel terraced scan, in which many different avenues of interpreting

situations are explored simultaneously, each being explored a t a speed and to a depth

proportional to moment-to-moment evaluations of its promise.

• The use of computational temperature as a feedback device to measure the amount

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

and quality of global organization; this m easure is then used to control the degree

of randomness with which decisions are made in the system. The effect is to speed

up the exploration of more promising avenues with respect to less promising ones as

more and more information is obtained about them .

• A notion of statistically emergent high-level behavior, in which the system ’s low-level

activities (involving m utually competitive and supporting actions by large numbers of

independent perceptual agents) are perm eated w ith nondeterminism, but more deter

ministic high-level behavior (e.g., the composition of concepts, the parallel terraced

scan, and the actual interpretations created by the program for various situations)

emerges from the statistics of the low-level nondeterminism.

The structure and contents of this dissertation are summarized as follows.

In this chapter, I discuss the relationship between analogy-making and the more general

m ental processes th a t I refer to as high-level perception and conceptual slippage.

In C hapter 2 ,1 describe an idealized microworld developed by Hofstadter (1984a, 1984b)

involving letter-string analogy problems, in which some of the central features of high-level

perception and analogy-making axe isolated and idealized. It is in this microworld tha t

the Copycat program makes sense of situations and creates analogies between situations.

I discuss the relation of the letter-string analogy problems in the microworld to analogy-

m aking in the real world, and answer some of the commonly raised objections to using such

a microworld for developing and testing cognitive models such as Copycat. Finally, I discuss

the specific goals and criteria for success of my dissertation project. In particular, I propose

a set of five analogy problems in Copycat’s microworld whose solution would dem onstrate

m any of the general abilities th a t Copycat is m eant to model.

C hapter 3 first describes the Jum bo program , a direct predecessor of Copycat tha t

explored some of the same issues, and from which sprang many of the ideas for Copycat.

Next, the architecture of Copycat is described. The description is divided into two parts:

a section giving an overview of the entire program , and then several sections describing the

program in more detail. The overview section should be sufficient to give a general idea

of how th e program works, and the more detailed sections can be skipped or skimmed by

readers for whom this overview is sufficient.

C hapter 4 gives statistics concerning Copycat’s (and people’s) solutions to the five target

problem s (discussed in C hapter 2) and gives annotated screen dumps from runs of Copycat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

on the five problems. The screen dumps dem onstrate most of the features of the program,

and provide a more vivid explanation of how the program works.

C hapter 5 gives statistics for Copycat’s (and people’s) solutions to 27 variants of the

five target problems, illustrating how the program responds to different pressures in the

different variants.

C hapter 6 gives a discussion of some problems with the program as it currently stands.

Chapter 7 gives the results of selected “lesions” of Copycat, in which various aspects of

the program’s architecture were altered or removed in order to analyze the roles played by

those aspects in the program ’s behavior.

In Chapter 8, I compare Copycat with related research on psychological and compu

tational models of analogy-making, w ith related axtificial-intelligence architectures such as

semantic networks and production systems, and with connectionist and classifier-system

models of concepts and learning. I discuss where Copycat lies in the spectrum th a t runs

from so-called symbolic models of intelligence, which process information serially and in

which concepts are represented as explicit d a ta structures in a Lisp-like language, to sub-

symbolic models, such as connectionist networks, in which processing is highly parallel and

in which concepts are implicit and distributed over units in a network.

Chapter 9 concludes this dissertation with a summary of its main points, with proposals

for future work on the Copycat project, and with a discussion of the contributions of th is

project to research in cognitive science and artificial intelligence.

Appendix A presents and discusses a num ber of analogy problems from Copycat’s mi

croworld th a t are currently beyond the program ’s capabilities.

Appendix B lists and describes param eters and formulas used in Copycat.

Appendix C gives more detailed descriptions than are given in C hapter 3 of the various

types of codelets used in Copycat (the term “codelet” will be defined in C hapter 3).

Appendix D gives the results of two experiments (in addition to the survey whose results

are given in Chapters 4 and 5) involving people’s responses to various letter-string analogy

problems.

As the above summary indicates, readers who want only an overview of what the Copycat

project is about and how the program works should read Chapters 1-2, the first two sections

of C hapter 3 (skimming the rest of the chapter if desired), C hapter 4, and Chapter 5.

Readers who also want to know the results and lim itations of the model should in addition

read Chapters 6, 7, and 9, as well as Appendix A, and people who want to compare Copycat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

with related research should read Chapter 8. Those who want a more complete and detailed

description of the program should read all of Chapter 3 (Appendices B and C provide even

more details).

This dissertation does not include the source code for Copycat (the program was written

in Sun Common Lisp and its graphics run under the SunView window system). I will be

happy to provide the source code to anyone who would like to use it for peaceful research

purposes.

1.2 H ig h -lev e l P e rc e p tio n , C o n c e p tu a l S lip p ag e , a n d A n a lo g y -M a k in g

How, when one is faced with a situation, does understanding come about in the mind? How

are we guided by a m ultitude of initially unconnected and novel perceptions to a coherent

and familiar mental representation of an object or situation, such as “coffee cup” , “the

letter ‘A ’” , “French Baroque style” , or “the Vietnam of Central America”? And how are

such representations structured so th a t they are flexible, fluid, and thus adaptable to many

different situations, rather than brittle , rigid, and inextensible? This dissertation is a part

of a broader research program focused on investigating the mental mechanisms underlying

such acts of high-level perception and conceptual fluidity. Here, “high-level perception”

refers to the recognition of objects, situations, or events a t various levels of abstraction

higher than th a t of of syntactic sensations tied to particular sensory modalities; it is to be

distinguished from modality-specific mechanisms such as those of low-level vision. Another

term for it would be “abstract recognition” , referring to the recognition mechanisms we

use when, say, we read a newspaper article about officials performing secret acts, shredding

documents, lying to Congress, etc., and characterize these events as “a coverup” , or “another

W atergate” .

High-level perception is intimately tied up with concepts: it is the act of applying

previously stored concepts to describe and chunk parts of a new situation in order to build

up a coherent m ental representation. (Here, the term “situation” can refer to something as

concrete as a coffee cup, or something much more complex *nd abstract, such as a certain

political or social event.) But since every situation is different, recognition is not a mere

m atter of rigidly applying pre-defined, static concepts to describe aspects of an uninterpreted

situation. An essential part of the recognition process is a m utual accommodation of one’s

concepts and one’s developing m ental representation of the situation a t hand, as in the First

Lady of Great B ritain example, where both the concept of “F irst Lady” and the mental

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

representation of Denis Thatcher had to be reshaped in order to fit each other.

The process of recognizing concrete and abstract situations is more general than w hat

is often referred to as categorization. The term “categorization” often implies th a t the

situation is assigned to a single, previously stored, easily verbalizable category (such as

“coffee cup” or “coverup”). However, in general, the “category” of a situation is often

difficult to verbalize, yet recognizable nonetheless. Situations tha t abstractly remind one

of o ther situations are often very clear examples of this. For example, a friend told me

about a flight he took from Pittsburgh to Detroit (a 45-minute trip), in which the plane

had been kept on the ground in P ittsburgh for an hour and a half in order to wait for

a delayed shipment of soft drinks to be brought on board. The wait for the soft drinks

defeated their whole purpose, which is to make the trip less tedious for the passengers, to

make time seem to go by faster on the trip . This story instantly reminded me of how the

University of Michigan Physical Plant Departm ent fixed a decorative fountain on campus

th a t often overflowed: they installed a large flotation device (of the kind found in toilet

tanks) in the fountain’s pool, which stopped the flow of water when the water level got

too high. This made the fountain resemble a huge toilet tank , which of course ncompletely

defeated its purpose, which was to be aesthetically pleasing and thus make the campus look

more beautiful. I spontaneously recognized th a t the airplane situation was in the same,

quite abstract category as the fountain situation—something like “situations in which an

action taken to remedy a problem actually defeats the main purpose of the thing affected by

the problem” . It is not an easy category to verbalize. (Several examples of such reminding

experiences are discussed by Schank, 1982.)

This example illustrates the blurry line between what we call “categorization” and what

we call “analogy-making”. Was my reminding experience a feat of analogy-making or of

categorization? There is no clear distinction between the two. W hen a child learns th a t the

words “m outh” and “drink” apply to a huge num ber of different objects and situations, is

th is categorization or analogy-making? W hen we describe Nicaragua as “another V ietnam ” ,

the Iran-C ontra scandal as “Reagan’s W atergate” , or Nicolae Ceausescu as “the Stalin of

Romania” , are we categorizing or m aking analogies? One makes an analogy when one

perceives non-identical objects or situations as being “the same” a t some abstract level.

Analogy-making is thus intim ately related to recognition and categorization, for the essence

of recognizing a cup (or a face, or a wave equation, or a symphony in the style of M ozart)

is perceiving it to be “the same” at some level as other instances of th a t category. Very

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

similar, if not identical, m ental mechanisms seem to underlie analogy-making, recognition,

and categorization.

Turner (1988) makes a similar point: “Deeply entrenched analogical connections we no

longer find inventive. We regard them as straightforward category connections.” (p. 4). He

characterizes the difference between analogical and categorical connections among concepts

as a difference in the “degree of entrenchm ent” in the conceptual system rather than a

difference in kind. Holyoak (1984) also makes a related point when he hypothesizes that

analogical thinking may underlie the acquisition of schemas (abstract categories).

High-level perception thus encompasses recognition, categorization, and analogy-making,

and its central feature is the fluid application of one’s existing concepts to new situations.

At this point, I want to make clearer what the focus of our research is as it relates to

the distinction between “concepts” and “categories” . In colloquial speech, as well as in

more formal psychological discussions, the two term s are used nearly synonymously (for

example, this is the case in Smith & Medin, 1981, and in Lakoff, 1987), though there seems

to be a subtle difference. From my own observations, it seems to me th a t there is a subtle

difference between the way the terms “concept” and “category” are used colloquially. Very

roughly, concepts are verbalized as singular nouns or phrases (“dog” , “next-door neigh

bor” , “socialized medicine”) whereas categories are described using plural nouns or phrases

(“dogs” , etc.). There does seem to be some psychological difference between categories and

concepts: w hat people generally call “categories” seem to be more directly associated with

particular instances, whereas what people call “concepts” seem somewhat more distanced

from their instances. I would characterize this difference roughly as follows: the word “con

cept” refers to a symbol in the mind for a class of instances, or for a single instance, and

the word “category” refers more directly to the class itself (though not usually to a single

instance).1 Consider, for example, the following phrases: “the concept of ‘hair color’ ” and

“the category ‘hair colors’” . My impression is th a t mention of the la tte r is more likely

to provoke mental imagery of particular hair colors than is the former. Another example

(Moser, 1988) is “The Phoenicians invented the alphabet” versus “Alphabets are useful

tools” ; it seems th a t the la tte r would be more likely than the former to conjure up images

of specific alphabets.

1 This is similar in flavor to the distinction m ade in m athem atics and philosophy between
the intension and extension of a set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

This analysis is based on informal observations and intuitions, and is meant to be taken

in th a t spirit. My characterization of this distinction is not perfect, bu t I can say, roughly,

th a t this dissertation (along with the other research by H ofstadter’s group) focuses more

on w hat I am calling “concepts” than what I am calling “categories” . T hat is, we are not

so much concerned with the kinds of issues th a t psychological research on categorization

deals with, such as prototypes, exemplars, graded structure, and other issues dealing with the

internal structure of individual categories (e.g., Rosch & Lloyd, 1978; Smith & Medin, 1981;

Lakoff, 1987); we are more concerned with the dynamics of the activation and association

of concepts, as active symbols in the brain (Hofstadter, 1979, C hapter 11; 1985d), and how

such symbols are used with flexibility to describe and relate different situations. The nature

of this focus will become clearer in Chapters 2 and 3 when the psychological issues addressed

by this project are spelled out, and the computer model is described.2

The “First Lady” example discussed above illustrates very strikingly how people use

concepts with a great deal of flexibility. The concept “F irst Lady” is ordinarily taken to

mean “the wife of the President” , and thus it is easy to find the counterpart of the American

F irst Lady in, say, Mexico, where there currently is a m arried, male president. However,

as was discussed above, exporting the First Lady concept to Great Britain requires some

flexibility; it requires certain concepts (president and wife) to slip into related concepts

ra ther than being rigidly fixed. A reader might protest a t th is point th a t it isn’t necessary

for concepts to slip if we simply generalize the original definition of “F irst Lady” to “spouse

of the head of state” . However, more examples make it clear th a t the concept “F irst Lady” ,

like other real-world concepts, cannot be crammed into so small a space. Hofstadter (1985a)

gives two other examples th a t elegantly dem onstrate this: when Pierre Trudeau was prime

m inister of Canada, many people considered his form er wife M argaret to be C anada’s First

Lady, and for a long tim e during Jean-Claude Duvalier’s reign in Haiti, the title of First

Lady belonged to Simone Duvalier, his mother and the wife of the late form er president

Francois Duvalier. How to generalize “First Lady” now? Does it mean “spouse or parent,

present or former, of head of sta te , present or former” ? Even if such a verbose and awkward

2 Note th a t this distinction between concepts and categories is quite different from that
m ade by some psychologists. For example, Barsalou (1988) defines “concept” as “simply a
particular individual’s conception of a category on a particu lar occasion” (p. 93). He uses
the word “concept” to refer to a tem porarily constructed representation in working memory.
As will be seen later on, I will refer to such representations as “perceptual structures” . When
I use the word “concept” , I am referring to more perm anent, long-term memory structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

description were plausible, other undeniable instances of F irst Ladies would force further

amendments (e.g., in some Muslim countries, where the king has more than one wife, or

in the Philippines, where many people would say that Corazon Aquino holds the titles of

President and F irst Lady simultaneously, and so on).3

Another problem with attem pting to abstract away any differences by using a generalized

definition such as “spouse of the head of s ta te ” is that, by adopting such a generalization,

you lose the sense th a t Denis Thatcher is not a normal F irst Lady; you lose the sense

of tension that comes from the strong feeling that the role should be filled by a woman.

Such a sense of tension is essential to assessing the quality or interest of an analogy. Also,

im portant information is lost in a generalization (e.g., spouse) that is present in a slippage

(e.g., wife slips to husband); as will be discussed later on, in order to complete or extend an

analogy, very often one has to keep track of how certain concepts slipped.

These examples are related to Lakoff’s (1987) discussion of what he calls “radial” cate

gories (e.g., “m other”), and perhaps an analysis similar to those presented by Lakoff could

be applied to the concept of “First Lady” , in which the meaning of the concept comes

from the interaction of several different “models", such as wife o f the president, most distin

guished woman in a particular field (G reta Garbo has been called the “First Lady of film” ,

Ella Fitzgerald the “First Lady of Jazz”), and so on. But the main point in presenting

this example is to illustrate how subtly flexible and “slippery” real-world concepts can be,

and how hopeless it is to try to come up with a definition or rule th a t will cover all past,

present, and future cases. The view underlying this research project is that the only way

to flexibly understand or categorize new situations is via conceptual slippage and analogy.

This brings out once again the close relation between categorization and analogy-making.

The “First Lady” examples illustrate a central idea in this research: a view of concepts in

which each concept consists of a central region surrounded by a halo of associated concepts

3 David Moser (personal communication) has pointed out that much of the trouble a
few years ago between Nancy Reagan and Raisa Gorbachev may have been due to a bad
analogy on the part of Americans—namely, th a t “Raisa Gorbachev is the First Lady of the
Soviet Union” . This view caused many people (in particular, Mrs. Reagan) to be offended
when Mrs. Gorbachev did not act in the way they felt a First Lady should properly act.
However, it seems th a t Mrs. Gorbachev did not see herself as playing the same role in the
Soviet Union as the role Mrs. Reagan played in the United States, and thus their encounters
were rife with misunderstandings. (As it turned out, Mrs. Reagan, in her memoir (1989),
acknowledged th a t the analogy was imperfect, noting—though perhaps inaccurately—th at
“There isn’t even a Russian word for ‘F irst Lady’” , p. 337-338.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

which are potential slippages (e.g., husband is in the halo of the concept wife, and in some

situations, such as identifying the F irst Lady of Great Britain, the description wife can slip

to the description husband; that is, husband in one situation can be seen as playing the same

role as wife in the other situation).

Conceptual slippage is ubiquitous in thought, and in some aspects of thought it can

be seen especially clearly. For example, our speech and actions are permeated w ith errors

involving conceptual slips, such as word substitutions (e.g., “Please fix the window, uh,

I mean mirror” or “Are my legs, uh, I mean my tires touching the curb?”) and action

errors (e.g., stopping the car and unbuckling one’s watch instead of one’s seat belt, or

trying to look up the word “February” in the dictionary by turning to the letter ‘B ’—both

February and ‘B’ are second in a series).4 Slippages are also apparent in the counterfactual

statem ents people constantly make. You accidentally drop the milk bottle onto the floor,

breaking it, and think, “I wish I had dropped the orange-juice jug instead, since i t ’s made

of plastic.” Concepts tend to slip to close neighbors: milk bottle slips to orange-juice jug

rather than to, say, tablecloth—it is very unlikely th a t you would think “I wish I had dropped

the tablecloth instead; it wouldn’t have broken.” But of course the closeness—as well as

the availability of other concepts as potential slippages from a given concept—depends on

the situation. W hat slips, and how, depend on the interaction of specific pressures on the

perceiver of the situation. As will be seen, the Copycat program is an a ttem pt to model

this context-dependent nature of conceptual slippage, to show how pressures in specific

situations interact with concepts to provoke appropriate slippages. (See Hofstadter, 1979,

Chapter 19, and Kahneman & Miller, 1986, for discussions of slippage in counterfactual

thinking. Hofstadter & Gabora, 1990, gives a discussion of slippage in humor. Also, the

role of slippage in translation between languages is discussed by Hofstadter, 1982, French

& Henry, 1988, and Moser, 1989.)

The Copycat project concerns analogy-making, which provides a particularly clear win

dow on the ways in which conceptual slippages take place. Since analogy-making is all

about perceiving resemblances between things th a t are different, an analogy puts pressure

on concepts to slip into related concepts, as is seen in the analogies involving First Ladies.

4 There has been much research in psychology and linguistics on error-making; see, for
example, Fromkin (1980), and Norman (1981). A large collection of interesting speech and
action errors is given and discussed in Hofstadter and Moser (1989). The examples given
above come from these three references.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Different people use the word “analogy” to mean different things, bu t when the term is

taken in a very broad sense, to include all types of similarity comparisons (“this object

is like th a t object” , or “this situation is like th a t situation”), one cannot overestim ate its

ubiquity and im portance a t all levels of thought, from the most common and m undane

acts of categorization to the most rare and significant feats of creation and discovery. Many

researchers (e.g., Gentner, 1983) would hesitate to label categorization as a kind of analogy-

making, bu t as the previous discussion in this chapter has illustrated, it is somewhat hard

to draw a line between the two. As Gentner (1983) has pointed out, there is a spectrum

of types of similarity comparisons. Our point here is tha t the mechanisms underlying these

various mental activities are, if not the same, then a t least very closely related.

T he following are some examples of analogy-making (or, in some cases, its close cousins)

along a spectrum from the everyday and m undane to the rare and exalted (though not

necessarily perfectly ordered).

• A child learns the difference between cups and glasses, and can use the two words to

correctly identify different objects.

• A child learns to recognize cats, dogs, boys, girls, etc. in books as well as in real life.

• A person is consistently and easily able to recognize the letter ‘A ’, in spite of the fact

th a t i t appears in a vast variety of different shapes and styles, both in professionally

designed typefaces and in different people’s handwriting. There is something about

all these ‘A’s th a t is essentially the same.

• A person is consistently and easily able to recognize th a t all the letters in a certain

typeface (say, Helvetica) are in the same style; there is something about the letters

th a t is essentially the same.

• Jean says to Simon, “I call my parents once a week” . Simon replies, “Me too” , not

m eaning, of course, th a t he calls Jean’s parents once a week, but th a t he calls his own

parents.

• A woman says to her male colleague, “I’ve been working so hard lately, I haven’t

been able to get enough tim e to spend with my husband” , and he replies, “Yeah, me

neither.” He doesn’t mean tha t he has no time to spend with her husband, or with

his own husband, or even with his own wife, but rather with his girl friend.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

• People take the suffix from “alcoholic” , and use it to create new concepts like “worka

holic” , “chocoholic” , “sexaholic” , and “shopaholic” .

• An advertisement describes Perrier as “the Cadillac of bo ttled waters” . A newspaper

article describes teaching as “the Beirut of professions” . An opinion piece describes

Saddam Hussein as “the Noriega of the Middle East” .

• Nicaragua (or El Salvador) is called “another V ietnam ". Cam bodia is called “Viet

nam ’s V ietnam ”. The Iran-C ontra affair is called “Reagan’s W atergate” , and news

papers even dub it “Contragate” .

• President Ronald Reagan calls the Nicaraguan Contras “Freedom Fighters” , and likens

them to “our Founding Fathers” in the American Revolution.

• A newspaper article portrays Denis Thatcher as the “F irst Lady of Great Britain” .

• A jury acquits a m an accused of rape because they judged th a t the victim was wearing

“provocative” clothes, and was “asking to be raped” . T he National Organization of

Women protests, asserting tha t this judgm ent is like saying th a t a person wearing an

expensive watch is “asking to be robbed” .

• Britain and A rgentina go to war over the Falklands (or las Malvinas), a set of small

islands near the coast of Argentina, populated by British settlers. Greece sides with

England, because of its own conflict with Turkey over Cyprus, an island near the coast

of Turkey, the m ajority of whose population is ethnically Greek.

• A classical-music lover hears an unfamiliar piece on the radio and easily recognizes it

as being by M ozart. An early-music enthusiast hears a piece for baroque orchestra

and can easily identify which country the composer was from. A studio composer

arranges the Beatles’ rock-and-roll hit “Hey Jude” in “easy listening” style to be

played on M uzak radio stations.

• The linguist Zhao Yuanren translates Alice in Wonderland in to Chinese, adapting the

puns and other wordplay so th a t they work smoothly in Chinese while retaining the

essence of the English original.

• The physicist Hideki Yukawa attem pts to explain the nuclear force using an analogy

with the electromagnetic force. On this basis, he postulates a mediating particle for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

the nuclear force sim ilar to the photon, which m ediates the electromagnetic force.

However, the new particle would have to mediate conversion of uncharged particles

(neutrons) into charged particles (protons), and vice versa, which photons could not

do. So certain slippages have to be made from the electrom agnetic force to the nuclear

force:

non-converter (photon) =» converter (new particle),

which implies

uncharged (photon) => charged (new particle),

which in turn implies

massless (photon) => massive (new particle),

which requires a slippage from one type of equation to another:

massless equation => massive equation.

Yukawa uses these slippages to predict properties of the hypothesized particle (now

known as a pion), which is subsequently discovered, and the predicted properties are

verified (Yukawa, 1973a, 1973b).

• Johann Sebastian Bach takes a simple aria and creates a set of th irty variations on

it (the “Goldberg Variations”), each one quite different and complex, many involving

constraints not present in the original aria, but each containing something of the

essence of the original in either melodic or harmonic structure.

There are two points to be made here. F irst, in an im portan t sense, all of these count as

examples of analogy-m akirg. All are illustrations, a t different levels of impressiveness, of the

fluid ra ther than rigid natu re of concepts and perception, by which the essence of a situation

(be i t a cup, a printed ‘A ’, a family situation, a profession, a political situation, a piece of

music or literature, a scientific idea, or whatever) can be distilled and fluidly transported to

a different situation. T hus, though these examples range over a wide spectrum , there are

fundam ental psychological issues common to all of them ; they reflect in different ways the

same set of mental abilities, those of high-level perception and conceptual fluidity that have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

been sketched in this chapter. The Copycat project is an a ttem pt to ex tract and isolate

some of these common issues and abilities and to propose a set o f ideas about the underlying

mechanisms. This proposal takes the form of a computer program th a t can make analogies

in a microworld tha t contains many of these issues in an idealized form. C hapter 2 gives a

description of the microworld and a discussion of the general issues it contains.

The second point is th a t these examples give some indication of the ubiquity and range

of analogy-making in hum an thought. The analogy-making capacity in humans is far more

than a mere tool used in the context of problem-solving, or a servant to a “reasoning

engine” . It is a central mechanism of cognition; it pervades thought a t all levels, both

conscious and unconscious, and cannot be turned on and off a t will. (This view of the

centrality of analogy in thought is complemented by the work of Lakoff and Johnson (1980)

and Lakoff (1987), who provide evidence, using a vast array of linguistic m etaphors, to

argue that we understand all abstract and complex concepts (e.g., “love”) by analogies to

more direct perceptual experiences.)

In this section, the relation between analogy-making and high-level perception has been

discussed, and the role of conceptual slippage in various m ental processes has been illus

tra ted by a number of examples. The point of the Copycat project is to investigate and

model how perception interacts with concepts and how fluid conceptual slippages come

about in the process of interpreting and making analogies between situations. The next

chapter describes some of the specific issues in high-level perception and analogy-making

th a t the Copycat program is meant to address, and illustrates how those issues arise in the

idealized microworld in which the program makes analogies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

HIGH-LEVEL PERCEPTION, CONCEPTUAL SLIPPAGE, AND

ANALOGY-MAKING IN A MICROWORLD

2.1 Copycat’s Microworld

The research methodology of the Copycat project has been to a ttem pt to isolate many of

the central issues in high-level perception and analogy-making, to strip them down to their

essence, and to construct a com puter model th a t deals with these issues in this idealized

form. This methodology is similar to th a t used by physicists, who typically a ttem pt to solve

idealized versions of problems th a t nonetheless capture the essence of the original problem.

In basic sciences, particularly in physics, using such a methodology is indispensable in

order to gain insight into deep underlying principles, because phenomena in the real world

are often too complex to approach directly. For the same reasons, we believe th a t this

methodology is also indispensable for approaching problems in cognitive science: much

insight about m ental mechanisms can be gained by looking a t problems in a more stripped-

down form w ithout involving the vast amounts of information and complications of the real

world th a t would make the construction of models intractable.

Adopting this isolate-and-idealize strategy, H ofstadter (1984a, 1984b, 1985a) has devel

oped an idealized microworld for studying many of the essential features of perception and

analogy-making. The basic objects in this world are the 26 letters of the alphabet, and

analogy problems are constructed out of strings of letters, as in the following problem:

1. abc =>■ abd

y k => ?

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

T hat is, one is asked, given the change from the string a b c to the string a b d , to do “the

same thing” to the string y k (i.e., one is asked to be a “copycat”— to copy the initial

change, bu t using the material of the target string—hence the name of the program). The

strings here are supposed to represent idealized situations containing objects, relationships

between objects, and events; in this way they serve as m etaphors for more complex real-

world situations. The initial string a b c and the target string y k are two frameworks,

each with its own objects and relationships. The change of a b c to the modified string

a b d highlights a fragment of the first framework, and the challenge is to find “the same

fragment” in the second framework (the target string), and to highlight and modify it in

“the same way” . W hat has been highlighted, how it has been highlighted, and what “the

same way” means in the second framework are all up to the analogy-maker (human or

machine) to decide.

The knowledge available to an analogy-maker in this microworld is fairly limited. The

26 letters are known, but only as members of a platonic linear sequence; shapes of letters,

sounds, words, and all other linguistic and graphic facts are unknown. The only relations

explicitly known are predecessor and successor relations between immediate neighbors in

the alphabet. Ordinal positions in the alphabet (e.g., the fact th a t S'is the 19th letter) are

not known. (A note on notation: italic capitals (e.g., S) denote the 26 abstract categories

(or types) of the alphabet, and never appear in strings; boldface smalls (e.g., a , b , and

c) denote instances (or tokens) of those categories, and appear only in strings.) A and Z,

being alphabetic extremities, are salient landm arks of equal im portance. The alphabet is

not circular; th a t is, A has no predecessor and Z has no successor. The alphabet is known

equally well backwards and forwards (the fact that N is the letter before O is as equally

accessible as the fact th a t O is the letter a fter N). In addition, strings (such as a b c or k k jjii)

can be parsed equally well left to right or right to left. The analogy-maker can count, bu t

is reluctant to count above 3 or so, and has a commonsense notion of grouping by sameness

or by alphabetical adjacency (forwards or backwards equally easily).

As can be seen from the description above, the knowledge assumed for th is microdomain

is not only lim ited, bu t is also different from th a t of people with respect to letter-strings

(people can count far above 3, people usually know the alphabet better forwards than

backwards, English speakers read left to right, and so on). The idea here is not to construct

a model of how people solve letter-string analogy problems per se, but rather to construct a

domain th a t, though idealized, captures much of the essence of real-world analogy-making,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

so it can be used in developing a more general model. Thus there is a balance to be made

in constructing such a domain: we want people to be able to understand and solve the

letter-string problems without needing too much instruction about the restrictions of the

domain, but we also want to avoid having features in the domain th a t are specific to the

letter-string problems themselves (e.g., a left-to-right bias in reading), but are extraneous

to the real issues of high-level perception and analogy-making th a t we are investigating.

In addition, we exclude complex m athem atical knowledge because we are trying to get

a t subconscious recognition processes rather than highly conscious “expert” activities like

m athematics (such as noticing th a t the distance from A to E is twice as large as the distance

from M to O).

For Problem 1 given above, a reasonable description of the a b c =>■ a b d change is “Re

place the rightmost letter by its successor” , and straightforward application of this rule to

the target string y k yields the commonsense answer ijl. A more literal description (almost

never given by people) is “Replace the rightmost letter by a D ”, yielding answer ijd . (This

answer seems so literal-minded th a t many people laugh when it is suggested to them .) Even

more literal-minded answers are i jk (“Replace any C by a D n, and since there are no in

stances of C in y k , just leave th e target string alone) and a b d (“Replace any string by

a b d ”). However, these answers are very rarely given by people. People have necessarily

evolved to be very good a t describing things a t an appropriate level of generality (i.e., ap

propriate for the purposes of living in the world), and this ability in the real world carries

over to the abstract letter-string domain. Even though—technically—there are no “right”

and “wrong” answers in a domain so divorced from real-world concerns, people fairly con

sistently agree on a single answer or a small set of answers as being the best response(s) to a

given problem. (The results of some surveys of people on these problems will be given later

on.) People’s m ental mechanisms have evolved for perception and analogy-making in the

real world, bu t these mechanisms are still in operation even when the domain is artificial.

Thus artificial domains such as the letter-string domain can be used to study general mental

mechanisms.

In Problem 1 above, the rule “Replace the rightmost letter by its successor” , describing

the initial change a b c => a b d , can be applied straightforwardly to the target string yk .

However, other problems are no t so simple. For instance, consider the same initial change

and an alternate target string:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

19

2. a b c =► a b d

itfjkk =» ?

Here a straightforward, rigid application of the original rule would yield i\jjk l, which ignores

the strong similarity between a b c and iijjk k when the latter is seen as consisting of three

groups of letters rather than as six letters. If one perceives the role of letter in a b c as played

by group in iu jk k , then in making a mapping between a b c and iijjk k , one is forced to let

the concept letter slip into the similar concept group. The rule for changing the target string

becomes “Replace the rightm ost group by its successor” , yielding answer iijjll.

Consider now the following variant:

3. a b c => a b d

k ji => ?

Here a literal application of the original rule would yield k jj, which again ignores a more

abstract similarity between a b c and l<Ji. An alternative some people prefer is Iji (“Replace

the leftmost letter by its successor”), which is based on seeing a b c as a left-to-right string

and k ji as a right*to-left string (where each string increases alphabetically); here there is a

slippage from the concept right to the concept left, which in turn gives rise to the slippage

rightmost => leftmost. Another answer given by many people is k jh (“Replace the rightmost

le tte r by its predecessor”), in which a b c is seen as increasing and k ji as decreasing (both

viewed as moving rightwards), yielding a slippage from successor to predecessor.

Notice th a t the same arguments would apply for the problem “a b c =>■ a b d , k jih => ?”

in which initial string a b c is of length 3 and the target string k jih is of length 4. In

the microdomain, as in real-world analogy-making, i t is not necessary for there to be a

one-to-one mapping between the objects of the two situations; an analogy can be made in

spite of the fact th a t some objects, like the b in a b c and the j and i in k jih have no clear

counterparts in the other situation (just as an analogy can be made between the “First

Family” of the United States an4 that of G reat Britain w ithout having to find a British

counterpart for the Bushes’ family dog).

Still o ther kinds of slippages can be seen in the answers to the following three problems.

4. a b c =» a b d

a c e =>■ ?

Applying the original rule literally yields answer acf, which doesn’t take into account the

“double successor” structure of a ce (C is the double successor of A, etc.). If a c e is seen as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

similar to a b c because a b c is a “successor group” and ace is a “double-successor group” ,

then the answer is a cg (“Replace rightmost letter by its double successor*).1

5. a b c => a b d

m rr jj j => ?

The answer th a t people give m ost often is m rrk k k , but this doesn’t take into account

the abstract similarity between a b c and m rr jjj: a b c increases alphabetically while m r r j j j

consists of groups whose lengths increase numerically. If this sim ilarity is perceived, than

the answer is m r r j j j j , which reflects the view that the role played by letter in a b c is played

by group-length in m rr jj j , and requires a slippage from one to the other (“Replace rightm ost

group-length by its successor”). Even though people don’t often produce this answer, when

given a choice, some (not all) feel th a t it is a better answer than m rrk k k (see Appendix

D). People occasionally give the answer m rrk k k k , replacing both the group-length and the

letter-category of the rightmost group by their successors. This answer confounds aspects

of the two situations. The strings a b c and m rr jjj are similar since they both are woven

together with the “fabric” of successorship, but this similarity is abstract, since in one case

the fabric is successor relations between letters, and in the other case it is successor relations

between group lengths. It thus seems strange to insist on retaining the notion of letter-

successorship in the group-length situation where it no longer applies. It is as if a translator

decided to tell the story of War and Peace in the context of the American Civil W ar, but

gave the (now American) characters the names “Natasha” and “Alexey” , refusing to let this

aspect of the original novel slip. An even stranger translation would leave the names in the

original Cyrillic letters, which might correspond to the answer m rrd d d d . (Hofstadter has

given the term “frame blends” to such mixtures of flexible and rigid thinking, which seem

to be extremely common in thought, as well as being at the root of much humor of various

kinds; see H ofstadter & Gabora, 1990.)

6. a b c =>■ a b d

a a b a b c =>■ ?

Here it is hard to make sense of the target string, and most people answer a a b a b d , applying

the rule “Replace rightmost le tte r by successor” directly. B ut if a a b a b c is parsed as a -

1 As mentioned earlier, the only relations explicitly known to analogy-makers in this
microworld are immediate successor and predecessor relations, so in order to arrive a t the
answer ace , an analogy-maker would have to create the concept double successor on the fly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

a b -a b c , then a strong though abstract similarity to the initial string a b c emerges, where

the “rightmost letter” of a a b a b c is the group a b c , and its “successor” is a b e d , yielding

answer a a b a b e d .

I hope th a t the preceding problems help to make the case th a t although the analogies in

th is microworld involve only a small num ber of concepts, some of them require considerable

flexibility and insight. A particularly clear example of such an analogy is the following:

7. a b c =► a b d

xyz => ?

At first glance, this problem is essentially the same as Problem 1 above (with target string

y k) , but there is a snag: Z has no successor. Most people answer x y a , but in C opycat’s mi

croworld the alphabet Is not circular. This answer is intentionally excluded in order to force

an impasse that requires analogy-makers to restructure their initial view, to make concep

tual slippages th a t were not initially considered, and hopefully to discover a different way

of understanding the situation. One such way is to notice th a t x y z is “wedged” against the

far end of the alphabet, and a b c is similarly wedged against the beginning of the alphabet.

Thus the z in x y z and the a in a b c can be seen to correspond, and then one naturally feels

th a t the x and the c correspond as well. Underlying these object correspondences is a set

o f slippages th a t are conceptually parallel: alphabetic-first => alphabetic-last, right => left,

and successor => predecessor. Taken together, these slippages convert the original rule into

a rule adapted to the target string x y z : “Replace the leftmost le tte r by its predecessor”,

which yields a surprising but strong answer: w yz.

The seven problems discussed above give some idea of C opycat’s microworld, but they

are only a small sample from a vast space of interesting analogy problems involving letter-

strings (C hapter 5 and Appendix A contain additional sample problems). These problems

capture something of the flavor of the F irst Lady examples given in the previous chapter,

illustrating how analogy-making requires fluid rather than rigid concepts: the process of

making an analogy between two situations puts pressure on concepts in one situation (e.g.,

president and wife, or rightmost, letter, and successor), forcing them to slip in to associated

concepts in the other situation.

The current version of the Copycat program can deal only w ith problems whose initial

change involves a replacement of at m ost one letter, which is why all the examples given

above use the initial change a b c ^ a b d (of course the answer can involve a change of more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

th an one letter, as in Problems 2, 5, and 6), bu t this is a lim itation of th e program as it

now stands; in principle, the domain is much larger.

2.2 Abilities Required for High-Level Perception and Analogy-Making

It is im portant to emphasize once again th a t the goal of th is project is not to model specif

ically how people solve these letter-string analogy problems (it is clear th a t the microworld

involves only a very small fraction of what people know about letters and might use in

solving these problems), bu t rather to propose and model mechanisms for high-level per

ception and analogy-making in general. A very broad characterization of analogy-making

can be given as follows: analogy-making consists of distilling the essence of one situation

and adapting it to fit another situation. The letter-string analogy problems were designed

to isolate and make very clear some of the mental abilities th a t are required in this process

of understanding situations and perceiving similarity between situations. These abilities

include the following (which, though listed separately, are of course strongly interrelated):

• Mentally constructing a coherently structured whole out of initially unattached parts;

• Describing objects, relations, and events a t the “appropriate” level of abstraction;

• Chunking certain elements of a situation while viewing others individually;

• Focusing on relevant aspects and ignoring irrelevant or superficial aspects of situations;

• Taking certain descriptions literally and letting others slip when perceiving correspon

dences between aspects of two situations;

• Exploring many plausible avenues of possible in terpretations while avoiding a search

through a combinatorial explosion of implausible possibilities.

How each of these arises in Copycat and in real-world situations is discussed below.

M entally constructing a coherently structured whole out o f initially unattached parts.

This description is very broad, and could be given as a definition of “recognition” , bu t the

point is th a t i t applies no t ju st to modality-specific recognition processes such as interpreting

visual scenes, recognizing faces, or comprehending utterances, but to more abstract kinds

of recognition as well, such as the recognition of a coverup (as discussed earlier). The letter-

string problems in Copycat’s microworld are given to the program basically unlabeled:

relationships and correspondences between letters are not given ahead of tim e, and it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

up to the program to take the initially unattached letters and to weave them together into

meaningful groupings and correspondences. The other abilities listed below are necessary

for doing this.

Describing objects, relations, and events at the “appropriate” level o f abstraction. W hat

is “appropriate” of course depends on the situation. People tend to agree on how abstract

the description of a situation should be; th a t is, they agree on which things should be

perceived in term s of the roles they play and which should be perceived more literally.

For example, if we see the recent Iran -C on tra affair as “another W atergate” , we focus on

Ronald Reagan in his role as “President” (and thus the counterpart o f Richard Nixon)

ra ther than more literally as “a man nam ed Ronald Reagan” . There is often competition

between different possible descriptions: we could describe Oliver North as “a lieutenant

colonel” (there were no lieutenant colonels playing significant roles in W atergate) or as

“the one who shredded the documents” , perhaps viewing him as the counterpart of Nixon

(viewing the la tte r as “the one who erased the tapes”). Or we might view North as “the

scapegoat, who was following orders from higher up” , seeing him as the counterpart of the

W atergate burglars. Situations in the real world contain many different facets, and there

is always competition among the various ways of perceiving these facets. Sometimes literal

descriptions will be appropriate. W ashington D.C., for example, is literally the same in

both W atergate and Contragate.

This tension between literal descriptions and abstract roles is very evident in Copy

ca t’s letter-string analogy problems. For example, in Problem 1 of the previous section

(“a b c =>• a b d , i jk =► ?"), should the c in a b c be described literally as “a C ” or more

abstractly, in term s of its role in its string—namely, “the rightm ost letter” ? (There are of

course o ther possible roles one could perceive the c as playing, such as “the third letter

in the string” , “the highest letter in the alphabetic sequence” , “the successor of the b ” ,

and so on.) Likewise, should the d in a b d be described as “a D ”, or should the successor

relationship w ith respect to the c be perceived? The answers to tnese questions depend on

the context. For the given problem, the descriptions “Replace the rightmost letter by its

successor” or “Replace the highest le tte r in the sequence by the next letter in the sequence”

seem most appropriate (and are almost always the ones given by people when they are asked

to describe the change), since one wants to give a description of a given situation th a t can

fairly easily be exported to other situations, though w ithout being too abstract and thus

losing too much information. But consider the following problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

la . a b c =>• a b d

xcg => ?

Here it would seem more reasonable than in the original problem to describe the c in a b c

a t “face value” (i.e., using the rule “Replace C by D”) since there is an instance of C in the

target string as well, and the target string lacks the successorship structure of the initial

string. Such a view would yield the answer xdg , whereas the “Replace rightmost le tte r by

successor” view would yield the answer xch.

An interm ediate case is:

lb. a b c ^ a b d

a b e d => ?

There is a tantalizing instance of C in the target string, tem pting us to answer a b d d ,

but there is also a shared structure between a b c and a b e d , in th a t both are increasing

sequences beginning with A. The la tte r view lobbies for the answer ab c e , which is usually

preferred by people.

O ther variants, such as

lc . a b c => a b d

c d e ^ ?

and

Id. a b c =► a b d

c b a =$■ ?

illustrate variations and gradations in these pressures. The point is th a t this central is

sue of perceiving roles versus literal descriptions and describing elements of situations a t

“appropriate” levels of abstraction can be captured to some extent in the letter-string do

m ain, small and restricted as it is. Moreover, as can be seen from the preceding examples,

this issue can be explored in great detail in the microworld by constructing fam ilies of

analogy-problems, as in la - d given above, where each member of a family varies a certain

pressure along a certain dimension. Copycat’s behavior on several such families of problems

(including problems lo -d) will be described in C hapter 5.

Chunking certain elements o f a situation while viewing others individually. The issue

of chunking is fundam ental to perception at all levels. For instance, visually recognizing

a chair requires m ental chunking and labeling of its various parts (e.g., seat, back, arms).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Aurally interpreting a spoken sentence requires mental chunking of phonemes, syllables,

words, and so on. Similarly, in more abstract forms of perception, making sense of a

situation and making analogies between situations requires determining which parts should

be viewed (and perhaps mapped onto the other situation) together as single units (e.g., in

W atergate, one might chunk Haldeman and Ehrlichman as a unit, and then map th a t unit

to a North-Poindexter unit in Contragate, or one might perceive Congress as a single unit

in both situations). The chunking issue arises frequently in the letter-string problems; for

example, in Problem 2 (“a b c =» a b d , iijjk k ?”) and, more complexly, in Problem 6

(“a b c => a b d , a a b a b c =>• ?”), where discovering a useful parsing for the target string is

ra ther difficult.

Focusing on relevant aspects and ignoring irrelevant or superficial aspects o f situations.

Any complex situation has a huge number of aspects th a t can possibly be perceived, only

some of which are relevant to a useful understanding of it. The ability to figure out which

features are im portant and which can be ignored is fundamental to perception and analogy-

making. For example, when looking for the W atergate counterpart of Ronald Reagan, do

we care th a t Reagan has a wife named “Nancy” ? Or when asking who played the role of

Fawn Hall, do we pay attention to the fact that her boss was in the Marines? Do we care

who was on the Senate investigating committee? This issue also plays a fundam ental role

in analogy-making in the letter-string domain. For example, in “a b c =>• a b d , k jih => ?” ,

do we care th a t there are three letters in a b c and four letters in k jih? Does the b in

a b c have to correspond to anything in k jih? And is it im portant to take into account

th a t the rightmost letter of a b c is an instance of C? Elements of situations don’t come

pre-labeled with the “right” description attached. Likewise they don’t come pre-labeled as

being “im portan t” or “relevant” . The perceiver is required to use both a priori knowledge

and w hat has already been perceived about a given situation to determine which aspects

are im portant and essential and which are irrelevant and superficial.

A very im portant point m ust.be made here. The phrase used in the paragraph above,

“the ability to figure out which features are im portant and which can be ignored” , m isstates

the issue somewhat, since the problem is not, by any means, merely one in which many

possible aspects of the situation are set before you and you have to decide which should be

chosen for use in creating an interpretation or analogy. The process of perception involves

not only deciding which clearly apparent aspects of a situation should be ignored and which

should be taken into account, but how aspects th a t were initially considered to be irrelevant,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

or were not even considered to be part of the situation in the first place, become apparent

and relevant in response to pressures tha t emerge as the understanding process is taking

place. In other words, sometimes, given certain pressures, concepts come in to play th a t you

initially didn’t even suspect were part of the situation in any way.

As a example of these ideas (involving a commonly experienced situation), suppose you

invite your good friend Greg to dinner, and he doesn’t show up on time. W hat do you do?

At first, simple, standard explanations and actions come to mind: he was briefly delayed; he

ran into traffic; he had trouble parking. But as half an hour passes, then an hour, then two,

the explanations and actions you think of become more and more out of the ordinary. The

following might come to mind: call his office (no answer); call his apartm ent (no answer);

check your calendar to make sure the dinner date is tonight (it is); rack your brains trying

to remember if he warned you he might be late (you have no such memory); call friends

of his to see if they know where he is (they don’t); call his parents in Philadelphia (they

haven’t heard from him in weeks); call the police (they suggest checking the hospital); call

the hospital (he’s not there); go to his apartm ent (he’s not there); ask his neighbors if

they’ve seen him lately (they last saw him this morning); drive along routes he would likely

have taken (he’s nowhere to be seen); buy a megaphone and call out his nam e as you drive

along; call several airlines to see if he’s on a plane leaving town tonight; tu rn on the TV to

see if you can spot him sitting in the audience of his favorite talk show; and so on. Though

the last few are outlandish, most of these thoughts did occur to my friends and me when

we were in such a situation. The point is: as tim e goes by and pressure builds up, one’s

thoughts go farther and farther out on a limb. One considers things th a t one never would

have considered initially, letting seemingly unquestionable aspects of the situation slip under

mounting pressure (e.g., Did I dream th a t I invited him? Did we have a falling-out th a t I

forgot about? Did he leave town and not tell me?).

Not only are certain concepts explicitly present in one’s m ental representation of a

situation (you consciously believe th a t Greg was driving); there are also im plicit associations

with those concepts, m ost of which stay well below the level o f awareness. Given Greg’s

lateness, the thought th a t he’s driving might easily evoke an image of his having trouble

parking (a strong association). However, it is less likely th a t, early on, you will imagine

him in a car accident. This weaker association is potentially there, bu t will not be brought

into the picture without pressure (he is quite late, it is dark outside, etc .). This illustrates

a general point: far-out ideas (or even ideas slightly past one’s defaults) cannot continually

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

occur to people for no good reason; a person to whom this happens is classified as crazy

or crackpot. Time and cognitive resources being limited, it is vital to resist nonstandard

ways of looking at situations without strong pressure to do so. You don’t check the street

sign on your block every time you go out to make sure the nam e hasn’t changed. You

don’t check under your car for a hidden bomb every tim e you want to drive it. Likewise,

counterintuitive ideas in science come about only in response to strong pressures. For

example, had the Michelson-Morley experiment come out the other way (i.e., had it proved

there is an “ether") and had Einstein still proposed special relativity, with all its deeply

counterintuitive notions, it would have been seen as ju s t a fascinating crackpot theory,

not a great scientific advance. Not only is pressure needed for one to bring in previously

uninvolved concepts in trying to make sense of a situation, but the concepts brought in

are related to the source of the pressure. (This is related to the discussion in the previous

chapter concerning what kinds of slippages are made in counterfactual thinking. These

ideas overlap with Kahneman & Miller’s 1986 treatm ent of counterfactuals.)

In short, flexibility in thought requires the potential for unexpected concepts to be

brought into one’s understanding of a situation, but only in response to pressure. An a

priori absolute exclusion of a whole class of concepts initially assumed to be irrelevant

is too rigid; one might then be prevented from coming up with unexpected new ways of

looking a t things. On the o ther hand, lim itations of space and tim e make it impossible for

all one’s concepts to be made equally available for use in forming m ental representations.

A premise of the model being proposed here is th a t the presence or absence of a concept

in a situation is not black-and-white; rather, all one’s concepts should have the potential

to become relevant in any situation, bu t due to the necessity for cognitive economy, they

can’t all be made available all the tim e or to the same degree. Instead, one m ust somehow

manage to keep seemingly irrelevant concepts pretty much in the background most of the

tim e, w ithout absolutely and irrevocably excluding them .

These issues of graded relevance and availability of concepts in different situations come

up often in the letter-string domain. For example, consider Problem 5:

5. a b c =*■ a b d

m r r j j j => ?

You want to make use of the the salient fact that abc is an alphabetically increasing
sequence, b u t how? This internal “fabric” of a b c is a very appealing and seemingly ex

planatory aspect of the string, but a t first glance, no such fabric seems to weave m rr jj j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

28

together. So either (like most people) you settle for m rrk k k (or possibly m rr jjk) , or you

look more deeply. But where to look when there are so many possibilities?

The interest of this problem is th a t there happens to be an aspect of m rr jj j lurking

beneath the surface th a t, once recognized, yields w hat m any people feel is a more satisfying

answer. As was discussed above, if you ignore the letters in m rr j j j and look instead at

group lengths, the desired successorship fabric is found: the lengths of groups increase

as “1-2-3” . Once this hidden connection between a b c and m rr j j j is discovered, the rule

describing a b c =>• a b d can be adapted to m rr j j j as “Replace the length of the rightmost

group by its successor” , yielding “1-2-4” at the abstract level, or, more concretely, m r r j j j j .

But bringing the nonstandard concept of length into the picture requires strong pressures.

These pressures include: top-down pressure to perceive successor relations in m rr j j j once

they have been noticed in ab c ; the fact that once groups of letters are perceived in m rr j j j ,

the notion of length becomes weakly active and lingers in the background; and the decreased

resistance to bringing in nonstandard concepts as organizing notions after more standard

ones have failed to yield progress in making sense o f the situation at hand. Thus this

problem dem onstrates how a previously irrelevant, unnoticed aspect of a situation emerges

as relevant in response to pressures. The next two chapters describe and illustrate the

mechanisms we are proposing for such capabilities.

Taking certain descriptions literally and letting others slip when perceiving correspon

dences between aspects o f two situations. As was shown by the F irst Lady examples given in

the previous chapter, even when roles (such as “wife of the president”) have been perceived

in a situation (e.g., the United States), they can’t always be exported smoothly to a new

situation (e.g., G reat Britain). Either the roles have to be abstracted further (“spouse of

the head of s ta te ”) or slippages have to occur (president =>■ prim e minister, wife => hus

band). The process of perceiving correspondences between situations involves fights among

pressures to use descriptions literally, to make descriptions more abstract, and to let de

scriptions slip into related descriptions. Notice th a t there is a distinction between ignoring

certain aspects of a situation, because they are deemed to be irrelevant, and letting one’s

descriptions of certain aspects slip, precisely because they are relevant, but don’t apply as is

to the new situation. The letter-string domain was designed primarily to focus on the ques

tion of how different pressures interact to trigger appropriate slippages. Problems 2-7 from

the previous section illustrate several different translations of the same rule (“Replace the

rightm ost le tte r by its successor”), each involving slippages triggered by different pressures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

th a t come up in the perception of the different target strings.

Exploring many plausible avenues o f possible interpretations while avoiding a search

through a combinatorial explosion o f implausible possibilities. A serious problem in trying

to model perception is how to deal with the combinatorial explosion of possibilities. Com

petition m ust exist, but since the number of possible ways of interpreting a situation and

making correspondences between situations is so large, not all possibilities can be explored

fully (or even a t all). This potential combinatorial explosion exists even for the simple

situations in the letter-string domain (for example, in Problem 6, there are quite a number

of possible ways in which the string a a b a b c could be structured and m apped onto the

string a b c) , though, of course, to a much lesser degree than for real-world situations. In

any case, since the goal of the Copycat project is to propose and test mechanisms for high-

level perception and analogy-making in general rather than specifically in the letter-string

domain, we m ust make sure th a t the program does not take advantage of the small size

of the microworld. Instead, the program must, as people do, have ways of circumventing

the necessity of exhaustive search of any kind. To do so, it is necessary to use informa

tion as it is obtained to narrow the exploration of possibilities. For example, in making a

W atergate-C ontragate analogy, if you decide th a t th a t the notion of “erasing tapes” in Wa

tergate corresponds to “shredding documents” in Contragate, then this view should make

a m apping between Rose Mary Woods (Nixon’s personal secretary, who erased tapes) and

Fawn Hall (N orth’s secretary, who shredded documents) more worthy of consideration than

a m apping between, say, Woods and Reagan’s personal secretary. Likewise, when one is

solving Problem 3 (“a b c ^ a b d , k ji => ?”), if successorship has been identified as a seem

ingly useful notion in the initial string, there should be top-down pressure to consider it in

the target string as well. And if you perceive the two groups as increasing alphabetically

bu t in different spatial directions (and thus make the slippage right => left), then a mapping

between c and k (with the slippage rightmost => leftmost), becomes much more compelling,

and consideration of a c - i mapping less likely. The process of using information as it is

obtained involves not only allowing what is noticed to activate and reshape existing con

cepts in a bottom -up m anner, but also allowing existing concepts to direct perception in a

top-down m anner. This interaction of bottom -up and top-down modes o f processing is an

essential p a rt of the Copycat program. It will be discussed and dem onstrated in detail in

the next two chapters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

The notion o f competing pressures. The abilities discussed above ail illustrate how

analogy-making necessarily entails competition among the huge num ber o f possible ways

of interpreting a situation and seeing similarities between situations. As can be seen in

the various examples given above, a fundam ental notion here is th a t of competing pressures

acting on the perceiver/analogy-maker. It is through the competition among and resolution

of these pressures th a t a coherent analogy emerges. (The same could be said for recognition

processes in general.) Certain pressures are always strong in any analogy: for example,

there is always a pressure to map salient things (such as “the President”) onto other salient

things, identical things (and very similar things) onto each other, and a pressure to use

abstract descriptions (or roles) rather than literal descriptions. Any interesting analogy

is the result of interaction and competition among a set of possibly conflicting pressures.

The Copycat program is a model of this interaction and competition, and the letter-string

microworld provides an arena in which all these various pressures arise in particularly clear

ways. Also, the pressures can be minutely varied by constructing families of analogies such

as the family given in 1 a-d above.

2.3 The Issue of Retrieval

In Copycat’s domain, both analogs (the initial and target strings) are given ahead of time,

and some part of the initial string (e.g., a b c) is highlighted by the presence of the mod

ified string (e.g., a b d) , in which something has changed. This is very different from the

usual way in which people make analogies: they are confronted with a situation, and ei

ther th a t reminds them of another situation with which they make an analogy (e.g., my

“without-beverages-flight/overflowing-fountain” analogy), or they construct a fictional sit

uation th a t is analogous to the original situation, in order to understand or to make some

point about the original situation (e.g., the National Organization of W omen’s analogy be

tween “provocative” clothing and an expensive watch). This problem of how people are

rem inded of situations or construct hypothetical situations has to do w ith the question of

how memories are stored and retrieved. The Copycat project does not deal with this ques

tion directly, although m any of the issues it does deal w ith—e.g., categorization, perception

of similarity, slippage, and competition among interacting pressures—are closely related to

questions about memory and retrieval. A faith underlying this research is th a t, for the time

being, the problem of how people understand and make analogies between given situations

can be investigated separately from the problem of how people are reminded of one thing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

by another, though many of the same issues will be investigated, and research on the for

mer will thus yield insights useful to research on the la tte r, and vice versa. This faith and

methodology is shared by most cognitive-science researchers working on models of analogy-

making (e.g., Gentner, 1983, Holyoak & Thagard, 1989, and Kedar-Cabelli, 1988b, among

others), though the process of memory retrieval in the context o f analogy-making has been

investigated by, among others, Gick and Holyoak (1983); Schank and Leake (1989); and

Thagard, Holyoak, Nelson, and Gochfeld (in press).

2.4 Defense of the Microworld

The following are the m ost frequently-raised objections to the use of the letter-string analogy

problems for the purpose of constructing a model of analogy-making.

1. The problems are too simple and have no relation to “real-world” analogy-making.

2. They are not real analogies, but more like the proportional analogies on standardized

tests (such as the Scholastic Aptitude Test) or like sequence-extrapolation problems.

3. Each problem is purposeless and none has any use in real-world problem-solving, so

it is impossible to decide among rival answers to any problem.

1. The problems are too simple and have no relation to “real-world” analogy-making.

I hope the discussion in the previous section has (at least partially) dem onstrated the

relation between the letter-string problems and “real-world” analogy-making. Although the

lack of real-world flavor to the letter-string analogies makes some people find this research

unconvincing, this lack is in some ways an advantage, in th a t it is very clear exactly what

knowledge the program does have, and people axe less likely to be fooled into believing

th a t the program has an understanding of complex real-world concepts when it doesn’t or

th a t the program ’s behavior is more intelligent than it really is. I t is sometimes too easy

to ascribe intelligence to a program based on its seeming ability to deal with concepts th a t

we, as hum ans, know a lot about, but about which the program actually knows almost

nothing. This has been a recurring problem in artificial-intelligence research. The point of

a microdomain in cognitive science is to isolate a phenomenon (such as analogy-making),

to strip it down to its bare bones, to get rid of its extraneous real-world trappings, while

a t the same time retaining its essence so th a t it can be investigated more clearly. More

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

32

discussion of the merits and disadvantages of using microworlds will be given in Chapter 8,

after some other computer models of analogy-making are discussed.

2. They are not real analogies, but more like the proportional analogies on standardized

tests (such as the Scholastic Aptitude Test) or like sequence-extrapolation problems. There

is a large difference between the usual “proportional” analogy problems on standardized

tests such as the SAT (e.g., “foot : shoe :: hand : ?”) and Copycat’s letter-string analogies.

Copycat’s problems could be stated in the same form (e.g., a b c : a b d :: iijjk k : ?), but

unlike the three-word SAT analogies, each string has quite a lot of internal structure to

it, with many possible correspondences between the parts first and th ird strings instead

of just one global correspondence between two atomic entities (e.g., “foot” and “shoe”).

The letter strings are more like m ulti-part situations than like single words. A better

comparison would be with the geometric analogy problems of Evans (1968), to be discussed

in Chapter 8. Copycat’s task has also been compared to sequence extrapolation. Problems

based on the initial change a b c => a b d have the flavor of sequence extrapolation, but

the program is by no means limited to solving such problems. B ut even the a b d =► a b d

problems are quite different from typical sequence-extrapolation problems, most of which

use m athem atical formulas th a t have little to do with the kinds of perceptual processes we

are investigating. Other computer models of pattern perception and sequence extrapolation

in strings of letters have been constructed (e.g., Simon & Kotovsky, 1963, to be discussed in

Chapter 8), but the patterns used have generally not explored the range of issues discussed

in the previous section.

3. Each problem is purposeless and none has any use in real-world problem-solving, so

it is impossible to decide among rival answers to any problem. This objection seems to me

to have two parts: 1) Is it possible to give any answer a t all to these letter-string analogy

problems? and 2) How can we say th a t, for a given analogy problem in this domain, one

answer any is better than another? The first p a rt comes from the claim th a t, because there

is no notion of “purpose” in these letter-string problems (i.e., the analogies are not being

used for solving real-world problems), there are no grounds for giving any answer a t all. This

objection seems to me to be easily refuted by the fact th a t people quite readily give answers

to the letter-string problems and often have very strong opinions about the m erit of their

answer versus other answers. Moreover, in daily life, people make countless “purposeless”

analogies all the tim e, by virtue of the fact th a t the human m ind is continually perceiving,

categorizing, and noticing all kinds of concrete and abstract similarities. Several examples

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

of such ubiquitous analogies (such as the “me too” analogies) were given in the previous

chapter. A conscious purpose, if there is one, is one pressure among many, and usually

is one of the factors th a t serve to highlight certain aspects of the source analog (Burstein

& Adelson, 1987; Kedar-Cabelli, 1988b). For example, Kedar-Cabelli discusses how one

could decide which features of a ceramic mug should be taken into account when making an

analogy with a styrofoam cup, given th a t the purpose is to determine whether or not the

la tte r could be used to drink hot liquids. But an analogy could certainly be made between

the mug and the cup (in the sense th a t they could be seen as essentially similar) without

th a t specific purpose in mind, since both have features th a t are salient a priori, that one

notices even in the absence of any conscious purpose. A conscious purpose, being part

of an overall context (often a relatively im portant part) serves to enhance the relevance

of certain features. In the letter-string domain, the change from the initial string to the

modified string (e.g., a b c a b d) plays a similar role in th a t it highlights certain aspects

of the initial string and helps indicate what aspects of the strings to take into account when

making an analogy (e.g., the spatial positions—such as rightmost and leftmost—of elements

in the string).

This notion of a conscious purpose as a sine qua non for analogy-making comes, I believe,

from a somewhat narrow view in which analogy-making is seen as a tool to be used in

problem-solving, rather than as a ubiquitous and pervasive mode of thought th a t blends

smoothly into recognition and categorization.

The second part of the objection (about the possibility of judging the relative merit of

answers) can also be countered in the same way: people do have preferences when answering

these problems; they see certain answers as strong and others as weak or even ridiculous.

Of course, there is not always universal agreement on the single “right” answer to a given

problem; although there are always a small num ber of answers th a t people will give to a

problem, preference within th a t set depends on individual taste.

In the real world, the analogies people find compelling are ones th a t take into account

the essential features of situations and that strip away superficial and irrelevant aspects.

Often, the more hidden or deep the shared essence, the more compelling the analogy. W hat

is “essential” in a situation often has a very definite meaning in the real world: it is what

must be perceived in order to survive and succeed in one’s environment. In an artificial

domain such as th a t of the letter-string analogy-problems, there is no such objective way

of determining which answers are good and which are bad, bu t even so, people can feel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

th a t certain ways of looking a t a given problem are better than other ways, because they

are using perceptual mechanisms th a t evolved to deal with real situations in the real world.

These mechanisms cannot be turned on and off even when the domain is seemingly artificial

and content-free, and when our survival does not depend on our actions. (This fact is

implicitly acknowledged by the general acceptance of abstract visual analogy problems for

use on intelligence tests; most people agree that their solution has something to do with

intelligence.) Thus, since analogy problems in this artificial letter-string domain have an

“essence” to be perceived, people perceive it, and are able to base their answers on it.

2.5 Specific Goals of This Dissertation and Criter ia for Success

In C hapter 1, I discussed in broad term s the goals of the research program of which the

Copycat project is part. In this section I will outline the specific goals of my dissertation

project, which are naturally much more limited than the very broad goals discussed earlier.

2.5.1 General Issues in Determining Criteria for Success

My goals for the Copycat project are two-faCeted: first, th a t the program act with intelli

gence (albeit of a limited kind in a lim ited domain), and second, th a t its internal architecture

and external behavior make it a plausible model of the aspects of human intelligence th a t we

are investigating. These two facets are, of course, not simple to separate. It could be argued

(and I believe is in part true) th a t the more intelligently the program acts, the more plau

sible it is as a model of human intelligence. However, it is certainly possible for a program

to act w ith considerable intelligence—in a limited domain—but for its intelligence to arise

from internal mechanisms th a t are very different from those of the hum an mind. A salient

example of this is the recent rise of chess-playing programs to grandm aster status. These

program s play chess by searching through a huge num ber of possible moves from a given

board configuration, many moves in to the future, and then selecting the move tha t promises

the best fu ture outcome. Psychologists agree th a t human chess-experts do not play in this

way; ra th e r, they rely upon high-level pattern-spotting abilities to recognize certain abstract

pa tterns on the board and they then move in ways appropriate to those patterns (deGroot,

1965). Chess-playing programs act intelligently, but their intelligence comes from a very

different source than that cf people. However, chess is a very limited domain, and it is not

a t all clear th a t a program whose intelligence was more wide-ranging, and tha t included

very fundam ental human abilities such as abstract recognition and analogy-making, could

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

operate on principles very different from those underlying hum an intelligence.

A m ajor goal of the field of artificial intelligence is to discover the general principles

of intelligence, not necessarily its specific instantiation in brains (for instance, some AI re

searchers gain inspiration from other natural systems such as natural selection, e.g., Holland,

1986, or the immune system, e.g., Farmer, Packard, & Perelson, 1986). The goal of psychol

ogy, on the other hand, is to understand the mechanisms of human (or anim al) intelligence

and behavior. Thus the Copycat project is part artificial intelligence, part psychology. One

m otivation is the desire to understand in general how flexibility and adaptability— the hall

m arks of intelligence— come about in complex systems (and, as will be discussed further

in the next chapter, m etaphors from both biology and society have been used in designing

C opycat’s architecture). Another motivation is the desire to understand the na tu re of fluid

perception and concepts specifically in humans. These two very long-term goals are inti

m ately related; it may be th a t one cannot be accomplished without the o ther. The hope is

th a t Copycat not only acts intelligently, but it does so because it uses mechanisms like those

of hum an intelligence, and thus more directly sheds some light on what these mechanisms

Me. Copycat as it currently stands is, of course, a far cry from human intelligence, even in

its very limited domain. But the hope is th a t, in spite of its lim itations, it captures some

th ing significant about the mechanisms of human perception and analogy-making, and that

even where it is wrong it captures enough for it to be interestingly and usefully wrong. The

hope is th a t the mechanisms being proposed have enough tru th to them th a t the program ’s

successes and failures say something interesting and helpful about w hat is right and wrong

w ith these mechanisms.

The question to be answered in this section is, how are we to assess the program ’s success

w ith regard to both its AI and psychological aspects? I want to show th a t Copycat acts

w ith flexibility within its domain, th a t its concepts exhibit something like the fluidity and

adaptability of hum an concepts (albeit over a very limited range of situations) and that its

architecture and behavior have some psychological plausibility. Therefore, I am proposing

two types of criteria for judging the program ’s success: first, artificial-intelligence criteria,

which focus on the range of problems (and thus the range of issues in high-level perception

and analogy-making) th a t the program can deal with, and second, psychological criteria,

which focus on more specific comparisons of the program ’s behavior with th a t of people.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

2.5 .2 A rtif ic ia l- In te llig e n c e C r i te r ia : W h a t P ro b le m s th e P ro g ra m C a n D ea l

W ith

The letter-string analogy-problem domain is very rich and open-ended; a very large num ber

of issues in recognition and analogy-making can be explored in it. I think it is plausible

to postulate th a t any computer program th a t could m atch hum an ability in th is domain

would be well along the way to being a generally intelligent program. (The current version

of Copycat is, of course, very far from this.) For the purposes of this dissertation, I selected

a set of five problems—Problems 1-3, 5, and 7, given in Section 2.1—as the m ain targets

for the program. T hat is, the goal is for Copycat to solve these five problems, giving more

or less the range of answers that people give (as will be seen in Chapter 3, the program is

nondeterministic and can thus produce different answers on different runs).2

The point, of course, was not merely to solve a set of five problems, but to construct

a program th a t is able to deal with the general issues th a t are contained (in an idealized

form) in those problems. Each of the five problems requires different kinds of perceptual

structures to be built and conceptual slippages to be m ade, so the fact th a t the program

(whose mechanisms are meant to be general, not specific to the letter-string dom ain) can

deal with these five cases demonstrates th a t its concepts do have a certain degree of fluidity

in adapting to different situations.

Since the program uses general mechanisms to solve these problems, it can also solve

a large num ber of other problems as well. The five target problems can be thought of as

analogous to a basis in a vector space—each one defines a family (really, multiple families)

of problems in which pressures are varied along different axes (as in problems l a - d given

earlier). In C hapter 5, Copycat’s performance on 27 variants—family m em bers—of the

original five problems is displayed, dem onstrating how robust and flexible the program is

when it is stretched to deal with problems th a t it was not specifically designed to work on.

2 The current version of Copycat can get the solution a a b a b c d to “a b c =}> a b d ,
a a b a b c => ?” in principle, but in practice it is too difficult for the program to discover and
m aintain the necessary parsing of the target string (a -a b -a b c). Some of the weaknesses of
the program th a t contribute to these difficulties will be discussed in Chapter 6. Copycat is
currently unable to get the solution acg to “a b c => a b d , a ce => ?” even in principle, since
it lacks the ability to construct new tem porary concepts such as double successor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

2.5.3 Psychological Criteria: More Detailed Comparisons With People’s Be

havior

The artificial-intelligence criteria described above are m eant to test how intelligently Copy

cat acts, and to what degree its internal mechanisms yield a system with flu id concepts

th a t can be used appropriately in a number of different situations. Gaining insight into the

mechanisms underlying fluid concepts is the purpose of this project, so developing and test

ing a set of psychologically plausible mechanisms th a t produce such behavior is the main

goal of the research described here. The range of the program ’s abilities and subjective

judgm ents of the psychological plausibility of the proposed mechanisms can lend some cre

dence to Copycat as a model of human psychological processes, but it is of course desirable,

insofar as possible, to obtain further evidence th a t the mechanisms we are proposing are

psychologically valid. The point of the psychological criteria is to see how well the program

holds up under more detailed comparisons of its behavior with th a t of people.

There are some problems with designing and evaluating such comparisons, however. As

was pointed out earlier, Copycat is not a model of how people solve letter-string analogy-

problems per se, bu t rather, the letter-strings are m eant to be taken as tiny abstract models

of real-world situations. Copycat’s knowledge of letters and strings is very lim ited, and

doesn’t involve many detailed aspects of human perception of letter-strings, such as the

fact th a t English-speaking people read left to right, know the alphabet be tte r forwards

than backwards, and so on, since those aspects of perception are specific to letter-strings

and are not relevant to the larger task of modeling recognition processes in general. Thus,

since the program is not modeling the domain-specific aspects of how people solve letter-

string analogy problems, direct comparisons between the details of how people solve these

letter-string problems and how Copycat solves them (such as precise tim ing comparisons)

are not useful for determining the program ’s psychological plausibility.

In spite of these difficulties, there are some comparisons th a t can be made. One reason

the letter-string domain was chosen was because people can relate to i t and can solve the

problems; people generally have no trouble adapting to and obeying the restrictions of the

domain as far as producing and judging answers are concerned. Thus there can be some

useful comparisons between what people do and w hat the program does, as long as they

are not a t too fine-grained a level as far as the letter-string domain is concerned, or as far

as the specific actions of the program are concerned. For the purposes of this dissertation,

there are four types of comparisons that I chose to help further evaluate the program ’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

psychological plausibility. These are the following:

1. For a given problem, the program should be able (on different runs) to get all (or

most) of the answers th a t people get (th a t is, people abiding by the constraints of

the microworld), and should never produce answers th a t people find completely un

justified. Since the letter-string domain reflects general issues in high-level perception

and analogy-making, the answers th a t people get are a function of how they respond

to these general issues tha t are embedded in the letter-string problems. Thus the

program’s response to these general issues should be similar to that of people.

2. The program should respond to variations in pressures in a similar way to people.

Problems 1 a-d given above illustrated how pressures could be varied, and I discussed

some of the effects these variations might have on what answers people tend to give;

the goal here is for Copycat’s tendencies to be affected in similar ways.

3. If people agree th a t there is a single obvious “best” answer to a problem (e.g.,

“a b c => a b d , ijk => ijl”) the program should prefer th a t answer over the others

it gets (as will be discussed in the next chapter, the program has a global variable

called “tem perature” whose value a t the end of a run roughly indicates the program ’s

“happiness” with the answer it produced).

4. The difficulties experienced by people should also be experienced by the program.

People find some problems more difficult than others, so the program should experi

ence roughly the same relative difficulties (provided th a t the difficulties axe not due to

something outside the domain, such as a case where one of the strings spells a word,

etc.). For example, people universally find Problem 7 (“a b c => a b d , xyz => ?”)

harder than Problem 1 (“a b c => a b d , ijk => ?”); it would therefore be implausible

if the program solved both with equal ease. One way to test this is to compare the

relative times taken by peqple and by the program on these (and other) problems.

Also, if people reliably experience a particular difficulty in solving a problem, the

program should also experience tha t difficulty. For example, given “a b c => a b d ,

x y z => ?” , if people always initially try to replace the z by its successor and hit an

impasse, it would be implausible if the program were able to avoid this difficulty. Or

if people often have a hard tim e making sense of the target string in “a b c a b d ,

m rr j j j =► ?” , it would be implausible if the program easily noticed the relationships

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

among the group lengths. When I say th a t the program should experience the same

difficulties as people, I don’t mean that these difficulties should be “preprogrammed”

in any sense, but that the behavior should emerge naturally from the mechanisms

being proposed by the program ’s architecture, the mechanisms whose psychological

plausibility is being evaluated.

Satisfying these criteria will not prove th a t the program has psychologically valid mech

anisms; it will only show, to the degree th a t the criteria axe satisfied, th a t the mechanisms

it has are not implausible. And although these specific psychological tests can help to lend

more plausibility to the model, the most im portant criteria are more general: Does the

program exhibit flexible and insightful behavior in its microworld? Does it act like it has

fluid concepts, as people do? Does it help us to better understand what concepts are?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER III

THE ARCHITECTURE OF COPYCAT

In the previous chapter I discussed several general abilities th a t are required for high-level

perception and analogy-making. The Copycat program is a model of the m ental mechanisms

underlying these abilities. In this chapter I describe the architecture of Copycat. The first

section gives some background for the Copycat project by describing Jum bo, a computer

program developed by H ofstadter in which some of the main ideas of Copycat’s architecture

were implemented in a lim ited and rough form. The second section gives a broad overview

of how Copycat works, and the rest of the chapter gives more detailed descriptions of the

various parts of the program ’s architecture. All but the first two sections can be skipped

or skimmed by readers not desiring detailed knowledge of the program ’s workings.

3.1 J u m b o

Prior to the development of the Copycat project, Hofstadter originated two other compu

ter-modeling projects—Jum bo and Seek-Whence—to investigate high-level perception and

conceptual slippage. The Jum bo program was developed by Hofstadter (1983) and the

Seek-Whence program by M eredith (1986). Jumbo was intended to be a short-term test of

some ideas about high-level perception processes rather than a long-term project resulting

in a sophisticated cognitive model. It was expressly designed as a “warm-up” for the more

ambitious Seek-Whence and Copycat projects. Jum bo contained precursors of many of

the features of Copycat, and it will thus be useful to briefly describe Jum bo’s architecture

before giving an overview of Copycat. (Seek-Whence will be discussed and compared with

Copycat in Chapter 8.)

Jum bo’s task was the creation of plausible anagrams (its name comes from the “Jum ble”

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

anagram puzzles tha t commonly appear in newspapers): it was given a set of “jum bled”

letters, and its job was to use those letters to create a single English-like word. Jum bo had

no dictionary; its knowledge consisted of how, in English, consonant and vowel clusters are

formed out of letters, syllables out of clusters, and words out of syllables. Given a set of

isolated letters (atomic units), it was able to gradually and hierarchically construct “gloms”

(chunks a t the level of letters, clusters, syllables, or words).

The point of the program was to model, in a very simple domain, “the unconscious

composition of coherent wholes out of scattered p a rts” , the process of “constructing larger

units out of smaller ones, with tem porary structures a t various levels and perm anent mental

categories trying to accommodate to each other” (Hofstadter, 1983). The program needed

to engage in a large amount of back-and-forth notion in constructing, destroying, and

regrouping structures; it needed da ta structures th a t were “fluidly reconformable” in the

process of coming up with a single structure th a t included all the letters and obeyed some

formal rules of English words—a “pseudo-word” . Of course, all this could have been done

more easily and quickly using a brute-force m ethod in which all combinations were tried out

and checked against a dictionary, bu t this would have defeated the purpose of the project,

which was to construct a psychologically plausible model of some ideas for mechanisms

underlying general perceptual processes.

The philosophy underlying Jum bo (as well as Seek-Whence and Copycat) is th a t high-

level perception is not the result of using a set of serially applied, conscious m ental rules, but

ra ther, tha t it emerges as a statistical outcome of large numbers of independent activities

occurring in parallel, competing with and supporting each other, and influencing each other

by creating and destroying tem porary perceptual constructs. Such a system has no global

“executive” deciding which processes to run next and what each should do; rather, all

processing is done locally by many simple, independent agents that make their decisions

probabilistically. The system is self-organizing, w ith coherent and focused behavior being

a statistically emergent property of the system as a whole. The presum ption behind this

philosophy is th a t the processes making up this “seething bro th” of activity are below the

level of consciousness, and thus cannot be examined introspectively, bu t th a t any computer

model attain ing a good degree of human-like flexibility will have to be implemented at

this “subcognitive” level. These ideas have been discussed in detail by Hofstadter (1984a,

1985d); another argum ent for modeling at the subcognitive level is given by Smolensky

(1988).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

The architecture of Jum bo (as well as that of Seek-Whence and Copycat) was inspired in

p art by the Hearsay-II speech-recognition program. Hearsay-IPs input is a raw, unperceived

waveform, and the program consists of a number of independent “knowledge sources” that

interact both cooperatively and competitively to hierarchically build up a coherent inter

pretation of the utterance. Likewise, in Jum bo all processing is done by “codelets” : small,

special-purpose pieces of code that act independently to build up hierarchical gloms from

an initially unconnected set of jumbled letters.

In addition to the ideas from Hearsay-II, there were two metaphors that guided the

development of Jum bo’s architecture. The first m etaphor involves biological cells—in par

ticular, the way in which complex molecules are constructed in parallel and asynchronously

by independent processes taking place throughout a cell’s cytoplasm. For each type of

molecule, there is a standard chemical pathway for assembling it, which may involve dozens

of steps. The cell has no central executive coordinating these steps, but rather relies on

more-or-less random encounters between enzymes and substrates for these construction ac

tivities to be carried out. The construction of complex molecules comes about as a result

of wave after wave of enzymatic activity, in which products of one set of enzymes become

substrates for the next wave of enzymes, and in which enzymes are themselves produced in

response to the current “needs” of the cell. In Jum bo, codelets play the role o f enzymes,

random ly encountering letters and gloms (molecules) in the program ’s “cytoplasm” and

attem pting to join them to form ever-larger structures. Complex structures are built by

chains of codelets.

For any given set of letters, there are, of course, m any possible “glomming” paths

to explore, ju st as in real-world perception, where there are a huge number of possible

ways in which a set of unconnected raw sensations can be pu t together to form a global

semantic interpretation. One of the purposes of Jum bo was to test out ideas about a strategy

for efficiently searching though this potential combinatorial explosion of possibilities and

quickly zeroing in on a good and coherent interpretation (or “pseudo-word”). These ideas

were inspired in part by a second metaphor: the parallel, probabilistic, and dynamically

self-adjusting search strategy used by people in looking for a m ate. When searching for

romance, you initially consider many people simultaneously—the people you happen by

chance to meet (though this not totally random , since you tend to look in places where you

th ink it will be more likely to meet interesting people). Some people you can dismiss almost

immediately as possible romantic partners; they’re clearly ju st not your type for some reason

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

43

or other. Others you consider a bit more seriously, though the amount of consideration is

not equal; the amount of tim e and interest put into each possibility depends on your initial

attraction to the person. You get to know some of these people better, and on the basis

of your further evaluation of them (and also on the basis of how much they like you), you

decide whom to concentrate on. You spend more and more time with a smaller and smaller

set of people, though all the while perhaps still giving some small amount of consideration

to one or two people you initially didn’t find very interesting, or to new people th a t you

happen to meet. Thus you are constantly reallocating your tim e and interest among the

possible candidates for your affections according to how promising each relationship seems,

until finally a relationship seems so promising th a t you decide to “commit” , and give the

lion’s share of your tim e to this one person. However, commitment isn’t necessarily the

end of the story, since even after marriage, you are likely to meet other people, and might

engage in “harmless flirtations” th a t, depending on their attractiveness and the strength

of your commitment, m ight receive some amount of further consideration. And, depending

on its seeming promise and on the state of your marriage, the rival exploration might even

come to threaten your original commitment.

Hofstadter termed this type of strategy a parallel terraced scan: many possible courses

of action are explored in parallel, but not all are are given the same amount of consideration

or explored at the same speed, (the exploration is “terraced” because it is carried out in

stages of increasing depth, w ith entry into each new stage being contingent upon the success

of the previous stage). Possible paths are explored at a speed and to a depth proportional

to moment-to-moment evaluations of their promise: the speed of an exploration process is

locally adjustable to reflect the current assessment of the promise of the path being explored.

In most situations in the real world, there are too many possibilities to explore; given real

tim e pressures, it is impossible to check them all out fully, or even to give some tim e to all

of them . Instead, there has to be a parallel investigation of many possibilities to different

levels of depth. The system can afford lots of quick forays, even into unlikely territory, but

it cannot afford to explore all of them more deeply, much less to act upon every one. No

p ath of exploration should be excluded in principle, though many have to be excluded in

fact, since time is limited (e.g., when searching for a m ate, you can’t meet everyone in the

world, though you probably shouldn’t absolutely exclude anyone or any group a priori; who

you do meet is probabilistic).

As in the romance example, as tim e goes on and progress is made, the mode of search

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

gradually changes from being highly parallel and random to being highly serial and deter

ministic. The Jum bo project proposed this strategy as a general feature of intelligence.

In the following description of glom construction (or destruction, or regrouping) in

Jum bo, the influences from the cell metaphor and the romance m etaphor on the program ’s

architecture can be clearly seen. In Jumbo, a glom (such as “sch” , say, from the set of letters

“c o s h n o g i 1”) is built only after a series of evaluations of it are performed. The initial

evaluations are quick and superficial, but later ones are more elaborate. If a t any time one

of these evaluations is too negative (decided probabilistically), the process of evaluation is

curtailed. The glom is built only if the evaluation process goes all the way to the end. Each

evaluation step is carried out by a codelet, and if the codelet’s verdict is favorable, that

codelet posts a new codelet to carry out the next evaluation in the series. Thus any given

glom in Jumbo is built up by a standard series of codelet actions. An evaluation (made

by a codelet) of a potential glom not only helps determine whether the evaluation process

should continue, but also returns a numerical score, reflecting the codelet’s estim ate of how

promising that particular glom is. T hat score is used to assign an urgency value to the next

codelet in the series, which helps to decide how long th a t next codelet has to wait before it

can run. (Similar multi-codelet chains also lead to the destruction or regrouping of gloms.)

A ttem pts at building many different gloms are interleaved, as follows. All codelets waiting

to run are placed in a data structure called the “Coderack” , and at each time step, the sys

tem probabilistically chooses one codelet from the Coderack to run, the choice being based

on the relative urgencies of all codelets in the Coderack at that time. W hen a codelet is

chosen to run, it is removed from the Coderack. At the beginning of a run of the program,

the Coderack contains a standard initial population of codelets, and as podelets run and are

removed from the Coderack, they often add new, follow-up codelets to continue pursuing

seemingly promising tasks. Like the enzyme population in a cell, the Coderack’s popula

tion changes, as processing proceeds, in response to the needs of the system as judged by

previously-run codelets.

Since all waiting codelets reside in the Coderack, and one codelet is chosen a t a time

from the entire Coderack population, a parallel terraced scan of possibilities results: in a

given run, many competing or cooperating attem pts at building gloms are interleaved, with

the speed of each glom-building process being a statistical outcome of the urgencies of its

component codelets. Thus m any interleaved processes proceeded in parallel (though not

in phase with each other), each at a speed and to a depth proportional to its estimated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

promise, as assessed moment to moment.

In the Jum bo project, Hofstadter also first introduced his notion of a “tem perature”

variable, whose value reflects the overall “happiness” of the program a t a given time—th a t

is, how close the program estimates it is to creating a single coherent pseudo-word (the

happier the program, the lower the tem perature). This value in tu rn is used to control the

am ount of randomness with which decisions are made in the program. The tem perature

s ta rts out high, and falls as structures are built. Since the program uses probability to

choose which codelet runs next, the idea is th a t, as the program gets closer to a solution,

the tem perature falls, causing a decrease in randomness, which results in a speed-up of the

rate a t which promising possibilities are explored with respect to less promising ones. Thus

good paths of exploration tend to crowd out worse ones a t an ever-increasing rate, and

the system is finally “frozen” into a solution when the tem perature gets low enough. (The

differences between this notion of tem perature and that used in “simulated annealing” are

discussed in the next section.)

In summary, the main ideas of the Jum bo program include 1) a cell-inspired architecture

in which structures are built up in a piecemeal fashion by competing and cooperating chains

of simple, independently acting agents (codelets), 2) a notion of fluid reconformability of

structures built by the program (such as gloms), 3) a parallel terraced scan of possible

courses of action, and 4) a tem perature variable that dynamically adjusts the amount of

randomness in response to how “happy” the program is with its currently built structures.

The result is th a t the program ’s overall behavior is not directly programmed, but rather

is a statistically emergent outcome of the interaction of m any microscopic computational

activities happening in parallel. All these ideas are the basis for Copycat’s architecture as

well. Since the point of the Jum bo project was to test out these ideas to some extent before

using them in the Seek-Whence and Copycat projects, their im plem entation in Jum bo was

by no means completely satisfactory. Many of the ideas, such as tem perature, were only

very sketchily implemented, and the program ’s sophistication was rather limited. Copycat

is a much fuller and more sophisticated implementation of these basic ideas. It has required

a great deal of further development and reworking of the basic ideas from Jum bo as well as

the addition of many mechanisms not present in Jum bo.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

3.2 Broad Overview of Copycat

Copycat’s task is to use the concepts it possesses to build perceptual structures (descrip

tions of objects—i.e., letters or gloms, bonds between objects in the same string, groups of

objects in a string, and correspondences between objects in different strings) on top of the

three “raw” , unprocessed strings given to it in each problem. The structures the program

builds represent its understanding of the problem, and allow it to form ulate a solution.

Since for every problem the program starts out from exactly the same s ta te with exactly

the same set of concepts, its concepts have to be adaptable, in terms of their relevance

and their associations w ith each other, to different situations. In a given problem, as the

representation of a situation is constructed, associations arise and are considered in a prob

abilistic fashion according to a parallel terraced scan (as in Jumbo) in which many routes

toward understanding the situation are tested in parallel, each at a ra te and to a depth

reflecting ongoing evaluations of its promise.

Copycat’s solution of letter-string analogy problems involves the interaction of the fol

lowing mechanisms:

• concepts consisting of a central region surrounded by a halo of potential associations

and slippages, in which the relevance of the concept and the proximity to other con

cepts change as the process of perception and analogy-making proceeds;

• mechanisms for probabilistically bringing in concepts related to the current situation

and conceptual slippages appropriate for creating an analogy;

• a mechanism by which concepts’ relevances decay over time, unless reinforced;

• agents th a t continually seek new descriptions, bonds, groups, and correspondences in

a working area;

• mechanisms for applying top-down pressures from concepts already deemed to be

relevant;

• mechanisms allowing competition among pressures;

• the parallel terraced scan, allowing rival views to develop at different speeds;

• tem perature, which measures the amount of perceptual organization in the system

and, based on th is value, controls the degree of randomness used in making decisions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

SLIF'NET

(natwork ol concepts and potential associations or slippages)

WORKSPACE

(dynamic perceptual arena)

CODERACK

(atochaatic waiting area tor codelet*)

Figure 3.1: A schematic diagram of Copycat’s architecture.

. . i t '! '11 .itltt***** it1**. / ,1!*' / K
f

• • • • 0 = © = ®

C rightm ost) label nodes > (^“successor ^

links

Opposite I .

^ le f tm o s t (^predecessor^)

<r
Figure 3.2: A small part of Copycat’s Slipnet.

Figure 3.1 gives a schematic diagram of Copycat’s architecture in which the four main

elements are shown: the Slipnet, the Workspace, the Coderack, and a therm om eter repre

senting the tem perature. An overview of each of these elements will be given in this section,

and they will be described in more detail in the next section.

Copycat’s concepts reside in a network of nodes and links called the Slipnet (so named

because it is the source of all slippages). A small part of it is illustrated in Figure 3.2, which

shows nodes, links (solid lines), and labels on links (thickly dotted lines).

A concept’s central region is a node, and its associative halo corresponds to other nodes

linked to the central node. A node (such as successor or group) becomes activated when

instances of it are perceived (by codelets, as described below). Activation levels are not

binary, but can vary continuously between 0 and 100% (a t 100%, the node is said to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

“fully active”). The probability th a t a node will be brought in or be considered further at

any given time as a possible organizing concept is a function of the node’s current activation

level. Thus there is no black-and-white answer to the question of whether a given concept

is “present” a t a given time; continuous activation levels and probabilities allow different

concepts to be present to different degrees. All concepts have the potential to be brought

in and used; which ones become relevant and to what degree depends on the situation the

program is facing, as will be seen below.

A node spreads activation to nearby nodes as a function of their proximity; thus, concep

tual neighbors of relevant nodes have the potential to be brought in as well. For example,

the node A, when active, spreads some activation to first (since A is the first letter in the

alphabet), giving the latter some probability of being used as a description). Nodes lose

activation unless their instances continue to be perceived or to remain salient.

However, the rate of activation decay is not the same for all nodes. Each node has a pre

assigned conceptual depth value.1 For example, the concept A is less deep than the concept

successor, which is in turn less deep than the concept opposite. It could be said roughly

th a t the conceptual depth of a node is the “distance” of an aspect of a situation from direct

perception. For example, in the problem “a b c => a b d , k ji =► ?” , the presence of instances

of A is more directly perceived than the presence of successorship, which is in turn more

directly perceived than the presence of opposites. Note th a t this conceptual-depth hierarchy

is related to, but is not exactly the same kind of structure as an abstraction hierarchy such

as poodle-dog-mammal-animal-living-thing-thing. The concept A could be said to be less

abstract than the concept successor, which is in turn less abstract than the concept opposite,

bu t, unlike descriptions on an abstraction hierarchy, these are not descriptions of the same

object a t different levels of abstraction. Rather, the idea is th a t different aspects of a given

situation (e.g., the presence of an A or of successorship or of opposites) have different levels

of depth as far as perception of them is concerned. Aspects with greater depth are more

difficult to perceive, but tend to be more interesting and more useful in uncovering the

essence of the situation. Once aspects of greater depth are perceived, they should have

more influence on the ongoing perception of the situation than aspects of lesser depth. In

Copycat, the greater a node’s conceptual depth, the more slowly it decays, thus allowing

deeper notions to persist longer (and thus have more influence on what structures are built)

1 Hofstadter has called this measure “semanticity” (Hofstadter, 1984a).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

than less deep ones. The conceptual-depth values in the Slipnet are fixed, and were pre

assigned by me based mainly on intuition (as well as trial and error). They are discussed

in more detail in the next section and in Appendix B.

The length of a link between two nodes represents the conceptual proximity or degree of

association between the nodes: the shorter the link, the greater the degree of association.

(The apparent lengths of links in the diagram is not meant to represent their actual relative

lengths.) Like activation, link-lengths are not constant, bu t can vary in response to what

has been perceived. Many links have labels th a t are themselves nodes (e.g., the link between

rightmost and leftmost is labeled by the node opposite). W hen a label node is fully active

(indicating that the relationship it represents, e.g., opposite, is relevant to the problem at

hand), all the links labeled by th a t node shrink—that is, such relationships are perceived

as being closer, or more slippable.

Decisions about whether or not a slippage can be m ade from a given

node—say, rightmost—to a neighboring node—say, leftmost—are m ade probabilistically, as

a function of the conceptual proximity of the two nodes. (Such decisions are made by

codelets, as is described la ter on.) For example, in the problem “a b c =>• a b d , k ji =>■ ?” ,

if the program notices th a t the initial and target strings are alphabetically in opposite

directions, then opposite will be activated, thereby increasing the probability of slippages

between nodes connected by an opposite link such as rightmost => leftmost. Thus the

plausibility of slippage between two nodes depends on context.

In this model, a concept (such as rightmost) is identified not w ith a single node but

rather with a region in the Slipnet, centered on a particular node, and having blurry rather

than sharp boundaries: neighboring nodes (such as leftmost) can be seen as being included

in the concept probabilistically, as a function of their proximity to the central node of

the concept. Just as in quantum mechanics, where the spatial position of an electron is

“decided” only a t the tim e i t is measured, the composition of a concept in semantic space is

decided only when slippages are. explicitly made. For instance, in Problem 2 from Section

2.1 (“a b c =► a b d , i jjjk k => ?”), is the group k k an instance of the concept letter? If one

makes a correspondence from the c to the group kk , then one is effectively saying, “in this

context, yes” ; th a t is w hat the slippage letter => group says. This is w hat we mean by “fluid

concepts” : people are able to take a rule like “Replace rightm ost le tte r by its successor”

and allow the words in it (such as “letter”) to be flexibly extended. In this context, one

sees the rule as “Replace rightm ost ‘le tte r’ by successor” , where the scare-quotes around

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

the word “letter” signify th a t here it is being used loosely to refer to a group as well. The

whole point of the Copycat project is to study how perception and concepts interact so

th a t one knows which words in the rule to allow to slip, and how to let them slip, while

still m aintaining the essence of the original rule. This model proposes th a t the property of

being a concept is inextricably tied up with this notion of fluidity.

One could m etaphorically compare a concept in the Slipnet to the m etropolitan area of

a city: for example, the New York m etropolitan area is not a well-defined area with exact

boundaries, bu t rather a central region diffusing continuously into outlying suburbs, with

rather blurry edges. One could say th a t the conceptual proximity of a given location with

New York is the probability that a person who lives there will answer “New York” when

asked where they are from (note th a t for anyone from outside the strict city limits, this

might entail a slippage, e.g., Hoboken New York). The conceptual proximity here is

context-dependent; it depends not only on the physical distance of the given location from

the center of M anhattan , but also on who is asking the question and why, how familiar

they are with New York, how interested they are in the answer, how much time there is to

answer, how embarrassing it might be to answer “New Jersey” , and so on. Likewise, in the

Slipnet, the conceptual proximity from a given node and its neighbors is context-dependent;

for example, in some situations (e.g., “a b c => a b d , k ji => ?”) the node leftmost may be

closely associated w ith the node rightmost, making a slippage from one to the other more

likely, whereas in o ther situations (e.g., “a b c => a b d , ijk => ?”) the conceptual proximity

and the likelihood of slippage is much less.

Since the conceptual proximity between two nodes is context-dependent, concepts in the

Slipnet are emergent ra ther than explicitly defined. In other words, it is not preordained

whether or not, say, group is part of the concept letter or leftm ost part of the concept

rightmost. As will be seen, the degree to which a given node is p a rt of a given concept

emerges from a large num ber o f activities th a t take place as the program attem pts to

solve the problem it is faced with. Moreover, since the proximity between two nodes gives

only the probability th a t a slippage will be possible, concepts are blurry, never explicitly

defined. They are associative and dynamically overlapping (here, overlap is modeled by

links), and their tim e-varying behavior (through dynamic activation and proximity) reflects

the essential properties of the situations encountered. Thus concepts are able to adapt

(in terms of relevance and association to one another) to different situations. Note that

Copycat does not model learning in the usual sense: the program neither retains changes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

in the network from run to run nor creates new perm anent concepts. However, this project

does concern learning if th a t term is taken to include this notion of adaptation of one’s

concepts to novel contexts.

In addition to the Slipnet, where long-term concepts reside, Copycat has a Workspace—

in which perceptual structures are built hierarchically on top of the “raw” input (the three

strings of letters). There are six types of structures th a t the program builds:

• descriptions of objects (e.g., leftmost);

• bonds representing relations (e.g., successorship) between objects in the same string;

• groups of objects in the same string (e.g, the ii group in iijjkk);

• correspondences between objects in different strings (e.g., a c -k k correspondence in

“a b c => a b d , iijjk k => ?”);

• a rule describing the change from the the initial to the modified string (e.g., “Replace

rightmost le tte r by successor”); and

• a translated rule describing how the target string should be modified to produce an

answer string (e.g., “Replace rightm ost group by successor).

Copycat’s Workspace is m eant to correspond to the mental region in which represen

tations of situations are constructed. (The counterpart of Copycat’s Workspace in Jum bo

was called the “Cytoplasm ” , reflecting the influence of the cell m etaphor.) As in Jum bo,

th is construction process is carried out by large numbers of simple agents called codelets.

A codelet is a piece of code th a t carries out some small, local task th a t is part of the pro

cess of building a structure (e.g., in Problem 5, one codelet might notice th a t the two r ’s

in m r r j j j are instances of the same letter; another codelet might estim ate how well that

proposed bond fits in with already-existing bonds; another codelet might build the bond).

Bottom -up codelets (or “noticers”) work toward building structures based on whatever they

happen to find, w ithout being prom pted to look for instances of specific concepts; top-down

codelets (or “seekers”) look for instances of particular active nodes, such as successor or

sameness-group. As in Jum bo, any structure is built by a series of codelets running in

tu rn , each deciding probabilistically, on the basis of progressively deeper estimations of

the structure’s promise, whether to continue the evaluation process by generating one or

more follow-up codelets or to abandon the effort a t th a t point. If the decision is made

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

to continue, the running codelet assigns an urgency value (based on its estim ation of the

struc tu re’s promise) to each follow-up codelet. This value helps to determ ine how long each

follow-up codelet will have to wait before it can run and continue the evaluation of tha t

particular structure. Once a structure is built, it can indirectly influence the building of

other structures, helping to accelerate the construction of structures th a t support it, and

working to suppress the construction of structures th a t rival it. Incom patible structures

cannot exist simultaneously; fights between such structures are decided probabilistically on

the basis of strength. Which structures are incompatible, and how these supporting and

competing actions take place will be described in subsequent sections.

Codelets can be viewed as proxies fo r the pressures in a given problem. Bottom-up

codelets represent pressures present in all situations (the desire to make descriptions, to find

relationships, to find correspondences, and so on). Top-down codelets represent pressures

evoked by the situation at hand (e.g., the desire, in the problem “a b c =>• a b d , m rr jjj =>■ ?” ,

to construct more sameness groups in the target string once some have already been made).

Any run starts with a standard initial population of bottom -up codelets (with preset

urgencies) on Copycat’s Coderack (the place where posted codelets wait to be chosen); at

each time step, one codelet is chosen to run and is removed from the current population

on the Coderack. The choice is probabilistic, biased by relative urgencies in the current

population. Copycat thus differs from an “agenda” system such as Hearsay-II, which, a t

each step, executes the waiting action with the highest estimated priority. The urgency of a

codelet does not represent an estimated priority, rather, it represents the estim ated relative

speed at which the pressures represented by this codelet should be attended to. If the

highest-urgency codelet were always chosen to run, the lower-urgency codelets would never

be allowed to run, even though the pressures they represent have been judged to deserve

some am ount of attention. Using probabilities to choose codelets allows each pressure to

get the am ount of consideration it is judged to deserve, even when the judgm ents change

as processing proceeds. This allocation of resources is an emergent statistical result rather

than a preprogrammed deterministic one.

Codelets th a t take part in the process of building a structure send activation to the areas

in the Slipnet th a t represent the concepts associated with that structure. These activations

in tu rn affect the makeup of the codelet population, since active nodes (e.g., successor) are

able to add codelets to the Coderack (e.g., top-down codelets th a t try to find successor

relations between pairs of objects). Thus, as the run proceeds, new codelets are added to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

the Coderack population either as follow-ups to previously-run codelets, or as top-down

scouts for active nodes. (Also, new bottom -up codelets are continuously being added to the

Coderack.) A new codelet’s urgency is assigned by its creator as a function of the estim ated

promise of the task it is to work on: the urgency of a follow-up codelet is a function of the

result of the evaluation done by the codelet that posted it and the urgency of a top-down

codelet is a function of the activation of the node tha t posted it (the urgency of a bottom -up

codelet is fixed). Thus the codelet population on the Coderack changes as the run proceeds,

in response to the system’s needs as judged by previously-run codelets and by activation

patterns in the Slipnet, which themselves depend on what structures have been built.

The speed of a structure-building process emerges dynamically from the urgencies of its

component codelets. Since those urgencies are determined by moment-to-moment estimates

of the promise of the structure being built, the result is that structures of greater promise

will tend to be built more quickly than less promising ones. The upshot is a parallel terraced

scan—more promising views tend (statistically) to be explored faster than less promising

ones. There is no top-level executive directing processing here; all processing is carried out

by codelets. Note that though Copycat runs on a serial computer and thus only one codelet

runs a t a tim e, the system is roughly equivalent to one in which many independent activities

are taking place in parallel, since codelets work locally and to a large degree independently.

The fine-grained breakup of structure-building processes thus serves two purposes: (1)

i t allows many such processes to be carried out in parallel, by having their components

interleaved; and (2) it allows the computational resources allocated to each such process

to be dynamically regulated by moment-to-moment estimates of the promise (reflected by

codelet urgencies) of the pathway being followed.

I t is im portant to understand th a t in this system, such processes, each of which con

sists of m any codelets running in a series, are themselves emergent entities. R ather than

being predetermined and then broken up into small components, processes are instead post

determ ined, being the pathways visible, after the fact, leading to some coherent macroscopic

act of construction or destruction of perceptual or organizational structure. In other words,

only the codelets themselves are predetermined; the macroscopic processes of the system

are emergent. In short, any sequence of codelets th a t amounts to a coherent macroscopic

act can a posteriori be labeled a process (e.g., the process of forming a successor group out

of the entire string iijjk k , which involves the building of several bonds and the formation

of several groups within the string), bu t large-scale processes are not laid out in advance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

For example, there is nothing in the program th a t says, “see if the target string can be

m ade into a successor group” with instructions on how to do so; there are only individual

codelets th a t perform small, local actions. Thus, though when one looks back at a run of the

program and can identify certain “processes” th a t were interleaved and th a t ran a t different

speeds, it must be made clear th a t the way this actually comes about is very different from

standard time-sharing systems in which a num ber of well-defined and separate processes are

each given certain time-slices as a function of their priorities. At any given time during a

run of Copycat, one cannot take the codelets currently in the Coderack and determ ine which

ones belong to which large-scale process. Until the program runs to completion, it cannot

be said what the various processes are; is even unclear what should be dubbed a process.

Each codelet’s task is one step in a very large number of potential processes th a t may or

may not unfold. To describe the program ’s large-scale actions in terms of “processes” , as

has been done here, is really just a convenient shorthand.

A final mechanism, temperature (discussed earlier w ith respect, to the Jum bo project),

both measures the degree of perceptual disorganization in the system (its value a t any

m om ent being a function of the am ount and quality of structure buih so far) and controls

the degree of randomness used in making decisions (e.g., which codelet should run next,

which objects a codelet should choose to work on, which structure should win a fight,

etc.). Higher tem peratures reflect the fact th a t there is little information on which to base

decisions; lower tem peratures reflect the fact th a t there is greater certainty about the basis

for decisions. Thus, decisions are made more randomly at higher tem peratures than a t lower

tem peratures. The final tem perature a t the end of a run can be taken as a rough indication

of the program ’s satisfaction with the answer it has created (the lower the tem perature, the

better).

Note th a t the role of tem perature in Copycat (and Jum bo) differs from th a t in simu

lated annealing, an optim ization technique sometimes used in connectionist networks (Kirk

patrick, 1983, Hinton & Sejnowski, 1986, Smolensky, 1986). In simulated annealing, tem

pera tu re is used exclusively as a top-down randomness-controlling factor, its value falling

monotonically according to a predeterm ined, rigid annealing schedule. By contrast, in Copy

ca t, the value of tem perature reflects the current quality of the system’s understanding, so

th a t tem perature acts as a feedback mechanism th a t determines the degree of randomness

used by the system.

In summary, Copycat’s tem perature-controlled nondeterminism allows the program to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

avoid an apparent paradox in perceiving situations: you can’t explore every possibility, but

you don’t know which possibilities are worth exploring without first exploring them . It is

necessary to carry out some exploration in order to assess the promise of various possibilities,

and even to get a clearer sense of what the possibilities are (e.g., the notion of length in

“a b c =>• a b d , m rr j j j =>■ ?” , which initially might not even be considered a possibility

to explore). It is essential to be open-minded, but the territory is too vast to explore

everything. In Copycat, the fact that codelets are chosen probabilistically rather than

deterministically allows the exploration process to be a fair one, neither deterministically

excluding any possibilities a priori, nor being forced to give equal consideration to every

possibility. This is the role of nondeterminism in Copycat: it allows different pressures to

be given the amount of consideration they seem to deserve, with this allocation of resources

shifting dynamically as new information is obtained. There is much redundancy a t the level

of individual codelets, especially among codelets exploring the most promising possibilities,

and the action of any one codelet does not make a difference in the program ’s overall

behavior. Rather, all high-level effects, such as the parallel terraced scan, are statistical

results of large numbers of codelet actions and probabilistic choices made by the program

of which codelets to run. (A typical run of Copycat consists of hundreds—or sometimes,

depending on the problem, thousands—of codelet steps.)

Copycat’s distributed asynchronous parallelism, like Jum bo’s, was inspired by the sim

ilar sort of self-organizing activity tha t takes place in a biological cell (Hofstadter, 1984a).

As was outlined in the discussion of Jum bo, in a cell, all activity is carried out by large

numbers of widely distributed enzymes of various sorts. These enzymes depend on random

motion in the cell’s cytoplasm in order to encounter substrates (relatively simple molecules

such as amino acids) from which to build up larger structures (such as proteins). Com

plex structures are built up through long chains of enzymatic actions, and separate chains

proceed independently and asynchronously in different spatial locations throughout the cy

toplasm . Moreover, the enzyme population in the cell is itself regulated by the products

of the enzymatic activity, and is thus sensitive to the moment-to-moment needs of the cell.

In Copycat, as in Jum bo, codelets roughly act the part of enzymes. All activity is carried

out by large numbers of codelets, which choose objects in a probabilistic, biased way for

use in building structures. As in a cell, the processes by which complex structures are built

are not explicitly programmed, but are emergent outcomes of chains of codelets working

in asynchronous parallel throughout Copycat’s Workspace (its “cytoplasm”). And just as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

in a cell, the population of codelets on the Coderack is self-regulating and sensitive to the

moment-to-moment needs of the system. To carry this analogy further, the Slipnet could

be said to play the role of DNA, with active nodes in the Slipnet corresponding to genes

currently being expressed in the cell, controlling the production of enzymes. Hofstadter’s

purpose in inventing this m etaphor was to draw inspiration from the mechanisms of self

organization in a fairly well-understood natural system, and to use these ideas in thinking

about the mechanisms of high-level perception. The mechanisms of enzymes and DNA

in a cell are not to be taken literally as a model of perception; rather, general principles

can be abstracted and carried over from the workings of cells to the workings of percep

tion. D istributed asynchronous parallelism, emergent processes, the building-up of coherent

complex structures from initially unconnected parts, self-organization, self-regulation, and

sensitivity to the ongoing needs of the system are all central to our model of perception,

and thinking about the workings of the cell has helped in devising mechanisms underlying

these principles in Copycat.

This section has described the Copycat program in very broad strokes; in the rest of

this chapter, the various parts of the architecture sketched above will be described in more

detail.

3.3 T h e S lip n e t

Figure 3.3 is an expanded version of Figure 3.2. All the nodes and links in the Slipnet are

shown in this figure. Note that the sizes of nodes and the lengths of links in this diagram

are arbitrary, and do not indicate anything about the actual nodes and links.

The network includes nodes representing the following possible descriptors for objects

and structures.

• The 26 letters of the alphabet.

• The numbers 1 to 5 (the program doesn’t know any numbers higher than this, and

currently the only way the program uses numbers is to describe the lengths of groups).

• The various possible positions of an object in a string: leftmost, rightmost, and middle,

and the nodes whole, which is used to describe a grouping of a whole string, and single,

which is used to describe a le tte r th a t is the sole constituent of its string.

• The two possible spatial directions for bonds and groups: left and right.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

^ le tre r-ca teg o ry

num b er-ca teg o ry

s ^ C T ^ T)

a lphabetic -position

leftm ost righ tm ost j Q middle J Q vb o le s in g le j

s trin g -p o siu o n

G f^Z > opp< ^ D f i^ T) — f i ^ D
(d irec tion)

Q id en tity)

f o p p o site)
Q o b jcc t-ca teg o ry j

re la tio n -ca teg o ry

(predecessor-group successor-grotip j ^ sam eness-group

g ro u p -ca teg o ry

Figure 3.3: Copycat’s Slipnet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

• The two possible types of objects in strings: letter and group.

• The two distinguished positions in the alphabet: first and last.

• The three possible types of bonds that can be built between objects: predecessor,

successor, and sameness.

• The three types of groups th a t can be made out of related objects in a string:

predecessor-group, successor-group, and sameness-group.

In addition, the network includes nodes representing the various categories of descrip

tions:

• letter-category (linked to the the letter-category nodes, A-Z);

• number-category (linked to the number-category nodes, 1-5);

• string-position (linked to the three string-position nodes, leftmost, middle, and right

most);

• direction (linked to the two possible spatial directions, left and right);

• object-category (linked to the two types of objects, letter and group);

• alphabetic-position (linked to the two distinguished alphabetic positions, first and last);

• bond-category (linked to the three possible bond categories, predecessor, successor,

and sameness); and

• group-category (linked to the three possible group categories, predecessor-group,

successor-group, and sameness-group).

Finally, there are the nodes identity and opposite, which label relationships in the Slip-

net (any node has an implicit identity relation to itself) and are used to label certain

concept-mappings underlying correspondences. Note th a t there is a distinction in the sys

tem between sameness and identity: the former is a type of relation between letters or

groups—actual objects in the W orkspace—and the la tte r is a type of relation between

nodes in the Slipnet. I found it necessary to make this distinction for various purposes in

the current version of Copycat, b u t I am not sure th a t it is really a proper distinction to

make.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

The following is a list of the nodes in order of increasing conceptual depth (nodes in a

single line have equal conceptual-depth values). The conceptual-depth value for each node

is perm anent (it does not vary during a run or from run to run) and is assigned by me

(the exact values are given in Appendix B). There was no formal m ethod for assigning

these rankings; they were decided by a combination of intuition, trial-and-error, and some

arbitrariness, and are not necessarily optimally tuned in the current version of the program.

An experiment on the program th a t involved modifying these values will be described in

C hapter 7.

• A through Z;

• letter,

• letter-category;

• 1 through 5;

• leftmost, rightmost, middle, whole, single, left, right;

• predecessor, successor, predecessor-group, successor-group;

• first, last;

• number-category;

• string-position, direction;

• alphabetic-position, bond-category, group-category;

• sameness, sameness-group;

• object-category, identity, opposite.

There are four main classes of links in the Slipnet (the different classes are not labeled

in the diagram):

• Category links, which relate the types of descriptions th a t can be m ade to the various

possible descriptors of th a t type (e.g., relating the 26 letters to letter-category, cr the

three types of bonds to bond-category).

• Instance links, the inverse of Category links (e.g., relating letter-category to the 26

letters).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

• Has-Property links, which associate certain nodes with properties the concept has. In

the current version of Copycat, there are only two such links: the link from A to first,

and the link from Z to last.

• Lateral links, which represent various non-hierarchical relationships among nodes.

There are two types of lateral links: those whose relationships represent potential

slippages, and those whose relationships axe not possible slippages. The possible slip

page links include:

- Opposite links (labeled “opp”): leftmost <-*■ rightmost, left <-> right, first <->■ last,

predecessor *-> successor, and predecessor-group *-* successor-group.

- Various unlabeled links encoding various associations: letter-category <-► number-

category, letter *-* group, and single <-* whole.

The lateral links th a t do not represent possible slippages include:

- Successor and predecessor links between letter and number nodes (labeled “s”

and “p”).

- Links between the direction and string-position nodes (e.g., right *-> rightmost).

- The links first *-* leftmost, first <-*• rightmost, last <-+ leftmost and last *-* rightmost.

In each link, bo th nodes refer to extremities, one to a spatial extremity in a string,

the other to an extreme position in the alphabet.

- Links between the various types of bonds and the associated types of groups

(e.g., predecessor —► predecessor-group).

- The links predecessor-group —*• number-category, successor-group —► number-

category, and sameness-group —*■ number-category. These links encode the rel

atively weak associations between the three group-categories and the notion of

length. Thus, when groups are formed and the corresponding nodes are acti

vated, a small am ount of activation is spread to number-category, which creates

some possibility th a t the lengths of groups will be perceived. This is illustrated

in the screen dumps given in the next chapter.

- The link sameness-group -* letter-category. In the current version of the program,

sameness groups (e.g., the ii group in iy jk k) are the only kind of groups that

can have letter-category descriptions (e.g., I) attached.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

As was described in the previous section, the lengths of labeled links (namely, the op

posite, predecessor, and successor links) decrease when the node corresponding to the label

is activated. All other links have lengths th a t do not change over the course of a run. As

was said earlier, the network does not retain any changes from run to run; all node acti

vations and link-lengths are reset to their initial values a t the beginning of each new run.

The initial lengths of labeled links and the fixed lengths of o ther links are, as are nodes’

conceptual-depth values, assigned by me, based on intuition and trial-and-error, and are

not necessarily optimally tuned.

In the current version of Copycat, slippages can be made only between nodes connected

by a single lateral slippage link. This is the source of some rigidity in the current program.

In principle, the program should be able to perceive relations and make slippages between

nodes separated by any number of links, given sufficient pressure. For instance, to solve

“a b c => a b d , ace => ?” , the program would need to be able to perceive “double successor”

relations between the letters in ace even though there axe no explicit “double successor”

links in the Slipnet—and so Copycat cannot currently solve this problem. It should be

pointed out th a t even though all possible slippages are potentially present (as is the slippage

wife => husband in our minds), it takes pressure to make them , as well as pressure for the

concepts involved to become relevant. Many slippages are not plausible a priori. As will be

seen in the runs given in Chapter 4, the program virtually never makes opposite slippages

w ithout pressure to do so; in fact, in the absence of pressure, it barely even considers them .

Again, it requires sufficient pressure of the right sort in order for certain concepts to become

relevant and for certain slippages to be made.

The fact th a t there are only a small number of possible slippages in the Slipnet also may

seem unrealistic, bu t it should be emphasized th a t Copycat’s small number of relatively

simple concepts are meant to stand fo r the large number of more complex concepts in a

person’s mind. Copycat’s concepts are m eant to capture in an idealized form some of what

is interesting about real-world concepts. Thus it is essential th a t the program, as much as

possible, avoid taking advantage of the facts that it has only a small number of concepts

and th a t each problem has only a small number of elements. The program never searches

explicitly through all the nodes and links in its network. Instead, codelets use nodes th a t

become relevant, and make slippages th a t become plausible, in response to pressures arising

both from structures tha t previously run codelets have built and from existing associations

in the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Several nodes in the Slipnet (e.g., successor, predecessor, successor-group, and predeces

sor-group) are able, when active, to post specific top-down codelets to the Coderack. The

task o f such a top-down codelet is to specifically seek instances of its parent node in the

Workspace (e.g., to look for successor relations). A list and description of these top-down

codelets will be given in a later section.

The combination of the mechanisms discussed here—dynamic, context-dependent acti

vation (representing perceived relevance) and link-lengths (representing perceived concep

tual proximity) along with top-down pressure from activated nodes (in the form of codelets

seeking instances of those nodes)—results in a model of concepts as “active symbols” (Hof-

stad ter, 1979, Chapter 11; 1985d). Concepts in the Slipnet are active and dynamic, rather

than passive and static: they are emergent rather than explicitly defined, they change in

response to what is perceived in a given situation and adapt themselves in appropriate ways

to different situations. When activated, concepts (e.g., successor, or group-length) in turn

a ttem pt to further instantiate themselves (via top-down codelets) in the current situation;

in doing so, they have to compete against each other for the resources of the system (i.e.,

nodes compete indirectly, via codelets, for running time and for locations to build structures

corresponding to instances of themselves).

3 .4 P e rc e p tu a l S tru c tu re s

3.4 .1 W h a t th e P ro g ra m S ta r ts O u t W ith

Although I call the structures described in this section “perceptual structures” , the word

“perceptual” here is meant to be taken in the same spirit as the phrase “high-level percep

tion”— th a t is, to refer to the non-modality-specific perceptual processes that occur in the

mind when it tries to form an interpretation of a situation, be it a visual scene, a spoken

sentence, or an abstract situation such as the Iran-C ontra affair. Thus the term “perceptual

struc tu re” is meant to be general: it can refer both to modality-specific mental structures

such as the structures constructed by Hearsay-II corresponding to phrases, words, syllables,

and phonemes, or to abstract mental structures such as the perceived chunk “the W atergate

burglars” or a mental correspondence between Reagan and Nixon.

A t the beginning of a run, Copycat is given the three strings of letters; its initial knowl

edge about each component letter consists only of the le tte r’s letter-category (e.g., a is an

instance of category A), its object-category (i.e., a is a letter, as opposed to a group), its

string-position (e.g., leftmost), and which letters are adjacent to it in its string. Only the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

A B C A B D
leftm ost m iddle rightmost leftm ost m iddle rightm ost

letter letter letter letter letter letter

a b c — > a b d

le fê ro s t leJer le L le L 1 ®«r r iS ^ r° s t

i i j j k k — > ?

Figure 3.4: The initial descriptions given to the letters in “a b c => a b d ,
iijjk k =» ?” .

leftm ost, rightmost, and middle letters (if there is one) have string-position descriptions

{middle is used to describe only the single middle object in a string of three objects: e.g.,

the b in a b c , or the group j j in iijjkk can both be seen as middle objects).

The three strings are presented to the program with no preattached bonds or preformed

groups. It is thus left entirely to the program to build up perceptual structures constituting

its understanding of the problem in terms of concepts it deems relevant.

Figure 3.4 displays the initial descriptions given to the letters in the problem

“a b c =>• a b d , i ijjk k => ?” , before the beginning of a run. In the figure, the large boldface

lowercase letters are objects in the Workspace, and the descriptions of each letter are listed

above it. A description actually consists of two parts: a descriptor (e.g., leftmost) and an

description-type (for leftmost this would be string-position) th a t names the specific facet

(of the object) th a t is being described.2 In the figure, only the descriptors are displayed.

2 The structure of a description (e.g., “string-position: leftmost”) is similar to th a t of a
slot and filler in a frame-based representation. However, the words “slot” and “filler” imply
th a t there is a ready-m ade slot (e.g., string-position) attached to the object, waiting to be
filled. In Copycat, th is is not the case. W hen the program adds a new description to an
object (e.g., alphabetic-position: first), it is adding both the slot and the filler; the slot did
not exist ahead of tim e. Thus new slots can be added to objects as new concepts (e.g.,
alphabetic-position) become relevant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

For example, the a in the initial string has three descriptions: “letter-category: A” , “string-

position: leftmost” , and “object-category: l e t t e r For each description, both the descriptor

and the description-type are names of Slipnet nodes.

As can be seen, each letter in the string a b c happens to have three descriptions, but

many letters in U jjkk do not have a string-position description.

In the figure, a descriptor name in boldface indicates th a t th a t description is relevant, and

thus visible to codelets. A description is relevant only when the Slipnet node corresponding

to its description-type is fully active (e.g., leftmost is relevant because string-position is

fully active). Thus the relevance of a description in the Workspace is dynamic and context-

dependent, since it changes with the activation of the description-type node, which depends

on what has been perceived. In the figure, all the descriptors except letter are relevant.

The description-type nodes letter-category and string-position are initially set to be fully

activated, and their activation is clamped (i.e., held constant) for a certain number of

time steps. T hat is, descriptions of these two types are assumed to be relevant, a priori.

However, this can change over the course of a run: if descriptions of these types do not

tu rn out to be useful, the activation of these description-type nodes will eventually decay,

and the corresponding descriptions will no longer be perceived as relevant (this will be seen

in some of the runs given in Chapter 4). The program is thus initially biased to assume

th a t certain concepts are relevant, so th a t some aspects of the letters will be visible to early

codelets. This reflects the notion th a t a given situation will have aspects th a t are a priori

clearly apparent (e.g., your friend Greg is driving). However, these biases shift in context-

dependent ways as a run proceeds, as new structures axe built, and as new information is

uncovered about w hat should be considered relevant to the problem a t hand.

W hen a group is formed by the program , it becomes a new object in its own right,

and is autom atically given the same default types of descriptions th a t a letter is initially

given (e.g., a string-position description), if they apply to it. Also, a probabilistic decision

is m ade whether or not to add a length description; the longer the group, the less likely

it is a description of its length will be explicitly attached to it; in other words, the length

of a short group is more easily and immediately perceived than th a t of a longer group.

The probability of adding a length description is generally low, unless group lengths have

already been deemed to be relevant, in which case it goes up significantly. Just as for

descriptions attached to letters, a group’s descriptions lose relevance if they do not turn

out to be useful. As will be seen, new descriptions can also be added to an object by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

description-making codelets long after the object is created.

Thus, objects are given certain descriptions by default, o ther descriptions can be added

later on if they seem called for, and descriptions lose relevance if they turn out not to be

of much use. This is similar to Barsalou’s (1989) account of how people construct mental

representations: every tim e a representation (e.g., “frog”) is constructed in working mem

ory, certain context-independent, highly accessible descriptions tend to be automatically

activated (e.g., frogs are green, frogs move by hopping, etc.), though this information might

later be inhibited if it turns out to be irrelevant in the current context (e.g., a French

restaurant). O ther less-immediate information becomes incorporated only because of its

relevance in the current context (e.g., frogs’ legs are edible).

Some descriptions are distinguishing—that is, they serve to distinguish an object from

others in its string (e.g., in the string a b c , the description rightmost distinguishes the c since

no other object has it, but the description letter doesn’t distinguish the c). The notion of

distinguishing descriptions will be employed in the following sections describing how certain

codelets use descriptions to build structures.

3.4.2 General Description of Structure-Building

In order to formulate a solution, Copycat must use the concepts it has to make sense

of each string as well as to find a set of correspondences between the initial and target

strings. To accomplish this, the program gradually builds various kinds of structures in the

Workspace that represent its high-level perception of the problem, similar to the way in

which Hearsay-II built layers of increasingly abstract perceptual structures on top of raw

representations of sounds. (A more detailed comparison between Copycat and Hearsay-II

will be given in C hapter 8.) These structures correspond to Slipnet concepts of various

degrees of conceptual depth being brought to bear on the problem, and accordingly, each

such structure is built of parts copied from the Slipnet.

As was said earlier, the types of structures tha t Copycat is able to build in its Workspace

are the following: descriptions of objects (i.e., of letters or groups), bonds between objects

within a string (the current version of Copycat can build bonds only between spatially adja

cent objects), groups of objects within a string, correspondences between objects in different

strings, a rule describing the change from the initial string to the modified string, and a

translated rule describing how the target string should be modified to produce an answer

string. Structures in the Workspace can be built and destroyed, although the more built-up,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Replace letter-category of rightmost letter by successor

— >

----->

Figure 3.5: A possible sta te of Copycat’s Workspace, with several types
of structures shown.

complex, and m utually interrelated the structures become (causing the tem perature to fall),

the more one hesitates to destroy them.

Figure 3.5 displays a possible sta te of Copycat’s Workspace, where several bonds (arcs

between letters), a group (rectangle around the two k ’s), a correspondence (jagged line from

the c to the group of k ’s), and a rule (shown at top of figure) have been built. (Descriptions

attached to letters and groups are not displayed in this figure.) Note th a t each successor

and predecessor bond has a spatial direction (indicated by an arrow on the arc), whereas

sameness bonds have no direction. Once built, a group acts as a unitary object much

like a letter: it now can itself be an element in a bond, group, and correspondence. (The

group of two k ’s is marked on top by a single K , which gives the letter-category of this

group.) The correspondence from the c to the group K is based upon two concept-mappings

(listed beneath it) between descriptors of the c and descriptors of the group: rightmost =>

rightmost and letter =>■ group. These reflect the view th a t the group K plays the same role

in the target string th a t the c plays in the initial string—namely, both are rightmost in

their respective strings. However, in order to make th a t m apping, a conceptual slippage

from letter to group must be made. (The letter-categories of the two corresponding objects

(C and K) are ignored in this correspondence, since in the Slipnet there is no close relation

between these nodes.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

In order to formulate a rule, the current version of Copycat assumes th a t the initial and

modified strings (e.g., a b c and a b d) will be the same length, and th a t exactly one letter

will be changed. It cannot presently deal with more complex changes from the initial to

the modified string; for the purposes of this project, the concentration has been more on

dealing w ith interesting mappings between the initial and target strings.

This one-letter-change restriction of course limits the space of problems Copycat can

currently deal with, bu t the space of interesting problems of this type is still so large that

the current program barely scratches the surface. Codelets do alm ost no examination of

the modified string; the program instead concentrates on the tasks of making sense of the

initial and target strings, and constructing a mapping between them . The only analysis

done of the modified string is to spell out the one-to-one letter correspondences between it

and the initial string (shown as horizontal arcs in Figure 3.5), and to determ ine what, if any,

relationship there is between the changed letter and its replacement. If there is any such

relationship (as there is in a b c =>• a b d , namely successorship), then a description reflecting

that relationship is added to the replacement letter’s (here, d ’s) list of descriptions.

The rule is formed by a codelet that fills in the tem plate “Replace by

” with descriptors of the changed letter and its replacement. These descriptors

are chosen probabilistically, with a bias towards choosing descriptors o f greater conceptual

depth. Thus, although both “Replace letter-category of rightmost le tte r by successor” and

“Replace letter-category of rightmost letter by D” , or even “Replace C b y D”, are all possi

ble, the first is more likely to be formed than the la tte r two, since descriptors rightmost and

successor are more general than C and D. (There are some analogy problems in which one

of the la tte r two rules would be preferable to the first, and accordingly, the rule-preference

function is actually not as straightforward as described above. This will be illustrated in

some of the variant problems discussed in Chapter 5.)

3 .4 .3 H ow C o p y c a t D ec id es to S top

Copycat decides probabilistically when to translate the rule and come up with an answer.

This works as follows. The formation of a rule triggers the program to begin posting “rule

translator” codelets to the Coderack. The job of a rule-translator codelet is to translate the

rule— according to whatever slippages have been made—in order to apply it to the target

string and produce an answer. When a rule translator is chosen and runs, the first thing it

does is decide probabilistically whether or not it really should go ahead and translate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

rule, or w hether it should “fizzle” instead. One might think at first th a t the decision should

be based entirely on the tem perature, reasoning th a t if the tem perature is low, then the

program has a good sense of what is going on in the problem and it should go ahead and

try to produce the answer, and if the tem perature is high, then not enough structu re has

been built yet and the program should keep trying to build more structures so as to improve

its understanding of what is going on. However, suppose this strategy were adopted, and

then the program were given a problem like “a b c => a b d , w q lh => ?” , where there are

no structures to be built in the target string. The tem perature will never get very low

on this problem, and if the decision to stop were based only on tem perature, the program

might keep attem pting to build structures for a long time before finally making the low-

probability decision to quit. Instead, the program should be able to sense in some way that

it has attem pted for long enough to make sense of the problem and that it is unlikely to

find any more structures; a t this point the program should be more likely to give up at a

high tem perature than it would if the outlook were more promising.

In Copycat this works as follows. A rule transla to r’s decision whether or not to translate

the rule (thus stopping the program) depends both on the tem perature and the am ount of

structure th a t has already been built (recall th a t the tem perature is a function of not just

the am ount of structure th a t has been built, but of its quality as well, so it is possible for

there to be a fair amount of structure and for tem perature to still be high, if the structure

is weak). There are three possibilities:

1. The tem perature is low. This means th a t a reasonable am ount of high-quality struc

ture has been built, and th a t the program should go ahead and try to produce an

answer a t this point. In this case, the rule translator has a higher probability of

deciding to go ahead and translate the rule.

2. The tem perature is high, and not much structure has been built (this would be true

for “a b c =► a b d , w q lh =► ?”). In th is case, the rule translator again has a higher

probability of deciding to go ahead and translate the rule. The reason is th a t rule

translators tend not to run until m any other codelets have had a chance to run and

build structure (this is not determ inistic, but it is statistically tsue, since the posting

of rule translators is triggered only when a rule has been formed). Thus if a rule

transla tor is running and finds th a t very little structure has been built, then the

assum ption is that the program would have already had a chance to build structures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

if there were any to build, so there m ust not be much structure in the problem. The

program should thus give up and go ahead with producing an answer, since it is

unlikely to find a better one.

3. The tem perature is high, but a fair am ount of structure does exist (this might be the

case in “a b c a b d , (jk lm n o p q rs =>• ?” , before the program builds all the bonds

in the target string). Here Copycat assumes tha t there is structure to be found, but

the program just hasn’t yet found all of it or perhaps the structure th a t it has found

could be changed for the better. In this case, the rule translator is likely to decide to

fizzle, allowing the program to continue exploring ways of building structures.

Even in cases 1 and 2, the probability of going ahead and translating the rule is fairly

low, though it is higher than in case 3, and in general many rule-translator codelets have to

run before one succeeds in translating the rule. Thus, even in the first two cases, it takes

pressure—in the form of many rule transla tors—in order for the program to stop. Stopping

is more likely in the first two cases than it is in the third, bu t the desired behavior of the

program in deciding when to stop emerges from the statistics of many codelets rather than

the individual action of a single codelet.

Once the rule has been translated, the program stops running codelets, and creates

its answer to the problem by taking the rule describing the initial-string-to-modified-string

change and translating it according to any slippages underlying the correspondences between

the initial and target strings. In the example displayed in Figure 3.5, the rule would be

translated as “Replace letter-category of rightm ost group by successor” (using the slippage

letter => group), yielding answer iijjll.

3 .4 .4 S tre n g th s o f S tru c tu re s

A structu re’s strength a t a given tim e is used by codelets to make probabilistic decisions,

such as whether or not to continue evaluating th a t particular structure, w hat urgencies

should be assigned to codelets th a t will further evaluate i t , and whether th a t structure

should win a fight against an existing incom patible structure. Here I describe in general

term s how the strength of each type of structure is calculated.

The strength of a structure is a function of both internal and external aspects; tha t

is, of both intrinsic aspects of the structu re and aspects of it in terms of its relation to

other structures th a t have been built. The various aspects th a t contribute to a struc tu re’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

strength reflect various pressures th a t interact in the construction and evaluation of th a t

type of structure.

• D e sc rip tio n s : The strength of a description is a function of the following.

1. The conceptual depth o f the descriptor (e.g., rightmost), reflecting a bias towards

more descriptions of greater conceptual depth.

2. The activation o f the description-type (e.g., string-position), reflecting a bias

towards building relevant types of descriptions.

3. The “local support” o f the description, i.e., the number of other descriptions of

the same type (e.g., string-position or length) in the same string, reflecting a

bias towards building types of descriptions th a t have already been used in the

problem. For example, if a length description has already been attached to the

r r group in m rr jj j , then a proposed length description of the j j j group would

have some local support. In other words, as far as descriptions are concerned,

there is safety in numbers.

• B o n d s: The strength of a bond is a function of the following.

1. The current strength o f its bond-category. Each type of bond has a certain in

trinsic strength (e.g., sameness is stronger than successor or predecessor), though

this can be changed by activation (e.g., when successor is active, successor bonds

become stronger).

2. The bond’s local support, i.e., the number of other bonds of both the same cate

gory (e.g., successor) and spatial direction (e.g., right) th a t currently exist in the

same string. This formula again reflects the philosophy of “safety in num bers” .

• G ro u p s : A group is always associated with a bond-category (e.g., the k k sameness-

group is associated with the bond-category sameness). The strength of a group is a

function of the following.

1. The current strength o f the group’s bond-category (e.g., sameness groups are gen

erally stronger than successor and predecessor groups).

2. The group’s length (the longer, the stronger).

3. The group’s local support, i.e., the num ber of other groups in the same string

with the same group-category and direction. For example, once the group kk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

has been built in the string iU jkk, a potential j j group becomes stronger because

of it, since both are sameness groups (which have no spatial direction).

• C o rre sp o n d e n c e s: A correspondence between two objects is based on a set of

concept-mappings between descriptors of the two objects, as in the example displayed

in Figure 3.5. Concept-mappings are either identities (e.g., rightmost => rightmost)

or slippages (e.g., letter => group). When a correspondence is made, some descriptors

can be ignored (in that example, the descriptors C and K are ignored since these

nodes are not close enough in the Slipnet, and thus play no role in supporting the

correspondence). These classifications of concept-mappings are similar to Holyoak’s

(1984) taxonomy of m apping relations: identity concept-mappings correspond to his

“mapped identities” , slippages correspond roughly to his “structure-preserving differ

ences” (though his taxonomy doesn’t involve slippages in the same way they are used

in Copycat, and the notion of structure-preserving differences is by no means as cen

tra l to his taxonomy as slippage is to Copycat), and ignored descriptors correspond

to his “structure-violating differences” . In Copycat, the strength of a correspondence

is a function of the following.

1. The number o f concept-mappings it is based on, reflecting the idea th a t the more

similarities there are, the stronger the correspondence.

2. The proximity o f the two nodes in each concept-mapping, reflecting the idea that

the stronger the similarities, the stronger the correspondence.

3. The conceptual depth o f the two nodes in each concept-mapping, reflecting the

idea th a t the deeper the similarities, the stronger the correspondence. Even

though the inclusion of deep similarities adds strength to a correspondence, there

is also a pressure resisting slippages between descriptors with a high degree of

conceptual depth (such as first and fast), since better analogies are generally ones

in which shallow aspects slip while deep aspects remain invariant. This conflict

of pressures will be discussed and demonstrated in several of the runs in the next

chapter—in particular, in the run of the problem “a b c => a b d , xy z => ?” .

4. The internal coherence o f the correspondence—that is, the degree to which the

underlying concept-mappings support each other. Two concept-mappings sup

port each other (or, in o ther words, are conceptually parallel) if their correspond

ing descriptors are conceptually related (i.e., the nodes are linked in the Slipnet)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

C^lertmoxt ■ ,, C^righm oxT^

C oppoiile

c_ ~2> I cr~ u«

Figure 3.6: Illustration of internal coherence of concept-mappings first =>
last and leftmost => rightmost.

and if the two concept-mappings represent the same relationship (e.g., opposite).

Thus leftmost => rightmost and first =>• last support each other, since the pairs

leftmost and first, and rightmost and last, are conceptually related (the nodes

in each pair are linked in the Slipnet), and both concept-mappings are opposite

slippages, so a correspondence including both is internally coherent. This is il

lustrated in Figure 3.6 (As will be seen in the run of Copycat on “a b c =>• a b d ,

xyz => ?” , this internal coherence is one of the reasons the a -z correspondence

can come to be seen as strong.)

5. The size o f the objects involved in the correspondence. There is a bias towards

correspondences that connect larger parts of the two strings (i.e., correspondences

involving groups tend to be stronger than correspondences involving letters, and

correspondences involving large groups-in particular, whole-string groups—tend

to be stronger than correspondences involving small groups). This reflects a

desire for mappings involving large, coherent parts of the two strings, which is

similar to Gentner’s (1983) notions of “structure-m apping” and “system aticity”

(these will be discussed in detail in Chapter 8).

6. The strengths o f the other correspondences that support the given correspondence.

Two correspondences support each other if a concept-mapping in one supports

(i.e., is conceptually parallel to) a concept-mapping in the other. For exam

ple, two correspondences containing (respectively) the concept-mappings right

most =}► rightmost and leftmost => leftmost support each other. In contrast, the

concept-mappings rightmost => leftmost and C => C do not support each other

but are not incompatible with each other, while rightmost => leftmost and right =>

right conceptually contradict each other and are thus incompatible (in Copycat,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

incom patible correspondences cannot exist simultaneously). A requisite for any

strong analogy is a set of strong, mutually supporting correspondences.

These notions of internal coherence and m utual support between correspondences are

related to some of the ideas pu t forth by Thagard (1989) about “conceptual coherence”

in scientific theorizing. Many components of the definition of correspondence strength

have counterparts in G entner’s (1983) structure-m apping theory and in Holyoak and

T hagard’s (1989) ACME program. These comparisons will be discussed further in

Chapter 8.

• R u les: The strength of a rule is a function of the following.

1. The conceptual depth of the descriptors used in the rule. For example, as was

mentioned earlier, the rule “Replace letter-category of rightm ost letter by suc

cessor” is stronger than “Replace C by Dv.

2. How the changed letter in the initial string has been mapped to the target string.

For example, suppose th a t, in the problem “a b c => a b d , cccc => ?” , the c in

a b c is seen as corresponding to the entire group of four c ’s in the target string.

The rule “Replace C by D” is more compatible with this “worldview” than is

the normally stronger “Replace letter-category of rightmost le tte r by successor” ,

since the descriptor rightmost plays no role in the c -cccc m apping. The strength

form ula takes such mappings into account in determining how compatible the rule

in question is with the structures th a t have been built so far.

It should be pointed out th a t the strength calculations for structures often involve look

ing a t all the o ther structures of th a t type in the same string. Such a complete search might

be implausible in a complex, real-world situation, even though the num ber of mental struc

tures a person imposes on a given situation is small compared with the num ber of objects in

the situation.3 The role of these functions is therefore not to propose detailed psychological

mechanisms for how these strength values are computed, but rather to produce plausible

numbers th a t can be used in the mechanisms th a t we are proposing, as well as to spell out

the pressures th a t are involved in coming up with these numbers.

3 Another problem is th a t it is in general hard to define real situations in terms of discrete
objects; w hat is or is not a single object is blurrier in the real world than in the more cut-
and-dried letter-string microworld.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

3 .4 .5 Im p o r ta n c e , H a p p in e ss , a n d S a lien ce o f O b je c ts

Each le tter or group in the initial and target strings has three time-varying values associated

with it: importance, happiness, and salience. As will be seen, these values are used in various

ways by the program as it runs.

• The importance of an object is a function of (1) how many relevant descriptions it has

(recall th a t a description (e.g., string-position: leftmost, is relevant if its description-

type, e.g., string-position, is fully active) and (2) how active the corresponding de

scriptors (e.g., leftmost) axe. For example, the leftmost i in iy jk k would usually have

a higher importance than its right neighbor, since the former has a string-position

description and the latter does not (in general, objects on the edges of strings have

higher importance than internal objects, though if string-position descriptions hap

pened to become irrelevant, th is difference would vanish). The intuition here is that

the objects perceived to be im portant in a situation are the ones that are easiest to

describe (i.e., have many relevant descriptions) and whose descriptors are most visible

(i.e., highly activated). In addition, once the changed object in the initial string (e.g.,

the c in a b c =>• a b d) has been identified, its importance is raised, since it plays the

leading role in defining the relationship between the initial string and the modified

string. Also, the importance of any object inside a group (e.g., the individual k ’s in

the group K) is lowered, since when objects are grouped, they follow a utilitarian

philosophy, partially relinquishing their individual interests for the good of the larger

unit.

• The happiness of an object depends on how well it fits into the overall structuring of

its string and the mapping from the initial string to the target string, as well as how

good th a t structuring and m apping seem. Thus, an object’s happiness is a function

of the strengths of the structures (bonds, groups, and correspondences) attached to

it. For example, in Figure 3.5, the c in a b c is happier than the b because it has a

correspondence to something in the target string. Each object starts out with certain

slots available for bonds, groups, and correspondences, and its happiness a t a given

tim e depends on how well those slots axe filled.

• The salience of an object—in effect, the object’s attractiveness to codelets—is a func

tion of its importance and its unhappiness (the inverse of its happiness). Increased

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

im portance leads to higher salience because im portant objects merit attention in their

own right. Increased unhappiness leads to higher salience because unhappy objects

need attention from codelets in order to increase their happiness.

If an im portant object is very happy, it doesn’t need much attention (e.g, the c in

Figure 3.5 doesn’t need much attention). Likewise, if an unhappy object is not very

im portant, it doesn’t merit the same attention th a t should be given to an equally

unhappy im portant object. For example, the rightm ost j in Figure 3.5 is not as

im portant as the leftmost i, so the former would tend to get less attention, even

though both are equally unhappy. (There are a num ber of real-world counterparts

of these relations among one’s im portance, one’s unhappiness, and the amount of

attention one gets; for instance, consider the relative am ount of coverage in the media

given to crimes against various members of society.)

Finally, the temperature at any tim e is a weighted average of the unhappinesses of all

objects, where each object’s unhappiness is weighted by its importance. Thus, im portant

objects have more of an effect on tem perature than unim portant ones.

The details of how tem perature is calculated are given in Appendix B.

3 .5 C o d e le ts

3 .5 .1 G e n e ra l C o m m en ts a b o u t C o d e le ts an d S tru c tu re -B u ild in g

Earlier in this chapter I gave an overview of how codelets cooperate and compete with each

other to gradually build up structures. In this section I will describe what the different

types of codelets are, and discuss in more detail how structure-building takes place.

I t is worth making clear the distinction between codelet types and codelet instances. The

program has a fixed number of codelet types, which are pre-w ritten pieces of code, bu t it is

instances of these platonic types th a t are placed on the Coderack (sometimes w ith specific

argum ents filled in) and th a t run. As will be seen, there are 24 different types of codelets,

bu t, a t a given time, the Coderack can contain a much larger num ber of instances waiting

to run (and rarely are instances of all 24 types present a t the same time), with various types

being represented by various densities of instances, the densities being a result of what has

happened in the run so far.

In general, each codelet type (with a few exceptions; see below) is associated with some

aspect of evaluating or building a particular type of structure (a description, bond, group,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

correspondence, or rule). As was described earlier, structure-building in Copycat is broken

up into small steps, so th a t a parallel terraced scan of possibilities can be carried out. In the

current version of the program, the evaluation and building of any individual structure is

carried out by a chain of three codelets. F irst, a scout codelet probabilistically chooses one

or more objects, where the choice is based on the relative saliences of the various objects

in the problem. Thus, objects of high salience tend to be chosen more often (and thus

paid more attention to) than objects of lower salience. The scout then determines whether

or not it is possible to attach its particular type of structure to the chosen objects. As

was mentioned before, there are two types of scout codelets: a bottom-up scout is willing

to consider any variety of the particular structure-type it is looking for (e.g., the bottom-

up-bond-scout codelet will consider bonds of any type), whereas a top-down scout, which

is posted by some active Slipnet node (e.g., successor), sees if it can attach the specific

structure associated with that node (e.g., a successor bond) to the chosen objects. In

summary, a scout codelet “tests the waters” for a possible structure. If the scout codelet

discovers any reason for building its structure, it places a strength-tester codelet on the

Coderack, giving it the proposed structure as an argum ent, and assigning it an urgency

based on certain somewhat superficial and quickly evaluated aspects of the structure (if no

reason is found to a ttach the structure to the chosen objects, then no strength-tester codelet

is posted, and the chain fizzles at this point). W hen the strength-tester runs, it calculates

the strength of the given structure, and, based on this calculation, decides probabilistically

whether or not to post a builder codelet. If the decision is “yes” , a builder codelet is placed

on the Coderack, its urgency being a function of the structu re’s strength; if “no” , the chain

fizzles a t this point. W hen the builder codelet runs, it tries to build the structure, fighting

against incom patible already-existing structures if necessary. The outcomes of the fights

are decided probabilistically on the basis of the competing structures’ strengths, and the

new structure has to defeat all the existing incompatible structures before it can knock any

•of them down. Thus, when there is more than one strong rival, the odds are against a new

structure. However, if the proposed structure wins all the fights, all the rival structures are

destroyed, and the new structure is built.

In summary, the three-codelet chain for building a given type of structure goes as follows:

• A scout codelet asks, “Is there any reason for building this type of structure in this

location?” ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

• If yes, a strength-tester codelet asks, “Is the proposed structure strong enough?” ;

• If yes, a builder codelet tries to build the structure, fighting against com petitors if

necessary.

This small pathway should not be identified with what was referred to earlier as a “path

of exploration” . A path of exploration does not involve ju st one structure, but an entire set

of steps leading to an answer, in which a large number of codelets and structures participate.

Paths of exploration are defined as any of the possible ways in which the program could

structure its perceptions of the problem in order to construct an analogy. Thus possible

paths are not laid out in advance for the program to search, bu t rather are constructed by

the program as its processing proceeds, ju st as in a game of chess, where paths through

the tree of possible moves are constructed as the game is played. The evaluation of a given

move in a game of chess blurs together the evaluations of many possible look-ahead paths

th a t include that move. Similarly, any given action in building a structure by a codelet

in Copycat is a step included in a large number of possible paths toward a solution, and

an evaluation obtained by a codelet of a proposed structure blurs together the estim ated

promise of all these paths.

3 .5 .2 C o d e le t T y p e s

Copycat has codelet types to scout out, evaluate, and build all types of structures—

descriptions, bonds, groups, correspondences, and rules—as well as to translate rules and

to break structures th a t have been built. The 24 codelet types in Copycat are described

below, w ith the argum ents taken by each codelet indicated.

T he description here is a t a medium level of detail, leaving out some details for the sake

of clarity. More detailed descriptions of the various codelet types are given in Appendix C.

O ften, a codelet chooses one or more objects to use in a ttem pting to build a structure.

The choice of what object or objects to use is probabilistic and is in most cases based on the

relative salience of objects :r the problem (where more salient objects are more likely to be

chosen). Unless stated otherwise, this is what “chooses an object” means in the descriptions

given below.

Description-Building Codelets

• B o t to m -u p d e s c r ip tio n -s c o u t (no arguments): A codelet of this type chooses an

object—say, the a in a b c —and a description of th a t object—say “letter-category:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

A ”—and sees if any new description can be attached to the object based on has-

property links in the Slipnet. For example, this codelet would look for any conceptually

close properties of A. If first were seen as close enough to A (a probabilistic decision),

the codelet would propose a new description: “alphabetic-position: first”, and would

post a description-strength-tester codelet to further evaluate this proposed description.

• T o p -d o w n d e sc r ip tio n -sc o u t (argument: a description-type node): Codelets of

this type represent pressure to build a specific type of description. They are placed on

the Coderack by an active description-type node (such as alphabetic-position), which

then becomes the argument. A codelet of this type chooses an object—say, the a

in a b c — and sees if a new description of the given type— say, alphabetic-position—

can be attached to the object. If the object is the a , then the codciet c^p propose

the description ualphabetic-position: first”; if the object were the b , then since no

alphabetic-position description would be possible, the codelet would fizzle. If such a

description can be made, this codelet proposes it and posts a description-strength-

tester codelet to continue the evaluation.

The nodes th a t can post top-down descriptor-scout codelets are string-position, alpha

betic-position, and number-category (which tries to describe groups in terms of their

lengths).

• D e s c r ip t io n - s tr e n g th - te s te r (argument: a proposed description): This codelet cal

culates the proposed description’s strength, and based on th e result, probabilistically

decides w hether or not to post a description-builder codelet. If so, the urgency of the

description-builder codelet is a function of the strength.

• D e s c r ip t io n -b u ild e r (argument: a proposed description): This codelet builds the

proposed description (if it hasn’t already been built by a previous codelet chain).

Bond-Building Codelets

• B o t to m - u p b o n d -sc o u t (no arguments): A codelet of this type chooses a pa ir of

adjacent objects and sees if there is any bond th a t can be made between them (e.g.,

successorship). If so, this codelet proposes the bond and posts a bond-strength-tester

codelet to evaluate it.

• T o p -d o w n b o n d -sc o u t [ca tego ry] (argument: a bond-category node):

Codelets of this type represent pressure to build bonds of a specific category. They

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

are placed on the Coderack by an active bond-category node (predecessor, successor,

or sameness) which then becomes the argument. A codelet of this type chooses a pair

of adjacent objects and sees if a bond of the given category can be made between

them. If so, this codelet proposes the bond and posts a bond-strength-tester codelet

to evaluate it.

• T op -dow n b o n d -sc o u t [d irection] (argument: a direction node): Codelets of this

type represent pressure to build bonds with a specific spatial direction. They are

placed on the Coderack by an active direction-category node (left or right) which then

becomes the argument. A codelet of this type chooses a pair of adjacent objects and

sees if a bond (of any category) can be made between them in the given direction. If

so, this codelet proposes the bond and posts a bond-strength-tester codelet to evaluate

it.

• B o n d - s tr e n g th - te s te r (argument: a proposed bond): This codelet calculates the

proposed bond’s strength, and based on it, probabilistically decides whether or not

to post a bond-builder codelet. If so, the urgency of the bond-builder is a function of

the strength.

• B o n d -b u ild e r (argument: a proposed bond): This codelet tries to build the pro

posed bond (if it hasn’t already been built by a previous codelet chain), fighting with

competitors (e.g., an already existing bond between the two objects) if necessary.

Group-Building Codelets

A group is based on a set of bonds between adjacent objects, all of the same bond-

category and direction. The building of groups is triggered only when bonds have already

been built. Thus there is no bottom -up group-scout th a t is willing to look for any kind of

group whatsoever; instead, when a bond (e.g., successor) is built, the corresponding bond-

category node (e.g., successor) is activated, and spreads activation to the node representing

the associated group-category (e.g., successor-group), which posts top-down group-scout

codelets to seek instances of groups of that category.

• T o p -d o w n g ro u p -sc o u t [category] (argument: a group-category node): Codelets

of this type represent pressure to build groups of a specific category. They are placed

on the Coderack by an active group-category node (such as successor-group), which

then becomes the argument. A codelet of this type chooses a number of adjacent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

bonds and sees if they are all of the given category (e.g., successor) and in the same

direction. If so, the codelet proposes a group based on these bonds and posts a

group-strength-tester codelet to evaluate it.4

• T op -dow n g ro u p -sc o u t [d irection] (argument: a direction node): Codelets of this

type represent pressure to build groups with a a specific spatial direction. They are

placed on the Coderack by an active direction-category node (left or right) which then

becomes the argument. This codelet works in basically the same way as the top-down

group-scout-category codelet, except th a t it looks for a group based on adjacent bonds

all having the given direction, not caring which bond-category they have, so long as

they all have the same one.

• G ro u p -s tr in g -sc o u t (no arguments): Codelets of this type represent pressure to

construct a group out of the entire string (not caring which category or direction the

group has). The construction of groupings of both initial and target strings as wholes

is so desirable for the program that an entire codelet type is dedicated to attem pting

this task. The codelet sees if there are bonds of the same category and direction

th a t span the string. If so, it proposes a group based on these bonds, and posts a

group-strength-tester codelet to evaluate it.

• G r o u p - s t r e n g th - te s te r (argument: a proposed group): This codelet calculates the

proposed group’s strength, and based on it, probabilistically decides whether or not

to post a group-builder codelet. If so, the urgency of the group-builder codelet is a

function of the strength.

• G ro u p -b u ild e r (argument: a proposed group): This codelet tries to build the pro

posed group (if it hasn’t already been built by a previous codelet chain), fighting

with competitors (e.g., already-existing groups containing some of the same objects)

if necessary.

Correspondence-Building Codelets

4 Given enough local support for this group-category, this codelet can even propose a
group consisting of just a single letter, though in most circumstances, th is is unlikely. How
single-letter groups get proposed and built will be described in Chapter 4, when a sample
run of the program ’s solution “a b c =>• a b d , m rr jj j =s> m r r j j j j ” is displayed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

• B o tto m -u p c o rre sp o n d e n c e -sc o u t (no argum ents): This codelet chooses two ob

jects, one from the initial string and one from the target string. It sees if there are any

possible concept-mappings th a t can be made between descriptors of the two objects. A

concept-mapping can be m ade between two descriptors if they are both relevant (i.e.,

the description type of each is fully active), of the same description-type (e.g., string-

position), and are sufficiently close in the Slipnet. For example, the correspondence

between the c and the group K , pictured in Figure 3.5, has two concept-mappings:

rightmost => rightmost and letter => group. The two letter-category descriptors, C and

K, were not sufficiently close tc each other in the Slipnet for a concept-mapping to be

made between them.

If there is a t least one such concept-mapping between distinguishing descriptors (e.g.,

the rightmost rightmost mapping shown in Figure 3.5), then the codelet proposes a

correspondence between the two objects including all the qualifying concept-mappings

(non-distinguishing ones such as letter =>• group come along for the ride), and posts a

correspondence-strength-tester codelet to evaluate the proposed correspondence.

• Im p o r ta n t-o b je c t c o rre sp o n d e n c e -sc o u t (no arguments): T he task of codelets of

this type is to find the target-string counterparts of important objects in the initial

string. The idea here is to model the way people, when making an analogy, focus

on im portant objects and roles in one situation (e.g., you focus on Ronald Reagan as

“the President” in the Iran -C on tra situation), and actively try to retrieve the object

filling the corresponding role in the other situation (e.g., you actively try to figure out

who is “the President” in the W atergate situation).

To accomplish its task, a codelet of this type chooses an object from the initial string

probabilistically, using im portance rather than salience as its bias. It then chooses

one of the object’s descriptions and sees if there is any object in the target string that

has the “same” description, taking into account any slippages th a t have already been

made. For example, in the problem “a b c => a b d , k ji => ?” , this codelet might choose

the a in a b c , choose its description leftmost, and try to make a correspondence with

the leftmost object in k ji. B ut if a correspondence has already been made between

the c and the k with the slippage rightmost => leftmost, then this codelet will take

tha t into account and consider a correspondence between the a and the rightmost

object in the target string. If the desired target-string counterpart is found, then this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

codelet proposes a correspondence between the two objects in the same m anner as in

the bottom -up correspondence-scout codelet.

• C o r re s p o n d e n c e -s t re n g th - te s te r (argument: a proposed correspondence): This

codelet calculates the proposed correspondence’s strength, and based on it, proba

bilistically decides whether or not to post a correspondence-builder codelet. If so, the

urgency of the correspondence-builder is a function of the strength.

• C o r re s p o n d e n c e -b u ild e r (argument: a proposed correspondence): This codelet

tries to build the proposed correspondence (if it hasn’t already been built by a previ

ous codelet chain), fighting with competitors (e.g., incompatible correspondences) if

necessary.

Rule-Building Codelets

• R u le -sc o u t (no arguments): This codelet fills in the rule tem plate (as was men

tioned before, the current version of Copycat has only one: “R eplace___________ by

”). To do this, it probabilistically chooses descriptors of the changed let

ter in the initial string and of the letter in the modified string th a t replaces it, with a

bias towards descriptors with greater conceptual depth. This codelet proposes a rule

and posts a rule-strength-tester codelet to evaluate it.

• R u le - s t r e n g th - te s te r (argum ent: a proposed rule): This codelet calculates the pro

posed rule’s strength, and based on it, probabilistically decides whether or not to

post a rule-builder codelet. If so, the urgency of the rule-builder is a function of the

strength.

• R u le -b u ild e r (argum ent: a proposed rule) : This codelet tries to build the proposed

rule (if it hasn’t already been built by a previous codelet chain), fighting with the

existing rule, if there is one and if it is different from the proposed rule.

• R u le - t r a n s la to r (no arguments): As described in Section 3.4.3, this codelet first

decides probabilistically, based on tem perature and on how much structure has been

built already, whether or not to fizzle without doing anything. If it decides to proceed,

it translates the rule according to the translation instructions given in the slippages in

the Workspace. Once the rule has been translated, the program proceeds to construct

an answer according to the directions in the translated rule, and then halts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Other Codelets

• R e p la c e m e n t- f in d e r (no argum ents): This codelet chooses a letter a t random in

the initial string and builds a “replacement” structure between the chosen le tter and

its counterpart in the modified string. If the replacement involves a change of letter-

category (as for the c to d replacement in a b c => a b d) , this codelet marks the

initial-string letter as “changed” and gives the corresponding modified-string letter a

description describing the change relation (e.g., successorship), if there is one (e.g., if

the c changed to a q , there is no change relation, so no description would be given).

Note that the process of finding replacements in the modified string for initial-string

letters does not follow the usual three-codelet building process. This is because,

as was described earlier, the program assumes a one-to-one letter-to-letter mapping

between the initial and modified strings, and thus the initial-string-to-modified-string

mapping is trivial to determine. Of course, this assumption severely limits the range

of problems th a t the program , as it now stands, can solve, and this stage will have to

be much more complex if the program is to be extended to solve problems with more

complex initial-string-to-modified-string changes.

• B re a k e r (no arguments): This codelet’s task is to try to break some structure, but

the first thing it does is decide probabilistically, based on the current tem perature,

whether or not it should instantly fizzle (the lower the tem perature, the more likely

it is to fizzle). If not, it chooses a structure at random and decides probabilistically,

as an inverse function of the struc tu re’s strength, whether to break the structure.

As was mentioned earlier, codelets, for the most part, are biased to choose salient objects

to work on. Recall th a t the salience of an object is a function of both its im portance and

its unhappiness. This is related to the “romance” m etaphor discussed in the section on

Jum bo. Before any bonds, groups, or correspondences are formed, all objects are equally

unhappy, so the relative salience of the various objects is determined wholly by their relative

im portance. But as structures are built, the objects that are “hitched up” become happier,

depending on the strength of their ties to other objects, so their salience goes down, which

m eans they are chosen less often by codelets. In terms of the m etaphor, the happier the

romance (i.e., the happier the objects in a given structure), the less the “flirting” done by

the romantic partners (the less the codelets trying to build other structures look at the

already “involved” objects, since higher happiness causes lower salience). However, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

m ore desirable a person (the more im portant an object), the more flirting is done (the more

codelets look at that object, since higher importance leads to higher salience).

3.6 Temperature

Copycat’s tem perature variable measures the current disorganization in the system ’s under

standing of the problem: the value of the tem perature a t a given time is a function of the

unhappiness of the objects in the problem, which is in turn a function of the am ount and

quality of perceptual or organizing structure th a t has been built so far. Thus tem perature

s ta rts high, falls as structures are built, and rises again if structures are destroyed, if their

strengths decrease, or if new objects (i.e., groups) are formed and need to be incorporated

into a coherent structuring of the problem. In turn , the value of tem perature controls the

degree of randomness used in probabilistic decision-making in the system. There are two

related ideas here. The first is that when there is little perceptual organization (and thus

high tem perature), the information on which decisions are based (such as the urgency of a

codelet or the strength of a particular structure) is not very reliable, and decisions should be

more random than would seem to be indicated by this information. When a large am ount of

structure deemed to be good has been built (and thus tem perature is low), the information

is considered to be more reliable, and decisions based on this information should be more

deterministic.

The second idea is th a t early on, when not much is known about the situation to be

understood, the system should pursue a large number of parallel explorations, so that

enough information can be obtained in order to make intelligent decisions later on about

w hat possibilities to focus on. Thus, early on, exploration should be parallel and fairly

random (i.e., stochastic w ith a fairly even distribution), and it should gradually become more

and more focused, serial, and deterministic as more becomes understood about the situation

a t hand. Tem perature, by implementing feedback between the quality of the program ’s

understanding and the degree of randomness a t a given tim e, provides a mechanism for

achieving this continuous transition. This mechanism will be illustrated in detail in the

sample runs of Copycat given in the next chapter.

The solution to the well-known “two-armed bandit” problem (Given a slot machine with

two arm s, each with an unknown payoff rate , what strategy of dividing one’s play between

the two arms is optim al for profit-making?) is an elegant mathematical verification of

these ideas (an excellent discussion of this solution and its implications is given by Holland,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

1975). The solution states th a t the optimal strategy is a t all times to be willing to sample

either arm , b u t with probabilities th a t diverge increasingly fast as time progresses. In

particular, as more and more information is gained through sampling, the optim al strategy

is to exponentially increase the probability of sampling the better-seeming arm relative

to the probability of sampling the worse-seeming arm (note th a t one never knows with

absolute certainty which is the better arm , since all inform ation gained is merely statistical

evidence). C opycat’s parallel terraced scan can be likened to such a strategy extrapolated

to a many-arm ed bandit—in fact, a bandit with a dynamically changing number of arms,

where each arm represents a potential path of exploration toward an answer. (This is

similar to the search through schemata in a genetic algorithm ; see Holland, 1986.) There

are far too m any possible paths to do an exhaustive search, so in order to guarantee th a t in

principle every path has a non-zero chance of being explored, paths have to be chosen and

explored probabilistically. Each step in exploring a pa th is like sampling an arm , in th a t

information is obtained th a t can be used to decide the rate a t which that path should be

sampled in the near future. The role of tem perature is to cause the exponential increase in

the speed a t which promising paths are explored as contrasted with unpromising ones; as

tem perature decreases, the degree of randomness with which decisions are made decreases

exponentially, so the speed a t which good paths crowd out bad ones grows exponentially

as more information is obtained. This type of strategy, in which information is used as it

is obtained in order to bias probabilistic choices and thus to speed up convergence toward

some resolution but never to absolutely rule out any path of exploration, is essential for

flexibility in understanding and dealing with situations in the real world, in which there is

a limited am ount of time to explore an intractable num ber of possibilities.

T em perature affects the following decisions:

• The program ’s choice of which codelet to run next, based on relative urgency in the

Coderack. At very high tem peratures, this choice is fairly unbiased, meaning that

all codelets on the Coderack have approximately an equal chance of being selected.

As tem perature falls, this choice becomes more and more biased, and at very low

tem peratures, the program is almost certain to choose one of the highest-urgency

codelets next.

• A codelet’s choice of which objects to use in scouting out or building a structure,

based on salience. At high tem peratures, all objects have roughly equal chance; a t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

low tem peratures, the most salient objects are chosen almost all the time.

• A strength-tester codelet’s decision whether to fizzle or to post a builder codelet,

based on its calculation of the strength of the structure being considered. At high

tem peratures, strength is less strongly weighted in the decision.

• A builder codelet’s decision whether or not to break already-existing incompatible

structures, based on the competing structures’ relative strengths. Again, a t high

tem peratures, strength is less strongly weighted.

• A breaker codelet’s decision whether or not to break a chosen structure , based on the

structure’s strength. Again, a t high tem peratures, strength is less strongly weighted.

• A codelet’s decision of whether two nodes in the Slipnet are sufficiently close for the

purpose of adding a new description to an object (such as adding the descriptor first

to the a in a b c) or making a slippage (such as first =► last). A t higher tem peratures,

the decision is made more randomly, and riskier (more d istant) slippages have a better

chance of being allowed.

• A rule-scout codelet’s decision of which descriptors to choose for filling in the rule tem

plate, based on the descriptors’ conceptual depth. At higher tem peratures, conceptual

depth is weighted less strongly.

• A group-scout codelet’s decision whether or not to propose a single-letter group or to

add a length description to a proposed group. At higher tem peratures this decision

is m ade more randomly, making the construction of single-letter groups and length

descriptions—normally low-probability events—more likely.

The precise formulas for how tem perature affects probabilistic biases are given in Ap

pendix B.

Tem perature allows Copycat to close in on a good solution quickly, once parts of it have

been discovered. In addition, since high tem perature means more random ness, temporarily

raising the tem perature gives Copycat a way to get out of ru ts or to deal with snags; it can

allow old structures to break and restructuring to occur so th a t a b e tte r solution can be

found. T ha t is, when the system runs into an impasse, the tem perature can go up in spite

of the fact th a t seemingly good organizing structures exist. Such a use of tem perature is

illustrated in the run of the program on “a b c =>• a b d , x y z =» ?” , given in C hapter 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Tem perature in Copycat has some similarities to the notion of inhibitory control, dis

cussed, for example, by K aplan and Kaplan (1982). They note th a t when you are stuck in

solving a problem, your inhibitory control gets lowered, m aking it easier for representations

to emerge tha t were previously activated only below the level of consciousness. This makes

it possible for you to come up with connections you didn’t even know were there. However,

when you lower inhibitory control, you run the risk of coming up with crazy, nonsensical

ideas as well as useful new insights. High tem perature corresponds to lowered inhibitory

control. It allows structures th a t a t low tem perature would have been squelched immedi

ately to be considered more seriously, and sometimes to be built. As will be seen in the next

chapter, Copycat’s use of tem perature allows the program to come up with both insightful

and bizarre solutions to certain problems (in particular, to the last three problems given in

Section 2.1). The interesting thing is that the program has mechanisms th a t allow it to get

reasonable and insightful solutions most of the tim e, while avoiding bad or crazy solutions

fairly reliably (though it does get them from time to tim e).

3 .7 M a in L oop o f th e P ro g ra m

At the beginning of a run of the program, the Coderack contains a standard initial pop

ulation of codelets: an equal number of bottom -up bond-scouts, bottom -up replacement-

finders, and bottom -up corresooudence-scouts. In essence, the program assumes that these

types of structures will be relevant in every problem. It m ight be wrong; for example, in

the problem “h jp b => x jp b , w lqzs => ?” , the letters were chosen randomly and there are

no bonds to be found, bu t th is fact would become clear only after some codelets had run.

The main loop of the program is as follows:

Until a rule has been built and translated, do the following:

Choose a codelet and remove it from the Coderack.

Run the chosen codelet.

If N codelets have run, then:

U pdate the Slipnet.

Post some bottom -up codelets.

Post some top-down codelets.

Finally, build the answer according to the translated rule.

Every N codelet-runs (where N is a param eter, currently set to 15), the Slipnet is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

updated: for each node, any activation from instances discovered during the last N steps

is added in, activation is spread between neighbors, and each node’s activation decays at

a ra te determined by the node’s conceptual depth .5 In addition, various bottom -up and

top-down codelets are placed on the Coderack. Top-down codelets are posted by active

Slipnet nodes, but new bottom -up codelets are needed as well, not only because the initial

set of bottom -up codelets might have missed certain possible structures, but also because

new structures are being built and new objects (groups) are being created all the time, and

very often these need to be themselves incorporated into higher-level structures. Relying on

top-down codelets alone would often prevent the program from finding certain structures

th a t d idn’t happen to correspond to previously active Slipnet nodes. So every N steps,

not only top-down codelets but also bottom -up codelets of all the various types have some

chance of being posted. (Some problems with determining the necessary number of codelets

to post will be discussed in Chapter 6.)

Copycat has now been described in some detail, although, in order to strike a balance

between completeness and clarity, certain less-central aspects of the program were left out

of the discussion. Some of these will be given in Appendix B, which details the parameters

and some of the formulas used in the system, and in Appendix C, which gives more detailed

descriptions of the various codelet types.

The next chapter presents a statistical overview of Copycat’s answers to the five target

problems, and then follows the program through typical runs on each problem. This will

give the reader a be tter idea of how all the pieces of the program fit together.

5 Of course, this discrete updating process—every N steps—is m eant to model the con
tinuous activation, spreading activation, and activation decay th a t goes on in the mind. It
could be made more continuous in the program by setting A to 1, for instance, bu t that
would be computationally too expensive for the gain in continuity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

COPYCAT’S PERFORMANCE ON THE FIVE TARGET PROBLEMS

4.1 Introduction

In this chapter I present the results of Copycat’s performance on the five target problems

discussed in Chapter 2. As was noted in tha t chapter, these problems were chosen because

they illustrate, in an idealized and thus very clear form, some of the essential issues in high-

level perception and analogy-making in general. In previous chapters I discussed a number

of these issues and described the way in which the Copycat program models the mental

mechanisms we are proposing in order to deal with these issues. Here I will present statistics

summarizing what the program does on each of the five problems, and for each problem give

a set of annotated screen dumps from one run (or in one case, two runs), which show how

the mechanisms described in the previous chapter work together to produce the flexibility

needed for the program to deal with a range of different situations in its microworld.

As was pointed out before, Copycat’s abilities are not lim ited to these five problems

alone, bu t rather, these problems represent something akin to a set of basis vectors defining

a “vector space” of the program ’s abilities. In C hapter 5 I a ttem pt to characterize this

space by describing the program ’s performance on a set of variations of each of the five

basic problems, where the variations explore how small changes in pressures affect the

program ’s behavior.

Since the program is perm eated with nondeterminism, different answers are possible

on different runs. However, the nondeterministic decisions the program makes (e.g., which

codelet to run next, which objects a codelet should choose, etc.) are all a t a microscopic

level, compared with the macroscopic level of w hat answer the program gets on a given run.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Every run is different a t the microscopic level, but statistics lead to far more deterministic

behavior a t the macroscopic level. For example, there are a huge num ber of possible routes

(a t the microscopic level of individual codelets and their actions) the program can take to

arrive a t the solution “a b c => a b d , y k =>• ijl” , and a large number of micro-biases tend to

push the program down one of those routes rather than down one of the huge number of

possible routes to “a b c =>• a b d , ijk =» ijd ” . Thus, a t a macroscopic level, the program is

fairly deterministic: it gets the answer ijl almost all the time.

This notion of microscopic nondeterminism resulting in macroscopic determinism is often

demonstrated in science museums using a contraption in which several thousand small steel

balls tumble down through a dense grid of pins into one of many adjacent bins forming a

horizontal row at the bottom . Though each ball takes a unique path a t the microlevel, as

more and more balls fall, the pattern of balls in the bins a t the bottom gradually becomes a

perfect gaussian curve, w ith most of the balls falling into the central bins, and fewer falling

into the edge bins. In Copycat, the set of bins corresponds to the set of different possible

answers, and the precise m icro-path an individual ball takes corresponds to the actions of

the program (at the level of individual codelets) during a single run. Given enough runs, a

reliably repeatable pattern of answer frequencies will emerge.

I present these patterns in the form of bar graphs, one for each problem , giving the

frequency of occurrence and average end-of-run tem perature for each different answer. For

each of the five target problems, a bar graph is given, summarizing 1000 runs of Copycat on

th a t problem. The number 1000 is somewhat arbitrary; after about 100-200 runs on each

problem, the basic statistics do not change much. The only difference is th a t as more and

more runs are done on a given problem, certain bizarre and improbable “fringe” answers such

as y j for “a b c => a b d , y k =» ?” (see bar graph below) begin to appear very occasionally;

if 2000 runs were done on “a b c => a b d , ijk => ?” , the program would give perhaps one or

two other such answers, each once or twice. So even though 200 or so runs usually gives

reliable statistics for the main range of answers to a given problem, I wanted to display at

least a few of the fringe answers to each problem, so I ran each problem 1000 times. This

allows the bar graphs to make a very im portant point about Copycat: even though the

program has the potential to get strange and crazy-seeming answers (dem onstrated by their

appearance in the bar graphs), the mechanisms it has allow it to steer clear of them almost

all of the time. As was mentioned before, the program (as well as people) has to have the

potential to follow risky (and perhaps crazy) pathways in order for it to have the flexibility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

to follow insightful pathways, but it also has to be able to avoid following bad pathways, at

least most of the time.

Along w ith each bar graph, I also give the results of a survey given to a num ber of

undergraduate and graduate students at Indiana University, for the purpose o f determ ining

the range of answers people give on these problems. Ideally, Copycat should be able to

get all of the answers that people get to a given problem—as long as those answers do not

use knowledge th a t is not in the microworld—and it should never get answers th a t people

find completely unjustified. This would indicate th a t the program is responding to the same

pressures and perceiving the same things about the problems th a t people do (a t least people

adhering to the restrictions of the microworld). The frequencies and tem peratures given

here are not m eant to be matched precisely with frequencies and preferences of answers

given by people, since the program is not meant to model people a t such a fine-grained

level.

4 .2 F re q u e n c y a n d A v e ra g e F in a l T e m p e ra tu re o f A n sw e rs fo r th e F iv e T a rg e t

P ro b le m s

The bar graph for “a b c => a b d , ijk => ?”

98#

Problem: abc —> abd, ijk
Total Runs: 1000

19 1

ijl ijd ijj
Av.TMp: 17 Ar.Tnp: 23 Ar.Twp: 41

As can be seen, this bar graph summarizes 1000 runs of the program on “a b c =>• a b d ,

y k => ?” . Each bar’s height gives the relative frequency of the answer it corresponds to, and

printed above each bar is the actual number of times th a t answer was given. The average

final tem perature appears below each bar. The frequency of a given answer roughly corre

sponds to how obvious or immediate it is, given the biases of the program. For example, y l,

produced 980 tim es, is much more immediate to the program than ijd , produced 19 times,

which is in tu rn much more obvious than the strange answer y j , produced only once. (To

get the la tte r answer, the program decided to replace the rightm ost letter by its predecessor

rather than its successor. This slippage is always possible in principle, since successor and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

predecessor are linked in the Slipnet. However, as can be seen by the infrequency of this

answer, it is extremely unlikely in this situation: under the pressures evoked by this prob

lem, successor and predecessor are almost always considered too d istan t for a slippage to

be m ade between them .) The average final tem perature roughly corresponds to how good

th a t answer seems to the program; the program assesses ijl (average tem perature 17) to be

somewhat better than y d (average tem perature 23), and much better than y j (tem perature

48).

One can get a sense of what the actual tem perature values mean in term s of the quality

of an answer by seeing how various sets of perceptual structures built by the program affect

the tem perature. This will be illustrated in detail in the next section. Roughly, an average

final tem perature below 30 indicates that the program was able to build a fairly strong,

coherent set of structures— that it, in some sense, had a reasonable “understanding” of

w hat was going on in the problem. Higher final tem peratures usually indicate th a t some

structures were weak, or th a t there was no coherent way of, say, m apping the initial string

onto the target string. The program decides probabilistically when to stop and produce an

answer, and though it is much more likely to stop when the tem perature is low, it sometimes

stops before it has had an opportunity to build all possible structures. For example, there

are runs on “a b c => a b d , y k =>■ ?” on which the program stops before the target string

has been grouped as a whole; the answer is still often y l, b u t the final tem perature is higher

than it would have been if the program had continued. This kind of run increases the

average final tem perature for this answer. The lowest possible tem perature for ijl is about

7, which is about as low as the tem perature ever gets.

There are also some problems with the way tem perature is calculated in the program

as it now stands. As can be seen, the answer y d has an average final tem perature almost

equal to th a t of y l (even though it is much less frequent), whereas m ost people feel it is a far

worse answer. The only difference in the structures Copycat builds for these two answers is

the rule: the former results from the rule “Replace rightm ost letter by D ”, and the la tte r

from the rule “Replace rightm ost letter by successor” . The la tte r rule is much more likely

to be proposed (hence the higher frequency of y l) and is also considerably stronger, but the

problem is th a t the current formula for calculating the tem perature (given in Appendix B)

does not give enough weight to the strength of the rule. Thus, answers resulting from weak

rules have lower final tem peratures than they really deserve. This is a problem that should

be addressed in future work on this project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

In the survey of people, 22 subjects answered this problem (after reading a description

of the letter-string domain and its lim itations). On all the problems, subjects were allowed

to give multiple answers if they felt that there was more than one good answer, so the total

number of answers for each problem is greater than the num ber of subjects, and many of the

answers reflect the subjects’ second, third, fourth, etc., choices (though on m ost problems,

most people gave only one or two answers). The purpose of this survey was to collect all

the different answers people, not just their preferred answers, so 1 have here listed all the

responses I received. After each answer is listed the number of times it was given, though

as I have said, the purpose of the survey was to compare Copycat and people’s range of

answers rather than the frequencies of different answers. The subjects were not asked to

give justifications for their answers, but when reporting the results here, I will sometimes

give w hat I presume the justification was.

For this problem, the answers people gave were:

1. y l (21);

2. y k (1);

3. y d (1).

Copycat can get all three of these answers, although it did not get ijk during these 1000

runs. (Also, I am not sure what justification th a t subject had for th a t answer.)

The bar graph for “a b c => a b d , i ij jk k =» ?”

803 Problem: abc —> abd, i i j j k k —> ?
T o ta l Runs: 1000

iijjll iijjkl iijjkd iljjdd 1 1 k m lijkll ljkkll iijjkk iijddd
Ar.Tm p : 21 Ar.Twp: 47 Ar.Tvcp: 12 Ar.Trap: 41 Ar.Tnp: 44 Ar.Tup: 44 At .Tm ? : 43 At .T«ap: 42 At .Tn p : 46

T he bar graph above summarizes 1000 runs of Copycat on this problem. As can be

seen, by far the most common (and lowest-temperature) answer is iijjll. The second most

popular answer is iijjk l, which ignores the letter-groups in iijjk k and rigidly sticks to the

rule of replacing the rightmost letter by its successor. After these two, all the other answers

are very much on the fringes in term s of frequency, and none are considered to be of high

quality. (“On the fringe” is a qualitative description of an answer, but it can be defined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

roughly as an answer whose instances were produced on less than about 1 or 2 percent of

the runs.) To get the answer iijjk d , the program describes the original change as “Replace

rightmost letter by D ”, and follows it “to the le tte r” . The next answer, iijjd d , reflects

this same rule, but translated to take account of the group-structure of the target string

(and since groups were noticed, the tem perature is accordingly lower than for the previous

answer).

The next several answers reflect various bizarre ways of viewing the target string. For

iikk ll, the program groups together the two rightmost groups in iij jk k (parsing the string

as ii- jjk k) , calling that larger group “the rightmost group”, and replacing all the letters

in it by their successors. The answer iijk ll reflects a similar strange view, except the two

k ’s in iijjk k are grouped with only the rightmost j (iij- jk k), and these three letters are

seen as “the rightmost group” . The answer iijjk k comes from viewing the ab c =s> a b d

change as “Replace C by D ”, and since the target string has no instances of C, it is left

alone. Finally, the answer iijd d d is similar to the answer iijkll, b u t involves replacing the

“rightmost group” of three letters by d ’s rather than by successors. The reasons Copycat

came up with some of these strange answers will be analyzed further in Chapter 6, which

discusses some problems with Copycat. Happily, these last five answers account for only

1.3% of the total, and perhaps more significantly, none has a final tem perature lower than

41, which in Copycat’s terms is fairly high; the program considers iijjll, with an average

final tem perature of 28, to be much more reasonable.

In the survey of people, 18 subjects answered this problem. The answers were:

1. iijjll (13);

2. iijjk l (8);

3. iik jk l (5) (replace the rightm ost letter of each group of three by its successor);

4. iik k ll (2) (replace all letters after the leftmost two by their successors);

5. i ij jk d (1);

6. i ij jd d (1);

7. iik jk k (1) (replace the th ird letter by its successor).

Copycat can get answers 1, 2, 5, and 6 (it gets answer 4, but not for the same reason people

do). It cannot get the other answers given since it lacks the concept of “third letter” , and

cannot make the descriptions “leftmost two letters” and “rightmost letter of a group” . As

can be seen from the bar graph for this problem given above, Copycat produces (though

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

rarely) a num ber of answers th a t people never give (e.g., ijjk ll), based on bad groupings of

the target string (i.e., groupings th a t people would judge to be completely unm otivated).

The bar graph for “a b c => a b d , k ji => ?”

547

Problem: abc —> abd, k j i —> ?
Total Runs: 1000

15

kjj Iji kjd dji kji
Ar.Taap: 44 Av.Taap: 11 AT.Taap: 29 Ar.Taap: 21 Ar.Tnp: 99

The bar graph above summarizes 1000 runs of Copycat on this problem. As can be

seen, there are three answers th a t predominate, k jh being the most common (and having

the lowest average final tem perature), with k jj and Iji almost tying for second (the la tte r

being a bit less common, bu t having a much lower average final tem perature). The answer

k jd comes in a very distant fourth, and there are two “fringe” answers with only one instance

of each: d ji (a m ixture of insight and rigidity in which the opposite spatial direction of the

two successor groups a b c and k ji was seen, but instead of the leftmost letter being replaced

by its successor, it was replaced by a d —notice the relatively low tem perature on this

answer, indicating tha t a strong set of structures was built!), and Kji (again reflecting the

literal-m inded rule “Replace C by D ”), which has a very high tem perature of 89, indicating

th a t on this run almost no structures were built before the program decided to stop.

In the survey, 10 subjects answered this problem. The answers were:

1. Ku (8);

2. k jh (3);

3. Ui (1);

4. k jd (1);

5. k ji (1) (th is is either a confusion of answers 2 and 3, or an insistence on changing the
rightm ost letter, even though the subject thought it should be changed to the letter
after the latest in alphabetical order).

Again, the range rather then the frequency of the different answers is the point of comparison

here. Copycat gets all of these except the last, somewhat confused answer. It also gets (on

rare occasions) d ji and k ji, which no one in the survey gave.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

The bar graph for “a b c =» a b d , m r r i i j => ?”

70S Problem: abc —> abd, m rr jjj
Total Runs: 1000

— > ?

39

mrrkkk
At .Tup: 43

m rrjjk mrrjkk m r r j j j j mrrddd m rrjjd
At .Tup: 50 At .Tup: 46 Av.Tiip: 20 At .Tup: 46 At .Tup: 61

The bar graph above summarizes 1000 runs of Copycat on this problem. As can be

seen, the most common answer by far is the straightforward m rrk k k , with m rr j jk a fairly

distant second. For Copycat, these are the two most immediate answers; however, the

average final tem peratures associated with them are fairly high, because (as was discussed

in C hapter 2) of the lack of any coherent structure tying together the target string as a

whole. Next there are two answers with roughly equal frequencies: m rr jk k , a rather silly

answer th a t comes from grouping only the rightmost two j ’s in m rr jj j and viewing this

group as the object to be replaced; and m rr jj j j , which was discussed in C hapter 2. The

average final tem perature associated with this answer is much lower than th a t of the other

answers, which shows th a t the program assesses it to be the most satisfying answer, though

far from the most immediate. As in many aspects of real life, the immediacy of a solution is

by no means always perfectly correlated with its quality. The other two answers, m rrd d d

and m rr j jd , come from replacing either a letter or a group with d ’s, and are on the fringes.

In the survey, 34 subjects answered this problem. The answers were:

1. m rrk k k (19);

2. m rr j jk (12);

3. m rs jjk (4) (a result of parsing the string as m rr- j j j , and replacing the third letter of
each group by its successor);

4. m rs jjj (2) (replace the third letter by its successor);

5. m rr jk k (2) (a result of parsing the string as m r-r j- jj to correspond to a-b-c, and
replacing the rightm ost group by its successor);

6. m rsk k k (1) (replace everything following leftmost two letters by its successor);

7. m rr j j j (1) (I am not sure why the subject gave this answer);

8. m rr j j j j (1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Copycat is able to get 1, 2, 7, and 8. (Copycat also gets 5, but the program ’s reason is

completely different. I am not sure Copycat gets 7 for the same reason the subject gave

th a t answer). The lack of concepts such as “third letter” and “leftm ost two letters” , and

the inability to group letters th a t are not related (such as m and r , which were grouped

for answer 5) prevent the program from getting the other answers. There are three answers

Copycat got in the 1000 runs displayed above th a t none of the subjects in this survey got:

m r rd d d , m rr j jd , and m rr jk k (identical to answer 5, but not given for the same reason).

I think if the survey were larger, the first two of these answers would show up, bu t I think

th a t it is very unlikely that a person would group the rightmost two k ’s for no good reason,

as Copycat does.

The bar graph for “a b c => a b d , x y z => ?”

771 Problem: abc —> abd, xyz —> ?
Total Runs: 1000

wyz yyz dyz xyy xyz yzz
Av.Ttap: 14 Av.TNp: 44 At .Trap: 33 At .T«ap t 33 Av.ftap: 74 AT.Tnp: 42

The bar graph above summarizes 1000 runs of Copycat on this problem. As was dis

cussed earlier, the answer x y a is not available to the program; by design, Z has no successor.

On 98% of the runs, the program tries to take the successor of Z and fails, which then forces

it to do some restructuring (and, as will be seen in the screen dumps later in this chapter,

Copycat often hits the same snag again and again in the same run—on average 9 times per

run—before it succeeds in finding a way of solving the problem). As can be seen, the most

common answer by far is x y d , for which the program decides th a t if it can’t replace the

rightm ost le tte r by its successor, the next best thing is to replace it by a d . A distant sec

ond in frequency, but the answer with the lowest average tem perature, is w yz , which many

people (including myself) consider to be the most elegant solution. To get this answer, the

program has to restructure its perceptions of what corresponds to w hat, noticing th a t A

and Z are a t opposite ends of the alphabet, so there is a plausible correspondence between

them if the spatial and alphabetic directions of the two strings (a b c and xyz) are also seen

as opposite. The next answer, y y z , reflects a view th a t neglects the opposite alphabetic

direction of the two strings, and although it allows the leftmost le tte r to be replaced, it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

insists on holding fast to the notion of replacing it by its successor, since the rightmost

le tte r of a b c was replaced by its successor.

The other four answers are on the fringes as far as frequency goes. The answer dyz

(like d ji in “a b c => a b d , k ji => ?” above) is a comical blend of intelligence and rigidity; it

exhibits a good deal of flexibility in the willingness to slip rightmost to leftmost, but it holds

a rigid view of the a b c => a b d change. (This contradictory m ixture o f intelligence and

rigidity is very much akin to the notion of frame blends described earlier. Many people find

th is answer funny, and indeed, frame blends are central in certain kinds of humor. Some

connections of such answers in the letter-string domain with frame blends and jokes are

discussed in Hofstadter & Gabora, 1990.) The answer x y y allows th a t the two strings are

to be perceived in opposite alphabetic directions (thus a successor => predecessor slippage),

bu t refuses to give up the idea that the strings have the same spatial direction, and thus

insists on changing the rightmost letter, as was done in a b c . The answer x y z comes from

reinterpreting the a b c =► a b d change as “Replace C by D ”; and finally, the answer yzz is

a strange variant of yyz, in which the x and y in x y z are grouped together as one object,

which is then replaced as a whole by its “successor” (the successor of each letter in the

group).

In the survey, 34 subjects answered this problem. The subjects were allowed to answer

x y a (and virtually all of them did so) but then they were informed th a t, since Copycat

doesn’t have the concept of circularity, it cannot produce this answer. They were then

asked to come up with one or more different answers.

There were a large number of different answers given:

1. xyz (9) (if the z can’t be changed, then ju st leave it alone);

2. x y y (8) (if the z can’t be moved forwards in the alphabet, then the next best thing
is to move it backwards);

3. x y (5) (if z has no successor, then it ju st falls off the end of the string);

4. x y d (5);

5. w xz (4) (based on the desire to im itate the alphabetic space between the two rightmost
letters in a b d , which can be done by moving the leftmost two letters backwards in
the alphabet);

6. xzz (1) (if you can’t take the successor of the Z, the next best thing is to take the
successor of its neighbor, the y);

7. w yz (1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

8. xyw (1) (using similar reasoning to th a t which yields wyz, but insisting that the
rightmost letter be the one that is replaced);

9. zxw (1) (the subject specified that they wanted to bo th change the rightmost letter
and at the same time im itate the relationships in abd; by reversing the string and
then replacing the rightmost letter by its predecessor, they were able to do this);

10. xyx (1) (the subject specified that they wanted to answer xyy, but didn’t like the
fact of the double y, so instead used the letter before Y);

11. abd (1) (replace the whole string by abd).

Copycat is able to get answers 1 and 2 (though possibly not for exactly the same reasons

th a t these subjects gave them) as well as 4 and 7. The other answers involve concepts or

operations th a t Copycat is incapable of (such as dropping a letter, as in xy). Some of

these answers (like some of the answers given by Copycat) seem to be frame blends, where

the person perceives a flexible way of answering, but insists on rigidly holding on to some

aspect of the initial abc =S- abd change (such as insisting th a t the rightmost letter must

be changed). In the 1000 runs on this problem displayed earlier, Copycat did get some

answers th a t weren’t given by any of the subjects in this survey: yyz (which people have

given from tim e to time in more informal surveys), dyz (which people never give, except

jokingly), and yzz (a “bad grouping” answer).

This section has given statistics for Copycat’s performance on the five target problems,

and compared the range of answers given by the program with th a t of people. The same

sorts of statistics and comparisons will be given for a larger set of problems (all variants of

the five target problems) in the next chapter, along with a sum m ary of all the comparisons

and a discussion of the overall performance of the program w ith respect to the artificial-

intelligence and psychological criteria proposed earlier.

4.3 Screen Dumps from Runs on the Five Target Problems

In th is section, annotated screen dumps of Copycat’s graphics are given for runs on each

of the five problems. These screen dumps are m eant to make clearer how the program

actually solves these problems. On each run, the Workspace is displayed, and on some runs

the Slipnet is displayed as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

abc => abd, ijk =» ?

The following is a set of screen dumps from a fairly typical run of Copycat on this

problem.

Ill
lM ltft
lit

aid
1
lit

raast

li t

lao«tft
lit

midft
lit

ra*9t

lit

I
a b c --------> a b d

lM lt
1
lit

mid
J
lit

nwit
K
lit

1 i j k -------->

llaalir mi Mdalat* im *• fart 0

1. W o rk sp ace : The program is presented with the three strings in the Workspace. Each

letter has a list of initial descriptions, including string-position, letter-category, and object-

category descriptions (the first two description-types are initially relevant by default; rele

vant descriptions appear in boldface). The tem perature, represented by a “therm om eter” at

the left, is a t its maximum value of 100 degrees (0 is the m inim um), so initial decisions are

m ade fairly randomly, though there are still some biases, even a t the highest tem perature.

This screen dump was m ade before the run began; as is indicated a t the bottom right of

the Workspace, no codelets have run so far. .

in
■
A

111
■
B

116
■
c D F F G H

ici
■
I

lit
■
J

101
■
K L M N 0 p 0 R S T

U V w X X 2 1 z $ $

100
■

lMlt

io4
■

i w t

100
■

• i l i l i d t l i flfiil* left rlcfet first Ust

9tm4 race _ a r m 2 JEL n r n

IM
■

litter qraM lira ®BL_ ihfCit

100
■

letcit ■Vfff

100
■

» t w UCEfi M u t ■f»«it

S lip n e t: The Slipnet is displayed above (nodes only; no links are shown). The black square

inside any node’s rectangle represents its activation: the size o f the square is proportional to

the level of activation, and the actual numerical level, ranging from 0 to 100%, is displayed

above each square. The nodes are (in the order displayed): A -Z , leftmost, rightmost, middle,

whole, single, left, right, first, last, predecessor, successor, sameness, predecessor group (ab

breviated “pr grp”), successor group (abbreviated “su grp”), sameness group (abbrieviated

“sm grp”), letter, group, identity, opposite, object-category, letter-category, number-category,

alphabetic-position, string-position (abbreviated “strpos”), direction, bond-category (abbre

viated “bndcat”), and group-category (abbreviated “grpcat”). As can be seen, the nodes

corresponding to the initial descriptions given to each letter are activated, each a t 100%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

lMlt mid — lmamt mid rmost
III Iut Bl l t ^ lit ft DUt ^ l i t lit

1
a b C -----> a d

1 lMSt mid m i tH 2 J • K1 lit lit.•*• * r ' - lit

• i j ' k ----->

NrnUr if Mdmlata m ■■ f tr i 6

2. W o rk sp ace : Six codelets have run, and a few have had some success. The modified-

string replacement for the b in a b c has been found (solid arc across the arrow), a bond has

been proposed in the target string from the j to the k (dotted arc), and a correspondence

has been proposed between the c and the k (dotted vertical line). In general, structures

th a t have been proposed are represented by dotted or dashed arcs and lines, and structures

th a t have been built are represented by solid arcs and lines. Since no initial-string or

target-string structures have been actually built yet, the tem perature remains at 100 (the

initial-string-m odified-string replacement arcs do not affect the tem perature).

110

■
A

110

■
B

110

■
c D E r C B

101

■
I

IQ*

■
j

io i

■
X L M N 0 P 0 R S T

U V w X I z 1 2 3 f

iod

■
I w t

100

■

100

■
■ 4««t f l& tl l l i f t r » i l i n t l i f t

m l m et » r m n i n .« * * L

l i t

■
l i t t e r s s a u 14m - a i - ofcleit

100

■
l i t c i t ■ W t*!

100

■
f t n i t U n e t i M e a t s n t i l

S lip n e t: Activation in the Slipnet has not changed yet, since it is updated only every 15

codelets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

I M t r a f n t e l a t i ran ao fa r : 39

3. W o rk sp ace : Now 39 codelets have run. All three initial-string-m odified-string re

placement arcs have been built (since determining these is trivial, they are almost always

constructed quite early on). Several possible bonds and correspondences are being consid

ered, bu t since none has been built yet, the tem perature remains a t 100.

110 1*6 100 a) * * * 4? ibt id* 47 a a 1 a i a *
■ ■ ■ m ■ ■ ■ ■ ■
A B c D E r C H I J K L M K 0 p P R 3 T
J i i 6 a 100 io4 too 4 14 li

■ ■ ■
V V w X I z 1 2 ? & rant rtOU f u l l riatlt left rlflfct l in t

4 i 17 100 • 100
• ■ ■

orttf race u m r w . 2UL9 . » or* litter Itai . 9 1 , •lieet letcat IHSStJ 'll* * - " 7 “ . (tract* karfcit m eet

S lip n e t: The initial activations have decayed and spread in various ways (e.g., the node

le tter’s activation has decayed, all 26 letter-category nodes have received a tiny bit of ac

tivation from the node letter-category, and letter-category has also spread some activation

to object-category and number-category), and additional activation has come from codelet

actions in the Workspace (e.g., the letter-categories involved in the proposed bonds have

been reactivated).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

H olM r o f codolot# ran oo f a r : 50

4. W o rk sp ace : 50 codelets have run, and various proposed structures can be seen at various

stages of consideration. The dotted arcs and lines (the proposed c -b and k -j predecessor

bond ands the proposed b - j correspondence) are structures th a t have been proposed by a

scout codelet and are waiting to be examined by a strength-tester codelet. The dashed arcs

and lines (the proposed a -b successor bond and the proposed a - i and c -k correspondences)

are structures that have passed their respective strength-tester’s evaluation and are waiting

to be built by a builder codelet. Note that there are many actions not shown in these screen

dumps, e.g., the actions of scout codelets that fizzle without proposing anything (this would

happen if, say, a correspondence-scout codelet examined the c and the j to see if there were

any grounds for a correspondence between the two; there wouldn’t be any).

in too u 4 J i 1 a U a 41 * i ' T" 1 i 1 1u ■ m ■ ■ ■ m ■
A B c D E r c H l J K L M N 0 P Q R S r
) 3 3 5 0 i lOi) iod toi 12 it 34u ■ ■ • • ■
U V W X I 5 i 2 3 4 $ ta»t« nwt. ebele ilntlo lif t rloht firft Uat

i a 100 it 100
• ■ • ■

trti race ” •r tv* n f j " J i . Utter •n •Meet lalcat l a « i l iltteM ftrvra tln e t i M eet m eet

S lip n e t: Further activation spread and decay has occurred (e.g., first has received some

activation from A), and nodes whose instances have been recently examined by codelets

(e.g., A and B) have received additional activation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

I M a r *t m 4 * l« ta wwm f a r i • •

5. W o rk sp ace : After 60 codelets have run, some structures have finally been built, and

appear as solid arcs or jagged lines: the a - b successor bond and the a - i correspondence.

Beneath the correspondence is its single concept-mapping: leftmost => leftmost. In response

to these structures, tem perature has fallen to 91. Other proposed structures are still in the

process of being explored at different spatial locations and at different speeds.

lift “ n r 41 i 1 1 i ' 4 ~i 1 101 101 t 1 1 i 1 I » 1 1

■ ■ ■ ■ ■
A B C D E r c B I J • K L X w 0 P 0 R 3 T
i I i i J i 104 io4 40 11 100 4 i

■ ■ ■ • ■ m
u V w X I z 1 z 3 $ lrast m et teol* r u i l i w t rltfct llrat U lt

110 s 10« 22 100 It 104

■ ■ ■ ■ • ■
ore4 race LszsJ rc.nv. n m *»■»» litter e r a 14m m •blest latest •latest straw l l m t i tedest 0 £ £ L

S lip n e t: The newly built structures have affected the Slipnet: the nodes successor and

right (corresponding to the category and direction of the bond) are activated, as is the node

identity (corresponding to the type of concept-mapping underlying the a - i correspondence).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

-ii
utltt

— >c

v ld l i t

---->

6. W o rk sp ace : The active nodes successor and right have begun to exert a top-down

influence in two ways: by increasing the strength of proposed bonds of these types (the

activation of successor causes successor links in the Slipnet to shrink, making the bond

between, say, / and J stronger) and by causing codelets to be posted expressly to look for

such bonds. Another such bond has been built between the j and the k , and an i- j bond is

being considered. Also, correspondences have been built from all three letters in the initial

string to letters in the target string, based on their string-position descriptions. In response

to these structures, the tem perature has fallen to 67.

1 lift lift ft k k k 57“ " n r " SI “ 5T" J 1 i 1 a k a
■ ■ ■ ■ ■ ■ ■

A B C D E T 0 H i J K L M N 0 f 0 R s T
a ft ft i ft ft io* 100 lOtl II to6 «i 20

■ ■ ■ • ■ ■ •
u V ¥ z f z ; 2 3 1ms t rmtl a i u t OmIi left rtttt urn Ust
u lift 25 2 101 14 100 12 II 100 la II

■ • ■ • ■ ■ ■ ■ ■ ■
ore* race L J -s J k m suet. n or* latter lira - S 3— efcteat latest nraeat llDtolt ftr*M lim ta bndcst ffTVCSt

S lip n e t: The node first is becoming active, due to continuing activation of A. The node first

has also spread activation to last as well as to alphabetic position, which will post codelets

to try to make such descriptions. (As will be seen, alphabetic-position will decay, and won’t

have much effect in this problem.) Likewise, successor and right have spread small amounts

of activation (respectively) to predecessor and left, bu t not enough for these to have any

influence yet. Successor and right have also spread activation (respectively) to the more

general nodes bond-category and direction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

h p l m »f rmmMt l « t t » r by r a c c w o r

iat
U tU tU tU t

 >

mid ia t

lat,l t t .
--- >

7. W o rk sp a c e : A coherent view, based on right-going successor bonds, is beginning to

emerge, enforced by the presence of such bonds in the two strings as well as the top-down

influence from the active nodes in the Slipnet. Some of the explorations along different lines,

seen in the previous screen dumps, are proceeding relatively slowly (e.g., the proposed c -

b predecessor bond, which is still waiting for its strength-tester to run) or have fizzled

entirely (e.g., the previously displayed proposed k - j predecessor bond) in response to these

pressures. A rule (“Replace letter-category of rightmost letter by successor”) has been

constructed to describe the a b c -a b d change; it appears in a box above the modified string.

The tem perature has fallen to 48 in response to the building of this strong rule.

44 100 43 i i J 1 43 103 103 1 1 i 3 3
" y -

~~k 3
■ ■ ■ m ■ ■ ■
A B c D C F C H I J K L M V 0 P f R 3 T
3 J i 3 3 i *3 104 100 34 U " 34 13

■ ■ ■ ■ ■ ■ ■
U V w X T 2 1 2 3 4 5 lm t r«Mt 014410 fl&fU im riftt Urrt Uft
27 ito S3 2 104 19 100 12 *4 100 too 130
a ■ ■ ■ - ■ ■ ■ ■ ■

01*4 race tmm fr f * n «n n i n lttlcr #fwf 14« m obfeat l«tC0t IjHULI i t n n b m t i Mc<t 0TVC0t

S lip n e t: Successor has spread activation to successor-group (abbreviated as “su grp”),

which is now active enough to begin posting codelets to look for such groups. The nodes

first and alphabetic-position have lost some activation through decay.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

H ip lic i l i tU r - t» t« g « r y o f r —» t l i t t i r by m c n u r |

ra o a t
Utlatl«t

— >

l*tmid
l i tl#t,

--- >

8. W o rk sp a c e : Now, 165 codelets into the run, the notion of right-going successor bonds

has taken over almost completely (though other possibilities are still being explored, albeit

much more slowly—e.g., the proposed c -b predecessor bond) and a grouping of the initial

string as a whole is being considered. The tem perature has fallen to 40, reflecting the

program ’s assessment of the promise of the structures it has built so far. As the tem pera

ture gets lower and lower, the program ’s decisions become more and more deterministic, its

behavior more and more serial (i.e., a small number of high-urgency codelets overwhelm a

larger num ber of low-urgency ones, so fewer and fewer other possibilities are being consid

ered), and its actions more and more dominated by top-down forces (as top-down codelets

crowd out bottom -up ones). A single dominating point of view begins to be “frozen” into

place. (The sta te of the Slipnet is similar here to its state in the previous frame.)

| l U y l w U t t a r —c a U f ry o f r —i t l i t t i r by

u t
l i t l i t l i t

 >c

l i t

— >
llt->1

9. W o rk sp a c e : The entire initial string is now being seen as a right-going successor group

(the direction is represented by a right-going arrow a t the top of the rectangle; the bonds

inside the group still exist, but their display has been suppressed). This creates pressure to

view the target string in the same way, and indeed a similar grouping is being considered

there.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

K epltct l t t U f C t t o y r r o f r a n t U t t r by w c c t n o r

••tlMlt

I « tU t1 s t

— >

aid i#t
• t U tUt.

10. W o rk sp ace : Both strings have now been grouped as wholes, and a correspondence is

being considered between the two groups (dotted bent line to the right of the two groups).

The tem perature has fallen to 31, but even at this relatively late stage, a few other ri

val possibilities are still being explored (though with very low urgency): a left-going k - j

predecessor bond, a group in the target string containing only the i and the j , and a corre

spondence between the c and the i, based on the (here) fairly weak link between rightmost

and leftmost in the Slipnet. None of these structures (especially the last) are very strong,

and given the strong and coherent set of structures th a t have been built, these rivals have

very little chance of getting anywhere at this point.

| I to y lw lg tU r < i t« 9 » r y o f n w i t l i t t w by mrnct

mt
U t 1 s tU t U t

 >
vhaU->^oU
yr«vp->9mp

n c o g r p -) n e e 9 iy
r l 9 k t-> r lg k t
n e c * > n c c

U tc a t-> U tc * t»«t
IS

I
i # t . • • •t 1st

— >
It

M r i f m d a la ta m f a r i 2S5

11. W o rk sp a c e : The group-group correspondence has been built with all its concept-

mappings listed alongside it (letcat => letcat means th a t both groups are based on bonds

between letter-categories). The tem perature has fallen to 15, indicating the program ’s

assessment th a t it is very close to a good answer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

rt U itir by wcctiiflrlUpl«ca lettsr-cstegery of

>st■Id.

U tl o tl « t ux
— >

mid
let

--- >
Replace littar-citig tqr ram m t U ttar by ucctaior

12. W o rk sp ace : The rule has been “translated” (although since all the concept-mappings

are identities, no changes needed to be made) and the answer ijl has been constructed

according to the translated rule (the answer, with the translated rule beneath it, appears

a t the right-hand side of the screen). The final low tem perature of 12 indicates th a t the

program is very satisfied with this answer. This run consisted of 260 codelets (the average

num ber of codelet steps for this problem is about 290 codelets).

u u 44 4 i i 4* u l l 41 > k I 1 1 1 9 ' * t
■ ■ ■ ■ m ■ ■
A B C D E F <? H i J K L M W 0 P 9j R 3 T
9 9 9 3 * "1 ' U 91 1 i 49 X too a 1

• • ■ • • ■ ■
U V W X x 2 1 % 3 4 5 lm t rmtt •14411 *•1* it t ik . W t r l* t t i m U ft
99 110 99 90 14 10 104 109 100 24 9 100 100 too too
■ ■ ■ ■ • ■ ■ ■ ■ • ■ ■ ■ ■ ■

on* tocc L — „1JLLJCL latter 1«M « n •bleat leteat [■ s a d llRHI rtrvw l im t t Meat •m at

S lip n e t: The final configuration of the Slipnet indicates what concepts were found to be

relevant in this problem: the individual letter-categories’ activations have decayed, and the

notions of right, successor, successor-group, group, and identity axe activated, along with

nodes corresponding to various categories (e.g., bond-category).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

a b c =» a b d , i ijjk k => ?

T he following is a set of screen dumps from a fairly typical run of Copycat on this problem.

The Slipnet is displayed only on frames where there is a point to be made about it.

inI a b c ---> a b d

i i j j k k ---- >

II—t i r i f n l i l i t i n mo f a r t 0

1. W o rk sp a c e : The program is presented with the three strings. For the sake of clarity,

the descriptions of each letter are not displayed here, but they are as given in Figure 3.4.

lt i
■
A

1*6
■
B

166
■
c D E F G H

10*
■
1

100
■
J

100
■
K L M N 0 P 9 R S T

V y w X Y Z 1 2 3 4 5

ito
■

106
■

rwit

too
■

■14414 JlBfl* left rirtt llr»t U*1

_pn4 »r « n n o t

III
■

i< « —*11— aftfeat

100
■

■Kit

too
■

ftm * l lm t i Meat grpe.t

S lip n e t: The Slipnet starts out in the same initial sta te as in the last problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

l U k r i f M i t l a t f ran so l u i U

2. W o rk sp ace : After 45 codelets have run, an a - b successor bond has been built, and

several possible structures are being considered. Sameness bonds (e.g., between the two

k ’s) are intrinsically stronger than successor and predecessor bonds, so they tend to be

evaluated and built more quickly (their codelets receive higher urgencies).

w r" 110 U 44 1 * " 1 41 ' » ' ioi i l 41 1 0 4 ■ V ■ 1 ' I I■ ■ ■ ■ ■ ■ ■ ■ ■
A B C D E r C H I j K L H N 0 p p. R s T
i 2 t i ' 1 i “ lod i 1(106 24■ « • ■ •

. V V w z I z 1 ? ff Um t nest ■1441c tlMlC left first left
110 1 4 24 too 14 too■ • ■ • ■

JLS*- m e _£5* J trttw ZL1 3 , »JK2 . letter 14m .a r CftlCSt Iciest K i d •W f* strscs llrects M eet ■nut

S lip n e t: Activation has spread and decayed from the initially active nodes, and some other

nodes have been activated in response to actions of codelets in the Workspace: for example,

the nodes successor and right have been activated in response to the bond that was built.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

N a t a r ftf c « 4 « l« t i raft so f o r t 75

3. W o rk sp ace : Three sameness bonds have been built in the target string, and other

structures continue to be considered.

'1I& 110 4r 4 k 2 44 to M 4l " 4 k..... a a 1 t

■ ■ ■ ■ m ■ ■
A B C D E F C H i J K L H w 0 P 0 R s T
a a a a a a U IOC 2 14 100 05 20

m m ■ ■ ■ •
u V w X T z 1 ? 3 4 5 r w t »1m U n i t rlntit tint ta t
10 100 100 20 70 4 20 100 12 100 100 41 190

■ ■
• ■ • ■ ■ ■ ■ ■

oni rare ELI? n on 2 U 3 . ltlftor jnmo lira _<w ehlcjt Uttot nnrit •lahPM rtraos Urceta bndcet (TTVCAt

S lip n e t: The activation of the nodes successor and same has caused top-down bond-scouts

to be posted to look for more relationships of these types. These nodes have begun to

spread activation to successor-group and sameness-group (“sm grp”), which will in tu rn

post codelets to look for groups of these categories. The activation of the node right (the

direction of the a -b successor bond) has caused top-down bond-scouts and top-down group-

scouts to be posted to look for bonds and groups in this direction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

JU placi l i tU r - c > t> 9 < iy o f r — » t l a t t a r by *l>* |

r M « t-> r « o ft

N a k t r o f co fo lo io n o ao f o r t 165

4. W orkspace : After 165 codelets have run, some sameness groups are being considered

(made up of the i’s and the j ’s), and a correspondence between the c and the rightmost k

has been built. Also, a rule, “Replace letter-category of rightmost le tte r by D ”, has been

built. If the program were to stop right now, its answer would be iijjk d (which the program

sometimes gets, as can be seen from the bar graph for this problem). This rule is relatively

weak, though, and will soon face competition from a stronger rule.

4* 190 110 io4 I t ' J 44 109 109 44 i 1 a a 1 a I i ~ T ~
■ ■ ■ ■ ■ ■ ■ ■
A B c D E r C a I J K L M w 0 p 0 R S T
9 9 9 9 9 i 100 iod ft 99 190 s r -

■ ■ a a ■ ■
U V W X X z 1 2 3 rawt M o ift t lL Kft rlefct flret U ft
u » 190 27 199 2 109 11 100 24 100 100 79 too 190

• ■ ■ ■ ■ - ■ • ■ ■ ■ ■ ■
orad race UM trtn fa art n or* letter o w lira an •bleat leteit [ssiiJ laroeU badcet m eet

S lip n e t: The nodes successor and right have decayed, bu t the nodes sameness and sameness

group, being more of greater conceptual depth, remain highly active. For the tim e being,

the program is concentrating more on finding and evaluating sameness bonds and sameness

groups which, being intrinsically stronger, tend to be explored and built faster than other

kinds of bonds and groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

it l « t t * r by a u e t s i o rlU placa l e t t e r - c e t s g s r y o f

 >

--- >

• f M i a l t t i

5. W o rk sp a c e : 225 codelets in to the run, successorship has taken hold as the fabric of the

initial string. In the target string, a sameness group has been built out of the two i’s, and

two other such groups axe being considered. A successor bond is being considered between

the group I and its right neighbor, the letter j (perhaps due to top-down pressure from the

activation of successor and right). The previous weak rule has been replaced by the stronger

rule “Replace letter-category of rightmost letter by successor” ; thus, if the program were to

l a p l i c i l t t i t r - w t o t a t r i f r w t l a i t a r by

 >

--- >

ir o f e td a ic ta

6. W o rk sp a c e : All three sameness-groups have been bu ilt in the target string, and a

successor bond is being considered between the group I and group J (which will compete

with the proposed successor bond between the group I and the le tte r j) . There is also a

com petition unfolding between the c -k correspondence and the c -K correspondence. The

la tte r correspondence has a be tte r chance, even though it involves a slippage, letter =>■

group, whereas the former does not. There are two reasons for this: (1) Copycat has a

bias towards correspondences involving larger objects (e.g., a group is larger than a single

letter), and (2) the group K is now much more salient than either of its component letters,

so there will be many more a ttem pts to build the la tte r correspondence than the former,

and statistics will tend to work in its favor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

JUpI*c« l f tU r « c i t * 9 r y of m » t l i t t o r by n c c t« > o r

 >

— >
~]«t->granp lit* > frw ip I
'■ id * > s i l 'r M « t* > n o f t *

7. W o rk sp ace : Now, 495 codelets into the run, the initial string has been grouped as a

right-going successor group, and strong top-down pressures from successor and successor-

group have helped to accelerate a similar view of the target string, but a t the level of groups

ra th e r than individual letters. The c -K correspondence has won over the c -k correspon

dence (though the la tte r is once again being considered). Also, a b - J correspondence has

been built (notice th a t the program has a t some point described the J group as “middle”).

T here is still a correspondence between the a and the leftmost letter i ra ther than the group

I. The tem perature has gone down to 38, reflecting the assessed promise of the structures

th a t have been built so far. A “diagonal” c -I correspondence has been proposed, but it

is very weak (it is based only on the weak concept-mapping rightmost => leftmost), and

though a codelet for testing its strength has been posted, its urgency is very low, and is

suppressed even further by the low tem perature.
it l l t t i r byh f l w t l « t U r - c a t < f f y

->

---->
’l i t - > g r n f l i t -> f r* o p

rw * t-> r io « t fa r i 537ir » i m ia l a t a

8. W o rk sp ace : The whole-target-string successor group has been built, and a correspon

dence is being considered between the two whole-string groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

b p la c a l a t i a r - c i t a y t r y o f it l o t to r by n c c a t t i r

wholo->uholo
fro«p->gro^pncc9fp‘>nccfir
r l 9 b t-> r ig b t

rocc->tmcc
la t c « t - > la ic i t

---->
lo t->groop lo t-byroup
- M i4 < > a i r n a i i - > r M «

ir o f M ^ a la t i

9. W o rk sp ace : The whole-string correspondence has been built. The a - i correspondence

has been broken, and an a - I correspondence is being considered in its place. The temper

ature has fallen to 25.

Replies l a t t a r - c a t i y r y o f n w i t l o i t t r by n c c e s s o r

«hola->vliala
yro«p->groop nee9rp*>ateefTf
ri^ht^rigkt

n e c - > n e e
1o te a t-> lo to o t

Haplaca lo tto r-co togo«T o f ro o o t groop by aw caaaar

10. W o rk sp ace : The a - I correspondence has been built, the rule has been translated

(according to the slippage letter => group), and the answer iy jll has been given. The low

tem perature of 20 reflects the program ’s satisfaction with this answer (though of course

it isn ’t as low as it was for ijk => y l , since there is a slippage here—namely, letter =>

group—th a t didn’t have to be made in th a t problem).

s J I i 1 i “ I” • ~ r I T " I 1 I 1 i 1

A K c D E r c H I J K L M N 0 P e R S T
i J i i J 0 00 icki 4 li 44 ” Tl 12 1

■ ■ ■ • ■ ■ a
u T w z 1 z 1 2 ? 4 5 UMt a liiU obolt. ffevlo M t t u ?t_ rafclLra
IS 119 110 ts N 109 10 100 100 101 100 17 2 100 190 100 100
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■r*0 r j a » « l* 9T9*. lira _ a » _ •bleat latest [h e s i Iilsteaa i t n a Slracti botfcat ■mat

S lip n e t: The final configuration of the Slipnet reflects what was im portant in this prob

lem: not any particular letter category, bu t rather the notions of rightmost, successorship,

sameness, successor group, sameness group, and so on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

a b c =» a b d , k ji => ?—Run 1

The following is a set of screen dumps from a fairly typical run of Copycat on this

problem. The Slipnet is not shown on this run.

Ill

I a b c -----> a b d

k j i -- >
M nM r o f eodoloto ran oo fo r t 0

1. The program is presented with the three strings. Again, descriptions are not displayed;

they are the same as in the problem “a b c =$■ a b d , i jk =>• ?” .

N u M r o f codoiot* ran so fo r i 60

2. Left-going predecessor bonds have been built in the initial string, as well as an a -k

correspondence, causing the tem perature to fall to 86. The resulting activation of predeces

sor and left in the Slipnet creates pressures for the program to see predecessor bonds and

left-going bonds, but, unlike in the previous two problems, these two pressures cannot be

satisfied simultaneously: the initial and target strings run in different alphabetic directions.

There is thus competition between these pressures in the target string, with the pressure

to see predecessor bonds being stronger than the pressure to see left-going bonds, since the

former is has greater conceptual depth. But there is another set of very strong pressures

th a t rivals this: leftmost => leftmost and rightmost => rightmost correspondences a ttem pt

to enforce a view in which bonds in the two strings have the same direction, since they are

incompatible with the left => right and right => left slippages th a t would result from a view

in which bonds in the two strings were in opposite directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

M a to r i f —4 tU U m m f v i 90

3. Some groups axe being considered in the initial string, the strongest of which is the

whole-string predecessor group. A j - i predecessor bond has been built in the target string,

in response to top-down pressure from predecessor. But the proposed vertical c - i correspon

dence will fight against it, since the concept-mapping rightmost =>• rightmost is incompatible

with the existence of honds on the two sides of the correspondence going in opposite direc

tions.

[Baplaaalutta^^atrjat^T^WM^TattarT^TacctTaor |

 >

41

I ---->
la o r t -> la a i t l a t - > l a t r —» t-> r— «t

l . W l . t a ld -> a ld
M a k ar i f a a d a la ta ran as f a r t 1(0

4. A whole-string left-going predecessor group has been built in the initial string. The

rightmost => rightmost correspondence has won, breaking the j - i bond. This “vertical”

(i.e, leftmost => leftmost, rightmost => rightmost) correspondence viewpoint is working hard

to force the program to build bonds all in the same direction, in spite of the strong pres

sure from predecessor, which remains active in the Slipnet, and which lobbies for building

predecessor bonds going in opposite spatial directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Raplaca l i t t i r - C K te y t iy a f rm aat I t i U r bf w g c a m r

t l

l
l a o r t - > lM it

l a t - > la t
l a t - > la t
v ld -> * ld l a t - > l a t

N a k t r t f a a d a la ta r m >• l« r i 240

5. The same-direction pressure is prevailing, with the strong set of vertical correspondences

remaining intact, and left-going successor bonds being built in the target string. The

tem perature is already fairly low, making it unlikely th a t this viewpoint will be destroyed

a t this point, even though there are still a ttem pts being made to build predecessor bonds

in the target string.

«*ala-><A ala

pr«dgrp-)*mce9r]
l a f t - > l a f t
prad->sacc

la tc a t - > la tc a t

■tpXaci l a t t r - c a t a f iy o f r —a t U t t a r by prad«ca«aor
l a t - > la t •o f a r : 341>r a f aada l a ta

6. A left-going successor-group has been built in the target string, a correspondence has

been built between the two whole-string groups, involving the slippages

predecessor-group successor-group and predecessor => successor. The rule has been trans

lated according to those slippages (“Replace letter-category of rightmost letter by predeces

sor”), and the answer k jh has been given.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

a b c =>■ a b d , k ji => ?—Run 2

The following is a set of screen dumps from different run of Copycat on the same problem,

leading to a different answer.

1. The program is presented with the three strings.

2. We skip ahead 105 codelets into the run. Right-going successor bonds have been built

in the initial string. As in the previous run, this sets up two opposing top-down pressures

for the target string: a pressure to see successor bonds (which in the target string are left-

going), and a pressure to see right-going bonds (which in the target string are predecessor

bonds). Various proposed bonds are being considered, and a left-going i- j successor bond

has been built. As in the previous run, the vertical correspondences lobby for building

target-string bonds in the same direction as those of the initial string. Some fights are in

store—in particular, between the strong proposed c - i correspondence (which is supported

by the already-built a - k correspondence) and the i - j bond (which is supported by the

activation of the node successor).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

 >

— >

• t - > i

ir •£

3. The c - i correspondence has been built, destroying the i- j bond in the process. At this

point it looks like the same-direction view is going to win out, as it did in the previous run.

R tp l tc i l* tt«r*»cit« 9 * iy •£ r w i t l i t t « r by n c c u s o r

 >

 >

N o b tr i f — i i l r t i m i a f a r t 193
 — 11 — ■■ ■ ■— ■ ■

4. B ut trouble isn’t far away, as a j - k successor bond vies with a k - j predecessor bond to

be built.

rac c w o r

-->

41

I >

M a r i f w f a l i t e n a f a r i 222

5. The j - k bond wins, destroying the a -k correspondence. Also, a left-going i- j successor

bond is now waiting to be built as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

lU plica l e t U r - c i t e f t r y o f n w i t l « t t « r by iv e e a tio r

 >
SI

---->

IW M r « f n l i l a t i m f a r t 225

6. The i- j bond has been built, also destroying a correspondence, and now it looks like

the successorship viewpoint is going to win the day. The tem perature has gone up to 58

because a correspondence was broken.

h p l m l« t t* r - c » t« y r y mi rwmmt l a t t r by

 >

---->

ir (f m M i t >

7. The successorship viewpoint is becoming more entrenched, for the following reasons:

the target string has been perceived as a successor group; a correspondence is being con

sidered between the two groups as wholes; and the tem perature is falling (it is now 50).

Even so, a c - i correspondence (which would contradict the opposite-direction whole-group

correspondence) is being considered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

l t p l t c i le t t s r - c e te g e r y o f it l « t t « r by n c e t i i o r

 >

*uecyrp->*wccyrp
r ig b t- > U f t
« tte c -> iu e

la tc * t-> l« tc « t

8. A correspondence is built between the two successor-groups, involving a right =* left

slippage. This activates opposite, and the combination of th a t slippage and opposite’s

activation gives a great deal of support to a proposed diagonal c -k correspondence, with

slippage rightmost => leftm ost

I t y l w i U t U r " C t t « y r y i f m « t l # t t * r by n c e t

ii

I

>«bola
>gmp
>smceyi>
> l« ft

>smcc>UtCMt

n o i t> > lM t t
Naafe«r i f n d « l « t i r a t so f a r : 450

9. The c -k correspondence has been built, and this (along w ith the continuing activation

of opposite) creates further support for an a - i, leftmost =$► rightmost correspondence. A

b e group has been proposed, challenging the much stronger a b c group, bu t given the low

tem perature, it is very unlikely that it will get anywhere a t this point.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

h p t « « l« t t» r - c « t» a > ir « ' m » t l » t t » r by w t c m o r

«holi->(A ola
yro«p->gr«ip

fo ecy rp -X n u eg if
r i§ fc t-> l«£ t
yocc-> n ec

la tc « to > la ic 4 t

lU p lm la t ta r -c a ta g a ry o f l i a a t l a t t a r by n c c a ta o r

ir mf 0 « 4 a la t■

10. A strong, mutually supporting set of correspondences has been bu ilt, resulting in a

low tem perature of 14. The rule has been translated according to the instructions in the

concept-mappings, as “Replace letter-category of leftmost letter by successor” , yielding

answer Jji.

a b c =» a b d , m rr i i i =» ?

The set of screen dumps given below shows one way in which Copycat arrives a t the

answer m r r i i i i (and thus they are from a not-so-typical run on this problem; this answer

is given about 4% of the time). This problem is different from the problem “a b c =>■ a b d ,

xyz=t> ?” (shown in the next section) in that there is no obvious “snag” (such as the fact

th a t Z has no successor) blocking a good answer. Rather, the straightforw ard answer m r-

rk k k ju st doesn’t seem very strong, since there are no bonds tying together the target string

as a whole. In particular, the strong and seemingly explanatory successorship structure in

a b c is completely lacking in m rr jj j when only the letter-categories are considered. Copycat

usually simply gives up and produces one of the two more obvious answers, even though

the tem perature remains fairly high (most people also give one of these two answers). But

on some more interesting runs (such as the one shown here), it does manage to see the

relations between the lengths of the groups in the target string, and to produce m rr jj j j .

The point here is to illustrate how a num ber of pressures interact to allow the notion

of group length, which in most problems remains essentially dorm ant, to come to be seen

as relevant in this problem. On most runs, the groups r r and j j j axe constructed. As

happened in ijjjk k , each group’s letter-category (R and J respectively) is explicitly noted,

since letter-category is relevant by default. By contrast, although there is some probability

th a t lengths will be noticed at the tim e the groups are made, it is low, since length is not

normally strongly associated with the concept of group. Once the groups r r and j j j are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

made, the concept sameness-group becomes very relevant. This creates top-down pressure

for the system to describe o ther objects—especially in the same string— as sameness groups

if possible. The only way to do this here is to describe the single m as a “sameness group”

with ju st one letter. This is strongly resisted by an opposing pressure: a single-letter group

is an intrinsically weak and farfetched construct. It would be disastrous for the program if it

were willing to bring in unlikely notions such as single-letter groups w ithout strong pressure:

the program would then waste huge amounts of tim e exploring unlikely possibilities in every

problem. As was discussed in Chapter 2, given the lim itation of time and cognitive resources

one has in real life, it is absolutely vital to resist looking a t situations in nonstandard ways

unless there is strong pressure to do so.

Copycat resists farfetched notions such as single-letter groups, but in this problem, the

existence of two other groups in the string, coupled with the lone m ’s unhappiness a t its

failure to be incorporated into any large, coherent structure, pushes against this resistance.

These opposing pressures fight; the outcome is decided probabilistically. If the m winds up

being perceived as a single-letter group, its length will very likely be noticed (single-letter

groups are noteworthy precisely because of their abnormal length), making length more

relevant in general, and thus increasing the probability of noticing the other two groups’

lengths. Moreover, length, once brought into the picture, has a good chance of staying

relevant, since descriptions based on it turn out to be useful. (Note th a t had the target

string been m r r r r j j , length might be brought in, bu t it would not tu rn out useful, so it

would likely fade back into obscurity.) In m rr jj j , once lengths are noticed, the successor

bonds among them can then be constructed by bond scouts th a t are continually seeking

new bonds—in particular, by top-down successor scouts resulting from the already-seen

successor bonds in ab c . Thus the crux of discovering this solution lies in the triggering of

the concept of length.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

111

Nohir if nlaUta ran 10 f«ri 0

1. The program is presented with the three strings. (The Slipnet will not be displayed on

this run , though aspects of its state will be described from tim e to time.)

lUpl«c« I t t U r - c i t t y r y o f r m t l « t t » r by

 >'C

/ \ : — >

laolt-)lMlt
ir (f

2. We skip ahead to 240 codelets into the run. Much progress has been made: a whole-

string successor group has been built in the initial string, sameness bonds have been built

in the target string, a j j j sameness group is being considered, correspondences have been

built between the two leftmost and two rightmost letters in each string, and a rule has been

built. The tem perature has fallen to 37. If the program were to stop a t th is point, the

answer would be m rr jjk .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

lU p lica l t tU r - € » t« 9 «i7 o f r w < t l o i t o r by n c c t i i o r

 >

---->

f o r i 375

3. The group J has been built, creating more top-down pressure to see sameness groups

in the string, and a correspondence has been made between the c and it. (If the program

were to stop at this point, the answer would be m rrk k k .) A grouping of the two r ’s is

being considered, as is a weak diagonal correspondence between the c and the m . The

tem perature has gone up a bit for two reasons. First, the c - J correspondence is not as

strong as the previous c -j correspondence because the a -m correspondence more strongly

supported the la tte r. Second, the creation of a new object (here, the group J) can cause the

tem perature to go up, since tem perature is a function of the happiness of all the objects,

and while the existence of the group increases the happiness of its members, it itself starts

ou t unhappy (e.g., the group J has no bonds to anything else in its string). The result can

add up to an increase in total unhappiness. This initial unhappiness is a necessary thing:

it serves to quickly a ttrac t codelets to the new object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

— >

— >

4. The group of r ’s has been built. There are several pressures a t work a t this point. F irst,

the single m remains unhappy since it is not integrated into any structures in its string.

Second, the groups R and J remain unhappy, because in spite of many tries by various

bond scouts, especially top-down bond scouts trying to make successor bonds, no bonds

can be made between them. This continuing unhappiness keeps the tem perature relatively

high. Finally, the presence of two sameness groups in the target string, as well as the high

activation of the node sameness-grvup, creates strong pressure to see more such groups in

the target string.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

lU placa l « t t a r - c « t » f r r •* rmm*t 1 a t t a r by n t c t i i o r

 >

---->

5. The strong pressures described in the last caption have overcome the intrinsic resistance

to proposing a sameness group consisting of a single letter, and such a group, consisting

of the single m , has indeed been proposed (dashed rectangle around the m). Top-down

group-category scouts can propose such groups, but such a proposal is intrinsically very

unlikely and almost never happens unless there are strong pressures th a t make it more

likely. The probability of proposing a single-letter group is a function both of the amount of

local support in the string and of the activation of number-cateaory—i.e., if group lengths

have already been deemed to be im portan t, then it is more likely tha t single-letter groups

can be proposed. Here, with group lengths not yet in the picture, the proposal of such

an oddball group is a result of a combination of factors: unhappiness of the lonely single

le tte r (which makes it salient, causing lots of codelets to concentrate on it, so after many

tries, one may succeed) along with lots of local support for such a group in the string (the

principle of “safety in numbers” discussed in Chapter 3) and relatively high tem perature

(making intrinsically unlikely events a b it more likely).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

| IUpl«c« litU r-w toyry m i rmmmt l « t t r by M cam r

--- >

 >

ir m i n4»l«ti

6. The single-letter group has been built, and its length has been noticed (displayed as a “1”

next to the M). There are two ways in which group lengths can be noticed in Copycat. The

first way is for a group-builder codelet to attach a length description at the time the group

is built. A group-builder codelet always has some probability of doing this, the probability

being a function of both the length of the group (the shorter, the more probable, with

probability dropping off very quickly with increasing length) and the activation of number-

category (when it is relevant, noticing length is much more likely). So a priori, there is

not much likelihood for a group-builder to notice the lengths of two-element groups, less

for three-element groups, and so on. But it is rather likely th a t a group-builder will notice

the length of single-letter groups, since it is precisely their short length that makes them

noteworthy. Length descriptions can also be attached to already-formed groups (e.g., the

r r group here) by top-down description-scout codelets, posted by number-category once

it becomes activated, as it is now, as a result of spreading activation from the node 1,

which was activated when the single-letter group was formed and its length was noticed.

(The probability of creating a length description in either of these two ways is of course

also dependent on tem perature.) The activation of number-category means that length is

now a relevant notion, which creates pressure on the program (in the form of top-down

description-scouts) to continue to use length as an organizing theme. If length does not turn

out to be a useful notion, number-category’s activation decays, and this pressure subsides.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

h p l m l«tt<»—c i t j ^ t r y mi rmm« t l « l t« r by

 >

---->

7. A length description of 3 has been attached to the a b c group by a top-down description

scout posted by number-category, which remains active.

lU placa l i i i a r - c t t t g t r y o f r w i t l « t t« r by iucci

-->

R2
---->

l«t*>gnt9

8. The activation of number-category and the existence of the description 1 created pressure

for length descriptions in the target string (the existence of the 1 makes it more likely

th a t description-scout codelets will succeed in building other such descriptions—again, the

principle of safety in numbers). As a result, a length description has been attached to the

group of r ’s. Also a correspondence has now been built from the a to the group M (a subtle

change from the previous a-to-letter-m correspondence).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

lU y ltc i l » t U r - c > t J | t r y mi it l l t t r fcy w c c w o r

 >

 >

ir •£ n t a l a t i

9. Some proposed bonds are being considered between the lengths of the M and R groups.

There is some resistance to building these bonds—being less standard, bonds between

lengths are not as strong as bonds between letter-categories (an a priori bias given to

the program). Safety in numbers is again a principle here, and the lack of other length

bonds in the target string increases the resistance to them .

t o p l f U t i w t t U y r y i f it l « t t « r by

 >

R2
--- >

• f e s d i l i i f

10. The proposed length bonds did not pass their streng th tests (a probabilistic decision)

and have fizzled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

l U p l w l r t U r - w t e y i y o f r—« t l « t t « r by

 >

---->
l«t->gronp l« t-> g ro ^ i'

ir » f

11. Try, try again. This tim e, the relatively high tem perature, the top-down pressure from

successor, and some persistence on the part of the program (note the tim e lapse of 390

codelets between the time when lengths were first noticed and now) have combined for

success: a successor bond has finally been built between the group M and the group J on

the basis of length. In addition, the group J has now been given the length description

5. This also came about as a consequence of top-down pressure, safety in num bers, and

persistence.

Mtplmcm m i it l » t t r fcy

 >

 >

i la ta

12. Top-down pressure a t work again resulted in a 2-3 bond now waiting to be built. This

tim e, building the length bond will be much easier, since another one already exists in the

same string, giving local support to the new proposed bond.

Notice th a t over 100 codelets have run since the previous screen dump: the tem perature

is still relatively high and the program is still exploring a number of different possibilities

(e.g., trying to build successor bonds among the letter-categories of the target-string groups,

or to use the notion of alphabetic-posilion), none of which are panning out.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

to p lic a l a t t a r - c a t a f a r ? « f

- >

la t-> g r* ap U t O f r n y •l«t->graap» • • •
n w « i-> n H it ir mf

13. The second length bond has now been built in the target string, and a grouping of the

whole target string, based on the successorship bonds, is being considered. In the Slipnet

(not displayed here), the activation of the nodes sameness and sameness-group have faded,

since these concepts are no longer very relevant to what is going on; instead, successor,

successor-gmup, and number-category have taken over as the main organizing themes.

I ltp lie a l a t U r - c i t « 9 «r7 o f

vhoiaOtAol*fro«p->9rmviweyrpOnecfrf
r ia fe t-> r lg k t

*3->3
■t»cc->*acc

^ h t u i - > a n c « t

| loploco tt—hor^cotogogy #fla t-> o ro w lo t->T —a'
■ aa t-> lM « t wLi‘>wiA ‘1 l« t-> 9m r

r u H n a i i ir o f a M a la ta

14. The whole-string group has been built in the target string and a correspondence has

been m ade between the two strings as wholes, with the slippage letter-category => number-

category (the respective description types th a t the groups’ bonds were based on). The

tem perature has fallen to the low value of 15, indicating the program ’s satisfaction with

th is way of structuring the problem. The rule has been translated according to the slippages

letter-category ^ number-category and letter => group to yield “Replace number-category of

rightm ost group by successor” , yielding the answer m rr j j j j .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

Although this run may have looked quite smooth, there were many struggles involved in

coming up with this answer: it was hard not only to make a single-letter group, but also to

bring the notion of groxip-length into the picture, and to build bonds between group lengths.

The program, like people, usually gives up before all these hurdles can be overcome, and

gives one of the more obvious answers. Arriving a t the deeper answer m rr i i i i requires not

only the insights brought about by the strong pressures in the problem, but also a large

degree of patience and persistence in the face of uncertainty.

The moral of all this is th a t in a complex world (even one with the limited complexity of

Copycat’s microworld), one never knows in advance what concepts may turn out relevant in

a given situation. It is thus imperative not only to avoid dogmatically open-minded search

strategies, which entertain all possibilities equally seriously, but also to avoid dogmatically

closed-minded search strategies, which in an ironclad way rule out certain possibilities a

priori. Copycat opts for a middle way, which of course leaves open the potential for disaster

(as can be seen in the occasional bizarre answers it gets). This is the price th a t must be

paid for flexibility. People, too, occasionally explore and even favor peculiar routes. The

program, like people, has to have the potential to concoct crazy and farfetched solutions

in order to be able to discover subtle and elegant ones like m rr ii i i . To rigidly close off

any routes a priori would necessarily remove critical aspects of Copycat’s flexibility. On the

other hand, the fact th a t Copycat so rarely produces really farfetched answers demonstrates

th a t its mechanisms manage to strike a pretty effective balance between open-mindedness

and closed-mindedness, imbuing it with both flexibility and robustness.

These screen dumps show one way in which Copycat can arrive at m rr ii i i . bu t there are

o ther ways as well. For example, it could first notice the relationship between the lengths of

the R and J groups, which would then create very strong pressure for creating a single-letter

group. P art of Copycat’s flexibility rests in the fact th a t there are a number of different

ways in which which it can arrive a t each of the different answers to any problem. Not only

are there a huge num ber of microscopic pathways to a given answer, but there are also a

num ber of macroscopic pathways as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

a b c =»• a b d , xyz => ?

The set of screen dumps given below shows one way in which Copycat arrives a t the

answer w yz after hitting the impasse brought on by its inability to take the successor of

Z. The two main mechanisms for resolving the impasse are (1) raising the tem perature, by

allowing structures to be broken more easily (by breaker codelets and by rival structures)

and allowing less-obvious pathways to have a better chance of being explored, and (2) at

the same time focusing attention on the apparent cause of the impasse: th e z in xyz .

P art of this focusing of attention involves high activation of the node Z, which in turn

spreads activation to the node last (Z being the last letter in the alphabet). The activation

of last greatly increases the probability th a t it will be attached to the z as a description.

The node last also spreads activation to its neighbor first, and this, combined with the fact

th a t alphabetic-position is now seen as a relevant way of describing objects, gives first a

good chance to be attached to the a. When this has taken place, a correspondence between

the a and the z (via a first =>• last concept-mapping) is much more plausible, given that the

notions of first and last have been brought into the program’s perception of the problem.

As was mentioned earlier, concept-mappings that take into account deep similarities (e.g.,

between first and last) are seen as strong, but this pressure conflicts with a resistance to

making slippages between deep aspects of the two situations. The idea is th a t there should

be a desire to avoid slippage as much as possible, since a perfect analogy is one in which

no slippages are needed a t all (e.g., “a b c =>■ a b d , ijk =» ijl”). If one is forced to make

slippages, then the more shallow the descriptions th a t slip, the better, since in making an

analogy, one wants to preserve the essence of the two situations, which m eans th a t deep

aspects should remain invariant. However, a good analogy should expose deep aspects of the

two situations th a t might not have been recognized before, in the way th a t the first ^ last

concept-mapping exposes a deep similarity between a b c and xyz . Thus in analogy-making

there is a fundam ental conflict between a resistance to deep slippages and a desire for deep

concept-mappings.

The upshot is th a t in Copycat, it takes strong pressures (including high tem perature,

which increases the chances of low-probability, risky slippages) to force the first => last

slippage, but once it has been m ade, it is seen as quite strong, and its strength increases

even more when a resolution to the impasse begins to fall into place as a result of it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

The a -z correspondence has to fight against much of the currently existing structure,

bu t if it can prevail (and this is more likely a t high tem perature), it can trigger a complete

restructuring of the program ’s previous perception of the strings: the strings a b c and xyz

can be seen as opposites in both spatial and alphabetic direction, with the c corresponding

to the x . This view leads to the slippages rightmost => leftmost and successor => predecessor,

causing the program to translate the original rule as “Replace leftm ost le tter by predecessor”,

yielding the answer w yz.

lMlt mid nmit l M l t mi at m o a ttll ft ft C A ft Dlit Ut ltt lot lot lot

1 "

b c -----> a b d

I lMlt mid nmit■ Y Z■ Ut Ui
1 X y z ----->

Nmfcar of s* 4 o la ta im so f a n 0

1. The program is presented with the three strings. Descriptions are displayed again here

because there will be im portant additions to them in the course of the run. The Slipnet is

also displayed in some of the frames.

lU y lm l i t U f c i t t y r y o f rt l i i t a r hj

mid >*t
lit Ut Ut Ut

 >

---->

fari ISOir af

2. 150 codelets into the run, everything is proceeding well, similarly to the run on

“a b c => a b d , y k => ?” . There are two strong vertical correspondences (leftmost =>■ leftmost

and rightmost =>■ rightmost). Diagonal correspondences (leftmost => rightmost and right

m ost => leftmost) are being fleetingly examined, bu t as in “a b c =>• a b d , y k =>• ?” they are

very weak and of very low priority for further examination.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

ftftplM* h t t a r - c a t a f i r y # f m i t U t t « r by

lMltft
U t __

mid
• t l e t U t Ut u t

a* >
iAola->Hhol«
yrMp->fmp

n s6 g rp -> « tcefn p
r l 9 h t-> r ig b t

voec->i«ce
U tc « t* > U tc « tlMlt

Xu t .. •II
I

♦ t l e t

--- >

ir i f e« 4 « l« ta

3. After 240 codelets have run, things have been structured ju st as in the run on

“a b c => a b d , y k =>■ ?” , the tem perature is very low, and the program is almost ready

to try to construct its answer.

I t f l a c i l a t t « r - c i t a f « (7 i f i t U ttm r by

l M l t ■ ii.
u t u tu tu t u t

— >

u t L»t
r ~

| I ty lM t l i t t i r - c i t i y r y o f r— « t U t t r by

) M « r i f M 4 a U i« h r i

4. Since no slippages are involved in the correspondences between a b c and x y z , the rule

needs no translation. As it did for y k , the program a ttem pts to follow the rule “Replace

letter-category of rightmost letter by successor” , but h its a snag: Z has no successor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

lUplaca l*tt*r~cat«9«ry «f m s t l«it«r by raccusor

utioi«->wfcol«
fre«p->9roep

cvccgrp-> neegiy
right->right
ncc-)nee

liie«t->laic«t

l i o i t a> lM it r w i t - > r M t t

IWMr m i mmtmlmXm rmm mm ftri 252

5. W o rk sp ace : In response to the snag, the tem perature shoots up from 16 to 100,

reflecting the fact th a t the program is now a t an impasse and th a t it has gone from being very

certain about the quality of the structures it has built to being quite uncertain and far away

from an answer. The tem perature is clamped at 100, reflecting a “sta te of emergency” which

will not be revoked until the program judges that progress (in the form of new structures)

has been made. At this high tem perature, actions th a t normally have a low-probability of

occuring (e.g., breaker codelets succeeding in breaking structures) are more likely to take

place. But even at this maximum tem perature, decisions are not totally random ; the same

kinds of biases exist a t high and low tem peratures. The biases ju st become more and more

pronounced as the tem perature falls.

'H5
■ y _ .

44 1 1 t i i 1 4 s i J"'" 'T " 1 t
■ ■ ■
A B C D E F G H I J K L M N 0 P P R S T
i i ? 4 ' 114 4 100 100 loi 1(21 190 SO 4

■ ■ ■ ■ • ■ ■ ■
u Y w X I z 1 2 $ 4 $ laeit rmot m il* ttotlo r tita t l in t U*t
41 100 If 144 144 104 1C4 104 100 24 100 100 190 100
■ m ■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■

prv4 net L » J or arp n an »■ !» ltttar jz r sL or* ekleil la te a t IsaEid «W*1« i tr* M l in e h Meat «rvc«t

S lip n e t: The program ’s other response to the impasse is to focus on its apparent cause: the

z. I t does this by clamping the activation of all of the z ’s descriptors a t 100, thus making

the z very salient and making these descriptors a strong focus of attention. Notice in the

Slipnet th a t the nodes Z, rightmost, and letter are all fully activated. As with tem perature,

these clamps will not be released until the program determines th a t a sufficient amount

of progress has been made towards getting out of this impasse. T hat is, every tim e the

Slipnet is updated, the program checks to see if any new structures have been built, and

if so, decides probabilistically, based on their strength, whether to rescind this “state of

emergency” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

lU p ltc i U t i t f c i U f t y a f r —» t U t t r by u c c i

wtioia->whols
frovp->gro«p

raec g r f -> «mc cgrg
r ig k t-> r ig h t
nec*>rm cc

l a t c a t - > la tc a t

M n k ir o f ce* e le ta rwm »• l a r i 270

6. W orkspace: Several possible new structures are being considered, but none have yet

gotten very far, and the original structures remain intact.

4 116 100 1 2 i 5 “T " } T ‘ J t 2 i — r ~ S I i

■ ■
A B C D E F c H I J K L M w 0 P 0 R s T
2 2 i 2 100 100 100 ioii U 0 u 30 10 43

■ ■ ■ ■ • • • • • ■
U V w X Y z l 3 3 A if 1*0 f t rw s t «144U •b e lt f lS « lt l e f t r ia b t ■ t t r r t
21 40 20 SO 101 100 11 100 100 24 100 100 130 100
• B B ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■

p n 4 cnee L a d r j r a l e t t e r orte* U N •b lea t I t te a t LsSMtJ i t n u l irv c ta bnicat m c i l

S lip n e t: The node Z remains active and is spreading activation to the node last, which is

beginning to become activated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

R t p l u i l i t i i r - c i t « 9 t r 7 o f n w i t l s t t « r by r a c n s s o r

jv w w w s^

«liola->«4iili
fmp->9n«p ncc9rp*>mcgrp ri9kt->rlght

f t «uee->racc
l« tC 4t-> l* tC «t

M o k tr t f e«A aU t« rmm f« r i 330

7. W o rk sp ace : The Workspace is still stuck in the original state. The proposed a -z

correspondence (here lacking the first => last concept-mapping) is too weak to have much

chance of going anywhere, even at this high tem perature.

» 1 1 * 1 i 1 ~ r ~ 3 r ~ ~ i "" i J * 1 1 1 J a

A B C D E F C B I j K L H N 0 P 0 R 5 T
)

U

i

V

4a
■
w

■
X

109

■
y

119

■
z 1 z z 4 5

100

■
1*011

100

■
m o l

a
■

h i i k

100

■
aholi

12

92Ml*

32
■

120

■
n o b t

22
•

l i n t

103

■
U i\

*7
■

e n i

100

■
race

u
■

I L S B J

109

■
n i t i» «rp

III

■
l i t t i r

log

■
J S S .

le t

■
U h

too

■
e k fe jt

100

■
lstcst

22
■

100

■
ib h H i

too

■
si not

100

■
1tracts

190

■
Meet

too

■
m et!

S lip n e t: The node last is now fully active, and has spread activation to first and to

alphabetic-position, which is also now fully active and is posting top-down description-scouts

to try to make descriptions of this type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

JUplaca I t t U r - c t U f t r y of rw « t l i t t t r by n c i

dioii-Moh
fTMp’>9nop «nccg}f-‘>«icc9TT
r iq fc W rig k t

f n c e o n c c
1mte a t-> 1 •tc « t

l a e t t - > lM i t r M i t - > r a « f t

Hwfcer of c e d a la ta r w i t i i r i 345

8. W o rk sp a c e : A fter 345 codelets have run, last has been added to the z ’s list of descrip

tions as a result o f top-down pressures from the activation of last and alphabetic-position.

too 113 110 4 m"~k 3 3 3 ■J' ~ T — i 3 “ J 3 I I 3
■ ■ ■

A B c D E F C H I J K L W w 0 P 0 R S T
3 3 1 46 53 101 100 100 100 40 15 43 130 33 100

■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■
U V w X T 5 1 2 4 $ m * t m e t n u u ahole s la t le l e f t n rfJ t la s t
39 100 37 too 100 100 101 100 100 23 100 IOC 100 100 100
■ ■ ■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■ ■

i PrtO n e e L s s _ pr orv n o n " 1 1 l e t t e r l l a •m •b te j t le te a t ■Wf* e tn a s i lr a c ta tandcat F K U

S lip n e t: In the Slipnet, the node first continues to gain activation from last.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

l e p le c e l r t i e r - c e te g o r y o f m i t l t t U r by twccosMor

N o k tr o f co4olot« m s so fo r t 915

9. W o rk sp a c e : 915 codelets into the run (570 codelets after the previous screen dump),

after much thrashing by the program and little progress, several breaker codelets have

succeeded in breaking some structures, though the skeleton of the original successorship

structure is still in tact. (Breaker codelets have a good chance of running and breaking

structures only a t high tem peratures.) As was detailed in Chapter 3, both bottom -up and

top-down codelets continue to be posted to the Coderack as the program runs. W hat have

they all been doing? Most of the codelets tha t run are redundantly working on building the

same structures th a t already exist. This redundancy is an essential part of th e program;

i t allows statistics, rather than any single codelet or small set of codelets, to control what

happens on a large scale. O ther codelets are trying (and so far, failing) to build new

structures, and yet others are attem pting (and occasionally succeeding) to break existing

structures. A large number of the codelets are focusing again and again on the z, which is

very salient, now having four fully active descriptors. Often a t this point w hat happens is

th a t the rule is broken and the weaker rule “Replace letter-category of rightm ost letter by

D ” is built (this is more likely than usual, due to the high tem perature and lack of progress

on o ther fronts), and is used by the program to get the answer x y d .

“ I* \Yi “TO “ i —J— 1 t i ~ T ~ “ I"" i “ T" i i i 1 ~ I -
■ ■ ■
A B c D E F c H I J K L H N 0 P 0 R S T

• 00 101 in 100 100 41 14 190 100 110
■ ■ ■ ■ ■ ■ • ■ ■ ■

u ▼ w 1 I z 1 2 ? 5 i w t llftfflt Ifft n » L ftir t- MIL.
110 too tot itt 00 100 101 100 ts 100 100 100 100 100

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
or*4 u m »r m *1 m " r » ltttcr v m m •klut utft IsbeslJ‘.W « itrtts l ln e t i kokit m c d

S lip n e t : The node last has continued to spread activation to first, which is now fully

activated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

K gpltci l> ti« r-c > ttg ifY o f r e a c t l« t t « r by re c e i

>»t
U t U t U t u t

I

•at

u t

i
• • t ->

»—U r i f N b l i t a m • • f « r t 1M5

10. At codelet-step 1065, a bit of restructuring is being tried out: a b - a predecessor bond

has broken the a -b successor bond.

pUplac^Tattar-cata^rya^raaa^latta^by

SS

I

ut
U tU t

l a s t
is t■id

U t1»

la t~ > la t
la o s t-> U a s t

U t - > la t
■ ld->vld

M akar i f a i c l c i f n a • • f a r t 1200

11. The program ’s view of both strings is in the m idst of being restructured, gradually

changing from right-going successorship to left-going predecessorship. In the hopes that

th is is a promising new course, the program has released the clamp on the tem perature,

which has fallen to the value indicated by the estim ated quality of the existing structures

(here, 52). Meanwhile, the descriptor first has been added to the a ’s list of descriptions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

l lc p lw t l i t i t f c i t t f i r y of rmmst l t l i i r by w c t u o r

first
•«t

1 s t 1 s t

— >

»

I
a id •st

JLU .

---->

M r i f M U t s i « • • f a r t 1305

12. W o rk sp ace : A new viewpoint has taken over, with both strings now grouped as

left-going predecessor groups, and with the low tem perature reflecting the program’s high

assessment of this new way of structuring things.

it 41 1 4 0 9 ' * 1 i "1 ~ i ~ i" k 1 i 1 1 ""I 1 I

A B C D t F C B I J K L M N 0 P r R S T
i J 43 S3 53 44 Jo 100 i 10A 10 130 50 5) i i

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ e
u V W x y 2 I 2 ? 4 $ lrait rrait •14114 M le SlMlf i w itrrt

109 41 100 41 100 100 100 100 100 30 04 100 100 190 100
■ ■ ■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■ ■
urra race L * -l J fr W *■ OH « or* letter t n n lien ObtCJt leteet lass*!llSfcMt itn e i lirvctB M eet •m e t

S lip n e t: The nodes first, last, and alphabetic-position have decayed considerably, and these

descriptors are thus no longer relevant (indicated by the fact that the descriptors are no

longer in boldface), and are now being ignored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

l U p l w U t U r - c a U g r r o f rm»Mt UtUr by tm c c w o r

lint
lMlt Mid.

=^£^2= l«t•t.

--- >

• t . .U t !• t
---->

| ltopl»ct l<ttir»cat<g>ry oi r—at ltttor by ucctnor

>r «i

13. The program has used this new, seemingly good set of structures to a ttem pt once again

to get an answer, but surprise, surprise: the same snag appears again. One could certainly

say th a t the program shows a lack of common sense for having expected that this trivial

form of restructuring could resolve the impasse. But it could also be said th a t people often

get pulled into mental dead-end paths whose futility should have been obvious in the first

place. Once one gets started along a certain mental pathway, it is sometimes hard to avert

it; obvious ways of viewing situations (such, as trying to take the successor of Z here) act

like attractors; it is hard to avoid them. In general, this is a useful feature of perception,

because in real life, the most obvious view is usually the right view, so it is good to be

quickly drawn into it. However, in some situations, this results in behavior like th a t of

the program on this problem, where you are drawn again and again into the same wrong

way of looking a t things, perhaps with slight variations. Unfortunately, this happens to

the program far too often; as will be discussed in the next section, during an average run

on this problem, Copycat continually gets into states th a t cause it to hit the same snag

over and over again (on average 9 times before getting an answer), because it lacks some

essential mechanisms for remembering and watching its own behavior. The need for such

“self-watching” mechanisms will be discussed further in C hapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

f i r s t

w v w w ^
AoliO^ala
fr«*p->9rraprradyrf^N^fii

. lsft->l«ft
1st

Utc«(<>l«Uat

“"l«t->l«t
n#it>>rwit

14. Now the program is back a t “square one” . The tem perature has shot up again and

the z ’s descriptors have again been clamped in response to the snag. The a and the z

are now both quite salient (since they each have four fully active descriptors), and are thus

being chosen very often by codelets. Now a correspondence between them is more plausible,

because of the possibility of the concept-mapping first => last. As was pointed out earlier, it

is initially difficult to make this slippage because of the conceptual depth of the descriptors

involved (deep slippages are harder to make than shallow ones), but once it is made, it

is seen as fairly strong (deep concept-mappings are stronger than shallow ones). An a -z

correspondence has been proposed and has passed its strength test (thanks in part to the

h igh.tem perature, which makes intrinsically unlikely events more likely), bu t it still faces a

lot of com petition from the still quite strong currently existing structures. Note th a t even

a t high tem perature and in this desperate condition, it is still essential for the program to

resist unusual notions—they should be allowed to be seriously considered only under strong

pressures. Otherwise the program would be wasting all its tim e exploring unmotivated

crazy possibilities.
| lyittrcitaygy if r—t ls t t r fcy itcwuir |

l M l tK1«4

first

■hoi«-)shols

tr*4frr->pr«4fr»
. lsft~>l«ft
It

t L J U
Mstar H Mdtaist* , ia fo r i 1S00

15. The a - z correspondence did not manage to defeat the existing rival structures, and it

has fizzled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

lU p lm l i t U r - c t t < g t r y o f n w i t l « t f r by m c t n o r

f i r s t

l**t
r M i t

‘l«t->l«t------------
a ld -> a ld m it< '> n w > t

H o M r •f aa4alata m am imrt 1U 0

16. Some structures have been broken, and a bit of restructuring is being tried again: this

time an a - b successor bond defeated the b -a predecessor bond. A nother attem pt is being

made to build the a -z correspondence (the a and z remain quite salient, so many attem pts

are being made to use them in structures), but it still faces strong competition from the

existing c -z correspondence.

lU p lw a l« t t o r - c i t « 9 * (y c f r a a i t l « i t « r by

f i r s t
l M l t mi

1 s t1 s tla

— >

>at
• la t

---->

17. Thanks to the combination of the strength of the first => last concept-mapping, high

tem perature, and also to statistics (tha t is, a large number of tries), th e a -z correspondence

has beaten the normally far stronger c -z correspondence (though the la tte r is being con

sidered again). The creation of this fairly strong new structure has caused the tem perature

to be unclamped. The new correspondence has two slippages: leftmost => rightmost and

first => last, and in response to these instances, the node opposite has suddenly jumped into

prominence. The existence of the a -z correspondence and the activation of opposite will

make the proposed c -x correspondence (before, too weak to have much of a chance at all)

much more plausible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

lU plact l i t U r t t i i y r y o f r w t l t l i r by

l i t U tU t

 >

a i t mt

.U i.

---->

• • f a r : 1740i r • {

18. The competing proposed c -z correspondence has fizzled. Also, partially in response to

the new diagonal correspondence, the initial string is being viewed as consisting of right-

going successor bonds—the opposite of the bonds in the target string. However, there is

still some competition lurking in the form of a proposed group threatening to turn the

whole initial string around so that it is in the same direction as the target string. The c -x

correspondence has passed its strength test and is waiting to be built.

f i r s t
l m tk >rt

U U t U tu t

— >

a l l i*t
U t

--- >
~” U t - > l« t

i l r v t - > l « i t ir »f n4»Ute

19. The c -x correspondence has been built, and the proposed predecessor group in the

initial string has fizzled. The tem perature has fallen to 33, reflecting the estim ated promise

of these new structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

M y l x i l> tU r - < * te f i ry s f

first
lMltA
l i t . ,

•id.
4st

>»t
1 s t 1 s t 1 s t 1 s t

 >

ail

 >
— l s t - > l « t
l a s c t - > r a s s t
f l r * t - > l s s t

20. The initial string has now been grouped as a right-going successor group, opposite to

the target string. This turnaround was m ade possible by the diagonal correspondences.

There is a whole-string group-to-group m apping being considered.

" ^ p t o y l « c s l s t t s r - c s t S 9 s r ^ s 3 ^ a s s t Ml s t t s ^ ^ ^ s a c c s s » s ^

f i r s t
la o s t

ls t-> ls «
ald->«ld

WWV^WV^

*h«ls->"fcsls
f r s * p -> g ra * fieefryOprtdfrf

~ . t « e e -> p r« *
2 l« tc s t - > l s te a t

n u - o
l s t - > l s t ---

r a » r t -> la » f t
— ls t~ > l s t
l a s s t - > r a s s t
f i r s t * > l s s t

| i s p l s s t l s t i s r - c s i s ^ s tT s f l a s s t l s t t s r by p rsd s c s is s r |
s r s f s s d s ls t s m s s f s r : 1916

21. The whole-string group-to-group correspondence has been built, with slippages

successor-group => predecessor-group, right =*► left, and successor => predecessor. The last,

along with the slippage rightmost => leftmost, is used to construct a sweeping translation

of the rule: “Replace letter-category of leftmost letter by predecessor”, yielding the answer

w yz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

4.4 Summary

The series of screen dumps presented in this chapter have hopefully given the reader a

better idea of how all the mechanisms described in C hapter 3 work together to produce a

system th a t can flexibly adapt its concepts to new situations th a t it is presented with. As

can be seen from the screen dum ps, Copycat s tarts from a standard initial sta te on each

new problem, but as the program runs, it discovers unique aspects of the problem, bringing

out certain associations while downplaying others, allowing it (usually) to home in on a

suitable set of relevant concepts and avenues of approach. In addition, when the system’s

original approach leads it to an impasse, it is able to fluidly restructure its perceptions to

find a be tte r way of looking at things.

The screen dumps have also hopefully made clearer the fundam ental roles of nonde

terminism, parallelism, non-centralized and simple perceptual agents (i.e., codelets), the

interaction of bottom -up and top-down pressures, and the reliance on statistically emergent

(rather than explicitly program med) high-level behavior in achieving these abilities. The

claim being made for this model is that these are also fundam ental features of high-level

perception in general.

The result of all these features is an emergent parallel terraced scan of possibilities, in

which a fight for cognitive resources takes place, and in which one point of view gradually

(or sometimes rapidly) comes to dominate. Nondeterm inism pervades this process. Large,

global, deterministic decisions are never made (except perhaps towards the end of a run).

The system relies instead on the accumulation of small, local, nondeterministic decisions,

none of which alone is particularly im portant for the final outcome of the run. As could be

seen in the screen dumps, large-scale effects occur only through the statistics of the lower

levels: the ubiquitous notion of a “pressure” in the system is really a shorthand for the

statistical effects over tim e of a large number of codelets and of activation patterns of nodes

in the Slipnet.

The program starts out exploring possible structures with a high degree of randomness,

and lets bo th a priori biases and information accum ulated along the way guide the evolving

search. The idea of the parallel terraced scan is to try to allocate tim e to different paths

of exploration in proportion to their estimated promise. As is illustrated by the two-armed

bandit problem discussed earlier, it is a bad idea to devote all of one’s resources to what

currently seems to be the best pa th if one has very little information on which to base one’s

estim ate of quality. It would also defeat the purpose of the parallel terraced scan if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

promise of every single possibility had to be evaluated before any further exploration could

be done—there are too many possibilities to be evaluated. The best strategy is to explore

many different possibilities (without excluding any a priori), continuously adjusting the

speed of exploration of each possibility as a function both of moment-to-moment estimates

of its promise as it unfolds and of the global sense of how reliable those estimates are.

In Copycat this effect is an emergent one, achieved statistically though a large number of

tem perature-controlled nondeterministic choices.

As was seen in the screen dumps, as structures are formed and a global interpretation

coalesces, the system gradually makes a transition from being quite parallel, random, and

dom inated by bottom -up forces to being more deterministic, serial, and dominated by top-

down forces. We believe th a t such a transition is characteristic of high-level perception in

general.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R V

C O P Y C A T ’S P E R F O R M A N C E O N V A R IA N T S O F T H E F IV E T A R G E T

P R O B L E M S

5.1 In tro d u c tio n

In this chapter I present the performance of the program on 27 variants of the five target

problems. As the previous chapter demonstrated, Copycat models how various pressures

in teract, compete, and are resolved in the process of interpreting situations and making

analogies between situations. As will be seen, the variants given here constitute families

of analogy problems th a t explore in greater detail certain of the issues in perception and

analogy-making th a t have been discussed in this dissertation. Copycat’s behavior on these

problems demonstrates how it deals with these issues, how it responds to variations in

pressures, and how it is able to fluidly adapt to a range of different situations (starting from

exactly the same state on each new problem).

There are a huge number of ways in which the original five problems can be varied.

For example, consider ua a b c => a a b d , y k k =>• ?”, a variant of “a b c ^ a b d , y k =J> ?” ,

in which the doubling of letters is m eant to alter the “stresses” on various locations in the

strings a b c and y k . One effect this might have is to make the a and the k more salient

and more similar to each other, thus pushing towards a diagonal m apping in which the

two double-letters are seen to correspond. Another variation would be to triple the letters

instead of doubling them , which would again slightly alter the pressures, perhaps increasing

the salience of the sameness groups. Many other variations in this vein could be made as

well.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

Another way of m anipulating pressures is to include distinguished letters—a and z—in

strategic spots, since it is possible that they will be seen as more salient than other letters

and thus a ttrac t more attention, changing the pressures in the problem.

Another technique is to alter the relational fabric of a string or of a segment of a string—

specifically, to use successor relations where sameness relations existed, or vice versa. A

variant of this technique is to get rid of a fabric altogether, or to introduce a fabric where

there originally was none. Yet another technique is to experiment with strings of different

lengths.

Another very im portant technique is to manipulate pressures by introducing or delet

ing same-category letters. These kinds of variations were illustrated in problems 1 a-d in

Chapter 2. For example, given the change a b c =$> a b d , the target c d e is similar to the

target y k except th a t it contains a c, which might a ttrac t special attention because of its

identity with the c of a b c . By including more or fewer such letters, or by m anipulating

their positions inside the strings, one can create a vast spectrum of differing pressures.

Each of these pressures taken singly can provide a wealth of variants on a given problem,

but when several of them are used in conjunction, one can create a gigantic family of

problems forming a vast halo surrounding an original problem. This chapter simply surveys

a small sampling of such variants on the five target problems, revealing how the variations

in pressures affect the program ’s behavior.

Each variant highlights and tests some aspect of the program ’s behavior, and the sum

total of all these results gives a clear picture of the program’s abilities, thus further address

ing the artificial-intelligence criteria discussed in Chapter 2. The results in this chapter also

give a sense of w hat kinds of answers Copycat tends to prefer. A bit anthropomorphically,

these results can be said to illustrate the program ’s “personality” .

Even though the variants are divided into five sets corresponding to the five target

problems, in m any cases the division is somewhat arbitrary, since many of the problems

could be considered variants of more than one of the five original problems.

The results are presented in the form of bar graphs similar to the ones given in the

previous chapter. Copycat was run on m ost of the problems 200 times (except in a few

special cases, as explained below)—enough runs to get a set of reliable statistics for the

program ’s behavior on each problem (which can then be compared with the results on the

original problem), though in some cases not enough runs to get instances of some of the

rarer “fringe” answers th a t came up on the 1000-run results given in the previous chapter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

(though many fringe answers do appear). The bar graph for the appropriate one of the

five target problems is displayed again a t the beginning of each section, so th a t it can be

referred to more easily.

Most of these variants were included in the surveys I gave to people, and the results for

each problem are given here along with the discussion of Copycat’s performance on that

problem. For some of the problems given to people in the survey, an a ttem p t was made to

reduce the influence from previous problems by giving a version with different letters when

the letter-categories made no difference (e.g., “b e d =>• bee , x lg =>• ?” was given instead

of “a b c =*• a b d , x lg =*• ?”); for clarity’s sake, I transla te these back to the original letters

when giving the results. Different groups of people were given different sets of problems (also

as an a ttem p t to minimize cross-influences among similar problems), so different problems

were answered by different numbers of subjects. The results from this survey can be used in

two ways: first, as in the previous chapter, to compare the range of Copycat’s answers with

those of people, and second, to see if the different pressures in the variants affect people in

the same ways th a t they affect Copycat. Of course, such a comparison should be made at

the level of general tendencies rather than th a t of specific frequencies.

Perhaps the best way to read this chapter and judge Copycat’s performance is for readers

to try each problem themselves before looking closely a t Copycat’s answers, and to see how

well Copycat did, based on their own judgm ent of w hat makes for a good or reasonable set

of answers to each problem.

5.2 V a r ia n ts o f “a b c =>■ a b d , ijk ?”

The bar graph for “a b c =» a b d , i jk => ?”

98*

Problem: abc —> abd, i jk •—> ?
Total Runs: 1000

19 1

i j l i j d i j J
tT.Tnp: 17 Ar.Ttap: 23 fcr.Tnpi 4*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

Variant 1: a b c =»■ a b d , i jk lm n o p => ?

182
Problem: abc —> abd, ijklmnop —> ?

Total Runs: 200

s 4 4 4 1

l jk lw ip q ljk a n o p q i jk ln o p q i jk la o p q i jk lw nod
Av.Ttap: 48 Av.Tttp: 42 Av.Tttp: 45 Av.Ttap: 48 Av.Tttp: (2

i jk lw io q
Av.Ttap: 2 t

In this variant, the length of the target string is extended. This shouldn’t affect Copy

c a t’s performance on this problem very much: when successor bonds begin to be built in

the target string, top-down forces should cause the program to quickly see the entire string

as a successor group, ju st as in the original problem (which I will abbreviate as y k) . As can

be seen from the bar graph, the proportion of instances of the “Replace rightm ost letter

by successor” answer (y k lm n o q)is almost as high as in y k . The average tem perature for

this answer is somewhat higher than y l for two reasons: here, there are many letters in the

target string th a t don’t correspond to anything in the initial string, and, since the target

string is longer, the program doesn’t manage to group the whole string here as often as it

did in y k (74% of the time during the 200 runs here versus 93% of the time in y k). The

bar graph also shows th a t Copycat gets a variety of low-frequency fringe answers, reflect

ing various parts of the target string that were grouped and seen as corresponding to the

“rightm ost letter” . All the fringe answers except y k lm n o d have this property. As will

be discussed in the next chapter, this is one of the program ’s problems: when given long

strings, it occasionally makes small groups and does not merge them together in to larger

groups.

In the survey on people, 10 subjects answered this problem , and the results were much

the same as those on the original problem, w ith 8 y k lm n o q ’s, 1 y k lm n o d , and also 1-3

instances each of a few answers involving descriptions Copycat cannot make, such as “third

le tte r” or “rightm ost le tte r of each group of three” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

Variant 2: a b c =» a b d , x lg => ?

197

Problem: abc —> abd, xlg
Total Runs: 200

2 1
xld ylg

Av.Ttap: 56 At .Tn p : 71

In this variant, there is no relational structure in the target string. As can be seen

from the bar graph, this results in higher average tem peratures for all the answers, but the

“Replace rightmost letter by successor” answer (x lh) still wins by a landslide, since this

rule is very strong compared to “Replace rightm ost le tte r by D ” or “Replace C b y D ”, and

trium phs even a t these relatively high tem peratures. The answer x ld has roughly the same

proportion of instances here as ijd had in the original problem. Here there is also a strange

answer, y lg . th a t came from a rightmost => leftmost m apping between the c and the x

(strange answers like this one are more likely here than in ijk because in this problem the

tem perature tends to stay much higher than i t does in ijk).

Even though the average tem peratures are higher in this variant, there is not a large

difference between the tim e taken by Copycat to get an answer to this problem and to ijk:

th e average num ber of codelets run in y k was 290, and here, 332. This is because (as was

described in Chapter 3), when the program “senses” th a t there is probably no structure to

be found, as in the target string here, it is more willing to give up and to give an answer

even though the tem perature is high.

In the survey on people, 10 subjects answered this problem , and the results are again

much the same as those on the original problem, with 10 x lh ’s and 1 x ld .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Variant 3: abc => abd, xcg => ?

Ar.Toap: 43

Problem: abc —> abd, xcg —> ?
Total Runs: 200

s 1

xdg xcd
Ar.Teap: 53 Av.Taip: 46

This variant is similar to Variant 2, but here the target string contains a c, so there

should be more pressure than in the original problem to describe the a b c => a b d change

as “Replace C b y D ”. This pressure did cause the program to construct this rule and get

answer x d g on five out of 200 runs (this rule was not used even once in 1000 runs on ijk,

though it is possible in principle). The presence of a c in the target string here makes the

rule “Replace C by D ” stronger than the rule “Replace rightmost letter by D ”, even though

the former rule contains descriptors of lesser conceptual depth (i.e., C versus rightmost).

There are several reasons why the answer x d g does not show up even more often: (1) the

C=> Ccorrespondence, though fairly strong, is still quite a bit weaker than the rightmost =>

rightmost correspondence (since the latter has greater conceptual depth); (2) in addition,

the C =► C correspondence has to fight against the strong “Replace rightmost by successor”

rule, which creates pressure for the c in a b c to correspond to the rightmost letter of xcg

rather than to the c in xcg; and (3) the C =» C correspondence prevents the b from

m apping onto anything in the target string, whereas the rightmost => rightmost view allows

a correspondence between the two strings’ respective middle letters.

In the survey, 33 subjects answered this problem. As was the case for Copycat, the

results from people show the pressure of the c in the target string: here there were 4 x d g ’s,

reflecting the rule “Replace C by D ”y whereas there was only one ijk given for the original

problem, which I am not even sure reflected th a t rule. It seems that in this context, people

(like Copycat) find “Replace C b y D ” to be stronger than “Replace rightmost letter by D ”:

the answer x c d was given just twice here. The answer x c h was given 29 times, showing that

even under these pressures, most people, like Copycat, still considered the rule “Replace

rightmost letter by successor” to be the most immediate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

Variant 4: abc =»• abd, abed => ?

184

12

Problem: abc —> abd, abed —> ?
T ota l Runs: 200

4

abca
Av.Taap: 17

abdd
Av.TtBp: 30

abed
Av.Ttap: 32

Here there is a stronger conflict—the very same three letters appear in the initial and

target strings, so it is tem pting to map a to a , b to b , and c to c, and to answer a b d d .

This additional pressure for the “Replace C by D ” answer is reflected in the bar graph;

it was given 12 out of 200 tim es, more often than in the previous two variants. B ut the

same pressures discussed for those variants also come up here, as well as the strong pressure

to see the initial string and target string m ap on to each other as wholes, since both

can be perceived as successor (or predecessor) groups. The result is a still overwhelming

predom inance of the “Replace rightm ost letter by successor” answer, abce . There are also

4 instances of the “Replace rightm ost letter by D ” answer, yielding (coincidentally) a string

identical to the target string (Copycat doesn’t notice this).

In the survey, 18 subjects answered this problem. As was the case for Copycat, the

results from people seem to reveal pressures resulting from the presence of instances of

A , B, and C in the target string: here there were 7 a b d d ’s. However, I can’t be sure

of this, since I don’t know whether people were using the rule the rule “Replace C by

D ”, “Replace third letter by successor” , or both (one subject specified both rules for this

answer). The “Replace rightm ost letter by successor” answer a b c e was (as for Copycat)

the m ost common; it was given 14 times. The answer a b e d was also given once, though

I don’t know for sure what the justification was. Two other answers, a b d e and a b e f ,

were each given once. Both reflect the rule “Replace the third and following letters by their

successors” , interpreted in different ways.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

Variant 5: abc =» abd, cde =» ?

Problem: abc —> abd, cde —> ?
Total Runs: 200

In this variant, as in \jkT the target string can be perceived as a successor (or predecessor)

group, bu t there is a C is on the left, which generates a bit more pressure than in the previous

variant for the program to make a c -c correspondence, since it would have both a C => C

and a rightmost => leftmost concept-mapping. If this correspondence is made, then there

is considerable pressure to map the initial string to the target string as a whole, but in

opposite spatial and alphabetic directions, yielding answer b d e . This pressure is reflected

in the bar graph: although most of the tim e the program answers c d f (“Replace rightmost

le tte r by successor”), there are also a fair number of b d e answers. The average tem perature

for these is roughly the same as for cdf: even though rightmost =}► leftmost and successor =>

predecessor slippages have to be made in order to get b d e , the strength of the C => C

m apping balances these slippages, so all in all b d e is seen as a strong answer. There are

also some instances of d d e , which came either from the rule “Replace C b y Dn, or from the

rule “Replace leftmost le tte r by successor” (i.e., the c -c correspondence was made, but not

the whole-string correspondence and therefore not the successor =>• predecessor slippage).

Also there were two instances of c d d , which came from the rule “Replace rightmost letter

by D ”.

Overall, there are about three times as m any C=> C answers as in the previous variant,

illustrating the stronger pressure here to map the two c ’s. Many people (including myself)

do not feel that b d e is any more reasonable here than a b d d was in the previous variant; I

th ink th a t the program is too willing here to let many things slip for the sake of making the

C => C correspondence, and my feeling is th a t the answer c d f should be even more frequent

than it is.

Though only a small num ber of people in the survey answered th is problem, the ones

who did with me and no t with Copycat. They did not appear to feel much pressure exerted

by the C in the target string: c d f was given 10 times, and one person also gave the answer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

cd d . This is similar to the results on the original y k problem. No one gave b d e or dde ,

though I think these answers would come up if there were more subjects in the survey.

Variant 6: a b c =» a b d , c ab => ?

Problem: abc —> abd, cab —> ?
Total Runs: 200

cac ebe cabc cad
Av.T»p: 45 AT.T«ap: 47 Av.Taap: 32 AT.Ttap: 51

As in the previous variant, the target string here has a c on the left, and as in the

a b e d variant, it also contains the same letters as the initial string, so there is some pressure

to map the two a ’s, two b ’s, and two c ’s, and the pressure is increased by the additional

rightmost => leftmost concept-mapping. Moreover, the target string is not in alphabetical

order (in either spatial direction), so no whole-group m apping can be made. Thus the

C=S> C m apping in this variant does not face the strong competition from the rightmost =>

rightmost correspondence th a t existed in the a b e d variant and in the c d e variant. In both

of those, the same-direction whole-string mapping strongly supported the rightmost =>

rightmost correspondence, but there is no such support here. This can be seen in the bar

graph: there are m any more instances of the C =$■ C answer (d ab). However, in spite of

these pressures, there are overall still more rightmost => rightmost answers than C => C

answers: the straightforward cac, as well as eb e , for which the program grouped the a and

b in the target string and saw this group as the string’s “rightmost le tte r” . This shows the

strength of the more abstract rule “Replace rightm ost le tte r by successor” over “Replace C

by D ”, even in the face of much pressure for the latter.

There is one instance of the usual “Replace rightmost letter by D ” answer (cad) and

also one instance of a strange answer, ca b c , which came from a view in which the target

string was grouped as c -a b , the c being seen as a group of length 1, and the a b a group

of length 2. As in m r r j j j , the program replaced the length of the rightm ost group by its

successor, yielding c a b c , even though the pressures here do not seem to be sufficient to

w arrant building a single letter group and bringing in the notion of group-length. This

happened only once in 200 runs, b u t I think even th a t is too often; the program is a bit too

willing to perceive single-letter groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

In the survey, 10 subjects answered this variant, and it seemed to have similar effects

on the subjects to those it had on Copycat: there were 5 d a b ’s, 5 c a c ’s, and 1 cad . Thus

in this context, people (like Copycat) were much more likely to make the C => C mapping

than in the previous variant.

Variant 7: a b c => a b d , cm g =» ?

13B

l a
cnh ding

Ar.Tnp: 42 A t .Ttap: *

Problem: abc —> abd, cmg —> ?
Total Runs: 200

dmg cod
A t .Trap: 42 A t .Tup: 45

Here there is a c on the left in the target string (in which there are no relations between

letters), but unlike in cab , there are no exact letter-category matches for the a and the b.

This increases the pressure to make the rightmost => rightmost mapping rather than the

C => C m apping. This can be seen in the bar graph, where the C =>■ C answer (d m g) is

less frequent than in the previous variant.

Eleven subjects answered this problem, and every single one of them answered cm h.

No other answers were given, though I believe that the other two answers would come up if

there were more subjects in the survey. As was the case for Copycat, people felt considerably

less pressure here than in the previous variant to map the two c ’s, though it seems that

here it was hardly felt a t all by people, whereas Copycat still gave the answer d m g fairly

often.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

Variant 8: abc => qbc, jjk =» ?

201

Problem: abc —> qbc, ijk —> ?
Total Runs: 200

Since A and Q have no relation in the Slipnet, the possible rules here are: (1) “Replace

leftmost letter by Q ”, which yields answer q jk (the only answer given by Copycat during

these 200 runs); (2) “Replace first letter [of the alphabet] by Q ”, which would yield ijk

(this rule, never used during the 200 runs, is possible only if the a is given the description

first); and (3) “Replace A by Q ”, which would also yield ijk (this rule is very weak, and

was never used in the 200 runs).

Ten subjects answered this problem. Six answered q jk , and the other four gave illegal

answers—either answers th a t involved counting long distances in the alphabet (even though

subjects had been instructed not to do so) or answers using the rule “Replace the leftmost

letter by any letter” .

Variant 9: a a b c => a a b d , ijk k => ?

115

Problem: aabc —> aabd, ijkk
Total Runs: 200

i j k l j j k k h j k k j k k k d j k k l j k d
Ar.Ttap: 11 Av.Tnp: 45 Ar.Tnf): 19 At .Tm p : 45 Ar.Tnp: 56 Ar.Tasp: 49

Here there is a double a on the left and a double k on the right, creating some pressure

for the program to see a mapping between the two double-letters, and on the basis of that

m apping, to change the leftmost le tte r i instead of the rightm ost group kk or rightmost

le tte r k. The i could be changed in two ways: either by replacing it by its successor (jjkk)

or, based on the diagonal (leftmost => rightmost) correspondence, seeing the two strings as

going in opposite alphabetic directions and thus replacing the i by its predecessor (h jkk).

Even with this pressure to change the i, the “Replace rightmost group by successor” answer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

(y ll) is still the most common answer and the “Replace rightmost letter by successor” answer

(y k l) is second, indicating the strength of the leftmost =S> leftmost, rightmost => rightmost

view, even here. However, the pressure is felt to some extent: j jk k has a good showing and

h jk k has some representatives as well (and also has by far the lowest average tem perature).

This is to be contrasted with the results on yk : in 1000 runs, the program never gave

an answer involving a replacement of the leftmost letter. The answers on the fringe here

include jk k k (which is similar to j jk k , bu t results from a grouping the two leftmost letters),

d jk k (replacing the i, bu t by a d instead of by its successor or predecessor), and the usual

“Replace rightmost le tte r by D ” answer (jjk d).

Ten subjects answered this problem. All ten gave the answer ijk l. Five other answers

were also given, each only once: ijll, j jk k , h jk k (both these “diagonal” answers were given

by the same person), ijlk (replace third letter by successor), and ik k k .1 The pressure to

map a a => k k was not strongly felt by the subjects, though this mapping did show up in

answers given by one subject (and most likely another subject as well).

Variant 10: a b c m =» a b c n , r j jk =» ?

Problem: abcm —> abcn, r i j k —> ?
Total Runs: 200

83 72

39

r i j l
Av.Tnp: <4

s i jk r jk l r i jn r i j k q ijk r lk l
Av.Tnp: <8 Av.Tnp: SO Av.Tnp: 85 Av.Tnp: 79 Av.Tnp: 89 Av.Tnp: 81

Here, an extra, unrelated letter is added on at opposite ends of the initial and target

strings. This creates pressure for the program to map the two successor (or predecessor)

groups, a b c and ijk , generating a leftmost => rightmost slippage, which in turn generates

a rightmost => leftmost slippage, lobbying for the answer sijk . Copycat gave th a t answer

almost as often as it gave rijl, which is based on the straightforward “Replace rightmost

1 I am not sure w hat the justification was for ikkk , but it very likely was the following:
make the diagonal m apping between the groups a a to the group kk , and the opposite
diagonal mapping between the groups b e and y . Then m ap the rightmost letter of b e (the
c) to the rightmost le tte r of ij (the j) , and replace it by its successor, yielding the answer
ikkk . The current version of Copycat could not get this answer because it is not able to
make descriptions such as “rightmost le tte r of leftmost group” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

letter by successor” rule. I t also answered r jk l a fair am ount of the tim e, based on seeing

the group y k as the “rightm ost element” of the target string, and replacing it by its “suc

cessor” . I don’t think m any people would give this answer (this variant was not included

in the survey). There are also four fringe answers. One of them —q y k —was unexpected,

but actually seems to me quite reasonable and even clever: the diagonal group => group,

leftmost =£• rightmost correspondence caused the two groups to be seen as going in oppo

site directions, generating a successor => predecessor slippage; thus, the leftmost le tte r was

replaced by its predecessor.

In this problem, people might describe the a b c m =>• a b c n change as something like,

“Replace the only letter not in a group by its successor” . This, I think, is a quite intelligent

way to see the change, bu t Copycat is not presently able to make such a description.

5.3 V a r ia n ts o f “ a b c =* a b d , iy jk k =► ?”

T he bar graph for “a b c => a b d , iy jk k => ?”

603 Problem: abc —> abd, i i j jk k —> ?
Total Runs: 1000

Av.Tnp: 21
i i j j k l i i j j k d i i j j d d i i k k l l l i j k l l l j k k l l i i j j k k l i j d d d

Av.Tnp: 47 Av.Tnp: (2 Av.Tnp: 41 Av.Tnp: 44 Av.Tnp: 44 Av.Tnp: 43 Av.Tnp: (2 Av.Ttap: 46

Variant 11: a b c => a b d , hh w w q q => ?

143 Problem: abc —> abd, hhwwqq —> ?
Total Runs: 200

hhwurr hhtreqr hhwwdd U m r r tihMwqd
Av.Tnp: 43 Av.Tnp: 46 Av.Tnp: 47 Av.Tnp: 41 Av.Tnp: 74

Here there is no successor structure unifying the groups in the target string, so, unlike

in “a b d =► a b d , iy jk k =>• ?” , the initial and target strings cannot be m apped on to each

other as wholes. This difference is reflected in the results on this variant: Here, the ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

l a p l i c i l > t U f - c » t * t » r r •£

---->

---->
J U p la c a l « t t * r - c t t « 9 « i7 « f

i t f a r t 1242

Figure 5.1: The final configuration of the W orkspace on a run leading to
the farfetched solution “a b c => a b d , h h w w q q => h h x x r r ” .

of “Replace rightmost group by successor” answers (h h w w rr) to “Replace rightmost letter

by successor” answers (h h w w q r) is less than three to one, compared with an almost five

to one ratio of i i j j l l ’s to i ij jk l’s in the original problem. This shows th a t even though the

letter =>■ group m apping is stronger than the letter => letter mapping in both problems, the

whole-string mapping in the original problem serves to further support the letter =>• group

view.

Here there are also the usual “Replace rightmost group [or letter] by D ” answers (hh -

w w d d and h h w w q d), and also a ridiculously farfetched answer, h h x x r r , based on assign

ing lengths of 2 to the groups in the target string, grouping the w w and q q groups into a

single group (solely on the very flimsy grounds th a t they have the same length), viewing

th a t single group as the object corresponding to the rightm ost letter in a b c , and replacing

it by its “successor” . The final configuration of the Workspace on one of these runs is shown

in Figure 5.1. Note the three levels of grouping in the target string, and the m apping of

the c onto the “group” w w qq.

The fact th a t such an answer could be constructed two tim es out of 200 dem onstrates

some problems with program: perceiving a sameness relation between two groups of the

same length (not to mention a higher-level group based on th a t sameness relation) is very

strange and unhumanlike, and such behavior should be suppressed in Copycat. It would

have been easy to explicitly prohibit this behavior (e.g., we could explicitly forbid sameness

bonds between groups), but such an ad hoc prohibition is not in the spirit of this project.

R ather, the prevention of such behavior should arise naturally from more general perceptual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

mechanisms in Copycat. An ad hoc solution would only serve to cover up an interesting

and unexpected way in which the program went wrong. Instead, displaying the farfetched

answers Copycat occasionally gets is much more instructive and interesting for two reasons.

F irst, these answers point out ways in which the program is lacking as a model of human

perception, and second, since these answers are so unexpected, they often bring up deep

issues in perception that we might not have thought of otherwise. For example, a person

would never perceive hhw w qq in the way Copycat did in Figure 5.1. W hy not? And

how do people manage to avoid such bizarre ways of looking at situations? Unexpected

behavior like this on the part of the program helps make it clearer ju st how difficult it is to

understand the mental mechanisms th a t we are investigating.

Seventeen subjects answered this problem, and the results were not very different from

those on “a b c => a b d , iijjk k => ?” . The answers h h w w rr and h h w w q r were slightly

closer in frequency than the corresponding answers were in the original problem (11 to 8

here versus 13 to 8 there), but there were not enough subjects to allow one to know if this

difference is significant. Here, as in the original problem, people gave a number of answers

th a t involved parsing the target string as two groups of three letters, or replacing the third

le tte r of the string.

Variant 12: a b c => a b d , lm fgop => ?

106

Problem: abc —> abd, lmfgop —> ?
T o ta l Runs: 200

lmfgoq
Av.Tnp: SI

lmfgpq lmfqod lmghpq lmfgdd
Ar.T««p: 47 Av.T*«p: 59 A t .T up: 52 Av.Tnp: 47

Here, we have three successor groups (or predecessor groups) rather than three sameness

groups making up the target string. The former are considerably weaker than the latter,

since successor and predecessor bonds are intrinsically weaker than sameness bonds.3 Thus

tl*e program is less likely to build the three target-string groups here than it was in iijjkk .

3 This intrinsic difference is meant to reflect the psychologically real difference (in the
real world) between the strength of sameness bonds—as well as the speed at which they are
perceived—as opposed to any other kind of bonds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

The bar graph shows th a t this is indeed the case: here the “Replace rightm ost le tte r” answer

(lm fgoq) is more frequent than the “Replace rightmost group” answer (lm fg p q , though

the frequencies and average final tem peratures are close. A more detailed statistic makes

this difference even clearer: for this variant, the program constructed all three target-string

groups only 49% of the time, versus 91% of the time on iy jk k . Here there are also some

instances of “Replace rightmost letter [or group] by D ” as well as a single instance of the

farfetched lm g h p q , which resulted from a set of events similar to those th a t gave rise to

h h x x r r in the previous variant.

Twenty-one subjects answered this problem, and as was the case for Copycat, the ratio of

“Replace rightmost letter” answers to “Replace rightm ost group” answers was much higher

than in the original problem. The answer lm fg o q was given 14 times, and two “Replace

rightm ost group by successor” answers, lm fg p q and lm fg q r (the la tte r of which Copycat

cannot get), were given two times each. There were also three instances of answers involving

the notion of “third letter in the string” , and one instance of lm fg o p , in which nothing was

changed, though I am not sure what the subject’s justification was.

Variant 13: a b c =» a b d , lm n fg h o p q =» ?

101

Problem: abc —> abd, lmnfghopq
Total Runs: 200

lmfghpqr
Av.Trap: 46

la n fg h o p r lm fg h o q r lan fg h o p d la n fg h d d d lw ifg h o p q
Av.Tnp: 54 Av.Tnp: 45 Av.Tnp: 51 Av.Tnp: 49 Av.Tnp: 54

This variant is the same as the previous one, except th a t the lengths of the groups in

the target string are each longer by one. Since the strength of a group is a function in

p a rt o f its length, it is more likely th a t the groups will be built here than in the previous

variant. This is reflected in the bar graph: here, the “group” answer lm n fg h p q r is more

frequent than the “letter” answer Im n fg h o p r, though again, they are fairly close. Here

th e program constructed all three target-string groups 63% of the tim e, as opposed to

49% of the time in the previous variant. One of the other answers here (lm n fg h o q r)

reflects Copycat’s perennial grouping problems (only the two rightmost letters of o p q were

grouped), two answers come from replacing the rightm ost letter or group by d ’s, and the

answer lm n fg h o p q resulted from the rule “Replace C b y D ”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

Ten subjects answered this problem. The “le tte r” answer lm n fg h o p r was given 7 times

and the “group" answer lm n fg h p q r was given only once. The answer lm o fg io p r , in

which the rightmost le tte r of each group was replaced by its successor, was given 7 times.

Copycat cannot get this answer, but it is, like lm n fg h p q r , a “group” answer, and its

frequency indicates th a t people were perceiving the three groups here more readily than

in the previous variant; there, no one gave the corresponding answer ln fh o q . So in this

sense, this variant affected people and Copycat in a similar way: the ratio of “group”

answers to “letter” answers was higher here than in the previous variant. (People also gave

4 instances of answers involving changing either the third le tte r of the string or the third

and all following letters.)

Variant 14: a a b b c c => a a b b c d , i ij jk k =» ?

176

1
23

Problem: aabbcc —> aabbcd, i i j j k k — > ?
Total Runs: 200

1
i i j j k l

Ar.Taap: 21
i i j j l l

Av.Taap: 45
i i j j k d

Ar.Taap: 26

Here, the groups in a a b b c c tend to map to the groups in iijjk k , and, since both strings

form successor (or predecessor) groups a t the group level, the two strings tend to map on

to each other as wholes. All this serves to prevent the rightm ost letter in a a b b c c from

m apping onto the rightm ost group in iu jk k , which prevents answer iy jll from being given

very often.

The same pressures were felt by the 10 subjects who answered this problem: all of them

gave the answer iijjk l, and no other answers were given.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

5 .4 V a r ia n ts o f “ a b c =*■ a b d , k ji =» ?”

The bar graph for “a b c =» a b d , k ji =» ?”

547

Problem: abc —> abd, k ji
Total Runs: 1000

is

— > ?

Kjj Iji Kjd dji Kji
Av.Tnp: 44 Av.Tnp: 11 Ar.T«ap: 21 Av.Tnp: 21 Av.Tnp: I f

Variant 15: a b c =» a b d , edc => ?

135 Problem: abc —> abd, edc —> ?
Total Runs: 200

61

edb odd fd c M d
Av.Tnp: 13 Av.Tnp: 3K Ay .Tm »: 23 ftv.TMp: 45

This variant is similar to the original, except now there is a c on the right, increasing the

pressure to m ake the vertical (rightmost =► rightmost) rather than diagonal (rightmost =>

leftmost) m apping. (This problem also fits in with variants 3-7 given above.) This pressure

is reflected by the high frequencies of answers e d b and e d d (representing vertical mappings)

as compared to fd c (representing the diagonal m apping). (The answer eed of course results

from one of the bad groupings Copycat is plagued with: e -dc.) In fact, in this variant,

vertical m appings make up 99% of the to ta l, versus 80% in k ji. The answer e d b is the

analog of answer k jh (fdc is the analog of Iji), and it has the lowest tem perature here.

Eighteen subjects answered this problem. Answer e d d was given 12 tim es, e d b 6 times,

and fd c 2 tim es. The proportion of vertical to diagonal mappings done by people is not

very different here from th a t on “a b c => a b d , k ji =>• ?” , where vertical-mapping answers

(k jj, k jh , and k jd) were given a to ta l of 12 tim es, and the diagonal-mapping answer (ji was

given only once. However, there weren’t enough diagonal mappings made in either case (2

here, 1 there) to draw any general conclusion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

Variant 16: abc =>• abd, cba =» ?

177

1
Problem: abc —> abd, cba —> ?

Total Runs: 200

JL 18 5
dba

Ar.Taap: If
ebb

Av.Tvap: 40
cbd

AT.Titp: 16

This is a variant of “a b c =>• a b d , k ji =>• ?” , b u t it also has some elements of “a b c => a b d ,

x y z =>■ ?” , because trying to answer the analog of k jh leads to a snag here (A has no

predecessor). The bar graph shows tha t d b a is by far the most frequent answer. Strong

pressures lobby for this diagonal-mapping: not only axe the A =» A, B =>■ B, and C => C

m appings very compelling, but also a vertical (rightmost => rightmost) m apping could lead

to the slippage successor =>■ predecessor, and then a snag. Thus d b a by far predominates.

The answer e b b corresponds to the answer k jj in the original problem, bu t e b b is much

less frequent here than k jj, because of the strong forces described above. The answer c b d

comes from the usual “Replace rightmost le tte r by D ” rule; interestingly, every instance of

it was the result of the program trying to take the predecessor of A , failing, and having to

restructure its initial interpretation of the problem. (Its low average tem perature is due to

the fact that a strong whole-string mapping was m ade on these runs.) Even though hitting

a snag is possible in this problem, the identical letter-category mappings help the program

to avoid doing so most of the time. In x y z , the program hit the snag a t least once on 98%

of the runs, but here, the program made the vertical mapping (involving a successor =>

predecessor slippage) and hit the snag only 18% of the time. This is also to be contrasted

w ith Copycat’s behavior on k ji, where the program made the vertical m apping (and got

th e answer k jh) 55% of the time.

Ten subjects answered this problem. The answer d b a was given by 7 out of 10 subjects

and e b b was given by 6 out of 10 subjects. This is to be compared w ith the frequency of

the diagonal-mapping answer to the original problem , (ji, which was given by only 1 out of

10 subjects. Thus people, like Copycat, were m ore inclined to make the diagonal mapping

here than in the original problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

5.5 V a r ia n ts o f “ a b c => a b d , m rr jj j =*• ? ”

The bar graph for “a b c =» a b d , m r r j j j => ?”

70S Problem: abc —> abd, m r r j j j —> ?
Total Runs: 1000

2 0 3

OS 39

mrrkkk
Ar.Tvip: 43

m rrjjk mrrjkk m r r jj jj mrrddd mrr j jd
At .T m p : 50 Av.T»p: 46 At .Tm p : 20 At .Tm p : 46 Av.T»p: <1

Variant 17: a b c =» a b d , m r r =» ?

6 5 2

317mm
mss mrs

A t.T m p : 4 2 Ar.Tiap: *

Problem: abc —> abd, mrr — > ?
Total Runs: 1000

16
mrs mrrr mrd mdd mrr

Ar.Tiap: 4 6 At .Tm p : 22 At .Tm p : 5 1 At .Tm p : 4 9 At .Tm p : 7 9

Here, the string is shortened to one m and two r ’s. There should be almost no pressure

here for Copycat to perceive the m as a single-letter sameness group, since there is only one

o ther possible sameness group in the target string, as opposed to two in m rr jj j . The answer

m r r r (viewing m r r as a string whose groups increase in length, and replacing the two r ’s by

three r ’s) seems to me almost completely unjustified here. The bar graph above represents

1000 runs on this problem, so it can be directly compared with the m rr j j j bar graph.

Similar to m rr j j j , the top two answers by far are m ss and m rs , though here Copycat

answers m rs significantly more often than it answered m rr j jk in the original problem,

m ostly because here, given th a t both strings consist of three letters, there is a strong set

of leftm ost, middle, and rightmost letter-to-letter correspondences between a b c and m rr ,

which wasn’t possible in m rr j j j . This view lobbies against grouping the string as m -rr and

having the c correspond to the group r r , which is necessary for the answer m ss.

Copycat answered m r r r 16 out of 1000 tim es, as compared with 39 out of 1000 times

for m r r j j j j (thus the la tte r occurred almost 2 1/2 times more often). But 16 out of 1000 is

still too high. It would be hard to find a person who would ever give this answer seriously;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

it is not justified here as m rr jj j j was in the original problem. (In the survey, all 10 people

who were given this problem answered m rs and nothing else; unlike Copycat, these people

did not seem to group the two r ’s together, 6ince no one answered m ss.) The current

version of Copycat is somewhat too willing to make single-letter groups and to perceive

relations among group lengths. However, there is a dram atic difference between Copycat’s

behavior on this variant and on the original problem: on “a b c =>• a b d , m rr j j j => ?” , the

m was made into a single-letter group on 42% of the runs (only a fraction of those runs

resulted in answer m rr jj j j) , whereas in this variant, this single-letter group was m ade on

only 4% of the runs. Since m rr is so much shorter than m rr j j j , once this single-letter

group is made, it is easier in this variant than in the original problem for the program to

build the other structures (length descriptions given to groups, bonds between the groups

based on length relationships, etc.) th a t are necessary to come up with an answer in which

group-length (rather than letter-category) is replaced. Of course there is more top-down

support in m rr jj j for all these structures, but more of them to make as well. So once the

single-letter group is m ade in m rr , there is a m uch be tte r chance (too much better) th a t

the “length” answer will be given than if the same event happens in m rr jj j .

Variant 18: a b c =>• a b d , m m r r r i iii =» ?

141 Problem: abc —> abd, m m rrrjjjj —> ?
Total Runs: 200

33
12 li

m rrkkkk —r r r j j j k aanrrjjkk -arrjk k k « M riT jjjjJ —rrrdddd
At .Tm p : 4 1 Ar.THp: 4* At .Tm p : 4 5 At .Tm p : 4 4 At .T m p : M At .Tm p : 4 f

Here the target string can be parsed as 2-3-4 rather than 1-2-3. As can be seen from

the bar graph, the 2 -3 -5 answer (m m rr r j j j j j) was given only two times out of 200 runs (1%

of the time) as opposed to almost 4% of the tim e in the original problem. This is because

the parsing based on group lengths is less likely to occur here than in the original problem:

there, the building of a single-letter group made i t more likely th a t group lengths would be

noticed in the target string, while here, since there is no single-letter group, group lengths

are noticed less often.

In the survey, 7 people answered this problem. No instances of m m rr r j j j j j were given.

The answer m m rrrk k k k was given 6 times, m m rr r j j jk 4 times, and m m rrrk k k k k (“Re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

place the rightm ost group by its length successor and its letter-category successor”) 2 times.

The last answer (which Copycat cannot get, since it is currently unable to build more than

one kind of bond between the same two objects) shows th a t a t least some people perceived

the length-sequence here, though there were not enough subjects who gave “length” answers

here or in the original problem to make a useful comparison. (There were also two instances

of “Replace third le tte r” answers.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

Variant 19: abc => abd, rssttt =» ?

731 Problem: abc —> abd, r s s t t t —> ?
Total Runs: 1000

16S
53 33

r s s t t u rttu u u r s s tu u rssd d d rstu uu r s s t t d r s s t t t t
Av.Tnp: 48 Av.TMf: 43 Av.Tnp: 46 At .Tm p : 4 9 At .Tm p : 4 f A t .T m p : CO At .Tm p : 2 0

In the target string here, there are possible successor bonds both between letter cat

egories and between group lengths, so the program should not give the length answer

(r s s t t t t) very often, because it is able to get a good letter-category answer (rssu u u);

the pressure resulting from the lack of successor bonds (as in m rr j j j) is missing here. I ran

the program 1000 times on this variant in order to show it could get r s s t t t t , but it got

it only once in the 1000 runs, to be compared with 39 instances of m rr j j j j in the original

problem. In addition, the final tem perature on r s s t t t t here is roughly the same as the

average final tem perature on rs su u u) . The other answers are similar to the answers given

in the original problem (plus a few additional answers based on strange groupings of the

target string).

Seven people answered this problem, and there was almost no difference between the

results here and on the previous variant. Answer r s s u u u was given 6 tim es, r s s t tu 3

times, and r s s u u u u once. Again, the current version of Copycat cannot get this answer,

since it is unable to build more than one kind of bond between the same two objects. The

answer r s s u u u u seems to me to be much more reasonable here than m rrk k k k is for the

original problem. Here, since there are successor relations both between letter-categories

and between group-lengths in the target string, it seems justified to give an answer th a t

takes bo th types of relationships into account, whereas th a t justification is lacking in m r r j j j ,

where there are relationships only between group-lengths, not between letter-categories.

As for the previous variant, there are not enough subjects who give “length” answers

here or in the original problem to make a useful comparison. (There were also two instances

of “Replace th ird letter” answers.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

Variant 20: abc =>• abd, xpqdef => ?

101

Problem: abc —> abd, xpqdef —> ?
Total Runs: 200

xp qafg xpqdeg xp qcdef xpqdfg xpqdad xpqdefg
At .Tm p : 45 Ar.T.ap: 53 At .Tm p : 21 At .Tm p : 54 At .Tm p : S t At .Tm p : 2 2

Here, the target string consists of successor (or predecessor) groups (rather than same

ness groups) th a t increase in length. As was pointed out in the discussion of Variant 12

above (“a b c => a b d , lm fgop => ?”), successor and predecessor groups are weaker than

sameness groups and are not built as readily. This is reflected in the bar graph, which

shows th a t the answer x p q e fg (“Replace rightmost group by successor”) is quite close in

frequency to x p q d e g (“Replace rightmost letter by successor”), indicating that on a fair

num ber of the runs the program did not build the three target-string groups. When Copycat

does build the groups and notices the relations among their lengths, there are two possible

answers th a t can be given here: if the groups are seen as right-going successor groups, then

the program answers x p q d e fg , increasing the group length to the right; if the groups are

seen as left-going predecessor groups, then the program answers x p q c d e f, increasing the

group length to the left. (Most people would opt for the former, b u t the progTam does not

have the same left-to-right bias th a t people have.) The combination of these two answers

is 3% of the to ta l versus 4% of the to ta l for m rr jj j j in “a b c =>■ a b d , m rr jj j => ?” . This

difference is not very significant, so even though the program perceives the target-string

groups less often, it gives the length answer with roughly the same frequency. I am not sure

why th is is the case.

This variant was not included in the survey given to people.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

Variant 21: abc => abd, mrrzzz =>■ ?

16* Problem: abc —> abd, mrrzzz —> ?
Total Runs: 200

is ti
mrrzzzz mrrddd mrrzzd mrrzzz nrrzzz drrzzz
AT.Ttap: 21 Ar.Tnp: 47 At .Tm p : 48 At .Tamp: 76 At .T m p : 4 5 At .Tm p : 4 3

This variant combines “a b c => a b d , m rr jj j =t> ?” with “a b c => a b d , xyz => ?” . The

point of this variant was to see if the inability of the program to take the successor of Z

would force it to notice the target-string length relations more often. As can be seen from

the bar graph, this was indeed the case: the pressure of the UZ has no successor” snag and

the resulting high tem perature m ade the length answer (m rrz z z z) by far the most frequent

one, comprising a whopping 80% of the to tal, as compared to only 4% in m rr jj j . Other

answers include the usual ones, along with a few instances of n r rz z z and one instance

of d r rz z z , which were never given in the original problem. They axe the analogs of yyz

and d y z , and come about when a first =>■ last, rightmost => leftmost correspondence is

built. (Copycat cannot get the answer lrrz z z here, since there are no relationships between

letter-categories in the target string, and thus there is no way for a successor => predecessor

slippage be made.)

In the survey, ten people answered, and this variant did not have the effect on them

th a t it had on Copycat. Not one instance of m rrzzzz was given. Instead, the subjects gave

a set of answers similar to those given on “a b c => a b d , x y z =>• ?” . All the subjects who

were given this variant had immediately before been given “a b c =>• a b d , x y z =► ?” , and

i t is likely that they were strongly influenced by their solutions to this previous problem.

I t would be useful to collect more answers from people who hadn’t seen the xyz problem

first.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

5.6 V a r ia n ts o f “a b c =>• a b d , xy z => ?”

The bar graph for “a b c =>■ a b d , xyz =>■ ?”

771 Problem: abc —> abd, xyz —> ?
Total Runs: 1000

vyz yyz dyz xyy styz yzz
At .T m p : 1 4 Av.Ttap: 44 Ar.Teip: 33 At .Tm p : 33 Av.Ttsp: 74 At .Top: 4 2

Variant 22: a b c =» q b c , x y z =» ?

999

1 1

Problem: abc —> qbc, xyz —> ?
Total Runs: 1000

qyz
At .Tm p : I t

xyz
At .T m p : 19

The purpose of this variant was to dem onstrate th a t it is not easy for the program

to make an a - z diagonal m apping based on first =>• last. As in Variant 8 (“a b c => q b c ,

ijk =>• ?”), the possible rules here are: “Replace leftmost letter by Q ”, “Replace first letter

[of the alphabet] by Q ” (possible only if the a is given the description first), and “Replace

A by Q ”. If either the first or second rule were constructed, and if a first => last mapping

were m ade from the a to the z, then the answer would be xy q . B ut in 1000 runs, Copycat

never made this mapping: 999 tim es out of 1000 it answered qyz , and once answered xyz

(“Replace A by Q ”). This shows it takes strong pressure to make the a —z diagonal mapping,

pressure th a t is present in the original problem, bu t not here.

The results from people here were almost the same as for Variant 8: like Copycat, none

of the 10 subjects given this problem answered x y q . Six answered q y z , one of those six also

answered x y z , and the other four gave illegal answers, similar to those given on Variant 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

Variant 23: rst =» rsu, xyz

1 9 5

Problem: r s t —> r s u , xyz — > ?
T otal Runs: 200

3 1 1

xyu yyz xyz *yy
At .Tm p : 22 Ar.T«»p: 1 8 At .Tm p : 5 6 A T .frBp: 3 7

In this variant, because of the lack of an a , there is no first => last m apping possible to

create pressure for a diagonal m apping between the initial and target strings. Accordingly,

the program gave the answer w yz on only 1.5% of the runs, whereas this answer was given

on almost 14% of the runs on “a b c => a b d , x y z =>• ?” . In this variant, the answer w yz

comes about solely on the basis of an unlikely rightmost => leftmost slippage (more likely

here than in most problems, due to the high tem perature resulting from the UZ has no

successor” snag, bu t still quite unlikely). This illustrates the im portant role played by the

first =>■ last m apping in Copycat’s w y z solution to the original problem.

Eleven people answered this problem, and no answers involving diagonal mappings were

given, whereas on the original problem, there were several such answers given (w yz, yyz,

d y z , and yzz). However, it is hard to compare the results from people here and on the

original problem , since there are so few subjects here compared to the 34 subjects on the

original problem . The answers here were x y y (4), x y (3), x y z (3), xzz (3), and xz (1).

Variant 24: k m t =>• k m u , x y z =>■ ?

xyu
A t.T m p : 4 9 Ar.Ttas: 49

Problem: kmt —> kmu, xyz —> ?
Total Runs: 200

Here, no t only is there no first => last m apping possible, b u t there are no successor

relations in the initial string, so the initial and targe t strings cannot be m apped as wholes.

The results are similar to those of the previous variant: on nearly every run the answer x y u

(“Replace rightm ost le tte r by U”) is given. However, there are also some instances of yyz ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

resulting from a fairly unlikely rightmost =>• leftmost m apping. Somewhat unexpectedly,

this diagonal m apping is more likely here than in the previous variant (where y y z was not

given once during the 200 runs and w y z was given only three times) since here there is no

whole-string vertical mapping between the initial and target strings. In the previous variant,

the whole-string m apping between r s t and xyz supports the vertical leftmost => leftmost

and rightmost =>• rightmost correspondences, which compete w ith diagonal correspondences.

Here, the vertical correspondences have less support, so the diagonal m apping has more of

a chance. But since no whole-string mapping can be made here, the answers w yz and

x y y are not possible. In the original problem and in the previous variant, these answers

result from a successor =>• predecessor slippage when the whole initial and target strings are

mapped onto each other in opposite alphabetic directions.

This variant was not included in the survey given to people.

Variant 25: a b c =>• a b d , glz =» ?

134

66

■

Problem: abc —> abd, g lz —> ?
Total Runs: 200

hlz
Av.Tnp: 42

gld
Av.Tnp: 49

Here there is a possible first =>■ last mapping between the a and the z, but since the

target string is not a successor group, there is no possible whole-string m apping between it

and the initial string. Thus, as in the previous variant, if the a and z are seen to correspond

here, and the leftmost letter is changed, it can only be changed to its successor. Here the

frequency of the “Replace leftmost le tter by successor” answer (h lz) exceeds th a t of the

“Replace rightm ost letter by D ” answer (g ld) by a considerable am ount, a dram atic differ

ence between the results here and on the previous variant, as well as between these results

and those on the original problem. The reason h lz predom inates here is th a t the first =►

last mapping makes the diagonal a - z correspondence strong, and, in contrast to the original

problem, this correspondence doesn’t face much competition from vertical correspondences,

since no whole-string same-direction mapping supports them . So in this case, given the

high tem perature due to the Z-snag and the intrinsic weakness of the “Replace rightmost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

letter by D ” rule, the first => last correspondence gets built more easily, and does not face

strong competition from incompatible bonds, groups, and correspondences.

This variant was not included in the survey given to people.

Variant 26: a b c =»■ a b d , cm z => ?

178

1
22

Problem: abc — > abd, cmz —> ?
T otal Runs: 200

dmz
A t.T m p : 4*

cud
Ar.Ttap: 49

This variant gives Copycat the possibility of an easy out from the impasse: if it can’t

take the successor of Z, it can resort to changing the c in the target string instead. As can

be seen in the bar graph, on most of its runs, the program either took advantage of this

escape route or avoided the snag altogether, answering d m z 89% of the tim e. This can be

compared with the previous variant (“a b c =► a b d , glz =S> ?”—which has no c in the target

string), in which a leftmost-letter-change answer was given 67% of the tim e, and with the

original problem, in which answers involving a leftmost-letter change were given only 22%

of the tim e. It is also interesting to compare this with Variant 7 (“a b c => a b d , cm g => ?”)

which is the same as this variant except th a t there, the rightmost le tte r was an instance of

G, which has a successor. There, a leftmost-letter-change answer was given only 31% of the

time. So here, given the snag and the resulting high tem perature, m apping the c ’s becomes

more compelling, even though a rightmost => leftmost slippage has to be made.

As would be expected from the results on Variant 7, the presence of the c here allowed

the program to sidestep the snag entirely on 30% of the runs and go straight to the answer

d m z , whereas on the original problem, Copycat sidesteps the snag and goes straight to a

leftmost-letter-change answer on only 0.3% of the runs.

Ten people answered this problem, but only one answered d m z , which is consistent with

the answers people gave on “a b c => a b d , cm g => ?” (Variant 7), where the two c ’s were

also unlikely to be m apped. It seems th a t most people are much less likely than Copycat

to notice superficial similarities such as th a t between the two c ’s, even when other ways of

m aking an analogy fail. However, all the subjects who solved this problem had first solved

“a b c a b d , xyz =£• ?” and Variant 21 (“a b c =► a b d , m rrz zz =► ?”), and it may be that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

they were strongly influenced by their solutions to those previous problems (the answers

given in the survey here were similar to the set given for Variant 21). Again, it would be

useful to collect more answers from people who hadn’t seen these other problems first.

Variant 27: a a b c =» a a b d , xyzz => ?

1 3 6
Problem: aabc —> aabd, xyzz —> ?

Total Runs: 200

3 7

ti 10

yyzz
At .Tm p : 4 i

wyzz yzzz xydd xyzd xyzz
Ar.Tnp: 19 Av.Ttap: 39 At .Tm p : 41 Av.Tnp: 49 At .Tm p : 57

Here, the pressure to make a diagonal m apping is increased because of the sameness-

group => sameness-group mapping between the A and Z groups. The results show that this

new pressure makes a big difference: answers involving a leftmost => rightmost mapping

(here y y zz , w yzz, and yzzz) make up 92% of the total, versus only 22% of the total in

“a b c =>■ a b d , x y z =>• ?” . It is also interesting to compare this variant with the original in

seeing how much the group => group mapping helped Copycat to avoid trying to take the

successor of Z and failing (the “snag”). In “a b c => a b d , xyz => ?” , as was noted earlier,

th is snag is very rarely avoided: in 1000 runs, only 2% of the answers were gotten without

first running in to the snag (most of these runs resulted in answer x y d) , and there were

an average of 9 snags per answer (as mentioned earlier, the program got into the snag on

average 9 times before getting an answer—this loopish behavior will be discussed further in

the next chapter). In this variant, Copycat avoided the snag on 20% of the runs, and the

average num ber of snags per run was 4. So the presence of the two sameness groups helps

the program considerably to avoid or get out of the snag.

I t is also interesting to compare this variant w ith Variant 9 (“a a b c =>• a a b d , Ijkk =>■ ?”).

I t should be expected th a t Copycat would get answers based on a diagonal (group => group,

rightmost =>■ leftmost) m apping here more often than it did in Variant 9, since here the

vertical m apping leads to a snag. Indeed, diagonal-mapping answers make up 92% of the

to ta l here versus only 47% of the to tal in Variant 9.

Ten people answered this problem, and it seems th a t, as was the case for Variant 9, they

weren’t affected as strongly by the group => group mapping as Copycat was. There were 2

instances of diagonal-mapping answers (yyzz and w yzz), but again it is hard to compare

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

the results from people here and on the original problem, since there were so few subjects

here compared to subjects on the original problem. The other answers people gave here

were xyzz (2), x y z y (2), x y y y (1), xzzz (1), x y z d (1), x y d d (1), x y z (1), and x y (1).

5 .7 S u m m a ry

The 27 variants in this chapter dem onstrate the range of Copycat’s abilities, and how

different constellations of pressures affect its behavior. O f course, many more variants

could have been included, but the ones given are enough to give the reader a good sense of

the program ’s behavior and “personality” .

I t may seem to the reader th a t what Copycat does on m any of these variants is simply

w hat one obviously should do, given the pressures th a t are present. But this is precisely

the best argum ent for the model’s plausibility: it is flexible enough to to adapt to all these

different situations and to act in appropriate ways. Copycat also is able in some cases to

make analogies th a t are not a t all obvious, and th a t dem onstrate a fair degree of insight.

The other side of the coin, of course, is represented by the bad analogies th a t the

program makes, which reveal its internal flaws and weaknesses. B ut they also dem onstrate

th a t Copycat has the potential to get farfetched answers—a potential th a t is essential for

flexibility—and yet manages to avoid them almost all the tim e, which demonstrates its

robustness.

Copycat’s performance on the variants to the original five problems demonstrates the

program ’s robustness and flexibility as it is “stretched” ; it shows how well the program

continues to perform as it is pulled away, little by little, from the most central problems

th a t it was deliberately designed to solve. The program was not designed to work specifically

on these variants; in fact, in almost every case, the program was not tested on the variants

until after it had been completed. Copycat’s performance on these variants thus gives

evidence for the generality of the mechanisms th a t we are proposing and modeling.

This chapter, in dem onstrating the range of Copycat’s intelligence (as well as the ways

in which it lacks intelligence), has expanded on C hapter 4 in addressing the AI criteria

for judging this project. I would argue as well th a t these dem onstrations of the program ’s

flexibility also address to some extent the psychological criteria, since the extent to which

the program performs with flexibility over a range of different situations and demonstrates

its ability to deal with general issues in perception and analogy-making—the extent to

which it dem onstrates th a t it has human-like concepts—lends plausibility to it as a model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

of some central aspects of hum an intelligence.

5 .7 .1 S u m m a ry o f t h e C o m p a riso n s W ith P e o p le

The results of the survey given to people serve two purposes: they show how well Copycat

matches people in the range of answers it gets to various problems, and also to what extent

Copycat and people are similarly affected by variations in pressures.

C o m p a riso n s W ith P e o p le o n R a n g e o f A n sw ers

The survey produced a fairly comprehensive list of the answers given by people to many

of these letter-string problems (although on other problems there were too few subjects to

get a complete range). Copycat is able to get a large num ber of these answers: it can get

about half of the answers people give overall, and it can get almost all of the answers given

by three or more people. Most of the answers Copycat misses fall into three main classes:

1. Answers involving descriptions o f the numerical position o f letters in the target string.

(E.g., “third le tte r” , “leftmost two letters” .) For example, some people gave answers

such as “a b c => a b d , iftjkk => iik jk k ” (“Replace th ird letter by successor”) or

“a b c =*► a b d , i ij jk k => iikk ll” (“Replace all letters after the leftmost two by their

successors”). Copycat is currently unable to make such descriptions; it does not have

concepts such as “th ird” or “leftmost two” .

2. Answers involving groupings not based on bonds between letters. For example, several

people answered “a b c => a b d , m rr j j j => m r r jk k ” , parsing the target string as m r-

r j- jj based on pressure to see three equal-length elements, as in ab c . Copycat is

currently unable to group letters unless there is a bond between them.

3. Answers involving descriptions o f letters with respect to groups. For example, several

people gave the answer “a b c => a b d , lm n fg h o p q => lm o fg io p r” , using the rule

“Replace the rightm ost le tte r of each successor group by its successor” . Copycat is

currently unable to make descriptions such as “rightm ost le tte r of successor group” .

All of these discrepancies point to abilities th a t Copycat lacks. Giving Copycat these

abilities would involve extending the description-making and grouping mechanisms th a t the

program already has. Making these extensions would be a worthwhile direction to take in

fu ture work on th is project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

There were also other answers given by people th a t Copycat is unable to get, but they

are harder to classify* In particular, some of the answers given by people to the problem

“a b c =» a b d , xyz => ?” involve concepts and intelligence far beyond Copycat’s. For

example, a very common answer is xy , for which people use imagery such as “the z falls

off the edge of the alphabet” , making an analogy between the edges of the linear alphabet

and the edges of a cliff off of which things can fall. Copycat, of course, has no such imagery

(it has no imagery at all, unless knowledge such as “le tter sequences are similar to number

sequences” , or “left-going is similar to right-going” could be be counted as a primitive form

of imagery). People also sometimes answer xzz, reasoning th a t if you can’t change the

rightmost letter, then the next best thing is to change the next-to-rightmost letter, or xyy ,

reasoning that if you can’t take the successor of the rightmost letter, then the next best

thing is to replace it by its predecessor. These slippages do not come from correspondences

with anything in ab c ; such slippages are made only because the analogy-maker cannot do

the desired thing and thus does something close to it. Copycat currently cannot make such

slippages, though I believe th a t this is a very im portant ability for general intelligence,

and giving such an ability to Copycat would make it a much more flexible program. This,

again, is a topic for future research. A third answer people occasionally give (jestingly) is

a b d —th a t is, “Replace the entire string, whatever it is, by a b d ” . Even though this answer

is given only in jest, the fact th a t it is given a t all shows th a t people are able to describe

the a b c =s> a b d change in th a t way. Copycat ideally should be able to come up with such

a rule in principle, though in practice its construction should be extremely unlikely.

People also gave answers th a t dem onstrated more flexible views of the notion of succes-

sorship than Copycat has. For example, one person in the survey answered “a b c a b d ,

lm fgop =$■ Im fgq r” , seeing q r as the “successor” of the group o p . Copycat currently can

only give p q as the successor of o p . Also, one person in the survey (and a number of

people in more informal surveys) answered “a b c a b d , r s s t t t =>• r s s u u u u ” , replacing

the rightmost group by both its alphabetical and numerical successor. Again, this seems

to me to be a very good answer to this problem since r s s t t t has both alphabetical and

numerical successorship relations, bu t Copycat is currently able to construct only one bond

between two given objects in a string (e.g., it cannot build both length and letter-category

successor bonds simultaneously). Extending Copycat’s bond-building capabilities in this

way is another topic for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

Copycat also gives a number of answers th a t people never give. These fall into three

main classes:

1. Bad-grouping answers, such as “a b c => a b d , iijjk k => iijk ll” .

2. Answers involving unmotivated slippages, such as “a b c => a b d , y k => i jj” , which

was based on a view in which a correspondence involving the slippage successor =>

predecessor was made without sufficient reason.

3. Answers based on unmotivated uses o f group lengths. These include “a b c ^ a b d ,

h h w w q q => h h x x r r” (Variant 11) as well as “a b c => a b d , c a b => c a b c ” (Variant

6) and “a b c => a b d , m rr => m r r r ” (Variant 17). All these answers were discussed

earlier in this chapter.

These are the classes of unrealistic answers that came out of Copycat’s performance

on the letter-string problems discussed in this and the previous chapter. If more problems

were added, other such classes would likely become apparent. The answers th a t Copycat

gets bu t th a t people never get illustrate certain problems with the model (some of these

will be discussed in the next chapter). It is encouraging, though, th a t these are always

fringe answers produced very rarely by the program, showing th a t even though it has the

capability to produce them , it avoids them almost all of the time.

I did not include “frame blend” answers, such as “a b c => a b d , xy z => d y z” , in the

three classes given above. It is true that no one in the survey gave this particular answer,

but people did give answers th a t involved similar (though perhaps less farfetched) kinds of

frame blends. Moreover, people have proposed dyz and other such answers in jest, which

means th a t they do actually come to mind. Thus it is desirable th a t Copycat have the

ability to get such answers, though, as with the other fringe answers, it is also desirable

th a t it not get them very often.

C o m p a riso n s W i th P e o p le o n E ffec ts o f V a ria tio n s in P re s s u re s

The point here was, again, not to compare the frequencies of various answers people gave

with the frequencies of various answers given by Copycat, but rather to see if variations in

pressures caused similar shifts in frequency of the types o f answers given by people and by

Copycat. For example, the people in the survey and Copycat both were more likely to give

answers involving a C=> C correspondence in Variant 6 than in Variant 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

The overall results here were mixed. Of the 27 variants, 23 were included in the survey

of people. On 11 out of the 22 problems, people seemed to feel the effects of the variations

in pressures similarly to Copycat (these were variants 1, 2, 3, 4, 6, 8, 12, 13, 14, 16, and

22). On 7 out of 22, there seemed to be significant differences between the effects on people

and on Copycat (variants 5, 7, 9, 17, 21, 26, and 27), and for the o ther 5 (variants 11, 15,

18, 19, and 23), there were not enough subjects giving a particular type o f answer (e.g., a

“diagonal-mapping” answer or an answer tha t involved relations between group-lengths) in

order to compare with subjects giving th a t same type of answer in the original problem.

The main differences between the effects on people and on Copycat were:

• People were less likely than Copycat is to make mappings between two objects on the

basis of their letter-categories. For example, on Variant 5 (“a b c => a b d , cd e => ?”),

people were much less likely than Copycat to map the two c ’s.

• People were less likely than Copycat to perceive or make mappings between groups.

This difference was d ea r in the responses to Variant 17 (“a b c => a b d , m r r => ?”): in

the survey, no one gave the grouping answer m ss. This difference was also seen

in the responses to Variant 9 (“a a b c => a a b d , ijk k => ?”) and to Variant 27

(“a a b c => a a b d , xy zz => ?”), in which very few people made the group => group,

leftmost => rightmost mapping, thus changing the leftmost rather th an rightmost let

ter of the target string. Copycat was more likely than people to m ake this mapping.

However, it may be th a t many people would have preferred this m apping if they had

seen it. People often find an answer compelling once it is pointed out to them , even

if they themselves did not think of it (for instance, this is the case for many people

with the answers “a b c =*>■ a b d , m r r j j j =s> m rr i i i i” and “a b c => a b d , x y z =>• w yz”).

The results of a survey asking people to rate different given answers to the five target

problems is given in Appendix D; it would be useful to indude the variants discussed

in th is chapter in future such surveys of people.

• People were less likely than Copycat is to notice successorship among group lengths,

even when they were faced with an impasse, as in Variant 21 (“a b c => a b d , m r-

rzz z => ?”). Again, it may be th a t once this property was pointed out to people,

m any would find it compelling, bu t it seems not to come to mind for m ost people

when they are solving such problems themselves.

As would be true for any restricted domain, people’s answers here m ight be influenced by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

a large num ber of factors (e.g., previous problems they solved, extraneous knowledge about

letters and letter-strings, assumptions about w hat they are “supposed” to answer) th a t do

not influence the program, and for this reason there is some difficulty in interpreting the

results of these comparisons. Also, Copycat has its own biases, and is not meant to match

the average behavior of a population of people; ra ther, it is m eant to model something more

akin to a single individual, who has their own individual biases. For example, Copycat may

be more inclined than most people to notice groups in a string, but this is not a bad thing if

th is bias is not an implausible human one. Also, Copycat may be more persistent and patient

than most people in exploring possible ways of solving these letter-string problems; most

people tend to give up after a short tim e, w ithout thinking very hard about the problem.

Again, Copycat’s behavior is not implausible for a person, though it might not m atch

th a t of the m ajority of people. Ideally, Copycat is m eant to produce not ju st reasonable

behavior, bu t also insightful behavior, and it thus it should get answers (e.g., “a b c => a b d ,

m r r j j j => m r r j j j j”) th a t very few people come up with, bu t th a t m any people a t least

recognize as reflecting an insightful and flexible use of concepts.

These comparisons have given some evidence for the program ’s plausibility, to the extent

th a t Copycat has m atched the range of people’s answers as well as the effects of variations

in pressures on people. The comparisons have also pointed out some flaws of the program

and indicated some directions for future work on the project. However, the m ain criteria

for judging the success of the program should be those given a t the end of Chapter 2: Does

the program exhibit flexible and insightful behavior in its microworld? Does it act, a t least

to some degree like it has fluid concepts, as people do? Does it help us to better understand

w hat concepts are?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

SOME PROBLEMS WITH THE MODEL

The bar graphs and screen dumps in the previous two chapters have demonstrated most

of the mechanisms in Copycat, and in doing so have showed off not only the program ’s

strengths, but many of its weaknesses as well. In this chapter I will discuss some of these

weaknesses, and their general implications for models of high-level perception. The point

of th e chapter is not to detail wholly new abilities the program would need in order to

solve a wider range of problems (e.g., the ability to construct more complex rules, the

ability to build bonds between non-adjacent objects in a string, or the ability to form new

concepts, such as “double successor” , from existing Slipnet nodes), but rather, to discuss

some problems with the mechanisms the program currently has. (A discussion of possible

extensions to Copycat will be given in C hapter 9). For the purposes of this chapter I will

discuss two of the more salient and serious problems of the program : problems concerning

top-down forces and focus of attention, and problems concerning self-watching.

6.1 Problems with Top-Down Forces and Focus of Attention

Top-down (expectation-driven) forces are an essential part of perception in general. This

po in t is brought home very clearly by looking a t some of the difficulties Copycat has in

solving analogy problems in its microworld. One of the m ajor weaknesses of the program as

it now stands is tha t top-down pressures in the system are often not strong enough. This

can be seen in Copycat’s performance on problems involving long strings. For example,

consider the problem “a b c =S> a b d , y k lm n o p =s> ?” (Variant 1 from the previous chapter).

Here, once the notion of successorship (or equivalently, predecessorship) is deemed to be

highly relevant, top-down forces should take over almost completely and very quickly build

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

— >

— >

■•pj
furl 411

Figure 6.1: A “bad-grouping” answer.

successor bonds throughout the target string. As has been dem onstrated, such forces exist

in Copycat, but a t present they are not strong enough. Sometimes successor bonds are

built too slowly, and groups are formed out of chains of bonds th a t cover only part of the

string. Figure 6.1, which shows the final configuration of the Workspace from a run on this

problem, illustrates a case where this happened.

As can be seen in the figure, the target string has been divided into three separate

successor groups (y k -lm n -o p) instead of one successor group comprising the whole string.

W hat happened here was th a t successor bonds along the edges of the string were built fairly

quickly, and then these bonds were grouped, leaving the middle letters out. Only later were

bonds built in the middle, and a separate middle group was built out of them. In many

cases, a single whole-string group will successfully com pete against smaller groups such as

these, b u t in this case that d idn’t happen, and the program answered ijk lm n p q , replacing

the rightm ost group of two by its “successor” .

The results of similar bad groupings were seen in some of the bar graphs presented

in the previous two chapters. For example, on the problem “a b c => a b d , i jjjk k => ?” ,

the program came up with several bad-grouping answers. Screen dum ps showing the final

Workspace configuration for two of these answers are given in Figures 6.2 and 6.3.

In Figure 6.2, the program never grouped the two j ’s, and instead built successor bonds

from the group I to the leftmost j and from the rightm ost j to the group K . This led to a

parsing of the target string as two higher-level groups: I-j and j-K . T he c was then mapped

onto the rightmost of these two groups, all of whose letters were replaced by their successors

in the answer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

Ityiiw l<tUr-«tUftrT of

---->
RopliCB l«tUr>nt«fai7 if

00 fort 1005

Figure 6.2: Another bad-grouping answer,

kplici lottor-cotofory of it lottor fcy

---->
| toptm lo ttr-cotof ry of r»ootlot->lot—

lo t-:

Figure 6.3: A th ird bad-grouping answer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

In Figure 6.3, the program never grouped the two i ’s, and instead parsed the string

as i— i-J-K . Thus a t the top level the string was seen as consisting of two elements, the

leftmost letter i and the group U K . The c was seen to correspond to the rightmost element,

the group iJ K , all of whose letters were replaced by their successors in the answer. This

answer, even more than the previous two, is extremely farfetched and unhumanlike.

One problem seems to be that Copycat’s top-down codelets are too global: they are

not targeted specifically enough. A top-down successor-bond codelet will a ttem pt to build

a successor bond anywhere, but it seems that what is needed here is codelets that try to

build specific types of bonds in specific places. For example, in the problem above, once a

sameness bond has been built between the two j ’s, there should be top-down pressure to

try to build the same type of bond in the adjacent position, between the i’s. There should

be similar pressure in the problem “abc =S> abd, ijklmnop =>• ?” : once successor bonds

have begun to be built, top-down forces should try to build successor bonds adjacent to the

already-existing ones.

A mechanism for implementing these kinds of specific top-down pressures would enable

the program to follow what might be a more plausible route to the solution “abc => abd,

m r r j ii => m r r i i i i ” . If the R and J groups have been given length descriptions and a

successor bond has been created between their lengths, then there should be top-down

pressure to build the same type of bond in an adjacent position—namely, between the m

and the R group. This specific goal would create pressure to perceive the m as a group

of length 1, so th a t a successor bond could be built with the group of length 2. As was

seen in some of the variants in the previous chapter, the program is currently somewhat too

willing to build single-letter groups w ithout sufficient pressure. I t seems more plausible th a t

constructing such an unusual group should be done in response to a strong location-specific

top-down pressure like the one described above, ra ther than (as is currently the case) in

response to more general pressure from other groups in the string.

In general, Copycat needs a mechanism for conceiving o f a specific desired structure

(e.g., a successor bond between the group lengths of specific objects) in response to top-

down pressure, and trying to build the necessary prior structures (e.g., a single-letter group)

whose existence would make i t possible to build the desired specific structure.

P art of Copycat’s problem with interpreting long strings such as ijklmnop has to do

with the program ’s focus of attention. One problem is th a t not enough attention (in the

form of codelets) is directed to parts of the string th a t need attention (i.e., unhappy objects,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

such as the middle letters of i jk lm n o p early on in the run when no bonds involving them

have been built). In the current version of Copycat, codelets are indeed biased to choose

unhappy objects to work on (since salience depends in p a rt on unhappiness), b u t it seems

th a t this mechanism is not working well enough to avoid occasional bad groupings like the

example shown here.

Finally, Copycat has no mechanisms for either extending already existing groups (though

a large group can fight against smaller subgroups inside it) or merging two adjacent disjoint

groups. The ability to fluidly extend, merge, split, and, more generally, change the bound

aries of groups seems very im portant in high-level perception (Hofstadter, 1983), and such

mechanisms would certainly help Copycat in cases like the ones shown above.

The answers displayed in the screen dum ps above (and other strange answers) are Copy

c a t’s “misspun tales” , corresponding to the strange and humorously nonsensical stories oc

casionally generated by the program Talespin (M eehan, 1976), which contrasted with the

more coherent, meaningful stories that it was m eant to generate. As was the case for Tale

spin, Copycat’s misspun tales are often windows onto the program ’s internal deficiencies,

such as those discussed in this chapter. I t m ust be said, however, th a t not all instances of

strange answers should be considered evidence for problems with the program . As has been

pointed out, the potential availability of all paths of exploration is essential for the pro

gram ’s flexibility (and the current program ’s flexibility is limited by the fact th a t it cannot

follow all the possible paths th a t people could follow). Contrary to w hat one m ight initially

suppose, it should be considered positive evidence for the program’s strength th a t strange

answers (such as those above, or frame-blend answers such as “a b c => a b d , x y z => d y z”)

do appear occasionally, since their existence proves th a t the program is indeed capable of

following bad pathways, and yet manages to steer clear of them almost all the time. This

is the kind of behavior that we want to see in Copycat. On the o ther hand, bad-grouping

answers (and some other types of bad answers) tend to show up too often in the current

version of the program , which indicates problems (of the kind discussed above) with the

way the program is working right now.

6 .2 P ro b le m s w i th S e lf-W atch in g

An absolutely essential feature of conscious cognition, whose necessity is shown quite clearly

by some of Copycat’s weaknesses, is self-watching (sometimes called “meta-cognition”): an

ability to perceive patterns in one’s own m ental activities. In Copycat, tem perature acts as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

a prim itive self-watching mechanism, in which information about the s ta te of the program ’s

progress toward an answer feeds back into the program ’s behavior, determining the amount

of randomness tha t should be used in making decisions. However, Copycat’s performance

on certain problems makes it clear that more sophisticated self-watching mechanisms are

needed. A salient defect of Copycat is its mindlessly loopish behavior when solving the

problem “a b c =► a b d , x y z => ?” . As could be seen in the screen dumps on th a t problem,

the program returns again and again to the same state of trying to take the successor of

Z and failing. As was pointed out earlier, people too are prone to some degree of loopish

behavior, but not to the extent that it occurs in Copycat, which hits the same impasse

on average nine times per run on this problem. A normal hum an would never do this;

after two or three times they would notice a pattern , and would be able to break it. But

Copycat lacks mechanisms for forming, or remembering, any kind of high-level description

of its behavior, or of states that it has been in before.1 Such high-level pattem-recognition

mechanisms are, in effect, analogy-making mechanisms—for example, the program would

need to recognize th a t it was doing essentially “the same thing” each time it got stuck, even

though the events leading up to the impasse might be very different each time. Thus some of

the same mechanisms that Copycat uses for making analogies between letter-strings should

apply to the problem of watching and responding to its own behavior. Giving Copycat such

an ability would be an excellent topic for future research on this project. (Ideas about the

relations among self-watching, high-level pattern recognition, and creativity are discussed

in Hofstadter, 1985b.)

A nother serious self-watching problem in Copycat is finding a way to have the densities

of various types of codelets on the Coderack at a given tim e (corresponding to the various

types of structures—descriptions, bonds, groups, correspondences, rules) correspond a t least

roughly to the kinds of structures the system current needs to build (e.g., a t a given time,

the program might need more bonds to be built in order for more progress to be made).

Having too few codelets of a given type means th a t the program will often miss essential

structures, and having too many of a given type (e.g., codelets looking for bonds) causes

1 Copycat does save the exact state of the Workspace each tim e an impasse is h it, and
the tem perature remains clamped until the program decides (probabilistically) th a t new
structures of sufficiently high quality have been built, but th is is a very unsophisticated
mechanism compared to the kind of high-level pattern recognition the program needs to
apply to its own behavior in order to avoid being stuck in a loop.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

the program to waste much of its time fruitlessly exploring again and again structures that

already exist. M aintaining a proper balance in the population of codelets has emerged as

an absolutely central issue in this project. This problem corresponds to a general issue

th a t is central to high-level perception. The question is, how much time should one spend

looking for new kinds of structures (and how to allocate this tim e among the various types

of structures), and how much time should one spend concentrating on concepts th a t have

already been identified as relevant? Again, th is is the “exploration versus exploitation”

trade-off. As can be seen in the screen dumps, the proper balance of bottom-up-versus-top-

down pressures changes as processing proceeds: the program starts out being dominated by

bottom -up forces, b u t as structures are built and information is gained, processing gradually

shifts toward being dominated more and more by top-down pressures. The reason for this

is th a t as more structure is built and more nodes are activated, more and more top-down

scout codelets are posted, and they tend to have higher urgencies than bottom -up scout

codelets, and thus gradually come to dominate on the Coderack in term s of number and

urgency.

There are two balancing problems here: the balance between bottom -up and top-down

forces, and the balance among codelets looking for the various types of structures. The

m ethod just described for achieving a good bottom-up-versus-top-down balance in Copycat

works fairly well, and emerges naturally from other mechanisms in the system. However, it

proved more difficult to develop ways of m aintaining a reasonable balance among codelets

looking for various types of structures (e.g., a t a given time, should the program spend more

time looking for groups than for bonds?). In order to achieve such a balance, the system

requires self-watching mechanisms to determine what types of codelets it currently needs.

Tem perature is such a mechanism, but in the current version of Copycat, tem perature was

not enough to solve this problem of codelet balance; more detailed self-watching mechanisms

seem to be needed. In the current program, I have added a somewhat imperfect mechanism

to help achieve a reasonable balance: when an a ttem pt is m ade to post codelets (bottom-up

or top-down) corresponding to a particular type of structure (e.g., bonds), the program first

makes a rough assessment of the current need for th a t type of structure in the problem by

looking more specifically (i.e., more specifically than is done when calculating tem perature)

a t the causes of the unhappiness of objects in the problem (e.g., do many objects lack bonds

to their neighbors?). The program then decides probabilistically, based on this assessment,

whether or not such codelets should be allowed to be posted (e.g., if m any objects lack bonds,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

then it is likely th a t bond scouts will be allowed to be posted). This filtering mechanism

works fairly well, bu t it is unsatisfactory in th a t it is too global and centralized, and thus

goes against the philosophy of local and distributed processing underlying Copycat. Self

watching is essential, but it should be done in a less centralized way than in the current

version of the program.

The weaknesses discussed in this chapter are by no means the only problems with the

program; many more exist a t various levels of detail. But the problems of top-down forces,

focus of attention, and self-watching are currently the most salient and interesting problems,

and are, I think, the issues most relevant to modeling high-level perception in general. They

are the problems th a t should probably have highest priority in future work on th is project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VII

R E S U L T S O F S E L E C T E D “ L E S IO N S ” O F C O P Y C A T

In this chapter I give the results of six experiments designed to elucidate the roles played

by various aspects of the program ’s architecture. The purpose of doing these experiments

was to further illustrate how the program works and to dem onstrate the reason for the

presence of certain architectural features by showing what happens when they are “lesioned”

(i.e., removed or altered). In each experiment, the program was altered in some way, and

was then run 200 times on one or m ore of the five target problems.

7.1 E x p e r im e n t 1: S u p p re ss io n o f T e rra c e d S can n in g

Recall th a t in Copycat, a structure is built by a chain of codelets,

scout =t> strength-tester =$► builder

ra ther than by a single codelet. The purpose of this experiment was to examine the role

played by this breaking-up of the process of structure-building. For this experiment, the

usual chain was compressed into a single codelet: the program was modified so that a single

codelet carried out all three tasks (scouting out a possible structu re , testing its strength,

and if the structure was found to be strong enough, building it). T he same types of scout

codelets as in the original program were present here; the difference was th a t rather than

posting follow-up codelets, each scout carried out all three tasks.

I ran this experiment on two problems: “a b c =$> a b d , iijjk k =s> ?” and “a b c =s> a b d ,

m r r j j j => ?” .

The following bar graph gives the results for 200 runs of the original (unmodified)

program on the first problem:

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

1 5 9
Original Program

Problem: abc —> abd, i i j jk k —> ?
Total Runs: 200

i i j j k i i i j j k k i i j j d d i i k k l l

Ar.Ttap: 29 Ar.Trap: 46 Av.Taap: 62 Av.TtBp: 46 Ar.Ttip: 43

The following bar graph gives the results for 200 runs of the modified program on the

first problem:

123

h
i i j j l l i i j j k :

Av.Tvap: 33 Ar.Twp: -

Experiment 1: Suppression of Terraced Scanning
Problem: abc —> abd, i i j jk k —> ?

Total Runs: 200

i i j j k l i i j k l l i i k k l l i i j j k k i i j j k d j i j j k k i j k k l l

At . T up: 45 Av.Tup: 45 Av.Tup: 43 Av.Tup: 58 Av.Tup: 40 Ar.Ttap: SS Av.Tnp: 43

As can be seen, the modified program produces a larger num ber of badly justified fringe

answers than the original program. This is because structures are built much more quickly

in the modified version: a structure is built in one monolithic step rather than having to wait

after each separate step for the next codelet in the chain to be chosen to run. Exploration of

structures becomes all-or-nothing: if a structure is explored a t all, it is fully evaluated all a t

once, as opposed to what happens in the original program, in which the further exploration

of promising structures is given high urgency and tends to proceed quickly, while the further

exploration of weak structures is given low urgency and tends to proceed slowly. Thus in

the modified program , the parallel terraced scan of possibilities loses some of its parallel

and terraced na tu re .1

In the modified version, most weak structures still fail to pass the strength test and are

not built, bu t some, whose exploration would ordinarily be crowded out by other, higher-

1 However, it is not lost entirely: even though individual structures are no longer consid
ered and built in a parallel terraced m anner, the program still carries out a parallel terraced
scan of coherent collections of structures. Once certain structures are built (e.g., a new suc
cessor bond or a new correspondence), the resulting changes in the state of the Slipnet and
the Workspace lead to top-down codelets and new structure-strength values th a t increase
the likelihood and speed of exploring compatible and supporting structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

urgency explorations, are built nonetheless, and they then affect the building of subsequent

structures. The effects on the program ’s behavior are statistical, and can be seen in the bar

graph above. The modified program produces about three times as many fringe answers

as the original, and almost twice as many instances of iijjk l, showing that statistically

speaking, strong structures are not being built as often, and weak structures (such as those

leading to the fringe answers) are being built and are surviving more often than in the

original program.

The following bar graph gives the results for 200 runs of the original (unmodified)

program on m rr jjj:

1 4 *

O riginal Program
Problem: abc —> abd, m rr jjj —> ?

Total Runs: 200

4 1

mrrkkk
At .Tm p : 43

m rrjjk mrrjkk m rr j j j j mrrddd
At .T m p : 49 At .Tm p : 4 6 At .Tm p : 21 At . T o p : 4 5

The following bar graph gives the results for 200 runs of the modified program on this

problem:

1 2 5

Experiment 1: Suppression of Terraced Scanning
Problem: abc —> abd, m rr jjj —> ?

Total Runs: 200

mrrkkk m rrjjk mrrjkk m rr jj j j nrrddd m rrjjd
At .Tm p : 4 3 Ar.Tmp: 47 At .Tm p : 44 Ar.Twp: 11 Ar.Tnp: 43 At .T m p : 54

The results here are similar to those for iijjk k . There are about one-and-a-half times

as many instances of m r r j jk as in the original, showing th a t strong structures (such as the

k k k group) were not built as often. Perhaps m ost significantly, there are only one-fourth

as many instances of m rr i i i i as in the original. As could be seen in the screen dum ps in

C hapter 4, a careful, terraced exploration of possible structures is im portant for arriving at

this answer, and the statistics here back this up.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

7 .2 E x p e r im e n t 2: S u p p re ss io n o f B re a k e r C o d e le ts

For this experiment, breaker codelets were taken out of the program; everything else re

m ained the same.

I ran this experiment on two problems: “a b c => a b d , iijjk k ?” and “a b c =>• a b d ,

x y z

The following bar graph gives the results for 200 runs of the original (unmodified)

program on the first problem:

1 5 9

1

O rig ina l Program
Problem: abc —> abd, i i j j k k —> ?

T otal Runs: 200

3 7

i i j j l l
A T .T rap : 21

i i j j k l
At .T m p : 4 6

i i j jk k
At .Tm p : (2

i i j jd d
At .T m p : 46

i ik k l l
At .Tm p : 43

The following bar graph gives the results for 200 runs of the modified program on the

first problem:

Experim ent 2: Suppression o f B reaker C odelets
Problem: abc —> abd, i i j j k k —> ?

■ Total Runs: 200

37Hi
i i j j i i

At .Temp: 2 t

i i j j k l
At .Tm p : 4 4

i i j jk d
A r .T ia p t 46

i i j k l l
At .Tm p : 4 7

i ik k l l
At .Tm p : 43

As can be seen by comparing the bar graphs, the absence of breaker codelets had virtually

no effect on the program’s performance here. The frequencies of the m ain two answers are

the same (the exact equality is a coincidence) and the num ber of fringe answers is the same

(though the set of fringe answers is slightly different in each case). This is not surprising,

since breaker codelets, which tend to run only a t high tem peratures, do not play much of

a role in a problem like this, in which the tem perature falls fairly quickly. The average

tim e to produce an answer was roughly the same in the two cases (572 codelet steps in the

modified version versus 589 in the original).

The following bar graph gives the results for 200 runs of the original (unmodified)

program on xyz:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

146

O rig in a l Program
Problem: abc —> abd, xyz

T o ta l Runs: 200

xyd wyz yyz dyz
At .Tm p : 21 A T .T tep : 1 5 Ar.Taap: 46 At .Tm p : 1C

The following bar graph gives the results for 200 runs of the modified program on this

problem:

193 Experiment 2: Suppression o f B reaker C odele ts
Problem: abc —> abd, xyz —> ?

T o ta l Runs: 200

xyd wyz yyz
A t.T m p : 21 A t.T m p : 17 Av.Taap: 70 Ar.Ttap: 51

Here there is a significant difference in performance, illustrating the role of breaker

codelets in this problem. There are almost 7 times as many instances of w yz in the original

as in the modified version. W ithout codelets to break structures a t high tem perature, it is

extremely difficult to escape from the impasse of trying to take the successor of Z, since the

c -z correspondence is very strong and is supported by other strong structures. This is the

case even though decisions are more random at high tem peratures; thus structure-breaking

codelets are a very im portant mechanism for escaping from impasses. W ithout them , the

program ’s only escape from the snag is, in most cases, to restructure the rule from “Replace

rightm ost letter by successor” to “Replace rightmost le tte r by D ”, and to answer xyd .

Interestingly, the program w ithout breaker codelets tends to arrive a t an answer much

more quickly than the original program (1644 codelets on average versus 3218 in the origi

nal). This is because when breaker codelets are suppressed, the program does not have to

spend tim e building new structures to replace structures th a t have been broken.

7.3 Experiment 3: Suppression o f Different Conceptual-Depth Values

As was described earlier, the conceptual-depth values in the Slipnet play a number of roles.

The conceptual-depth value of a given node affects the node’s rate of activation decay, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

urgencies o f top-down codelets posted by tha t node, the strength of descriptions involving

th a t node, the probability of m aking a slippage involving th a t node, the strength of concept-

mappings involving th a t node, and the probability of a rule-building codelet choosing tha t

node as p a rt of a rule. For this experiment, all nodes in the Slipnet were given equal

conceptual-depth values (each was given a value of 50—see Appendix B for the original

values). Everything else remained the same.

I ran this experiment on “a b c => a b d , iijjk k =$> ?” and “a b c => a b d , m r r j j j =>• ?” .

The following bar graph gives the results for 200 runs of the original (unmodified)

program on the first problem:

1 5 9

O rig in a l Program
Problem: abc —> abd, i i j j k k — > ?

T o ta l Runs: 200

i i j j l l

lA T .T rap: 2 1

i i j j k l i i j j k k i i j j d d i i k k l l

At .T m p : 4 6 At .Tm p : (2 AT.Ttip: 46 At .Tm p : 43

The following bar graph gives the results for 200 runs o f the modified program on the

first problem:

E xperim ent 3: S u p p ressio n o f D i f f e r e n t C onceptual-D epth V alues
Problem: abc — > abd, i i j j k k — > ?

T o ta l Runs: 200

5 9 5 4
3 5 3 5

7 4 3 1 1 1

i i j j l l i i j j d d i i j j k d i i j j k i i i j j k k i i j k l l i i j d d d i d d d d d i j k k l l i i d d d d

At .Tm p : 3 0 At .T m p : 3 3 AT.T»p: 44 At .Tm p : 4 5 At .T m p : 5 9 At .T m p : 3 9 At .T m p : 4 2 At .T m p : 40 At .T m p : 4 2 AT.Ttap: 3 7

As can be seen from the bar graphs, making the conceptual-depth values all equal had

a dram atic effect on the program ’s performance. The m ost striking difference here is the

increase in answers derived from 'the rule “Replace rightm ost letter [or group] by D ”. This

is to be expected, since the “D ” rules axe now ju st as strong as the “rightm ost letter [or

groups rules. There are also more instances of iijjk k , based on “Replace C b y D ”, though

the to ta l num ber is still small. This rule is now ju st as strong as the other two rules, bu t the

fact th a t th e c is usually seen as corresponding to the rightm ost letter or group in the target

string prevents “Replace C b y D ” from being built very often. A rightmost => rightmost

correspondence is asserting, in effect, th a t the c should be viewed as “the rightm ost letter” ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

whereas the “Replace C b y D ” rule is asserting th a t the c should be viewed as “a C ”. These

views are incompatible, so in order to be built, this rule would have to fight with and defeat

the rightmost ^ rightmost correspondence. This puts it a t a disadvantage with respect to

the o ther possible rules.

A nother difference is th a t here there are almost twice as m any instances of answers for

which the rightmost letter, rather than the rightmost group, is replaced: this is because

the urgencies of most top-down codelets are not as high as in the original, so mutually-

supporting sameness groups are not explored or built as often or as quickly.

In general, there is less pressure from top-down codelets not only because their urgency

is lower, but also because the activation in nodes (such as sameness and sameness-group)

th a t originally had greater conceptual depth now tends to decay much more quickly (and

conversely, nodes th a t were originally of lesser conceptual depth now stay active longer)

than in the original program, so not as many top-down codelets are posted. Thus good

structures do not get built as fast, and the tem perature stays higher longer. This helps

to increase the num ber of bad-grouping answers (many of which now involve replacing the

letters in the bad group by d ’s rather than by their successors, as in the frighteningly

blockheaded answer id d d d d).

The reduced force (in term s of both urgency and number) of top-down codelets, along

with the fact th a t the tem perature stays higher longer, means th a t on average it takes the

program longer to get to an answer. The average number of codelets run in the modified

program is 743, versus 589 in the original.

The following bar graph gives the results for 200 runs of the original (unmodified)

program on m rr jj j :

141

O rig in a l Program
Problem: abc —> abd, m r r j j j —> ?

T o ta l Runs: 200

■rrkkJc m rrjjk ■ rrjkk ■ erjJJJ mrrddd
Ar.Ttap: 43 At .Tm p : 49 At .Tm p : 44 Av.TMpi 21 Ar.TMpi 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

The following bar graph gives the results for 200 runs of the modified program on this

problem:

Experim ent 3: Suppression o f D i f f e r e n t C onceptual-D epth Values
Problem: abc —> abd, m r r j j j —> ?

T o ta l Runs: 200

mrrkkk
Av.Tiip: 41

mrrddd m rrjjk m rrjjd mrrjkk mrr jdd m r r jjj
At .Temp: 41 Ar.Temp: 4 6 Ar.Teep: 4 6 At .Tm p : 4 4 Ar.Teep: 4 4 Ar.Teep: 73

The effects here are similar to those for iijjk k . Notice th a t the modified program never

once produced m rr jj j j during the 200 runs, whereas it was produced 8 times in the original

program ’s 200 runs. This shows the necessity of strong top-down forces for arriving at this

answer (strong top-down forces are needed to create a single-letter-group and to notice and

build bonds among group-lengths). Such top-down forces are significantly reduced in the

modified program.

7 .4 E x p e r im e n t 4: S u p p re ss io n o f D y n a m ic L in k -L en g th s

Recall th a t in Copycat, links in the Slipnet shrink in length when the node labeling them

is active. For example, when opposite is active, all opposite links (e.g., the link between

leftmost and rightmost) shrink. For this experiment, the program was modified so that

link-lengths were no longer dynamic: links always remained a t their original length.

I ran this experiment on three problems: “a b c => a b d , ijk ^ ?”, “a b c ^ a b d , kji => ?” ,

and “a b c => a b d , xyz => ?” .

The following bar graph gives the results for 200 runs of the original (unmodified)

)rogram on the first problem:

198 Original Program
Problem: abc —> abd, ijk —> ?

Total Runs: 200

i l l i j d i l l
Ar.TMp: I f At .Tm p : IS At .Tm p : 41

The following bar graph gives the results for 200 runs of the modified program on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

first problem:

t9 7

At .Tm p : 27

Experiment 4: Suppression of Dynamic Link-Lengtns
Problem: abc —> abd, ijk —> ?

Total Runs: 200

i j l
lAr.TMp: I t

As can be seen, the modification had basically no effect on the relative frequencies of

answers to this problem. There is a difference here, however: the modified program took

slightly longer on average to arrive a t an answer (329 versus 289 codelets run on average).

It is slower because dynamic link-lengths can act as a top-down force: when the concept

successor, say, becomes active, this causes successor links (e.g., between A and B or I and

J) to shrink, and these relationships to thus be seen as closer. This speeds up the building

of successor bonds since the bonds are judged to be stronger.

The following bar graph gives the results for 200 runs of the original (unmodified)

program on kji:

112

Original Program
Problem: abc —> abd, k ji

Total Runs: 200

R j j I d i k j d
At .Tm p : 45 Av.Tnpi 17 At .Tm p : 54

The following bar graph gives the results for 200 runs of the modified program on this

problem:

143

Experiment 4: Suppression of Dynamic Link-Lengths
Problem: abc —> abd, k ji —> ?

Total Runs: 200

k j h k j j k j d I j i
Ar.T««p: IS A t.T m p : 44 A t.T m p i 39 Ar.TMp: 29

Here there is a visible difference in the two bar graphs: the number of k jh instances

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

goes way up and the num ber of Jji instances plumm ets dramatically in the modified version.

The reason for this is as follows. The program answers k jh when it has m ade vertical

correspondences (leftmost => leftmost and rightmost => rightmost) between a b c and k ji.

As was shown in the screen dumps in C hapter 4, these correspondences force a view in

which one string is seen as a successor group and the other as a predecessor group. In this

case, when a whole-string mapping is made between a b c and k ji, the slippage successor =>

predecessor is made automatically (w ithout requiring th a t the link between successor and

predecessor already be shrunk); the slippage is forced by the whole-string mapping, and

opposite is activated only after the slippage is made. On the other hand, the answer Iji is

harder for the program (even the original version) to get. As was seen in C hapter 4, it is

produced when the program views a b c and k ji as moving in the same alphabetic direction

b u t in different spatial directions. This view produces a whole-string mapping with the

slippage right => left, which activates opposite. Only then, with links between opposite

nodes being shrunk, is it likely th a t diagonal correspondences (leftmost =>• rightmost and

rightmost =► leftmost) will be built. (These two concept-mappings, although closely related

to left => right and right => left, do not come about autom atically when the la tte r two have

been made. They m ust be made independently, although their construction is strongly

facilitated by the la tte r two concept-mappings.)

Thus the answer Iji relies on dynamic link-lengths, whereas k jh does not. The difference

is th a t the slippage needed for the la tte r (successor => predecessor) is m ade autom atically

when a b c and k ji (viewed in opposite alphabetic directions) are m apped as wholes, whereas

the slippage needed for the former (rightmost => leftmost) can be easily made only after

a succession of events has taken place: the whole-string slippage (right => left) is m ade,

opposite is activated, and links between opposite nodes are shrunk.

I t is possible th a t this asymmetry in the routes to the two answers is not psychologically

realistic, even though people tend to answer k jh more often than Iji. I t seems plausible th a t

once the slippage right =s» left is m ade, the closely related slippage rightmost leftmost

should come imm ediately on its “coattails” , not merely as a result of the activation of

opposite. However, the current version of Copycat has no mechanism implementing such a

“coattails” effect (see Hofstadter, Mitchell, & French, 1987, for a more detailed discussion

of how this effect might work in Copycat).

For this problem, the average tim e taken to arrive a t an answer was not very different in

the modified version and the original version: 375 codelets run on average in the modified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

version versus 387 in the original. The reason for this was th a t even though the modified

version is intrinsically slower (as was seen on Ijk above), it takes longer for the program to

come up with the answer Iji than k jh , so in the modified version the intrinsic slowness was

balanced by the reduction in instances of answer Iji.

The following bar graph gives the results for 200 runs of the original (unmodified)

program on xyz.

146■
Original Program

Problem: abc —> abd, xyz —> ?
Total Runs: 200

JL 33 20
1

xyd
At.Tmp: 21

wyz
Ar.T«.p: IS

yyz
At.Tmp: 46

dyz
Ar.TMp: 16

The following bar graph gives the results for 200 runs of the modified program on this

problem:

lai

1
Experiment 4: Suppression of Dynamic Link-Lengths

Problem: abc —> abd, xyz —> ?
Total Runs: 200

18

xyd
At.Tmp: 23

yyz
At.Tmp: 54

wyz
Ar.TMp: 17

Here the num ber of instances of w yz goes way down, and the num ber of instances of x y d

goes up. The answer w yz is very hard to make w ithout dynamic link-lengths. In the original

program , once the a - z correspondence—with concept-mappings first => last and leftm ost =>

rightmost—is built, opposite becomes active, making all opposite links shorter, and hence

m aking i t more likely for the c -x correspondence to be built and for a b c and x y z to be

seen as going in opposite spatial 'and alphabetic directions. W ithout dynamic link-lengths,

it is m uch harder for all these mutually supporting structures to be built, which means th a t

the unreinforced a - z correspondence is so weak th a t it tends to be broken quickly. This

is why the answer x y d is overwhelmingly prevalent in the modified program. The answer

y y z comes from building only the a -z correspondence (with slippage leftmost S rightmost),

w ithout being able to make a whole-string m apping with a su ccesso rs predecessor slippage.

As was the case for ijk , the modified program takes longer to come up w ith an answer: on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

average 4468 codelets ran here versus 3322 in the original.

7 .5 E x p e r im e n t 5: C la m p in g T e m p e ra tu re a t 100

The point of this experiment was to see the effect of a persisting high tem perature on the

program ’s performance. In this experiment, the am ount of randomness to use in making

probabilistic decisions was fixed at its 100-degree value (recall th a t at a tem perature of 100,

decisions are made with a high degree of randomness, though they are still not uniformly

random).

One problem with carrying out such an experiment is, if the tem perature is always

100, rule-translator codelets will essentially never decide that a sufficient amount of good

structure has been constructed in order to translate the rule and allow an answer to be built.

To take care of this problem, a separate value for tem perature was maintained, calcualted

as in the original program as a function of the happinesses of the objects in the Workspace.

This “real” tem perature was visible only to rule-translator codelets. For all other purposes,

the tem perature was clamped at 100.

The following bar graph gives the results for 200 runs of the original (unmodified)

program on “a b c => a b d , m rr jj j => ?” .

14#

Original Program
Problem: abc —> abd, m rr jj j

Total Runs: 200

mrrkkk
Ur.Taap: 43

m rrjjk mrr jkk m r r jj jj nrrddd
At .Tm p : 49 At .Tm p : 46 Ar.TMp: 21 Ar.TMp: 45

The following bar graph gives the results for 200 runs of the modified program on

“a b c => a b d , m r r j j j =>■ ?” . (The average final tem perature displayed here corresponds

to the “real” tem perature values that were visible only to rule-translator codelets).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

131

Experiment 5: Clamping Temperature a t 100
Problem: abc —> abd, m rr jjj —> ?

Total Runs: 200

mrrjjk
AT.T«tp: 53

mrrkkk mrrjjd mrr jkk mrrddd mrrjdd mrrjjj
Ar.Ttsp: 46 Av.Taap: 57 AT.Tnp: SO Av.Taap: 52 Av.Tasp: 47 fcr.TMp: ((

As can be seen, the modified program ’s performance is vastly different from th a t of the

original program. As was discussed in Chapter 3 and illustrated in Chapter 4, tem perature

affects almost every aspect of the program, and it can be seen from the bar graph above

th a t a persisting high tem perature tends to prevent a coherent set of structures from being

built. The answer m rr jjk dominates here, and the more structured m rrk k k is much less

likely to be given. Answers th a t were on the fringes for the original program (e.g., m rr j jd

and m rr j j j) are much more likely to be given here. Even if the program stumbles onto a

good pathway, the high amount of randomness here makes it impossible for the program ’s

resources to shift to exploring th a t pathway. The answer m rr j j j j was never given during

the 200 runs; since the tem perature stays high, the necessary top-down forces never get the

chance they need to construct the subtler structures required for this answer.

I t can be seen that the average final tem peratures for the modified program (corre

sponding to the “real” tem perature values, as described above) are all higher than the

corresponding tem peratures for the original program , reflecting the fact th a t on average,

not as much strong structure was constructed here.

Since the persisting high tem perature makes i t hard for a coherent set of structures to

be built, the modified program is much slower a t coming up with answers than the original:

on average 1130 codelets ran versus 846 in the original.

7 .6 E x p e r im e n t 6: C la m p in g T e m p e ra tu re a t 10

Here the tem perature was clamped a t a very low value (10) for all purposes except deciding

when to transla te the rule (as in Experiment 5, tem perature was calculated as usual for

use by rule-translator codelets, and the average final values of these real tem peratures are

displayed in the bar graph).

The following bar graph gives the results for 200 runs of the modified program on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“abc =► abd, mrrjjj => ?”.

210

1 2 7

n rr j jk
A r.T ta o : 5 3

mrrkkk
U -r.T «ap: 45

Experiment 6: Clamping Temperature a t 10
Problems abc —> abd, m rr jjj —> ?

Total Runs: 200

mrrjkk
At .Tm p : 48

In Experiment 5, decisions were made too randomly. Here the opposite effect takes

place: the low tem perature means that decisions are made very deterministically (e.g., a t

any tim e, the highest-urgency codelet is almost certain to be chosen next, the strongest

structure in a competition is almost certain to win, etc.), even when very little structure

has been built. Again, this has striking effects on the program ’s performance. Unlike in

the previous experiment, here the answer m rrk k k dominates, but even so, there are still

more instances of m rr jjk here than in the original. The most striking difference is the

lack of fringe answers here (though there are several instances of m rr jk k which, as usual,

results from the program ’s occasional grouping problems). Since the modified program is

now quite deterministic, weaker rules (e.g, “Replace rightmost letter by D ” or “Replace

C by D ”) never prevail. This modification makes the program quite conservative, so it

doesn’t produce as many farfetched weak answers (such as m rrd d d) , but i t also never (in

200 runs) came up with m rr jj jj , which requires the exploration of some riskier routes. The

high degree of determinism means th a t what appears to be the best possibility gets almost

all of the program ’s attention a t any given tim e, so less-obvious structures, such as single

le tte r groups, length descriptions, and bonds between group-lengths, are much less likely to

be considered in any depth. The fact th a t, a t any given tim e, the program tends to focus

alm ost all of its resources on w hat it sees as the most promising avenue turns out to be

a waste of tim e, since the program tends to explore the same strong structures again and

again. This is why there are more instances of m r r j jk than in the original program: the

program might, for example, spend too much tim e exploring again and again the possibility

of building the very strong a b c whole-string group even after it has already been built, and

never get around to building the j j j group before it decides to produce an answer.

Unlike in Experiment 5, the modified program here is much faster than the original

a t reaching an answer (468 codelets on average versus 846 in the original). One reason is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211

similar to th a t in Experiment 1: the high degree of determinism results in a quite serial

form of exploration, in which seemingly good structures are explored and built very quickly,

while seemingly weaker structures are hardly explored a t all, even at very early stages. Thus

the program doesn’t spend tim e exploring many possibilities, and can come to an answer

much more quickly. But again, the trade-off is th a t certain possibilities (such as building

single-letter groups or noticing group-lengths) are in effect completely excluded from the

s ta r t, and the program is thus liable to miss interesting but not immediately obvious ways of

interpreting the situations (as it did here). This shows the necessity for a balance between

exploitation and exploration th a t was discussed earlier; in Experiment 5, the program erred

on the exploration side, and here it errs on the exploitation side. A belief underlying this

model (and supported by the solution to the two-armed bandit problem discussed earlier)

is th a t not only is a balance needed, but there must be a smooth and gradual transition

from a more random and parallel exploration mode in early stages to a more deterministic

and serial exploitation mode in later stages when the system has more information upon

which to base decisions.

7.7 Summary

The experiments described in this chapter have further illustrated the roles played by certain

architectural features of Copycat: the role of breaking up structure-building into chains

of codelets (i.e., the terraced scan), the role of structure-breaking codelets, the role of

conceptual-depth values in the Slipnet, the role of dynamic link-lengths in the Slipnet,

and the role of tem perature. There are many more such experiments th a t could be done

(e.g., removing all bottom -up or all top-down codelet types, running the program with no

spreading activation in the Slipnet, lim iting the Coderack to various different sizes, and so

on), and in general it would be very interesting to systematically vary the param eters and

form ulas in the system and to observe the effects on Copycat’s behavior. This experiments

described in this chapter represent a first step in this longer-term process of exploring the

effects of such variations on the model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER VIII

COMPARISONS WITH RELATED WORK

In this chapter I compare the Copycat project with other research on computer models of

analogy-making and with some other artificial-intelligence architectures th a t are related to

Copycat’s architecture. I also discuss Copycat’s place in the spectrum of computer models of

intelligence, which ranges from high-level symbolic models to low-level subsymbolic models.

8.1 Comparisons With Other Research on Analogy-Making

A fair amount of research has been done in artificial intelligence and cognitive science on

constructing computer models of analogy-making, almost all of it concentrating on the use

of analogical reasoning in problem-solving. Most of these models concentrate on how a

m apping is m ade from a source problem whose solution is known to a target problem whose

solution is desired, with some kind of representation of the various objects, descriptions, and

relations in the source and target problems given to the program ahead of time. Very few

computer models focus (as Copycat does) on how the construction of representations for the

source and targe t situations interacts w ith the m apping process, and how new, previously

unincluded concepts can be brought in and can come to be seen as relevant in response

to pressures th a t emerge as processing proceeds. In short, very few com puter models of

analogy-making are models of high-level perception, concepts, and conceptual slippage in

the way Copycat is.

In this section, rather than giving a complete survey of com puter models of analogy-

making, I will discuss (and compare with Copycat) in detail three different projects, chosen

for their prominence in artificial intelligence and for their relevance with respect to the

Copycat project. This leaves out a discussion of many other models of analogy-making less

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

Figure 8.1: Water-flow and heat-flow situations (from Falkenhainer, For-
bus, & Gentner, 1989).

related to Copycat; a good num ber of these are described by Hall (1989) and by Kedar-

Cabelli (1988a).

8.1 .1 G e n tn e r e t a l.

Dedre Gentner’s research is perhaps the best-known work in cognitive science on analogy.

She has formulated a theory of analogical mapping, called the “structure-m apping” theory

(Gentner, 1983), and she and her colleagues have constructed a computer model of this

theory: the Structure-M apping Engine, or SME (Falkenhainer, Forbus, & Gentner, 1989).

The structure-m apping theory describes how mapping is carried out from a source situation

to a (sometimes less familiar) target situation. The theory gives two principles for analogical

mapping: 1) relations between objects rather than attributes of objects are mapped; and 2)

relations that are part of a coherent interconnected system are preferentially mapped over

relatively isolated relations (the “system aticity” principle). G entner’s definition of analogy

in effect presupposes these m apping principles. According to her, there is a continuum

of kinds of comparison: an “analogy” is a comparison in which only system atic relations

are m apped, whereas a comparison in which both a ttribu tes and relations are mapped is a

“literal similarity” , not an analogy. I do not make such a sharp distinction, as can be seen

from the spectrum of examples of analogy-making given in C hapter 1.

One of Gentner’s examples of an analogy is illustrated in Figure 8.1 (from Falkenhainer,

Forbus, & Gentner., 1989). The idea “heat flow is like w ater flow” is illustrated by mapping

a situation in which water flows from a beaker to a vial through a pipe onto a situation in

which heat flows from coffee in a cup to an ice cube through a m etal bar.

The predicate-logic representations given for these two situations are displayed in Fig-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

W ater-Flov Situation

Ciust

G rtU tr Flow (l«*k<r, v u l, w»Jt«r, pipe)

Prewvre (bttktr) Pressure (vul)

GreUttr

Dumtttr (Ittktr) Dum«t«r (vul)

Liquid (wittr) Clttr (b«*k«r)
Fl*JC-top (wattr)

Figure 8.2: The predicate-logic representations for the water-flow and
heat-flow situations (from Falkenhainer, Forbus, & Gentner,
1989).

Heat-Flov Situation

GresU/

/ \
Temp (coffee) Temp (ice cuLb«)

Flow (coffee, ice c u lt, l*ut, l»r)

Liquid (coffee)
Fkt-top (coffee)

ure 8.2. The idea is th a t the causal relation tree on the left (representing the fact that

greater pressure in the beaker causes water to flow from the beaker to the vial through

the pipe) is a systematic structure and should thus be m apped to the heat-flow situation,

whereas the other facts (“the diameter of the beaker is greater than the diameter of the

vial” , “water is a liquid” , “water has a flat top” , etc.) are irrelevant and should be ignored.

Ideally, mappings should be made between pressure and temperature, coffee and beaker,

vial and ice cube, water and heat, pipe and bar, and more obviously, flow and flow. Once

these mappings are made, a conjecture about the cause of heat flow in the situation on

the right can be made by analogy7 with the causal structure in the situation on the left.

Gentner claims th a t if people recognize tha t this causal structure is the deepest and most

interconnected system for this analogy, then they will favor it for mapping.

G entner gives the following (possibly conflicting) criteria for judging the quality of an

analogy: 1) clarity—a measure of how clear it is which things map onto which other things;

2) richness—a measure of how many things in the source are m apped to the target; 3)

abstractness— a measure of how abstract the things m apped are, where the degree of “ab

stractness” of an a ttribu te or relation is its “order” : a ttribu tes (e.g., “flat-top” in the exam-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

pie above) are of the lowest order, relations whose argum ents are objects or a ttribu tes (e.g.,

“flow”) are of higher order, and relations whose argum ents are relations (e.g., “cause”) are

of even higher order; and 4) systematicity—the degree to which the things m apped belong

to a mutually constraining conceptual system.

The com puter model of this theory (SME) takes a predicate-logic representation of

two situations (such as the representation given in Figure 8.2), makes a m apping between

objects, a ttribu tes, and relations in the two situations, and then makes inferences from

this mapping (such as “the greater tem perature of the coffee causes heat to flow from the

coffee to the ice cube”). The only knowledge the program has of the two situations is

their syntactic structures (e.g., the tree structures given for the water-flow and heat-flow

situations given above); it has no knowledge of any kind of semantic similarity between

various descriptions and relations in the two situations. All processing is based on syntactic

s tructural features of the two given representations.

SME first uses a set of “match rules” (provided to the program ahead of tim e) to make

all “plausible” pairings between objects (e.g., water and heat) and between relations (e.g.,

flow in the case of water and flow in the case of heat). Examples of such rules are: “If two

relations have the same name, then pair them ” ; “If two objects play the same role in two

already paired relations (i.e., are arguments in the same position), then pair them ” ; “Pair

any two functional predicates” (e.g., pressure and temperature). It then gives a score to

each of these pairings, based on factors such as: Do the two things paired have the same

name? W hat kind of things are they (objects, relations, functional predicates, etc.)? Are

they part of system atic structures? The kinds of pairings allowed and the scores given to

them depend on the set of m atch rules given to the program ; different sets can be supplied.

Once all plausible pairings have been made, the program makes all possible sets of

consistent combinations of these pairings, making each set (or “global m atch”) as large as

possible. “Consistency” here means th a t each element can m atch only one other element,

and a pair (e.g., pressure and tejnperature) is allowed to be in the global m atch only if

all the argum ents of each element are also paired up in the global match. Consistency

ensures clarity of the analogy, and the fact th a t the sets are maximal shows a preference for

richness. After all possible global matches have been formed, each is given a score based

on the individual pairings it is made up of, the inferences it suggests, and its degree of

systematicity. Gentner and her colleagues have compared the relative scores assigned by

the program with the scores people give to the various analogies (Skorstad, Falkenhainer,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

& Gentner, 1987).

Analogy-making as modeled in the Copycat program is in agreement w ith several aspects

of Gentner’s theory. We agree with the main idea of systematicity: th a t in general, the

essence of a situation—the part th a t should be m apped—is a high-level coherent whole, not

a collection of isolated low-level similarities. In Copycat, the pressure toward systematicity

is an emergent result of several pressures:

• The pressure, coming from codelets, to perceive relations and groupings within strings.

• The pressure to see things abstractly (which itself emerges from the preference for us

ing descriptions of greater conceptual depth, and from the tendency of deeper concepts

to stay active longer).

• The pressure to describe the change from the initial to the modified string in terms

of relationships and roles, since these tend to be deeper than a ttribu tes (e.g., in

form ulating a rule for the change a b c =s> a b d , it is in general b e tte r to describe the

d as “the successor of the rightmost le tte r” rather than as “an instance of D ”).

• The greater salience of larger relational structures (e.g., a whole-string group), which

makes them more likely to be paid attention to, and hence m apped.

• The high strength of correspondences between large relational structures (such as

whole-string groups): such correspondences are strong not only because they involve

large structures, but also because they axe based on many concept-mappings.

• The pressure toward forming a set of compatible correspondences th a t, taken together,

form a coherent worldview.

G entner captures some im portant points in her characterization of a “good” analogy,

and the same pressures exist in Copycat: her pressure toward “clarity” is enforced by our

prohibition of many-to-one or one-to-many mappings w ithout first making the “m any” into a

grouped unit; her pressure toward “richness” corresponds to Copycat’s preference for having

many correspondences and many concept-mappings underlying a correspondence; and the

program ’s drives toward abstraction and system aticity are described above. B ut note that

Gentner’s definition of “abstraction” (order of a relation) is not the same as the notion in

Copycat of “conceptual depth” (which was described in Section 3.2). In Copycat, there is

!>o logic-based definition for conceptual depth, but rather these values are assigned by hand,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

with quite high values sometimes going to concepts th a t G entner might call “a ttribu tes”

(such as first, which could be seen as an a ttribu te of an a).

Although there are points of agreement, there are also some fundamental issues on

which our approach and G entner’s disagree, and some of the most im portant aspects of

analogy-making addressed in the Copycat project are not dealt with in Gentner’s theory

and model.

G enter’s abstractness and systematicity principles capture something im portant about

analogy-making, but there are often other pressures in an analogy: both superficial and

abstract similarities th a t may not be parts of systematic wholes, but are still strong con

tenders in a competition. An example of this in the Copycat domain is Variant 9 from

C hapter 5:

a a b c => a a b d

y k k =» ?

The abstractness and systematicity principles would, I th ink, argue for the answer y ll,

since the a ttribu te sameness-group describing the group of a ’s and the group of k ’s is firstly

merely an a ttribu te , and secondly is not related to the system atic set of successor relations

in each string; according to the systematicity principle, it should thus not be m apped,

but should be ignored. However, many people feel th a t the two groups should m ap onto

each other nonetheless, and th a t the best answer is h jk k , in spite of what I think would

be an a priori dismissal by the structure-m apping theory. M aking any analogy involves a

competition between rival views, and one cannot be certain ahead of tim e th a t the mapping

with the highest degree of systematicity (in Gentner’s sense) will be the most appealing.

A nother problem with G entner’s theory is th a t for any complex situation, there are

m any possible sets of relations th a t exhibit systematicity, and it is not explained how

certain ones are considered for mapping and not others, on syntactic grounds alone. For

example, suppose the heat-flow domain had contained the following relation:

G rttftr

Volume feoffee) Volume (iee eule)

There would be no reason, based on syntax alone, to prefer the structure concerning tem

perature over this structure for mapping; if this structure were chosen, the analogy-maker

would mistakenly learn th a t, ju st as the pressure differential causes the water flow, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

volume differential causes the heat flow. There is not even a semantic connection given

between temperature and heat that might guide one to suspect the implication of temper

ature in understanding how heat flow occurs. In short, which facts are part of a relevant

system atic whole, and which are isolated and irrelevant, depends on the situations a t hand

and cannot be determined by syntactic structure alone.

By contrast, in Copycat, the mechanisms for deciding what things to concentrate on

and which mappings to make involve semantics: they involve activation of concepts in the

Slipnet in response to perception of instances of those concepts (or of associated concepts)

in the le tte r strings, competition among objects clamoring to be noticed and among various

descriptions of objects and relationships between objects, and certain a priori notions of

salience. For the Structure-M apping Engine, not only are the attributes and relations in

each situation laid out in advance, but there is no notion of differential relevance among

them: which ones get used in an analogy is entirely a function of the syntactic structure

connecting them . In Copycat, the notions of differential relevance and non-black-or-white

inclusion of concepts in a situation (via probabilities as a function of differential activation

in the Slipnet)—and of the program i<se//bringing in the concepts to be used to describe the

situation—are fundamental, since Copycat is a model of how situations are interpreted as

well as how mappings are made between them , and of how the two processes interact. The

philosophy of Gentner and her colleagues is th a t the interpretation stage and the mapping

stage can be modeled independently; that there are, in effect, separate “modules” for each.

In contrast, a philosophy underlying the Copycat project is that the two are inextricably

intertw ined; the way in which the two situations are understood is affected by how they

are m apped on to each other, as well as vice versa. Such an interaction could be seen in

the screen dumps given in C hapter 4. For example, in “a b c =>• a b d , k ji =>• ?” , how a b c

was m apped to k ji had a profound influence on how the la tte r was interpreted, and vice

versa. This issue of the necessity of integrating these two processes is discussed further in

Chalmers, French, and Hofstadter (1990).

Another fundam ental difference between our approach and Gentner’s is th a t her the

ory does not include any notion of conceptual similarity or of slippage, notions absolutely

central to the Copycat project. In the water-flow-heat-flow example given above, the rep

resentations of the two situations are sufficiently abstract to make the analogy a virtual

isomorphism. For example, the concepts of water flow and heat flow have both been ab

stracted in advance into a general notion of flow. Likewise, in another analogy th a t Gentner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

describes, in which the hydrogen atom is m apped onto the solar system, all the im portant

predicates in both situations have the same labels (e.g., attracts, revolves around, mass).

This is necessary because of the theory’s reliance on syntax alone. If this “identicality”

constraint were to be relaxed, semantics and context-dependence (i.e., some knowledge of

conceptual proximity and how it is affected by context) would have to be brought in. But

a t present, since the concepts contained in the preconstructed representations are always

in a sufficiently abstract form, there is no need for a Slipnet-like structure in which various

concepts flexibly become more or less similar to one another in response to context. The

analogy is already effectively given in the representations.

Another problem with Gentner’s theory is th a t it relies on a precise and unambiguous

representation of situations in the language of predicate logic. The structure-m apping

theory’s reliance on syntax alone requires th a t situations be broken up very clearly into

objects, attributes, functions, first-order relations, second-order relations, and so on. For

example, the water-flow-heat-flow analogy includes the following correspondences:

water =» heat (both are objects);

coffee =► beaker (both are objects);

flow (beaker, vial, water, pipe) ,

^ flow (coffee, ice cube, heat, bar) (both are 4-place relations);

But suppose th a t, in the heat-flow situation, heat had been described not as an object, but

as an a ttribu te of coffee, as in emits-heat (coffee), or th a t flow had been given as a 3-place

ra ther than as a 4-place relation: flow (coffee, ice cube, heat) where the means of heat flow

is considered to be irrelevant, or suppose th a t, in the water-flow situation, water flow had

been given as a 5-place relation: flow (beaker, vial, water, pipe, 10 cc per second) where the

ra te of flow is included. Any of these quite plausible changes would prevent a successful

application of the structure-m apping theory. The problem is th a t in the real world, the

categories “object” , “attribu te” , and “relation” are very blurry, and people (if they assign

such categories a t all) have to use them very flexibly, allowing initial classifications to slide

if necessary a t the drop of a ha t. And to do this, semantics m ust be taken into account (this

point is also made by Johnson-Laird, 1989). In the water-flow-heat-flow representation, heat

is presented as an object, but in the solar-system -atom representations it could plausibly

be given as an attribute of the sun (e.g., generates-heat (sun)). The classification of heat as

an object is necessary for the water-flow-heat-flow analogy to work, but is no t necessarily

a classification th a t the analogy-maker would make before figuring out what the mappings

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220

were. It seems likely th a t any two people (or even one person, a t different tim es) would

produce very different predicate-logic representations of, say, the water-flow situation, no

doubt differing on which things were considered to be objects, which were a ttribu tes, which

were relations, how m any argum ents a given relation has, and so on. Thus, a serious

weakness of the structure-m apping theory is its inability to deal w ith any flexibility in the

representation of situations.

To be sure, Copycat also breaks up a situation’s representation too cleanly into object-

a ttribu tes (descriptions) and relations between objects, where many people would not do so.

For example, in the string a a a b c d , should the fact th a t the b is the alphabetic successor

of the group of a ’s be represented as a relation between the two objects, or as a description

belonging exclusively to the b? I t depends on the context. If the problem were

a a a b c d => a a a x c d

p q q q rs =» ?,

then one could plausibly use th a t fact as a description, viewing the b and the r as corre

sponding because they are both “successor of the sameness group” , and answer p q q q x s .

However, such a description m ight not be applied to the b in a a a b c d if the problem were

a a a b c d => a a a b c e

p q q q rs => ?

In the la tte r, to get the answer p q q q r t , the a - b successor relation would be used only as

one of the relations tying together the initial string. Copycat is currently unable to make

descriptions such as “successor of the sameness group” , but I believe th a t the architecture

of Copycat would allow one to fairly straightforwardly give it the ability to make and

use such descriptions appropriately. The possibility for such real-tim e representational

flexibility is lacking in a program like SME, which relies solely on the syntax of predicate-

logic representations th a t axe supplied to it before the fact. For such a program to work,

the representations have to be tailored carefully.

Thus, both the architecture and purpose of the Structure-M apping Engine are quite

different in spirit from those of Copycat. Although SME is m eant to simulate human

analogy-making, in th a t it models which types of structures tend to be mapped from one

situation to another, and which of the various possible mappings will be preferred, it doesn’t

a ttem pt to model concepts or perceptual processes in the way Copycat does, and the exhaus

tive search it performs through all consistent mappings is not m eant to be psychologically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221

plausible. Rather, it seems th a t SM E is m eant to be an autom atic way of finding what

the structure-m apping theory would consider to be the best m apping between two given

representations, and of rating various mappings according to the structure-m apping theory,

which ratings can then be compared w ith those given by people.

In summary, Copycat has a store of knowledge about letter-strings tha t is structured

independently of any particular problem , and th a t is adapted by the program to each new

problem. SME has no perm anent store of knowledge; information about each new situation

is pu t into predicate-logic notation by people only after a problem is given, and for each

new problem, a new set of facts specific to the problem is needed. SM E also relies on rigid

predicate-logic descriptions discussed above, where the representations are fixed at the start

of processing and cannot be altered by the program. Copycat sta rts out with raw, unper

ceived situations, and it is in the process of describing these situations and their relations to

one another th a t the concept network (the Slipnet) is modified dynamically and eventually

settles into a certain pattern of activations and conceptual proximities. It is impossible to

know ahead of time which concepts will be im portant and w hat reformulations and slip

pages will need to take place in the course of making an analogy. SME does not address

these issues, but rather starts out with already-formed representations of situations, with

the task of deciding which mappings are preferable. The structure-m apping theory makes

some very useful points about what features appealing analogies tend to have, bu t in dealing

only with the m apping process while leaving aside the problem of how situations become

understood and how this process of interpretation interacts with the mapping process, it

leaves out some of the most im portant aspects of how analogies are made.

8.1.2 Holyoak and Thagard

Keith Holyoak and Paul Thagard have built a computer model of analogical mapping

(Holyoak & Thagard, 1989), based in p a rt on theoretical and experim ental work by Holyoak

and his colleagues (Gick & Holyoak, 1983; Holland, Holyoak, N isbett, and Thagard, 1986),

and inspired in part by research by M arr and Poggio on constraint-satisfaction networks

used to model stereoscopic vision. T he computer model, ACME (Analogical Constraint

M apping Engine), is similar to SME in th a t it uses representations of a source situation

and target situation given in sentences of predicate logic, and makes an analogical mapping

consisting of pairs of constants and predicates from the representations. In fact, ACME has

been tested on several of the same predicate-logic representations of situations th a t SME

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222

was given, including the water-flow and heat-flow representations. For ACME, a mapping

between two situations is based on the following five constraints:

• Logical compatibility: A mapped pair has to consist of two elements of the same

logical type. T hat is, constants are mapped onto constants and n-place predicates are

m apped onto n-place predicates. For example, in the water-flow-heat-flow analogy,

water could map on to water, but not onto flow, because the former is a constant and

the la tte r is a 4-place relation.

• Uniqueness: Each source element m ust map onto at most one target element.

• Relational consistency: The various pairings making up a global m apping must sup

port each other. For example, if flow in one situation maps onto flow in the other,

then th a t supports a mapping between water and heat, since they play corresponding

roles in the flow relations.

• Semantic similarity: Pairings of predicates whose elements have similar meaning are

preferred.

• Role identity: This constraint applies to analogies between problem-solving situations,

which are represented in term s of initial states, goal states, solution constraints, and

operators. This constraint requires th a t initial states map to initial states, goal states

to goal states, and so on.

T he model takes as input a set of predicate-logic sentences containing information about

the source and target domains (e.g., water flow and heat flow), and it constructs a network

of nodes, where each node represents a syntactically allowable pairing between one source

elem ent and one target element (a constant or a predicate). (Here, “syntactically allowable”

m eans adhering to the logical-compatibility constraint.) A node is made for every such

allowable pairing. For example, one node might represent the water => heat mapping,

whereas another node might represent the water => coffee mapping. Links between nodes

in the network represent constraints; a link :s weighted positively if it represents mutual

support of two pairings (e.g., there would be such a link between the flow => flow node

and the water => heat node, since water and heat are counterparts in the argum ent lists of

the two flow relations), and negatively if it represents mutual disconfirmation (e.g., there

would be such a link between the flow => flow node and the water => coffee node). The

network also has a “semantic unit” : a node th a t has links to all nodes representing pairs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

of predicates. These links are weighted positively in proportion to the “prior assessment of

semantic similarity” (i.e., assessed by the person constructing the representations) between

the two predicates. In addition, it has a “pragm atic unit” : a node th a t has positively

weighted links to all nodes involving elements (e.g., water) deemed ahead of time (again

by the person constructing the representations) to be “im portant” . Once the network is in

place, a spreading-activation relaxation algorithm is run on it, which eventually settles into

a final sta te with a particular set of activated nodes representing the winning matches.

There are several points of agreement between the philosophy of this model and that

of the Copycat program . We share the idea th a t analogy-making is closely related to per

ception and should be modeled with techniques inspired by models of perception. We

also share the belief th a t analogies emerge out of a competition among pressures (or “soft

constraints”), involving a large number of local decisions that give rise to a larger coher

ent structuring. And we agree th a t the pressure toward systematicity (as described by

Gentner) emerges from other pressures. Copycat has counterparts to Holyoak and Tha-

gard’s relational-consistency constraint (Copycat’s pressure toward compatible correspon

dences) and their semantic-similarity constraint (in Copycat, correspondences involving

close concept-mappings are strong).

There are, however, deep differences between Copycat and ACME, related to Copy

cat’s differences with SME discussed in the previous section. First, like SME, ACME tries

all syntactically plausible pairings, a method that is bo th computationally infeasible and

psychologically implausible in any realistic situation. For example, in making a W atergate-

Contragate analogy, do we consider a mapping between Nixon and every person involved in

Contragate, including Fawn Hall, Daniel Inouye, Ed Meese, and Dan Rather? O r even less

plausibly, do we consider mapping Gerald Ford to the Contras’ base camp in Honduras, or

to the chair Oliver N orth sat in while testifying before Congress? Yet these are all plausi

ble, according to the logical-compatibility constraint, in which semantics plays no role a t

all. The existence of th is exhaustive (though parallel) search through all possible mappings

shows th a t ACME is not attem pting to model how people search through such possibili

ties, whereas this is one of the Copycat project’s main focuses. In Copycat, although any

initial-string object can in principle be compared with any target-string object, an exhaus

tive search is avoided thanks to the parallel terraced scan, in which comparisons, if they

are m ade a t all, are m ade a t different speeds and to different levels of depth, depending on

estimates of their promise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

224

A m ajor problem in the ACME system is the same problem I discussed with respect to

SME: the representations of knowledge used are rigid, and are also tailored specially for each

new analogy. ACME uses the same representation as did SME for the water-flow-heat-flow

analogy, so the same issues discussed in the section on Gentner et al. apply here. Again,

the program has no ability to restructure its descriptions or to add new descriptions in the

course of making an analogy; the descriptions are constructed by a person ahead of time

and are frozen. ACME differs from SME in th a t it has a “semantic un it” giving semantic

similarities, which correspond in some sense to those embodied in Copycat’s Slipnet, but

the similarities are also decided in advance by the programmer for the purposes of the

given analogy, and are frozen. Unlike Gentner et al., Holyoak and T hagard recognize the

necessity of considering semantics as well as syntax, but the problem is th a t it is impossible

in general to have a “prior assessment of similarities” (as encoded in A CM E’s semantic unit);

ra ther, analogy-making is all about similarities being reassessed in response to pressures that

weren’t apparent ahead of time.

ACME also leaves aside the question of how concepts come to be seen as im portant

in response to pressures; this is taken care of by the pragm atic un it, which encodes the

program m er’s prior assessment of w hat is im portant in the given situations. The pragmatic

unit could be said to correspond to the activation of Slipnet nodes and to the importance

values of objects in Copycat. But again, unlike in Copycat, where these values emerge in

response to what the program perceives, in ACME, the pragm atic unit is set up by a person

and then frozen for each new problem. Thus, like SME, ACME does not deal with another

of Copycat’s main focuses: how concepts adapt to different situations. ACM E, like SME,

models only the “m apping stage” of analogy-making, but, as was said before, a philosophy

underlying Copycat is th a t the m apping process cannot be separated from the processes

of perceiving and reformulating perceptions and assessments of similarities in response to

pressures. Holyoak and Thagard (1989) themselves point out th a t their model does not

address this issue—they call it the issue of “re-representation”—and acknowledge th a t it

will often be necessary to interleave mapping with m anipulation of the representations,

taking into account top-down pressures—which is essentially ju st w hat Copycat does.

Since ACM E’s knowledge is set up ahead of time, the program ’s success, like that of

SME, is totally dependent on the representations it is given. In the examples given by

Holyoak and Thagard (1989), the representations of the source and target matched each

other almost perfectly; the essence had been distilled in exactly the right form for making

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

an analogy. Thus the program was quite successful, even though experiments done by Gick

and Holyoak (1983) showed th a t many people have a hard tim e w ith the same analogies.

As w ith SME, it is very doubtful th a t the representations given to ACM E could have been

m ade by someone who didn’t already have the mapping in m ind, and it is alm ost certain

th a t the program would not succeed if the representations were m ade independently by two

different people.

8 .1 .3 H ow R e a l A re T h e se “ R e a l W o rld ” A na log ies?

One of the criticisms th a t has been made of Copycat (as well as of Evans’ program, to

be discussed in the next section) is th a t it makes analogies in an idealized microwoiid,

whereas other analogy-making programs work in more complex, real-world domains. On

the surface it would seem th a t SME and ACME make rerj-world analogies th a t are much

more complex than the “toy” problems Copycat deals with. B ut if one looks below the

surface (as I did here for the water-flow-heat-flow example), it can be clearly seen th a t the

knowledge possessed by these program s (th a t is, the knowledge given to them for each new

problem, in the form of sentences of predicate logic), in spite of the real-world aura of words

like “pressure” and “heat-flow”, is even more impoverished than Copycat’s knowledge of its

letter-string microworld. The program s know virtually nothing about concepts such as heat

and water—much less than Copycat knows about, say, the concept successor group, which

is embedded in a network and can be recognized and used in an appropriate way in a large

variety of diverse situations. For example, a b c , a a b b c c , c b a , a b b b c , m rr j j j , m m rrr j j j j ,

j j j r r m , a b b c cc , x p q e fg , and k (a single-letter successor group) can all be recognized as

instances of successor groups, given the appropriate pressures.1 This is not the case for, say,

SM E’s and ACME’s notion of “heat” as given for the purpose of making a water-flow-heat-

flow analogy. There the notion of “hea t” has essentially no semantic content and certainly

cannot be adapted to any other situation. Nor can these program s recognize heat or a heat

1 M yriad other examples of successor groups, with different degrees of abstruseness, can
be formed in the letter-string dom ain. Many are beyond C opycat’s current recognition
capabilities, though the same perceptual mechanisms the program has now could, I believe,
be extended fairly readily to recognize more complex instances, such as a c e (a “double-
successor” group), a a b a b c (which can be seen as a “coded” version of a b c when parsed as
a -a b -a b c) , k m x x rre e e jjj (which could be described as “11-22-33”), a x b x c x (where the
x ’s form a ground for the figure a b c) , a b c b c d c d e (which could be parsed a b c -b cd -cd e),
and so on.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

like phenomenon. These programs are purported to make analogies involving the concepts

heat and water, but the program s have absolutely no sense of “heat” or “water” themselves

as categories and cannot make the very analogies required to recognize instances of these

categories (as humans do) in a variety of contexts.

Thus the claim th a t Copycat’s microworld is a “toy dom ain” while these other programs

are solving real-world problems is truly unfounded, and is based on a tendency of people to

a ttribu te much more intelligence to a program than it deserves based on real-world-sounding

words it uses (such as “heat”)—concepts th a t are extremely rich for people, but are almost

completely empty as far as the program is concerned. (M cD erm ott, in his article “Artificial

Intelligence Meets N atural Stupidity” (1981) writes humorously but incisively about some

related problems in artificial-intelligence research methodology.) Programs th a t use words

with real-world connotations bu t that are nonetheless completely devoid of semantic content

as far as the program is concerned have great potential to be misleading. An “all the cards

are on the table” quality is one of the advantages of using explicit microworlds for research

in artificial intelligence.

8.1.4 Evans

Thomas Evans’ ANALOGY program (Evans, 1968) was w ritten in the 1960’s to solve IQ-

test-like geometric-analogy problems (many of which were taken from actual examinations

given to college-bound high-school students by the American Council on Education). A

sample problem is given in Figure 8.3. The idea is to choose the box in the bottom row

th a t has the “same” relation to box C as box A has to box B. ANALOGY is given as input

the information th a t box A contains two simple closed curves and one dot, along with the

coordinates of the vertices and the curvature of the lines; similar information is given for all

the other boxes. The program then computes, for each box, properties of the figures inside

it and relations among them , using a predetermined set of possible properties and relations

and a “substantial repertoire of ‘analytic geom etry’ routines” . For example, for box A in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

227

B

cn

4

Figure 8.3: A sample problem from Evans’ geometric-analogy domain.

the problem shown, the program would find the following relations:

(INSIDE rectanglel trianglel),

(ABOVE do tl trianglel),

(ABOVE do tl rectanglel),

(LEFT do tl trianglel),

(LEFT do tl rectanglel).

(Note: I use words like “rectangle” and “triangle” only for clarity; the program does not

have the concepts triangle or rectangle, and has no notion of similarity a t the conceptual

level between, say, two different triangles. It was not able, therefore, to solve problems

involving rules such as “Replace all triangles by squares” .) In order to describe the change

from box A to box B, the program uses a given set of possible transformations to make all

possible mappings from the figures in box A to those in box B. The repertoire of possible

transform ations contains: removal of objects, addition of objects, rotation of objects, uni

form scale-change of objects, and horizontal and vertical reflection of objects. From this set

of mappings the program creates a set of rules describing the change from A to B.

Next, the program tries to m atch box C with each of the numbered answer boxes,

discarding an answer box if the m atching does not agree with the A-to-B rules in terms of

the number of objects added, removed, or matched. In the example, answers 1 and 5 are

discarded for this reason. The program then does a (potentially huge) exhaustive search

through all possible ways of m apping C to each of the remaining answers, given the possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

A-to-B rules th a t have been formed. In this way, a set of possible C-to-answer rules is

constructed (each one is a weakened form of one of the A-to-B rules, from which statem ents

th a t are not true of the C-to-answer match are removed). Each of these C-to-answer rules

is scored using a complicated procedure th a t values the amount of information the rule

contains (roughly, the length of the rule); this reflects the heuristic th a t strong C-to-answer

rules are ones requiring little alteration of the original A-to-B rule. The answer given by

the rule with the highest score is chosen.

Evans’ geometric analogies are very much in the spirit of Copycat’s microworld, not

merely because the analogies are in the form of “proportions” , but because they are abstract;

although such analogies have no conscious “purpose” (as in problem-solving), humans have

definite feelings about what makes for a deep mapping and what makes for a shallow one.

The fact th a t such abstract analogy problems are used without argum ent on intelligence

tests (as a t least requiring some aspect of intelligence to solve them) shows how generally

accepted is the point I made earlier: th a t people are able to bring to bear their perceptual

and analogical abilities in an idealized domain; indeed, they are unable not to. This domain,

like Copycat’s, has the potential for very interesting and creative analogies, in spite of its

lim ited number of concepts. Evans’ domain is closely related to the extraordinarily rich

domain of Bongard problems (Bongard, 1970), which was one of the early inspirations for

the Copycat project.

Although Evans’ domain is potentially very rich, his program was able to solve only a

very limited set of problems in this domain. For example, the transform ations from box A

to box B are restricted to those involving the addition and removal of objects, and Euclidean

transform ations (rotation, reflection, uniform-scale change). Therefore, the program would

not be able to deal with a problem in which a triangle in box A was transformed into a

square in box B, even if they both played the same role (say, “the object containing the Z”);

there is no notion of conceptual similarity or of similarity of roles. The program also has

no notion of grouping; thus, it would not be able to solve the problem given in Figure 8.4.

The program would be stymied by the fact th a t the number of dots in A is different from

the num ber of dots in C. The program is able to deal only with problems in which the

num ber of parts added, removed, and matched in the A-to-B transform ation is the same as

in the C-to-answer transform ation. All the problems that Evans’ program attem pted (he

displays the entire set of 20 problems the program was tried on) had the same number of

objects in A and C. In Copycat, the kinds of similarities possible between the initial and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

A B

Figure 8.4:
would not be able to solve.

target strings can be much more complex. In addition, each of Evans’ problems had exactly

one strong answer, whereas many of Copycat’s problems have more than one good answer.

Such problems are among the m ost interesting, because they bring out very clearly issues

of how various pressures compete.

ANALOGY is nonetheless more similar in many ways to Copycat than are the other

analogy-making programs described in this section. As in Copycat, in Evans’ system the

situations given to the program have only minimal descriptions attached, and the program

itself has to perceive the relations among the various parts. The program also has a notion

of adapting the A -to -B rule to fit the matchings between C and the various answers, which

is roughly similar to rule translation in Copycat. In addition, in Evans’ program , context

exerts top-down pressure on the way things are perceived; for example, given the following

A and B boxes,

B

the program will decompose the figure in box A into a rectangle and a triangle, since these

are the objects in box B (though since the program has no concept of “rectangle” or “trian-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230

gle” , it would not be able to perceive the similarity between A and B if the corresponding

figures happened to be of slightly different shapes). However, the role of context is limited;

for example, the program ’s perception of box C has no effect on the perception of box A.

In Copycat, such contextual effects can be very im portant (as they were in the problem

“a b c => a b d , x y z =► ?” , where the a is described as first in response to w hat is perceived

in x y z). In general, the processes of description, m apping, and rule formation in ANAL

OGY do not interact with each other as they do in Copycat. Evans saw the desirability

of some kind of interaction among the various processes, bu t did not implement it; his

program proceeds in stages in a strict serial fashion, and no backtracking for restructuring

of perceptions is done.

Aside from the similarities mentioned above, the workings of Evans’ program are very

different from Copycat’s. ANALOGY has nothing like a Slipnet; there is no notion of

conceptual similarity, only a rigid notion of geometric similarity. This, along with the fact

th a t the roles between box A and box C have to be identical, severely lim its the kinds of

problems th a t ANALOGY is able to solve. Evans recognized th a t it is not always possible

to adapt an A-to-B rule to a C-to-answer rule by weakening it; in some cases, translation

with slippage is needed. In fact, he gave one example of a problem where th is was needed,

bu t the great m ajority of his problems involved only identity concept-m appings, so he was

not very concerned by this issue. He did implement a very rough kind of slippage, in which

one word in the A-to-B rule (e.g. ABOVE) is replaced by another word in the C -to-answ er

rule (e.g. LEFT). This is done only if, a t the last stage, there isn ’t one answer th a t is

clearly stronger than the others. Then the program goes back to the A-to-B rule-building

stage and generates some “variant rules” , using this substitution technique. Evans does not

explain exactly how this was done.

Another m ajor difference is the lack in Evans’ program of anything like a parallel terraced

scan. Instead, his program adopts the brute-force m ethod of m aking all possible relations,

transform ations, and rules, and then scoring them . This m ethod has the usual problems of

psychological implausibility and combinatorial explosion (though Evans cannot be faulted

on the psychological implausibility, because his program was m eant to be an A l program,

not a cognitive model). ANALOGY was tried only on cases where there was no ambiguity

and little com petition, so there were only a small num ber of possibilities for the program to

consider in each case. It would be impossible to use this m ethod on more complex problems

with more facets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

231

In summary, ANALOGY was an interesting early a ttem pt a t mechanizing an aspect of

intelligence, though it used a brute-force approach with a completely deterministic control

structure th a t proceeded through stages in a fixed manner. It was not m eant to be a

cognitive model of concepts or perception. Its performance is in some ways impressive,

since it was able to solve a number of problems considered hard enough to pu t on a college-

entrance test, bu t as has been pointed ou t, the range of problems it could solve was actually

quite limited.

8 .2 C o m p a riso n s W ith R e la te d A rtif ic ia l- In te llig e n c e A rc h ite c tu re s

8 .2 .1 S eek -W h en ce

In addition to Jum bo, another precursor to Copycat was the Seek-Whence project. Hofs-

tad te r designed the domain and the original ideas for the architecture (Hofstadter, Closs-

m an, & M eredith, 1982), which was based on the architecture of Jum bo, described in

C hapter 3. The Seek-Whence program was developed by M arsha Meredith (1986). Seek-

W hence is a discovery-and-extrapolation program; it tries to find the underlying regularity

of a sequence of integers—in other words, to “seek whence” the sequence comes. The se

quences it works on have patterns ra ther than m athem atical functions underlying them ,

in which the m ajor organizing concepts are successorship, predecessorship, sameness, and

symmetry. The following are some sample sequences given to the Seek-Whence program:

1 2 3 4 5 6 . . . ;

1 1 2 2 3 3 . . . ;

1 8 5 1 8 5 . . . ;

1 1 2 1 2 3 1 2 3 4 . . . ;

2 1 2 2 2 2 2 3 2 2 4 2 . . .

Seek-Whence is given the terms of a sequence one by one, and it tries as soon as it can

to propose a hypothesis to explain the sequence. I t is thus often required to reformulate its

hypothesis in light of new, contradicting evidence (new term s).

Sequence-extrapolation programs in artificial intelligence (e.g., Pivar & Finkelstein,

1964) have typically dealt with mathematical sequences, such as “1 2 4 8 16 . . . ” , or

“ 1 2 5 15 42 . . . ” (whose second differences axe every th ird prime), and have approached

them by trying out possible solutions from a standard repertoire of mathematical knowledge

and tricks (e.g., primes, powers of two, Fibonnacci numbers), often recursively applying the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232

techniques to derived sequences formed by taking every other term, every third term , first

differences, etc. This is very different from the goal of the Seek-Whence project, which is to

model a much more general sort of pattern-spotting ability: sequences in the Seek-Whence

domain contain the essence of many central issues of pattern-recognition in general (Hofs-

tad te r, Clossman, & M eredith, 1982). (The sequences M eredith’s program was able to tackle

were more varied and general than the cyclical, fixed-length period sequences dealt with by

a well-known program w ritten by Simon & Kotovsky, 1963, which will be discussed further

in the next section.) Analogy-making plays an essential part in solving these sequences; for

example, to find a coherent interpretation for the sequence “1 2 1 1 3 1 1 4 1 . . . ” , one

m ust m ap hypothesized segments against each other, perceiving corresponding roles w ithin

segments (for example, a reasonable parsing is “121-131-141 . . . ” , with the role played by

the “2” in 1 2 1 corresponding to the role played by the “3” in 1 3 1, and so on). W hat

originally gave rise to the Copycat project was Hofstadter’s desire to further isolate this

essential role of analogy-making in Seek-Whence.

Like Jum bo, Seek-Whence has a nondeterministic parallel architecture involving codelets,

and the program is based on many of the ideas Hofstadter first developed in the Jum bo

project. As in Jum bo, a m ajor part of the operation of Seek-Whence is the construc

tion, destruction, and reformulation of groupings built out of the raw numerical d a ta of

the sequence (e.g., the program could parse the sequence “1 1 2 2 3 3 . . . ” into groups:

“11-22-33 . . . ”). Seek-Whence proceeds by building such groupings, using the groupings to

construct a hypothesis enabling it to predict the next number in the sequence, and refor

m ulating th a t hypothesis via slippage when an unexpected piece of new evidence (i.e., an

unexpected new term in the sequence) requires such action. Such reformulation sometimes

requires modifying or destroying the groupings the program has already made.

The Copycat and Seek-Whence projects deal with many of the same issues, and thus

there are m any correspondences between the Seek-Whence and Copycat programs; some

of m y ideas for Copycat have come from M eredith’s solutions to various im plem entation

problems. Copycat further develops many of the mechanisms used in Seek-Whence (as it

did with Jum bo) and includes many mechanisms lacked by the Seek-Whence program , so

there also are m any m ajor differences between the two programs.

Much of the architecture of Seek-Whence is adm ittedly “ad hoc” ; for example, the

program uses a large num ber of special-purpose domain-specific codelets and structures.

In Copycat, I tried to avoid this problem by making codelets and perceptual structures as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

233

general and domain-independent as possible. Copycat’s conceptual system is much richer

than th a t of the current version of Seek-Whence; the la tte r’s Slipnet has fewer nodes and

no named relations, only undifferentiated “slipping links” , with no notion of activation or

conceptual distance—unlike in Copycat, the dynamics of the Slipnet was not a central part

of the Seek-Whence model. In Seek-Whence, slippage does not occur unless something goes

wrong; it is not nearly as central a focus in the Seek-Whence program as it is in Copycat.

A nother extremely im portant issue for bo th Copycat and Seek-Whence—how top-down

pressures work to influence the program’s conceptualization of the problem at hand—was

dealt with by Meredith in only a limited way; the Copycat project has m ade considerable

progress on this issue. For example, Seek-Whence could not solve the sequence “1 2 2 3

3 3 4 4 4 4 . . . ” , because of its lack of responsiveness to emerging top-down pressures.

Since it was given the sequence one term at a tim e, the first two term s— 1 and 2—put

the program on the track of successorship and successor groups, and it could never recover

enough to perceive the sequence’s sameness groups. One problem is th a t the program clings

too tenaciously to its first organizing notion, and another problem is th a t it lacks the kinds

of top-down codelets that Copycat has, such as codelets that expressly look for sameness

groups if several sameness relations have been spotted. (Interestingly, Seek-Whence could

solve “2 2 3 3 3 4 4 4 . . . ” , since that sequence allows it to start off on the right foot.) The

program lacked much of the interaction between bottom -up and top-down pressures th a t is

an essential part of Copycat, as well as many other architectural features th a t are present

in Copycat, such as dynamically varying activation and link-lengths in the Slipnet, different

degrees of conceptual depth for different nodes, and tem perature, among others.

8.2.2 Simon and Kotovsky

Simon and Kotovsky’s work on pattern perception and sequence extrapolation (1963; also

Simon, 1972, and Kotovsky & Simon, 1973) involves a domain similar in some ways to those

of Seek-Whence and Copycat, though the approach is completely different. M eredith (1986)

gives a discussion of Simon and Kotovsky’s work with respect to Seek-Whence, and much

of w hat she says also applies to a comparison with Copycat. Simon and Kotovsky studied

human performance on understanding and extrapolating letter sequences such as:

c d c d c d . . . ;

q x a p x b q x a . . . ; and

r s c d s t d e t u e f ___

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234

(The last consists of two interleaved sequences.) Simon and Kotovsky’s goal was to show

th a t people build a symbolic mental model of a given sequence based on a set of descriptions

such as “successor” , “predecessor” , and “sameness” , and th a t they use th is model (or rule) to

extrapolate the sequence. P art of the project was the construction of a com puter program to

model this process. There were actually two programs: one for producing a sequence, given

a pa tte rn description, and, more interesting, one for coining up with a pa tte rn description,

given a sequence. T he latter program first looked for two possible types of patterns in the

sequence: (1) periodicity (e.g., “c d c d c d . . . ” , where the same symbol occurs in every

second position, or “d e f g e f g h f g h i . . . ” , where the next symbol occurs at every

fourth position) or (2) a relation th a t is in terrupted a t regular intervals by another relation

(e.g., “a a b b c c d d . . . ” , where sameness relations are interrupted every second position

by a successor relation). (All the sequences were cyclic, with fixed-length cycles.) Once

such a pattern was discovered, sameness, successor, and predecessor relations were explored

between the successive terms within a period, or between term s in corresponding positions

of successive periods.

Several variants of the program were w ritten , with different degrees of success. The

program (or a t least some version of it) agreed with people on which sequences were hard

(as a function of which ones it could solve and how long it took).

Simon and Kotovsky’s program was not a model of concepts or perceptual processes in

the same way Copycat is. It searched through possible ways of describing a given sequence

in a determ inistic and exhaustive m anner, trying out all the possibilities in its repertoire

until one of them worked. There was no notion of top-dow n-bottom -up interaction and

com petition, no change in processing as a result of what had already been discovered, no

notion of a parallel terraced scan, and no notion of fluid and adaptable concepts (rather,

i t had fixed concepts of successor, predecessor, sameness, and periodicity). Also, although

the program worked in a domain th a t is similar in some ways to th a t of Copycat, Simon

and Kotovsky were specifically studying sequence perception, whereas Copycat is not, a t a

deep level, about linear sequences; its focus is much broader. Thus, though the Copycat

project shares certain general goals and methodology with Simon and Kotovsky’s work (i.e.,

investigating the mechanisms of pattern recognition by studying it in an idealized, abstract

dom ain), which aspects of perception are being studied and how perception is modeled are

quite different for the two projects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

235

8.2.3 Hearsay-II

As was mentioned earlier, m any of the ideas for Copycat’s architecture were originally in

spired by the Hearsay-II speech-understanding system (Erm an et al., 1980). The input

to Hearsay-II is a waveform generated by a spoken utterance, and Hearsay-II interprets it

through the cooperation of various “knowledge sources” , each of which is able to perform a

specific task, such as dividing the waveform into segments, creating phones and phonemes

from segments, creating syllable-class hypotheses from phonemes, creating word hypothe

ses from syllables, and so on. The knowledge sources build da ta structures—representing

various levels of interpretation of the utterance—on a global blackboard, which is the locus

o f communication among the various knowledge sources. The need for diverse knowledge

sources to deal w ith different levels of description reflects the diversity of processes needed

in perception. This is the intuition behind the various types of codelets in Copycat. But

Copycat’s codelets are somewhat different from Hearsay-II’s knowledge sources: codelets

perform small, very local tasks, whereas a knowledge source deals with all the d a ta a t its

level of abstraction (e.g., one knowledge source segments the entire waveform). As was dis

cussed in previous chapters, the idea in Copycat is th a t early on in a run, the program does

not have enough information to make large-scale intelligent decisions about which struc

tures to build. Instead, structure-building is accomplished via a large num ber of small,

local decisions th a t allow m any different possibilities to be scouted out and then looked at

m ore deeply if more consideration seems w arranted. Later in a run, when more structures

have been built and tem perature is low, codelets tend to act more like Hearsay-II knowledge

sources, building global structures (e.g., a successor group comprising an entire string). The

pa th for such a global structure has been laid both by the codelets th a t build the underlying

structures th a t support it, as well as by the codelets th a t scouted out (and perhaps rejected

or slowed down consideration of) alternative pathways.

The various knowledge sources in Hearsay-II, in the process of moving from a raw wave

form to a fully parsed u tterance, build m any levels of d a ta structures, where each level

is built on the basis of hypotheses built a t the immediate lower level (segments make up

phones, phones make up phonemes, phonemes make up syllables, and so on). This is similar

to the way codelet chains in Copycat build various levels of perceptual structures, s ta rt

ing with three raw letter-strings, and ending with high-level descriptions and a coherent

m apping. As in Copycat, an im portant part of Hearsay-II’s architecture is an interaction

between top-down and bottom -up processing, where structures built a t lower levels provide

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236

evidence for higher-level hypotheses, and vice versa.

In Hearsay-II, a knowledge source becomes activated through demons with various levels

of conditions, preconditions, and pre-preconditions. This is roughly similar to the various

stages of exploration and evaluation that take place in Copycat before a given structure is

built. But although both programs perform a parallel exploration of different pathways,

and both have competition between different interpretation hypotheses, there is a difference

in m ethod. In Hearsay-II, several rival hypotheses may coexist a t each level (a hypothesis

being a possible interpretation of the data a t a given level), and the program evaluates all

of them . Copycat constructs only one view a t a tim e (for example, a t any given time, the

first c in the string a b c cc can be seen either as the rightmost le tte r of the group a b c or as

the leftmost letter of the group ccc, but not both), but that view is malleable, and can be

easily reshaped, given the right kinds of pressure. Humans cannot see the same high-level

thing in two ways at once, but, as with the famous Necker cube, they can switch back and

forth between coherent perceptions with varying degrees of ease. Thus Copycat’s method

is more psychologically realistic than th a t of Hearsay-II. The la tte r m ethod suffers from a

potential combinatorial problem: competing hypotheses can exist for different pieces of a

whole, so the num ber of compound hypotheses at higher levels can become very large.

There is also a difference between the control structures of Copycat and Hearsay-II.

In Hearsay-II, a central scheduler assigns a “priority” to each active knowledge source,

the priority being an estimate of the likely usefulness of the knowledge source’s action in

fulfilling the overall goal of recognizing the utterance. The notion of priority is somewhat

different from th a t of codelet urgency in Copycat. There is no randomness in Hearsay-II;

the scheduler always chooses the highest-priority knowledge source to run. This reflects a

difference in philosophy between the two programs. At each point, Hearsay-II tries to make

an intelligent decision about what to do next: it uses global knowledge about the current

state of the interpretation to assign priorities, and chooses what seems to be the overall best

thing to do next. The control structure of Copycat is simpler; since an individual codelet

cannot see globally and cannot make very intelligent decisions, the urgencies it assigns

are based on local information, and since individual codelets do very small jobs, no single

decision is very im portant. W hat to do next is decided probabilistically, and Copycat’s

overall “intelligence” emerges from the statistics of this probabilistic control structure. As

was described in C hapter 3, Copycat’s strategy of parallel and fine-grained exploration

ensures fairness in deciding what should be explored, whereas always deterministically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

237

choosing the most promising pathway (even when very little information has been obtained

and one thus has very little confidence in one’s assessment of promise) does not allows

alternative views the chance to be developed. This could be seen clearly in the results of

Experiment 6 in Chapter 7, in which the tem perature was clamped a t a very low value,

and Copycat’s control strategy became similar to th a t of an agenda system. The program

became very conservative in what possibilities it explored, and it was unable to build the

structures necessary to discover the interesting answer m r r i i i i .

8.2.4 Semantic Networks

A large num ber of artificial-intelligence computer programs have used semantic networks

in order to represent knowledge. Copycat’s Slipnet shares some features with standard

semantic networks, but is, in many im portant ways, a quite different kind of structure.

To point ou t some of the similarities and differences, I will compare the Slipnet with two

examples of programs using semantic networks: Quillian’s semantic-memory model (with

extensions by Collins and Loftus), and Anderson’s ACT*.

Quillian’s semantic-memory program (Quillian, 1968) was the first formulation of what

has now become commonly known as a semantic network. The network consisted of nodes

representing English words and links representing relations between nodes. Quillian’s focus

was on modeling language understanding, and his network was designed to encode the

meanings of words. Thus each node in the network corresponds to a word, and there are five

different kinds of links: 1) superordinate links (e.g., “apple ISA fruit”) and subordinate links

(e.g., “fruit HAS-INSTANCE apple”); 2) links connecting nouns with modifiers (e.g.,“apple

IS red”); 3) disjunctive sets of links (e.g., linking three different meanings of the word

“plant”); 4) conjunctive sets of links (e.g., linking several necessary a ttribu tes of plants,

such as “needs air” , “needs water” and so on); and 5) links between subjects and objects

(e.g., “person eats food”). Each link has an optional strength value associated with it,

indicating how im portant the given relationship is to the meaning of the word.

A typical task in which this network was used is th a t of “comparing and contrasting” the

meanings of a given pair of words. This is done by tracing out all paths in the network from

each of the words and finding a point where two paths intersect. Because of the structure

of the network, the two paths (up to the point of intersection) can be put in the form of

English sentences. For example, when asked to compare the words “E arth” and “live” , the

program found an intersection a t the node “animal” , and the two paths leading up to th a t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

238

node were expressed as “E arth is the planet of anim al” and “To live is to have existence as

anim al” . These two sentences constituted the program ’s response to the query.

The structure of Copycat’s Slipnet is quite different from Quill an’s semantic-memory

network. Since Quillian’s goal was to model language-understanding, the structure of his

network roughly mimicked the structure of English, whereas the Slipnet is a model of

associations and potential slippages. Thus the kinds of nodes and links included in each

system are quite different. A concept in the Slipnet has blurry boundaries, defined by

a probability distribution centered around a central node; in Quillian’s network, concepts

(such as person or apple) are atomic, and there is no notion of conceptual slippage. Patterns

of activation in the Slipnet signify the relevance of the activated concepts, and the spread

of activation is a model for how associations between related concepts come about. This

is quite different from Quillian’s notion of activation, which is used to trace out sentence

like pathways in the network, not to represent the degree of relevance of certain concepts.

Finally, the Slipnet is m eant to be a model of the adaptability of concepts, in th a t the

activations of nodes and the distances between nodes change in response to what is being

perceived. The links in Quillian’s network can have strengths, but these are fixed ahead of

time; the network does not respond to varying context. In fact, this is a m ajor difference

between the two systems; activities in the Slipnet are tightly interrelated with the perceptual

activities of codelets, and the two sets of activities continually influence each o ther, whereas

Quillian’s network is used in isolation.

Collins and Loftus (1975) have proposed several extensions to Quillian’s original network

to allow it to model several experimental results on hum an memory. Four of these proposed

extensions have features th a t are also included in Copycat’s Slipnet. F irst, they propose

th a t activation act like a signal from a source th a t attenuates (according to the strength of

links) as it travels outward. This is similar to Copycat’s spreading-activation mechanism.

Second, Collins and Loftus propose th a t a node should continue to spread activation as long

as i t is being processed. This method is used in Copycat: a node stays activated (and thus

spreads activation) as long as instances of it continue to be perceived. Third, Collins and

Loftus suggest th a t, as in Copycat, the activation of a node should decay over tim e. Finally,

they propose th a t the network be organized along the lines of semantic similarity, where

conceptual relatedness between nodes is measured by the num ber of properties two nodes

have in common. This idea gets closer to the associative structure of Copycat’s Slipnet,

although in the Slipnet, similarities between linked nodes are not always spelled out.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

239

A more recent model involving a semantic network and spreading activation is John

Anderson’s ACT* (Anderson, 1983). ACT* is intended to be a theory of the “architecture

of cognition” : th a t is, of the basic principles of operation of cognitive systems. As one

would expect with so ambitious a goal, Anderson’s system is quite complex. It warrants

more discussion than I have space for here; I will only outline the similarities and differences

between the architectures of ACT* and Copycat.

ACT* has three memories: a declarative memory storing long-term declarative knowl

edge, a working memory containing the currently active parts of declarative memory, and

a production memory containing the procedural knowledge o f the system. The declarative

memory is a semantic network in which each node is a cognitive unit: a sort of “unbreak

able” unit of knowledge. A cognitive unit can be either a proposition (e.g., “Bill hates

Fred”), an ordered string (e.g., “one, two, three"), or a spatial image (e.g., a triangle above

a square). In the examples given by Anderson, the declarative memory consists of many

cognitive units linked together encoding knowledge about specific situations. Cognitive

units are thus very different from the nodes in Copycat’s Slipnet—they are small pieces

of specific knowledge rather than concepts—and ACT*’s declarative memory has nothing

like the distributed concepts and context-dependent conceptual proximities in the Slipnet.

However, there are some similarities between the two systems. As in Copycat’s Slipnet,

the nodes in ACT*’s declarative memory become activated by input to the system, spread

activation to neighboring nodes, and lose activation through decay. As in Copycat, the

activation of a node indicates its salience or relevance, and spreading activation is a parallel

process th a t spreads relevance through the network.

All processing in ACT* is carried out by productions, which axe activated by pattern-

m atching tests on the contents of working memory. The am ount of tim e each test takes

is determ ined by the strength of the production (a function of its prior success) and the

activations of the dedarative-m emory nodes mentioned by the production. This accelerates

the execution of certain types of productions in response to interacting pressures, giving

ACT*’s production-m atching mechanism something of the flavor of Copycat’s parallel te r

raced scan, in which the activations of Slipnet nodes affect the urgencies of codelets, thereby

translating pressures into differential rates of exploration of pathways.

ACT* has been used mainly in modeling high-level cognitive skills such as decision

making, m athem atical problem-solving, computer programming, and language generation.

Thus its focus is quite different from th a t of Copycat. This difference in focus is reflected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240

not only in the difference between ACT*’s declarative memory and Copycat’s Slipnet, but

also in the large difference between the kinds of actions performed by ACT*’s productions

and those performed by Copycat’s codelets. ACT*’s processing is directed by explicit,

conscious goals, where a goal is represented by an active cognitive unit tha t dominates

processing until the goal is accomplished. In contrast, goals in Copycat are emergent rather

than explicit; they do not explicitly dom inate processing, but act as top-down pressures

for perceptual biases. For example, the goal “Look for successor groups” is implicit when

the successor-group node is activated; high activation results in higher urgencies and more

success for codelets trying to form successor groups. In addition, the examples given by

Anderson show that ACT*’s productions are quite specific and domain-dependent, and the

tasks performed are at a fairly high cognitive level, unlike the unconscious or subcognitive

level of a codelet’s task. For example, the following is one of the productions used in a

geometry-proof generation task (the production has been translated into English by me):

“If the goal is to prove a certain statem ent, and that statem ent is about a certain relation,

and a certain postulate is also about tha t relation, and the teacher suggests that postulate,

then set as a subgoal to try that postulate, and mark that postulate as tried.” This is very

different in flavor from the small perceptual activities of Copycat’s codelets.

8.2.5 Connectionist and Classifier-System Models, and Copycat’s Place in the

Symbolic/S ubsymbolic Spectrum

The philosophy behind the Copycat project is similar in many ways to th a t of various

connectionist or “parallel distributed processing” (PD P) models (Rum elhart & McClelland

1986) and to th a t of classifier systems (Holland, 1986; Holland et al., 1986).

Connectionist networks are pattern-recognition and learning systems. A connectionist

network consists of a number of nodes connected by weighted links. In such a network

(at least in the ideal PD P variety), a single node does not symbolize anything on its own;

rather, concepts and individual instances of concepts are represented as activation patterns

distributed over large numbers of nodes. Typically, the nodes in the network are divided up

into two or more layers, consisting of an input layer, possibly some internal “hidden” layers,

and an ou tpu t layer. The recognition process consists of presenting an activation pattern

(representing an instance of something the network is supposed to recognize or categorize)

to the input layer, and allowing this activation to spread throughout the network over the

links as a function of the weights of the links. The “answer” (e.g., the category the input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

241

instance belongs to) winds up being displayed as an activation pattern on the output nodes.

As the network is given more and more input patterns, it gradually improves its performance

as a result of a learning algorithm th a t adjusts the weights on the various links (there are

many different such learning algorithms used in connectionist systems; the most common

one is known as back-propagation, Rum elhart, Hinton, & Williams, 1986).

Classifier systems are also learning systems. A classifier system is composed of a large

number of simple agents called classifiers. The system has an input interface and an output

interface. Into the input interface come “messages” about the current sta te of the environ

ment and the system ’s relation to it. The job of the classifiers is to classify messages—that

is, to decide what to do in response to them . As in connectionist networks, the principles

of self-organization and emergence are central to classifier systems: the representations of

concepts and instances of concepts are a t any time distributed over a num ber of classi

fiers. There is no Central Director controlling the actions of the system; ra ther, all of the

system ’s behavior arises from myriad cooperative and competitive interactions among the

individual classifiers. Classifiers that produce beneficial messages for the system tend to

get stronger (via a credit-assignment procedure known as the “bucket brigade” algorithm)

and thus are more likely to win competitions with o ther classifiers (such competitions are

probabilistically decided on the basis of strength). A nother learning mechanism, known as

the “genetic algorithm ” , effects a kind of natural selection among classifiers in which weak

classifiers die out and in which strong classifiers thrive and, via reproduction (involving

recombination w ith other strong classifiers), pass their “genes” on to offspring classifiers.

The combination o f the credit-assignment mechanism and the genetic algorithm should in

principle allow the system to adapt (via reapportionm ent of strength, deletion of unhelpful

classifiers, and creation of new classifiers) to the environment it faces.

Connectionist networks and classifier systems are examples of subsymbolic (also called

subcognitive) architectures. Smolensky (1988) characterizes the difference between the sym

bolic and subsymbolic paradigms as follows. In the symbolic paradigm, descriptions used in

representations of situations are built of entities that are symbols both in the semantic sense

(they refer to categories or external objects) and in the syntactic sense (they are operated

on by “symbol m anipulation”). In the subsymbolic paradigm, such descriptions are built

of subsymbols: fine-grained entities (such as nodes and weights in connectionist networks or

classifiers in a classifier system) that give rise to symbols. In a symbolic system , the sym

bols used as descriptions are explicitly defined (e.g., a single node in a semantic network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242

represents the concept “dog”). In a subsymbolic system, symbols are statistically emergent

entities, represented by complex patterns of activation over large num bers of subsymbols.

Smolensky makes the point th a t subsymbolic systems are not merely “im plem entations, for

a certain kind of parallel hardware, of symbolic programs th a t provide exact and complete

accounts of behavior a t the conceptual level” (p. 7). Symbolic descriptions are too rigid

or “hard” , and a system can be sufficiently flexible to model human cognition only if it is

based on the more flexible and “soft” descriptions th a t emerge from a subsymbolic system.

The faith of the subsymbolic paradigm is th a t human cognitive phenomena are emergent

statistical effects of a large number of small, local, and distributed subcognitive events with

no global executive. This is the philosophy underlying connectionist networks, classifier sys

tem s, and Copycat as well. Fine-grained parallelism, local actions, com petition, spreading

activation, and distributed and emergent concepts are essential to the flexibility of all three

architectures (although in classifier systems, spreading activation is not explicit, but rather

emerges from the joint activity of many classifiers). Some connectionist networks (e.g.,

Boltzmann machines, Hinton & Sejnowski, 1986, and Harmony-Theory networks, Smolen

sky, 1986) have an explicit notion of com putational tem perature with some similarity to

Copycat’s (though, as was explained in C hapter 3, there is a significant difference between

the use of tem perature in Copycat and in sim ulated annealing, which is essentially the

tem perature notion used by Hinton & Sejnowski and by Smolensky). In classifier systems,

something akin to a parallel terraced scan emerges from probabilistically decided competi

tions among classifiers and from the genetic algorithm ’s implicit search through schem ata

(i.e., tem plates for classifiers) a t a rate determined by each schema’s estim ated promise (see

Holland, 1988, for a description of the dynamics of such searches in genetic algorithms). In

addition, the interaction of top-down and bottom -up forces is central bo th in connectionist

systems (see for example, McClelland and R um elhart’s model of le tte r perception, 1981)

and in classifier systems (for example, as discussed in C hapter 2 of Holland et al., 1986).

The philosophy underlying the Copycat project is more akin to th a t of the subsymbolic

paradigm than th a t of the symbolic paradigm, but the actual program fits somewhere in

between. Concepts in subsymbolic systems are often highly distributed, being made up of

individual nodes th a t have no semantic value in and of themselves, whereas in symbolic

systems, concepts are represented as simple unitary objects (e.g., as Lisp atom s). Concepts

in Copycat could be thought of as “semi-distributed” , since a concept in the Slipnet is

probabilistically distributed over only a small num ber of nodes—a central node (e.g., suc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

243

cessor) and its probabilistic halo of potential slippages (e.g., predecessor). The basic units

of subsymbolic systems such as connectionist networks are m eant to model m ental phenom

ena further removed from the cognitive, conscious level than those modeled by Copycat’s

Slipnet nodes and codelets. It may be that these systems are more psychologically realistic

than Copycat, bu t their distance from the cognitive level makes the problem of controlling

their high-level behavior quite difficult, and I don’t think th a t a t this point it would be

possible to use such systems to model the types of high-level behavior exhibited by Copy

cat. Ideally, a model should be constructed in which a structure such as Copycat’s Slipnet

arises from such a low-level, distributed representation, but this is beyond the achievements

of current research in connectionism. Likewise, in classifier systems, several properties im

planted directly in Copycat (such as nodes, links, and spreading activation) would have to

emerge automatically, which I believe would make a high-level task, such as Copycat’s, quite

difficult for classifier systems as they are currently conceived. Thus Copycat models con

cepts and perception a t an intermediate level, in term s of the degree to which concepts are

d istributed and the extent to which high-level behavior emerges from lower-level processes.

A m ajor difference between Copycat’s architecture and th a t of connectionist networks

is the presence in Copycat of both a Slipnet, containing platonic concept types, and a

working area, in which structures representing concept tokens (i.e., instances of concepts)

are dynamically constructed and destroyed. Connectionist networks have no such separate

working area; both types and tokens are represented in the same network. This has led

to a great deal of research in connectionism on the so-called “variable-binding” problem,

which is related to the larger question of the relationship between concept types and concept

tokens. One reason researchers in connectionism may hesitate to make such a separation

is th a t neural plausibility is a very im portant part of their research program, and a struc

tu re like Copycat’s Workspace—a mental region in which representations of situations are

constructed—does not have a clear neural underpinning. In contrast, for the purposes of

Copycat and related projects, we jare influenced more by psychological than neurological

findings. We assume the existence of something like Copycat’s Workspace even though we

do not know its neural basis, and we investigate how a spreading-activation network with

d istributed concept types interacts with a working area in which ephemeral concept tokens

can be arranged in complex structures. The lack of such a working area in connectionist

networks is another reason why it may turn out to be very difficult to use such systems to

model concepts and high-level perception in the way Copycat does.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244

In classifier systems, the “message list” (on which all messages from the environment

and from classifiers are posted) roughly corresponds to Copycat’s Workspace; messages can

serve as the tokens corresponding to concept types (classifiers). It is possible tha t structures

similar to those built in Copycat could be represented in a classifier system as messages on

a message list, though precisely how to do this is an open question.

Connectionist networks and classifier systems learn from run to run, while Copycat does

not. As was said before, Copycat is not m eant to be a model of learning in this strict sense,

though it does model some fundam ental aspects of learning: how concepts adapt to new

situations tha t are encountered, and how the shared essence of two situations is recognized.

The belief underlying the methodology of the Copycat project is th a t building a model

a t the level of Copycat’s architecture is essential not only for the purpose of providing an

account of the m ental phenomena under study at its interm ediate level of description, but

also as a step towards understanding how these phenomena can emerge from even lower

levels. The “subsymbolic dream ”— th a t all of cognition can be modeled using architectures

a t the subsymbolic level of connectionist networks—may be too ambitious a t this point in

the development of cognitive science. If there is any hope for understanding how intelli

gence emerges from billions of neurons, or even how it might emerge from connectionist

networks, we need to understand th e intermediate-level mechanisms underlying the struc

tu re of concepts, a term referring to m ental phenomena of central im portance in psychology

th a t nonetheless still lack a firm scientific basis. The long-term goal of the Copycat project

and related research is to use com puter models to help provide such a scientific basis. The

hope is tha t the understanding th a t results from this approach will not only in its own right

contribute to answering long-standing questions about the mechanisms of intelligence, but

will also provide a guide to connectionists studying how such intermediate-level structures

can emerge from neurons or cell-assemblies in the brain.

In summary, the architecture of Copycat is very different from the more traditional, so-

called “symbolic” artificial-intelligence systems, both in its parallel and stochastic processing

mechanisms, and in its representation of concepts as d istributed and probabilistic entities in

a network. These features make it m ore similar in spirit to connectionist systems, though

again there are im portant differences. The high-level behavior of connectionist systems

emerges statistically from a lower-level substrate as in Copycat. However, the fundamental

processing units in connectionist system s are more prim itive, concepts in such networks are

distributed to a much higher degree than in Copycat, and concept types and tokens are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

245

required to reside in the same network. Consequently, there has not been much success

so far in using connectionist systems as models of high-level cognitive abilities such as

analogy-making. Copycat thus explores a middle ground in cognitive modeling between the

high-level symbolic systems and the low-level connectionist systems; the claim m ade by this

research is th a t this level is a t present the most useful for understanding the fluid nature of

concepts and perception evident in analogy-making.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IX

CONCLUSION

In this chapter, I first summarize the main points of this dissertation, and then present

some proposals for future work on this project. Finally, I discuss the contributions of this

project to research in cognitive science and artificial intelligence.

9.1 Summary of Dissertation

This dissertation has presented the work done so far on the Copycat project, an investigation

of high-level perception, conceptual slippage, and analogy-making in humans. The long

term goal of this project is to understand the m ental mechanisms underlying the flexibility

and adaptability of concepts and of perception, particularly as they are manifested in the

context of analogy-making. The point of this section is to highlight and summarize the

m ajor ideas presented in this dissertation in order to give the reader a clearer perspective

on w hat has been accomplished. The summary will be given chapter by chapter.

In Chapter 1, the terms “high-level perception” and “conceptual slippage” were defined,

and the relationship among various aspects of high-level perception—categorization, recog

nition, and analogy-making—was discussed. Many examples were given to illustrate the

blurry boundaries between these various mental activities and to support the claim th a t

these activities arise from similar mental mechanisms. In particular, central to all of them

is the phenomenon of conceptual slippage, in which some mental representations are not

held fixed but are allowed to be replaced by conceptually related descriptions in response to

pressure. The central feature of high-level perception is the fluid application of one’s exist

ing concepts to the different situations one encounters, and conceptual slippage is required

for this fluidity. The examples given in C hapter 1 demonstrated how conceptual slippage

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

247

shows up particularly clearly in the realm of analogy-making, and illustrated the necessity

and ubiquity of conceptual slippage and analogy-making a t all levels of thought.

In C hapter 2, Copycat’s letter-string microworld was presented, and examples were given

to support the claim th a t this microworld captures, in an idealized form, many essential

issues in high-level perception and analogy-making. A number of general abilities neces

sary for analogy-making (both in the microworld and in the real world) were discussed.

C hapter 2 also proposed two types of criteria for judging Copycat’s success, reflecting the

program ’s interdisciplinary goals: artificial-intelligence criteria, which focus on the range

of problems the program can deal with, and psychological criteria, which focus on more

detailed comparisons of Copycat’s behavior with th a t of people.

In C hapter 3, Copycat’s architecture was described, and the proposed mechanisms for

achieving the abilities listed in Chapter 2 were detailed. The m ajor parts of Copycat’s

architecture are:

• The Slipnet, in which a concept consists of a central region (represented by a node)

surrounded by a halo of potential associations and slippages (represented by neigh

boring nodes linked to the central node). Since activations and link-lengths vary

dynamically, and since concepts are probabilistically rather than explicitly defined,

the availability and relevance of concepts in the Slipnet and their degree of associa

tion with other concepts change as perception and analogy-making proceed, and the

network gradually settles into a state th a t reflects essential properties of the situa

tion at hand. In other words, the Slipnet as a whole fluidly adapts to the different

situations the program is presented with.

• The Workspace, which is meant to correspond to the mental area in which ephemeral

representations of situations are constructed and destroyed.

• Codelets, which scout out, evaluate, and build (and sometimes destroy) structures

representing the program ’s interpretation of the problem at hand. Different codelets

correspond to different types of structures as well as to different pressures in an analogy

(e.g., a pressure to find in one situation the counterparts of important entities in the

o ther situation, or a pressure to perceive instances of a particular concept, such as

successor group). There are bottom -up codelets, which represent pressures present

in any situation, and top-down codelets, which represent pressures specific to the

situation a t hand.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

248

• Temperature, which measures the degree of perceptual disorganization in the system,

and in tu rn controls the degree of randomness used in making decisions.

Fundam ental to Copycat is the notion of statistical emergence: the program ’s high-level

behavior emerges from the interaction of large numbers of lower-level activities in which

probabilistic decisions are made. Codelets, nodes, and links are all defined explicitly ahead

of time, but their interaction gives rise to three types of statistically emergent entities: (1)

emergent concepts, whose composition (in terms of the nodes th a t are included) and whose

availability and relevance to the situation a t hand are statistical (ra ther than explicitly

defined) properties; (2) emergent pressures, which arise as statistical effects of large numbers

of codelet actions; and (3) an emergent parallel terraced scan, which results statistically from

a large num ber of probabilistic choices based on codelet urgencies and other factors (e.g.,

salience of objects, strengths of structures, etc.).

These three types of emergent entities interact as well. The structure and activation of

concepts influences both how codelets will evaluate possible structures (a codelet’s evalua

tion of a structure almost always takes into account activations and conceptual distances in

the Slipnet) and which top-down codelets will be posted. Concepts thus affect the popula

tion of codelets in the Coderack and their urgencies, out of which arise statistical pressures

and a parallel terraced scan. The parallel terraced scan, by guiding the search through pos

sible structurings of the problem, affects the activations of nodes and thus the conceptual

distances encoded by links in the Slipnet. This interaction has the flavor of Hofstadter’s

vision of “emergent symbols” in the brain, in which the top level (the symbolic level) reaches

back down towards the lower levels (the subsymbolic levels) and influences them, while at

the same tim e being itself determined by the lower levels (Hofstadter, 1979, Chapter 11).

This kind of system , in which explicitly defined entities (e.g., codelets, nodes, and links)

give rise to implicit higher-level patterns (e.g., concepts, pressures, and the parallel terraced

scan), which in tu rn reach back and influence the lower levels and thus each other, is an

example of Forrest’s (1990) characterization of “emergent com putation” .

This interaction gives rise to a system in which concepts and perceptual exploration

fluidly adapt to the situation a t hand, and allow appropriate conceptual slippages to be

made. Tem perature-controlled nondeterminism is an essential component of Copycat. It

allows the system to gradually shift from being parallel, random , and dom inated by bottom-

up forces to being more determ inistic, serial, and dom inated by top-down forces as the

system gradually closes in on an appropriate way of conceiving the situation, which yields a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

249

solution to the problem posed. The fact that the composition and activation of concepts, the

type and strength of various pressures, and the parallel terraced scan emerge statistically

from large numbers of probabilistic decisions imbues Copycat with both flexibility and

robustness. Because of nondeterminism, no path of exploration is absolutely excluded a

priori, bu t at the same tim e, the system has mechanisms th a t allow it to avoid following

bad pathways, a t least most of the time. A crucial idea is th a t the program has to have the

potential to follow risky (and perhaps farfetched or even crazy) pathways in order for it to

have the flexibility to follow subtle and insightful ones. This was strikingly illustrated by the

results of Experiment 6 in Chapter 7, in which nondeterminism was basically eliminated.

The program no longer gave farfetched fringe answers to “a b c => a b d , m rr i i i =► ?” , but

it also no longer gave the insightful answer m r r i i i i . The program has to have the potential

to bring in a priori unlikely concepts (such as group-length) into its interpretation of the

problem, but should do so only in response to strong pressures. These pressures are w hat

give shape to the program ’s concepts and guide the program ’s exploration.

Chapters 4 and 5 presented the major empirical results of the Copycat project.

In Chapter 4, statistics were given for Copycat’s performance on the five target prob

lems discussed in Chapter 2, and, for each problem , comparisons were made between the

program ’s range of answers and the range of answers given by people participating in a

survey. In addition, sets of screen dumps from runs of the program on each problem were

given, which illustrated the mechanisms described in C hapter 3.

C hapter 5 addressed one of the most im portant questions for any artificial-intelligence

program: How flexible is it? T hat is, how well does it continue to perform when it is

stretched beyond the most central problems it was deliberately designed to solve? In this

chapter, statistics summarizing the program’s performance on 27 variants of the five target

problems were given. The program ’s answers were again compared with the results of a

survey of people’s answers.

C hapter 6 gave a discussion of two salient ways in which the program is lacking: its mech

anisms for implementing top-down forces and focus of attention are not effective enough,

and it lacks sufficient self-watching mechanisms.

C hapter 7 gave the results of six experiments on the program designed to elucidate

the roles played by various aspects of the program ’s architecture. In each experiment, a

certain m ajor design feature of the program was “lesioned” (i.e., removed or altered). The

experiments investigated the effects on the program ’s behavior of suppressing or altering the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250

following features: terraced scanning, breaker codelets, different conceptual-depth values,

dynamic link-lengths, and randomness (by clamping the tem perature a t either a very high

or very low value).

Finally, in Chapter 8, Copycat was compared with some o ther models of analogy-making

and with o ther related work in artificial intelligence and cognitive science, and a discussion

was given of Copycat’s intermediate place in the subsymbolic-to-symbolic spectrum of cog

nitive models.

9 .2 P ro p o s a ls fo r F u tu re W ork

As I see it, there are three dimensions along which future work related to this project

could proceed. Work could continue on the Copycat program itself, addressing some of the

problems w ith the current program that were discussed earlier, and the program could also

be extended to deal with a larger set of problems in the letter-string domain as well as to

produce more complete sets of answers to the problems it can currently solve. Another

dimension of future work is to use the same basic architecture in other microdomains of

roughly the same complexity. A third dimension would be to use ideas from Copycat to

develop AI and cognitive-science models tha t work in more complex domains.

As far as future work on the Copycat program goes, perhaps the first priority is to

address the problems with top-down forces, focus of attention, and self-watching tha t were

discussed in C hapter 6. Having more plausible and effective mechanisms in these areas is

essential in order to further extend the program.

Extensions to the program could be made in many directions. Every type of structure

the program builds could be made more complex. The following are some examples of the

kinds of extensions that could be made.

• More complex descriptions could be made, such as “rightm ost letter of leftmost group”

(e.g., th e rightmost a in a a a b b b c c c) , “th ird letter from the leftmost letter of string”

(e.g., the r in p q rs t) , “next-to-leftmost letter” (e.g., the j in y k lm), and “next-to-last

letter (in the alphabet)” (a possible description of the y in w xy).

• More complex bonds could be constructed, such as allowing bonds simultaneously

between letter-categories and group-lengths in r s s t t t , bonds between spatially non-

adjacent letters such as the a and b in ax b x c x , and bonds representing relationships

consisting of a chain of links rather than ju st one link in the Slipnet, such as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

251

“double successor” relations in ace.

• More complex types of groups could be constructed, such as groups based on spatial

adjacency rather than on relations in the Slipnet (e.g., the three m x b groups in the

string m x b m x b m x b), or groups based on symmetry (such as a grouping of the whole

string ax x g g g x x a).

• More complex correspondences could be constructed, such as the three different cor

respondences from the c in the initial string to the rightm ost letter in each successor

group of the target string in “a b c => a b d , lm n fg h o p q => ?” (Variant 13). An

other extension related to correspondences would be a mechanism th a t carries out the

“coattails effect” mentioned in Chapter 7. The coattails effect should allow certain

slippages to be pulled along “on the coattails” of conceptually related slippages tha t

have already been made. This would enable the program to produce additional an

swers to problems such as Variant 25: “a b c => a b d , g lz =>• ?” . The current program

cannot answer flz—there is no possibility of a successor =► predecessor slippage, since

the target string cannot be seen as a successor or predecessor group. The coattails

effect would allow the slippage successor => predecessor to be brought in on the coat

tails of the conceptually related slippage first => last, even though the former is not

• explicitly a part of any correspondence.

• More complex rules could be constructed, such as “Extend the string by one” for initial

change a b c =>• a b e d , or “Replace all letters by X ’s” for initial change a b c =$► x x x ,

or “Extract the rightm ost letter” for initial change a b c => c.

These are some of the ways in which the current program could be extended. This list

is by no means exhaustive; in fact, it barely scratches the surface of w hat could be done.

The letter-string domain has the potential for so many different types of problems th a t

there is almost no lim it to the kinds of extensions th a t could be made to Copycat. Much

could be learned about the general issues we are studying by attem pting to extend Copycat

in various ways. (See Appendix A for a number of examples of problems Copycat cannot

currently solve, some of which suggest other possible extensions.)

T he second dimension for future work is to use the same basic architecture in other

microworlds. A ttem pting to use the same architecture in different contexts would be very

useful for learning what aspects of the architecture are (perhaps inadvertently) domain-

dependent and for determining how to make the architecture more general. Such a project

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

252

is currently being carried out by Robert French. In his “Tabletop” project, he uses a

similar architecture to solve analogy problems involving arrays of objects on a restaurant

table. There are some interesting differences between the issues contained in the Tabletop

domain and those in the letter-string dom ain, and this work will hopefully result in a more

refined and general architecture. (For a description of the Tabletop project, see Hofstadter,

Mitchell, & French, 1987.)

Another, more ambitious project (which has not yet reached the implementation stage)

is Hofstadter’s “Letter Spirit” project (also described in Hofstadter, Mitchell, & French,

1987), which proposes to use an architecture related to Copycat’s to produce “gridfonts”

(typefaces in which all letters are designed on a specific grid, using discrete straight segments

ra ther than continuously curving lines) in uniform styles. For example, the input to the

program might be an ‘a ’ drawn on the grid by a person; the program ’s task would be

to produce the rest of the alphabet in “the same style” . As was discussed in C hapter 1,

the process of recognizing or producing certain styles (e.g., in music, a rt, or typography) is

basically a process of analogy-making. Here the analogy problem is, given an ‘a ’, to produce

an analogous ‘b ’, ‘c’, and so on.

The th ird dimension for future work is to attem pt to use general ideas from Copycat

(such as the notions of the parallel terraced scan, context-dependent concept activations and

conceptual distances, probabilistically defined concepts with graded presence or relevance,

tem perature, etc.) in computer models of perception working in more complex domains.

For example, I think it would be of great interest to try to use these ideas in computer

models of real-world visual and auditory recognition processes, such as object recognition

or speech understanding. I am not going to make any specific proposals here for how this

might be accomplished, but I feel th a t the ideas in Copycat are now well-enough developed

so th a t such applications could begin to be considered. All o f the main mechanisms in

Copycat were designed and implemented as much as possible w ith the idea that they could

be eventually “scaled up”—in principle, they do not rely on the fact th a t there are only

a small num ber of elements in each problem or a small num ber of nodes and links in the

Slipnet. In practice, there will no doubt be difficulties in actually getting these mechanisms

to work in more complex situations. However, as I will discuss further in the next section,

i t is essential to a ttem pt to do so, because confronting these very difficulties is what will

lead to new insights about the issues Copycat is meant to address.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

253

0.3 Contributions of This Research

Until words like “concept” have become term s as scientifically legitimate as, say,
“neuron” or “cerebellum”, we will not have come any where close to understand
ing the brain. (Hofstadter, 1985c, p. 234)

No one knows how to represent a concept or thing on the subsymbolic microlevel,
or even precisely what this means. If this ambition could be recognized, it
would come close to cracking the cognition problem. And no one is close to
accomplishing that. (Pagels, 1989, p. 141)

These sentiments reflect the view th a t underlies the research described in this disser

tation—that the understanding and explication of the psychological notion of “concept” is

perhaps the most im portant problem facing cognitive science. Concepts can be said to be

the fundamental units of thought, as genes are the fundam ental units of heredity. And the

present state of cognitive science is something like the s ta te of biology before the recognition

of DNA as the hereditary substance: the notion of a “gene” existed, but it was a vague and

proto-scientific term awaiting an explanation in terms of lower-level biological entities and

mechanisms. Likewise, the brain mechanisms underlying concepts are not currently known.

It seems likely th a t a full account of these mechanisms will be much more complex and

much more difficult to uncover than was the account of genes in term s of DNA.

As was said in the previous chapter, the long-term goal of the Copycat project (and re

lated projects) is to use computer models to help provide such a scientific basis for concepts.

This goal is still quite distant. An early step in this process would be to make clearer what

concepts are in a psychological sense (as opposed to a neurological sense) and to elucidate

the issues surrounding them . As was mentioned in C hapter 1, there has been much research

in psychology on the internal structure of categories, and much light has been shed on those

issues. The focus of the Copycat project is somewhat different: we are concentrating on

investigating and clarifying the natu re of conceptual slippage and the dynamics of the ac

tivation and association of concepts as they interact w ith perception. The hope is th a t the

research described here has contributed to the understanding of these aspects of concepts.

As part of this process of elucidation, this dissertation has described a set of ideas about

concepts, perception, and analogy-making, and has shown th a t a computer program th a t

implements these ideas exhibits rudim entary fluid concepts—the program ’s concepts are

able to adapt to different situations in a microworld th a t, though idealized, captures much

of the essence of real-world analogy-making. The main contributions of this research have

been to develop and explicate these ideas, to show th e extent to which they do indeed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

254

work, and also to examine in what ways they are flawed or incomplete. The result is not

yet a complete “theory” of high-level perception and conceptual slippage, at least not in

the standard sense of theories in, say, physics or chemistry. These ideas have not yet been

sufficiently developed or implemented to be predictive of hum an behavior on a large scale,

or to be strictly “falsifiable” (though some of the results given in this dissertation have

dem onstrated certain problems and incompletenesses in the program ’s mechanisms). Given

tha t we are investigating very general abilities (rather than domain-specific performance on

letter-string analogy problems), and th a t we are trying to understand how high-level mental

activities (such as concepts) emerge from lower levels, the phenom ena th a t we axe studying

are too complex for us to develop complete theories of them a t th is stage of research. Rather,

the process of developing these ideas and implementing them in computer programs allows

us to clarify what it is we are studying, and to begin to see w hat components such complete

theories might have. The ideas presented in this dissertation are m eant to act as stepping-

stones for the development of more complex models and more complete theories.

This kind of approach is typical of the role of current com puter models of intelligence.

As Alfred Kobsa points out, “AI modeling certainly does provide us with deeper experience

in recognizing what makes it possible for a system to produce certain ‘intelligent’ behavior.

It can be assumed th a t efforts to make this background experience explicit and to state it

in the form of generalizations will eventually lead to theories.” (1987, p. 187).

For the purposes of this explication process, the im portance of actually writing a com

puter program and getting it to work cannot be overemphasized. Many ideas for the Copycat

program were originally set forth by Hofstadter in a broad, outline form (1984a) before the

program was w ritten, bu t it was the process of writing the program —requiring constant

confrontation with the all-im portant “details”— that allowed the original ideas for the pro

gram to become more fully developed by Hofstadter and myself. Along the way, vague

ideas were clarified, wrong ideas were discarded, and new ideas were added. This parallel

development of ideas and models is how cognitive modeling has to proceed. Many insights

can come only through grappling face to face with the real issues (and it is certain th a t this

same process of modification will occur in attem pts to use ideas from Copycat in modeling

perception in more complex domains). New insights often come when things go wrong. In

the process of writing the Copycat program , many unanticipated problems arose (such as

the problems with top-down forces, focus of attention, and self-watching discussed in Chap

ter 6) th a t guided the implementation and th a t sometimes helped shed light on deep issues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

255

in perception and analogy-making. The appearance of unexpected strange answers (such as

“a b c =>• a b d , h h w w q q =$> h h x x r r” , discussed in C hapter 5) dem onstrated not only th a t

something was wrong with the program, but also helped drive home the subtlety and com

plexity of the m ental phenomena th a t we are studying. The process of writing a program

such as Copycat brings up at least as many questions as it answers, and one of the points

of writing the program was to find out what these questions are. There are many ways in

which the current version of Copycat is lacking, and m any problems with the mechanisms

the program does have, and a result of writing the program is that these aspects and prob

lems are uncovered and brought to light; they would have remained unseen and obscured

if the program had never been written. (Some of these points concerning the advantages

of writing artificial-intelligence programs have also been made by Longuet-Higgins, 1981,

among others.)

In summary, the main contributions of this work are: clarifying and making explicit

many central features of concepts, high-level perception, and analogy-making (e.g., emer

gent concepts, conceptual slippage, the interaction of bottom -up and top-down forces, com

mingling pressures, the parallel terraced scan, the role of nondeterminism in thought, etc.),

presenting ideas for mental mechanisms underlying these features, and verifying and further

developing these ideas by implementing them in a computer program. My hope is that the

ideas and results described in this dissertation have fulfilled what I have asserted to be the

main criteria for success—to help us to better understand what concepts are and to broaden

our intuitions on how to think about these issues. All of this serves to set the stage for the

very long-term goal of developing more complete scientific theories th a t explain how human

cognition comes about in the brain and th a t propose how human-like intelligence might be

achieved in computers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDICES

256

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

257

A PPEN D IX A

A S a m p le r o f C o p y c a t A n a lo g ie s

A . l P ro b le m s

The following is a collection of analogy problems in the Copycat letter-string domain (not

including the five target problems and 27 variants given in Chapters 4 and 5). These are

all problems th a t are currently beyond Copycat’s abilities. The purpose of presenting them

is to give readers a better feel for the breadth and richness of th is microworld.

The problems given below are arranged into seven “families” , each having a common

idea or them e among its problems. All the problems are of the form “If S i changes to S i ',

how does S2 change?” . In many of the families, several problems in a row are based on a

single example. In those cases, the example is given only once, and the various targets are

listed below it.

In the next section, the problems given here axe discussed, and reasons are given for

why Copycat cannot currently solve them .

1. a b c =>• a b d

a. a c e => ?

b. a a b a b c => ?

c. p x q x rx sx =>■ ?

d. a a a b b b c c k => ?

e. b c d a c d a b d => ?

2. a b e d => a b e d e

a. i jk lm => ?

b. i jx lm =► ?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

258

c. mlkji ^ ?

d. iiii => ?

e. iiiiiiii => ?

3. a. mmmkooeeeeefqxx => kfq

riipppppplooyg => 7

b. rrccmmkppbb k

Ijooooosrezv 7

4. a. abcde =>• xxxxx

pqr =t* ?

b. xxh => fgh

pxxx => ?

c. pqrxxxx => pqrstuv

efghmm => 7

d. amcmemg; => abcdefg

wxyx =» 7

5. a. ccccijcc ■ i L—r' cuuUicu

sosss => 7

b. CCCUCv => qqqeqq
sabsss => 7

c. eqe => qeq

abcdcba 7

d. eqe => qeq

aaabccc => 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

259

6. a. a b c d d e => a b c d e

pqstu =► ?

b. a b c e d => a b c d e

ppqqrrs =>■ ?

7. a. a =>■ z

b => ?

6. pqr =>■ rqp

a => 1

A .2 D iscu ss io n

la . “a b c =» a b d , a c e =► ?” . As was discussed in C hapter 2, the target string in this

problem can be understood as a “double successor” group, yielding answer acg . Copycat

currently can perceive relations or make slippages involving nodes separated by only one

link in the Slipnet, so i t cannot perceive a double-successor relation. In order to solve this

problem , Copycat would have to perceive these relations and use them to create a new

concept— double successor—on the fly. This new concept would have the same properties

as the program ’s other concepts: it would be used by codelets to calculate strengths of

s tructures involving it, when active it would post top-down codelets to look for instances

of i t , and so on. The program does not currently have any mechanism for creating new

concepts such as this.

16. “a b c => a b d , a a b a b c => ?” . As was discussed in C hapter 2, if the target string

is parsed as a -ab -ab c , then a strong though abstract similarity to the initial string a b c

emerges, where the “rightm ost letter” of a a b a b c is the group a b c , and its “successor” is

a b e d , yielding answer a a b a b e d . Copycat can solve this problem in principle in the same

way i t solves “a b c => a b d , m rr i i i => ?” , but in practice it is too hard. The program usually

very quickly constructs a sameness group consisting of the leftmost two a ’s, and cannot break

it in order to come up with the parsing a -a b -a b c . The program usually answers a a b a b d

(using the rule “Replace rightmost letter by successor”), though it sometimes constructs

an a b c successor group from the rightmost three letters in the target string, and maps

the c in the initial string onto this group, answering a a b b e d . On occasion, the program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260

— >

l U p l a c i — t w r - c i t < y r T r — t

• • la r i IV76

Figure A .l: Final configuration of the Workspace for a strange route to
the answer a a b a b c d .

gives the answer a a b a b c d for the wrong reason: The a a group is constructed and then

it is bonded together with the adjacent b , and a two-element successor group is formed:

aa-b . The program also forms the target-string a b c three-element group, and then notices

a successor relation between the lengths of these two groups. It thus parses the string as

2-3 (i.e., A b -a b c) and answers 2-4, that is, a a b a b c d , as shown in Figure A .I.

This crazy “t lisspun tale” was the only way the program ever got the answer a a b a b c d

over thousands of runs. The reason in part has to do with the program ’s problems with

top-down forces discussed in Chapter 6. Once the a b c successor group is m ade in the target

string, the combination of top-down forces and high tem perature should ideally combine to

make it more likely for a proposed a b group (i.e., containing the second and third letters) to

successfully compete with the intrinsically strong a a group. Once the string has been parsed

as a -a b -a b c , then the same kinds of forces as are present in “a b c => a b d , m r r iij =s* ?”

should make it possible for the leftmost a to be seen as a single-letter successor group

and for length relations to be noticed. This is all possible in principle for the current

version of Copycat. W hat is not possible for the current program is to see letter-category

relations between the groups a, a b , and a b c , or concept-mappings based on letter-categories

between the letters in the initial string and these three groups. These relations and concept-

mappings would be based on the view th a t a -a b -a b c was basically A -B -C in code, in the

same way th a t ii-jj-kk is basically I -J -K in code. However, Copycat does not currently

give letter-category descriptions to successor and predecessor groups as it does to sameness

groups (e.g., the group ii is given the description “letter-category: I ” , but the group a b c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

261

is not given any letter-category description), so such bonds and concept-mappings cannot

be made, although I believe they are in p a rt what make the solution a a b a b c d seem very

strong to m any people.

lc . “a b c =$■ a b d , p x q x rx sx =► ?”. To solve this problem, once m ust separate the

“figure” (the successor group p q rs) from the “ground” (the interleaved X ’s). If this figure

and ground are perceived, then the answer is p x q x rx tx . A more literal answer is pxqx rxsy .

Copycat cannot solve this problem for several reasons. For instance, it cannot build bonds

between letters th a t are not spatially adjacent (e.g., the p and q here axe separated by an

x) and it can only make groups th a t are based on relations in the Slipnct (thus it could not

group the p and its neighbor x together as one unit).

Id. “a b c =s- a b d , a a a b b b c c k =► ?” . Here the question is w hat to do about th a t pesky k.

Some possible answers are a a a b b b d d d , a a a b b b d d k , or a a a b b b c c l. The present version

of Copycat can produce the last two (as well as the usual “Replace rightm ost letter by D ”

answer, a a a b b b c c d) , bu t it isn’t flexible enough to do w hat people could do: assume that

the k “really should have been a c” , because then the analogy would make more sense, and

given the answer a a a b b b d d d .

le . “a b c => a b d , b c d a c d a b d => ?” . This problem looks chaotic and senseless, unless

you notice th a t the target string can be parsed as b c d -a c d -a b d , where each triplet is a

code for the “missing” letter. When the string is thus decoded, it is simply a b c , so the

answer is a b d , b u t once again in code: b c d -a c d -ab c . This is a very hard problem for

people, and I don’t know if Copycat will ever be sophisticated enough to get this answer.

2. This family of problems shows various ways of extending a group. The current

version of Copycat cannot deal with any o f these problems, since it cannot yet form a rule

like “extend the successor group” .

2a. “a b e d => a b c d e , ijk lm =>■ ?” . T he m ost straightforward answer is ijk lm n .

26. “a b e d => a b c d e , y x lm => ?” . There are several possible answers, including jjx lm n

(ignore the x and the lack of a k), i jk x lm n (viewing the target string as two successor groups

separated by an x , bo th of which should be extended), and jjk lm n (viewing the x as “the

space into which to extend the group”). T he last answer requires a kind of flexibility that

is far beyond Copycat’s current abilities.

2c. “a b e d => a b c d e , m lk ji =>■ ?” . The main rival answers here are m lk jih (extending

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

262

the predecessor group to its right) and n m lk ji (extending the successor group to its left).

These axe similar to the rival answers to “a b c =s> a b d , k ji => ?” .

2d. “a b e d => a b c d e , iiii ^ ?” . I f the concept of successor group is slipped to the

concept of sameness group, or is generalized to the more general concept of group, then the

answer is iiiii (tha t is, the group length is incremented by 1). A nother reasonable answer

is iiiii i l l , perceiving the string iiii as a successor group of length 1 (consisting only of the

chunk iiii), and extending it by one “le tte r” (here a group of four j ’s). These answers (in

my opinion) are much better than more literal-minded answers such as iiiy (tack on the

successor of the rightm ost letter), iiiie (add on an e a t the right), or iiii (do nothing, since

the target string iiii contains no successor groups).

2e. “a b e d =>• a b c d e , iiiijiii => ?” . Two good answers are iiiii iiiii (extending both

sameness groups a t once) and

iiiiiiiik k k k (extending the successor group seen at the group level).

3. These problems involve the notion of extracting letters from a string, which Copycat

does not currently have.

за . “m m m k o o ee e e e fq x x => kfq, r iip p p p p p lo o y g => ?” . A plausible rule is “extract

all single letters” , yielding answer rlyg .

зб. “r rc c m m k p p b b => k , I jo o o o o srezv => ?” . Here there is competition between

two rules: the rule “ex tract all isolated letters” (yielding answer (jsrezv) or the even more

abstract rule “extract the ‘oddball’ or ‘black sheep’” (yielding answer o o o o o). Giving

Copycat the flexibility to recognize instances of the concept ‘oddball’ (or “objects in the

situation th a t are different from all the other objects) in a psychologically plausible way

would be extremely challenging. This is the kind of commonsense notion th a t people can

use very easily and flexibly, but that would be very hard to im part to a computer program.

4a. “a b c d e => x x x x x , p q r => ?” . A plausible rule is “Replace all letters by A’s” . This

would yield the answer x x x . Copycat cannot currently construct rules describing changes

of more than one le tte r, so it could not solve this problem.

46. “x x h => fg h , p x x x =$>■ ?” . This problem is easy for people, who answer p q rs .

However, Copycat is quite far away from being able to perceive the relation between x x h

and fgh , and to deal w ith the abstract concept of “filling in the spaces” .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

263

4c. “p q rx x x x =>• p q r s tu v , e fg h m m => ?” . A reasonable way of solving this problem

is to see the in ’s in e fg h m m as playing the same role as the x ’s in p q rx x x x . This view

would yield the answer e fgh ij.

4d. “a m c m e m g => a b c d e fg , w xyx => ?”. This problem has am amusing twist: the

x ’s in w x y x play the same “mask” or “placeholder” roles as the m ’s in am cm em g , but

what replaces the leftmost x in the desired answer (w xyz) is another copy of x , this tim e

playing the role of itself! This problem, like the previous two, is far beyond Copycat’s

current capabilities.

5a. “eeeeq ee =► e e ee ree , sosss => ?” . A reasonable rule here is “Replace the isolated

letter by its successor” , yielding answer spsss. Copycat cannot currently describe something

as “the isolated le tte r” , so it cannot a t present form this rule.

56. “e e eq e e => q q q eq q , sab sss => ?” . One very abstract rule is “switch the letters”

(or “flip the b its”). If the a and b in the target string are grouped as a single unit, then the

answer is a b s a b a b a b . Another way to describe the change is “turn the string inside-out” .

In this case, a s sb b b is a plausible answer. This problem is, of course, far beyond Copycat’s

current capabilities, since it has no notion of switching letters or tu rn ing things inside-out.

5c and d. “eq e => qeq , a b c d c b a => ?” and “eq e ^ qeq , a a a b c c c => ?” . Both these

problems explore the concept of “turning a string inside-out” . A possible answer to part c

is d c b a b c d ; possible answers for part d are b aaacccb , b b b a c b b b , and a b b b c . The last

answer expresses an extremely abstract view, in which the letters themselves are ignored

and “turning the string inside-out” is done a t the level of group-length. T hat is, the pattern

3-1-3 (aa a b c cc) corresponds to e q e and the pattern 1-3-1 (a b b b c) corresponds to qeq.

6. a and 6. “a b c d d e => a b c d e , p q s tu => ?” and “a b c e d =>• a b c d e , p p q q r rs ^ ?” .

Both problems could be seen to be about “fixing up” or “cleaning up” a structure—a quite

abstract concept (it would be very challenging to enable Copycat to recognize instances of

it) . A good answer to part a is p q r s tu , and a good answer to part 6 is p p q q r rs s . This is,

in my opinion, somewhat better than the answer p q rs , since it reflects the idea that both

the initial and target strings had “just a little bit wrong with them ” , ra ther than a massive

defect requiring global rewriting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

264

7a. “a => z , b => ?”. If the a and the z are seen as “m irror images” of each other,

then the answer should be y—th a t is, the b ’s mirror image. For this answer, the rule

would be something like “Replace the first letter by the last le tte r” , and the translated

rule would be something like “Replace the next-to-first le tte r by the next-to-last letter” .

Copycat cannot get this answer because it cannot presently describe a b as “next-to-first”

or a y as “next-to-last” .

7b. “p q r => rq p , a ^ ?” . One answer is a . A very abstract answer is z , which might

come about by seeing the essential relation between p q r and rq p as opposite, and asking,

“W hat is A’s opposite?” This would involve something like the “coattails” effect suggested

in C hapter 7. The p q r => rq p correspondences might involve the slippage right =>■ left or

alternatively successor => predecessor. Then the slippage firs t =}► last might come on the

coattails of the other slippage, since the two slippages are conceptually related. Copycat

currently has no mechanism implementing such an effect.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

265

A P P E N D I X B

P a r a m e te r s a n d F o rm u la s

This appendix lists the values of the param eters used in Copycat, and gives more detailed

descriptions of some of the formulas used in the program. The detailed formulas for the

im portance, happiness, and salience of objects, and for the strengths of structures, are not

given here (they were described in general term s in C hapter 3), but the original source code

can be provided to anyone interested in the details of these particular formulas.

All values in Copycat (param eters values, formula results, activation values, tem pera

tu re , and so on) are in the range from 0 to 100.

There are many param eters in the program whose values were assigned by me. In

general, the values were decided by a combination of intuition, trial and error, and some

arbitrariness, and are not necessarily optimally tuned in the current version of the program.

They should thus not be thought of as cast in concrete, b u t are very much open to further

testing and refinement.

B . l V alues U sed in S e t t in g U p th e S lip n e t

B .1.1 C o n c e p tu a l-D e p th V a lu es

A , B , . . . , Z: 10

1, 2, . . .5 : 30

leftmost, rightmost, middle, single, whole: 40

left, right: 40

predecessor, successor, predecessor-group, successor-group: 50

sameness, sameness-group: 80

first, last: 60

identity, opposite: 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

266

letter. 20

group: 80

letter-category: 30

number-category: 60

string-position: 70

direction: 70

bond-category: 80

group-category: 80

alphabetic-position: 80

object-category: 90

1.1 .2 L in k -L en g th s

The length of a link in the Slipnet is determined by its label, if it has one, and otherwise is

set ahead of time by me. The labels on various links were shown in Figure 3.3.

Lengths of Labeled Links

The length of a labeled link is equal to the intrinsic link-length of its label node (e.g.,

opposite) if the label node is not fully active, and is equal to the shrunk link-length of its

label node if the label is fully active.

The intrinsic link-lengths assigned to the various label nodes are:

predecessor. 60

successor. 60

sameness: 0

identity. 0

opposite: 80

The shrunk link-length for each label node is .4 times the intrinsic link-length.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

267

Lengths of Fixed-Length Links

For all links from nodes to their superordinate category-type nodes (e.g., A —* letter-

category, or left —* direction) the length is the difference in conceptual depth between the

two nodes. T hat is, the closer they are in conceptual depth, the shorter the link.

For other fixed-length links, the lengths are set by hand. The values axe:

A —► first: 75

Z —*• last: 75

letter-category —► number-category: 95

number-category —*• letter-category. 95

letter —► group: 90

group —* letter. 90

predecessor —*• predecessor-group: 60

successor —► successor-group: 60

sameness —► sameness group: 30

predecessor-group —► predecessor. 90

successor-group —*• successor. 90

sameness-group —► sameness: 90

single —► whole: 90

whole —► single: 90

left —» leftmost: 90

leftmost —*■ left: 90

right —► rightmost: 90

rightmost —* right: 90

successor-group —► number-category. 95

predecessor-group —*• number-category: 95

sameness-group —* number-category. 95

sameness-group —» letter-category. 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

268

At present, all types of groups can have length (number-category) descriptions, whereas

only sameness groups can have letter-category descriptions. This is why there are no

successor-group —* letter-category or predecessor-group —» letter-category links.

In addition to the links listed above, it was necessary to add certain links for the purpose

o f making certain concept-mappings compatible and internally coherent (e.g., first =» last

should support leftmost =>• rightmost), but to disallow spreading activation over these links.

All of the following links have a fixed length of 100, which means th a t no activation spreads

over them , even though the program considers the nodes to be related for the purpose

o f calculating the strengths of correspondences. This mechanism is not ideal, and should

probably be modified in future work on Copycat.

right —>■ leftmost: 100

leftmost —► right: 100

left —► rightmost: 100

rightmost —* left: 100

leftmost —► first: 100

first —* leftmost: 100

rightmost —► first: 100

first —* rightmost: 100

leftmost —► last: 100

last —» leftmost: 100

rightmost -*■ last: 100

last -+ rightmost: 100

B.2 Other Slipnet Parameters

Number of codelets run before a Slipnet update: 15

Number of Slipnet updates for initially-clamped nodes (i.e., letter-category and string-

position) to be clamped: 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

269

B.3 Slipnet Formulas

Activation decay: Each node loses (100 - conceptual-depth) percent of its activation

at each Slipnet update.

Activation spread: If a node is fully active, it spreads activation to each of the nodes

it is linked to. Each neighboring node gets link-length percent of the original node’s

activation. In the current version of the program, the program always uses the intrin

sic link-length, rather than the shrunk link-length, for this calculation, even when the

label node for this link is active. Shrunk link-lengths are used only by codelets in eval

uating slippages, bonds, etc. When I used shrunk link-length for spreading activation,

the network tended to become too active. It is possible th a t a different mechanism

(e.g., some kind of inhibition technique) should be used to control activation in the

network—this is a topic for future work on Copycat.

B.4 Temperature Formulas

The tem perature is updated along with the Slipnet, every 15 codelet steps. The formula

for calculating the tem perature is

(.8 * [the weighted average of the unhappiness of all objects, weighted by their relative

importance]) + (.2 * [100 - strength(rule)])

The factors .8 and .2 are the weights given to the two components (the unhappinesses of

objects in the Workspace and the inverse of the strength of the rule) in this calculation. As

discussed in C hapter 4, there are some problems with this weighting scheme, which result

in implausible tem perature values for some answers.

As was discussed in Chapter 3, in addition to affecting the choice of which codelet to

run next (how this is implemented is described in the next section), tem perature affects

several probabilistic choices made by codelets. This is implemented as follows.

Before a codelet makes a probabilistic choice based on probability p (e.g., the probability

whether to post a follow-up codelet to test the strength of a given structure), it adjusts p

(a num ber between 0 and 1 according to the current tem perature by sending it through

a filter. The filter adjusts probabilities lower than .5 up and probabilities higher than .5

down by an amount th a t depends on the tem perature (the higher the tem perature, the

closer probabilities are brought to .5). The filter is a t present a fairly complicated formula,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

270

arrived a t partially by trial and error. It gives the desired numbers, but it is inelegant. The

whole form ula should eventually be simplified. The formula, written in Common Lisp, is

given below (^tem perature* is the global tem perature variable).

(defun adjust-probability (p)

(cond ((= p 0) 0)

((< P -5)
(let* ((term l (max 1 (truncate (abs (log p 10)))))

(term 2 (expt 10 (- (- term l 1))))

(min .5 (+ p (* (/ (- 10 (sqrt (- 100 *tem perature*))) 100)

(- term 2 p)))))))

((> P -5)
(m ax .5 (- 1 (+ (- 1 p)

(* (/ (- 10 (sqrt (- 100 *tem perature*))) 100)

(- 1 (- 1 P))) » » »

Tem perature also affects the degree of randomness with which fights between competing

structures are decided. A fight is decided probabilistically based on the respective strengths

of the structures involved, but these strengths are first sent through a filter th a t adjusts

them according to the current tem perature, enhancing differences in strengths more and

more as the tem perature falls. The filter is:

•»• i t i 100—temperoture . ~
adjusted-strength = strength 30

The constants 30 and .5 are for scaling purposes and were determined by trial and error.

B.5 Coderack Parameters and Formulas

The following describes how th£ tem perature-controlled probabilistic choice of codelets

works. There are a fixed number of possible urgencies th a t can be assigned to codelets

(currently 7), and each of those urgency “bins” is given a new value each time the tem per

ature is updated . The bins are numbered 1, 2 , . . . ,highest-bin-number. The function for the

value of each bin is:

(100—tcmpgromrel+lO
urgency = bm-number is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

271

The constants 10 and 15 are for scaling purposes and were determined by tria l and error.

The calculated urgency values are then used to directly make a probabilistic choice of the

next codelet to run.

The coderack is limited to a certain size (currently 100), and if this lim it is exceeded

by new codelets being posted, codelets are chosen probabilistically (as a function of their

urgency and their age on the coderack) to be deleted until the lim it is again reached. The

following value is first assigned to each codelet c in the Coderack:

age(c) * [highest-urgency - urgency(c)],

and then these values are converted into probabilities th a t are used to decide which codelets

to delete. Thus, the older the codelet and the lower its urgency, the more likely it will be

chosen to be deleted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

272

A P P E N D I X C

M o re D e ta ile d D e sc rip tio n s o f C o d e le t T y p e s

This appendix describes the various codelet types in more detail than was given in Chap

ter 3. The various probability values detailed in these descriptions are the values before the

adjustm ent for tem perature (described in Appendix B) is applied.

Description-Building Codelets

B o tto m -u p d e sc r ip tio n -sc o u t (no argum ents):

1. Choose an object in the Workspace probabilistically as a function of salience.

2. Choose a relevant description of the object probabilistically as a function of the

activation of the descriptors.

3. See if this descriptor has any “has property” links in the Slipnet that are short

enough (whether they are short enough is decided probabilistically with proba

bility equal to ((100 - link-length) / 100).

4. If not, then fizzle. Otherwise, choose one of the close-enough properties proba

bilistically as a function of degree of association and activation.

5. Propose a description of the object, based on th is property, and post a description-

strength-tester codelet whose urgency is a function of the activation of the des

cription-type (e.g., if the proposed descriptor is first, then the description-type

is alphabetic-position).

T o p -d o w n d e sc r ip tio n -sc o u t (argument: a description-type node):

1. Choose an object in the Workspace probabilistically as a function of salience.

2. Test all the possible descriptors of the given description type to see if any can

be applied to this object (e.g., if the description-type is alphabetic-position, then

first and last will be tested).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

273

3. If no descriptors of this type can be applied to the chosen object, then fizzle.

Otherwise, choose one of the applicable descriptors probabilistically (as a func

tion of activation) and post a description-strength-tester codelet whose urgency

is a function of the activation of the description-type.

D e s c r ip t io n -s tr e n g th - te s te r (argument: a proposed description):

1. Activate the proposed descriptor in the Slipnet (i.e., give it full activation).

2. Calculate the proposed description’s strength.

3. Decide probabilistically whether or not to continue, as a function of the proposed

description’s strength. If no, then fizzle. Otherwise, post a description-builder

codelet whose urgency is a function of the proposed description’s strength.

D e sc r ip tio n -b u ild e r (argument: a proposed description):

1. If this description is already attached to the given object, then fizzle. Otherwise

build the description, and activate the descriptor and the description-type in the

Slipnet.

Bond-Building Codelets

B o tto m -u p b o n d -sc o u t (no arguments):

1. Choose an object in the Workspace probabilistically as a function of salience.

2. Choose an adjacent object probabilistically as a function of salience.

3. Choose a “bonding-facet” (i.e., what aspect of the objects to look at in m ak

ing a bond—at present the only possible bonding-facets are letter-category and

number-category) probabilistically as a function of the possible facets’ local sup

port (i.e., a function of how many objects in the string have this type of descrip

tion) and activation.

4. See if each chosen object has a descriptor of the given bonding-facet (e.g., ietter-

category). If not, then fizzle.

5. If so, then see if there is a relationship in the Slipnet between these two descrip

tors. If not, then fizzle.

6. If so, then propose a bond between these two objects, and post a bond-strength-

tester codelet whose urgency is a function of the proximity of the two descriptors

in the Slipnet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

274

Top-down bond-scout: category (argument: a bond-category node):

1. Choose a string to work in probabilistically, as a function of both the support

of the given bond-category in each string (e.g., if the bond-category is successor,

then the string with more successor bonds is more likely to be chosen) and

the average unhappiness of objects in the string (the string with more unhappy

objects is more likely to be chosen).

2. Choose an object in the Workspace probabilistically as a function of salience.

3. Choose an adjacent object probabilistically as a function of salience.

4. Choose a bonding-facet.

5. See if each chosen object has a descriptor of the given bonding-facet (e.g., letter-

category). If not, then fizzle.

6. If so, then see if there is a link in the Slipnet of the given category between these

two descriptors. If not, then fizzle.

7. If so, then propose a bond between these two objects, and post a bond-strength-

tester codelet whose urgency is a function of the proximity of the two descriptors

in the Slipnet.

Top-down bond-scout: direction (argument: a direction node):

1. Choose a string to work in probabilistically, as a function of both the support of

the given direction in each string (e.g., if the direction is right, then the string with

more right-going bonds is more likely to be chosen) and the average unhappiness

of objects in the string (the string with more unhappy objects is more likely to

be chosen).

2. Choose an object in the Workspace probabilistically as a function of salience.

3. Choose an adjacent object in the given direction.

4. Choose a bonding-facet.

5. See if each chosen object has a descriptor of the given bonding-facet (e.g., letter-

category). If no t, then fizzle.

6. If so, then see if there is some link in the Slipnet between these two descriptors

(in the given direction). If no t, then fizzle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

275

7. If so, then propose a bond between these two objects, and post a bond-strength-

tester codelet whose urgency is a function of the proximity of the two descriptors

in the Slipnet.

B o n d - s tr e n g th - te s te r (argument: a proposed bond):

1. Calculate the proposed bond’s strength.

2. Decide probabilistically whether or not to continue, as a function of the proposed

bond’s strength. I f no, then fizzle. Otherwise, post a bond-builder codelet whose

urgency is a function of the proposed bond’s strength.

3. Activate (in the Slipnet) the two descriptors being related, and the bonding-facet

(e.g., letter-category).

B o n d -b u ild e r (argum ent: a proposed bond):

1. If the same bond has already been built between the two objects, then fizzle.

2. Otherwise, fight w ith any incompatible bonds, groups, and correspondences. If

any fight is lost, then fizzle. Otherwise, break all incom patible structures, build

the proposed bond, and activate (in the Slipnet) the new bond’s bond-category

and direction.

Group-Building Codelets

Note th a t any time a new group is proposed, the proposed group is autom atically given

a num ber of descriptions, including a group-category description, an object-category descrip

tion (i.e., group), a letter-category description if it is a sameness group, and a string-position

description if applicable. There is also some probability th a t it will be given a length de

scription. This probability is a function of the length of the group (the shorter, the more

likely) and the activation of number-category (the higher, the more likely).

T o p -d o w n g ro u p -s c o u t: c a te g o ry (argum ent: a group-category node):

1. Choose one of the strings probabilistically as a function of support for the bond-

category associated with the given group-category (e.g., if the group-category is

successor-group, then the string w ith more successor bonds is m ore likely to be

chosen) and the average unhappiness of objects in the string (the string with

more unhappy objects is more likely to be chosen).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

276

2. Choose an object in the Workspace probabilistically as a function of salience.

3. Choose a window in the string (with the chosen object a t one end) in which to

look for adjacent bonds of the given category and all in the same direction (no

m atter which one, as long as they are all the same). The choice is probabilistic,

with larger windows being more likely to be chosen.

4. Choose a scanning direction for scanning the window.

5. S tart from the chosen object, and scan through the chosen window in the chosen

scanning direction until no more adjacent bonds of the given category are found.

(If no bonds are found, then decide probabilistically whether or not to propose

a single-letter group, as a function of local support in the string for the given

group-category, and the activation of number-category.)

6. If no bonds are found (and a single-letter group is not being proposed), then

fizzle.

7. Otherwise, propose a group based on the bonds found, and post a group-strength-

tester codelet whose urgency is a function of the proximity encoded by the

group’s bond-category (e.g., successor, if the proposed group is based on suc

cessor bonds).

Top-down group-scout: direction (argument: a direction node):

1. Choose one of the strings probabilistically as a function of support for the given

direction (e.g., if the direction is right, then the string with more right-going

bonds is more likely to be chosen) and the average unhappiness of objects in the

string (the string with more unhappy objects is more likely to be chosen).

2. Choose an object in the W orkspace probabilistically as a function of salience.

3. Choose a window in the string in which to look for adjacent bonds of the given

direction and all of the, same category (no m atter which one, as long as they tire

all the same). The choice is probabilistic, w ith larger windows being more likely

to be chosen.

4. Choose a scanning direction for scanning the window.

5. S tart from the chosen object, and scan through the chosen window in the chosen

scanning direction until no more adjacent bonds of the given direction are found.

6. If no bonds are found, then fizzle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

277

7. Otherwise, propose a group based on the bonds found, and post a group-strength-

tester codelet whose urgency is a function of the proximity encoded by the

group’s bond-category (e.g., successor, if the proposed group is based on suc

cessor bonds).

G ro u p -s tr in g -s c o u t (no arguments):

1. Choose a string at random.

2. See if there is a set of adjacent bonds of the same type and direction spanning

the string.

3. If not, then fizzle. Otherwise, propose a group based on these bonds, and post

a group-strength-tester codelet whose urgency is a function of the proximity

encoded by the group’s bond-category.

G r o u p - s t r e n g th - te s te r (argument: a proposed group):

1. Calculate the proposed group’s strength.

2. Decide probabilistically whether or not to continue, as a function of the proposed

group’s strength. If no, then fizzle. Otherwise, post a group-builder codelet

whose urgency is a function of the proposed group’s strength.

3. Activate (in the Slipnet) the group’s bond-category and direction.

G ro u p -b u ild e r (argument: a proposed group):

1. If the same group already exists, then fizzle.

2. Otherwise, fight with any incompatible bonds, groups, and correspondences. If

any fight is lost, then fizzle. Otherwise, break all incompatible structures, build

the proposed group, and activate (in the Slipnet) all the descriptions given to

the new group, including the new group’s group-category.

Correspondence-Building Codelets

B o t to m -u p c o rre sp o n d e n c e -sc o u t (no arguments):

1. Choose two objects, one from the initial string and one from the target string,

probabilistically as a function of salience.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

278

2. Take all the relevant descriptions of each object and make a list of ail possible

concept-mappings between the descriptors. A concept-mapping is possible if the

two descriptors are identical or if they <uc linked in the Slipnet by a lateral

slippage link (see Section 3.3 for a discussion of the different types of links in the

Slipnet).

3. See if there is any concept-mapping on the list th a t w arrants proposing a cor

respondence between the two objects. Such a concept-mapping has to consist

of distinguishing descriptors (e.g., the concept-mapping letter => letter does not

warrant a correspondence on its own) and has to represent a “close-enough”

relationship in the Slipnet. Identity mappings are always considered to be close-

enough, so if there is a distinguishing identity m apping (i.e., a mapping with

distinguishing descriptors, such as rightmost => rightmost), then it is a sufficient

basis for a correspondence. For slippages, the probability of being considered

close-enough is a function of both link-length and conceptual depth o f the de

scriptors. The shorter the link, the more likely it is for the the concept-mapping

to be judged close-enough, and, as discussed in C hapter 3, the deeper the de

scriptors, the more resistance to slippage, so the less likely it is for them to be

considered close-enough for a slippage to be made.

4. If there is no concept-mapping th a t warrants proposing a correspondence, then

fizzle. Otherwise, propose a correspondence with all the possible concept-map

pings th a t were found in step 2. Once one concept-mapping (e.g., rightmost =>

rightmost) has been determined to be sufficient, then all the others (e.g., letter =>

letter) come along for the ride. Post a correspondence-strength-tester codelet

whose urgency is a function o f the strengths of the proposed correspondence’s

distinguishing concept-mappings.

I m p o r ta n t-o b je c t c o rre sp o n d e n c e -sc o u t (no arguments):

1. Choose an object from the initial string probabilistically as a function o f impor

tance.

2. Choose a descriptor (from th a t ob jec t’s relevant descriptions) probabilistically

as a function of conceptual depth (e.g., it might be the descriptor rightmost).

3. Try to find an object in the target string with the same descriptor, possibly

taking into account a slippage th a t has already been m ade (e.g., if the chosen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

279

descriptor is rightmost, and if the slippage leftmost => rightmost has already been

made, then th a t implies the slippage rightmost => leftmost, so this codelet will

look for the leftmost object rather than the rightmost object).

4. If no object in the target string with th a t descriptor is found then fizzle. O ther

wise, proceed as in steps 2-4 of the bottom-up-correspondence-scout to propose

a correspondence.

C o r re s p o n d e n c e -s tre n g th - te s te r (argum ent: a proposed correspondence):

1. Calculate the proposed correspondence’s strength.

2. Decide probabilistically whether or not to continue, as a function of the proposed

correspondence’s strength. If no, then fizzle. Otherwise, post a correspondence-

builder codelet whose urgency is a function of the proposed correspondence’s

strength.

3. Activate (in the Slipnet) the description-types and descriptors of all of the pro

posed correspondence’s concept-mappings.

C o rre s p o n d e n c e -b u ild e r (argument: a proposed correspondence):

1. If the same correspondence has already been built, then fizzle.

2. Otherwise, fight w ith any incompatible bonds, groups, and correspondences, and

the rule, if an incompatible one has been built. If any fight is lost, then fizzle.

Otherwise, break all incompatible structures, build the proposed correspondence,

and activate (in the Slipnet) the nodes representing the labels of any slippage in

the new correspondence’s concept-mappings (e.g., if one of the concept-mappings

is rightmost =» leftmost, then activate opposite).

Rule-Building Codelets

R u le -sc o u t (no arguments):

1. Find the letter in the i tial string th a t has been changed, th a t is, whose replace

m ent in the modified string does not have the same letter-category (the program

assumes that exactly one letter will have changed).

2. Get a list of the possible descriptors of the changed le tter th a t can be used in

filling in the rule tem plate. These descriptors have to be taken from relevant and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

280

distinguishing descriptions, but there are sometimes some other restrictions as

well. If a correspondence has been built from this le tte r to an object in the target

string, then the possible descriptors have to be part of the concept-mappings

underlying the correspondence. For example, in “s b c => a b d , ijk =>■ ?”, if

a correspondence has been built from the c to the k , then this codelet would

not propose the rule “Replace C by D”, since the descriptor C is not part of

th a t correspondence. Likewise, in “a b c => a b d , x cg =>• ?” , if a correspondence

has been built between the two c ’s, then this codelet would not propose the rule

“Replace rightmost letter by successor” , since the descriptor rightmost is not part

of tha t correspondence. If there is no correspondence attached to the changed

letter, then all the relevant, distinguishing descriptors are eligible.

3. Choose a descriptor from the list of eligible descriptors probabilistically, as a

function of conceptual depth.

4. Choose a descriptor of the le tte r in the modified string corresponding to the

changed letter in the initial string. The choice is also m ade probabilistically, as

a function of conceptual depth. W hen a replacement structure has been built

between the initial-string letter and the modified-string letter, the modified-string

le tte r is given a description corresponding to the relationship between the two

letters if there is one. For example, for a b c ^ a b d , the d would be given the

description “successor of the c” , b u t for a b c a b q , no such description would

be given, since there is no relationship in the Slipnet between C and Q.

5. Propose a rule with the two chosen descriptors, and post a rule-strength-tester

codelet whose urgency is a function of the conceptual depth of the two descriptors.

R u le - s t r e n g th - te s te r (argument: a proposed rule):

1. Calculate the proposed rule’s strength.

2. Decide probabilistically whether or not to continue, as a function of the proposed

rule’s strength. If no, then fizzle. Otherwise, post a rule-builder codelet whose

urgency is a function of the proposed rule’s strength.

R u le -b u ild e r (argument: a proposed rule):

1. If the proposed rule already exists, then fizzle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

281

2. Otherwise, if there is a different existing rule, fight with it. If the fight is lost,

then fizzle. Otherwise, break the incompatible ru is ; and build the proposed rule,

and activate (in the Slipnet) the two descriptors m aking up the rule.

R u le - t r a n s la to r (no arguments):

1. Decide whether the tem perature is too high to translate the rule. To do this,

choose a threshold probabilistically as a function of the am ount of structure that

has been built so far (this is described in Section 3.4.3), and see if the tem perature

is above the chosen threshold. If so, fizzle.

2. Otherwise, construct a translated rule by applying the slippages tha t have been

made in the various correspondences to the descriptors in the original rule. Once

the translated rule has been built, the program will stop running codelets, and

will produce an answer by applying the translated rule to the target string.

O ther Codelets

R e p la c e m e n t- f in d e r (no arguments):

1. Choose a le tte r a t random in the initial string. If this letter already has a

replacement structure attached to it, then fizzle.

2. Otherwise, get the letter in the corresponding position in the modified string.

3. Build a replacement structure between the two letters.

4. If the two letters have different letter-categories, then if their letter-categories are

related in the Slipnet, add a description to the modified-string letter describing

the relation (e.g., “successor of the c”).

B re a k e r (no arguments):

1. Decide probabilistically, as a function o f tem perature, whether or not to fizzle

immediately (the lower the tem perature, the more likely this codelet is to decide

to fizzle).

2. If the decision was made to continue, choose a structure a t random. Decide

probabilistically, as a function of the structure’s strength, whether or not to

break it (the weaker it is, the more likely it is to be broken). If the decision is

m ade to break the structure, then break it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

282

A P P E N D I X D

R e s u lts o f F u r th e r E x p e r im e n ts o n P e o p le

D . l In tro d u c tio n

Several experiments on people have been suggested to give evidence for Copycat’s psycho

logical plausibility, and it is worth discussing which ones I feel are useful, and which not.

One suggestion has been to measure precisely the relative tim es it takes the program to solve

various problems and to compare them with people’s relative tim es on the same problems.

This is clearly too fine-grained a comparison, since Copycat is not and was never meant to

be a model of how people read and process letter-strings. Another suggested experiment is

to test whether or no t the frequencies of Copycat’s different answers for each problem match

the frequencies given by a group of hum an subjects. The suggestion is th a t, for example, if,

given “a b c => a b d , k ji => ?” , 6 out of 10 people answer k jj, 3 answer k jh and 1 answers Iji,

then the program should be judged on how well it matches these frequencies. This would

not be a useful experiment: Copycat is not meant to be a model of how a population of

people responds to these analogy problems; it is closer to being a model of an individual

person, with high-level preferences emerging statistically from micro-biases.

The answer frequencies and tem peratures displayed in a bar graph represent the different

degrees to which various answers are obvious and preferable to the program. They are

m eant to correspond to the degree to which an individual would feel a certain answer

was obvious or good. For example, in “a b c =>• a b d , i jk => ?” , Copycat’s more than 50-

to-1 ratio of frequencies of answer ijl over y d is meant to model the vast difference in

immediacy of these two answers in a single person’s mind: although the route to y d is

always open, it is quite unlikely and is almost never followed. Likewise, the average final

tem peratures are supposed to represent how an individual, w ith individual biases, would

ra te the different answers (though, as was discussed previously, there are some problems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

283

with the way tem perature is currently calculated in Copycat). Thus, m atching Copycat’s

answer frequencies against those of a population is not the right experiment to do; it would

be better to see if Copycat’s micro-biases could be tuned to m atch the behavior of a single

person. However, a t this point even this experiment is too fine-grained, since there are so

many factors th a t go into a person’s answers that involve knowledge th a t Copycat lacks,

and it is also unclear how such a comparison would be done, since it is hard to know, for

example, how likely the path to an answer like y d would be in a single person’s mind.

At this point, therefore, only limited direct comparisons can be m ade with people in

order to lend more plausibility to the model. The comparisons I felt would be useful and

chose to do are the following:

1. Comparing the range o f answers given by the program and by people. The results of

these comparisons were discussed in Chapters 4 and 5.

2. Comparing the effects (at a coarse-grained level) on the program and on people o f small

variations in pressures. The results of these comparisons were discussed in Chapter

5.

3. Comparing preferences on answers. If people generally agree th a t, given the restric

tions of the microworld, a given answer is very strong or very weak, then Copycat

should concur with this judgment, in the sense of having a low or high average final

tem perature for that answer. This would lend some plausibility to the program ’s

mechanisms for judging the quality of various ways of perceiving situations. However,

if the quality of a given answer is controversial among people, then a comparison with

Copycat’s judgm ent cannot be made, since the program is in effect exhibiting its own

“taste” in the m atter (a result of a large number of micro-biases).

4. Comparing relative difficulties on different problems. If people generally find certain

problems much more difficult than others (e.g., if “a b c => a b d , x y z =» ?” is more

difficult than “a b c => a b d , ijk =>• ?”), the program should experience the same relative

difficulties: it should take longer to solve problems difficult for people than problems

simple for people, and if there are any specific difficulties people reliably run into (e.g.,

in “a b c ^ a b d , xyz =S- ?” , trying to take the successor of Z and h itting an impasse),

the program should run into them as well. This would lend some plausibility to the

program’s underlying mechanisms as models of similar mechanisms in humans.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

284

D .2 C o m p a r in g P re fe re n c e s o n A n sw ers

For this comparison I used 19 paid subjects who were already familiar with the letter-string

domain, having ju st participated in either the survey described in Chapters 4 and 5 or the

timing experiment described in the next section. The subjects were given a list of problems

(including the five target problems or slight variants) along with a set of possible answers

to each problem with a detailed written justification for each answer (I don’t repeat the

justifications for each answer here, but they should be clear from earlier discussions). The

subjects were asked, for each problem, to rate each given answer on a scale from 5 to 1,

with the following adjectives associated with each num ber: “intelligent” (5), “reasonable”

(4), “barely reasonable” (3), “weak” (2), and “stupid” (1). My goal was to see, when there

was more or less general agreement among people on the strength or weakness of a certain

answer, whether or not Copycat also judged th a t answer to be strong or weak, as measured

by its average final tem perature for that answer.

The interesting statistics here for a given answer are the mean rating, which indicates

how well people liked the answer on average, and the standard deviation, which indicates

how much agreement there was on the rating for th a t answer. A standard deviation of

roughly 1 or less indicates a reasonable am ount of agreement on the rating of the answer.

a b c => a b d , p q rs => ?: This is a slight variant of “a b c => a b d , ijk => ?” . Copycat’s

performance on this problem is no different from its performance on the original. Four

possible answers were given for people to ra te , and their ratings were:

Answer Mean Rating Std. Dev.

p q r t 4.6 .5

p q rd 3.2 1.3

p q rs 2.8 1.2

o q rs 1.9 .9

C opycat’s average final tem peratures for these answers (1000 runs) are as follows:

Answer Average Final Temperature

p q r t 20

p q rd 27

p q rs 60

Again, the point here is not to make a fine-grained comparison between people and

Copycat, bu t rather to see whether, when there is general agreement among people, Copycat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

285

agrees as well. The answer p q r t is a clear winner here among people, with a high mean

rating (between “reasonable” and “intelligent”) and a low standard deviation, indicating

general agreement on its merits. This answer is also rated highly by Copycat, with an

average tem perature of 20. People also fairly reliably rate o q r s (simply “Replace leftmost

letter by predecessor” with no other justification given) as “weak” or “stupid” . In 1000

runs, Copycat never answered o q rs (though it is theoretically capable of doing so) since, in

the context of this problem, the rightmost =» leftmost correspondence is extremely weak and

unlikely to be made. The other two answers are generally seen by people as weak or barely

reasonable, bu t these ratings are a bit more controversial. Like people, Copycat views p q rs

as quite weak. Copycat’s tem perature on p q r d is fairly low, which, as was discussed in

Chapter 4, reflects a problem with the way tem perature is calculated in the program: it

does not sufficiently take into account the weakness of a rule like “Replace rightm ost letter

by D ”.

a b c => a b d , ijjjk k => ?: (This was actually given as “a b c =► a b d , n n o o p p ^ ?” , but

for consistency’s sake, here I use the letters i, j , and k). Four possible answers were given

for people to rate, and their ratings were:

Answer Mean Rating Std. Dev.

iujU 4.1 1.0

iijjk l 3.7 1.3

iijjk d 3.0 2.1

iijjd d 2.8 1.2

Copycat’s average final tem peratures for these answers (1000 runs) are as follows:

Answer Average Final Temperature

iu jii 28

iijjk l 47

iijjkd 62

Ujjdd 41

Here, people more or less agreed th a t ijjjll is a good answer, w ith a mean rating of

“reasonable” , and a standard deviation of 1. Copycat is in agreement with th a t assessment:

th is answer has by far the lowest average tem perature. There was less agreement among

people on the other answers, though it was agreed to some extent th a t iy jk l is be tte r than

the two D answers. Copycat ranks iy jd d higher than iy jk l (although it gets the latter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

286

much more often), since the former reflects a correspondence between the c and the group

k k , which is stronger than a letter => letter correspondence. This, though, once again shows

a flaw in the way Copycat’s tem perature is calculated: the weakness of the rule “Replace

rightmost le tte r [or group] by D ” should affect the tem perature more than it does.

a b c =» a b d , k jih =» ? : This is a slight variant of “a b c => a b d , k ji =>• ?” . Copycat’s

performance on this problem is basically no different from its performance on the original.

Four possible answers were given for people to rate , and their ratings were:

Answer Mean Rating Std. Dev.

kjii 3.9 1.1

Uih 3.6 1.3

kjig 3.4 1.3

k jid 2.9 1.2

Copycat’s average final tem peratures for these answers (1000 runs) are as follows:

Answer Average Final Temperature

k jii 48

Ijih 22

k jig 17

k jid 34

People on average judged k jii as a reasonable answer, with a fairly low standard de

viation: 14 out of 19 people judged it as “reasonable” or “intelligent” . Copycat disagrees

with this rating; this answer has a fairly high average tem perature because it does not take

into account the structure of the target string k jih . The program much prefers Jjih and

k jig . People were more divided on these two answers; on each, more than half the subjects

judged it as “reasonable” or “intelligent”, b u t each got a number of low ratings as well.

a b c =» a b d . m rr j j i =» ?: Three possible answers were given for people to rate , and

their ratings were:

Answer Mean Rating Std. Dev.

m rrk k k 4.2 .9

m rr jjk 3.6 1.3

m rr ii i j 3.3 1.5

Copycat’s average final tem peratures for these answers (1000 runs) are as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

287

Answer Average Final Temperature

m rrk k k 43

m rr jjk 50

m rr ii i i 20

Here people more or less agree th a t m rrk k k is a good answer, w ith a mean rating of

“reasonable” and a standard deviation of .9. Copycat does not agree with this assessment;

its average final tem perature on this answer is fairly high, since this answer reflects the fact

th a t the program was not able to form a coherent structure out of the the target string.

The other answers are more controversial, all having large standard deviations. Copycat’s

favorite answer by far, m rr ii i i . had a mean rating of 3.3 by people with a large standard

deviation of 1.5, indicating th a t it was the most controversial answer. Out of 19 subjects,

10 thought it was reasonable or intelligent, 8 thought it was barely reasonable, weak, or

stupid, and one rated it between “barely reasonable” and “reasonable” .

a b c =>■ a b d , xyz => ?: Four possible answers were given for people to rate (they were

reminded th a t x y a was not allowed) and their ratings were:

Answer Mean Rating Std. Dev.

x y d 3.2 1.3

xyz 3.0 1.2

w yz 2.9 1.6

yyz 2.7 1

Copycat’s average final tem peratures for these answers (1000 runs) are as follows:

Answer Average Final Temperature

x y d 22

xyz 74

w yz 14

yyz 44

Here, people more or less agreed th a t y y z is a fairly weak answer (Copycat also rates

it as fairly weak, w ith a tem perature of 44), but otherwise there was not much agreement

among the subjects. Again, the most controversial answer is Copycat’s favorite, w yz. It

got the highest number of “intelligent” ratings (5) of all answers to th is problem, but it

also got the highest number of “stupid” ratings (5). Out of 19 subjects, 7 thought it was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

288

reasonable or intelligent, 11 thought it was barely reasonable, weak, or stupid, and one

rated it between “barely reasonable” and “reasonable” .

In summary, I think it is difficult to draw any strong conclusions from the overall results

of these comparisons of answer-ratings over the five target problems. The m ain reason is

th a t there was a good deal of controversy on most of the answers (there were only three

answers in the entire study whose ratings had standard deviations less than 1). This is to

be expected, since one of the reasons for choosing these five problems was the fact that each

does have a number of different plausible answers, and our goal is for Copycat to have the

flexibility necessary to get different answers.

On the few answers where there was a fairly clear consensus among people as to the

strength or weakness of one answer relative to the others, Copycat agreed, except in the

case of m rrk k k , which the people in this study tended to rate high, but which Copycat

rates low. Also, as might be expected, the more “creative” answers (e.g., m rr i i i i . w yz)

were also among the most controversial; some people liked them very much, whereas others

thought th a t they were too farfetched.

A nother problem is th a t Copycat’s calculation of tem perature is imperfect, leading to

implausibly low final tem peratures on answers such as y d or i ij jd d .

In order to draw stronger conclusions, it would be necessary to make such comparisons

over a wider range of problems (involving more problems with clear-cut “best” answers)

and involving more subjects. An interesting, more detailed comparison would be to see if

the m odel’s micro-biases could be tuned so th a t the program’s performance matched the

different tastes and styles of individuals. However, the program is currently not a t the level

a t which such a fine-grained comparison could be made.

D .3 C o m p a r in g R e la tiv e D ifficu lties o n D iffe ren t P ro b le m s

For th is comparison I used 14 paid subjects, who were each given a verb vl description of

the letter-string domain and its lim itations. They were then asked to solve a set of eight

problems th a t appeared one by one on a com puter screen. The first three problems were

for train ing purposes, so th a t the subjects could get used to the experimental cetup, and

the next five problems were the five target problems (or slight variants) in random order

(different orderings for different subjects). The subjects were tim ed on how long it took

them to give an answer to each problem (though I did not tell them they were being timed

because I did not want them to feel any tim e pressure). The purpose here was to see if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

289

order of difficulty of the five problems (judged by the amount of tim e taken to solve them)

was the same for the program as for people. After solving each problem, each subject gave

a short verbal report on how they thought they solved it.

Unfortunately, a number of factors make it very difficult to compare the results here

with those of the program. First, the tim e taken by Copycat to solve a given problem

depends very much on what the final answer is. For example, on the problem “a b c =£■ a b d ,

m r r j j j =>• ?” , the program takes an average of 705 codelet steps to reach answer m rrk k k

versus 1332 for answer m r r i i i i : the la tte r is a harder answer to reach. So any useful

comparison with people would have to involve an answer-by-answer tim e comparison, but

the num ber of subjects here was too small to get the range of answers and number of

samples needed for a comparison (e.g., only one subject answered m rr i i i i . and on some

of the problems, a number of subjects gave answers that Copycat cannot get). Another

problem is noise in the data: even with the three training problems, a few of the subjects

still had trouble using the keyboard correctly, which increased the tim e recorded for various

answers, and again, the num ber of subjects was too small to overcome the noise problem. My

conclusion is th a t in order to be useful, this experiment would require many more subjects

than I was able to run, and certain design problems would have to be corrected (e.g., more

training problems should be used in order for subjects to get used to the experimental

setup). Therefore, the results given here should be considered to be those of a pilot study

rather than those of a full-fledged experiment.

The comparisons of average overall tim e for each problem are given below, with the

caveat th a t I don’t think th a t these results are very meaningful. In any case, what is to be

compared here is the time-ranked order of the five problems, and any significant differences

in tim e between different problems within a set. The times for the human subjects are given

in average num ber of seconds, and the tim es for Copycat are given in average number of

codelets run; these numbers cannot be directly compared in any way.

The times for the five problems solved by the 14 subjects were:

1. “a b c => a b d , jjk l =>■ ?” (average tim e: 24 seconds)

2. “a b c =s> a b d , eeffgghh => ?” (average time: 37 seconds)

3. “a b c =► a b d , s rq p => ?” (average time: 54 seconds)

4. “a b c => a b d , m rr j j j => ?” (average time: 55 seconds)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

290

5. “abc =>■ abd, xyz => ?” (average time: 59 seconds)

The times for these five problems when solved by Copycat are:

1. “abc => abd, ijkl => ?” (average number of codelets run: 341)

2. “abc => abd, eeffgghh => ?” (average number of codelets run: 800)

3. “abc => abd, s rq p => ?” (average number of codelets run: 497)

4. “abc => abd, m rr jj j => ?” (average number of codelets run: 850)

5. “abc =>• abd, xyz => ?” (average number of codelets run: 3322)

In spite of the caveat given above, a few interesting points can be made here. As common

sense would tell us, the problem “abc =$■ abd, ijk l => ?” seems to be the easiest for both

people and Copycat (and, of course, almost everyone answered ijk m), and the problems

“abc => abd, m rr jj j => ?” and “abc => abd, xyz => ?” seem significantly more difficult

for both the subjects and Copycat. On “abc => abd, m rr jj j => ?” , one subject gave a

report expressing a sense of pressures similar to those pushing Copycat: “I was pretty lost

w ith th is one, since I didn’t see any patterns resembling the given example; the letters in the

string I was given [i.e., m rr jjj] d idn’t relate to each other in the same way th a t the others

in the given example [i.e., abc abd] did. The given letters weren’t successors in the

alphabet.” On “abc => abd, xyz => ?” , all 14 subjects reported “hitting the snag”—that

is, trying to take the successor of Z and failing (as reported by them). Thus it would be

implausible if Copycat easily bypassed this snag and went directly to another answer: the

program hit this snag on all bu t 2% of its runs. After h itting the snag, all but one of the

subjects proposed the answer xya (the other one reported thinking of it, bu t assumed it

would not be allowed). They were told tha t this answer, while very reasonable, was not

possible given the restrictions of th e dom ain, and were then asked to come up with another

answer (the time taken to give these instructions was not included in the recorded solution

tim e).

Some of the problems with the model discussed in Chapter 6 have an effect on the timing

differences here. The problem “abc => abd, eeffgghh => ?” takes Copycat significantly

longer than “abc => abd, ijkl => ?” does, whereas the difference for people is not that

great. As was discussed in Chapter 6, one reason for this seems to be th a t once people start

to perceive groups in the string, they get the idea very quickly, whereas such top-down

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

291

forces in Copycat, although they exist, are still too weak; they don’t sufficiently accelerate

th is view on<v it begins to be perceived. Likewise, the problem “a b c => a b d , xyz => ?”

takes Copycat far longer than any other problem, whereas the difference for people is not

th a t great. This is in part due to the fact that people tend to give up fairly quickly when

faced with an impasse and give an answer that they may not find to tally satisfying. But the

large amount of time taken by Copycat on this problem is also due to its loopish behavior:

since it lacks appropriate self-watching mechanisms, it gets trapped in the same state again

and again, trying to take the successor of Z and failing.

D .4 S u m m a ry

Of the four types of comparisons I did, the first two (comparing the range of answers given

by people and by Copycat, and comparing the effects on the program and on people of

small variations in- pressures) were the most useful in showing where the program succeeds

and where it is lacking. The other two comparisons were more problem atic. The answer-

ratings comparison showed th a t there is a good deal of disagreement among people on the

quality of various answers to these five problems, and I don’t think any general conclusions

can be made about these results. It would be very interesting to see if Copycat could be

“ tuned” to match the preferences of different individuals on a wide range of problems; this

is an experiment th a t will be left for future work on this project. The comparison of relative

difficulty made a few interesting points, discussed above, but had some design problems and

also lacked enough subjects to be conclusive. These last two comparisons could obviously

be extended, and the way in which they were carried out could be much improved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B IB L IO G R A P H Y

292

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

293

BIBLIOGRAPHY

Anderson, J . R. (1983). The architecture o f cognition. Cambridge, MA: Harvard University
Press.

Barsalou, L. W. (1989). Intraconcept similarity and its implications for interconcept simi
larity. In S. Vosniadou and A. Ortony (Eds.), Sim ilarity and analogical reasoning,
76- 121. Cambridge, England: Cambridge University Press.

Bongard, M. (1970) Pattern recognition. Hayden Book Co. (Spartan Books).

Burstein, M. & Adelson, B. (1987). Mapping and integrating partial m ental models. In Pro
ceedings o f the Ninth Annual Conference o f the Cognitive Science Society. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Chalmers, D. J ., French, R. M., & Ilofstadter, D. R. (1990). High-level perception, repre
sentation, and analogy. Unpublished m anuscript, Center for Research on Concepts
and Cognition, Indiana University, Bloomington, IN.

Collins, A. M. & Loftus, E. F. (1975). A spreading activation theory of semantic memory.
Psychological Review, 82 407-428.

Cooper, L. (1913). Aristotle on the art o f poetry: Translation o f Aristo tle’s Poetics. New
York: Harcourt, Brace, and Co.

Comford, F. M. (1935). P lato’s theory o f knowledge: The Thaeatetus and the Sophist trans
lated. New York: H arcourt, Brace, and Co.

deGroot, A. (1965). Thought and choice in chess. T he Hague: M outon.

Erm an, L. D., Hayes-Roth, F ., Lesser, V. R., & R aj Reddy, D. (1980). The Hearsay-II
speech-understanding system: Integrating knowledge to resolve uncertainty. Com
puting Surveys, 12(2), 213-253.

Evans, T . G. (1968). A piogram for the solution of a class of geometric-analogy intelligence-
test questions. In M. Minsky (Ed.), Sem antic information processing. Cambridge,
MA: M IT Press.

Falkenhainer, B., Forbus, K. D. & Gentner, D. (1989). The structure-m apping engine. A r
tificial Intelligence, 41(1), 1-63.

Farmer, J . D., Packard, N. H., & Perelson, A. S. (1986). T he immune system, adaptation,
and machine learning. Physica D, 22, 187-204.

Feldman, J . & Ballard, D. (1982). Connectionist models and their properties. Cognitive
Science, 6(3), 205-254.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

294

Forrest, S. (1990): Introduction. In S. Forrest (Ed.), Emergent computation. Cambridge,
MA: M IT Press.

French, R. M. & Henry, J . (1988) La traduction en frangais des jeux linguistiques de Godel,
Escher, Bach. Meta, 33(2), 133-142.

Frorakin V. (Ed.) (1980). Errors in linguistic performance: Slips o f the tongue, ear, pen,
and hand. New York: Academic Press.

Gentner, D. (1983). Structure-m apping: A theoretical framework for analogy. Cognitive
Science, 7(2).

Gick, M. L. & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive
Psychology, 15, 1-38.

Hall, R. P. (1989) Com putational apprcrxhes to analogical reasoning. Artificial Intelligence
39, 39-120.

Hinton, G. E. & Sejnowski, T . J. (1986), Learning and relearning in Boltzmann machines.
In D. E Rum elhart and J. L. McClelland (Eds.), Parallel distributed processing,
282-317. Cambridge, MA: Bradford/M IT Press.

Hofstadter, D. R. (1979). Godel, Escher, Bach: an Eternal Golden Braid. New York: Basic
Books.

Hofstadter, D. R. (1982). The search fo r essence ’twixt medium and message: What is the
essence o f an idea? CRCC Report No. 4, Center for Research on Concepts and
Cognition, Indiana University, Bloomington, IN.

Hofstadter, D. R. (1983). The architecture of Jum bo. Proceedings o f the International M a
chine Learning Workshop. Monticello, IL.

Hofstadter, D. R. (1984a). The Copycat project: A n experiment in nondeterminism and
creative analogies. AI Memo No. 755, Massachusetts In stitu te of Technology, Cam
bridge, MA.

Hofstadter, D. R. (1984b). Simple and not-so-simple analogies in the Copycat domain.
CRCC Report No. 9, Center for Research on Concepts and Cognition, Indiana Uni
versity, Bloomington, IN.

Hofstadter, D. R. (1985a). Analogies and roles in hum an and machine thinking. In Meta-
magical themas, 547-603. New York: Basic Books.

Hofstadter, D. R. (1985b). On the seeming paradox of mechanizing creativity. In Meta-
magical themas, 526-546. New York: Basic Books.

Hofstadter, D. R. (1985c). Variations on a theme as the crux of creativity. In Metamagical
themas, 232-259. New York: Basic Books.

Hofstadter, D. R. (1985d). W aking up from the Boolean dream : Subcognition as com puta
tion. In Metamagical themas, 631-665. New York: Basic Books.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

295

Hofstadter, D. R. (1987). Fluid analogies and human creativity. CRCC Report No. 16,
Center for Research on Concepts and Cognition, Indiana University, Bloomington,
IN.

Hofstadter, D. R., Clossman, G., & Meredith, M. J. (1982). SEEK -W H ENCE: A project in
pattern understanding. CRCC Report No. 3, Center for Research on Concepts and
Cognition, Indiana University, Bloomington, IN.

Hofstadter, D. R., & Gabora, L. M. (1990) Synopsis of the workshop on humor and cognition.
Humor, 5(4), 417-440

Hofstadter, D. R., Mitchell, M.. & French, R. M. (1987). Fluid concepts and creative analo
gies: A theory and its computer implementation. Technical Report 10, Cognitive
Science and Machine Intelligence Laboratory, University of Michigan, Ann Arbor,
MI.

Hofstadter, D. R. & Moser, D. J . (1989). To err is human; to study error-making is cognitive
science. Michigan Quarterly Review, 28(2), 185-215.

Holland, J . H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: Uni
versity of Michigan Press.

Holland, J . H. (1986). Escaping brittleness: The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In R. Michalski e t al. (Eds.),
Machine learning: A n artificial intelligence approach: Vol. 2. Los Altos, CA: Morgan
Kaufmann.

Holland, J . H. (1988) The dynamics of searches directed by genetic algorithms. In Y. C.
Lee (Ed.), Evolution, learning, and cognition. World Scientific Press.

Holland, J . H., Holyoak, K. J ., N isbett, R. E., & T hagard, P. R. (1986). Induction. Cam
bridge, MA: Bradford/M IT Press.

Holyoak, K. J . (1984). Analogical thinking and human intelligence. In R. J . Sternberg
(Ed.), Advances in the psychology o f human intelligence, Vol. 2, 199-230. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Holyoak, K. J . & Thagard , P. (1989). Analogical m apping by constraint satisfaction. Cog
nitive Science, 13(3), 295- 355.

Johnson-Laird (1989) Analogy and the exercise of creativity. In S. Vosniadou and A. Ortony
(Eds.), Sim ilarity and analogical reasoning, 313-331. Cambridge, England: Cam
bridge University Press.

Kahnem an, D. & Miller, D. T. (1986). Norm theory: Com paring reality to its alternatives.
Psychological Review, 93(2), 136- 153.

Kaplan S. & Kaplan, R . (1982). Cognition and environment. New York: Praeger Publishers.

Kedar-Cabelli, S. (1988a). Analogy—from a unified perspective. In D. H. Helman (Ed.),
Analogical reasoning, 65-103. Dordrecht, The Netherlands: Kluwer Academic Pub
lishers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

296

Kedar-Cabelli, S. (1988b). Towards a computational model of purpose-directed analogy. In
A. Prieditis (Ed.), Analogica. Los Altos, CA: Morgan Kaufm ann.

Kirkpatrick, S., Gelatt J r., C. D., & Vecchi, M. P. (1983). O ptim ization by simulated an
nealing. Science, 220, 671-680.

Kobsa, A. (1987). W hat is explained by AI models? In R. Born (Ed.), Artificial intelligence:
The case against. London: Croom Helm.

Kotovsky, K. & Simon, H. A. (1973) Empirical tests of a theory of hum an acquisition of
concepts for sequential patterns. Cognitive Psychology, 1, 399-424.

Lakoif, G. (1987). Women, fire, and dangerous things. Chicago: University of Chicago Press.

Lakoff, G. & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago
Press.

Longuet-Higgins, H. C. (1981). Artificial intelligence: A new theoretical psychology. Cogni
tion, 10, 197-200.

McClelland, J. L. & Rum elhart, D. E. (1981). An interactive activation model of context ef
fects in letter perception: P art 1. An account of basic findings. Psychological Review,
88, 375-407.

M cDerm ott, D. (1981) Artificial intelligence meets natural stupidity. In J. Haugland (Ed.),
M ind design. Cambridge, MA: MIT Press.

Meehan, J . (1976). The metanovel: Writing stories by computer. Technical Report 74, Com
puter Science Departm ent, Yale University, New Haven, CT .

Meredith, M. J. (1986). Seek-Whence: A model o f pattern perception. Technical Report No.
214, Com puter Science Departm ent, Indiana University, Bloom ington, IN.

Moser, D. J . (1988). I f this paper were in Chinese, would Chinese people understand the
title? CRCC Report No. 28, Center for Research on Concepts and Cognition, Indiana
University, Bloomington, IN.

Moser, D. J . (1989). The translation o f Godel, Escher, Bach into Chinese. CRCC Report
No. 31, Center for Research on Concepts and Cognition, Ind iana University, Bloom
ington, IN.

Norman, D. A. (1981). Categorization of action slips. Psychological Review, 55(1), 1-15.

Pagels, H. R . (1988). The dreams o f reason. New York: Simon & Schuster.

Pivar, M. & Finkelstein, M. (1964): Automation, using LISP, of inductive inference on se
quences. In E. C. Berkeley and D. Bobrow (Eds.), The programming language LISP:
Its operation and applications, 125-136. Cambridge, MA: Inform ation International,
Inc.

Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Sem antic information pro
cessing. Cambridge, MA: M IT Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

297

Reagan, N. with Novak, W . (1989). M y turn: The memoirs o f Nancy Reagan. New York:
Random House.

Rosch, E. & Lloyd, B. B. (1978). Cognition and categorization. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Rum elhart, D. E., Hinton, G. E ., fc Williams, R. J. (1986). Learning internal representations
by error propagation. In D. E. Rumelhart and J. L. McClelland, (Eds.), Parallel
distributed processing, 318-362. Cambridge, MA: B radford/M IT Press,

Rum elhart, D. E. & McClelland, J . L. (Eds.) (1986). Parallel distributed processing. Cam
bridge, MA: B radford/M IT Press.

Schank, R. C. (1983). Dynamic memory. Cambridge, England: Cambridge University Press.

Schank, R. C., & Leake, D. B. (1989). Creativity and learning in a case-based explainer.
Artificial Intelligence, ^0(1-3), 353-385.

Simon, H. A. (1972). Complexity and the representation of patterned sequences of symbols.
Psychological Review, 70(5), 369-382.

Simon, H. A., & Kotovsky, K. (1963). Human acquisition of concepts for sequential patterns.
Psychological Review, 70(6), 534-546.

Skorstad, J ., Falkenhainer, B., & Gentner, D. (1987). Analogical processing: A simulation
and empirical corroboration. In Proceedings o f the American Association fo r Artifi
cial Intelligence, A A A I-87 . Los Altos, CA: Morgan Kaufmann.

Smith, E. E. & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard
University Press.

Smolensky, P. (1986). Inform ation processing in dynamical systems: Foundations of har
mony theory. In D. E. Rum elhart and J. L. McClelland (Eds.), Parallel distributed
processing, 194-281. Cambridge: Bradford/M IT Press.

Smolensky, P. (1988). On the proper treatm ent of connectionism. Behavioral and Brain
Sciences, 11(1), 1-14

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 12(3), 435-467.

Thagard, P., Holyoak, K. J . , Nelson, G., & Gochfeld, D. (in press). Analog retrieval by
constraint satisfaction. Artificial Intelligence.

Turner, M. (1988). Categories and analogies. In D. H. Helman (Ed.), Analogical reasoning,
3-24. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Yukawa, H. (1973a) Creative thinking in science. In Creativity and intuition: A physicist
looks at east and west. New York: Kodansha International, L td.

Yukawa, H. (1973b) Meson theory in its developments. In Creativity and intuition: A physi
cist looks at east and west. New York: K odansha International, Ltd.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

