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CHAPTER I

O V E R V IE W , P U R P O S E , A N D  G O A L S O F  T H E  C O P Y C A T  P R O J E C T

To have a command of m etaphor... is the mark of genius; for to  coin good 
m etaphors involves an insight into the resemblances between objects th a t are 
superficially unlike.

—Aristotle, The Poetics (Cooper, 1913, p. 76)

A cautious man should above all be on his guard against resemblances; they are 
a  very slippery sort of thing.

— Plato, The Sophist (Cornford, 1935, p. 180)

1.1 In tro d u c tio n

This dissertation describes a  computer program, called “Copycat” , th a t is an implementa

tion of a  number of ideas about the mental mechanisms underlying high-level perception, 

conceptual slippage, and analogy-making in humans. T he Copycat project was originally 

conceived by Douglas Hofstadter (1984a, 1985a) as part of a  continuing research program in 

cognitive science, whose long-term goal is to  understand the mechanisms underlying what 

Hofstadter calls the “fluidity” of concepts: their overlapping and associative nature, their 

indistinct boundaries, their dynamic and graded (rather th an  static  and all-or-nothing) rel

evance in a  given situation, their flexibility as a function of context—in short, their fluid  

rather than  rigid adaptability to different situations. Such fluidity is a  hallmark of human 

thought and its source is not well understood.

Hofstadter and his research group have been investigating this fluidity of concepts for 

many years and in a  num ber of different domains, including pattern  recognition, analogies, 

counterfactuals, speech and action errors, humor, translation between languages, and the

1
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creation and recognition of different styles in such domains as typefaces, music, and art 

(H ofstadter, 1987). W hat is striking is th a t some of the same or similar m ental mechanisms 

seem to  underlie these seemingly disparate m ental activities; in particular, central to all of 

them  is the phenomenon of “conceptual slippage” , in which certain descriptions in some 

m ental representation are not held fixed, but are allowed to “slip”—th a t is, to be replaced 

by conceptually related descriptions in response to various kinds of pressures present in 

the  situation a t hand. For example, when we try  to  determine who the  F irst Lady of 

G reat Britain is (Hofstadter, 1985a), the usual definition “wife of the  president” won’t 

work, since, for one thing, Great Britain has no president. Thus the usual description 

of “F irst Lady” cannot be applied literally (unless you want to  rigidly assert th a t Great 

B ritain has no First Lady since it has no president). The concept has to  be treated  liberally, 

allowing some slippages. For instance, you might feel that the “president” of Great Britain 

is the prim e minister, Margaret Thatcher, and th a t her “wife” is actually her husband, 

Denis. Thus, given the pressure of certain differences between the United States and Great 

B ritain , the concepts president and wife slip to  prim e minister and husband respectively; 

these different concepts play the same roles in their respective situations. (People have also 

suggested numerous other candidates for the British F irst Lady, including Queen Elizabeth, 

and even her husband Prince Philip.) This notion of fluidly exporting roles (such as “First 

Lady” ) from one situation to  another is fundam ental to the mental phenom ena th a t we are 

a ttem pting  to  model.

Underlying this entire research program is a  belief in the ubiquity and centrality of 

conceptual slippage in all aspects of thought, from basic and ordinary acts of recognition 

and categorization to rare and seemingly mystical feats of insight and creativity. Thus we 

believe th a t it is extremely im portant for researchers in cognitive science to  isolate and 

study th is phenomenon; the Copycat project is one attem pt to  do so.

Tw o previous projects carried out by Hofstadter and his graduate students— “Jum bo” 

and “Seek-Whence”—investigated certain aspects of perception and conceptual slippage, 

bu t each had a  number of lim itations, which will be discussed later in this dissertation. The 

particu lar goal of the Copycat project is to  further develop ideas from these projects by 

building a  model of how perception interacts with concepts to  engender appropriate—and 

sometimes creative—conceptual slippages in the  realm of analogy-making, a  realm in which 

the  necessity of constructing fluid and adaptable mental representations is particularly 

apparent.
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T he Copycat program  interprets and makes analogies between situations in an idealized 

microworld (involving letter-string analogy problems). The program ’s architecture brings 

together many ideas, some inspired by other a ttem pts a t modeling perception, some inspired 

by naturally-occurring self-organizing systems. These ideas (to  be explained more fully 

la ter) include:

•  A parallel and self-organizing approach to building perceptual descriptions via the 

interaction of large numbers of independent “perceptual agents” , with no global exec

utive controlling the system’s processing (inspired in part by the self-organizing mecha

nisms of metabolic processes in living cells and by the Hearsay-II speech-understanding 

program, Erm an et al., 1980).

•  A model of the concepts in which the composition of concepts, in term s of what 

conceptual slippages can be made, is not explicitly defined b u t rather emerges in 

response to  w hat is perceived in the situation a t hand. In this model, concepts a tta in  

various levels of activation in response to  what is perceived, resulting in shaded—rather 

than  black-and-white—levels of “presence” or “relevance” of various concepts in the 

situation a t hand. Activated concepts spread activation to conceptual neighbors, and 

a  concept’s conceptual proximity to  other concepts is dynamic and context-sensitive 

(changing according to current perceptions). Such a  model has aspects in common 

with certain types of semantic networks, since concepts are modeled by nodes and links 

in a  network, as well as with connectionist networks, since the degree of activation 

of nodes, the  degree of association between nodes, and the constitution of concepts 

themselves are emergent outcomes of the interaction of the network as a  whole with 

what is being perceived in the environment.

•  An interaction of bottom -up (environment-driven) and top-down (concept-driven) 

modes of constructing perceptual descriptions, and a  gradual transition from dom

inance of a  bottom -up mode to  dominance of a  top-down mode, as organizing themes 

emerge from what has already been perceived.

•  A notion of a  parallel terraced scan, in which many different avenues of interpreting 

situations are explored simultaneously, each being explored a t a  speed and to a  depth 

proportional to  moment-to-moment evaluations of its promise.

•  The use of computational temperature as a  feedback device to  measure the amount
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and quality of global organization; this m easure is then used to  control the  degree 

of randomness with which decisions are made in the  system. The effect is to  speed 

up the  exploration of more promising avenues with respect to less promising ones as 

more and more information is obtained about them .

• A notion of statistically emergent high-level behavior, in which the system ’s low-level 

activities (involving m utually competitive and supporting actions by large numbers of 

independent perceptual agents) are perm eated w ith nondeterminism, but more deter

ministic high-level behavior (e.g., the composition of concepts, the  parallel terraced 

scan, and the actual interpretations created by the program for various situations) 

emerges from the statistics of the low-level nondeterminism.

The structure and contents of this dissertation are summarized as follows.

In this chapter, I discuss the relationship between analogy-making and the more general 

m ental processes th a t I refer to  as high-level perception and conceptual slippage.

In C hapter 2 ,1 describe an idealized microworld developed by Hofstadter (1984a, 1984b) 

involving letter-string analogy problems, in which some of the central features of high-level 

perception and analogy-making axe isolated and idealized. It is in this microworld tha t 

the Copycat program makes sense of situations and creates analogies between situations. 

I discuss the relation of the letter-string analogy problems in the microworld to  analogy- 

m aking in the real world, and answer some of the commonly raised objections to  using such 

a  microworld for developing and testing cognitive models such as Copycat. Finally, I discuss 

the specific goals and criteria for success of my dissertation project. In  particular, I propose 

a  set of five analogy problems in Copycat’s microworld whose solution would dem onstrate 

m any of the general abilities th a t Copycat is m eant to  model.

C hapter 3 first describes the  Jum bo program , a  direct predecessor of Copycat tha t 

explored some of the same issues, and from which sprang many of the ideas for Copycat. 

Next, the  architecture of Copycat is described. The description is divided into two parts: 

a  section giving an overview of the  entire program , and then several sections describing the 

program  in more detail. The overview section should be sufficient to  give a  general idea 

of how th e  program works, and the  more detailed sections can be skipped or skimmed by 

readers for whom this overview is sufficient.

C hapter 4 gives statistics concerning Copycat’s (and people’s) solutions to  the  five target 

problem s (discussed in C hapter 2) and gives annotated  screen dumps from runs of Copycat
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on the five problems. The screen dumps dem onstrate most of the features of the program, 

and provide a  more vivid explanation of how the program works.

C hapter 5 gives statistics for Copycat’s (and people’s) solutions to 27 variants of the 

five target problems, illustrating how the program  responds to  different pressures in the 

different variants.

C hapter 6 gives a  discussion of some problems with the program as it currently stands.

Chapter 7 gives the results of selected “lesions” of Copycat, in which various aspects of 

the  program’s architecture were altered or removed in order to  analyze the roles played by 

those aspects in the program ’s behavior.

In Chapter 8, I compare Copycat with related research on psychological and compu

tational models of analogy-making, w ith related axtificial-intelligence architectures such as 

semantic networks and production systems, and with connectionist and classifier-system 

models of concepts and learning. I discuss where Copycat lies in the spectrum  th a t runs 

from so-called symbolic models of intelligence, which process information serially and in 

which concepts are represented as explicit d a ta  structures in a  Lisp-like language, to  sub- 

symbolic models, such as connectionist networks, in which processing is highly parallel and 

in which concepts are implicit and distributed over units in a  network.

Chapter 9 concludes this dissertation with a  summary of its main points, with proposals 

for future work on the Copycat project, and with a  discussion of the contributions of th is 

project to  research in cognitive science and artificial intelligence.

Appendix A presents and discusses a  num ber of analogy problems from Copycat’s mi

croworld th a t are currently beyond the program ’s capabilities.

Appendix B lists and describes param eters and formulas used in Copycat.

Appendix C gives more detailed descriptions than  are given in C hapter 3 of the various 

types of codelets used in Copycat (the term  “codelet” will be defined in C hapter 3).

Appendix D gives the results of two experiments (in addition to  the survey whose results 

are given in Chapters 4 and 5) involving people’s responses to  various letter-string analogy 

problems.

As the above summary indicates, readers who want only an overview of what the Copycat 

project is about and how the program  works should read Chapters 1-2, the first two sections 

of C hapter 3 (skimming the rest of the chapter if desired), C hapter 4, and Chapter 5. 

Readers who also want to know the results and lim itations of the model should in addition 

read Chapters 6, 7, and 9, as well as Appendix A, and people who want to compare Copycat
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with related research should read Chapter 8. Those who want a  more complete and detailed 

description of the program  should read all of Chapter 3 (Appendices B and C provide even 

more details).

This dissertation does not include the source code for Copycat (the  program was written 

in Sun Common Lisp and its graphics run under the SunView window system). I will be 

happy to  provide the source code to anyone who would like to  use it  for peaceful research 

purposes.

1.2 H ig h -lev e l P e rc e p tio n , C o n c e p tu a l  S lip p ag e , a n d  A n a lo g y -M a k in g

How, when one is faced with a  situation, does understanding come about in the mind? How 

are we guided by a  m ultitude of initially unconnected and novel perceptions to  a coherent 

and familiar mental representation of an object or situation, such as “coffee cup” , “the 

letter ‘A ’” , “French Baroque style” , or “the Vietnam of Central America”? And how are 

such representations structured so th a t they are flexible, fluid, and thus adaptable to  many 

different situations, rather than brittle , rigid, and inextensible? This dissertation is a  part 

of a broader research program focused on investigating the mental mechanisms underlying 

such acts of high-level perception and conceptual fluidity. Here, “high-level perception” 

refers to  the recognition of objects, situations, or events a t various levels of abstraction 

higher than  th a t of of syntactic sensations tied to  particular sensory modalities; it is to  be 

distinguished from modality-specific mechanisms such as those of low-level vision. Another 

term  for it  would be “abstract recognition” , referring to  the recognition mechanisms we 

use when, say, we read a  newspaper article about officials performing secret acts, shredding 

documents, lying to  Congress, etc., and characterize these events as “a  coverup” , or “another 

W atergate” .

High-level perception is intimately tied up with concepts: it  is the act of applying 

previously stored concepts to  describe and chunk parts of a  new situation in order to  build 

up a  coherent m ental representation. (Here, the term  “situation” can refer to  something as 

concrete as a  coffee cup, or something much more complex *nd abstract, such as a  certain 

political or social event.) But since every situation is different, recognition is not a  mere 

m atter of rigidly applying pre-defined, static  concepts to  describe aspects of an uninterpreted 

situation. An essential part of the recognition process is a  m utual accommodation of one’s 

concepts and one’s developing m ental representation of the situation a t hand, as in the First 

Lady of Great B ritain  example, where both the concept of “F irst Lady” and the mental
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representation of Denis Thatcher had to be reshaped in order to fit each other.

The process of recognizing concrete and abstract situations is more general than  w hat 

is often referred to  as categorization. The term  “categorization” often implies th a t the 

situation is assigned to a  single, previously stored, easily verbalizable category (such as 

“coffee cup” or “coverup” ). However, in general, the “category” of a  situation is often 

difficult to  verbalize, yet recognizable nonetheless. Situations tha t abstractly remind one 

of o ther situations are often very clear examples of this. For example, a  friend told me 

about a  flight he took from Pittsburgh to Detroit (a 45-minute trip ), in which the  plane 

had been kept on the ground in P ittsburgh for an hour and a  half in order to  wait for 

a  delayed shipment of soft drinks to be brought on board. The wait for the soft drinks 

defeated their whole purpose, which is to make the trip less tedious for the passengers, to 

make time seem to  go by faster on the trip . This story instantly reminded me of how the 

University of Michigan Physical Plant Departm ent fixed a  decorative fountain on campus 

th a t  often overflowed: they installed a  large flotation device (of the kind found in  toilet 

tanks) in the fountain’s pool, which stopped the flow of water when the water level got 

too  high. This made the fountain resemble a  huge toilet tank , which of course ncompletely 

defeated its purpose, which was to be aesthetically pleasing and thus make the campus look 

more beautiful. I spontaneously recognized th a t the airplane situation was in the  same, 

quite abstract category as the  fountain situation—something like “situations in which an 

action taken to  remedy a  problem actually defeats the main purpose of the thing affected by 

the  problem” . It is not an easy category to  verbalize. (Several examples of such reminding 

experiences are discussed by Schank, 1982.)

This example illustrates the blurry line between what we call “categorization” and what 

we call “analogy-making”. Was my reminding experience a feat of analogy-making or of 

categorization? There is no clear distinction between the two. W hen a  child learns th a t  the 

words “m outh” and “drink” apply to  a  huge num ber of different objects and situations, is 

th is categorization or analogy-making? W hen we describe Nicaragua as “another V ietnam ” , 

the Iran-C ontra  scandal as “Reagan’s W atergate” , or Nicolae Ceausescu as “the Stalin of 

Romania” , are we categorizing or m aking analogies? One makes an analogy when one 

perceives non-identical objects or situations as being “the same” a t some abstract level. 

Analogy-making is thus intim ately related to  recognition and categorization, for the  essence 

of recognizing a  cup (or a  face, or a wave equation, or a  symphony in the style of M ozart) 

is perceiving it to  be “the same” at some level as other instances of th a t category. Very
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similar, if not identical, m ental mechanisms seem to underlie analogy-making, recognition, 

and categorization.

Turner (1988) makes a  similar point: “Deeply entrenched analogical connections we no 

longer find inventive. We regard them  as straightforward category connections.” (p. 4). He 

characterizes the difference between analogical and categorical connections among concepts 

as a difference in the “degree of entrenchm ent” in the conceptual system rather than  a 

difference in kind. Holyoak (1984) also makes a  related point when he hypothesizes that 

analogical thinking may underlie the acquisition of schemas (abstract categories).

High-level perception thus encompasses recognition, categorization, and analogy-making, 

and its central feature is the fluid application of one’s existing concepts to new situations.

At this point, I want to  make clearer what the focus of our research is as it relates to 

the distinction between “concepts” and “categories” . In colloquial speech, as well as in 

more formal psychological discussions, the two term s are used nearly synonymously (for 

example, this is the case in Smith & Medin, 1981, and in Lakoff, 1987), though there seems 

to  be a subtle difference. From my own observations, it seems to  me th a t there is a subtle 

difference between the way the terms “concept” and “category” are used colloquially. Very 

roughly, concepts are verbalized as singular nouns or phrases ( “dog” , “next-door neigh

bor” , “socialized medicine”) whereas categories are described using plural nouns or phrases 

( “dogs” , etc.). There does seem to be some psychological difference between categories and 

concepts: w hat people generally call “categories” seem to  be more directly associated with 

particular instances, whereas what people call “concepts” seem somewhat more distanced 

from their instances. I would characterize this difference roughly as follows: the word “con

cept” refers to  a symbol in the mind for a class of instances, or for a single instance, and 

the word “category” refers more directly to the class itself (though not usually to  a  single 

instance).1 Consider, for example, the following phrases: “the concept of ‘hair color’ ” and 

“the category ‘hair colors’” . My impression is th a t mention of the la tte r  is more likely 

to  provoke mental imagery of particular hair colors than  is the former. Another example 

(Moser, 1988) is “The Phoenicians invented the  alphabet” versus “Alphabets are useful 

tools” ; it  seems th a t the la tte r would be more likely than the former to conjure up images 

of specific alphabets.

1 This is similar in flavor to  the distinction m ade in m athem atics and philosophy between 
the intension and extension of a set.
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This analysis is based on informal observations and intuitions, and is meant to  be taken 

in th a t spirit. My characterization of this distinction is not perfect, bu t I can say, roughly, 

th a t this dissertation (along with the other research by H ofstadter’s group) focuses more 

on w hat I am calling “concepts” than  what I am calling “categories” . T hat is, we are not 

so much concerned with the kinds of issues th a t psychological research on categorization 

deals with, such as prototypes, exemplars, graded structure, and other issues dealing with the 

internal structure of individual categories (e.g., Rosch & Lloyd, 1978; Smith & Medin, 1981; 

Lakoff, 1987); we are more concerned with the dynamics of the activation and association 

of concepts, as active symbols in the brain (Hofstadter, 1979, C hapter 11; 1985d), and how 

such symbols are used with flexibility to  describe and relate different situations. The nature 

of this focus will become clearer in Chapters 2 and 3 when the  psychological issues addressed 

by this project are spelled out, and the computer model is described.2

The “First Lady” example discussed above illustrates very strikingly how people use 

concepts with a  great deal of flexibility. The concept “F irst Lady” is ordinarily taken to 

mean “the wife of the President” , and thus it  is easy to  find the  counterpart of the American 

F irst Lady in, say, Mexico, where there currently is a  m arried, male president. However, 

as was discussed above, exporting the  First Lady concept to  Great Britain requires some 

flexibility; it requires certain concepts (president and wife) to  slip into related concepts 

ra ther than  being rigidly fixed. A reader might protest a t th is point th a t it isn’t  necessary 

for concepts to  slip if we simply generalize the original definition of “F irst Lady” to  “spouse 

of the head of state” . However, more examples make it clear th a t the  concept “F irst Lady” , 

like other real-world concepts, cannot be crammed into so small a  space. Hofstadter (1985a) 

gives two other examples th a t elegantly dem onstrate this: when Pierre Trudeau was prime 

m inister of Canada, many people considered his form er  wife M argaret to  be C anada’s First 

Lady, and for a  long tim e during Jean-Claude Duvalier’s reign in Haiti, the title  of First 

Lady belonged to  Simone Duvalier, his mother and the wife of the late  form er president 

Francois Duvalier. How to  generalize “First Lady” now? Does it mean “spouse or parent, 

present or former, of head of sta te , present or former” ? Even if  such a  verbose and awkward

2 Note th a t this distinction between concepts and categories is quite different from that 
m ade by some psychologists. For example, Barsalou (1988) defines “concept” as “simply a 
particular individual’s conception of a  category on a  particu lar occasion” (p. 93). He uses 
the  word “concept” to  refer to a  tem porarily constructed representation in working memory. 
As will be  seen later on, I will refer to  such representations as “perceptual structures” . When
I use the word “concept” , I am referring to  more perm anent, long-term memory structures.
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description were plausible, other undeniable instances of F irst Ladies would force further 

amendments (e.g., in some Muslim countries, where the king has more than one wife, or 

in the Philippines, where many people would say that Corazon Aquino holds the titles of 

President and F irst Lady simultaneously, and so on).3

Another problem with attem pting to abstract away any differences by using a  generalized 

definition such as “spouse of the head of s ta te ” is that, by adopting such a  generalization, 

you lose the sense th a t Denis Thatcher is not a  normal F irst Lady; you lose the sense 

of tension that comes from the strong feeling that the role should be filled by a  woman. 

Such a  sense of tension is essential to assessing the quality or interest of an analogy. Also, 

im portant information is lost in a generalization (e.g., spouse) that is present in a slippage 

(e.g., wife slips to  husband); as will be discussed later on, in order to  complete or extend an 

analogy, very often one has to keep track of how certain concepts slipped.

These examples are related to Lakoff’s (1987) discussion of what he calls “radial” cate

gories (e.g., “m other” ), and perhaps an analysis similar to  those presented by Lakoff could 

be applied to the concept of “First Lady” , in which the meaning of the concept comes 

from the interaction of several different “models", such as wife o f the president, most distin

guished woman in a particular field (G reta  Garbo has been called the “First Lady of film” , 

Ella Fitzgerald the “First Lady of Jazz” ), and so on. But the main point in presenting 

this example is to  illustrate how subtly flexible and “slippery” real-world concepts can be, 

and how hopeless it is to  try  to  come up with a definition or rule th a t will cover all past, 

present, and future cases. The view underlying this research project is that the only way 

to  flexibly understand or categorize new situations is via conceptual slippage and analogy. 

This brings out once again the close relation between categorization and analogy-making.

The “First Lady” examples illustrate a  central idea in this research: a  view of concepts in 

which each concept consists of a  central region surrounded by a halo of associated concepts

3 David Moser (personal communication) has pointed out that much of the trouble a 
few years ago between Nancy Reagan and Raisa Gorbachev may have been due to a bad 
analogy on the part of Americans—namely, th a t “Raisa Gorbachev is the First Lady of the 
Soviet Union” . This view caused many people (in particular, Mrs. Reagan) to  be offended 
when Mrs. Gorbachev did not act in the  way they felt a  First Lady should properly act. 
However, it seems th a t Mrs. Gorbachev did not see herself as playing the same role in the 
Soviet Union as the role Mrs. Reagan played in the United States, and thus their encounters 
were rife with misunderstandings. (As it turned out, Mrs. Reagan, in her memoir (1989), 
acknowledged th a t the analogy was imperfect, noting—though perhaps inaccurately—th at 
“There isn’t even a  Russian word for ‘F irst Lady’” , p. 337-338.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

which are potential slippages (e.g., husband is in the halo of the concept wife, and in  some 

situations, such as identifying the F irst Lady of Great Britain, the description wife can slip 

to  the description husband; that is, husband in one situation can be seen as playing the same 

role as wife in the other situation).

Conceptual slippage is ubiquitous in thought, and in some aspects of thought it  can 

be seen especially clearly. For example, our speech and actions are permeated w ith errors 

involving conceptual slips, such as word substitutions (e.g., “Please fix the window, uh, 

I mean mirror” or “Are my legs, uh, I mean my tires touching the curb?”) and action 

errors (e.g., stopping the car and unbuckling one’s watch instead of one’s seat belt, or 

trying to look up the word “February” in the dictionary by turning to the letter ‘B ’—both 

February and ‘B’ are second in a  series).4 Slippages are also apparent in the counterfactual 

statem ents people constantly make. You accidentally drop the milk bottle onto the floor, 

breaking it, and think, “I wish I had dropped the orange-juice jug instead, since i t ’s made 

of plastic.” Concepts tend to slip to  close neighbors: milk bottle slips to  orange-juice jug  

rather than  to, say, tablecloth—it is very unlikely th a t you would think “I wish I had dropped 

the tablecloth instead; it wouldn’t have broken.” But of course the closeness—as well as 

the availability of other concepts as potential slippages from a  given concept—depends on 

the situation. W hat slips, and how, depend on the interaction of specific pressures on the 

perceiver of the situation. As will be seen, the Copycat program is an a ttem pt to  model 

this context-dependent nature of conceptual slippage, to show how pressures in specific 

situations interact with concepts to  provoke appropriate slippages. (See Hofstadter, 1979, 

Chapter 19, and Kahneman & Miller, 1986, for discussions of slippage in counterfactual 

thinking. Hofstadter & Gabora, 1990, gives a  discussion of slippage in humor. Also, the 

role of slippage in translation between languages is discussed by Hofstadter, 1982, French 

& Henry, 1988, and Moser, 1989.)

The Copycat project concerns analogy-making, which provides a particularly clear win

dow on the ways in which conceptual slippages take place. Since analogy-making is all 

about perceiving resemblances between things th a t are different, an analogy puts pressure 

on concepts to slip into related concepts, as is seen in the analogies involving First Ladies.

4 There has been much research in psychology and linguistics on error-making; see, for 
example, Fromkin (1980), and Norman (1981). A large collection of interesting speech and 
action errors is given and discussed in Hofstadter and Moser (1989). The examples given 
above come from these three references.
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Different people use the word “analogy” to  mean different things, bu t when the  term  is 

taken in a  very broad sense, to include all types of similarity comparisons ( “this object 

is like th a t object” , or “this situation is like th a t situation” ), one cannot overestim ate its 

ubiquity and im portance a t all levels of thought, from the most common and m undane 

acts of categorization to  the most rare and significant feats of creation and discovery. Many 

researchers (e.g., Gentner, 1983) would hesitate to  label categorization as a  kind of analogy- 

making, bu t as the previous discussion in this chapter has illustrated, it is somewhat hard 

to  draw a  line between the two. As Gentner (1983) has pointed out, there is a  spectrum  

of types of similarity comparisons. Our point here is tha t the mechanisms underlying these 

various mental activities are, if not the same, then a t least very closely related.

T he following are some examples of analogy-making (or, in some cases, its  close cousins) 

along a  spectrum  from the everyday and m undane to the rare and exalted (though not 

necessarily perfectly ordered).

•  A child learns the difference between cups and glasses, and can use the two words to 

correctly identify different objects.

•  A child learns to  recognize cats, dogs, boys, girls, etc. in books as well as in real life.

•  A person is consistently and easily able to recognize the letter ‘A ’, in spite of the fact 

th a t i t  appears in a vast variety of different shapes and styles, both  in professionally 

designed typefaces and in different people’s handwriting. There is something about 

all these ‘A’s th a t is essentially the same.

•  A person is consistently and easily able to  recognize th a t all the letters in a  certain 

typeface (say, Helvetica) are in the same style; there is something about the letters 

th a t is essentially the same.

•  Jean says to Simon, “I call my parents once a  week” . Simon replies, “Me too” , not 

m eaning, of course, th a t he calls Jean’s parents once a  week, but th a t he calls his own 

parents.

•  A woman says to  her male colleague, “I’ve been working so hard lately, I haven’t 

been able to  get enough tim e to spend with my husband” , and he replies, “Yeah, me 

neither.” He doesn’t  mean tha t he has no time to  spend with her husband, or with 

his own husband, or even with his own wife, but rather with his girl friend.
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•  People take the  suffix from “alcoholic” , and use it to  create new concepts like “worka

holic” , “chocoholic” , “sexaholic” , and “shopaholic” .

•  An advertisement describes Perrier as “the Cadillac of bo ttled  waters” . A newspaper 

article describes teaching as “the Beirut of professions” . An opinion piece describes 

Saddam Hussein as “the Noriega of the Middle East” .

•  Nicaragua (or El Salvador) is called “another V ietnam ". Cam bodia is called “Viet

nam ’s V ietnam ”. The Iran-C ontra  affair is called “Reagan’s W atergate” , and news

papers even dub it “Contragate” .

•  President Ronald Reagan calls the Nicaraguan Contras “Freedom Fighters” , and likens 

them  to “our Founding Fathers” in the American Revolution.

•  A newspaper article portrays Denis Thatcher as the “F irst Lady of Great Britain” .

•  A jury  acquits a  m an accused of rape because they judged th a t  the victim was wearing 

“provocative” clothes, and was “asking to be raped” . T he National Organization of 

Women protests, asserting tha t this judgm ent is like saying th a t a  person wearing an 

expensive watch is “asking to  be robbed” .

•  Britain and A rgentina go to war over the Falklands (or las Malvinas), a  set of small 

islands near the coast of Argentina, populated by British settlers. Greece sides with 

England, because of its own conflict with Turkey over Cyprus, an island near the coast 

of Turkey, the  m ajority of whose population is ethnically Greek.

•  A classical-music lover hears an unfamiliar piece on the radio and easily recognizes it 

as being by M ozart. An early-music enthusiast hears a  piece for baroque orchestra 

and can easily identify which country the composer was from. A studio composer 

arranges the  Beatles’ rock-and-roll hit “Hey Jude” in “easy listening” style to  be 

played on M uzak radio stations.

•  The linguist Zhao Yuanren translates Alice in Wonderland in to  Chinese, adapting the 

puns and other wordplay so th a t they work smoothly in Chinese while retaining the 

essence of the  English original.

•  The physicist Hideki Yukawa attem pts to explain the nuclear force using an analogy 

with the electromagnetic force. On this basis, he postulates a  mediating particle for
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the  nuclear force sim ilar to  the photon, which m ediates the electromagnetic force. 

However, the new particle would have to mediate conversion of uncharged particles 

(neutrons) into charged particles (protons), and vice versa, which photons could not 

do. So certain slippages have to be made from the electrom agnetic force to  the  nuclear 

force:

non-converter (photon) =» converter (new particle),

which implies

uncharged (photon) => charged (new particle),

which in turn implies

massless (photon) => massive (new particle),

which requires a  slippage from one type of equation to  another:

massless equation => massive equation.

Yukawa uses these slippages to  predict properties of the hypothesized particle (now 

known as a pion), which is subsequently discovered, and the predicted properties are 

verified (Yukawa, 1973a, 1973b).

•  Johann Sebastian Bach takes a  simple aria and creates a  set of th irty  variations on 

it (the “Goldberg Variations” ), each one quite different and complex, many involving 

constraints not present in the original aria, but each containing something of the 

essence of the original in either melodic or harmonic structure.

There are two points to  be made here. F irst, in an im portan t sense, all of these count as 

examples of analogy-m akirg. All are illustrations, a t different levels of impressiveness, of the 

fluid ra ther than rigid natu re  of concepts and perception, by which the essence of a  situation 

(be i t  a  cup, a  printed ‘A ’, a  family situation, a  profession, a  political situation, a  piece of 

music or literature, a  scientific idea, or whatever) can be distilled and fluidly transported to 

a  different situation. T hus, though these examples range over a  wide spectrum , there are 

fundam ental psychological issues common to all of them ; they reflect in different ways the 

same set of mental abilities, those of high-level perception and conceptual fluidity that have
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been sketched in this chapter. The Copycat project is an a ttem pt to  ex tract and isolate 

some of these common issues and abilities and to  propose a  set o f ideas about the underlying 

mechanisms. This proposal takes the form of a  computer program  th a t  can make analogies 

in a microworld tha t contains many of these issues in an idealized form. C hapter 2 gives a 

description of the microworld and a  discussion of the general issues it contains.

The second point is th a t these examples give some indication of the ubiquity and range 

of analogy-making in hum an thought. The analogy-making capacity in humans is far more 

than a  mere tool used in the context of problem-solving, or a  servant to  a “reasoning 

engine” . It is a  central mechanism of cognition; it pervades thought a t all levels, both 

conscious and unconscious, and cannot be turned on and off a t will. (This view of the 

centrality of analogy in thought is complemented by the work of Lakoff and Johnson (1980) 

and Lakoff (1987), who provide evidence, using a vast array of linguistic m etaphors, to 

argue that we understand all abstract and complex concepts (e.g., “love” ) by analogies to 

more direct perceptual experiences.)

In this section, the relation between analogy-making and high-level perception has been 

discussed, and the role of conceptual slippage in various m ental processes has been illus

tra ted  by a  number of examples. The point of the Copycat project is to  investigate and 

model how perception interacts with concepts and how fluid conceptual slippages come 

about in the process of interpreting and making analogies between situations. The next 

chapter describes some of the specific issues in high-level perception and analogy-making 

th a t the Copycat program is meant to  address, and illustrates how those issues arise in the 

idealized microworld in which the program  makes analogies.
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CHAPTER II

HIGH-LEVEL PERCEPTION, CONCEPTUAL SLIPPAGE, AND 

ANALOGY-MAKING IN A MICROWORLD

2.1 Copycat’s Microworld

The research methodology of the Copycat project has been to a ttem pt to  isolate many of 

the  central issues in high-level perception and analogy-making, to  strip them  down to  their 

essence, and to construct a  com puter model th a t deals with these issues in this idealized 

form. This methodology is similar to  th a t used by physicists, who typically a ttem pt to  solve 

idealized versions of problems th a t  nonetheless capture the essence of the original problem. 

In basic sciences, particularly in physics, using such a  methodology is indispensable in 

order to  gain insight into deep underlying principles, because phenomena in the real world 

are often too complex to  approach directly. For the  same reasons, we believe th a t this 

methodology is also indispensable for approaching problems in cognitive science: much 

insight about m ental mechanisms can be gained by looking a t problems in a  more stripped- 

down form w ithout involving the vast amounts of information and complications of the real 

world th a t would make the construction of models intractable.

Adopting this isolate-and-idealize strategy, H ofstadter (1984a, 1984b, 1985a) has devel

oped an idealized microworld for studying many of the  essential features of perception and 

analogy-making. The basic objects in this world are the 26 letters of the alphabet, and 

analogy problems are constructed out of strings of letters, as in the following problem:

1. abc =>■ abd

y k  => ?

16
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T hat is, one is asked, given the change from the string a b c  to  the string a b d ,  to  do “the 

same thing” to  the string y k  (i.e., one is asked to be a  “copycat”— to copy the initial 

change, bu t using the material of the target string—hence the  name of the program). The 

strings here are supposed to represent idealized situations containing objects, relationships 

between objects, and events; in this way they serve as m etaphors for more complex real- 

world situations. The initial string a b c  and the target string  y k  are two frameworks, 

each with its own objects and relationships. The change of a b c  to  the modified string 

a b d  highlights a  fragment of the first framework, and the challenge is to  find “the same 

fragment” in the second framework (the target string), and to  highlight and modify it in 

“the same way” . W hat has been highlighted, how it has been highlighted, and what “the 

same way” means in the second framework are all up to the  analogy-maker (human or 

machine) to decide.

The knowledge available to an analogy-maker in this microworld is fairly limited. The 

26 letters are known, but only as members of a  platonic linear sequence; shapes of letters, 

sounds, words, and all other linguistic and graphic facts are unknown. The only relations 

explicitly known are predecessor and successor relations between immediate neighbors in 

the alphabet. Ordinal positions in the alphabet (e.g., the fact th a t S'is the 19th letter) are 

not known. (A note on notation: italic capitals (e.g., S) denote the 26 abstract categories 

(or types) of the  alphabet, and never appear in strings; boldface smalls (e.g., a , b , and 

c) denote instances (or tokens) of those categories, and appear only in strings.) A  and Z, 

being alphabetic extremities, are salient landm arks of equal im portance. The alphabet is 

not circular; th a t is, A  has no predecessor and Z  has no successor. The alphabet is known 

equally well backwards and forwards (the fact that N  is the letter before O is as equally 

accessible as the  fact th a t O is the letter a fter N). In addition, strings (such as a b c  or k k jjii)  

can be parsed equally well left to  right or right to  left. The analogy-maker can count, bu t 

is reluctant to  count above 3 or so, and has a commonsense notion of grouping by sameness 

or by alphabetical adjacency (forwards or backwards equally easily).

As can be seen from the description above, the knowledge assumed for th is microdomain 

is not only lim ited, bu t is also different from th a t of people with respect to  letter-strings 

(people can count far above 3, people usually know the alphabet better forwards than 

backwards, English speakers read left to  right, and so on). The idea here is not to  construct 

a  model of how people solve letter-string analogy problems per se, but rather to  construct a 

domain th a t, though idealized, captures much of the essence of real-world analogy-making,
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so it  can be used in developing a  more general model. Thus there is a  balance to  be made 

in constructing such a  domain: we want people to  be able to  understand and solve the 

letter-string problems without needing too much instruction about the restrictions of the 

domain, but we also want to  avoid having features in the domain th a t are specific to  the 

letter-string problems themselves (e.g., a  left-to-right bias in reading), but are extraneous 

to  the real issues of high-level perception and analogy-making th a t we are investigating. 

In addition, we exclude complex m athem atical knowledge because we are trying to get 

a t subconscious recognition processes rather than highly conscious “expert” activities like 

m athematics (such as noticing th a t the distance from A  to  E  is twice as large as the distance 

from M  to  O).

For Problem 1 given above, a  reasonable description of the a b c  =>■ a b d  change is “Re

place the rightmost letter by its successor” , and straightforward application of this rule to  

the target string y k  yields the commonsense answer ijl. A more literal description (almost 

never given by people) is “Replace the rightmost letter by a  D ”, yielding answer ijd . (This 

answer seems so literal-minded th a t many people laugh when it is suggested to them .) Even 

more literal-minded answers are i jk  ( “Replace any C  by a  D n, and since there are no in

stances of C  in y k , just leave th e  target string alone) and a b d  ( “Replace any string by 

a b d ”). However, these answers are very rarely given by people. People have necessarily 

evolved to  be very good a t describing things a t an appropriate level of generality (i.e., ap

propriate for the purposes of living in the world), and this ability in the real world carries 

over to the abstract letter-string domain. Even though—technically—there are no “right” 

and “wrong” answers in a domain so divorced from real-world concerns, people fairly con

sistently agree on a  single answer or a  small set of answers as being the best response(s) to  a 

given problem. (The results of some surveys of people on these problems will be given later 

on.) People’s m ental mechanisms have evolved for perception and analogy-making in the 

real world, bu t these mechanisms are still in operation even when the domain is artificial. 

Thus artificial domains such as the  letter-string domain can be used to  study general mental 

mechanisms.

In Problem 1 above, the rule “Replace the rightmost letter by its successor” , describing 

the initial change a b c  => a b d , can be applied straightforwardly to  the target string yk . 

However, other problems are no t so simple. For instance, consider the same initial change 

and an alternate target string:
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2. a b c  =► a b d

itfjkk  =» ?

Here a  straightforward, rigid application of the original rule would yield i\jjk l, which ignores 

the  strong similarity between a b c  and iijjk k  when the latter is seen as consisting of three 

groups of letters rather than  as six letters. If one perceives the role of letter in  a b c  as played 

by group in iu jk k , then in making a  mapping between a b c  and iijjk k , one is forced to let 

the  concept letter slip into the similar concept group. The rule for changing the target string 

becomes “Replace the rightm ost group by its  successor” , yielding answer iijjll.

Consider now the following variant:

3. a b c  => a b d

k ji => ?

Here a literal application of the  original rule would yield k jj, which again ignores a  more 

abstract similarity between a b c  and l<Ji. An alternative some people prefer is Iji ( “Replace 

the leftmost letter by its successor” ), which is based on seeing a b c  as a  left-to-right string 

and k ji as a  right*to-left string (where each string increases alphabetically); here there is a 

slippage from the concept right to the concept left, which in turn gives rise to the slippage 

rightmost => leftmost. Another answer given by many people is k jh  ( “Replace the rightmost 

le tte r  by its predecessor”), in which a b c  is seen as increasing and k ji as decreasing (both 

viewed as moving rightwards), yielding a  slippage from successor to  predecessor.

Notice th a t the same arguments would apply for the problem “a b c  =>■ a b d ,  k jih  => ?” 

in which initial string a b c  is of length 3 and the target string k jih  is of length 4. In 

the  microdomain, as in real-world analogy-making, i t  is not necessary for there to be a 

one-to-one mapping between the objects of the two situations; an analogy can be made in 

spite of the fact th a t some objects, like the b  in a b c  and the j  and i in k jih  have no clear 

counterparts in the other situation (just as an analogy can be made between the “First 

Family” of the United States an4 that of G reat Britain w ithout having to  find a  British 

counterpart for the Bushes’ family dog).

Still o ther kinds of slippages can be seen in the answers to the following three problems.

4. a b c  =» a b d

a c e  =>■ ?

Applying the original rule literally yields answer acf, which doesn’t take into account the 

“double successor” structure of a ce  (C is  the double successor of A, etc.). If a c e  is seen as
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similar to  a b c  because a b c  is a  “successor group” and ace  is a  “double-successor group” , 

then the answer is a cg  ( “Replace rightmost letter by its double successor*).1

5. a b c  => a b d

m rr jj j  => ?

The answer th a t people give m ost often is m rrk k k , but this doesn’t take into account 

the abstract similarity between a b c  and m rr jjj:  a b c  increases alphabetically while m r r j j j  

consists of groups whose lengths increase numerically. If this sim ilarity is perceived, than 

the answer is m r r j j j j ,  which reflects the view that the role played by letter in a b c  is played 

by group-length in m rr jj j ,  and requires a slippage from one to  the other ( “Replace rightm ost 

group-length by its successor”). Even though people don’t often produce this answer, when 

given a choice, some (not all) feel th a t it is a  better answer than  m rrk k k  (see Appendix 

D). People occasionally give the answer m rrk k k k , replacing both  the group-length and the 

letter-category of the rightmost group by their successors. This answer confounds aspects 

of the two situations. The strings a b c  and m rr jjj  are similar since they both are woven 

together with the “fabric” of successorship, but this similarity is abstract, since in one case 

the fabric is successor relations between letters, and in the other case it is successor relations 

between group lengths. It thus seems strange to insist on retaining the notion of letter- 

successorship in the group-length situation where it no longer applies. It is as if a translator 

decided to tell the story of War and Peace in the context of the American Civil W ar, but 

gave the (now American) characters the names “Natasha” and “Alexey” , refusing to let this 

aspect of the original novel slip. An even stranger translation would leave the names in the 

original Cyrillic letters, which might correspond to the answer m rrd d d d . (Hofstadter has 

given the term  “frame blends” to  such mixtures of flexible and rigid thinking, which seem 

to be extremely common in thought, as well as being at the root of much humor of various 

kinds; see H ofstadter & Gabora, 1990.)

6. a b c  =>■ a b d

a a b a b c  =>■ ?

Here it is hard to  make sense of the target string, and most people answer a a b a b d , applying 

the rule “Replace rightmost le tte r by successor” directly. B ut if a a b a b c  is parsed as a -

1 As mentioned earlier, the only relations explicitly known to  analogy-makers in this 
microworld are immediate successor and predecessor relations, so in order to arrive a t the 
answer ace , an analogy-maker would have to  create the concept double successor on the fly.
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a b -a b c ,  then a  strong though abstract similarity to  the initial string  a b c  emerges, where 

the  “rightmost letter” of a a b a b c  is the  group a b c , and its “successor” is a b e d , yielding 

answer a a b a b e d .

I hope th a t the preceding problems help to make the case th a t although the  analogies in 

th is microworld involve only a small num ber of concepts, some of them  require considerable 

flexibility and insight. A particularly clear example of such an analogy is the following:

7. a b c  =► a b d  

xyz  => ?

At first glance, this problem is essentially the same as Problem 1 above (with target string 

y k ) , but there is a  snag: Z has  no successor. Most people answer x y a , but in C opycat’s mi

croworld the alphabet Is not circular. This answer is intentionally excluded in order to  force 

an impasse that requires analogy-makers to restructure their initial view, to make concep

tual slippages th a t were not initially considered, and hopefully to discover a  different way 

of understanding the situation. One such way is to notice th a t x y z  is “wedged” against the 

far end of the alphabet, and a b c  is similarly wedged against the beginning of the  alphabet. 

Thus the z in x y z  and the a  in a b c  can be seen to correspond, and then one naturally  feels 

th a t the x  and the c correspond as well. Underlying these object correspondences is a  set 

o f slippages th a t are conceptually parallel: alphabetic-first => alphabetic-last, right => left, 

and successor => predecessor. Taken together, these slippages convert the original rule into 

a  rule adapted to the target string x y z : “Replace the leftmost le tte r by its predecessor”, 

which yields a  surprising but strong answer: w yz.

The seven problems discussed above give some idea of C opycat’s microworld, but they 

are only a  small sample from a  vast space of interesting analogy problems involving letter- 

strings (C hapter 5 and Appendix A contain additional sample problems). These problems 

capture something of the flavor of the F irst Lady examples given in the previous chapter, 

illustrating how analogy-making requires fluid rather than rigid concepts: the  process of 

making an analogy between two situations puts pressure on concepts in one situation (e.g., 

president and wife, or rightmost, letter, and successor), forcing them  to  slip in to  associated 

concepts in the other situation.

The current version of the Copycat program can deal only w ith problems whose initial 

change involves a  replacement of at m ost one letter, which is why all the  examples given 

above use the initial change a b c  ^  a b d  (of course the answer can involve a  change of more
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th an  one letter, as in Problems 2, 5, and 6), bu t this is a  lim itation of th e  program as it 

now stands; in principle, the domain is much larger.

2.2 Abilities Required for High-Level Perception and Analogy-Making

It is im portant to  emphasize once again th a t the goal of th is project is not to  model specif

ically how people solve these letter-string analogy problems (it is clear th a t the microworld 

involves only a  very small fraction of what people know about letters and might use in 

solving these problems), bu t rather to  propose and model mechanisms for high-level per

ception and analogy-making in general. A very broad characterization of analogy-making 

can be given as follows: analogy-making consists of distilling the essence of one situation 

and adapting it to  fit another situation. The letter-string analogy problems were designed 

to  isolate and make very clear some of the mental abilities th a t are required in this process 

of understanding situations and perceiving similarity between situations. These abilities 

include the following (which, though listed separately, are of course strongly interrelated):

• Mentally constructing a  coherently structured whole out of initially unattached parts;

• Describing objects, relations, and events a t the “appropriate” level of abstraction;

• Chunking certain elements of a  situation while viewing others individually;

• Focusing on relevant aspects and ignoring irrelevant or superficial aspects of situations;

• Taking certain descriptions literally and letting others slip when perceiving correspon

dences between aspects of two situations;

•  Exploring many plausible avenues of possible in terpretations while avoiding a  search 

through a  combinatorial explosion of implausible possibilities.

How each of these arises in Copycat and in real-world situations is discussed below.

M entally constructing a coherently structured whole out o f  initially unattached parts. 

This description is very broad, and could be given as a  definition  of “recognition” , bu t the 

point is th a t i t  applies no t ju st to  modality-specific recognition processes such as interpreting 

visual scenes, recognizing faces, or comprehending utterances, but to  more abstract kinds 

of recognition as well, such as the recognition of a coverup (as discussed earlier). The letter- 

string problems in Copycat’s microworld are given to  the program basically unlabeled: 

relationships and correspondences between letters are not given ahead of tim e, and it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

up to  the program  to take the initially unattached letters and to  weave them  together into 

meaningful groupings and correspondences. The other abilities listed below are necessary 

for doing this.

Describing objects, relations, and events at the “appropriate” level o f abstraction. W hat 

is “appropriate” of course depends on the situation. People tend to agree on how abstract 

the description of a  situation should be; th a t is, they agree on which things should be 

perceived in term s of the roles they play and which should be perceived more literally. 

For example, if we see the recent Iran -C on tra  affair as “another W atergate” , we focus on 

Ronald Reagan in his role as “President” (and thus the counterpart o f Richard Nixon) 

ra ther than more literally as “a man nam ed Ronald Reagan” . There is often competition 

between different possible descriptions: we could describe Oliver North as “a lieutenant 

colonel” (there were no lieutenant colonels playing significant roles in W atergate) or as 

“the one who shredded the documents” , perhaps viewing him  as the counterpart of Nixon 

(viewing the la tte r as “the one who erased the tapes” ). Or we might view North as “the 

scapegoat, who was following orders from higher up” , seeing him as the counterpart of the 

W atergate burglars. Situations in the real world contain many different facets, and there 

is always competition among the various ways of perceiving these facets. Sometimes literal 

descriptions will be appropriate. W ashington D.C., for example, is literally the same in 

both  W atergate and Contragate.

This tension between literal descriptions and abstract roles is very evident in Copy

ca t’s letter-string analogy problems. For example, in Problem 1 of the previous section 

(“a b c  =>• a b d , i jk  =► ?"), should the c in a b c  be described literally as “a  C ” or more 

abstractly, in term s of its role in its string—namely, “the rightm ost letter” ? (There are of 

course o ther possible roles one could perceive the c as playing, such as “the third letter 

in the  string” , “the highest letter in the alphabetic sequence” , “the successor of the b ” , 

and so on.) Likewise, should the d in a b d  be described as “a  D ”, or should the successor 

relationship w ith respect to  the c be perceived? The answers to tnese questions depend on 

the  context. For the given problem, the descriptions “Replace the rightmost letter by its 

successor” or “Replace the highest le tte r in the sequence by the next letter in the sequence” 

seem most appropriate (and are almost always the ones given by people when they are asked 

to  describe the change), since one wants to  give a description of a  given situation th a t can 

fairly easily be exported to  other situations, though w ithout being too abstract and thus 

losing too much information. But consider the following problem:
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la . a b c  =>• a b d  

xcg  => ?

Here it  would seem more reasonable than in the original problem to describe the c  in a b c  

a t “face value” (i.e., using the rule “Replace C by D”) since there is an instance of C in  the 

target string as well, and the target string lacks the successorship structure of the initial 

string. Such a  view would yield the answer xdg , whereas the “Replace rightmost le tte r by 

successor” view would yield the answer xch.

An interm ediate case is:

lb. a b c  ^  a b d

a b e d  => ?

There is a  tantalizing instance of C  in the target string, tem pting us to  answer a b d d , 

but there is also a shared structure between a b c  and a b e d , in th a t both are increasing 

sequences beginning with A. The la tte r view lobbies for the answer ab c e , which is usually 

preferred by people.

O ther variants, such as

lc . a b c  => a b d  

c d e  ^  ?

and

Id. a b c  =► a b d  

c b a  =$■ ?

illustrate variations and gradations in these pressures. The point is th a t this central is

sue of perceiving roles versus literal descriptions and describing elements of situations a t 

“appropriate” levels of abstraction can be captured to  some extent in the letter-string do

m ain, small and restricted as it is. Moreover, as can be seen from the preceding examples, 

this issue can be explored in great detail in the microworld by constructing fam ilies  of 

analogy-problems, as in la - d  given above, where each member of a  family varies a  certain 

pressure along a  certain dimension. Copycat’s behavior on several such families of problems 

(including problems lo -d ) will be described in C hapter 5.

Chunking certain elements o f a situation while viewing others individually. The issue 

of chunking is fundam ental to  perception at all levels. For instance, visually recognizing 

a  chair requires m ental chunking and labeling of its  various parts (e.g., seat, back, arms).
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Aurally interpreting a spoken sentence requires mental chunking of phonemes, syllables, 

words, and so on. Similarly, in more abstract forms of perception, making sense of a 

situation and making analogies between situations requires determining which parts should 

be viewed (and perhaps mapped onto the other situation) together as single units (e.g., in 

W atergate, one might chunk Haldeman and Ehrlichman as a  unit, and then map th a t unit 

to  a  North-Poindexter unit in Contragate, or one might perceive Congress as a  single unit 

in both situations). The chunking issue arises frequently in the letter-string problems; for 

example, in Problem 2 (“a b c  =» a b d , iijjk k  ?” ) and, more complexly, in Problem  6 

( “a b c  => a b d , a a b a b c  =>• ?” ), where discovering a  useful parsing for the target string is 

ra ther difficult.

Focusing on relevant aspects and ignoring irrelevant or superficial aspects o f situations. 

Any complex situation has a  huge number of aspects th a t can possibly be perceived, only 

some of which are relevant to  a  useful understanding of it. The ability to  figure out which 

features are im portant and which can be ignored is fundamental to perception and analogy- 

making. For example, when looking for the W atergate counterpart of Ronald Reagan, do 

we care th a t Reagan has a  wife named “Nancy” ? Or when asking who played the role of 

Fawn Hall, do we pay attention to  the fact that her boss was in the Marines? Do we care 

who was on the Senate investigating committee? This issue also plays a  fundam ental role 

in  analogy-making in the letter-string domain. For example, in “a b c  =>• a b d , k jih  => ?” , 

do we care th a t there are three letters in a b c  and four letters in k jih?  Does the b in 

a b c  have to correspond to  anything in k jih? And is it im portant to take into account 

th a t the rightmost letter of a b c  is an instance of C? Elements of situations don’t come 

pre-labeled with the “right” description attached. Likewise they don’t come pre-labeled as 

being “im portan t” or “relevant” . The perceiver is required to use both a priori knowledge 

and w hat has already been perceived about a  given situation to determine which aspects 

are im portant and essential and which are irrelevant and superficial.

A very im portant point m ust.be made here. The phrase used in the paragraph above, 

“the ability to  figure out which features are im portant and which can be ignored” , m isstates 

the  issue somewhat, since the problem is not, by any means, merely one in which many 

possible aspects of the situation are set before you and you have to  decide which should be 

chosen for use in creating an interpretation or analogy. The process of perception involves 

not only deciding which clearly apparent aspects of a  situation should be ignored and which 

should be taken into account, but how aspects th a t were initially considered to  be irrelevant,
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or were not even considered to  be part of the situation in the first place, become apparent 

and relevant in response to  pressures tha t emerge as the understanding process is taking 

place. In other words, sometimes, given certain pressures, concepts come in to  play th a t you 

initially didn’t even suspect were part of the situation in any way.

As a  example of these ideas (involving a  commonly experienced situation), suppose you 

invite your good friend Greg to  dinner, and he doesn’t show up on time. W hat do you do? 

At first, simple, standard explanations and actions come to mind: he was briefly delayed; he 

ran  into traffic; he had trouble parking. But as half an hour passes, then an  hour, then two, 

the explanations and actions you think of become more and more out of the  ordinary. The 

following might come to mind: call his office (no answer); call his apartm ent (no answer); 

check your calendar to make sure the dinner date is tonight (it is); rack your brains trying 

to  remember if he warned you he might be late (you have no such memory); call friends 

of his to  see if they know where he is (they don’t); call his parents in Philadelphia (they 

haven’t heard from him in weeks); call the police (they suggest checking the  hospital); call 

the hospital (he’s not there); go to  his apartm ent (he’s not there); ask his neighbors if 

they’ve seen him lately (they last saw him this morning); drive along routes he would likely 

have taken (he’s nowhere to  be seen); buy a megaphone and call out his nam e as you drive 

along; call several airlines to  see if he’s on a plane leaving town tonight; tu rn  on the TV to 

see if you can spot him sitting in the audience of his favorite talk show; and so on. Though 

the last few are outlandish, most of these thoughts did occur to  my friends and me when 

we were in such a  situation. The point is: as tim e goes by and pressure builds up, one’s 

thoughts go farther and farther out on a  limb. One considers things th a t  one never would 

have considered initially, letting  seemingly unquestionable aspects of the situation slip under 

mounting pressure (e.g., Did I dream th a t I invited him? Did we have a  falling-out th a t I 

forgot about? Did he leave town and not tell me?).

Not only are certain concepts explicitly present in one’s m ental representation of a 

situation (you consciously believe th a t Greg was driving); there are also im plicit associations 

with those concepts, m ost of which stay well below the level o f awareness. Given Greg’s 

lateness, the thought th a t he’s driving might easily evoke an image of his having trouble 

parking (a  strong association). However, it is less likely th a t, early on, you will imagine 

him in a  car accident. This weaker association is potentially there, bu t will not be brought 

into the picture without pressure (he is quite late, it is dark outside, etc .). This illustrates 

a  general point: far-out ideas (or even ideas slightly past one’s defaults) cannot continually
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occur to  people for no good reason; a  person to whom this happens is classified as crazy 

or crackpot. Time and cognitive resources being limited, it is vital to  resist nonstandard 

ways of looking at situations without strong pressure to  do so. You don’t check the street 

sign on your block every time you go out to make sure the nam e hasn’t changed. You 

don’t check under your car for a  hidden bomb every tim e you want to drive it. Likewise, 

counterintuitive ideas in science come about only in response to  strong pressures. For 

example, had the Michelson-Morley experiment come out the other way (i.e., had it proved 

there is an “ether") and had Einstein still proposed special relativity, with all its deeply 

counterintuitive notions, it  would have been seen as ju s t a  fascinating crackpot theory, 

not a  great scientific advance. Not only is pressure needed for one to bring in previously 

uninvolved concepts in trying to  make sense of a situation, but the concepts brought in 

are related to the source of the pressure. (This is related to the discussion in  the previous 

chapter concerning what kinds of slippages are made in counterfactual thinking. These 

ideas overlap with Kahneman & Miller’s 1986 treatm ent of counterfactuals.)

In short, flexibility in thought requires the potential for unexpected concepts to be 

brought into one’s understanding of a  situation, but only in response to  pressure. An a 

priori absolute exclusion of a  whole class of concepts initially assumed to  be irrelevant 

is too rigid; one might then be prevented from coming up with unexpected new ways of 

looking a t things. On the o ther hand, lim itations of space and tim e make it impossible for 

all one’s concepts to be made equally available for use in forming m ental representations. 

A premise of the model being proposed here is th a t the presence or absence of a  concept 

in a  situation is not black-and-white; rather, all one’s concepts should have the  potential 

to  become relevant in any situation, bu t due to  the necessity for cognitive economy, they 

can’t  all be made available all the tim e or to the same degree. Instead, one m ust somehow 

manage to  keep seemingly irrelevant concepts pretty  much in the background most of the 

tim e, w ithout absolutely and irrevocably excluding them .

These issues of graded relevance and availability of concepts in different situations come 

up often in the letter-string domain. For example, consider Problem 5:

5. a b c  =*■ a b d

m r r j j j  => ?

You want to make use of the the salient fact that abc is an alphabetically increasing 
sequence, b u t how? This internal “fabric” of a b c  is a very appealing and seemingly ex

planatory aspect of the string, but a t first glance, no such fabric seems to  weave m rr jj j
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together. So either (like most people) you settle for m rrk k k  (or possibly m rr jjk ) , or you 

look more deeply. But where to  look when there are so many possibilities?

The interest of this problem is th a t there happens to  be an aspect of m rr jj j  lurking 

beneath the surface th a t, once recognized, yields w hat m any people feel is a more satisfying 

answer. As was discussed above, if you ignore the letters in m rr j j j  and look instead at 

group lengths, the  desired successorship fabric is found: the lengths of groups increase 

as “1-2-3” . Once this hidden connection between a b c  and m rr j j j  is discovered, the rule 

describing a b c  =>• a b d  can be adapted to m rr j j j  as “Replace the length of the rightmost 

group by its successor” , yielding “1-2-4” at the abstract level, or, more concretely, m r r j j j j .  

But bringing the nonstandard concept of length into the picture requires strong pressures. 

These pressures include: top-down pressure to  perceive successor relations in m rr j j j  once 

they have been noticed in ab c ; the fact that once groups of letters are perceived in m rr j j j ,  

the notion of length becomes weakly active and lingers in the background; and the decreased 

resistance to  bringing in nonstandard concepts as organizing notions after more standard 

ones have failed to  yield progress in making sense o f the situation at hand. Thus this 

problem dem onstrates how a  previously irrelevant, unnoticed aspect of a  situation emerges 

as relevant in response to pressures. The next two chapters describe and illustrate the 

mechanisms we are proposing for such capabilities.

Taking certain descriptions literally and letting others slip when perceiving correspon

dences between aspects o f two situations. As was shown by the F irst Lady examples given in 

the previous chapter, even when roles (such as “wife of the president” ) have been perceived 

in a  situation (e.g., the United States), they can’t  always be exported smoothly to  a new 

situation (e.g., G reat Britain). Either the roles have to  be abstracted further ( “spouse of 

the  head of s ta te ”) or slippages have to  occur (president =>■ prim e minister, wife => hus

band). The process of perceiving correspondences between situations involves fights among 

pressures to  use descriptions literally, to make descriptions more abstract, and to  let de

scriptions slip into related descriptions. Notice th a t there is a  distinction between ignoring 

certain aspects of a  situation, because they are deemed to  be irrelevant, and letting one’s 

descriptions of certain aspects slip, precisely because they are relevant, but don’t apply as is 

to  the new situation. The letter-string domain was designed primarily to  focus on the ques

tion of how different pressures interact to  trigger appropriate slippages. Problems 2-7 from 

the previous section illustrate several different translations of the same rule (“Replace the 

rightm ost le tte r by its successor” ), each involving slippages triggered by different pressures
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th a t come up in the perception of the different target strings.

Exploring many plausible avenues o f  possible interpretations while avoiding a search 

through a combinatorial explosion o f implausible possibilities. A serious problem in trying 

to  model perception is how to deal with the combinatorial explosion of possibilities. Com

petition m ust exist, but since the number of possible ways of interpreting a  situation and 

making correspondences between situations is so large, not all possibilities can be explored 

fully (or even a t all). This potential combinatorial explosion exists even for the simple 

situations in the letter-string domain (for example, in Problem 6, there are quite a  number 

of possible ways in which the string a a b a b c  could be structured and m apped onto the 

string a b c ) , though, of course, to a much lesser degree than  for real-world situations. In 

any case, since the goal of the Copycat project is to propose and test mechanisms for high- 

level perception and analogy-making in general rather than specifically in the letter-string 

domain, we m ust make sure th a t the program does not take advantage of the small size 

of the  microworld. Instead, the program must, as people do, have ways of circumventing 

the necessity of exhaustive search of any kind. To do so, it is necessary to  use informa

tion as it  is obtained to  narrow the exploration of possibilities. For example, in making a 

W atergate-C ontragate analogy, if you decide th a t th a t the notion of “erasing tapes” in Wa

tergate corresponds to “shredding documents” in Contragate, then this view should make 

a  m apping between Rose Mary Woods (Nixon’s personal secretary, who erased tapes) and 

Fawn Hall (N orth’s secretary, who shredded documents) more worthy of consideration than 

a  m apping between, say, Woods and Reagan’s personal secretary. Likewise, when one is 

solving Problem  3 (“a b c  ^  a b d , k ji => ?” ), if successorship has been identified as a  seem

ingly useful notion in the initial string, there should be top-down pressure to consider it in 

the target string as well. And if you perceive the two groups as increasing alphabetically 

bu t in different spatial directions (and thus make the slippage right => left), then a  mapping 

between c and k  (with the slippage rightmost => leftmost), becomes much more compelling, 

and consideration of a  c - i  mapping less likely. The process of using information as it is 

obtained involves not only allowing what is noticed to activate and reshape existing con

cepts in a  bottom -up m anner, but also allowing existing concepts to direct perception in a 

top-down m anner. This interaction of bottom -up and top-down modes o f processing is an 

essential p a rt of the Copycat program. It will be discussed and dem onstrated in detail in 

the next two chapters.
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The notion o f competing pressures. The abilities discussed above ail illustrate how 

analogy-making necessarily entails competition among the huge num ber o f possible ways 

of interpreting a situation and seeing similarities between situations. As can be seen in 

the various examples given above, a fundam ental notion here is th a t of competing pressures 

acting on the perceiver/analogy-maker. It is through the competition among and resolution 

of these pressures th a t a  coherent analogy emerges. (The same could be said for recognition 

processes in general.) Certain pressures are always strong in any analogy: for example, 

there  is always a pressure to  map salient things (such as “the President” ) onto other salient 

things, identical things (and very similar things) onto each other, and a  pressure to use 

abstract descriptions (or roles) rather than literal descriptions. Any interesting analogy 

is the  result of interaction and competition among a  set of possibly conflicting pressures. 

The Copycat program is a  model of this interaction and competition, and the letter-string 

microworld provides an arena in which all these various pressures arise in particularly clear 

ways. Also, the pressures can be minutely varied by constructing families of analogies such 

as the  family given in 1 a-d  above.

2.3 The Issue of Retrieval

In Copycat’s domain, both analogs (the initial and target strings) are given ahead of time, 

and some part of the initial string (e.g., a b c )  is highlighted by the presence of the mod

ified string (e.g., a b d ) , in which something has changed. This is very different from the 

usual way in which people make analogies: they are confronted with a  situation, and ei

ther th a t reminds them  of another situation with which they make an analogy (e.g., my 

“without-beverages-flight/overflowing-fountain” analogy), or they construct a  fictional sit

uation  th a t is analogous to  the original situation, in order to understand or to  make some 

point about the original situation (e.g., the National Organization of W omen’s analogy be

tween “provocative” clothing and an expensive watch). This problem of how people are 

rem inded of situations or construct hypothetical situations has to  do w ith the question of 

how memories are stored and retrieved. The Copycat project does not deal with this ques

tion directly, although m any of the issues it does deal w ith—e.g., categorization, perception 

of similarity, slippage, and competition among interacting pressures—are closely related to  

questions about memory and retrieval. A faith underlying this research is th a t, for the time 

being, the problem of how people understand and make analogies between given situations 

can be investigated separately from the problem of how people are reminded of one thing
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by another, though many of the same issues will be investigated, and research on the for

mer will thus yield insights useful to research on the la tte r, and vice versa. This faith and 

methodology is shared by most cognitive-science researchers working on models of analogy- 

making (e.g., Gentner, 1983, Holyoak & Thagard, 1989, and Kedar-Cabelli, 1988b, among 

others), though the process of memory retrieval in the context o f analogy-making has been 

investigated by, among others, Gick and Holyoak (1983); Schank and Leake (1989); and 

Thagard, Holyoak, Nelson, and Gochfeld (in press).

2.4 Defense of the Microworld

The following are the m ost frequently-raised objections to the use of the letter-string analogy 

problems for the purpose of constructing a model of analogy-making.

1. The problems are too simple and have no relation to  “real-world” analogy-making.

2. They are not real analogies, but more like the proportional analogies on standardized 

tests (such as the Scholastic Aptitude Test) or like sequence-extrapolation problems.

3. Each problem is purposeless and none has any use in real-world problem-solving, so 

it is impossible to  decide among rival answers to any problem.

1. The problems are too simple and have no relation to “real-world” analogy-making. 

I hope the discussion in the previous section has (at least partially) dem onstrated the 

relation between the letter-string problems and “real-world” analogy-making. Although the 

lack of real-world flavor to the letter-string analogies makes some people find this research 

unconvincing, this lack is in some ways an advantage, in th a t it  is very clear exactly what 

knowledge the program  does have, and people axe less likely to  be fooled into believing 

th a t the  program has an understanding of complex real-world concepts when it doesn’t or 

th a t the  program ’s behavior is more intelligent than it really is. I t  is sometimes too easy 

to  ascribe intelligence to  a  program based on its seeming ability to deal with concepts th a t 

we, as hum ans, know a  lot about, but about which the program  actually knows almost 

nothing. This has been a  recurring problem in artificial-intelligence research. The point of 

a  microdomain in cognitive science is to isolate a  phenomenon (such as analogy-making), 

to  strip  it down to  its bare bones, to get rid of its extraneous real-world trappings, while 

a t the same time retaining its essence so th a t it can be investigated more clearly. More
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discussion of the merits and disadvantages of using microworlds will be given in Chapter 8, 

after some other computer models of analogy-making are discussed.

2. They are not real analogies, but more like the proportional analogies on standardized 

tests (such as the Scholastic Aptitude Test)  or like sequence-extrapolation problems. There 

is a  large difference between the usual “proportional” analogy problems on standardized 

tests such as the SAT (e.g., “foot : shoe :: hand : ?” ) and Copycat’s letter-string analogies. 

Copycat’s problems could be stated in the same form (e.g., a b c  : a b d  :: iijjk k  : ?), but 

unlike the three-word SAT analogies, each string has quite a  lot of internal structure to 

it, with many possible correspondences between the parts first and th ird  strings instead 

of just one global correspondence between two atomic entities (e.g., “foot” and “shoe” ). 

The letter strings are more like m ulti-part situations than like single words. A better 

comparison would be with the geometric analogy problems of Evans (1968), to be discussed 

in Chapter 8. Copycat’s task has also been compared to sequence extrapolation. Problems 

based on the initial change a b c  => a b d  have the flavor of sequence extrapolation, but 

the  program is by no means limited to  solving such problems. B ut even the a b d  =► a b d  

problems are quite different from typical sequence-extrapolation problems, most of which 

use m athem atical formulas th a t have little to  do with the kinds of perceptual processes we 

are investigating. Other computer models of pattern  perception and sequence extrapolation 

in strings of letters have been constructed (e.g., Simon & Kotovsky, 1963, to  be discussed in 

Chapter 8), but the patterns used have generally not explored the  range of issues discussed 

in the previous section.

3. Each problem is purposeless and none has any use in real-world problem-solving, so 

it is impossible to decide among rival answers to any problem. This objection seems to me 

to  have two parts: 1) Is it  possible to  give any answer a t all to  these letter-string analogy 

problems? and 2) How can we say th a t, for a  given analogy problem in this domain, one 

answer any is better than  another? The first p a rt comes from the  claim th a t, because there 

is no notion of “purpose” in these letter-string problems (i.e., the  analogies are not being 

used for solving real-world problems), there are no grounds for giving any answer a t all. This 

objection seems to  me to  be easily refuted by the fact th a t people quite readily give answers 

to  the letter-string problems and often have very strong opinions about the m erit of their 

answer versus other answers. Moreover, in daily life, people make countless “purposeless” 

analogies all the tim e, by virtue of the fact th a t the human m ind is continually perceiving, 

categorizing, and noticing all kinds of concrete and abstract similarities. Several examples
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of such ubiquitous analogies (such as the “me too” analogies) were given in the previous 

chapter. A conscious purpose, if there is one, is one pressure among many, and usually 

is one of the factors th a t serve to  highlight certain aspects of the source analog (Burstein 

& Adelson, 1987; Kedar-Cabelli, 1988b). For example, Kedar-Cabelli discusses how one 

could decide which features of a  ceramic mug should be taken into account when making an 

analogy with a styrofoam cup, given th a t the purpose is to determine whether or not the 

la tte r could be used to drink hot liquids. But an analogy could certainly be made between 

the mug and the cup (in the sense th a t they could be seen as essentially similar) without 

th a t specific purpose in mind, since both have features th a t are salient a priori, that one 

notices even in the absence of any conscious purpose. A conscious purpose, being part 

of an overall context (often a relatively im portant part) serves to  enhance the relevance 

of certain features. In the letter-string domain, the change from the initial string to the 

modified string (e.g., a b c  a b d )  plays a similar role in th a t it highlights certain aspects 

of the initial string and helps indicate what aspects of the strings to  take into account when 

making an analogy (e.g., the spatial positions—such as rightmost and leftmost—of elements 

in the string).

This notion of a  conscious purpose as a  sine qua non for analogy-making comes, I believe, 

from a somewhat narrow view in which analogy-making is seen as a  tool to be used in 

problem-solving, rather than  as a  ubiquitous and pervasive mode of thought th a t blends 

smoothly into recognition and categorization.

The second part of the  objection (about the possibility of judging the relative merit of 

answers) can also be countered in the same way: people do have preferences when answering 

these problems; they see certain answers as strong and others as weak or even ridiculous. 

Of course, there is not always universal agreement on the single “right” answer to  a  given 

problem; although there are always a  small num ber of answers th a t people will give to a 

problem, preference within th a t set depends on individual taste.

In the real world, the analogies people find compelling are ones th a t take into account 

the  essential features of situations and that strip  away superficial and irrelevant aspects. 

Often, the  more hidden or deep the shared essence, the more compelling the analogy. W hat 

is “essential” in a  situation often has a  very definite meaning in the real world: it is what 

must be perceived in order to survive and succeed in one’s environment. In an artificial 

domain such as th a t of the  letter-string analogy-problems, there is no such objective way 

of determining which answers are good and which are bad, bu t even so, people can feel
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th a t certain  ways of looking a t a  given problem are better than other ways, because they 

are using perceptual mechanisms th a t evolved to deal with real situations in the real world. 

These mechanisms cannot be turned on and off even when the domain is seemingly artificial 

and content-free, and when our survival does not depend on our actions. (This fact is 

implicitly acknowledged by the general acceptance of abstract visual analogy problems for 

use on intelligence tests; most people agree that their solution has something to  do with 

intelligence.) Thus, since analogy problems in this artificial letter-string domain have an 

“essence” to  be perceived, people perceive it, and are able to  base their answers on it.

2.5 Specific Goals of This Dissertation and Criter ia for Success

In C hapter 1, I discussed in broad term s the goals of the research program of which the 

Copycat project is part. In this section I will outline the specific goals of my dissertation 

project, which are naturally much more limited than the very broad goals discussed earlier.

2.5.1 General Issues in Determining Criteria for Success

My goals for the Copycat project are two-faCeted: first, th a t the program act with intelli

gence (albeit of a  limited kind in a lim ited domain), and second, th a t its internal architecture 

and external behavior make it a  plausible model of the aspects of human  intelligence th a t we 

are investigating. These two facets are, of course, not simple to separate. It could be argued 

(and I believe is in part true) th a t the  more intelligently the program acts, the more plau

sible it is as a  model of human intelligence. However, it is certainly possible for a  program 

to  act w ith considerable intelligence—in a  limited domain—but for its intelligence to arise 

from internal mechanisms th a t are very different from those of the hum an mind. A salient 

example of this is the recent rise of chess-playing programs to grandm aster status. These 

program s play chess by searching through a  huge num ber of possible moves from a  given 

board configuration, many moves in to  the future, and then selecting the move tha t promises 

the  best fu ture outcome. Psychologists agree th a t human chess-experts do not play in this 

way; ra th e r, they rely upon high-level pattern-spotting abilities to recognize certain abstract 

pa tterns on the board and they then move in ways appropriate to  those patterns (deGroot, 

1965). Chess-playing programs act intelligently, but their intelligence comes from a  very 

different source than  that cf people. However, chess is a  very limited domain, and it is not 

a t all clear th a t a  program whose intelligence was more wide-ranging, and tha t included 

very fundam ental human abilities such as abstract recognition and analogy-making, could
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operate on principles very different from those underlying hum an intelligence.

A m ajor goal of the field of artificial intelligence is to  discover the general principles 

of intelligence, not necessarily its specific instantiation in brains (for instance, some AI re

searchers gain inspiration from other natural systems such as natural selection, e.g., Holland, 

1986, or the immune system, e.g., Farmer, Packard, & Perelson, 1986). The goal of psychol

ogy, on the other hand, is to understand the mechanisms of human (or anim al) intelligence 

and behavior. Thus the Copycat project is part artificial intelligence, part psychology. One 

m otivation is the desire to  understand in general how flexibility and adaptability— the hall

m arks of intelligence— come about in complex systems (and, as will be discussed further 

in the next chapter, m etaphors from both biology and society have been used in designing 

C opycat’s architecture). Another motivation is the desire to  understand the na tu re  of fluid 

perception and concepts specifically in humans. These two very long-term goals are inti

m ately related; it may be th a t one cannot be accomplished without the o ther. The hope is 

th a t  Copycat not only acts intelligently, but it does so because it uses mechanisms like those 

of hum an intelligence, and thus more directly sheds some light on what these mechanisms 

Me. Copycat as it currently stands is, of course, a far cry from human intelligence, even in 

its very limited domain. But the hope is th a t, in spite of its lim itations, it captures some

th ing  significant about the mechanisms of human perception and analogy-making, and that 

even where it is wrong it captures enough for it to be interestingly and usefully wrong. The 

hope is th a t the mechanisms being proposed have enough tru th  to  them  th a t the  program ’s 

successes and failures say something interesting and helpful about w hat is right and wrong 

w ith these mechanisms.

The question to be answered in this section is, how are we to  assess the program ’s success 

w ith regard to both its AI and psychological aspects? I want to show th a t Copycat acts 

w ith flexibility within its domain, th a t its concepts exhibit something like the fluidity and 

adaptability  of hum an concepts (albeit over a  very limited range of situations) and that its 

architecture and behavior have some psychological plausibility. Therefore, I am proposing 

two types of criteria for judging the program ’s success: first, artificial-intelligence criteria, 

which focus on the range of problems (and thus the range of issues in high-level perception 

and  analogy-making) th a t the program can deal with, and second, psychological criteria, 

which focus on more specific comparisons of the program ’s behavior with th a t of people.
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2.5 .2  A rtif ic ia l- In te llig e n c e  C r i te r ia :  W h a t  P ro b le m s  th e  P ro g ra m  C a n  D ea l 

W ith

The letter-string analogy-problem domain is very rich and open-ended; a very large num ber 

of issues in recognition and analogy-making can be explored in it. I think it is plausible 

to  postulate th a t any computer program th a t could m atch hum an ability in th is domain 

would be well along the way to being a  generally intelligent program. (The current version 

of Copycat is, of course, very far from this.) For the purposes of this dissertation, I selected 

a  set of five problems—Problems 1-3, 5, and 7, given in Section 2.1—as the m ain targets 

for the program. T hat is, the goal is for Copycat to  solve these five problems, giving more 

or less the range of answers that people give (as will be seen in Chapter 3, the program is 

nondeterministic and can thus produce different answers on different runs).2

The point, of course, was not merely to  solve a  set of five problems, but to  construct 

a program th a t is able to  deal with the general issues th a t are contained (in an idealized 

form) in those problems. Each of the five problems requires different kinds of perceptual 

structures to  be built and conceptual slippages to be m ade, so the fact th a t the  program 

(whose mechanisms are meant to be general, not specific to the letter-string dom ain) can 

deal with these five cases demonstrates th a t its concepts do have a certain degree of fluidity 

in adapting to  different situations.

Since the program uses general mechanisms to  solve these problems, it can also solve 

a  large num ber of other problems as well. The five target problems can be thought of as 

analogous to  a  basis in a  vector space—each one defines a  family (really, multiple families) 

of problems in which pressures are varied along different axes (as in problems l a - d  given 

earlier). In C hapter 5, Copycat’s performance on 27 variants—family m em bers—of the 

original five problems is displayed, dem onstrating how robust and flexible the program is 

when it is stretched to  deal with problems th a t it  was not specifically designed to  work on.

2 The current version of Copycat can get the solution a a b a b c d  to  “a b c  =}> a b d , 
a a b a b c  => ?” in principle, but in practice it  is too difficult for the program to discover and 
m aintain the  necessary parsing of the target string (a -a b -a b c ). Some of the weaknesses of 
the program  th a t contribute to these difficulties will be discussed in Chapter 6. Copycat is 
currently unable to  get the solution acg  to  “a b c  => a b d , a ce  => ?” even in principle, since 
it lacks the ability to  construct new tem porary concepts such as double successor.
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2.5.3 Psychological Criteria: More Detailed Comparisons With People’s Be

havior

The artificial-intelligence criteria described above are m eant to  test how intelligently Copy

cat acts, and to what degree its internal mechanisms yield a  system with flu id  concepts 

th a t can be used appropriately in a  number of different situations. Gaining insight into the 

mechanisms underlying fluid concepts is the purpose of this project, so developing and test

ing a set of psychologically plausible mechanisms th a t produce such behavior is the main 

goal of the research described here. The range of the program ’s abilities and subjective 

judgm ents of the psychological plausibility of the proposed mechanisms can lend some cre

dence to  Copycat as a  model of human psychological processes, but it is of course desirable, 

insofar as possible, to obtain further evidence th a t the mechanisms we are proposing are 

psychologically valid. The point of the psychological criteria is to see how well the  program 

holds up under more detailed comparisons of its behavior with th a t of people.

There are some problems with designing and evaluating such comparisons, however. As 

was pointed out earlier, Copycat is not a  model of how people solve letter-string analogy- 

problems per se, bu t rather, the letter-strings are m eant to  be taken as tiny abstract models 

of real-world situations. Copycat’s knowledge of letters and strings is very lim ited, and 

doesn’t involve many detailed aspects of human perception of letter-strings, such as the 

fact th a t English-speaking people read left to  right, know the alphabet be tte r forwards 

than backwards, and so on, since those aspects of perception are specific to  letter-strings 

and are not relevant to the larger task of modeling recognition processes in general. Thus, 

since the program is not modeling the domain-specific aspects of how people solve letter- 

string analogy problems, direct comparisons between the details of how people solve these 

letter-string problems and how Copycat solves them  (such as precise tim ing comparisons) 

are not useful for determining the program ’s psychological plausibility.

In spite of these difficulties, there are some comparisons th a t can be made. One reason 

the letter-string domain was chosen was because people can relate to  i t  and can solve the 

problems; people generally have no trouble adapting to  and obeying the  restrictions of the 

domain as far as producing and judging answers are concerned. Thus there can be some 

useful comparisons between what people do and w hat the program  does, as long as they 

are not a t too fine-grained a  level as far as the letter-string domain is concerned, or as far 

as the specific actions of the program are concerned. For the purposes of this dissertation, 

there are four types of comparisons that I chose to help further evaluate the  program ’s
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psychological plausibility. These are the following:

1. For a given problem, the program should be able (on different runs) to get all (or 

most) of the answers th a t people get (th a t is, people abiding by the constraints of 

the microworld), and should never produce answers th a t people find completely un

justified. Since the  letter-string domain reflects general issues in high-level perception 

and analogy-making, the answers th a t people get are a  function of how they respond 

to these general issues tha t are embedded in the letter-string problems. Thus the 

program’s response to these general issues should be similar to that of people.

2. The program should respond to variations in pressures in a similar way to  people. 

Problems 1 a-d  given above illustrated how pressures could be varied, and I discussed 

some of the effects these variations might have on what answers people tend to  give; 

the goal here is for Copycat’s tendencies to  be affected in similar ways.

3. If people agree th a t there is a single obvious “best” answer to  a problem (e.g., 

“a b c  => a b d , ijk  => ijl” ) the program should prefer th a t answer over the others 

it gets (as will be discussed in the next chapter, the program has a  global variable 

called “tem perature” whose value a t the end of a run roughly indicates the program ’s 

“happiness” with the answer it produced).

4. The difficulties experienced by people should also be experienced by the program. 

People find some problems more difficult than  others, so the program should experi

ence roughly the same relative difficulties (provided th a t the difficulties axe not due to 

something outside the domain, such as a  case where one of the strings spells a  word, 

etc.). For example, people universally find Problem 7 ( “a b c  => a b d , xyz  => ?”) 

harder than Problem 1 ( “a b c  => a b d , ijk  => ?” ); it would therefore be implausible 

if the program solved both with equal ease. One way to  test this is to compare the 

relative times taken by peqple and by the program on these (and other) problems. 

Also, if people reliably experience a particular difficulty in solving a  problem, the 

program should also experience tha t difficulty. For example, given “a b c  => a b d , 

x y z  => ?” , if people always initially try  to  replace the z  by its successor and hit an 

impasse, it would be implausible if the program  were able to avoid this difficulty. Or 

if people often have a  hard tim e making sense of the target string in “a b c  a b d , 

m rr j j j  =► ?” , it would be implausible if the program easily noticed the relationships
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among the group lengths. When I say th a t the program should experience the same 

difficulties as people, I don’t mean that these difficulties should be “preprogrammed” 

in any sense, but that the behavior should emerge naturally from the mechanisms 

being proposed by the program ’s architecture, the mechanisms whose psychological 

plausibility is being evaluated.

Satisfying these criteria will not prove th a t the program has psychologically valid mech

anisms; it will only show, to  the degree th a t the criteria axe satisfied, th a t the mechanisms 

it has are not implausible. And although these specific psychological tests can help to lend 

more plausibility to  the model, the most im portant criteria are more general: Does the 

program exhibit flexible and insightful behavior in its microworld? Does it act like it has 

fluid  concepts, as people do? Does it help us to  better understand what concepts are?
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CHAPTER III

THE ARCHITECTURE OF COPYCAT

In the previous chapter I discussed several general abilities th a t are required for high-level 

perception and analogy-making. The Copycat program is a model of the m ental mechanisms 

underlying these abilities. In  this chapter I describe the architecture of Copycat. The first 

section gives some background for the Copycat project by describing Jum bo, a computer 

program  developed by H ofstadter in which some of the main ideas of Copycat’s architecture 

were implemented in a lim ited and rough form. The second section gives a  broad overview 

of how Copycat works, and the rest of the chapter gives more detailed descriptions of the 

various parts of the program ’s architecture. All but the first two sections can be skipped 

or skimmed by readers not desiring detailed knowledge of the program ’s workings.

3.1 J u m b o

Prior to the development of the Copycat project, Hofstadter originated two other compu

ter-modeling projects—Jum bo and Seek-Whence—to investigate high-level perception and 

conceptual slippage. The Jum bo program was developed by Hofstadter (1983) and the 

Seek-Whence program by M eredith (1986). Jumbo was intended to  be a  short-term  test of 

some ideas about high-level perception processes rather than  a  long-term project resulting 

in a  sophisticated cognitive model. It was expressly designed as a  “warm-up” for the more 

ambitious Seek-Whence and Copycat projects. Jum bo contained precursors of many of 

the  features of Copycat, and it will thus be useful to  briefly describe Jum bo’s architecture 

before giving an overview of Copycat. (Seek-Whence will be discussed and compared with 

Copycat in Chapter 8.)

Jum bo’s task was the creation of plausible anagrams (its name comes from the “Jum ble”

40
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anagram  puzzles tha t commonly appear in newspapers): it was given a set of “jum bled” 

letters, and its job was to  use those letters to create a  single English-like word. Jum bo had 

no dictionary; its knowledge consisted of how, in English, consonant and vowel clusters are 

formed out of letters, syllables out of clusters, and words out of syllables. Given a  set of 

isolated letters (atomic units), it was able to gradually and hierarchically construct “gloms” 

(chunks a t the level of letters, clusters, syllables, or words).

The point of the program was to  model, in a very simple domain, “the unconscious 

composition of coherent wholes out of scattered p a rts” , the process of “constructing larger 

units out of smaller ones, with tem porary structures a t various levels and perm anent mental 

categories trying to accommodate to  each other” (Hofstadter, 1983). The program  needed 

to  engage in a large amount of back-and-forth notion in constructing, destroying, and 

regrouping structures; it needed da ta  structures th a t were “fluidly reconformable” in the 

process of coming up with a single structure th a t included all the letters and obeyed some 

formal rules of English words—a “pseudo-word” . Of course, all this could have been done 

more easily and quickly using a brute-force m ethod in which all combinations were tried out 

and checked against a  dictionary, bu t this would have defeated the purpose of the project, 

which was to  construct a  psychologically plausible model of some ideas for mechanisms 

underlying general perceptual processes.

The philosophy underlying Jum bo (as well as Seek-Whence and Copycat) is th a t high- 

level perception is not the result of using a set of serially applied, conscious m ental rules, but 

ra ther, tha t it emerges as a statistical outcome of large numbers of independent activities 

occurring in parallel, competing with and supporting each other, and influencing each other 

by creating and destroying tem porary perceptual constructs. Such a system has no global 

“executive” deciding which processes to  run next and what each should do; rather, all 

processing is done locally by many simple, independent agents that make their decisions 

probabilistically. The system is self-organizing, w ith coherent and focused behavior being 

a  statistically emergent property of the system as a  whole. The presum ption behind this 

philosophy is th a t the processes making up this “seething bro th” of activity are below the 

level of consciousness, and thus cannot be examined introspectively, bu t th a t any computer 

model attain ing a  good degree of human-like flexibility will have to  be implemented at 

this “subcognitive” level. These ideas have been discussed in detail by Hofstadter (1984a, 

1985d); another argum ent for modeling at the subcognitive level is given by Smolensky 

(1988).
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The architecture of Jum bo (as well as that of Seek-Whence and Copycat) was inspired in 

p art by the Hearsay-II speech-recognition program. Hearsay-IPs input is a raw, unperceived 

waveform, and the program consists of a number of independent “knowledge sources” that 

interact both cooperatively and competitively to  hierarchically build up a  coherent inter

pretation of the utterance. Likewise, in Jum bo all processing is done by “codelets” : small, 

special-purpose pieces of code that act independently to  build up hierarchical gloms from 

an initially unconnected set of jumbled letters.

In addition to  the ideas from Hearsay-II, there were two metaphors that guided the 

development of Jum bo’s architecture. The first m etaphor involves biological cells—in par

ticular, the way in which complex molecules are constructed in parallel and asynchronously 

by independent processes taking place throughout a cell’s cytoplasm. For each type of 

molecule, there is a standard chemical pathway for assembling it, which may involve dozens 

of steps. The cell has no central executive coordinating these steps, but rather relies on 

more-or-less random encounters between enzymes and substrates for these construction ac

tivities to  be carried out. The construction of complex molecules comes about as a  result 

of wave after wave of enzymatic activity, in which products of one set of enzymes become 

substrates for the next wave of enzymes, and in which enzymes are themselves produced in 

response to the current “needs” of the cell. In Jum bo, codelets play the role o f enzymes, 

random ly encountering letters and gloms (molecules) in the program ’s “cytoplasm” and 

attem pting  to join them  to form ever-larger structures. Complex structures are built by 

chains of codelets.

For any given set of letters, there are, of course, m any possible “glomming” paths 

to  explore, ju st as in real-world perception, where there are a  huge number of possible 

ways in which a set of unconnected raw sensations can be pu t together to form a  global 

semantic interpretation. One of the purposes of Jum bo was to  test out ideas about a  strategy 

for efficiently searching though this potential combinatorial explosion of possibilities and 

quickly zeroing in on a  good and coherent interpretation (or “pseudo-word”). These ideas 

were inspired in part by a  second metaphor: the parallel, probabilistic, and dynamically 

self-adjusting search strategy used by people in looking for a  m ate. When searching for 

romance, you initially consider many people simultaneously—the people you happen by 

chance to  meet (though this not totally random , since you tend to  look in places where you 

th ink it will be more likely to meet interesting people). Some people you can dismiss almost 

immediately as possible romantic partners; they’re clearly ju st not your type for some reason
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or other. Others you consider a bit more seriously, though the amount of consideration is 

not equal; the amount of tim e and interest put into each possibility depends on your initial 

attraction to the person. You get to  know some of these people better, and on the basis 

of your further evaluation of them  (and also on the basis of how much they like you), you 

decide whom to  concentrate on. You spend more and more time with a  smaller and smaller 

set of people, though all the while perhaps still giving some small amount of consideration 

to  one or two people you initially didn’t find very interesting, or to new people th a t you 

happen to  meet. Thus you are constantly reallocating your tim e and interest among the 

possible candidates for your affections according to  how promising each relationship seems, 

until finally a relationship seems so promising th a t you decide to “commit” , and give the 

lion’s share of your tim e to this one person. However, commitment isn’t necessarily the 

end of the story, since even after marriage, you are likely to  meet other people, and might 

engage in “harmless flirtations” th a t, depending on their attractiveness and the strength 

of your commitment, m ight receive some amount of further consideration. And, depending 

on its seeming promise and on the state of your marriage, the rival exploration might even 

come to  threaten your original commitment.

Hofstadter termed this type of strategy a parallel terraced scan: many possible courses 

of action are explored in parallel, but not all are are given the same amount of consideration 

or explored at the same speed, (the exploration is “terraced” because it is carried out in 

stages of increasing depth, w ith entry into each new stage being contingent upon the success 

of the previous stage). Possible paths are explored at a  speed and to a  depth proportional 

to  moment-to-moment evaluations of their promise: the speed of an exploration process is 

locally adjustable to reflect the current assessment of the promise of the path  being explored. 

In most situations in the  real world, there are too many possibilities to  explore; given real

tim e pressures, it is impossible to  check them all out fully, or even to  give some tim e to all 

of them . Instead, there has to  be a  parallel investigation of many possibilities to different 

levels of depth. The system  can afford lots of quick forays, even into unlikely territory, but 

it cannot afford to  explore all of them  more deeply, much less to  act upon every one. No 

p ath  of exploration should be excluded in principle, though many have to  be excluded in 

fact, since time is limited (e.g., when searching for a  m ate, you can’t meet everyone in the 

world, though you probably shouldn’t absolutely exclude anyone or any group a priori; who 

you do meet is probabilistic).

As in the romance example, as tim e goes on and progress is made, the mode of search

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

gradually changes from being highly parallel and random to being highly serial and deter

ministic. The Jum bo project proposed this strategy as a general feature of intelligence.

In the following description of glom construction (or destruction, or regrouping) in 

Jum bo, the influences from the cell metaphor and the romance m etaphor on the program ’s 

architecture can be clearly seen. In Jumbo, a  glom (such as “sch” , say, from the set of letters 

“c o s h n o g i 1”) is built only after a series of evaluations of it are performed. The initial 

evaluations are quick and superficial, but later ones are more elaborate. If a t any time one 

of these evaluations is too negative (decided probabilistically), the process of evaluation is 

curtailed. The glom is built only if the evaluation process goes all the way to the end. Each 

evaluation step is carried out by a codelet, and if the codelet’s verdict is favorable, that 

codelet posts a new codelet to carry out the next evaluation in the series. Thus any given 

glom in Jumbo is built up by a  standard series of codelet actions. An evaluation (made 

by a  codelet) of a potential glom not only helps determine whether the evaluation process 

should continue, but also returns a numerical score, reflecting the codelet’s estim ate of how 

promising that particular glom is. T hat score is used to  assign an urgency value to the next 

codelet in the series, which helps to  decide how long th a t next codelet has to  wait before it 

can run. (Similar multi-codelet chains also lead to  the destruction or regrouping of gloms.) 

A ttem pts at building many different gloms are interleaved, as follows. All codelets waiting 

to  run are placed in a  data  structure called the “Coderack” , and at each time step, the sys

tem probabilistically chooses one codelet from the Coderack to run, the choice being based 

on the relative urgencies of all codelets in the Coderack at that time. W hen a codelet is 

chosen to run, it is removed from the Coderack. At the beginning of a  run of the program, 

the Coderack contains a standard initial population of codelets, and as podelets run and are 

removed from the Coderack, they often add new, follow-up codelets to  continue pursuing 

seemingly promising tasks. Like the enzyme population in a  cell, the Coderack’s popula

tion changes, as processing proceeds, in response to  the needs of the system as judged by 

previously-run codelets.

Since all waiting codelets reside in the Coderack, and one codelet is chosen a t a  time 

from the entire Coderack population, a parallel terraced scan of possibilities results: in a 

given run, many competing or cooperating attem pts at building gloms are interleaved, with 

the speed of each glom-building process being a  statistical outcome of the urgencies of its 

component codelets. Thus m any interleaved processes proceeded in parallel (though not 

in phase with each other), each at a speed and to  a depth proportional to  its estimated
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promise, as assessed moment to  moment.

In the Jum bo project, Hofstadter also first introduced his notion of a  “tem perature” 

variable, whose value reflects the overall “happiness” of the program a t a given time—th a t 

is, how close the program estimates it is to creating a single coherent pseudo-word (the 

happier the program, the lower the tem perature). This value in tu rn  is used to  control the 

am ount of randomness with which decisions are made in the program. The tem perature 

s ta rts  out high, and falls as structures are built. Since the program uses probability to 

choose which codelet runs next, the idea is th a t, as the program  gets closer to  a solution, 

the  tem perature falls, causing a  decrease in randomness, which results in a speed-up of the 

rate  a t which promising possibilities are explored with respect to less promising ones. Thus 

good paths of exploration tend to crowd out worse ones a t an ever-increasing rate, and 

the system is finally “frozen” into a solution when the tem perature gets low enough. (The 

differences between this notion of tem perature and that used in “simulated annealing” are 

discussed in the next section.)

In summary, the main ideas of the Jum bo program include 1) a  cell-inspired architecture 

in which structures are built up in a piecemeal fashion by competing and cooperating chains 

of simple, independently acting agents (codelets), 2) a notion of fluid reconformability of 

structures built by the program (such as gloms), 3) a parallel terraced scan of possible 

courses of action, and 4) a  tem perature variable that dynamically adjusts the amount of 

randomness in response to  how “happy” the program is with its currently built structures. 

The result is th a t the program ’s overall behavior is not directly programmed, but rather 

is a  statistically emergent outcome of the interaction of m any microscopic computational 

activities happening in parallel. All these ideas are the basis for Copycat’s architecture as 

well. Since the point of the Jum bo project was to  test out these ideas to  some extent before 

using them in the Seek-Whence and Copycat projects, their im plem entation in Jum bo was 

by no means completely satisfactory. Many of the ideas, such as tem perature, were only 

very sketchily implemented, and the program ’s sophistication was rather limited. Copycat 

is a  much fuller and more sophisticated implementation of these basic ideas. It has required 

a  great deal of further development and reworking of the basic ideas from Jum bo as well as 

the  addition of many mechanisms not present in Jum bo.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

3.2 Broad Overview of Copycat

Copycat’s task is to  use the concepts it possesses to  build perceptual structures (descrip

tions of objects—i.e., letters or gloms, bonds between objects in the same string, groups of 

objects in a  string, and correspondences between objects in different strings) on top of the 

three “raw” , unprocessed strings given to it in each problem. The structures the program 

builds represent its understanding of the problem, and allow it to form ulate a solution. 

Since for every problem the program starts out from exactly the same s ta te  with exactly 

the  same set of concepts, its concepts have to  be adaptable, in terms of their relevance 

and their associations w ith each other, to different situations. In a given problem, as the 

representation of a  situation is constructed, associations arise and are considered in a  prob

abilistic fashion according to a parallel terraced scan (as in Jumbo) in which many routes 

toward understanding the situation are tested in parallel, each at a  ra te  and to a depth 

reflecting ongoing evaluations of its promise.

Copycat’s solution of letter-string analogy problems involves the interaction of the fol

lowing mechanisms:

• concepts consisting of a central region surrounded by a  halo of potential associations 

and slippages, in which the relevance of the concept and the proximity to  other con

cepts change as the process of perception and analogy-making proceeds;

•  mechanisms for probabilistically bringing in concepts related to  the current situation 

and conceptual slippages appropriate for creating an analogy;

• a  mechanism by which concepts’ relevances decay over time, unless reinforced;

•  agents th a t continually seek new descriptions, bonds, groups, and correspondences in 

a  working area;

•  mechanisms for applying top-down pressures from concepts already deemed to  be 

relevant;

•  mechanisms allowing competition among pressures;

• the parallel terraced scan, allowing rival views to  develop at different speeds;

•  tem perature, which measures the amount of perceptual organization in the system 

and, based on th is value, controls the degree of randomness used in making decisions.
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Figure 3.1: A schematic diagram of Copycat’s architecture.
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Figure 3.2: A small part of Copycat’s Slipnet.

Figure 3.1 gives a  schematic diagram of Copycat’s architecture in which the four main 

elements are shown: the Slipnet, the Workspace, the Coderack, and a  therm om eter repre

senting the tem perature. An overview of each of these elements will be given in  this section, 

and they will be described in more detail in the next section.

Copycat’s concepts reside in a network of nodes and links called the Slipnet (so named 

because it  is the source of all slippages). A small part of it is illustrated in Figure 3.2, which 

shows nodes, links (solid lines), and labels on links (thickly dotted  lines).

A concept’s central region is a  node, and its associative halo corresponds to  other nodes 

linked to  the central node. A node (such as successor or group) becomes activated when 

instances of it are perceived (by codelets, as described below). Activation levels are not 

binary, but can vary continuously between 0 and 100% (a t 100%, the node is said to  be
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“fully active” ). The probability th a t a  node will be brought in or be considered further at 

any given time as a  possible organizing concept is a  function of the node’s current activation 

level. Thus there is no black-and-white answer to the question of whether a given concept 

is “present” a t a  given time; continuous activation levels and probabilities allow different 

concepts to be present to different degrees. All concepts have the potential to  be brought 

in and used; which ones become relevant and to what degree depends on the situation the 

program is facing, as will be seen below.

A node spreads activation to nearby nodes as a function of their proximity; thus, concep

tual neighbors of relevant nodes have the potential to be brought in as well. For example, 

the node A, when active, spreads some activation to first (since A  is the first letter in the 

alphabet), giving the latter some probability of being used as a  description). Nodes lose 

activation unless their instances continue to be perceived or to  remain salient.

However, the rate  of activation decay is not the same for all nodes. Each node has a pre

assigned conceptual depth value.1 For example, the concept A  is less deep than  the concept 

successor, which is in turn less deep than the concept opposite. It could be said roughly 

th a t the conceptual depth of a node is the “distance” of an aspect of a situation from direct 

perception. For example, in the problem “a b c  => a b d , k ji =► ?” , the presence of instances 

of A  is more directly perceived than the presence of successorship, which is in turn more 

directly perceived than  the presence of opposites. Note th a t this conceptual-depth hierarchy 

is related to, but is not exactly the  same kind of structure as an abstraction hierarchy such 

as poodle-dog-mammal-animal-living-thing-thing. The concept A  could be said to be less 

abstract than the concept successor, which is in turn less abstract than  the concept opposite, 

bu t, unlike descriptions on an abstraction hierarchy, these are not descriptions of the same 

object a t different levels of abstraction. Rather, the idea is th a t different aspects of a  given 

situation (e.g., the presence of an A or of successorship or of opposites) have different levels 

of depth as far as perception of them  is concerned. Aspects with greater depth are more 

difficult to perceive, but tend to  be more interesting and more useful in uncovering the 

essence of the situation. Once aspects of greater depth are perceived, they should have 

more influence on the ongoing perception of the situation than  aspects of lesser depth. In 

Copycat, the greater a  node’s conceptual depth, the more slowly it decays, thus allowing 

deeper notions to  persist longer (and thus have more influence on what structures are built)

1 Hofstadter has called this measure “semanticity” (Hofstadter, 1984a).
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than  less deep ones. The conceptual-depth values in the Slipnet are fixed, and were pre

assigned by me based mainly on intuition (as well as trial and error). They are discussed 

in more detail in the next section and in Appendix B.

The length of a  link between two nodes represents the conceptual proximity or degree of 

association between the nodes: the shorter the link, the greater the degree of association. 

(The apparent lengths of links in the diagram is not meant to represent their actual relative 

lengths.) Like activation, link-lengths are not constant, bu t can vary in response to what 

has been perceived. Many links have labels th a t are themselves nodes (e.g., the link between 

rightmost and leftmost is labeled by the node opposite). W hen a  label node is fully active 

(indicating that the relationship it represents, e.g., opposite, is relevant to  the problem at 

hand), all the links labeled by th a t node shrink—that is, such relationships are perceived 

as being closer, or more slippable.

Decisions about whether or not a slippage can be m ade from a  given 

node—say, rightmost—to a neighboring node—say, leftmost—are m ade probabilistically, as 

a  function of the conceptual proximity of the two nodes. (Such decisions are made by 

codelets, as is described la ter on.) For example, in the problem “a b c  =>• a b d , k ji =>■ ?” , 

if the program notices th a t the initial and target strings are alphabetically in opposite 

directions, then opposite will be activated, thereby increasing the probability of slippages 

between nodes connected by an opposite link such as rightmost => leftmost. Thus the 

plausibility of slippage between two nodes depends on context.

In this model, a  concept (such as rightmost) is identified not w ith a  single node but 

rather with a  region in the Slipnet, centered on a particular node, and having blurry rather 

than  sharp boundaries: neighboring nodes (such as leftmost) can be seen as being included 

in the concept probabilistically, as a function of their proximity to the central node of 

the  concept. Just as in quantum  mechanics, where the spatial position of an electron is 

“decided” only a t the tim e i t  is measured, the composition of a  concept in semantic space is 

decided only when slippages are. explicitly made. For instance, in Problem  2 from Section

2.1 ( “a b c  =► a b d , i jjjk k  => ?” ), is the group k k  an instance of the  concept letter? If one 

makes a  correspondence from the c to the group kk , then one is effectively saying, “in this 

context, yes” ; th a t is w hat the  slippage letter => group says. This is w hat we mean by “fluid 

concepts” : people are able to  take a  rule like “Replace rightm ost le tte r by its successor” 

and allow the words in it (such as “letter” ) to  be flexibly extended. In this context, one 

sees the rule as “Replace rightm ost ‘le tte r’ by successor” , where the scare-quotes around
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the  word “letter” signify th a t here it is being used loosely to  refer to  a  group as well. The 

whole point of the Copycat project is to study how perception and concepts interact so 

th a t one knows which words in the  rule to  allow to slip, and how to  let them  slip, while 

still m aintaining the essence of the original rule. This model proposes th a t the property of 

being a concept is inextricably tied up with this notion of fluidity.

One could m etaphorically compare a  concept in the Slipnet to  the m etropolitan area of 

a  city: for example, the New York m etropolitan area is not a  well-defined area with exact 

boundaries, bu t rather a  central region diffusing continuously into outlying suburbs, with 

rather blurry edges. One could say th a t the conceptual proximity of a  given location with 

New York is the probability that a  person who lives there will answer “New York” when 

asked where they are from (note th a t for anyone from outside the strict city limits, this 

might entail a slippage, e.g., Hoboken New York). The conceptual proximity here is 

context-dependent; it  depends not only on the physical distance of the  given location from 

the center of M anhattan , but also on who is asking the question and why, how familiar 

they are with New York, how interested they are in the answer, how much time there is to 

answer, how embarrassing it might be to answer “New Jersey” , and so on. Likewise, in the 

Slipnet, the conceptual proximity from a  given node and its neighbors is context-dependent; 

for example, in some situations (e.g., “a b c  => a b d , k ji => ?” ) the node leftmost may be 

closely associated w ith the node rightmost, making a  slippage from one to  the other more 

likely, whereas in o ther situations (e.g., “a b c  => a b d , ijk  => ?” ) the conceptual proximity 

and the likelihood of slippage is much less.

Since the conceptual proximity between two nodes is context-dependent, concepts in the 

Slipnet are emergent ra ther than explicitly defined. In other words, it  is not preordained 

whether or not, say, group is part of the concept letter or leftm ost part of the concept 

rightmost. As will be seen, the degree to  which a given node is p a rt of a  given concept 

emerges from a  large num ber o f activities th a t take place as the program attem pts to 

solve the problem it is faced with. Moreover, since the proximity between two nodes gives 

only the probability th a t a slippage will be possible, concepts are blurry, never explicitly 

defined. They are associative and dynamically overlapping (here, overlap is modeled by 

links), and their tim e-varying behavior (through dynamic activation and proximity) reflects 

the  essential properties of the situations encountered. Thus concepts are able to adapt 

(in terms of relevance and association to one another) to  different situations. Note that 

Copycat does not model learning in the usual sense: the program  neither retains changes
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in the network from run to  run nor creates new perm anent concepts. However, this project 

does concern learning if th a t term  is taken to  include this notion of adaptation of one’s 

concepts to  novel contexts.

In addition to  the Slipnet, where long-term concepts reside, Copycat has a  Workspace— 

in which perceptual structures are built hierarchically on top of the “raw” input (the three 

strings of letters). There are six types of structures th a t the program builds:

• descriptions of objects (e.g., leftmost);

•  bonds representing relations (e.g., successorship) between objects in the same string;

•  groups of objects in the same string (e.g, the ii group in iijjkk);

• correspondences between objects in different strings (e.g., a c -k k  correspondence in 

“a b c  => a b d , iijjk k  => ?” );

• a  rule describing the change from the the initial to  the modified string (e.g., “Replace 

rightmost le tte r by successor” ); and

• a  translated rule describing how the target string should be modified to produce an 

answer string (e.g., “Replace rightm ost group by successor).

Copycat’s Workspace is m eant to  correspond to  the mental region in which represen

tations of situations are constructed. (The counterpart of Copycat’s Workspace in Jum bo 

was called the “Cytoplasm ” , reflecting the influence of the cell m etaphor.) As in Jum bo, 

th is construction process is carried out by large numbers of simple agents called codelets. 

A codelet is a  piece of code th a t carries out some small, local task th a t is part of the pro

cess of building a  structure (e.g., in Problem 5, one codelet might notice th a t the two r ’s 

in m r r j j j  are instances of the same letter; another codelet might estim ate how well that 

proposed bond fits in with already-existing bonds; another codelet might build the bond). 

Bottom -up codelets (or “noticers” ) work toward building structures based on whatever they 

happen to  find, w ithout being prom pted to  look for instances of specific concepts; top-down 

codelets (or “seekers” ) look for instances of particular active nodes, such as successor or 

sameness-group. As in Jum bo, any structure is built by a  series of codelets running in 

tu rn , each deciding probabilistically, on the basis of progressively deeper estimations of 

the structure’s promise, whether to  continue the evaluation process by generating one or 

more follow-up codelets or to  abandon the effort a t th a t point. If the decision is made

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

to  continue, the  running codelet assigns an urgency value (based on its estim ation of the 

struc tu re’s promise) to each follow-up codelet. This value helps to determ ine how long each 

follow-up codelet will have to  wait before it can run and continue the evaluation of tha t 

particular structure. Once a  structure is built, it can indirectly influence the building of 

other structures, helping to  accelerate the construction of structures th a t  support it, and 

working to  suppress the construction of structures th a t rival it. Incom patible structures 

cannot exist simultaneously; fights between such structures are decided probabilistically on 

the basis of strength. Which structures are incompatible, and how these supporting and 

competing actions take place will be described in subsequent sections.

Codelets can be viewed as proxies fo r the pressures in a given problem. Bottom-up 

codelets represent pressures present in all situations (the desire to  make descriptions, to find 

relationships, to  find correspondences, and so on). Top-down codelets represent pressures 

evoked by the situation at hand (e.g., the desire, in the problem “a b c  =>• a b d , m rr jjj  =>■ ?” , 

to  construct more sameness groups in the target string once some have already been made).

Any run starts with a standard initial population of bottom -up codelets (with preset 

urgencies) on Copycat’s Coderack (the place where posted codelets wait to  be chosen); at 

each time step, one codelet is chosen to  run and is removed from the current population 

on the Coderack. The choice is probabilistic, biased by relative urgencies in the current 

population. Copycat thus differs from an “agenda” system such as Hearsay-II, which, a t 

each step, executes the waiting action with the highest estimated priority. The urgency of a 

codelet does not represent an estimated priority, rather, it represents the  estim ated relative 

speed at which the pressures represented by this codelet should be attended  to. If the 

highest-urgency codelet were always chosen to  run, the lower-urgency codelets would never 

be allowed to  run, even though the pressures they represent have been judged to deserve 

some am ount of attention. Using probabilities to  choose codelets allows each pressure to 

get the am ount of consideration it is judged to deserve, even when the judgm ents change 

as processing proceeds. This allocation of resources is an emergent statistical result rather 

than  a  preprogrammed deterministic one.

Codelets th a t take part in the process of building a structure send activation to the areas 

in the Slipnet th a t represent the concepts associated with that structure. These activations 

in tu rn  affect the makeup of the codelet population, since active nodes (e.g., successor) are 

able to  add codelets to  the Coderack (e.g., top-down codelets th a t try  to  find successor 

relations between pairs of objects). Thus, as the run proceeds, new codelets are added to
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the  Coderack population either as follow-ups to  previously-run codelets, or as top-down 

scouts for active nodes. (Also, new bottom -up codelets are continuously being added to  the 

Coderack.) A new codelet’s urgency is assigned by its creator as a function of the estim ated 

promise of the task it is to  work on: the urgency of a follow-up codelet is a function of the 

result of the evaluation done by the codelet that posted it and the urgency of a  top-down 

codelet is a  function of the activation of the node tha t posted it  (the urgency of a  bottom -up 

codelet is fixed). Thus the codelet population on the Coderack changes as the run proceeds, 

in response to the system’s needs as judged by previously-run codelets and by activation 

patterns in the Slipnet, which themselves depend on what structures have been built.

The speed of a  structure-building process emerges dynamically from the urgencies of its 

component codelets. Since those urgencies are determined by moment-to-moment estimates 

of the promise of the structure being built, the result is that structures of greater promise 

will tend to be built more quickly than less promising ones. The upshot is a  parallel terraced 

scan—more promising views tend (statistically) to  be explored faster than less promising 

ones. There is no top-level executive directing processing here; all processing is carried out 

by codelets. Note that though Copycat runs on a  serial computer and thus only one codelet 

runs a t a  tim e, the system is roughly equivalent to one in which many independent activities 

are taking place in parallel, since codelets work locally and to  a  large degree independently.

The fine-grained breakup of structure-building processes thus serves two purposes: (1) 

i t  allows many such processes to  be carried out in parallel, by having their components 

interleaved; and (2) it allows the computational resources allocated to each such process 

to  be dynamically regulated by moment-to-moment estimates of the promise (reflected by 

codelet urgencies) of the pathway being followed.

I t is im portant to  understand th a t in this system, such processes, each of which con

sists of m any codelets running in a  series, are themselves emergent entities. R ather than 

being predetermined and then broken up into small components, processes are instead post

determ ined, being the pathways visible, after the fact, leading to  some coherent macroscopic 

act of construction or destruction of perceptual or organizational structure. In other words, 

only the codelets themselves are predetermined; the macroscopic processes of the system 

are emergent. In short, any sequence of codelets th a t amounts to  a  coherent macroscopic 

act can a posteriori be labeled a  process (e.g., the process of forming a  successor group out 

of the entire string iijjk k , which involves the building of several bonds and the formation 

of several groups within the string), bu t large-scale processes are not laid out in advance.
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For example, there is nothing in the program  th a t says, “see if the target string  can be 

m ade into a  successor group” with instructions on how to do so; there are only individual 

codelets th a t perform small, local actions. Thus, though when one looks back at a  run of the 

program  and can identify certain “processes” th a t were interleaved and th a t ran a t different 

speeds, it must be made clear th a t the way this actually comes about is very different from 

standard  time-sharing systems in which a  num ber of well-defined and separate processes are 

each given certain time-slices as a  function of their priorities. At any given time during a 

run of Copycat, one cannot take the codelets currently in the Coderack and determ ine which 

ones belong to which large-scale process. Until the program  runs to completion, it cannot 

be said what the various processes are; is even unclear what should be dubbed a  process. 

Each codelet’s task is one step in a very large number of potential processes th a t  may or 

may not unfold. To describe the program ’s large-scale actions in terms of “processes” , as 

has been done here, is really just a convenient shorthand.

A final mechanism, temperature (discussed earlier w ith respect, to the Jum bo project), 

both  measures the degree of perceptual disorganization in the system (its value a t any 

m om ent being a function of the am ount and quality of structure buih so far) and controls 

the  degree of randomness used in making decisions (e.g., which codelet should run next, 

which objects a codelet should choose to  work on, which structure should win a  fight, 

etc.). Higher tem peratures reflect the fact th a t there is little  information on which to base 

decisions; lower tem peratures reflect the fact th a t there is greater certainty about the basis 

for decisions. Thus, decisions are made more randomly at higher tem peratures than  a t lower 

tem peratures. The final tem perature a t the end of a  run can be taken as a rough indication 

of the program ’s satisfaction with the answer it has created (the lower the tem perature, the 

better).

Note th a t the role of tem perature in Copycat (and Jum bo) differs from th a t in simu

lated  annealing, an optim ization technique sometimes used in connectionist networks (Kirk

patrick, 1983, Hinton & Sejnowski, 1986, Smolensky, 1986). In simulated annealing, tem 

pera tu re  is used exclusively as a  top-down randomness-controlling factor, its value falling 

monotonically according to  a predeterm ined, rigid annealing schedule. By contrast, in Copy

ca t, the value of tem perature reflects the current quality of the system’s understanding, so 

th a t tem perature acts as a feedback mechanism th a t determines the degree of randomness 

used by the system.

In summary, Copycat’s tem perature-controlled nondeterminism allows the program to
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avoid an apparent paradox in perceiving situations: you can’t explore every possibility, but 

you don’t know which possibilities are worth exploring without first exploring them . It is 

necessary to  carry out some exploration in order to  assess the  promise of various possibilities, 

and even to  get a  clearer sense of what the possibilities are (e.g., the  notion of length in 

“a b c  =>• a b d , m rr j j j  =>■ ?” , which initially might not even be considered a possibility 

to  explore). It is essential to be open-minded, but the territory is too vast to explore 

everything. In Copycat, the fact that codelets are chosen probabilistically rather than 

deterministically allows the exploration process to be a  fair one, neither deterministically 

excluding any possibilities a priori, nor being forced to give equal consideration to  every 

possibility. This is the role of nondeterminism in Copycat: it allows different pressures to 

be given the amount of consideration they seem to deserve, with this allocation of resources 

shifting dynamically as new information is obtained. There is much redundancy a t the level 

of individual codelets, especially among codelets exploring the most promising possibilities, 

and the action of any one codelet does not make a  difference in the program ’s overall 

behavior. Rather, all high-level effects, such as the parallel terraced scan, are statistical 

results of large numbers of codelet actions and probabilistic choices made by the program 

of which codelets to run. (A typical run of Copycat consists of hundreds—or sometimes, 

depending on the problem, thousands—of codelet steps.)

Copycat’s distributed asynchronous parallelism, like Jum bo’s, was inspired by the sim

ilar sort of self-organizing activity tha t takes place in a biological cell (Hofstadter, 1984a). 

As was outlined in the discussion of Jum bo, in a  cell, all activity is carried out by large 

numbers of widely distributed enzymes of various sorts. These enzymes depend on random 

motion in the cell’s cytoplasm in order to encounter substrates (relatively simple molecules 

such as amino acids) from which to build up larger structures (such as proteins). Com

plex structures are built up through long chains of enzymatic actions, and separate chains 

proceed independently and asynchronously in different spatial locations throughout the cy

toplasm . Moreover, the enzyme population in the cell is itself regulated by the products 

of the  enzymatic activity, and is thus sensitive to  the moment-to-moment needs of the cell. 

In Copycat, as in Jum bo, codelets roughly act the part of enzymes. All activity is carried 

out by large numbers of codelets, which choose objects in a  probabilistic, biased way for 

use in building structures. As in a cell, the processes by which complex structures are built 

are not explicitly programmed, but are emergent outcomes of chains of codelets working 

in asynchronous parallel throughout Copycat’s Workspace (its “cytoplasm” ). And just as
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in a cell, the population of codelets on the Coderack is self-regulating and sensitive to the 

moment-to-moment needs of the system. To carry this analogy further, the Slipnet could 

be said to  play the role of DNA, with active nodes in the Slipnet corresponding to genes 

currently being expressed in the cell, controlling the production of enzymes. Hofstadter’s 

purpose in inventing this m etaphor was to draw inspiration from the mechanisms of self

organization in a  fairly well-understood natural system, and to  use these ideas in thinking 

about the mechanisms of high-level perception. The mechanisms of enzymes and DNA 

in a cell are not to  be taken literally as a  model of perception; rather, general principles 

can be abstracted and carried over from the workings of cells to  the workings of percep

tion. D istributed asynchronous parallelism, emergent processes, the building-up of coherent 

complex structures from initially unconnected parts, self-organization, self-regulation, and 

sensitivity to the ongoing needs of the system are all central to our model of perception, 

and thinking about the workings of the cell has helped in devising mechanisms underlying 

these principles in Copycat.

This section has described the Copycat program in very broad strokes; in the rest of 

this chapter, the various parts of the architecture sketched above will be described in more 

detail.

3.3 T h e  S lip n e t

Figure 3.3 is an expanded version of Figure 3.2. All the nodes and links in the Slipnet are 

shown in this figure. Note that the sizes of nodes and the lengths of links in this diagram 

are arbitrary, and do not indicate anything about the actual nodes and links.

The network includes nodes representing the following possible descriptors for objects 

and structures.

•  The 26 letters of the alphabet.

•  The numbers 1 to 5 (the program doesn’t know any numbers higher than this, and 

currently the only way the program uses numbers is to  describe the lengths of groups).

•  The various possible positions of an object in a  string: leftmost, rightmost, and middle, 

and the nodes whole, which is used to describe a  grouping of a  whole string, and single, 

which is used to  describe a  le tte r th a t is the sole constituent of its string.

•  The two possible spatial directions for bonds and groups: left and right.
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Figure 3.3: Copycat’s Slipnet.
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•  The two possible types of objects in strings: letter and group.

•  The two distinguished positions in the alphabet: first and last.

•  The three possible types of bonds that can be built between objects: predecessor, 

successor, and sameness.

•  The three types of groups th a t can be made out of related objects in a string: 

predecessor-group, successor-group, and sameness-group.

In addition, the network includes nodes representing the various categories of descrip

tions:

•  letter-category (linked to the the letter-category nodes, A-Z);

•  number-category (linked to the number-category nodes, 1-5);

•  string-position (linked to  the three string-position nodes, leftmost, middle, and right

most);

•  direction (linked to the two possible spatial directions, left and right);

•  object-category (linked to the  two types of objects, letter and group);

•  alphabetic-position (linked to  the two distinguished alphabetic positions, first and last);

•  bond-category (linked to the  three possible bond categories, predecessor, successor, 

and sameness); and

•  group-category (linked to the three possible group categories, predecessor-group, 

successor-group, and sameness-group).

Finally, there are the nodes identity  and opposite, which label relationships in the Slip- 

net (any node has an implicit identity relation to  itself) and are used to  label certain 

concept-mappings underlying correspondences. Note th a t there is a  distinction in the  sys

tem  between sameness and identity: the former is a  type of relation between letters or 

groups—actual objects in the W orkspace—and the la tte r is a  type of relation between 

nodes in the Slipnet. I found it necessary to  make this distinction for various purposes in 

the current version of Copycat, b u t I am not sure th a t it is really a  proper distinction to  

make.
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The following is a  list of the nodes in order of increasing conceptual depth (nodes in a 

single line have equal conceptual-depth values). The conceptual-depth value for each node 

is perm anent (it does not vary during a  run or from run to  run) and  is assigned by me 

(the  exact values are given in Appendix B). There was no formal m ethod for assigning 

these rankings; they were decided by a combination of intuition, trial-and-error, and some 

arbitrariness, and are not necessarily optimally tuned in the current version of the program. 

An experiment on the program  th a t involved modifying these values will be described in 

C hapter 7.

•  A  through Z;

•  letter,

•  letter-category;

• 1 through 5;

• leftmost, rightmost, middle, whole, single, left, right;

•  predecessor, successor, predecessor-group, successor-group;

•  first, last;

• number-category;

•  string-position, direction;

•  alphabetic-position, bond-category, group-category;

•  sameness, sameness-group;

•  object-category, identity, opposite.

There are four main classes of links in the Slipnet (the different classes are not labeled 

in the  diagram):

•  Category links, which relate the types of descriptions th a t can be m ade to  the various 

possible descriptors of th a t type (e.g., relating the 26 letters to  letter-category, cr the 

three types of bonds to  bond-category).

•  Instance links, the inverse of Category links (e.g., relating letter-category to the 26 

letters).
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•  Has-Property links, which associate certain nodes with properties the concept has. In 

the current version of Copycat, there are only two such links: the link from A  to  first, 

and the link from Z  to  last.

•  Lateral links, which represent various non-hierarchical relationships among nodes. 

There are two types of lateral links: those whose relationships represent potential 

slippages, and those whose relationships axe not possible slippages. The possible slip

page links include:

-  Opposite links (labeled “opp”): leftmost <-*■ rightmost, left <-> right, first <->■ last, 

predecessor *-> successor, and predecessor-group *-* successor-group.

-  Various unlabeled links encoding various associations: letter-category <-► number- 

category, letter *-* group, and single <-* whole.

The lateral links th a t do not represent possible slippages include:

-  Successor and predecessor links between letter and number nodes (labeled “s” 

and “p” ).

-  Links between the direction and string-position nodes (e.g., right *-> rightmost).

-  The links first *-* leftmost, first <-*• rightmost, last <-+ leftmost and last *-* rightmost. 

In each link, bo th  nodes refer to  extremities, one to  a  spatial extremity in a  string, 

the other to an extreme position in the alphabet.

-  Links between the various types of bonds and the associated types of groups 

(e.g., predecessor —► predecessor-group).

-  The links predecessor-group —*• number-category, successor-group —► number- 

category, and sameness-group —*■ number-category. These links encode the rel

atively weak associations between the three group-categories and the notion of 

length. Thus, when groups are formed and the corresponding nodes are acti

vated, a  small am ount of activation is spread to number-category, which creates 

some possibility th a t the lengths of groups will be perceived. This is illustrated 

in the screen dumps given in the next chapter.

-  The link sameness-group -* letter-category. In the current version of the  program, 

sameness groups (e.g., the ii group in iy jk k ) are the only kind of groups that 

can have letter-category descriptions (e.g., I) attached.
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As was described in the previous section, the lengths of labeled links (namely, the op

posite, predecessor, and successor links) decrease when the node corresponding to the label 

is activated. All other links have lengths th a t do not change over the course of a  run. As 

was said earlier, the network does not retain any changes from run to  run; all node acti

vations and link-lengths are reset to  their initial values a t the beginning of each new run. 

The initial lengths of labeled links and the fixed lengths of o ther links are, as are nodes’ 

conceptual-depth values, assigned by me, based on intuition and trial-and-error, and are 

not necessarily optimally tuned.

In the current version of Copycat, slippages can be made only between nodes connected 

by a single lateral slippage link. This is the source of some rigidity in the current program. 

In principle, the program should be able to  perceive relations and make slippages between 

nodes separated by any number of links, given sufficient pressure. For instance, to solve 

“a b c  => a b d , ace  => ?” , the program would need to be able to  perceive “double successor” 

relations between the letters in ace  even though there axe no explicit “double successor” 

links in the Slipnet—and so Copycat cannot currently solve this problem. It should be 

pointed out th a t even though all possible slippages are potentially present (as is the slippage 

wife => husband in our minds), it takes pressure to make them , as well as pressure for the 

concepts involved to become relevant. Many slippages are not plausible a priori. As will be 

seen in the runs given in Chapter 4, the program virtually never makes opposite slippages 

w ithout pressure to do so; in fact, in the absence of pressure, it barely even considers them . 

Again, it  requires sufficient pressure of the right sort in order for certain concepts to become 

relevant and for certain slippages to  be made.

The fact th a t  there are only a small number of possible slippages in the Slipnet also may 

seem unrealistic, bu t it should be emphasized th a t Copycat’s small number of relatively 

simple concepts are meant to stand fo r  the large number of more complex concepts in a 

person’s mind. Copycat’s concepts are m eant to capture in an idealized form some of what 

is interesting about real-world concepts. Thus it is essential th a t the program, as much as 

possible, avoid taking advantage of the facts that it has only a small number of concepts 

and th a t each problem has only a  small number of elements. The program never searches 

explicitly through all the nodes and links in its network. Instead, codelets use nodes th a t 

become relevant, and make slippages th a t become plausible, in response to  pressures arising 

both from structures tha t previously run codelets have built and from existing associations 

in the network.
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Several nodes in the Slipnet (e.g., successor, predecessor, successor-group, and predeces

sor-group) are able, when active, to  post specific top-down codelets to the Coderack. The 

task o f such a top-down codelet is to  specifically seek instances of its parent node in the 

Workspace (e.g., to  look for successor relations). A list and description of these top-down 

codelets will be given in a later section.

The combination of the mechanisms discussed here—dynamic, context-dependent acti

vation (representing perceived relevance) and link-lengths (representing perceived concep

tual proximity) along with top-down pressure from activated nodes (in the form of codelets 

seeking instances of those nodes)—results in a model of concepts as “active symbols” (Hof- 

stad ter, 1979, Chapter 11; 1985d). Concepts in the Slipnet are active and dynamic, rather 

than passive and static: they are emergent rather than  explicitly defined, they change in 

response to what is perceived in a  given situation and adapt themselves in appropriate ways 

to  different situations. When activated, concepts (e.g., successor, or group-length) in turn 

a ttem pt to  further instantiate themselves (via top-down codelets) in the current situation; 

in doing so, they have to compete against each other for the resources of the system (i.e., 

nodes compete indirectly, via codelets, for running time and for locations to  build structures 

corresponding to  instances of themselves).

3 .4  P e rc e p tu a l  S tru c tu re s

3.4 .1  W h a t  th e  P ro g ra m  S ta r ts  O u t W ith

Although I call the structures described in this section “perceptual structures” , the word 

“perceptual” here is meant to be taken in the same spirit as the  phrase “high-level percep

tion”— th a t is, to refer to the non-modality-specific perceptual processes that occur in the 

mind when it tries to  form an interpretation of a situation, be it  a  visual scene, a spoken 

sentence, or an abstract situation such as the Iran-C ontra  affair. Thus the term “perceptual 

struc tu re” is meant to be general: it can refer both to  modality-specific mental structures 

such as the structures constructed by Hearsay-II corresponding to  phrases, words, syllables, 

and phonemes, or to  abstract mental structures such as the perceived chunk “the W atergate 

burglars” or a  mental correspondence between Reagan and Nixon.

A t the beginning of a run, Copycat is given the three strings of letters; its initial knowl

edge about each component letter consists only of the le tte r’s letter-category (e.g., a  is an 

instance of category A), its object-category (i.e., a  is a  letter, as opposed to a  group), its 

string-position (e.g., leftmost), and which letters are adjacent to  it in its string. Only the
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A B C A B D
leftm ost m iddle rightmost leftm ost m iddle rightm ost

letter letter letter letter letter letter

a b c — > a b d

le fê ro s t leJer le L  le L  1 ®«r r iS ^ r° s t

i i j j k k — > ?

Figure 3.4: The initial descriptions given to  the letters in “a b c  => a b d , 
iijjk k  =» ?” .

leftm ost, rightmost, and middle letters (if there is one) have string-position descriptions 

{middle is used to describe only the single middle object in a string of three objects: e.g., 

the  b  in a b c , or the group j j  in iijjkk  can both be seen as middle objects).

The three strings are presented to  the program  with no preattached bonds or preformed 

groups. It is thus left entirely to  the program to  build up perceptual structures constituting 

its understanding of the problem in terms of concepts it deems relevant.

Figure 3.4 displays the initial descriptions given to  the letters in the problem 

“a b c  =>• a b d , i ijjk k  => ?” , before the beginning of a  run. In the figure, the large boldface 

lowercase letters are objects in the Workspace, and the descriptions of each letter are listed 

above it. A description actually consists of two parts: a  descriptor (e.g., leftmost) and an 

description-type (for leftmost this would be string-position) th a t names the specific facet 

(of the object) th a t is being described.2 In the  figure, only the descriptors are displayed.

2 The structure of a  description (e.g., “string-position: leftmost” ) is similar to  th a t of a  
slot and filler in a  frame-based representation. However, the words “slot” and “filler” imply 
th a t  there is a  ready-m ade slot (e.g., string-position) attached to  the object, waiting to  be 
filled. In Copycat, th is is not the case. W hen the  program adds a  new description to an 
object (e.g., alphabetic-position: first), it is adding both  the slot and the filler; the slot did 
not exist ahead of tim e. Thus new slots can be added to objects as new concepts (e.g., 
alphabetic-position) become relevant.
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For example, the a  in the initial string has three descriptions: “letter-category: A” , “string- 

position: leftmost” , and “object-category: l e t t e r For each description, both the descriptor 

and the description-type are names of Slipnet nodes.

As can be seen, each letter in the string a b c  happens to  have three descriptions, but 

many letters in U jjkk do not have a string-position description.

In the figure, a descriptor name in boldface indicates th a t th a t description is relevant, and 

thus visible to  codelets. A description is relevant only when the Slipnet node corresponding 

to its description-type is fully active (e.g., leftmost is relevant because string-position is 

fully active). Thus the relevance of a  description in the Workspace is dynamic and context- 

dependent, since it changes with the activation of the description-type node, which depends 

on what has been perceived. In the figure, all the descriptors except letter are relevant.

The description-type nodes letter-category and string-position are initially set to  be fully 

activated, and their activation is clamped (i.e., held constant) for a  certain number of 

time steps. T hat is, descriptions of these two types are assumed to  be relevant, a priori. 

However, this can change over the course of a  run: if descriptions of these types do not 

tu rn  out to  be useful, the activation of these description-type nodes will eventually decay, 

and the corresponding descriptions will no longer be perceived as relevant (this will be seen 

in some of the runs given in Chapter 4). The program is thus initially biased to  assume 

th a t certain concepts are relevant, so th a t some aspects of the letters will be visible to  early 

codelets. This reflects the notion th a t a given situation will have aspects th a t are a priori 

clearly apparent (e.g., your friend Greg is driving). However, these biases shift in context- 

dependent ways as a  run proceeds, as new structures axe built, and as new information is 

uncovered about w hat should be considered relevant to  the problem a t hand.

W hen a  group is formed by the program , it  becomes a  new object in its own right, 

and is autom atically given the same default types of descriptions th a t a  letter is initially 

given (e.g., a string-position  description), if they apply to  it. Also, a  probabilistic decision 

is m ade whether or not to  add a  length description; the longer the group, the less likely 

it is a  description of its length will be explicitly attached to it; in other words, the length 

of a  short group is more easily and immediately perceived than  th a t of a longer group. 

The probability of adding a  length description is generally low, unless group lengths have 

already been deemed to  be relevant, in which case it  goes up significantly. Just as for 

descriptions attached to  letters, a  group’s descriptions lose relevance if they do not turn 

out to  be useful. As will be seen, new descriptions can also be added to an object by
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description-making codelets long after the object is created.

Thus, objects are given certain descriptions by default, o ther descriptions can be added 

later on if they seem called for, and descriptions lose relevance if they turn out not to be 

of much use. This is similar to Barsalou’s (1989) account of how people construct mental 

representations: every tim e a representation (e.g., “frog”) is constructed in working mem

ory, certain context-independent, highly accessible descriptions tend to  be automatically 

activated (e.g., frogs are green, frogs move by hopping, etc.), though this information might 

later be inhibited if it turns out to  be irrelevant in the current context (e.g., a French 

restaurant). O ther less-immediate information becomes incorporated only because of its 

relevance in the current context (e.g., frogs’ legs are edible).

Some descriptions are distinguishing—that is, they serve to  distinguish an object from 

others in its string (e.g., in the string a b c , the description rightmost distinguishes the c since 

no other object has it, but the description letter doesn’t distinguish the c). The notion of 

distinguishing descriptions will be employed in the following sections describing how certain 

codelets use descriptions to  build structures.

3.4.2 General Description of Structure-Building

In order to formulate a  solution, Copycat must use the concepts it has to make sense 

of each string as well as to  find a set of correspondences between the initial and target 

strings. To accomplish this, the program gradually builds various kinds of structures in the 

Workspace that represent its high-level perception of the problem, similar to the way in 

which Hearsay-II built layers of increasingly abstract perceptual structures on top of raw 

representations of sounds. (A more detailed comparison between Copycat and Hearsay-II 

will be given in C hapter 8.) These structures correspond to Slipnet concepts of various 

degrees of conceptual depth being brought to bear on the problem, and accordingly, each 

such structure is built of parts copied from the Slipnet.

As was said earlier, the types of structures tha t Copycat is able to build in its Workspace 

are the following: descriptions of objects (i.e., of letters or groups), bonds between objects 

within a  string (the current version of Copycat can build bonds only between spatially adja

cent objects), groups of objects within a  string, correspondences between objects in different 

strings, a  rule describing the change from the initial string to  the modified string, and a 

translated rule describing how the target string should be modified to  produce an answer 

string. Structures in the Workspace can be built and destroyed, although the more built-up,
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Replace letter-category of rightmost letter by successor

—  >

----->

Figure 3.5: A possible sta te  of Copycat’s Workspace, with several types 
of structures shown.

complex, and m utually interrelated the structures become (causing the tem perature to fall), 

the more one hesitates to destroy them.

Figure 3.5 displays a  possible sta te  of Copycat’s Workspace, where several bonds (arcs 

between letters), a  group (rectangle around the two k ’s), a  correspondence (jagged line from 

the c to  the group of k ’s), and a  rule (shown at top of figure) have been built. (Descriptions 

attached to letters and groups are not displayed in this figure.) Note th a t each successor 

and predecessor bond has a spatial direction (indicated by an arrow on the arc), whereas 

sameness bonds have no direction. Once built, a  group acts as a  unitary object much 

like a  letter: it now can itself be an element in a  bond, group, and correspondence. (The 

group of two k ’s is marked on top by a  single K , which gives the letter-category of this 

group.) The correspondence from the c to  the group K  is based upon two concept-mappings 

(listed beneath it) between descriptors of the c and descriptors of the group: rightmost => 

rightmost and letter =>■ group. These reflect the view th a t the group K  plays the same role 

in the target string th a t the c plays in the initial string—namely, both are rightmost in 

their respective strings. However, in order to  make th a t m apping, a  conceptual slippage 

from letter to  group must be made. (The letter-categories of the two corresponding objects 

(C  and K) are ignored in this correspondence, since in the Slipnet there is no close relation 

between these nodes.)
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In order to formulate a rule, the  current version of Copycat assumes th a t the initial and 

modified strings (e.g., a b c  and a b d )  will be the same length, and th a t  exactly one letter 

will be changed. It cannot presently deal with more complex changes from the initial to 

the modified string; for the purposes of this project, the concentration has been more on 

dealing w ith interesting mappings between the initial and target strings.

This one-letter-change restriction of course limits the space of problems Copycat can 

currently deal with, bu t the space of interesting problems of this type is still so large that 

the current program barely scratches the surface. Codelets do alm ost no examination of 

the modified string; the program instead concentrates on the tasks of making sense of the 

initial and target strings, and constructing a mapping between them . The only analysis 

done of the modified string is to  spell out the one-to-one letter correspondences between it 

and the initial string (shown as horizontal arcs in Figure 3.5), and to determ ine what, if any, 

relationship there is between the changed letter and its replacement. If there is any such 

relationship (as there is in a b c  =>• a b d , namely successorship), then a  description reflecting 

that relationship is added to  the replacement letter’s (here, d ’s) list of descriptions.

The rule is formed by a codelet that fills in the tem plate “Replace by

” with descriptors of the changed letter and its replacement. These descriptors 

are chosen probabilistically, with a  bias towards choosing descriptors o f greater conceptual 

depth. Thus, although both “Replace letter-category of rightmost le tte r by successor” and 

“Replace letter-category of rightmost letter by D” , or even “Replace C b y  D”, are all possi

ble, the first is more likely to be formed than the la tte r two, since descriptors rightmost and 

successor are more general than C  and D. (There are some analogy problems in which one 

of the la tte r two rules would be preferable to the first, and accordingly, the rule-preference 

function is actually not as straightforward as described above. This will be illustrated in 

some of the variant problems discussed in Chapter 5.)

3 .4 .3  H ow  C o p y c a t D ec id es  to  S top

Copycat decides probabilistically when to translate the rule and come up with an answer. 

This works as follows. The formation of a  rule triggers the program to  begin posting “rule 

translator” codelets to  the Coderack. The job of a rule-translator codelet is to translate the 

rule— according to  whatever slippages have been made—in order to  apply it  to  the target 

string and produce an answer. When a rule translator is chosen and runs, the first thing it 

does is decide probabilistically whether or not it really should go ahead and translate the
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rule, or w hether it should “fizzle” instead. One might think at first th a t the decision should 

be based entirely on the tem perature, reasoning th a t if the tem perature is low, then the 

program has a good sense of what is going on in the problem and it should go ahead and 

try  to  produce the answer, and if the tem perature is high, then not enough structu re  has 

been built yet and the program should keep trying to build more structures so as to  improve 

its understanding of what is going on. However, suppose this strategy were adopted, and 

then the program were given a problem like “a b c  => a b d , w q lh  => ?” , where there are 

no structures to be built in the target string. The tem perature will never get very low 

on this problem, and if the decision to  stop were based only on tem perature, the program 

might keep attem pting to  build structures for a  long time before finally making the low- 

probability decision to quit. Instead, the program should be able to sense in some way that 

it has attem pted  for long enough to  make sense of the problem and that it is unlikely to 

find any more structures; a t this point the program should be more likely to give up at a 

high tem perature than it would if the outlook were more promising.

In Copycat this works as follows. A rule transla to r’s decision whether or not to translate 

the rule (thus stopping the program) depends both on the tem perature and the am ount of 

structure th a t has already been built (recall th a t the tem perature is a function of not just 

the am ount of structure th a t has been built, but of its quality as well, so it is possible for 

there to  be a fair amount of structure and for tem perature to still be high, if the structure 

is weak). There are three possibilities:

1. The tem perature is low. This means th a t a  reasonable am ount of high-quality struc

ture has been built, and th a t the program should go ahead and try  to produce an 

answer a t this point. In this case, the rule translator has a  higher probability of 

deciding to  go ahead and translate the rule.

2. The tem perature is high, and not much structure has been built (this would be true 

for “a b c  =► a b d , w q lh  =► ?”). In th is case, the rule translator again has a  higher 

probability of deciding to go ahead and translate the rule. The reason is th a t rule 

translators tend not to  run until m any other codelets have had a chance to  run and 

build structure (this is not determ inistic, but it is statistically tsue, since the posting 

of rule translators is triggered only when a rule has been formed). Thus if a  rule 

transla tor is running and finds th a t very little structure has been built, then the 

assum ption is that the program would have already had a  chance to build structures
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if there were any to  build, so there m ust not be much structure in the problem. The 

program should thus give up and go ahead with producing an answer, since it is 

unlikely to  find a better one.

3. The tem perature is high, but a fair am ount of structure does exist (this might be the 

case in “a b c  a b d , ( jk lm n o p q rs  =>• ?” , before the program builds all the bonds 

in the target string). Here Copycat assumes tha t there is structure to  be found, but 

the program just hasn’t yet found all of it or perhaps the structure th a t it  has found 

could be changed for the better. In this case, the rule translator is likely to decide to 

fizzle, allowing the program to  continue exploring ways of building structures.

Even in cases 1 and 2, the probability of going ahead and translating the rule is fairly 

low, though it is higher than in case 3, and in general many rule-translator codelets have to 

run before one succeeds in translating the  rule. Thus, even in the first two cases, it takes 

pressure—in the form of many rule transla tors—in order for the program to stop. Stopping 

is more likely in the first two cases than  it is in the third, bu t the desired behavior of the 

program  in deciding when to  stop emerges from the statistics of many codelets rather than 

the  individual action of a  single codelet.

Once the rule has been translated, the program stops running codelets, and creates 

its answer to the problem by taking the rule describing the initial-string-to-modified-string 

change and translating it according to  any slippages underlying the correspondences between 

the  initial and target strings. In the example displayed in Figure 3.5, the rule would be 

translated  as “Replace letter-category of rightm ost group by successor” (using the slippage 

letter => group), yielding answer iijjll.

3 .4 .4  S tre n g th s  o f  S tru c tu re s

A structu re’s strength a t a  given tim e is used by codelets to  make probabilistic decisions, 

such as whether or not to continue evaluating th a t particular structure, w hat urgencies 

should be assigned to  codelets th a t will further evaluate i t ,  and whether th a t structure 

should win a fight against an existing incom patible structure. Here I describe in general 

term s how the strength of each type of structure is calculated.

The strength of a  structure is a function of both internal and external aspects; tha t 

is, of both intrinsic aspects of the structu re  and aspects of it in terms of its relation to 

other structures th a t have been built. The various aspects th a t contribute to  a struc tu re’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

strength reflect various pressures th a t interact in the construction and evaluation of th a t 

type of structure.

• D e sc rip tio n s : The strength of a description is a  function of the following.

1. The conceptual depth o f the descriptor (e.g., rightmost), reflecting a bias towards 

more descriptions of greater conceptual depth.

2. The activation o f the description-type (e.g., string-position), reflecting a  bias 

towards building relevant types of descriptions.

3. The “local support” o f  the description, i.e., the number of other descriptions of 

the same type (e.g., string-position or length) in the same string, reflecting a 

bias towards building types of descriptions th a t have already been used in the 

problem. For example, if a length description has already been attached to  the 

r r  group in m rr jj j ,  then a proposed length description of the j j j  group would 

have some local support. In other words, as far as descriptions are concerned, 

there is safety in numbers.

• B o n d s: The strength of a bond is a  function of the following.

1. The current strength o f its bond-category. Each type of bond has a  certain in

trinsic strength (e.g., sameness is stronger than successor or predecessor), though 

this can be changed by activation (e.g., when successor is active, successor bonds 

become stronger).

2. The bond’s local support, i.e., the number of other bonds of both the same cate

gory (e.g., successor) and spatial direction (e.g., right) th a t currently exist in the 

same string. This formula again reflects the philosophy of “safety in num bers” .

•  G ro u p s : A group is always associated with a bond-category (e.g., the k k  sameness- 

group is associated with the bond-category sameness). The strength of a  group is a 

function of the following.

1. The current strength o f the group’s bond-category (e.g., sameness groups are gen

erally stronger than successor and predecessor groups).

2. The group’s length (the longer, the stronger).

3. The group’s local support, i.e., the num ber of other groups in the same string 

with the same group-category and direction. For example, once the group kk
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has been built in the string iU jkk, a potential j j  group becomes stronger because 

of it, since both are sameness groups (which have no spatial direction).

•  C o rre sp o n d e n c e s: A correspondence between two objects is based on a set of 

concept-mappings between descriptors of the two objects, as in the example displayed 

in Figure 3.5. Concept-mappings are either identities (e.g., rightmost => rightmost) 

or slippages (e.g., letter => group). When a  correspondence is made, some descriptors 

can be ignored (in that example, the descriptors C  and K  are ignored since these 

nodes are not close enough in the Slipnet, and thus play no role in supporting the 

correspondence). These classifications of concept-mappings are similar to  Holyoak’s 

(1984) taxonomy of m apping relations: identity concept-mappings correspond to  his 

“mapped identities” , slippages correspond roughly to his “structure-preserving differ

ences” (though his taxonomy doesn’t involve slippages in the same way they are used 

in Copycat, and the notion of structure-preserving differences is by no means as cen

tra l to his taxonomy as slippage is to Copycat), and ignored descriptors correspond 

to his “structure-violating differences” . In Copycat, the strength of a  correspondence 

is a  function of the following.

1. The number o f concept-mappings it is based on, reflecting the idea th a t the more 

similarities there are, the stronger the correspondence.

2. The proximity o f the two nodes in each concept-mapping, reflecting the idea that 

the stronger the similarities, the stronger the correspondence.

3. The conceptual depth o f the two nodes in each concept-mapping, reflecting the 

idea th a t the deeper the similarities, the stronger the correspondence. Even 

though the inclusion of deep similarities adds strength to  a  correspondence, there 

is also a  pressure resisting slippages between descriptors with a  high degree of 

conceptual depth (such as first and fast), since better analogies are generally ones 

in which shallow aspects slip while deep aspects remain invariant. This conflict 

of pressures will be discussed and demonstrated in several of the runs in the next 

chapter—in particular, in the run of the problem “a b c  => a b d , xy z  => ?” .

4. The internal coherence o f the correspondence—that is, the degree to  which the 

underlying concept-mappings support each other. Two concept-mappings sup

port each other (or, in o ther words, are conceptually parallel) if their correspond

ing descriptors are conceptually related (i.e., the nodes are linked in the Slipnet)
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C^lertmoxt ■ ,, C^righm oxT^

C  oppoiile

c_ ~2> I cr~ u«

Figure 3.6: Illustration of internal coherence of concept-mappings first => 
last and leftmost => rightmost.

and if the two concept-mappings represent the same relationship (e.g., opposite). 

Thus leftmost => rightmost and first =>• last support each other, since the pairs 

leftmost and first, and rightmost and last, are conceptually related (the  nodes 

in each pair are linked in the Slipnet), and both  concept-mappings are opposite 

slippages, so a  correspondence including both is internally coherent. This is il

lustrated  in Figure 3.6 (As will be seen in the run of Copycat on “a b c  =>• a b d , 

xyz => ?” , this internal coherence is one of the reasons the a -z  correspondence 

can come to be seen as strong.)

5. The size o f the objects involved in the correspondence. There is a  bias towards 

correspondences that connect larger parts of the two strings (i.e., correspondences 

involving groups tend to be stronger than correspondences involving letters, and 

correspondences involving large groups-in particular, whole-string groups—tend 

to be stronger than correspondences involving small groups). This reflects a 

desire for mappings involving large, coherent parts of the two strings, which is 

similar to  Gentner’s (1983) notions of “structure-m apping” and “system aticity” 

(these will be discussed in detail in Chapter 8).

6. The strengths o f the other correspondences that support the given correspondence. 

Two correspondences support each other if a  concept-mapping in one supports 

(i.e., is conceptually parallel to) a  concept-mapping in the other. For exam

ple, two correspondences containing (respectively) the concept-mappings right

most =}► rightmost and leftmost => leftmost support each other. In contrast, the 

concept-mappings rightmost => leftmost and C => C  do not support each other 

but are not incompatible with each other, while rightmost => leftmost and right => 

right conceptually contradict each other and are thus incompatible (in Copycat,
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incom patible correspondences cannot exist simultaneously). A requisite for any 

strong analogy is a  set of strong, mutually supporting correspondences.

These notions of internal coherence and m utual support between correspondences are 

related to  some of the ideas pu t forth by Thagard (1989) about “conceptual coherence” 

in scientific theorizing. Many components of the definition of correspondence strength 

have counterparts in G entner’s (1983) structure-m apping theory and in Holyoak and 

T hagard’s (1989) ACME program. These comparisons will be discussed further in 

Chapter 8.

• R u les: The strength of a  rule is a  function of the following.

1. The conceptual depth of the descriptors used in the rule. For example, as was 

mentioned earlier, the rule “Replace letter-category of rightm ost letter by suc

cessor” is stronger than “Replace C  by Dv.

2. How the changed letter in the initial string has been mapped to the target string. 

For example, suppose th a t, in the problem “a b c  => a b d , cccc  => ?” , the c in 

a b c  is seen as corresponding to  the entire group of four c ’s in the target string. 

The rule “Replace C by D” is more compatible with this “worldview” than  is 

the  normally stronger “Replace letter-category of rightmost le tte r  by successor” , 

since the descriptor rightmost plays no role in the c -cccc  m apping. The strength 

form ula takes such mappings into account in determining how compatible the rule 

in question is with the structures th a t have been built so far.

It should be pointed out th a t the strength calculations for structures often involve look

ing a t all the o ther structures of th a t type in the same string. Such a  complete search might 

be implausible in a  complex, real-world situation, even though the num ber of mental struc

tures a  person imposes on a  given situation is small compared with the num ber of objects in 

the situation.3 The role of these functions is therefore not to propose detailed psychological 

mechanisms for how these strength values are computed, but rather to  produce plausible 

numbers th a t  can be used in the mechanisms th a t we are proposing, as well as to spell out 

the pressures th a t are involved in coming up with these numbers.

3 Another problem is th a t it is in general hard to  define real situations in terms of discrete 
objects; w hat is or is not a  single object is blurrier in the real world than  in the more cut- 
and-dried letter-string microworld.
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3 .4 .5  Im p o r ta n c e , H a p p in e ss , a n d  S a lien ce  o f  O b je c ts

Each le tter or group in the initial and target strings has three time-varying values associated 

with it: importance, happiness, and salience. As will be seen, these values are used in various 

ways by the program as it runs.

• The importance of an object is a  function of (1) how many relevant descriptions it has

(recall th a t a description (e.g., string-position: leftmost, is relevant if its description- 

type, e.g., string-position, is fully active) and (2) how active the corresponding de

scriptors (e.g., leftmost) axe. For example, the leftmost i in iy jk k  would usually have

a higher importance than its right neighbor, since the former has a string-position 

description and the latter does not (in general, objects on the edges of strings have 

higher importance than internal objects, though if string-position descriptions hap

pened to become irrelevant, th is difference would vanish). The intuition here is that 

the objects perceived to be im portant in a situation are the ones that are easiest to 

describe (i.e., have many relevant descriptions) and whose descriptors are most visible 

(i.e., highly activated). In addition, once the changed object in the initial string (e.g., 

the c in a b c  =>• a b d )  has been identified, its importance is raised, since it plays the 

leading role in defining the relationship between the initial string and the modified 

string. Also, the importance of any object inside a  group (e.g., the individual k ’s in 

the group K ) is lowered, since when objects are grouped, they follow a utilitarian 

philosophy, partially relinquishing their individual interests for the  good of the larger 

unit.

•  The happiness of an object depends on how well it fits into the overall structuring of 

its string and the mapping from the  initial string to  the target string, as well as how 

good th a t structuring and m apping seem. Thus, an object’s happiness is a  function 

of the strengths of the structures (bonds, groups, and correspondences) attached to 

it. For example, in Figure 3.5, the  c in a b c  is happier than  the b because it  has a 

correspondence to  something in the  target string. Each object starts  out with certain 

slots available for bonds, groups, and correspondences, and its happiness a t a  given 

tim e depends on how well those slots axe filled.

•  The salience of an object—in effect, the object’s attractiveness to  codelets—is a  func

tion of its importance and its unhappiness (the inverse of its happiness). Increased
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im portance leads to higher salience because im portant objects merit attention in their 

own right. Increased unhappiness leads to higher salience because unhappy objects 

need attention from codelets in order to increase their happiness.

If an im portant object is very happy, it  doesn’t need much attention (e.g, the c in 

Figure 3.5 doesn’t need much attention). Likewise, if  an unhappy object is not very 

im portant, it doesn’t merit the same attention th a t should be given to  an equally 

unhappy im portant object. For example, the rightm ost j  in Figure 3.5 is not as 

im portant as the leftmost i, so the former would tend to get less attention, even 

though both are equally unhappy. (There are a  num ber of real-world counterparts 

of these relations among one’s im portance, one’s unhappiness, and the amount of 

attention one gets; for instance, consider the relative am ount of coverage in the media 

given to crimes against various members of society.)

Finally, the temperature at any tim e is a weighted average of the unhappinesses of all 

objects, where each object’s unhappiness is weighted by its importance. Thus, im portant 

objects have more of an effect on tem perature than unim portant ones.

The details of how tem perature is calculated are given in Appendix B.

3 .5  C o d e le ts

3 .5 .1  G e n e ra l C o m m en ts  a b o u t  C o d e le ts  an d  S tru c tu re -B u ild in g

Earlier in this chapter I gave an overview of how codelets cooperate and compete with each 

other to  gradually build up structures. In this section I will describe what the different 

types of codelets are, and discuss in more detail how structure-building takes place.

I t is worth making clear the distinction between codelet types and codelet instances. The 

program  has a  fixed number of codelet types, which are pre-w ritten pieces of code, bu t it is 

instances of these platonic types th a t  are placed on the Coderack (sometimes w ith specific 

argum ents filled in) and th a t run. As will be seen, there are 24 different types of codelets, 

bu t, a t a  given time, the Coderack can contain a much larger num ber of instances waiting 

to  run (and rarely are instances of all 24 types present a t the same time), with various types 

being represented by various densities of instances, the densities being a result of what has 

happened in the run so far.

In general, each codelet type (with a  few exceptions; see below) is associated with some 

aspect of evaluating or building a  particular type of structure (a description, bond, group,
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correspondence, or rule). As was described earlier, structure-building in Copycat is broken 

up into small steps, so th a t a  parallel terraced scan of possibilities can be carried out. In the 

current version of the program, the evaluation and building of any individual structure is 

carried out by a chain of three codelets. F irst, a  scout codelet probabilistically chooses one 

or more objects, where the choice is based on the relative saliences of the various objects 

in the problem. Thus, objects of high salience tend to be chosen more often (and thus 

paid more attention to) than objects of lower salience. The scout then determines whether 

or not it is possible to  attach its particular type of structure to  the chosen objects. As 

was mentioned before, there are two types of scout codelets: a  bottom-up scout is willing 

to  consider any variety of the particular structure-type it is looking for (e.g., the bottom- 

up-bond-scout codelet will consider bonds of any type), whereas a top-down scout, which 

is posted by some active Slipnet node (e.g., successor), sees if it can attach the specific 

structure associated with that node (e.g., a  successor bond) to the chosen objects. In 

summary, a  scout codelet “tests the waters” for a possible structure. If the scout codelet 

discovers any reason for building its structure, it places a  strength-tester codelet on the 

Coderack, giving it the proposed structure as an argum ent, and assigning it an urgency 

based on certain somewhat superficial and quickly evaluated aspects of the structure (if no 

reason is found to  a ttach  the structure to  the chosen objects, then no strength-tester codelet 

is posted, and the chain fizzles at this point). W hen the strength-tester runs, it calculates 

the  strength of the  given structure, and, based on this calculation, decides probabilistically 

whether or not to  post a  builder codelet. If the  decision is “yes” , a builder codelet is placed 

on the Coderack, its urgency being a  function of the structu re’s strength; if “no” , the chain 

fizzles a t this point. W hen the builder codelet runs, it tries to  build the structure, fighting 

against incom patible already-existing structures if necessary. The outcomes of the fights 

are decided probabilistically on the basis of the  competing structures’ strengths, and the 

new structure has to defeat all the existing incompatible structures before it can knock any 

•of them down. Thus, when there is more than  one strong rival, the odds are against a new 

structure. However, if the proposed structure wins all the fights, all the rival structures are 

destroyed, and the  new structure is built.

In summary, the three-codelet chain for building a  given type of structure goes as follows:

• A scout codelet asks, “Is there any reason for building this type of structure in this 

location?” ;
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•  If yes, a  strength-tester codelet asks, “Is the proposed structure strong enough?” ;

•  If yes, a  builder codelet tries to build the structure, fighting against com petitors if 

necessary.

This small pathway should not be identified with what was referred to earlier as a  “path 

of exploration” . A path of exploration does not involve ju st one structure, but an entire set 

of steps leading to an answer, in which a  large number of codelets and structures participate. 

Paths of exploration are defined as any of the possible ways in which the program  could 

structure  its perceptions of the problem in order to construct an analogy. Thus possible 

paths are not laid out in advance for the program to search, bu t rather are constructed by 

the program  as its processing proceeds, ju st as in a  game of chess, where paths through 

the tree of possible moves are constructed as the game is played. The evaluation of a  given 

move in a  game of chess blurs together the evaluations of many possible look-ahead paths 

th a t include that move. Similarly, any given action in building a  structure by a codelet 

in Copycat is a  step included in a  large number of possible paths toward a  solution, and 

an evaluation obtained by a  codelet of a  proposed structure blurs together the estim ated 

promise of all these paths.

3 .5 .2  C o d e le t T y p e s

Copycat has codelet types to  scout out, evaluate, and build all types of structures— 

descriptions, bonds, groups, correspondences, and rules—as well as to translate rules and 

to  break structures th a t have been built. The 24 codelet types in Copycat are described 

below, w ith the argum ents taken by each codelet indicated.

T he description here is a t a  medium level of detail, leaving out some details for the sake 

of clarity. More detailed descriptions of the various codelet types are given in Appendix C.

O ften, a  codelet chooses one or more objects to  use in a ttem pting to  build a  structure. 

The choice of what object or objects to  use is probabilistic and is in most cases based on the 

relative salience of objects :r  the problem (where more salient objects are more likely to  be 

chosen). Unless stated otherwise, this is what “chooses an object” means in the descriptions 

given below.

Description-Building Codelets

•  B o t to m -u p  d e s c r ip tio n -s c o u t (no arguments): A codelet of this type chooses an 

object—say, the a  in a b c —and a description of th a t object—say “letter-category:
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A ”—and sees if any new description can be attached to  the object based on has- 

property links in the Slipnet. For example, this codelet would look for any conceptually 

close properties of A. If first were seen as close enough to  A  (a  probabilistic decision), 

the codelet would propose a  new description: “alphabetic-position: first”, and would 

post a description-strength-tester codelet to  further evaluate this proposed description.

•  T o p -d o w n  d e sc r ip tio n -sc o u t (argument: a  description-type node): Codelets of 

this type represent pressure to  build a specific type of description. They are placed on 

the Coderack by an active description-type node (such as alphabetic-position), which 

then becomes the argument. A codelet of this type chooses an object—say, the a  

in a b c — and sees if a new description of the given type— say, alphabetic-position— 

can be attached to  the object. If the object is the a , then the codciet c^p propose 

the description ualphabetic-position: first”; if the object were the b , then since no 

alphabetic-position description would be possible, the codelet would fizzle. If such a 

description can be made, this codelet proposes it and posts a description-strength- 

tester codelet to  continue the evaluation.

The nodes th a t can post top-down descriptor-scout codelets are string-position, alpha

betic-position, and number-category (which tries to describe groups in terms of their 

lengths).

•  D e s c r ip t io n - s tr e n g th - te s te r  (argument: a  proposed description): This codelet cal

culates the  proposed description’s strength, and based on th e  result, probabilistically 

decides w hether or not to post a  description-builder codelet. If so, the urgency of the 

description-builder codelet is a  function of the strength.

•  D e s c r ip t io n -b u ild e r  (argument: a  proposed description): This codelet builds the 

proposed description (if it hasn’t already been built by a  previous codelet chain).

Bond-Building Codelets

•  B o t to m - u p  b o n d -sc o u t (no arguments): A codelet of this type chooses a  pa ir of 

adjacent objects and sees if there is any bond th a t can be made between them  (e.g., 

successorship). If so, this codelet proposes the bond and posts a  bond-strength-tester 

codelet to  evaluate it.

•  T o p -d o w n  b o n d -sc o u t [ca tego ry ] (argument: a bond-category node):

Codelets of this type represent pressure to  build bonds of a  specific category. They
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are placed on the Coderack by an active bond-category node (predecessor, successor, 

or sameness) which then becomes the argument. A codelet of this type chooses a  pair 

of adjacent objects and sees if a bond of the given category can be made between 

them. If so, this codelet proposes the bond and posts a  bond-strength-tester codelet 

to evaluate it.

• T op -dow n  b o n d -sc o u t [d irection] (argument: a  direction node): Codelets of this 

type represent pressure to build bonds with a  specific spatial direction. They are 

placed on the Coderack by an active direction-category node ( left or right) which then 

becomes the argument. A codelet of this type chooses a pair of adjacent objects and 

sees if a bond (of any category) can be made between them  in the given direction. If 

so, this codelet proposes the bond and posts a  bond-strength-tester codelet to evaluate 

it.

• B o n d - s tr e n g th - te s te r  (argument: a proposed bond): This codelet calculates the 

proposed bond’s strength, and based on it, probabilistically decides whether or not 

to post a bond-builder codelet. If so, the urgency of the bond-builder is a function of 

the strength.

• B o n d -b u ild e r  (argument: a proposed bond): This codelet tries to build the pro

posed bond (if it hasn’t already been built by a  previous codelet chain), fighting with 

competitors (e.g., an already existing bond between the two objects) if necessary.

Group-Building Codelets

A group is based on a  set of bonds between adjacent objects, all of the same bond- 

category and direction. The building of groups is triggered only when bonds have already 

been built. Thus there is no bottom -up group-scout th a t is willing to look for any kind of 

group whatsoever; instead, when a  bond (e.g., successor) is built, the corresponding bond- 

category node (e.g., successor) is activated, and spreads activation to  the node representing 

the associated group-category (e.g., successor-group), which posts top-down group-scout 

codelets to  seek instances of groups of that category.

• T o p -d o w n  g ro u p -sc o u t [category] (argument: a  group-category node): Codelets 

of this type represent pressure to build groups of a  specific category. They are placed 

on the Coderack by an active group-category node (such as successor-group), which 

then becomes the argument. A codelet of this type chooses a number of adjacent
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bonds and sees if they are all of the given category (e.g., successor) and in the same 

direction. If so, the codelet proposes a group based on these bonds and posts a 

group-strength-tester codelet to evaluate it.4

•  T op -dow n  g ro u p -sc o u t [d irection ] (argument: a  direction node): Codelets of this 

type represent pressure to  build groups with a  a  specific spatial direction. They are 

placed on the Coderack by an active direction-category node ( left or right) which then 

becomes the argument. This codelet works in basically the same way as the top-down 

group-scout-category codelet, except th a t it looks for a  group based on adjacent bonds 

all having the given direction, not caring which bond-category they have, so long as 

they all have the same one.

•  G ro u p -s tr in g -sc o u t (no arguments): Codelets of this type represent pressure to 

construct a group out of the entire string (not caring which category or direction the 

group has). The construction of groupings of both initial and target strings as wholes 

is so desirable for the program that an entire codelet type is dedicated to  attem pting 

this task. The codelet sees if there are bonds of the same category and direction 

th a t span the string. If so, it proposes a group based on these bonds, and posts a 

group-strength-tester codelet to evaluate it.

•  G r o u p - s t r e n g th - te s te r  (argument: a  proposed group): This codelet calculates the 

proposed group’s strength, and based on it, probabilistically decides whether or not 

to  post a  group-builder codelet. If so, the urgency of the group-builder codelet is a 

function of the strength.

•  G ro u p -b u ild e r  (argument: a  proposed group): This codelet tries to build the pro

posed group (if it  hasn’t already been built by a  previous codelet chain), fighting 

with competitors (e.g., already-existing groups containing some of the same objects) 

if necessary.

Correspondence-Building Codelets

4 Given enough local support for this group-category, this codelet can even propose a 
group consisting of just a  single letter, though in most circumstances, th is is unlikely. How 
single-letter groups get proposed and built will be described in Chapter 4, when a  sample 
run of the program ’s solution “a b c  =>• a b d , m rr jj j  =s> m r r j j j j ” is displayed.
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•  B o tto m -u p  c o rre sp o n d e n c e -sc o u t (no argum ents): This codelet chooses two ob

jects, one from the initial string and one from the  target string. It sees if there are any 

possible concept-mappings th a t can be made between descriptors of the two objects. A 

concept-mapping can be m ade between two descriptors if they are both  relevant (i.e., 

the description type of each is fully active), of the same description-type (e.g., string- 

position), and are sufficiently close in the Slipnet. For example, the correspondence 

between the c and the group K , pictured in Figure 3.5, has two concept-mappings: 

rightmost => rightmost and letter => group. The two letter-category descriptors, C  and 

K, were not sufficiently close tc  each other in the  Slipnet for a  concept-mapping to be 

made between them.

If there is a t least one such concept-mapping between distinguishing descriptors (e.g., 

the rightmost rightmost mapping shown in Figure 3.5), then the  codelet proposes a 

correspondence between the two objects including all the qualifying concept-mappings 

(non-distinguishing ones such as letter =>• group come along for the  ride), and posts a 

correspondence-strength-tester codelet to evaluate the proposed correspondence.

• Im p o r ta n t-o b je c t  c o rre sp o n d e n c e -sc o u t (no arguments): T he task of codelets of 

this type is to  find the target-string counterparts of important objects in the initial 

string. The idea here is to  model the way people, when making an analogy, focus 

on im portant objects and roles in one situation (e.g., you focus on Ronald Reagan as 

“the President” in the Iran -C on tra  situation), and actively try  to  retrieve the object 

filling the corresponding role in the other situation (e.g., you actively try  to figure out 

who is “the President” in the W atergate situation).

To accomplish its task, a  codelet of this type chooses an object from the initial string 

probabilistically, using im portance rather than  salience as its bias. It then chooses 

one of the  object’s descriptions and sees if there  is any object in the target string that 

has the “same” description, taking into account any slippages th a t have already been 

made. For example, in the  problem “a b c  => a b d ,  k ji => ?” , this codelet might choose 

the a  in a b c , choose its description leftmost, and try  to  make a  correspondence with 

the leftmost object in k ji. B ut if a  correspondence has already been made between 

the c and the k with the  slippage rightmost => leftmost, then this codelet will take 

tha t into account and consider a  correspondence between the a  and the rightmost 

object in the target string. If the desired target-string counterpart is found, then this
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codelet proposes a  correspondence between the two objects in the same m anner as in 

the bottom -up correspondence-scout codelet.

• C o r re s p o n d e n c e -s t re n g th - te s te r  (argument: a proposed correspondence): This 

codelet calculates the proposed correspondence’s strength, and based on it, proba

bilistically decides whether or not to  post a correspondence-builder codelet. If so, the 

urgency of the correspondence-builder is a function of the strength.

•  C o r re s p o n d e n c e -b u ild e r  (argument: a proposed correspondence): This codelet 

tries to  build the proposed correspondence (if it hasn’t already been built by a previ

ous codelet chain), fighting with competitors (e.g., incompatible correspondences) if 

necessary.

Rule-Building Codelets

•  R u le -sc o u t (no arguments): This codelet fills in the rule tem plate (as was men

tioned before, the current version of Copycat has only one: “R eplace___________ by

” ). To do this, it  probabilistically chooses descriptors of the changed let

ter in the initial string and of the letter in the modified string th a t replaces it, with a 

bias towards descriptors with greater conceptual depth. This codelet proposes a rule 

and posts a  rule-strength-tester codelet to  evaluate it.

•  R u le - s t r e n g th - te s te r  (argum ent: a  proposed rule): This codelet calculates the pro

posed rule’s strength, and based on it, probabilistically decides whether or not to 

post a  rule-builder codelet. If so, the urgency of the rule-builder is a  function of the 

strength.

•  R u le -b u ild e r  (argum ent: a  proposed rule) : This codelet tries to build the proposed 

rule (if it hasn’t  already been built by a  previous codelet chain), fighting with the 

existing rule, if there is one and if it is different from the proposed rule.

•  R u le - t r a n s la to r  (no arguments): As described in Section 3.4.3, this codelet first 

decides probabilistically, based on tem perature and on how much structure has been 

built already, whether or not to  fizzle without doing anything. If it  decides to  proceed, 

it translates the rule according to  the translation instructions given in the slippages in 

the Workspace. Once the rule has been translated, the program  proceeds to construct 

an answer according to  the directions in the translated rule, and then halts.
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Other Codelets

•  R e p la c e m e n t- f in d e r  (no argum ents): This codelet chooses a letter a t random in 

the initial string and builds a  “replacement” structure between the chosen le tter and 

its counterpart in the modified string. If  the replacement involves a  change of letter- 

category (as for the c to d  replacement in a b c  => a b d ) , this codelet marks the 

initial-string letter as “changed” and gives the corresponding modified-string letter a 

description describing the change relation (e.g., successorship), if there is one (e.g., if 

the c changed to a  q , there is no change relation, so no description would be given). 

Note that the process of finding replacements in the modified string for initial-string 

letters does not follow the usual three-codelet building process. This is because, 

as was described earlier, the program assumes a one-to-one letter-to-letter mapping 

between the initial and modified strings, and thus the initial-string-to-modified-string 

mapping is trivial to determine. Of course, this assumption severely limits the range 

of problems th a t the program , as it now stands, can solve, and this stage will have to 

be much more complex if the program is to be extended to  solve problems with more 

complex initial-string-to-modified-string changes.

• B re a k e r  (no arguments): This codelet’s task is to try  to break some structure, but 

the first thing it does is decide probabilistically, based on the current tem perature, 

whether or not it should instantly  fizzle (the lower the tem perature, the more likely 

it is to  fizzle). If not, it chooses a  structure at random and decides probabilistically, 

as an inverse function of the struc tu re’s strength, whether to break the structure.

As was mentioned earlier, codelets, for the most part, are biased to  choose salient objects 

to  work on. Recall th a t the salience of an object is a function of both its im portance and 

its unhappiness. This is related to  the “romance” m etaphor discussed in the section on 

Jum bo. Before any bonds, groups, or correspondences are formed, all objects are equally 

unhappy, so the relative salience of the  various objects is determined wholly by their relative 

im portance. But as structures are built, the objects that are “hitched up” become happier, 

depending on the strength of their ties to  other objects, so their salience goes down, which 

m eans they are chosen less often by codelets. In terms of the m etaphor, the happier the 

romance (i.e., the happier the objects in a  given structure), the less the “flirting” done by 

the romantic partners (the less the  codelets trying to  build other structures look at the 

already “involved” objects, since higher happiness causes lower salience). However, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

m ore desirable a person (the more im portant an object), the more flirting is done (the more 

codelets look at that object, since higher importance leads to  higher salience).

3.6 Temperature

Copycat’s tem perature variable measures the current disorganization in the system ’s under

standing of the problem: the value of the tem perature a t a  given time is a  function of the 

unhappiness of the objects in the problem, which is in turn a  function of the am ount and 

quality of perceptual or organizing structure th a t has been built so far. Thus tem perature 

s ta rts  high, falls as structures are built, and rises again if structures are destroyed, if their 

strengths decrease, or if new objects (i.e., groups) are formed and need to  be incorporated 

into a  coherent structuring of the problem. In turn , the value of tem perature controls the 

degree of randomness used in probabilistic decision-making in the system. There are two 

related ideas here. The first is that when there is little perceptual organization (and thus 

high tem perature), the  information on which decisions are based (such as the urgency of a 

codelet or the strength of a  particular structure) is not very reliable, and decisions should be 

more random than would seem to be indicated by this information. When a  large am ount of 

structure  deemed to be good has been built (and thus tem perature is low), the information 

is considered to be more reliable, and decisions based on this information should be more 

deterministic.

The second idea is th a t early on, when not much is known about the situation to  be 

understood, the system should pursue a  large number of parallel explorations, so that 

enough information can be obtained in order to make intelligent decisions later on about 

w hat possibilities to focus on. Thus, early on, exploration should be parallel and fairly 

random  (i.e., stochastic w ith a  fairly even distribution), and it should gradually become more 

and more focused, serial, and deterministic as more becomes understood about the situation 

a t hand. Tem perature, by implementing feedback between the quality of the program ’s 

understanding and the degree of randomness a t a given tim e, provides a  mechanism for 

achieving this continuous transition. This mechanism will be illustrated in detail in the 

sample runs of Copycat given in the next chapter.

The solution to the well-known “two-armed bandit” problem (Given a  slot machine with 

two arm s, each with an unknown payoff rate , what strategy of dividing one’s play between 

the two arms is optim al for profit-making?) is an elegant mathematical verification of 

these ideas (an excellent discussion of this solution and its implications is given by Holland,
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1975). The solution states th a t the optimal strategy is a t all times to be willing to  sample 

either arm , b u t with probabilities th a t diverge increasingly fast as time progresses. In 

particular, as more and more information is gained through sampling, the optim al strategy 

is to exponentially increase the probability of sampling the better-seeming arm relative 

to  the probability of sampling the worse-seeming arm  (note th a t one never knows with 

absolute certainty which is the better arm , since all inform ation gained is merely statistical 

evidence). C opycat’s parallel terraced scan can be likened to  such a strategy extrapolated 

to  a  many-arm ed bandit—in fact, a  bandit with a  dynamically changing number of arms, 

where each arm represents a  potential path of exploration toward an answer. (This is 

similar to  the search through schemata in a  genetic algorithm ; see Holland, 1986.) There 

are far too m any possible paths to do an exhaustive search, so in order to guarantee th a t in 

principle every path has a non-zero chance of being explored, paths have to be chosen and 

explored probabilistically. Each step in exploring a pa th  is like sampling an arm , in th a t 

information is obtained th a t can be used to decide the rate  a t which that path should be 

sampled in the near future. The role of tem perature is to cause the exponential increase in 

the speed a t which promising paths are explored as contrasted with unpromising ones; as 

tem perature decreases, the degree of randomness with which decisions are made decreases 

exponentially, so the speed a t which good paths crowd out bad ones grows exponentially 

as more information is obtained. This type of strategy, in which information is used as it 

is obtained in order to  bias probabilistic choices and thus to speed up convergence toward 

some resolution but never to absolutely rule out any path  of exploration, is essential for 

flexibility in understanding and dealing with situations in the real world, in which there is 

a  limited am ount of time to explore an intractable num ber of possibilities.

T em perature affects the following decisions:

• The program ’s choice of which codelet to run next, based on relative urgency in the 

Coderack. At very high tem peratures, this choice is fairly unbiased, meaning that 

all codelets on the Coderack have approximately an equal chance of being selected. 

As tem perature falls, this choice becomes more and more biased, and at very low 

tem peratures, the program is almost certain to  choose one of the highest-urgency 

codelets next.

• A codelet’s choice of which objects to  use in scouting out or building a  structure, 

based on salience. At high tem peratures, all objects have roughly equal chance; a t
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low tem peratures, the most salient objects are chosen almost all the time.

•  A strength-tester codelet’s decision whether to  fizzle or to post a  builder codelet, 

based on its calculation of the strength of the structure being considered. At high 

tem peratures, strength is less strongly weighted in the decision.

•  A builder codelet’s decision whether or not to break already-existing incompatible 

structures, based on the competing structures’ relative strengths. Again, a t high 

tem peratures, strength is less strongly weighted.

•  A breaker codelet’s decision whether or not to break a  chosen structure , based on the 

structure’s strength. Again, a t high tem peratures, strength is less strongly weighted.

•  A codelet’s decision of whether two nodes in the Slipnet are sufficiently close for the 

purpose of adding a new description to an object (such as adding the descriptor first 

to the a  in a b c )  or making a slippage (such as first =► last). A t higher tem peratures, 

the decision is made more randomly, and riskier (more d istant) slippages have a  better 

chance of being allowed.

• A rule-scout codelet’s decision of which descriptors to  choose for filling in the rule tem 

plate, based on the descriptors’ conceptual depth. At higher tem peratures, conceptual 

depth is weighted less strongly.

• A group-scout codelet’s decision whether or not to  propose a single-letter group or to 

add a  length description to  a  proposed group. At higher tem peratures this decision 

is m ade more randomly, making the construction of single-letter groups and length 

descriptions—normally low-probability events—more likely.

The precise formulas for how tem perature affects probabilistic biases are given in Ap

pendix B.

Tem perature allows Copycat to  close in on a good solution quickly, once parts of it have 

been discovered. In addition, since high tem perature means more random ness, temporarily 

raising the tem perature gives Copycat a  way to  get out of ru ts or to deal with snags; it can 

allow old structures to break and restructuring to  occur so th a t a  b e tte r  solution can be 

found. T ha t is, when the system runs into an impasse, the tem perature can go up in spite 

of the fact th a t seemingly good organizing structures exist. Such a  use of tem perature is 

illustrated in the run of the program on “a b c  =>• a b d , x y z  =» ?” , given in C hapter 4.
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Tem perature in Copycat has some similarities to  the notion of inhibitory control, dis

cussed, for example, by K aplan and Kaplan (1982). They note th a t when you are stuck in 

solving a  problem, your inhibitory control gets lowered, m aking it easier for representations 

to  emerge tha t were previously activated only below the level of consciousness. This makes 

it possible for you to  come up with connections you didn’t even know were there. However, 

when you lower inhibitory control, you run the risk of coming up with crazy, nonsensical 

ideas as well as useful new insights. High tem perature corresponds to  lowered inhibitory 

control. It allows structures th a t a t low tem perature would have been squelched immedi

ately to  be considered more seriously, and sometimes to  be built. As will be seen in the next 

chapter, Copycat’s use of tem perature allows the program to come up with both insightful 

and bizarre solutions to certain problems (in particular, to the last three problems given in 

Section 2.1). The interesting thing is that the program has mechanisms th a t allow it to get 

reasonable and insightful solutions most of the tim e, while avoiding bad or crazy solutions 

fairly reliably (though it does get them from time to  tim e).

3 .7  M a in  L oop  o f  th e  P ro g ra m

At the beginning of a  run of the program, the Coderack contains a standard initial pop

ulation of codelets: an equal number of bottom -up bond-scouts, bottom -up replacement- 

finders, and bottom -up corresooudence-scouts. In essence, the  program assumes that these 

types of structures will be relevant in every problem. It m ight be wrong; for example, in 

the problem “h jp b  => x jp b , w lqzs => ?” , the letters were chosen randomly and there are 

no bonds to be found, bu t th is fact would become clear only after some codelets had run.

The main loop of the program  is as follows:

Until a  rule has been built and translated, do the following:

Choose a  codelet and remove it from the Coderack.

Run the chosen codelet.

If N  codelets have run, then:

U pdate the Slipnet.

Post some bottom -up codelets.

Post some top-down codelets.

Finally, build the answer according to  the translated  rule.

Every N  codelet-runs (where N  is a  param eter, currently set to  15), the Slipnet is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

updated: for each node, any activation from instances discovered during the last N  steps 

is added in, activation is spread between neighbors, and each node’s activation decays at 

a  ra te  determined by the node’s conceptual depth .5 In addition, various bottom -up and 

top-down codelets are placed on the Coderack. Top-down codelets are posted by active 

Slipnet nodes, but new bottom -up codelets are needed as well, not only because the initial 

set of bottom -up codelets might have missed certain possible structures, but also because 

new structures are being built and new objects (groups) are being created all the time, and 

very often these need to  be themselves incorporated into higher-level structures. Relying on 

top-down codelets alone would often prevent the program from finding certain structures 

th a t d idn’t happen to correspond to previously active Slipnet nodes. So every N  steps, 

not only top-down codelets but also bottom -up codelets of all the various types have some 

chance of being posted. (Some problems with determining the necessary number of codelets 

to  post will be discussed in Chapter 6.)

Copycat has now been described in some detail, although, in order to  strike a balance 

between completeness and clarity, certain less-central aspects of the program were left out 

of the  discussion. Some of these will be given in Appendix B, which details the parameters 

and some of the formulas used in the system, and in Appendix C, which gives more detailed 

descriptions of the various codelet types.

The next chapter presents a statistical overview of Copycat’s answers to  the five target 

problems, and then follows the program  through typical runs on each problem. This will 

give the reader a be tter idea of how all the pieces of the program  fit together.

5 Of course, this discrete updating process—every N  steps—is m eant to  model the con
tinuous activation, spreading activation, and activation decay th a t goes on in the mind. It 
could be made more continuous in the program by setting A  to 1, for instance, bu t that 
would be computationally too expensive for the gain in continuity.
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CHAPTER IV

COPYCAT’S PERFORMANCE ON THE FIVE TARGET PROBLEMS

4.1 Introduction

In this chapter I present the results of Copycat’s performance on the five target problems 

discussed in Chapter 2. As was noted in tha t chapter, these problems were chosen because 

they illustrate, in an idealized and thus very clear form, some of the essential issues in high- 

level perception and analogy-making in general. In previous chapters I discussed a  number 

of these issues and described the way in which the Copycat program models the mental 

mechanisms we are proposing in order to deal with these issues. Here I will present statistics 

summarizing what the program does on each of the five problems, and for each problem give 

a  set of annotated screen dumps from one run (or in one case, two runs), which show how 

the  mechanisms described in the previous chapter work together to produce the flexibility 

needed for the program to  deal with a  range of different situations in its microworld.

As was pointed out before, Copycat’s abilities are not lim ited to these five problems 

alone, bu t rather, these problems represent something akin to  a  set of basis vectors defining 

a  “vector space” of the program ’s abilities. In C hapter 5 I a ttem pt to characterize this 

space by describing the program ’s performance on a  set of variations of each of the five 

basic problems, where the variations explore how small changes in pressures affect the 

program ’s behavior.

Since the program is perm eated with nondeterminism, different answers are possible 

on different runs. However, the nondeterministic decisions the  program makes (e.g., which 

codelet to  run next, which objects a  codelet should choose, etc.) are all a t a microscopic 

level, compared with the macroscopic level of w hat answer the program gets on a given run.

89
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Every run is different a t the microscopic level, but statistics lead to  far more deterministic 

behavior a t the macroscopic level. For example, there are a  huge num ber of possible routes 

(a t the microscopic level of individual codelets and their actions) the program  can take to 

arrive a t the solution “a b c  => a b d , y k  =>• ijl” , and a  large number of micro-biases tend to 

push the program down one of those routes rather than down one of the  huge number of 

possible routes to  “a b c  =>• a b d , ijk  =» ijd ” . Thus, a t a  macroscopic level, the program is 

fairly deterministic: it gets the answer ijl almost all the time.

This notion of microscopic nondeterminism resulting in macroscopic determinism is often 

demonstrated in science museums using a  contraption in which several thousand small steel 

balls tumble down through a dense grid of pins into one of many adjacent bins forming a 

horizontal row at the bottom . Though each ball takes a unique path a t the microlevel, as 

more and more balls fall, the pattern  of balls in the bins a t the bottom  gradually becomes a 

perfect gaussian curve, w ith most of the balls falling into the central bins, and fewer falling 

into the edge bins. In Copycat, the set of bins corresponds to the set of different possible 

answers, and the precise m icro-path an individual ball takes corresponds to  the actions of 

the  program (at the  level of individual codelets) during a  single run. Given enough runs, a 

reliably repeatable pattern  of answer frequencies will emerge.

I present these patterns in the form of bar graphs, one for each problem , giving the 

frequency of occurrence and average end-of-run tem perature for each different answer. For 

each of the five target problems, a bar graph is given, summarizing 1000 runs of Copycat on 

th a t problem. The number 1000 is somewhat arbitrary; after about 100-200 runs on each 

problem, the basic statistics do not change much. The only difference is th a t as more and 

more runs are done on a  given problem, certain bizarre and improbable “fringe” answers such 

as y j  for “a b c  => a b d , y k  =» ?” (see bar graph below) begin to  appear very occasionally; 

if 2000 runs were done on “a b c  => a b d , ijk  => ?” , the program would give perhaps one or 

two other such answers, each once or twice. So even though 200 or so runs usually gives 

reliable statistics for the main range of answers to  a  given problem, I wanted to  display at 

least a few of the fringe answers to  each problem, so I ran each problem 1000 times. This 

allows the bar graphs to  make a  very im portant point about Copycat: even though the 

program has the potential to  get strange and crazy-seeming answers (dem onstrated by their 

appearance in the bar graphs), the mechanisms it has allow it to steer clear of them  almost 

all of the time. As was mentioned before, the program (as well as people) has to  have the 

potential to follow risky (and perhaps crazy) pathways in order for it to  have the flexibility
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to  follow insightful pathways, but it also has to be able to  avoid following bad pathways, at 

least most of the time.

Along w ith each bar graph, I also give the results of a  survey given to a  num ber of 

undergraduate and graduate students at Indiana University, for the  purpose o f determ ining 

the range of answers people give on these problems. Ideally, Copycat should be able to  

get all of the  answers that people get to  a  given problem—as long as those answers do not 

use knowledge th a t is not in the microworld—and it should never get answers th a t people 

find completely unjustified. This would indicate th a t the program  is responding to  the same 

pressures and perceiving the same things about the problems th a t people do (a t least people 

adhering to  the restrictions of the microworld). The frequencies and tem peratures given 

here are not m eant to  be matched precisely with frequencies and preferences of answers 

given by people, since the program is not meant to  model people a t such a  fine-grained 

level.

4 .2  F re q u e n c y  a n d  A v e ra g e  F in a l T e m p e ra tu re  o f  A n sw e rs  fo r th e  F iv e  T a rg e t 

P ro b le m s

The bar graph for “a b c  => a b d , ijk  => ?”

98#

Problem: abc —> abd, ijk  
Total Runs: 1000

19 1

ijl ijd ijj
Av.TMp: 17 Ar.Tnp: 23 Ar.Twp: 41

As can be seen, this bar graph summarizes 1000 runs of the  program on “a b c  =>• a b d , 

y k  => ?” . Each bar’s height gives the relative frequency of the answer it  corresponds to, and 

printed above each bar is the  actual number of times th a t  answer was given. The average 

final tem perature appears below each bar. The frequency of a  given answer roughly corre

sponds to how obvious or immediate it is, given the biases of the  program. For example, y l, 

produced 980 tim es, is much more immediate to the program  than  ijd , produced 19 times, 

which is in tu rn  much more obvious than the strange answer y j ,  produced only once. (To 

get the la tte r  answer, the program decided to replace the rightm ost letter by its  predecessor 

rather than  its successor. This slippage is always possible in principle, since successor and
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predecessor are linked in the Slipnet. However, as can be seen by the infrequency of this 

answer, it is extremely unlikely in this situation: under the  pressures evoked by this prob

lem, successor and predecessor are almost always considered too d istan t for a slippage to 

be m ade between them .) The average final tem perature roughly corresponds to how good 

th a t answer seems to  the program; the program assesses ijl (average tem perature 17) to  be 

somewhat better than y d  (average tem perature 23), and much better than  y j  (tem perature 

48).

One can get a  sense of what the actual tem perature values mean in term s of the quality 

of an answer by seeing how various sets of perceptual structures built by the program affect 

the tem perature. This will be illustrated in detail in the next section. Roughly, an average 

final tem perature below 30 indicates that the program was able to  build a  fairly strong, 

coherent set of structures— that it, in some sense, had a  reasonable “understanding” of 

w hat was going on in the problem. Higher final tem peratures usually indicate th a t some 

structures were weak, or th a t there was no coherent way of, say, m apping the initial string 

onto the target string. The program decides probabilistically when to  stop and produce an 

answer, and though it is much more likely to stop when the tem perature is low, it sometimes 

stops before it has had an opportunity to build all possible structures. For example, there 

are runs on “a b c  => a b d , y k  =>■ ?” on which the program  stops before the target string 

has been grouped as a  whole; the answer is still often y l, b u t the final tem perature is higher 

than  it would have been if the program had continued. This kind of run increases the 

average final tem perature for this answer. The lowest possible tem perature for ijl is about 

7, which is about as low as the tem perature ever gets.

There are also some problems with the way tem perature is calculated in the program 

as it now stands. As can be seen, the answer y d  has an average final tem perature almost 

equal to  th a t of y l  (even though it is much less frequent), whereas m ost people feel it is a  far 

worse answer. The only difference in the structures Copycat builds for these two answers is 

the  rule: the former results from the rule “Replace rightm ost letter by D ”, and the la tte r 

from  the rule “Replace rightm ost letter by successor” . The la tte r rule is much more likely 

to  be proposed (hence the higher frequency of y l)  and is also considerably stronger, but the 

problem is th a t the  current formula for calculating the tem perature (given in Appendix B) 

does not give enough weight to  the  strength of the rule. Thus, answers resulting from weak 

rules have lower final tem peratures than they really deserve. This is a  problem that should 

be addressed in future work on this project.
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In the survey of people, 22 subjects answered this problem (after reading a  description 

of the letter-string domain and its  lim itations). On all the problems, subjects were allowed 

to give multiple answers if they felt that there was more than one good answer, so the total 

number of answers for each problem is greater than the num ber of subjects, and many of the 

answers reflect the subjects’ second, third, fourth, etc., choices (though on m ost problems, 

most people gave only one or two answers). The purpose of this survey was to collect all 

the different answers people, not just their preferred answers, so 1 have here listed all the 

responses I received. After each answer is listed the number of times it was given, though 

as I have said, the purpose of the survey was to compare Copycat and people’s range of 

answers rather than the frequencies of different answers. The subjects were not asked to 

give justifications for their answers, but when reporting the results here, I will sometimes 

give w hat I presume the justification was.

For this problem, the answers people gave were:

1. y l (21);

2. y k  (1);

3. y d  (1).

Copycat can get all three of these answers, although it did not get ijk  during these 1000 

runs. (Also, I am not sure what justification th a t subject had for th a t answer.)

The bar graph for “a b c  => a b d , i ij jk k  =» ?”

803 Problem: abc —> abd, i i j j k k  —> ? 
T o ta l Runs: 1000

iijjll iijjkl iijjkd iljjdd 1 1 k m  lijkll ljkkll iijjkk iijddd
Ar.Tm p : 21 Ar.Twp: 47 Ar.Tvcp: 12 Ar.Trap: 41 Ar.Tnp: 44 Ar.Tup: 44 At .Tm ? : 43 At .T«ap: 42 At .Tn p :  46

T he bar graph above summarizes 1000 runs of Copycat on this problem. As can be 

seen, by far the most common (and lowest-temperature) answer is iijjll. The second most 

popular answer is iijjk l, which ignores the letter-groups in iijjk k  and rigidly sticks to  the 

rule of replacing the rightmost letter by its successor. After these two, all the other answers 

are very much on the fringes in term s of frequency, and none are considered to  be of high 

quality. (“On the fringe” is a  qualitative description of an answer, but it can be defined
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roughly as an answer whose instances were produced on less than about 1 or 2 percent of 

the runs.) To get the answer iijjk d , the program describes the original change as “Replace 

rightmost letter by D ”, and follows it “to  the le tte r” . The next answer, iijjd d , reflects 

this same rule, but translated to  take account of the group-structure of the target string 

(and since groups were noticed, the tem perature is accordingly lower than  for the previous 

answer).

The next several answers reflect various bizarre ways of viewing the target string. For 

iikk ll, the program groups together the two rightmost groups in iij jk k  (parsing the string 

as ii- jjk k ) , calling that larger group “the rightmost group”, and replacing all the letters 

in it by their successors. The answer iijk ll reflects a similar strange view, except the two 

k ’s in iijjk k  are grouped with only the rightmost j  ( iij- jk k ), and these three letters are 

seen as “the rightmost group” . The answer iijjk k  comes from viewing the ab c  =s> a b d  

change as “Replace C  by D ”, and since the target string has no instances of C, it is left 

alone. Finally, the answer iijd d d  is similar to the answer iijkll, b u t involves replacing the 

“rightmost group” of three letters by d ’s rather than by successors. The reasons Copycat 

came up with some of these strange answers will be analyzed further in Chapter 6, which 

discusses some problems with Copycat. Happily, these last five answers account for only 

1.3% of the  total, and perhaps more significantly, none has a final tem perature lower than 

41, which in Copycat’s terms is fairly high; the program considers iijjll, with an average 

final tem perature of 28, to be much more reasonable.

In the survey of people, 18 subjects answered this problem. The answers were:

1. iijjll (13);

2. iijjk l (8);

3. iik jk l (5) (replace the rightm ost letter of each group of three by its successor);

4. iik k ll (2) (replace all letters after the leftmost two by their successors);

5. i ij jk d  (1);

6. i ij jd d  (1);

7. iik jk k  (1) (replace the th ird  letter by its successor).

Copycat can get answers 1, 2, 5, and 6 (it gets answer 4, but not for the same reason people 

do). It cannot get the other answers given since it lacks the concept of “third letter” , and 

cannot make the descriptions “leftmost two letters” and “rightmost letter of a group” . As 

can be seen from the bar graph for this problem given above, Copycat produces (though
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rarely) a num ber of answers th a t people never give (e.g., ijjk ll), based on bad groupings of 

the target string (i.e., groupings th a t people would judge to be completely unm otivated).

The bar graph for “a b c  => a b d , k ji => ?”

547

Problem: abc —> abd, k j i  —> ? 
Total Runs: 1000

15

kjj Iji kjd dji kji
Ar.Taap: 44 Av.Taap: 11 AT.Taap: 29 Ar.Taap: 21 Ar.Tnp: 99

The bar graph above summarizes 1000 runs of Copycat on this problem. As can be 

seen, there are three answers th a t predominate, k jh  being the most common (and having 

the lowest average final tem perature), with k jj and Iji almost tying for second (the la tte r 

being a  bit less common, bu t having a much lower average final tem perature). The answer 

k jd  comes in a  very distant fourth, and there are two “fringe” answers with only one instance 

of each: d ji (a  m ixture of insight and rigidity in which the opposite spatial direction of the 

two successor groups a b c  and k ji was seen, but instead of the leftmost letter being replaced 

by its successor, it  was replaced by a  d —notice the relatively low tem perature on this 

answer, indicating tha t a  strong set of structures was built!), and Kji (again reflecting the 

literal-m inded rule “Replace C by  D ”), which has a  very high tem perature of 89, indicating 

th a t on this run  almost no structures were built before the program decided to stop.

In the survey, 10 subjects answered this problem. The answers were:

1. Ku (8);

2. k jh  (3);

3. Ui (1);

4. k jd  (1);

5. k ji (1) (th is is either a  confusion of answers 2 and 3, or an insistence on changing the 
rightm ost letter, even though the subject thought it should be changed to the  letter 
after the latest in alphabetical order).

Again, the range rather then the frequency of the different answers is the point of comparison 

here. Copycat gets all of these except the last, somewhat confused answer. It also gets (on 

rare occasions) d ji  and k ji, which no one in the survey gave.
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The bar graph for “a b c  =» a b d , m r r i i j  => ?”

70S Problem: abc —> abd, m rr jjj 
Total Runs: 1000

— > ?

39

mrrkkk
At .Tup: 43

m rrjjk mrrjkk m r r j j j j mrrddd m rrjjd
At .Tup: 50 At .Tup: 46 Av.Tiip: 20 At .Tup: 46 At .Tup: 61

The bar graph above summarizes 1000 runs of Copycat on this problem. As can be 

seen, the most common answer by far is the straightforward m rrk k k , with m rr j jk  a fairly 

distant second. For Copycat, these are the two most immediate answers; however, the 

average final tem peratures associated with them are fairly high, because (as was discussed 

in C hapter 2) of the lack of any coherent structure tying together the target string as a 

whole. Next there are two answers with roughly equal frequencies: m rr jk k , a rather silly 

answer th a t comes from grouping only the rightmost two j ’s in m rr jj j  and viewing this 

group as the object to  be replaced; and m rr jj j j ,  which was discussed in C hapter 2. The 

average final tem perature associated with this answer is much lower than th a t of the other 

answers, which shows th a t the program assesses it to be the most satisfying answer, though 

far from the most immediate. As in many aspects of real life, the immediacy of a  solution is 

by no means always perfectly correlated with its quality. The other two answers, m rrd d d  

and m rr j jd ,  come from replacing either a  letter or a  group with d ’s, and are on the fringes.

In the survey, 34 subjects answered this problem. The answers were:

1. m rrk k k  (19);

2. m rr j jk  (12);

3. m rs jjk  (4) (a result of parsing the string as m rr- j j j ,  and replacing the third letter of 
each group by its successor);

4. m rs jjj  (2) (replace the  third letter by its successor);

5. m rr jk k  (2) (a  result of parsing the string as m r-r j- jj  to  correspond to  a-b-c, and 
replacing the rightm ost group by its successor);

6. m rsk k k  (1) (replace everything following leftmost two letters by its successor);

7. m rr j j j  (1) (I am not sure why the subject gave this answer);

8. m rr j j j j  (1).
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Copycat is able to  get 1, 2, 7, and 8. (Copycat also gets 5, but the  program ’s reason is 

completely different. I am not sure Copycat gets 7 for the same reason the subject gave 

th a t answer). The lack of concepts such as “third letter” and “leftm ost two letters” , and 

the inability to  group letters th a t are not related (such as m  and r ,  which were grouped 

for answer 5) prevent the program from getting the other answers. There are three answers 

Copycat got in the 1000 runs displayed above th a t none of the subjects in this survey got: 

m r rd d d , m rr j jd , and m rr jk k  (identical to answer 5, but not given for the same reason). 

I think if the survey were larger, the first two of these answers would show up, bu t I think 

th a t it is very unlikely that a person would group the rightmost two k ’s for no good reason, 

as Copycat does.

The bar graph for “a b c  => a b d , x y z  => ?”

771 Problem: abc —> abd, xyz —> ? 
Total Runs: 1000

wyz yyz dyz xyy xyz yzz
Av.Ttap: 14 Av.TNp: 44 At .Trap: 33 At .T«ap t 33 Av.ftap: 74 AT.Tnp: 42

The bar graph above summarizes 1000 runs of Copycat on this problem. As was dis

cussed earlier, the answer x y a  is not available to  the program; by design, Z has no successor. 

On 98% of the runs, the program tries to take the successor of Z  and fails, which then forces 

it to do some restructuring (and, as will be seen in the screen dumps later in this chapter, 

Copycat often hits the same snag again and again in the same run—on average 9 times per 

run—before it  succeeds in finding a way of solving the problem). As can be seen, the most 

common answer by far is x y d , for which the program decides th a t if it can’t replace the 

rightm ost le tte r by its successor, the next best thing is to  replace it  by a d . A distant sec

ond in frequency, but the answer with the lowest average tem perature, is w yz , which many 

people (including myself) consider to be the most elegant solution. To get this answer, the 

program  has to  restructure its perceptions of what corresponds to w hat, noticing th a t A 

and Z  are a t opposite ends of the alphabet, so there is a  plausible correspondence between 

them  if the  spatial and alphabetic directions of the two strings (a b c  and xyz) are also seen 

as opposite. The next answer, y y z , reflects a  view th a t neglects the opposite alphabetic 

direction of the two strings, and although it allows the leftmost le tte r to be replaced, it
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insists on holding fast to the notion of replacing it by its successor, since the rightmost 

le tte r of a b c  was replaced by its successor.

The other four answers are on the fringes as far as frequency goes. The answer dyz  

(like d ji in “a b c  => a b d , k ji => ?” above) is a  comical blend of intelligence and rigidity; it 

exhibits a good deal of flexibility in the willingness to  slip rightmost to  leftmost, but it holds 

a  rigid view of the a b c  => a b d  change. (This contradictory m ixture o f intelligence and 

rigidity is very much akin to  the notion of frame blends described earlier. Many people find 

th is answer funny, and indeed, frame blends are central in certain kinds of humor. Some 

connections of such answers in the letter-string domain with frame blends and jokes are 

discussed in Hofstadter & Gabora, 1990.) The answer x y y  allows th a t the  two strings are 

to  be perceived in opposite alphabetic directions (thus a successor => predecessor slippage), 

bu t refuses to give up the idea that the strings have the same spatial direction, and thus 

insists on changing the rightmost letter, as was done in a b c . The answer x y z  comes from 

reinterpreting the a b c  =► a b d  change as “Replace C  by D ”; and finally, the  answer yzz  is 

a  strange variant of yyz, in which the x  and y  in x y z  are grouped together as one object, 

which is then replaced as a whole by its “successor” (the successor of each letter in the 

group).

In the survey, 34 subjects answered this problem. The subjects were allowed to  answer 

x y a  (and virtually all of them did so) but then they were informed th a t, since Copycat 

doesn’t have the concept of circularity, it cannot produce this answer. They were then 

asked to  come up with one or more different answers.

There were a  large number of different answers given:

1. xyz  (9) (if the z can’t be changed, then ju st leave it alone);

2. x y y  (8) (if the z can’t be moved forwards in the alphabet, then the next best thing 
is to  move it backwards);

3. x y  (5) (if z has no successor, then it ju st falls off the end of the string);

4. x y d  (5);

5. w xz (4) (based on the desire to im itate the alphabetic space between the two rightmost 
letters in a b d , which can be done by moving the leftmost two letters backwards in 
the alphabet);

6. xzz (1) (if you can’t  take the successor of the  Z, the next best thing is to take the 
successor of its neighbor, the y);

7. w yz (1);
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8. xyw (1) (using similar reasoning to  th a t which yields wyz, but insisting that the 
rightmost letter be the one that is replaced);

9. zxw (1) (the subject specified that they wanted to  bo th  change the rightmost letter 
and at the same time im itate the relationships in abd; by reversing the string and 
then replacing the rightmost letter by its predecessor, they were able to  do this);

10. xyx (1) (the subject specified that they wanted to  answer xyy, but didn’t like the 
fact of the double y, so instead used the letter before Y );

11. abd (1) (replace the whole string by abd).

Copycat is able to get answers 1 and 2 (though possibly not for exactly the same reasons 

th a t these subjects gave them ) as well as 4 and 7. The other answers involve concepts or 

operations th a t Copycat is incapable of (such as dropping a  letter, as in xy). Some of 

these answers (like some of the answers given by Copycat) seem to  be frame blends, where 

the person perceives a  flexible way of answering, but insists on rigidly holding on to  some 

aspect of the initial abc =S- abd change (such as insisting th a t the rightmost letter must 

be changed). In the 1000 runs on this problem displayed earlier, Copycat did get some 

answers th a t weren’t given by any of the subjects in this survey: yyz (which people have 

given from tim e to time in more informal surveys), dyz (which people never give, except 

jokingly), and yzz (a “bad grouping” answer).

This section has given statistics for Copycat’s performance on the five target problems, 

and compared the range of answers given by the program with th a t of people. The same 

sorts of statistics and comparisons will be given for a  larger set of problems (all variants of 

the five target problems) in the next chapter, along with a sum m ary of all the comparisons 

and a  discussion of the overall performance of the program w ith respect to the artificial- 

intelligence and psychological criteria proposed earlier.

4.3 Screen Dumps from Runs on the Five Target Problems

In th is section, annotated screen dumps of Copycat’s graphics are given for runs on each 

of the five problems. These screen dumps are m eant to make clearer how the program 

actually solves these problems. On each run, the Workspace is displayed, and on some runs 

the Slipnet is displayed as well.
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abc => abd, ijk =» ?

The following is a  set of screen dumps from a fairly typical run of Copycat on this 

problem.

Ill
lM ltft
lit

aid
1
lit

raast

li t

lao«tft
lit

midft
lit

ra*9t

lit

I
a b c --------> a b d

lM lt
1
lit

mid
J
lit

nwit
K
lit

1 i j k -------->

llaalir mi Mdalat* im *• fart 0

1. W o rk sp ace : The program  is presented with the three strings in the Workspace. Each 

letter has a  list of initial descriptions, including string-position, letter-category, and object- 

category descriptions (the first two description-types are initially relevant by default; rele

vant descriptions appear in boldface). The tem perature, represented by a “therm om eter” at 

the left, is a t its maximum value of 100 degrees (0 is the m inim um ), so initial decisions are 

m ade fairly randomly, though there are still some biases, even a t the highest tem perature. 

This screen dump was m ade before the run began; as is indicated a t the bottom  right of 

the  Workspace, no codelets have run  so far. .

in
■
A

111
■
B

116
■
c D F F G H

ici
■
I

lit
■
J

101
■
K L M N 0 p 0 R S T

U V w X X 2 1 z $ $

100
■

lMlt

io4
■

i w t

100
■

• i l i l i d t l i flfiil* left rlcfet first Ust

9tm4 race _ a r m 2 JEL n r n

IM
■

litter qraM lira ®BL_ ihfCit

100
■

letcit ■Vfff

100
■

» t w UCEfi M u t ■f»«it

S lip n e t: The Slipnet is displayed above (nodes only; no links are shown). The black square 

inside any node’s rectangle represents its activation: the size o f the square is proportional to 

the  level of activation, and the  actual numerical level, ranging from 0 to  100%, is displayed 

above each square. The nodes are (in the order displayed): A -Z , leftmost, rightmost, middle, 

whole, single, left, right, first, last, predecessor, successor, sameness, predecessor group (ab

breviated “pr grp” ), successor group (abbreviated “su grp” ), sameness group (abbrieviated 

“sm grp” ), letter, group, identity, opposite, object-category, letter-category, number-category, 

alphabetic-position, string-position (abbreviated “strpos”), direction, bond-category (abbre

viated “bndcat” ), and group-category (abbreviated “grpcat” ). As can be seen, the nodes 

corresponding to  the initial descriptions given to each letter are activated, each a t 100%.
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lMlt mid — lmamt mid rmost
III Iut Bl l t ^ lit ft DUt ^ l i t  lit

1
a b C -----> a d

1 lMSt mid m i tH 2 J • K1 lit lit.•*• * r  ' - lit

• i j ' k ----->

NrnUr if  Mdmlata m  ■■ f tr i  6

2. W o rk sp ace : Six codelets have run, and a  few have had some success. The modified- 

string replacement for the b  in a b c  has been found (solid arc across the arrow), a  bond has 

been proposed in the target string from the j  to the  k  (dotted arc), and a  correspondence 

has been proposed between the c and the k  (dotted  vertical line). In general, structures 

th a t have been proposed are represented by dotted or dashed arcs and lines, and structures 

th a t have been built are represented by solid arcs and lines. Since no initial-string or 

target-string structures have been actually built yet, the tem perature remains at 100 (the 

initial-string-m odified-string replacement arcs do not affect the tem perature).

110

■
A

110

■
B

110

■
c D E r C B

101

■
I

IQ*

■
j

io i

■
X L M N 0 P 0 R S T

U V w X I z 1 2 3 f

iod

■
I w t

100

■

100

■
■ 4««t f l& tl l l i f t r » i l i n t l i f t

m l m et » r m n  i n .« * * L

l i t

■
l i t t e r s s a u 14m - a i - ofcleit

100

■
l i t c i t ■ W t*!

100

■
f t  n i t U n e t i M e a t s n t i l

S lip n e t:  Activation in the Slipnet has not changed yet, since it  is updated only every 15 

codelets.
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I M t r  a f  n t e l a t i  ran ao fa r :  39

3. W o rk sp ace : Now 39 codelets have run. All three initial-string-m odified-string re

placement arcs have been built (since determining these is trivial, they are almost always 

constructed quite early on). Several possible bonds and correspondences are being consid

ered, bu t since none has been built yet, the tem perature remains a t 100.

110 1*6 100 a) * * * 4? ibt id* 47 a a 1 a i a *
■ ■ ■ m ■ ■ ■ ■ ■
A B c D E r C H I J K L M K 0 p P R 3 T
J i i 6 a 100 io4 too 4 14 li

■ ■ ■
V V w X I z 1 2 ? & rant rtOU f u l l riatlt left rlflfct l in t

4 i 17 100 • 100
• ■ ■

orttf race u m r w . 2UL9 . »  or* litter Itai . 9 1 , •lieet letcat IHSStJ 'll* * - " 7 “ . (tract* karfcit m eet

S lip n e t:  The initial activations have decayed and spread in various ways (e.g., the node 

le tter’s activation has decayed, all 26 letter-category nodes have received a  tiny bit of ac

tivation from the node letter-category, and letter-category has also spread some activation 

to  object-category and number-category), and additional activation has come from codelet 

actions in the Workspace (e.g., the letter-categories involved in the proposed bonds have 

been reactivated).
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H olM r o f  codolot# ran  oo f a r :  50

4. W o rk sp ace : 50 codelets have run, and various proposed structures can be seen at various 

stages of consideration. The dotted arcs and lines (the proposed c -b  and k -j predecessor 

bond ands the proposed b - j  correspondence) are structures th a t have been proposed by a 

scout codelet and are waiting to  be examined by a  strength-tester codelet. The dashed arcs 

and lines (the proposed a -b  successor bond and the proposed a - i  and c -k  correspondences) 

are structures that have passed their respective strength-tester’s evaluation and are waiting 

to  be built by a  builder codelet. Note that there are many actions not shown in these screen 

dumps, e.g., the actions of scout codelets that fizzle without proposing anything (this would 

happen if, say, a  correspondence-scout codelet examined the c and the j  to see if there were 

any grounds for a  correspondence between the two; there wouldn’t be any).

in too u 4 J i 1 a U a 41 * i ' T" 1 i 1 1u ■ m ■ ■ ■ m ■
A B c D E r c H l J K L M N 0 P Q R S r
) 3 3 5 0 i lOi) iod toi 12 it 34u ■ ■ • • ■
U V W X I 5 i 2 3 4 $ ta»t« nwt. ebele ilntlo lif t rloht firft Uat

i a 100 it 100
• ■ • ■

trti race ” •r tv* n  f j " J i . Utter •n •Meet lalcat l a « i l iltteM ftrvra tln e t i M eet m eet

S lip n e t: Further activation spread and decay has occurred (e.g., first has received some 

activation from A ), and nodes whose instances have been recently examined by codelets 

(e.g., A  and B) have received additional activation.
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I M a r  *t m 4 * l« ta  wwm f a r i  • •

5. W o rk sp ace : After 60 codelets have run, some structures have finally been built, and 

appear as solid arcs or jagged lines: the a - b  successor bond and the a - i  correspondence. 

Beneath the correspondence is its single concept-mapping: leftmost => leftmost. In response 

to  these structures, tem perature has fallen to 91. Other proposed structures are still in the 

process of being explored at different spatial locations and at different speeds.

lift “ n r 41 i 1 1 i ' 4 ~i 1 101 101 t 1 1 i 1 I » 1 1

■ ■ ■ ■ ■
A B C D E r c B I J • K L X w 0 P 0 R 3 T
i I i i J i 104 io4 40 11 100 4 i

■ ■ ■ • ■ m
u V w X I z 1 z 3 $ lrast m et teol* r u i l i w t rltfct llrat U lt

110 s 10« 22 100 It 104

■ ■ ■ ■ • ■
ore4 race LszsJ rc.nv. n m *»■»» litter e r a 14m m •blest latest •latest straw l l m t i tedest 0 £ £ L

S lip n e t:  The newly built structures have affected the Slipnet: the nodes successor and 

right (corresponding to  the category and direction of the bond) are activated, as is the  node 

identity  (corresponding to  the type of concept-mapping underlying the a - i  correspondence).
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-ii
utltt

— >c

v ld l i t

---->

6. W o rk sp ace : The active nodes successor and right have begun to exert a  top-down 

influence in two ways: by increasing the strength of proposed bonds of these types (the 

activation of successor causes successor links in the Slipnet to  shrink, making the bond 

between, say, /  and J  stronger) and by causing codelets to be posted expressly to  look for 

such bonds. Another such bond has been built between the j  and the  k , and an i- j  bond is 

being considered. Also, correspondences have been built from all three letters in the initial 

string to  letters in the target string, based on their string-position descriptions. In response 

to these structures, the tem perature has fallen to 67.

1 lift lift ft k k k 57“ " n r " SI “ 5T" J 1 i 1 a k a
■ ■ ■ ■ ■ ■ ■

A B C D E T 0 H i J K L M N 0 f 0 R s T
a ft ft i ft ft io* 100 lOtl II to6 «i 20

■ ■ ■ • ■ ■ •
u V ¥ z f z ; 2 3 1ms t rmtl a i u t OmIi left rtttt urn Ust
u lift 25 2 101 14 100 12 II 100 la II

■ • ■ • ■ ■ ■ ■ ■ ■
ore* race L J -s J k  m suet. n  or* latter lira - S 3— efcteat latest nraeat llDtolt ftr*M lim ta bndcst ffTVCSt

S lip n e t:  The node first is becoming active, due to  continuing activation of A. The node first 

has also spread activation to  last as well as to  alphabetic position, which will post codelets 

to try  to  make such descriptions. (As will be seen, alphabetic-position will decay, and won’t 

have much effect in this problem.) Likewise, successor and right have spread small amounts 

of activation (respectively) to  predecessor and left, bu t not enough for these to have any 

influence yet. Successor and right have also spread activation (respectively) to  the more 

general nodes bond-category and direction.
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h p l m  »f  rmmMt l « t t » r  by r a c c w o r

iat
U tU tU tU t

 >

mid ia t

lat,l t t .
--- >

7. W o rk sp a c e : A coherent view, based on right-going successor bonds, is beginning to

emerge, enforced by the presence of such bonds in the two strings as well as the top-down 

influence from the active nodes in the Slipnet. Some of the explorations along different lines,

seen in the previous screen dumps, are proceeding relatively slowly (e.g., the proposed c -  

b predecessor bond, which is still waiting for its strength-tester to  run) or have fizzled 

entirely (e.g., the previously displayed proposed k - j  predecessor bond) in response to  these 

pressures. A rule ( “Replace letter-category of rightmost letter by successor” ) has been 

constructed to  describe the a b c -a b d  change; it appears in a box above the modified string. 

The tem perature has fallen to 48 in response to  the building of this strong rule.

44 100 43 i i J 1 43 103 103 1 1 i 3 3
" y -

~~k 3
■ ■ ■ m ■ ■ ■
A B c D C F C H I J K L M V 0 P f R 3 T
3 J i 3 3 i *3 104 100 34 U " 34 13

■ ■ ■ ■ ■ ■ ■
U V w X T 2 1 2 3 4 5 lm t r«Mt 014410 fl&fU im riftt Urrt Uft
27 ito S3 2 104 19 100 12 *4 100 too 130
a ■ ■ ■ - ■ ■ ■ ■ ■

01*4 race tmm fr  f * n  «n n  i n lttlcr #fwf 14« m obfeat l«tC0t IjHULI i t n n b m t i Mc<t 0TVC0t

S lip n e t: Successor has spread activation to successor-group (abbreviated as “su grp”),

which is now active enough to  begin posting codelets to look for such groups. The nodes 

first and alphabetic-position have lost some activation through decay.
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H ip lic i l i tU r - t» t« g « r y  o f  r —» t l i t t i r  by m c n u r  |

ra o a t
Utlatl«t

— >

l*tmid
l i tl#t,

--- >

8. W o rk sp a c e : Now, 165 codelets into the run, the notion of right-going successor bonds

has taken over almost completely (though other possibilities are still being explored, albeit 

much more slowly—e.g., the proposed c -b  predecessor bond) and a  grouping of the initial 

string as a  whole is being considered. The tem perature has fallen to 40, reflecting the 

program ’s assessment of the promise of the structures it has built so far. As the tem pera

ture gets lower and lower, the program ’s decisions become more and more deterministic, its 

behavior more and more serial (i.e., a  small number of high-urgency codelets overwhelm a 

larger num ber of low-urgency ones, so fewer and fewer other possibilities are being consid

ered), and its actions more and more dominated by top-down forces (as top-down codelets 

crowd out bottom -up ones). A single dominating point of view begins to be “frozen” into 

place. (The sta te  of the  Slipnet is similar here to  its state  in the  previous frame.)

| l U y l w  U t t a r —c a U f  ry  o f  r —i t  l i t t i r  by

u t
l i t l i t l i t

 >c

l i t

— >
llt->1

9. W o rk sp a c e : The entire initial string is now being seen as a  right-going successor group

(the direction is represented by a  right-going arrow a t the top of the rectangle; the bonds 

inside the group still exist, but their display has been suppressed). This creates pressure to 

view the target string in the same way, and indeed a similar grouping is being considered 

there.
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K epltct l t t U f C t t o y r r  o f  r a n t  U t t r  by w c c t n o r

••tlMlt

I « tU t1 s t

— >

aid i#t
• t U tUt.

10. W o rk sp ace : Both strings have now been grouped as wholes, and a  correspondence is

being considered between the two groups (dotted bent line to the right of the two groups). 

The tem perature has fallen to  31, but even at this relatively late stage, a  few other ri

val possibilities are still being explored (though with very low urgency): a  left-going k - j  

predecessor bond, a group in the target string containing only the i and the j ,  and a  corre

spondence between the c and the i, based on the (here) fairly weak link between rightmost 

and leftmost in the Slipnet. None of these structures (especially the last) are very strong, 

and given the strong and coherent set of structures th a t have been built, these rivals have 

very little chance of getting anywhere at this point.

| I to y lw  lg tU r < i t« 9 » r y  o f  n w i t  l i t t w  by mrnct

mt
U t 1 s tU t U t

 >
vhaU->^oU
yr«vp->9mp

n c o g r p - ) n e e 9 iy
r l 9 k t-> r lg k t
n e c * > n c c

U tc a t-> U tc * t»«t
IS

I
i # t .  •  • •t 1st

— >
It

M r  i f  m d a la ta  m  f a r i  2S5

11. W o rk sp a c e : The group-group correspondence has been built with all its concept- 

mappings listed alongside it ( letcat => letcat means th a t both groups are based on bonds 

between letter-categories). The tem perature has fallen to 15, indicating the program ’s 

assessment th a t it is very close to  a good answer.
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rt U itir  by wcctiiflrlUpl«ca lettsr-cstegery of

>st■Id.

U tl o tl « t ux
— >

mid
let

--- >
Replace littar-citig tqr ram m t U ttar by ucctaior

12. W o rk sp ace : The rule has been “translated” (although since all the concept-mappings 

are identities, no changes needed to be made) and the answer ijl  has been constructed 

according to the translated rule (the answer, with the translated rule beneath it, appears 

a t the  right-hand side of the screen). The final low tem perature of 12 indicates th a t the 

program  is very satisfied with this answer. This run consisted of 260 codelets (the average 

num ber of codelet steps for this problem is about 290 codelets).

u u 44 4 i i 4* u l l 41 > k I 1 1 1 9 ' * t
■ ■ ■ ■ m ■ ■
A B C D E F <? H i J K L M W 0 P 9j R 3 T
9 9 9 3 * "1 ' U 91 1 i 49 X too a 1

• • ■ • • ■ ■
U V W X x 2 1 % 3 4 5 lm t rmtt •14411 *•1* it t ik . W t r l* t t i m U ft
99 110 99 90 14 10 104 109 100 24 9 100 100 too too
■ ■ ■ ■ • ■ ■ ■ ■ • ■ ■ ■ ■ ■

on* tocc L — „1JLLJCL latter 1«M « n •bleat leteat [■ s a d llRHI rtrvw l im t t Meat •m at

S lip n e t:  The final configuration of the Slipnet indicates what concepts were found to  be

relevant in this problem: the individual letter-categories’ activations have decayed, and the 

notions of right, successor, successor-group, group, and identity  axe activated, along with 

nodes corresponding to various categories (e.g., bond-category).
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a b c  =» a b d , i ijjk k  => ?

T he following is a  set of screen dumps from a  fairly typical run of Copycat on this problem. 

The Slipnet is displayed only on frames where there is a  point to  be made about it.

inI a b c ---> a b d

i i j j k k  ---- >

II—t i r  i f  n l i l i t i  n  mo f a r t  0

1. W o rk sp a c e : The program is presented with the three strings. For the sake of clarity, 

the descriptions of each letter are not displayed here, but they are as given in Figure 3.4.

lt i
■
A

1*6
■
B

166
■
c D E F G H

10*
■
1

100
■
J

100
■
K L M N 0 P 9 R S T

V y w X Y Z 1 2 3 4 5

ito
■

106
■

rwit

too
■

■14414 JlBfl* left rirtt llr»t U*1

_pn4 »r « n n  o t

III
■

i< « —*11— aftfeat

100
■

■Kit

too
■

ftm * l lm t i Meat grpe.t

S lip n e t:  The Slipnet starts out in the same initial sta te  as in the last problem.
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l U k r  i f  M i t l a t f  ran so l u i  U

2. W o rk sp ace : After 45 codelets have run, an a - b  successor bond has been built, and 

several possible structures are being considered. Sameness bonds (e.g., between the two 

k ’s) are intrinsically stronger than successor and predecessor bonds, so they tend to  be 

evaluated and built more quickly (their codelets receive higher urgencies).

w r" 110 U 44 1 * " 1 41 ' »  ' ioi i l 41 1 0 4 ■ V ■ 1 ' I I■ ■ ■ ■ ■ ■ ■ ■ ■
A B C D E r C H I j K L H N 0 p p. R s T
i 2 t i  ' 1 i  “ lod i 1( 106 24■ « • ■ •

. V V w z I z 1 ? ff Um  t nest ■1441c tlMlC left first left
110 1 4 24 too 14 too■ • ■ • ■

JLS*- m e _£5* J trttw ZL1 3 , »JK2 . letter 14m .a r CftlCSt Iciest K i d •W f* strscs llrects M eet ■nut

S lip n e t:  Activation has spread and decayed from the initially active nodes, and some other

nodes have been activated in response to  actions of codelets in the Workspace: for example, 

the  nodes successor and right have been activated in response to  the bond that was built.
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N a t a r  ftf c « 4 « l« t i  raft so f o r t  75

3. W o rk sp ace : Three sameness bonds have been built in the target string, and other 

structures continue to be considered.

'1I& 110 4r 4 k 2 44 to M 4l " 4 k..... a a 1 t

■ ■ ■ ■ m ■ ■
A B C D E F C H i J K L H w 0 P 0 R s T
a a a a a a U IOC 2 14 100 05 20

m m ■ ■ ■ •
u V w X T z 1 ? 3 4 5 r w t »1m U n i t rlntit tint ta t
10 100 100 20 70 4 20 100 12 100 100 41 190

■ ■
• ■ • ■ ■ ■ ■ ■

oni rare ELI? n  on 2 U 3 . ltlftor jnmo lira _<w ehlcjt Uttot nnrit •lahPM rtraos Urceta bndcet (TTVCAt

S lip n e t: The activation of the nodes successor and same has caused top-down bond-scouts 

to  be posted to  look for more relationships of these types. These nodes have begun to  

spread activation to successor-group and sameness-group ( “sm grp”), which will in tu rn  

post codelets to  look for groups of these categories. The activation of the node right (the 

direction of the a -b  successor bond) has caused top-down bond-scouts and top-down group- 

scouts to be posted to  look for bonds and groups in this direction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

JU placi l i tU r - c > t> 9 < iy  o f  r — » t  l a t t a r  by *l>* |

r M « t-> r « o ft

N a k t r  o f  co fo lo io  n o  ao f o r t  165

4. W orkspace : After 165 codelets have run, some sameness groups are being considered 

(made up of the i’s and the j ’s), and a correspondence between the c and the rightmost k  

has been built. Also, a rule, “Replace letter-category of rightmost le tte r by D ”, has been 

built. If the program were to  stop right now, its answer would be iijjk d  (which the program 

sometimes gets, as can be seen from the bar graph for this problem). This rule is relatively 

weak, though, and will soon face competition from a  stronger rule.

4* 190 110 io4 I t ' J 44 109 109 44 i 1 a a 1 a I i ~ T ~
■ ■ ■ ■ ■ ■ ■ ■
A B c D E r C a I J K L M w 0 p 0 R S T
9 9 9 9 9 i 100 iod ft 99 190 s r -

■ ■ a a ■ ■
U V W X X z 1 2 3 rawt M o ift t lL Kft rlefct flret U ft
u » 190 27 199 2 109 11 100 24 100 100 79 too 190

• ■ ■ ■ ■ - ■ • ■ ■ ■ ■ ■
orad race UM trtn fa art n  or* letter o w lira an •bleat leteit [ssiiJ laroeU badcet m eet

S lip n e t: The nodes successor and right have decayed, bu t the nodes sameness and sameness 

group, being more of greater conceptual depth, remain highly active. For the tim e being, 

the program is concentrating more on finding and evaluating sameness bonds and sameness 

groups which, being intrinsically stronger, tend to  be explored and built faster than  other 

kinds of bonds and groups.
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it  l « t t * r  by a u e t s i o rlU placa l e t t e r - c e t s g s r y o f

 >

--- >

• f  M i a l t t i

5. W o rk sp a c e : 225 codelets in to  the run, successorship has taken hold as the fabric of the

initial string. In the target string, a sameness group has been built out of the two i’s, and 

two other such groups axe being considered. A successor bond is being considered between 

the group I  and its right neighbor, the letter j  (perhaps due to  top-down pressure from the 

activation of successor and right). The previous weak rule has been replaced by the stronger 

rule “Replace letter-category of rightmost letter by successor” ; thus, if the program  were to

l a p l i c i  l t t i t r - w t o t a t r  i f  r w t  l a i t a r  by

 >

--- >

ir o f  e td a ic ta

6. W o rk sp a c e : All three sameness-groups have been bu ilt in the target string, and a

successor bond is being considered between the group I  and group J  (which will compete 

with the proposed successor bond between the group I  and  the le tte r j) .  There is also a 

com petition unfolding between the c -k  correspondence and the c -K  correspondence. The 

la tte r correspondence has a  be tte r chance, even though it involves a  slippage, letter =>■ 

group, whereas the former does not. There are two reasons for this: (1) Copycat has a 

bias towards correspondences involving larger objects (e.g., a  group is larger than  a  single 

letter), and (2) the group K  is now much more salient than  either of its component letters, 

so there will be many more a ttem pts to build the la tte r correspondence than  the former, 

and statistics will tend to work in its favor.
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JUpI*c« l f tU r « c i t * 9 r y  of m » t  l i t t o r  by n c c t« > o r

 >

— >
~]«t->granp lit* > frw ip  I 
'■ id * > s i l 'r M « t* > n o f t  *

7. W o rk sp ace : Now, 495 codelets into the run, the initial string has been grouped as a

right-going successor group, and strong top-down pressures from successor and successor- 

group have helped to  accelerate a  similar view of the target string, but a t the level of groups 

ra th e r than individual letters. The c -K  correspondence has won over the c -k  correspon

dence (though the la tte r is once again being considered). Also, a b - J  correspondence has 

been built (notice th a t the program has a t some point described the J  group as “middle”). 

T here is still a correspondence between the a  and the leftmost letter i ra ther than  the group

I. The tem perature has gone down to 38, reflecting the assessed promise of the structures 

th a t have been built so far. A “diagonal” c -I  correspondence has been proposed, but it 

is very weak (it is based only on the weak concept-mapping rightmost => leftmost), and 

though a codelet for testing its strength has been posted, its urgency is very low, and is 

suppressed even further by the low tem perature.
it l l t t i r  byh f l w t  l « t U r - c a t < f  f y

->

---->
’l i t - > g r n f  l i t -> f r* o p  

rw * t-> r io « t fa r i  537ir » i  m ia l a t a

8. W o rk sp ace : The whole-target-string successor group has been built, and a correspon

dence is being considered between the two whole-string groups.
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b p la c a  l a t i a r - c i t a y t r y  o f it l o t to r  by n c c a t t i r

wholo->uholo
fro«p->gro^pncc9fp‘>nccfir
r l 9 b t-> r ig b t

rocc->tmcc
la t c « t - > la ic i t

---->
lo t->groop lo t-byroup  
- M i4 < > a i r n a i i - > r M «

ir o f  M ^ a la t i

9. W o rk sp ace : The whole-string correspondence has been built. The a - i  correspondence

has been broken, and an a - I  correspondence is being considered in its place. The temper

ature has fallen to  25.

Replies l a t t a r - c a t i y r y  o f  n w i t  l o i t t r  by n c c e s s o r

«hola->vliala 
yro«p->groop nee9rp*>ateefTf 
ri^ht^rigkt 

n e c - > n e e  
1o te a t-> lo to o t

Haplaca lo tto r-co togo«T  o f ro o o t groop by aw caaaar

10. W o rk sp ace : The a - I  correspondence has been built, the rule has been translated

(according to  the slippage letter => group), and the answer iy jll  has been given. The low 

tem perature of 20 reflects the program ’s satisfaction with this answer (though of course 

it isn ’t as low as it was for ijk  => y l , since there is a  slippage here—namely, letter => 

group—th a t didn’t  have to  be made in th a t problem).

s J I i 1 i “ I” • ~ r I T " I 1 I 1 i 1

A K c D E r c H I J K L M N 0 P e R S T
i J i i J 0 00 icki 4 li 44 ” Tl 12 1

■ ■ ■ • ■ ■ a
u T w z 1 z 1 2 ? 4 5 UMt a liiU obolt. ffevlo M t t u ?t_ rafclLra
IS 119 110 ts N 109 10 100 100 101 100 17 2 100 190 100 100
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■r*0 r j a » « l* 9T9*. lira _ a » _ •bleat latest [h e s i Iilsteaa i t n a Slracti botfcat ■mat

S lip n e t: The final configuration of the Slipnet reflects what was im portant in this prob

lem: not any particular letter category, bu t rather the notions of rightmost, successorship, 

sameness, successor group, sameness group, and so on.
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a b c  =» a b d , k ji => ?—Run 1

The following is a  set of screen dumps from a  fairly typical run of Copycat on this 

problem. The Slipnet is not shown on this run.

Ill

I  a b  c  -----> a b d

k j i  -- >
M nM r o f eodoloto  ran  oo fo r t  0

1. The program is presented with the three strings. Again, descriptions are not displayed; 

they are the same as in the problem “a b c  =$■ a b d , i jk  =>• ?” .

N u M r o f codoiot*  ran so fo r i  60

2. Left-going predecessor bonds have been built in the  initial string, as well as an a -k  

correspondence, causing the tem perature to fall to  86. The resulting activation of predeces

sor  and left in the Slipnet creates pressures for the program  to  see predecessor bonds and 

left-going bonds, but, unlike in the previous two problems, these two pressures cannot be 

satisfied simultaneously: the initial and target strings run in different alphabetic directions. 

There is thus competition between these pressures in the target string, with the pressure 

to  see predecessor bonds being stronger than the pressure to  see left-going bonds, since the 

former is has greater conceptual depth. But there is another set of very strong pressures 

th a t rivals this: leftmost => leftmost and rightmost => rightmost correspondences a ttem pt 

to  enforce a  view in which bonds in the two strings have the same direction, since they are 

incompatible with the left => right and right => left slippages th a t would result from a  view 

in which bonds in the two strings were in opposite directions.
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M a to r  i f  —4 tU U  m  m  f v i  90

3. Some groups axe being considered in the initial string, the strongest of which is the 

whole-string predecessor group. A j - i  predecessor bond has been built in the target string, 

in response to top-down pressure from predecessor. But the proposed vertical c - i  correspon

dence will fight against it, since the concept-mapping rightmost =>• rightmost is incompatible 

with the existence of honds on the two sides of the correspondence going in opposite direc

tions.

[Baplaaalutta^^atrjat^T^WM^TattarT^TacctTaor |

 >

41

I ---->
la o r t -> la a i t  l a t - > l a t  r —» t-> r— «t

l . W l . t  a ld -> a ld
M a k ar i f  a a d a la ta  ran  as f a r t  1(0

4. A whole-string left-going predecessor group has been built in the initial string. The 

rightmost => rightmost correspondence has won, breaking the j - i  bond. This “vertical” 

(i.e, leftmost => leftmost, rightmost => rightmost) correspondence viewpoint is working hard 

to  force the program  to build bonds all in the same direction, in spite of the strong pres

sure from predecessor, which remains active in the Slipnet, and which lobbies for building 

predecessor bonds going in opposite spatial directions.
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Raplaca l i t t i r - C K te y t iy  a f  rm aat I t i U r  bf w g c a m r

t l

l
l a o r t - > lM it

l a t - > la t
l a t - > la t
v ld -> * ld l a t - > l a t

N a k t r  t f  a a d a la ta  r m  >• l« r i  240

5. The same-direction pressure is prevailing, with the strong set of vertical correspondences 

remaining intact, and left-going successor bonds being built in the target string. The 

tem perature is already fairly low, making it unlikely th a t this viewpoint will be destroyed 

a t this point, even though there are still a ttem pts being made to build predecessor bonds 

in the target string.

«*ala-><A ala

pr«dgrp-)*mce9r]
l a f t - > l a f t
prad->sacc

la tc a t - > la tc a t

■tpXaci l a t t r - c a t a f  iy  o f  r —a t  U t t a r  by prad«ca«aor
l a t - > la t •o  f a r :  341>r a f  aada l a ta

6. A left-going successor-group has been built in the target string, a correspondence has 

been built between the two whole-string groups, involving the slippages 

predecessor-group successor-group and predecessor => successor. The rule has been trans

lated according to  those slippages ( “Replace letter-category of rightmost letter by predeces

sor”), and the answer k jh  has been given.
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a b c  =>■ a b d , k ji => ?—Run 2

The following is a  set of screen dumps from different run of Copycat on the same problem, 

leading to  a  different answer.

1. The program  is presented with the three strings.

2. We skip ahead 105 codelets into the run. Right-going successor bonds have been built 

in the initial string. As in the previous run, this sets up two opposing top-down pressures 

for the target string: a  pressure to  see successor bonds (which in the target string are left- 

going), and a  pressure to  see right-going bonds (which in the target string are predecessor 

bonds). Various proposed bonds are being considered, and a  left-going i- j successor bond 

has been built. As in the previous run, the vertical correspondences lobby for building 

target-string bonds in the same direction as those of the initial string. Some fights are in 

store—in particular, between the strong proposed c - i  correspondence (which is supported 

by the already-built a - k  correspondence) and the i - j  bond (which is supported by the 

activation of the  node successor).
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 >

— >

• t - > i

ir •£

3. The c - i  correspondence has been built, destroying the i- j bond in the process. At this

point it looks like the same-direction view is going to win out, as it did in the previous run.

R tp l tc i  l* tt«r*»cit« 9 * iy  •£  r w i t  l i t t « r  by n c c u s o r

 >

 >

N o b tr  i f  — i i l r t i  m  i a  f a r t  193
    —  11 —  ■■ ■ ■—  ■ ■

4. B ut trouble isn’t far away, as a  j - k  successor bond vies with a  k - j  predecessor bond to  

be built.

rac c w o r

-->

41

I  >

M a r  i f  w f a l i t e  n a  f a r i  222

5. The j - k  bond wins, destroying the a -k  correspondence. Also, a  left-going i- j successor 

bond is now waiting to  be built as well.
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lU plica l e t U r - c i t e f t r y  o f  n w i t  l « t t « r  by iv e e a tio r

 >
SI

---->

IW M r « f  n l i l a t i  m  f a r t  225

6. The i- j  bond has been built, also destroying a correspondence, and now it looks like 

the successorship viewpoint is going to  win the day. The tem perature has gone up to 58 

because a correspondence was broken.

h p l m  l« t t* r - c » t« y r y  mi rwmmt l a t t r  by

 >

---->

ir  ( f  m M i t >

7. The successorship viewpoint is becoming more entrenched, for the following reasons:

the  target string has been perceived as a  successor group; a  correspondence is being con

sidered between the two groups as wholes; and the tem perature is falling (it is now 50). 

Even so, a c - i  correspondence (which would contradict the opposite-direction whole-group 

correspondence) is being considered.
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l t p l t c i  le t t s r - c e te g e r y  o f it l « t t « r  by n c e t i i o r

 >

*uecyrp->*wccyrp
r ig b t- > U f t
« tte c -> iu e

la tc * t-> l« tc « t

8. A correspondence is built between the  two successor-groups, involving a right =* left

slippage. This activates opposite, and the combination of th a t slippage and opposite’s 

activation gives a great deal of support to  a  proposed diagonal c -k  correspondence, with 

slippage rightmost => leftm ost

I t y l w i  U t U r " C t t « y r y  i f  m « t  l # t t * r  by n c e t

ii

I

>«bola 
>gmp 
>smceyi> 
> l« ft 

>smcc>UtCMt

n o i t> > lM t t
Naafe«r i f  n d « l « t i  r a t  so f a r :  450

9. The c -k  correspondence has been built, and this (along w ith the continuing activation 

of opposite) creates further support for an a -  i, leftmost =$► rightmost correspondence. A 

b e  group has been proposed, challenging the much stronger a b c  group, bu t given the low 

tem perature, it is very unlikely that it  will get anywhere a t this point.
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h p t « «  l« t t» r - c « t» a > ir  « '  m » t  l » t t » r  by w t c m o r

«holi->(A ola
yro«p->gr«ip

fo ecy rp -X n u eg if
r i§ fc t-> l«£ t
yocc-> n ec

la tc « to > la ic 4 t

lU p lm  la t ta r -c a ta g a ry  o f l i a a t  l a t t a r  by n c c a ta o r

ir mf 0 « 4 a la t■

10. A strong, mutually supporting set of correspondences has been bu ilt, resulting in a 

low tem perature of 14. The rule has been translated according to the instructions in the 

concept-mappings, as “Replace letter-category of leftmost letter by successor” , yielding 

answer Jji.

a b c  =» a b d , m rr i i i  =» ?

The set of screen dumps given below shows one way in which Copycat arrives a t the 

answer m r r i i i i  (and thus they are from a  not-so-typical run on this problem; this answer 

is given about 4% of the time). This problem is different from the problem “a b c  =>■ a b d , 

xyz=t> ?” (shown in the next section) in that there is no obvious “snag” (such as the fact 

th a t Z  has no successor) blocking a  good answer. Rather, the straightforw ard answer m r-  

rk k k  ju st doesn’t seem very strong, since there are no bonds tying together the target string 

as a  whole. In particular, the strong and seemingly explanatory successorship structure in 

a b c  is completely lacking in m rr jj j  when only the letter-categories are considered. Copycat 

usually simply gives up and produces one of the two more obvious answers, even though 

the  tem perature remains fairly high (most people also give one of these two answers). But 

on some more interesting runs (such as the one shown here), it does manage to  see the 

relations between the lengths of the groups in the target string, and to produce m rr jj j j .

The point here is to  illustrate how a  num ber of pressures interact to  allow the notion 

of group length, which in most problems remains essentially dorm ant, to  come to be seen 

as relevant in this problem. On most runs, the groups r r  and j j j  axe constructed. As 

happened in ijjjk k , each group’s letter-category (R  and J  respectively) is explicitly noted, 

since letter-category is relevant by default. By contrast, although there is some probability 

th a t lengths will be noticed at the tim e the groups are made, it is low, since length is not 

normally strongly associated with the concept of group. Once the groups r r  and j j j  are
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made, the concept sameness-group becomes very relevant. This creates top-down pressure 

for the system to describe o ther objects—especially in the same string— as sameness groups 

if possible. The only way to  do this here is to describe the single m  as a  “sameness group” 

with ju st one letter. This is strongly resisted by an opposing pressure: a  single-letter group 

is an intrinsically weak and farfetched construct. It would be disastrous for the program if it 

were willing to  bring in unlikely notions such as single-letter groups w ithout strong pressure: 

the program would then waste huge amounts of tim e exploring unlikely possibilities in every 

problem. As was discussed in Chapter 2, given the lim itation of time and cognitive resources 

one has in real life, it is absolutely vital to resist looking a t situations in nonstandard ways 

unless there is strong pressure to do so.

Copycat resists farfetched notions such as single-letter groups, but in this problem, the 

existence of two other groups in the string, coupled with the lone m ’s unhappiness a t its 

failure to  be incorporated into any large, coherent structure, pushes against this resistance. 

These opposing pressures fight; the outcome is decided probabilistically. If the m  winds up 

being perceived as a single-letter group, its length will very likely be noticed (single-letter 

groups are noteworthy precisely because of their abnormal length), making length more 

relevant in general, and thus increasing the probability of noticing the other two groups’ 

lengths. Moreover, length, once brought into the picture, has a  good chance of staying 

relevant, since descriptions based on it turn  out to  be useful. (Note th a t had the target 

string been m r r r r j j ,  length might be brought in, bu t it would not tu rn  out useful, so it 

would likely fade back into obscurity.) In m rr jj j ,  once lengths are noticed, the successor 

bonds among them  can then be constructed by bond scouts th a t are continually seeking 

new bonds—in particular, by top-down successor scouts resulting from the already-seen 

successor bonds in ab c . Thus the crux of discovering this solution lies in the triggering of 

the concept of length.
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111

Nohir if nlaUta ran 10 f«ri 0

1. The program is presented with the three strings. (The Slipnet will not be displayed on 

this run , though aspects of its state will be described from tim e to  time.)

lUpl«c« I t t U r - c i t t y r y  o f  r m t  l « t t » r  by

 >'C

/ \  : — >

laolt-)lMlt
ir ( f

2. We skip ahead to 240 codelets into the run. Much progress has been made: a  whole-

string successor group has been built in the initial string, sameness bonds have been built 

in the target string, a  j j j  sameness group is being considered, correspondences have been 

built between the two leftmost and two rightmost letters in each string, and a rule has been 

built. The tem perature has fallen to 37. If the program were to  stop a t th is point, the 

answer would be m rr jjk .
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lU p lica  l t tU r - € » t« 9 «i7  o f  r w < t  l o i t o r  by n c c t i i o r

 >

---->

f o r i  375

3. The group J  has been built, creating more top-down pressure to  see sameness groups

in the string, and a correspondence has been made between the c and it. (If the program 

were to stop at this point, the answer would be m rrk k k .)  A grouping of the two r ’s is 

being considered, as is a weak diagonal correspondence between the c and the m . The 

tem perature has gone up a bit for two reasons. First, the c - J  correspondence is not as 

strong as the previous c -j correspondence because the a -m  correspondence more strongly 

supported the la tte r. Second, the creation of a  new object (here, the group J )  can cause the 

tem perature to go up, since tem perature is a  function of the happiness of all the objects, 

and while the existence of the group increases the happiness of its members, it itself starts 

ou t unhappy (e.g., the group J  has no bonds to anything else in its  string). The result can 

add up to  an increase in total unhappiness. This initial unhappiness is a  necessary thing: 

it  serves to quickly a ttrac t codelets to  the new object.
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— >

— >

4. The group of r ’s has been built. There are several pressures a t work a t this point. F irst,

the single m  remains unhappy since it is not integrated into any structures in its string. 

Second, the groups R  and J  remain unhappy, because in spite of many tries by various 

bond scouts, especially top-down bond scouts trying to  make successor bonds, no bonds 

can be made between them. This continuing unhappiness keeps the  tem perature relatively 

high. Finally, the presence of two sameness groups in the  target string, as well as the high 

activation of the node sameness-grvup, creates strong pressure to  see more such groups in 

the target string.
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lU placa l « t t a r - c « t » f  r r  •* rmm*t 1 a t t a r  by n t c t i i o r

 >

---->

5. The strong pressures described in the  last caption have overcome the intrinsic resistance 

to  proposing a  sameness group consisting of a  single letter, and such a  group, consisting 

of the single m , has indeed been proposed (dashed rectangle around the m ). Top-down 

group-category scouts can propose such groups, but such a  proposal is intrinsically very 

unlikely and almost never happens unless there are strong pressures th a t make it more 

likely. The probability of proposing a  single-letter group is a  function both of the  amount of 

local support in the string and of the activation of number-cateaory—i.e., if group lengths 

have already been deemed to be im portan t, then it is more likely tha t single-letter groups 

can be proposed. Here, with group lengths not yet in the picture, the proposal of such 

an oddball group is a  result of a  combination of factors: unhappiness of the  lonely single 

le tte r (which makes it salient, causing lots of codelets to concentrate on it, so after many 

tries, one may succeed) along with lots of local support for such a group in the string (the 

principle of “safety in numbers” discussed in Chapter 3) and relatively high tem perature 

(making intrinsically unlikely events a  b it more likely).
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| IUpl«c« litU r-w toyry  m i rmmmt l « t t r  by M cam r

--- >

 >

ir m i n4»l«ti

6. The single-letter group has been built, and its length has been noticed (displayed as a  “1” 

next to  the M ). There are two ways in which group lengths can be noticed in Copycat. The 

first way is for a group-builder codelet to attach a length description at the time the group 

is built. A group-builder codelet always has some probability of doing this, the probability 

being a  function of both the length of the group (the shorter, the more probable, with 

probability dropping off very quickly with increasing length) and the activation of number- 

category (when it is relevant, noticing length is much more likely). So a priori, there is 

not much likelihood for a group-builder to notice the lengths of two-element groups, less 

for three-element groups, and so on. But it is rather likely th a t a  group-builder will notice 

the length of single-letter groups, since it is precisely their short length that makes them 

noteworthy. Length descriptions can also be attached to already-formed groups (e.g., the 

r r  group here) by top-down description-scout codelets, posted by number-category once 

it becomes activated, as it is now, as a  result of spreading activation from the node 1, 

which was activated when the single-letter group was formed and its length was noticed. 

(The probability of creating a  length description in either of these two ways is of course 

also dependent on tem perature.) The activation of number-category means that length is 

now a relevant notion, which creates pressure on the program  (in the form of top-down 

description-scouts) to continue to  use length as an organizing theme. If length does not turn 

out to be a  useful notion, number-category’s activation decays, and this pressure subsides.
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h p l m  l«tt<»—c i t j ^ t r y  mi rmm« t  l « l t« r  by

 >

---->

7. A length description of 3  has been attached to  the a b c  group by a top-down description

scout posted by number-category, which remains active.

lU placa l i i i a r - c t t t g t r y  o f r w i t  l « t t« r  by iucci

-->

R2
---->

l«t*>gnt9

8. The activation of number-category and the existence of the description 1 created pressure

for length descriptions in the target string (the existence of the 1 makes it more likely 

th a t description-scout codelets will succeed in building other such descriptions—again, the 

principle of safety in numbers). As a result, a  length description has been attached to  the 

group of r ’s. Also a  correspondence has now been built from the a  to the group M  (a  subtle 

change from  the previous a-to-letter-m  correspondence).
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lU y ltc i  l » t U r - c > t J | t r y  mi it l l t t r  fcy w c c w o r

 >

 >

ir •£  n t a l a t i

9. Some proposed bonds are being considered between the lengths of the M  and R  groups.

There is some resistance to building these bonds—being less standard, bonds between 

lengths are not as strong as bonds between letter-categories (an a priori bias given to 

the program ). Safety in numbers is again a principle here, and the lack of other length 

bonds in the target string increases the resistance to  them .

t o p l f  U t i w t t U y r y  i f it  l « t t « r  by

 >

R2
--- >

• f  e s d i l i i f

10. The proposed length bonds did not pass their streng th  tests (a probabilistic decision)

and have fizzled.
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l U p l w  l r t U r - w t e y i y  o f  r—« t  l « t t « r  by

 >

---->
l«t->gronp l« t-> g ro ^ i'

ir » f

11. Try, try again. This tim e, the relatively high tem perature, the top-down pressure from

successor, and some persistence on the part of the program (note the tim e lapse of 390 

codelets between the time when lengths were first noticed and now) have combined for 

success: a successor bond has finally been built between the group M  and the group J  on 

the basis of length. In addition, the group J  has now been given the length description 

5. This also came about as a  consequence of top-down pressure, safety in num bers, and 

persistence.

Mtplmcm m i it  l » t t r  fcy

 >

 >

i la ta

12. Top-down pressure a t work again resulted in a  2-3  bond now waiting to be built. This

tim e, building the  length bond will be much easier, since another one already exists in the 

same string, giving local support to the new proposed bond.

Notice th a t over 100 codelets have run since the previous screen dump: the tem perature 

is still relatively high and the program is still exploring a  number of different possibilities 

(e.g., trying to  build successor bonds among the letter-categories of the  target-string groups, 

or to  use the notion of alphabetic-posilion), none of which are panning out.
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to p lic a  l a t t a r - c a t a f a r ?  « f

- >

la t-> g r* ap  U t O f r n y •l«t->graap» • • • 
n w « i-> n H it ir mf

13. The second length bond has now been built in the target string, and a  grouping of the 

whole target string, based on the successorship bonds, is being considered. In the Slipnet 

(not displayed here), the activation of the nodes sameness and sameness-group have faded, 

since these concepts are no longer very relevant to what is going on; instead, successor, 

successor-gmup, and number-category have taken over as the  main organizing themes.

I ltp lie a  l a t U r - c i t « 9 «r7  o f

vhoiaOtAol*fro«p->9rmviweyrpOnecfrf
r ia fe t-> r lg k t

*3->3
■t»cc->*acc

^ h t u i - > a n c « t

| loploco tt—hor^cotogogy #fla t-> o ro w  lo t->T —a'
■ aa t-> lM « t wLi‘>wiA ‘1 l« t-> 9m r

r u H n a i i ir o f  a M a la ta

14. The whole-string group has been built in the target string and a  correspondence has 

been m ade between the two strings as wholes, with the slippage letter-category => number- 

category (the respective description types th a t the groups’ bonds were based on). The 

tem perature  has fallen to  the low value of 15, indicating the program ’s satisfaction with 

th is way of structuring the problem. The rule has been translated  according to  the slippages 

letter-category ^  number-category and letter => group to  yield “Replace number-category of 

rightm ost group by successor” , yielding the answer m rr j j j j .
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Although this run may have looked quite smooth, there were many struggles involved in 

coming up with this answer: it was hard not only to make a  single-letter group, but also to  

bring the notion of groxip-length into the picture, and to build bonds between group lengths. 

The program, like people, usually gives up before all these hurdles can be overcome, and 

gives one of the more obvious answers. Arriving a t the deeper answer m rr i i i i  requires not 

only the insights brought about by the strong pressures in the problem, but also a  large 

degree of patience and persistence in the face of uncertainty.

The moral of all this is th a t in a  complex world (even one with the limited complexity of 

Copycat’s microworld), one never knows in advance what concepts may turn out relevant in 

a  given situation. It is thus imperative not only to  avoid dogmatically open-minded search 

strategies, which entertain all possibilities equally seriously, but also to avoid dogmatically 

closed-minded search strategies, which in an ironclad way rule out certain possibilities a 

priori. Copycat opts for a middle way, which of course leaves open the potential for disaster 

(as can be seen in the occasional bizarre answers it gets). This is the price th a t must be 

paid for flexibility. People, too, occasionally explore and even favor peculiar routes. The 

program, like people, has to have the potential to  concoct crazy and farfetched solutions 

in order to  be able to  discover subtle and elegant ones like m rr ii i i .  To rigidly close off 

any routes a priori would necessarily remove critical aspects of Copycat’s flexibility. On the 

other hand, the fact th a t Copycat so rarely produces really farfetched answers demonstrates 

th a t its mechanisms manage to strike a  pretty  effective balance between open-mindedness 

and closed-mindedness, imbuing it with both flexibility and robustness.

These screen dumps show one way in which Copycat can arrive at m rr ii i i .  bu t there are 

o ther ways as well. For example, it could first notice the relationship between the lengths of 

the  R  and J  groups, which would then create very strong pressure for creating a  single-letter 

group. P art of Copycat’s flexibility rests in the fact th a t there are a  number of different 

ways in which which it can arrive a t each of the different answers to any problem. Not only 

are there a  huge num ber of microscopic pathways to a  given answer, but there are also a 

num ber of macroscopic pathways as well.
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a b c  =»• a b d , xyz  => ?

The set of screen dumps given below shows one way in which Copycat arrives a t the 

answer w yz after hitting the impasse brought on by its inability to  take the successor of 

Z. The two main mechanisms for resolving the impasse are (1) raising the tem perature, by 

allowing structures to be broken more easily (by breaker codelets and by rival structures) 

and allowing less-obvious pathways to  have a better chance of being explored, and (2) at 

the same time focusing attention on the apparent cause of the impasse: th e  z in xyz .

P art of this focusing of attention involves high activation of the node Z, which in turn 

spreads activation to the node last (Z  being the last letter in the alphabet). The activation 

of last greatly increases the probability th a t it will be attached to the z as a description. 

The node last also spreads activation to its neighbor first, and this, combined with the fact 

th a t alphabetic-position is now seen as a relevant way of describing objects, gives first a 

good chance to  be attached to the a. When this has taken place, a correspondence between 

the a  and the z (via a first =>• last concept-mapping) is much more plausible, given that the 

notions of first and last have been brought into the program’s perception of the problem. 

As was mentioned earlier, concept-mappings that take into account deep similarities (e.g., 

between first and last) are seen as strong, but this pressure conflicts with a  resistance to 

making slippages between deep aspects of the two situations. The idea is th a t there should 

be a  desire to  avoid slippage as much as possible, since a perfect analogy is one in which 

no slippages are needed a t all (e.g., “a b c  =>■ a b d , ijk  =» ijl” ). If one is forced to make 

slippages, then the more shallow the descriptions th a t slip, the better, since in making an 

analogy, one wants to preserve the essence of the two situations, which m eans th a t deep 

aspects should remain invariant. However, a  good analogy should expose deep aspects of the 

two situations th a t might not have been recognized before, in the way th a t the first ^  last 

concept-mapping exposes a deep similarity between a b c  and xyz . Thus in analogy-making 

there is a fundam ental conflict between a  resistance to  deep slippages and a  desire for deep 

concept-mappings.

The upshot is th a t in Copycat, it takes strong pressures (including high tem perature, 

which increases the chances of low-probability, risky slippages) to  force the  first => last 

slippage, but once it has been m ade, it is seen as quite strong, and its strength  increases 

even more when a  resolution to  the impasse begins to  fall into place as a result of it.
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The a -z  correspondence has to  fight against much of the currently existing structure, 

bu t if it  can prevail (and this is more likely a t high tem perature), it can trigger a complete 

restructuring of the program ’s previous perception of the strings: the  strings a b c  and xyz 

can be seen as opposites in both spatial and alphabetic direction, with the  c corresponding 

to  the x . This view leads to the slippages rightmost => leftmost and successor => predecessor, 

causing the program to  translate the original rule as “Replace leftm ost le tter by predecessor”, 

yielding the answer w yz.

lMlt mid nmit l M l t  mi at m o a ttll ft ft C A ft Dlit Ut ltt lot lot lot

1  "

b c -----> a b d

I  lMlt mid nmit■ Y Z■ Ut Ui
1  X y z ----->

Nmfcar of s* 4 o la ta  im so f a n  0

1. The program is presented with the three strings. Descriptions are displayed again here 

because there will be im portant additions to  them in the course of the run. The Slipnet is 

also displayed in some of the frames.

lU y lm  l i t U f c i t t y r y  o f rt l i i t a r  hj

mid >*t
lit Ut Ut Ut

 >

---->

fari ISOir af

2. 150 codelets into the run, everything is proceeding well, similarly to  the run on

“a b c  => a b d ,  y k  => ?” . There are two strong vertical correspondences ( leftmost =>■ leftmost 

and rightmost =>■ rightmost). Diagonal correspondences ( leftmost => rightmost and right

m ost => leftmost) are being fleetingly examined, bu t as in “a b c  =>• a b d ,  y k  =>• ?” they are 

very weak and of very low priority for further examination.
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ftftplM* h t t a r - c a t a f i r y  # f  m i t  U t t « r  by

lMltft
U t __

mid
• t l e t U t Ut u t

a*  >
iAola->Hhol«
yrMp->fmp

n s6 g rp -> « tcefn p
r l 9 h t-> r ig b t

voec->i«ce
U tc « t* > U tc « tlMlt

Xu t .. •II
I

♦ t l e t

--- >

ir i f  e« 4 « l« ta

3. After 240 codelets have run, things have been structured ju st as in the run on

“a b c  => a b d , y k  =>■ ?” , the tem perature is very low, and the program  is almost ready 

to  try  to  construct its answer.

I t f l a c i  l a t t « r - c i t a f « ( 7  i f i t  U ttm r  by

l M l t ■ ii.
u t u tu tu t u t

— >

u t L»t
r  ~

| I ty lM t  l i t t i r - c i t i y r y  o f r— « t  U t t r  by 

) M « r  i f  M 4 a U i«  h r  i

4. Since no slippages are involved in the correspondences between a b c  and x y z , the rule 

needs no translation. As it did for y k , the program a ttem pts to  follow the rule “Replace 

letter-category of rightmost letter by successor” , but h its  a  snag: Z  has no successor.
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lUplaca l*tt*r~cat«9«ry «f m s t  l«it«r by raccusor

utioi«->wfcol« 
fre«p->9roep 

cvccgrp-> neegiy 
right->right 
ncc-)nee 

liie«t->laic«t

l i o i t a> lM it  r w i t - > r M t t

IWMr m i mmtmlmXm rmm mm ftri 252

5. W o rk sp ace : In response to  the snag, the tem perature shoots up from 16 to 100, 

reflecting the fact th a t the program is now a t an impasse and th a t it has gone from being very 

certain about the quality of the structures it has built to  being quite uncertain and far away 

from an answer. The tem perature is clamped at 100, reflecting a “sta te  of emergency” which 

will not be revoked until the program  judges that progress (in the form of new structures) 

has been made. At this high tem perature, actions th a t normally have a low-probability of 

occuring (e.g., breaker codelets succeeding in breaking structures) are more likely to take 

place. But even at this maximum tem perature, decisions are not totally random ; the same 

kinds of biases exist a t high and low tem peratures. The biases ju st become more and more 

pronounced as the tem perature falls.

'H5
■ y _ .

44 1 1 t i i 1 4 s i J"'" 'T " 1 t
■ ■ ■
A B C D E F G H I J K L M N 0 P P R S T
i i ? 4 ' 114 4 100 100 loi 1( 21 190 SO 4

■ ■ ■ ■ • ■ ■ ■
u Y w X I z 1 2 $ 4 $ laeit rmot m il* ttotlo r tita t l in t U*t
41 100 If 144 144 104 1C4 104 100 24 100 100 190 100
■ m ■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■

prv4 net L » J or arp n  an »■ !» ltttar jz r sL or* ekleil la te a t IsaEid «W*1« i tr* M l in e h Meat «rvc«t

S lip n e t:  The program ’s other response to  the  impasse is to  focus on its apparent cause: the 

z. I t  does this by clamping the activation of all of the z ’s descriptors a t 100, thus making 

the z very salient and making these descriptors a  strong focus of attention. Notice in the 

Slipnet th a t the nodes Z, rightmost, and letter are all fully activated. As with tem perature, 

these clamps will not be released until the program determines th a t a sufficient amount 

of progress has been made towards getting out of this impasse. T hat is, every tim e the 

Slipnet is updated, the program checks to  see if any new  structures have been built, and 

if so, decides probabilistically, based on their strength, whether to  rescind this “state of 

emergency” .
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lU p ltc i U t i t f c i U f t y  a f  r —» t U t t r  by u c c i

wtioia->whols 
frovp->gro«p 

raec g r f -> «mc cgrg 
r ig k t-> r ig h t  
nec*>rm cc 

l a t c a t - > la tc a t

M n k ir  o f ce* e le ta  rwm »• l a r i  270

6. W orkspace: Several possible new structures are being considered, but none have yet 

gotten very far, and the original structures remain intact.

4 116 100 1 2 i 5 “T " } T ‘ J t 2 i — r ~ S I i

■ ■
A B C D E F c H I J K L M w 0 P 0 R s T
2 2 i 2 100 100 100 ioii U 0 u 30 10 43

■ ■ ■ ■ • • • • • ■
U V w X Y z l 3 3 A if 1*0 f t rw s t «144U •b e lt f lS « lt l e f t r ia b t ■ t t r r t
21 40 20 SO 101 100 11 100 100 24 100 100 130 100
• B B ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■

p n 4 cnee L a d r j r a l e t t e r orte* U N •b lea t I t te a t LsSMtJ i t n u l irv c ta bnicat m c i l

S lip n e t: The node Z  remains active and is spreading activation to the node last, which is

beginning to become activated.
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R t p l u i  l i t i i r - c i t « 9 t r 7  o f  n w i t  l s t t « r  by r a c n s s o r

jv w w w s^

«liola->«4iili 
fmp->9n«p ncc9rp*>mcgrp ri9kt->rlght 

f t  «uee->racc 
l« tC 4t-> l* tC «t

M o k tr  t f  e«A aU t« rmm f« r i  330

7. W o rk sp ace : The Workspace is still stuck in the original state. The proposed a -z  

correspondence (here lacking the first => last concept-mapping) is too weak to  have much 

chance of going anywhere, even at this high tem perature.

» 1 1 * 1 i 1 ~ r ~ 3 r ~ ~ i "" i J * 1 1 1 J a

A B C D E F C B I j K L H N 0 P 0 R 5 T
)

U

i

V

4a
■
w

■
X

109

■
y

119

■
z 1 z z 4 5

100

■
1*011

100

■
m o l

a
■

h i i k

100

■
aholi

12

92Ml*

32
■

120

■
n o b t

22
•

l i n t

103

■
U i\

*7
■

e n i

100

■
race

u
■

I L S B  J

109

■
n  i t i»  «rp

III

■
l i t t i r

log

■
J S S .

le t

■
U h

too

■
e k fe jt

100

■
lstcst

22
■

100

■
ib h H i

too

■
si not

100

■
1tracts

190

■
Meet

too

■
m et!

S lip n e t:  The node last is now fully active, and has spread activation to  first and to

alphabetic-position, which is also now fully active and is posting top-down description-scouts 

to try  to make descriptions of this type.
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JUplaca I t t U r - c t U f t r y  of rw « t  l i t t t r  by n c i

dioii-Moh 
fTMp’>9nop «nccg}f-‘>«icc9TT 
r iq fc W rig k t  

f n c e o n c c  
1mte a t-> 1 •tc « t

l a e t t - > lM i t  r M i t - > r a « f t

Hwfcer of c e d a la ta  r w  i t  i i r i  345

8. W o rk sp a c e : A fter 345 codelets have run, last has been added to  the z ’s list of descrip

tions as a result o f top-down pressures from the activation of last and alphabetic-position.

too 113 110 4 m"~k 3 3 3 ■J' ~ T — i 3 “ J 3 I I 3
■ ■ ■

A B c D E F C H I J K L W w 0 P 0 R S T
3 3 1 46 53 101 100 100 100 40 15 43 130 33 100

■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■
U V w X T 5 1 2 4 $ m * t m e t n u u ahole s la t le l e f t n rfJ t la s t
39 100 37 too 100 100 101 100 100 23 100 IOC 100 100 100
■ ■ ■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■ ■

i PrtO n e e L s s _ pr orv n  o n " 1 1 l e t t e r l l a •m •b te j t le te a t ■Wf* e tn a s i lr a c ta tandcat F K U

S lip n e t:  In the Slipnet, the node first continues to  gain activation from last.
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l e p le c e l r t i e r - c e te g o r y  o f m i  t  l t t U r  by twccosMor

N o k tr  o f co4olot«  m s  so fo r t  915

9. W o rk sp a c e : 915 codelets into the run (570 codelets after the previous screen dump), 

after much thrashing by the program and little progress, several breaker codelets have 

succeeded in breaking some structures, though the skeleton of the original successorship 

structure  is still in tact. (Breaker codelets have a good chance of running and breaking 

structures only a t high tem peratures.) As was detailed in Chapter 3, both bottom -up and 

top-down codelets continue to  be posted to  the Coderack as the program runs. W hat have 

they all been doing? Most of the codelets tha t run are redundantly working on building the 

same structures th a t already exist. This redundancy is an essential part of th e  program; 

i t  allows statistics, rather than any single codelet or small set of codelets, to control what 

happens on a large scale. O ther codelets are trying (and so far, failing) to  build new 

structures, and yet others are attem pting (and occasionally succeeding) to break existing 

structures. A large number of the codelets are focusing again and again on the z, which is 

very salient, now having four  fully active descriptors. Often a t this point w hat happens is 

th a t the  rule is broken and the weaker rule “Replace letter-category of rightm ost letter by 

D ” is built (this is more likely than usual, due to the high tem perature and lack of progress 

on o ther fronts), and is used by the program to get the answer x y d .

“ I* \Yi “TO “ i —J— 1 t i ~ T ~ “ I"" i “ T" i i i 1 ~ I -
■ ■ ■
A B c D E F c H I J K L H N 0 P 0 R S T

• 00 101 in 100 100 41 14 190 100 110
■ ■ ■ ■ ■ ■ • ■ ■ ■

u ▼ w 1 I z 1 2 ? 5 i w t llftfflt Ifft n » L ftir t- MIL.
110 too tot itt 00 100 101 100 ts 100 100 100 100 100

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
or*4 u m »r m *1 m "  r » ltttcr v m m •klut utft IsbeslJ‘.W « itrtts l ln e t i kokit m c d

S lip n e t :  The node last has continued to spread activation to first, which is now fully 

activated.
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K gpltci l> ti« r-c > ttg ifY  o f r e a c t  l« t t « r  by re c e i

>»t
U t U t U t u t

I

•at

u t

i
• • t ->

»—U r  i f  N b l i t a  m  • •  f « r t  1M5

10. At codelet-step 1065, a bit of restructuring is being tried out: a  b - a  predecessor bond 

has broken the a -b  successor bond.

pUplac^Tattar-cata^rya^raaa^latta^by

SS

I

ut
U tU t

l a s t
is t■id

U t1»

la t~ > la t
la o s t-> U a s t

U t - > la t
■ ld->vld

M akar i f  a i c l c i f  n a  • •  f a r t  1200

11. The program ’s view of both strings is in the m idst of being restructured, gradually 

changing from right-going successorship to left-going predecessorship. In the hopes that 

th is is a  promising new course, the program has released the clamp on the tem perature, 

which has fallen to the value indicated by the estim ated quality of the existing structures 

(here, 52). Meanwhile, the descriptor first has been added to  the a ’s list of descriptions.
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l lc p lw t l i t i t f c i t t f i r y  of rmmst l t l i i r  by w c t u o r

first
•«t

1 s t 1 s t

— >

»

I
a id •st

JLU .

---->

M r  i f  M U t s  i «  • •  f a r t  1305

12. W o rk sp ace : A new viewpoint has taken over, with both strings now grouped as 

left-going predecessor groups, and with the low tem perature reflecting the program’s high 

assessment of this new way of structuring things.

it 41 1 4 0 9 ' * 1 i "1 ~ i ~ i" k 1 i 1 1 ""I 1 I

A B C D t F C B I J K L M N 0 P r R S T
i J 43 S3 53 44 Jo 100 i 10A 10 130 50 5) i i

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ e
u V W x y 2 I 2 ? 4 $ lrait rrait •14114 M le SlMlf i w itrrt

109 41 100 41 100 100 100 100 100 30 04 100 100 190 100
■ ■ ■ ■ ■ ■ ■ ■ ■ • ■ ■ ■ ■ ■
urra race L * -l J fr  W *■ OH «  or* letter t n n lien ObtCJt leteet lass*!llSfcMt itn e i lirvctB M eet •m e t

S lip n e t: The nodes first, last, and alphabetic-position have decayed considerably, and these

descriptors are thus no longer relevant (indicated by the  fact that the descriptors are no 

longer in boldface), and are now being ignored.
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l U p l w  U t U r - c a U g r r  o f rm»Mt UtUr by tm c c w o r

lint
lMlt Mid.

=^£^2= l«t•t.

--- >

• t . .U t !• t
---->

| ltopl»ct l<ttir»cat<g>ry oi r—at ltttor by ucctnor

>r «i

13. The program has used this new, seemingly good set of structures to a ttem pt once again

to  get an answer, but surprise, surprise: the same snag appears again. One could certainly 

say th a t the program shows a  lack of common sense for having expected that this trivial 

form of restructuring could resolve the impasse. But it could also be said th a t people often 

get pulled into mental dead-end paths whose futility should have been obvious in the first 

place. Once one gets started  along a  certain mental pathway, it  is sometimes hard to avert 

it; obvious ways of viewing situations (such, as trying to  take the successor of Z  here) act 

like attractors; it is hard to  avoid them. In general, this is a  useful feature of perception, 

because in real life, the most obvious view is usually the right view, so it is good to  be 

quickly drawn into it. However, in some situations, this results in behavior like th a t of 

the program on this problem, where you are drawn again and again into the same wrong 

way of looking a t things, perhaps with slight variations. Unfortunately, this happens to 

the program far too often; as will be discussed in the next section, during an average run 

on this problem, Copycat continually gets into states th a t cause it  to hit the same snag 

over and over again (on average 9 times before getting an answer), because it lacks some 

essential mechanisms for remembering and watching its  own behavior. The need for such 

“self-watching” mechanisms will be discussed further in C hapter 6.
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f i r s t

w v w w ^
AoliO^ala
fr«*p->9rraprradyrf^N^fii

. lsft->l«ft 
1st

Utc«(<>l«Uat

“"l«t->l«t
n#it>>rwit

14. Now the program  is back a t “square one” . The tem perature has shot up again and 

the z ’s descriptors have again been clamped in response to  the snag. The a  and the z 

are now both  quite salient (since they each have four fully active descriptors), and are thus 

being chosen very often by codelets. Now a  correspondence between them  is more plausible, 

because of the possibility of the concept-mapping first => last. As was pointed out earlier, it 

is initially difficult to make this slippage because of the conceptual depth of the descriptors 

involved (deep slippages are harder to  make than shallow ones), but once it is made, it 

is seen as fairly strong (deep concept-mappings are stronger than  shallow ones). An a -z  

correspondence has been proposed and has passed its strength test (thanks in part to  the 

h igh.tem perature, which makes intrinsically unlikely events more likely), bu t it still faces a 

lot of com petition from the still quite strong currently existing structures. Note th a t even 

a t high tem perature and in this desperate condition, it is still essential for the program to 

resist unusual notions—they should be allowed to be seriously considered only under strong 

pressures. Otherwise the program would be wasting all its tim e exploring unmotivated 

crazy possibilities.
| lyittrcitaygy if r—t ls t t r  fcy itcwuir |

l M l tK1«4

first

■hoi«-)shols

tr*4frr->pr«4fr»
. lsft~>l«ft
It

t L J U
Mstar H Mdtaist* , ia  fo r i 1S00

15. The a - z  correspondence did not manage to defeat the existing rival structures, and it 

has fizzled.
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lU p lm  l i t U r - c t t < g t r y  o f  n w i t  l « t f  r  by m c t n o r

f i r s t

l**t
r M i t

‘l«t->l«t------------
a ld -> a ld  m it< '> n w > t

H o M r •f aa4alata m  am imrt 1U 0

16. Some structures have been broken, and a bit of restructuring is being tried again: this 

time an a - b  successor bond defeated the b -a  predecessor bond. A nother attem pt is being 

made to build the a -z  correspondence (the a  and z remain quite salient, so many attem pts 

are being made to  use them in structures), but it still faces strong competition from the

existing c -z  correspondence.

lU p lw a  l« t t o r - c i t « 9 * (y  c f  r a a i t  l « i t « r  by

f i r s t
l M l t mi

1 s t1 s tla

— >

>at
• la t

---->

17. Thanks to  the combination of the strength of the first => last concept-mapping, high

tem perature, and also to  statistics (tha t is, a large number of tries), th e  a -z  correspondence 

has beaten the normally far stronger c -z  correspondence (though the la tte r is being con

sidered again). The creation of this fairly strong new structure has caused the tem perature 

to  be unclamped. The new correspondence has two slippages: leftmost => rightmost and 

first => last, and in response to  these instances, the node opposite has suddenly jumped into 

prominence. The existence of the a -z  correspondence and the activation of opposite will 

make the proposed c -x  correspondence (before, too weak to  have much of a  chance at all) 

much more plausible.
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lU plact l i t U r t t i i y r y  o f  r w t  l t l i r  by

l i t U tU t

 >

a i t mt

.U i.

---->

• •  f a r :  1740i r  • {

18. The competing proposed c -z  correspondence has fizzled. Also, partially in response to

the new diagonal correspondence, the initial string is being viewed as consisting of right- 

going successor bonds—the opposite of the bonds in the target string. However, there is 

still some competition lurking in the form of a proposed group threatening to  turn the 

whole initial string around so that it is in the same direction as the target string. The c -x  

correspondence has passed its strength test and is waiting to  be built.

f i r s t
l m tk >rt

U U t U tu t

— >

a l l i*t
U t

--- >
~” U t - > l« t

i l r v t - > l « i t ir »f n4»Ute

19. The c -x  correspondence has been built, and the proposed predecessor group in the

initial string has fizzled. The tem perature has fallen to  33, reflecting the estim ated promise 

of these new structures.
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M y l x i  l> tU r - < * te f i ry  s f

first
lMltA
l i t . ,

•id.
4st

>»t
1 s t 1 s t 1 s t 1 s t

 >

ail

 >
— l s t - > l « t  
l a s c t - > r a s s t  
f l r * t - > l s s t

20. The initial string has now been grouped as a right-going successor group, opposite to

the target string. This turnaround was m ade possible by the diagonal correspondences. 

There is a whole-string group-to-group m apping being considered.

" ^ p t o y l « c s l s t t s r - c s t S 9 s r ^ s 3 ^ a s s t Ml s t t s ^ ^ ^ s a c c s s » s ^

f i r s t
la o s t

ls t-> ls «
ald->«ld

WWV^WV^

*h«ls->"fcsls 
f r s * p -> g ra *  fieefryOprtdfrf

~ . t  « e e -> p r« *
2 l« tc s t - > l s  te a t

n u - o
l s t - > l s t ---

r a » r t -> la » f t
— ls t~ > l s t  
l a s s t - > r a s s t  
f i r s t * > l s s t

| i s p l s s t  l s t i s r - c s i s ^ s tT  s f  l a s s t  l s t t s r  by p rsd s c s is s r  | 
s r  s f  s s d s ls t s  m  s s  f s r :  1916

21. The whole-string group-to-group correspondence has been built, with slippages 

successor-group => predecessor-group, right =*► left, and successor => predecessor. The last, 

along with the slippage rightmost => leftmost, is used to  construct a  sweeping translation 

of the rule: “Replace letter-category of leftmost letter by predecessor”, yielding the  answer 

w yz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



151

4.4 Summary

The series of screen dumps presented in this chapter have hopefully given the  reader a 

better idea of how all the mechanisms described in C hapter 3 work together to produce a 

system th a t can flexibly adapt its concepts to  new situations th a t it is presented with. As 

can be seen from the screen dum ps, Copycat s tarts  from a standard  initial sta te  on each 

new problem, but as the program  runs, it discovers unique aspects of the problem, bringing 

out certain associations while downplaying others, allowing it (usually) to  home in on a 

suitable set of relevant concepts and avenues of approach. In addition, when the system’s 

original approach leads it to  an impasse, it is able to  fluidly restructure its perceptions to 

find a be tte r way of looking at things.

The screen dumps have also hopefully made clearer the fundam ental roles of nonde

terminism, parallelism, non-centralized and simple perceptual agents (i.e., codelets), the 

interaction of bottom -up and top-down pressures, and the reliance on statistically emergent 

(rather than  explicitly program med) high-level behavior in achieving these abilities. The 

claim being made for this model is that these are also fundam ental features of high-level 

perception in general.

The result of all these features is an emergent parallel terraced scan of possibilities, in 

which a  fight for cognitive resources takes place, and in which one point of view gradually 

(or sometimes rapidly) comes to  dominate. Nondeterm inism  pervades this process. Large, 

global, deterministic decisions are never made (except perhaps towards the end of a run). 

The system relies instead on the accumulation of small, local, nondeterministic decisions, 

none of which alone is particularly im portant for the  final outcome of the run. As could be 

seen in the screen dumps, large-scale effects occur only through the statistics of the lower 

levels: the  ubiquitous notion of a  “pressure” in the  system is really a  shorthand for the 

statistical effects over tim e of a  large number of codelets and of activation patterns of nodes 

in the Slipnet.

The program  starts  out exploring possible structures with a high degree of randomness, 

and lets bo th  a priori biases and information accum ulated along the  way guide the  evolving 

search. The idea of the parallel terraced scan is to  try  to  allocate tim e to  different paths 

of exploration in proportion to  their estimated promise. As is illustrated by the two-armed 

bandit problem discussed earlier, it  is a  bad idea to  devote all of one’s resources to what 

currently seems to  be the best pa th  if one has very little  information on which to base one’s 

estim ate of quality. It would also defeat the purpose of the parallel terraced scan if the
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promise of every single possibility had to be evaluated before any further exploration could 

be done—there are too many possibilities to  be evaluated. The best strategy is to  explore 

many different possibilities (without excluding any a priori), continuously adjusting the 

speed of exploration of each possibility as a function both  of moment-to-moment estimates 

of its promise as it unfolds and of the global sense of how reliable those estimates are. 

In Copycat this effect is an emergent one, achieved statistically  though a  large number of 

tem perature-controlled nondeterministic choices.

As was seen in the  screen dumps, as structures are formed and a global interpretation 

coalesces, the system gradually makes a  transition from being quite parallel, random, and 

dom inated by bottom -up forces to being more deterministic, serial, and dominated by top- 

down forces. We believe th a t such a  transition is characteristic of high-level perception in 

general.
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C H A P T E R  V

C O P Y C A T ’S P E R F O R M A N C E  O N  V A R IA N T S  O F  T H E  F IV E  T A R G E T

P R O B L E M S

5.1 In tro d u c tio n

In this chapter I present the performance of the program on 27 variants of the five target 

problems. As the previous chapter demonstrated, Copycat models how various pressures 

in teract, compete, and are resolved in the process of interpreting situations and making 

analogies between situations. As will be seen, the variants given here constitute families 

of analogy problems th a t explore in greater detail certain of the issues in perception and 

analogy-making th a t have been discussed in this dissertation. Copycat’s behavior on these 

problems demonstrates how it deals with these issues, how it responds to  variations in 

pressures, and how it is able to fluidly adapt to a  range of different situations (starting  from 

exactly the same state on each new problem).

There are a  huge number of ways in which the original five problems can be varied. 

For example, consider ua a b c  => a a b d , y k k  =>• ?”, a  variant of “a b c  ^  a b d , y k  =J> ?” , 

in which the doubling of letters is m eant to alter the “stresses” on various locations in the 

strings a b c  and y k . One effect this might have is to  make the a  and the  k  more salient 

and more similar to  each other, thus pushing towards a  diagonal m apping in which the 

two double-letters are seen to correspond. Another variation would be to  triple the  letters 

instead of doubling them , which would again slightly alter the pressures, perhaps increasing 

the salience of the sameness groups. Many other variations in this vein could be made as 

well.

153
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Another way of m anipulating pressures is to  include distinguished letters—a  and z—in 

strategic spots, since it is possible that they will be seen as more salient than other letters 

and thus a ttrac t more attention, changing the pressures in the problem.

Another technique is to alter the relational fabric of a  string or of a  segment of a  string— 

specifically, to  use successor relations where sameness relations existed, or vice versa. A 

variant of this technique is to  get rid of a  fabric altogether, or to  introduce a  fabric where 

there originally was none. Yet another technique is to  experiment with strings of different 

lengths.

Another very im portant technique is to  manipulate pressures by introducing or delet

ing same-category letters. These kinds of variations were illustrated in problems 1 a-d  in 

Chapter 2. For example, given the change a b c  =$> a b d , the target c d e  is similar to the 

target y k  except th a t it contains a  c, which might a ttrac t special attention because of its 

identity with the  c of a b c . By including more or fewer such letters, or by m anipulating 

their positions inside the strings, one can create a  vast spectrum of differing pressures.

Each of these pressures taken singly can provide a wealth of variants on a  given problem, 

but when several of them  are used in conjunction, one can create a  gigantic family of 

problems forming a  vast halo surrounding an original problem. This chapter simply surveys 

a small sampling of such variants on the five target problems, revealing how the variations 

in pressures affect the program ’s behavior.

Each variant highlights and tests some aspect of the program ’s behavior, and the sum 

total of all these results gives a  clear picture of the program’s abilities, thus further address

ing the artificial-intelligence criteria discussed in Chapter 2. The results in this chapter also 

give a  sense of w hat kinds of answers Copycat tends to  prefer. A bit anthropomorphically, 

these results can be said to  illustrate the program ’s “personality” .

Even though the variants are divided into five sets corresponding to  the five target 

problems, in m any cases the division is somewhat arbitrary, since many of the problems 

could be considered variants of more than one of the five original problems.

The results are presented in the form of bar graphs similar to  the ones given in the 

previous chapter. Copycat was run on m ost of the problems 200 times (except in a  few 

special cases, as explained below)—enough runs to  get a set of reliable statistics for the 

program ’s behavior on each problem (which can then be compared with the results on the 

original problem ), though in some cases not enough runs to  get instances of some of the 

rarer “fringe” answers th a t came up on the 1000-run results given in the previous chapter
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(though many fringe answers do appear). The bar graph for the appropriate one of the 

five target problems is displayed again a t the beginning of each section, so th a t it can be 

referred to  more easily.

Most of these variants were included in the surveys I gave to  people, and the results for 

each problem are given here along with the discussion of Copycat’s performance on that 

problem. For some of the problems given to  people in the survey, an a ttem p t was made to 

reduce the influence from previous problems by giving a  version with different letters when 

the letter-categories made no difference (e.g., “b e d  =>• bee , x lg  =>• ?” was given instead 

of “a b c  =*• a b d , x lg  =*• ?” ); for clarity’s sake, I transla te  these back to  the original letters 

when giving the results. Different groups of people were given different sets of problems (also 

as an a ttem p t to minimize cross-influences among similar problems), so different problems 

were answered by different numbers of subjects. The results from this survey can be used in 

two ways: first, as in the previous chapter, to  compare the range of Copycat’s answers with 

those of people, and second, to  see if the different pressures in the variants affect people in 

the same ways th a t they affect Copycat. Of course, such a comparison should be made at 

the level of general tendencies rather than th a t of specific frequencies.

Perhaps the best way to  read this chapter and judge Copycat’s performance is for readers 

to try  each problem themselves before looking closely a t Copycat’s answers, and to  see how 

well Copycat did, based on their own judgm ent of w hat makes for a  good or reasonable set 

of answers to  each problem.

5.2 V a r ia n ts  o f  “a b c  =>■ a b d , ijk  ?”

The bar graph for “a b c  =» a b d ,  i jk  => ?”

98*

Problem: abc —> abd, i jk  •—> ? 
Total Runs: 1000

19 1

i j l i j d i j J
tT.Tnp: 17 Ar.Ttap: 23 fcr.Tnpi 4*
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Variant 1: a b c  =»■ a b d , i jk lm n o p  => ?

182
Problem: abc —> abd, ijklmnop —> ? 

Total Runs: 200

s 4 4 4 1

l jk lw ip q ljk a n o p q i jk ln o p q i jk la o p q i  jk lw nod
Av.Ttap: 48 Av.Tttp: 42 Av.Tttp: 45 Av.Ttap: 48 Av.Tttp: (2

i jk lw io q  
Av.Ttap: 2 t

In this variant, the length of the target string is extended. This shouldn’t affect Copy

c a t’s performance on this problem very much: when successor bonds begin to be built in 

the target string, top-down forces should cause the program  to quickly see the entire string 

as a  successor group, ju st as in the original problem (which I will abbreviate as y k ) . As can 

be seen from the bar graph, the proportion of instances of the “Replace rightm ost letter 

by successor” answer (y k lm n o q )is  almost as high as in y k . The average tem perature for 

this answer is somewhat higher than  y l for two reasons: here, there are many letters in the 

target string th a t don’t correspond to  anything in the initial string, and, since the target 

string is longer, the  program doesn’t manage to  group the whole string here as often as it 

did in y k  (74% of the time during the 200 runs here versus 93% of the time in y k ). The 

bar graph also shows th a t Copycat gets a variety of low-frequency fringe answers, reflect

ing various parts of the target string that were grouped and seen as corresponding to  the 

“rightm ost letter” . All the fringe answers except y k lm n o d  have this property. As will 

be discussed in the  next chapter, this is one of the program ’s problems: when given long 

strings, it occasionally makes small groups and does not merge them  together in to  larger 

groups.

In the survey on people, 10 subjects answered this problem , and the results were much 

the  same as those on the  original problem, w ith 8 y k lm n o q ’s, 1 y k lm n o d , and also 1-3 

instances each of a  few answers involving descriptions Copycat cannot make, such as “third 

le tte r” or “rightm ost le tte r of each group of three” .
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Variant 2: a b c  =» a b d , x lg  => ?

197

Problem: abc —> abd, xlg 
Total Runs: 200

2 1
xld ylg

Av.Ttap: 56 At .Tn p : 71

In this variant, there is no relational structure in the  target string. As can be seen 

from the bar graph, this results in higher average tem peratures for all the answers, but the 

“Replace rightmost letter by successor” answer (x lh ) still wins by a  landslide, since this 

rule is very strong compared to “Replace rightm ost le tte r by D ” or “Replace C b y  D ”, and 

trium phs even a t these relatively high tem peratures. The answer x ld  has roughly the same 

proportion of instances here as ijd  had in the original problem. Here there is also a  strange 

answer, y lg . th a t came from a rightmost => leftmost m apping between the c and the x  

(strange answers like this one are more likely here than  in ijk  because in this problem the 

tem perature  tends to  stay much higher than i t  does in ijk).

Even though the average tem peratures are higher in this variant, there is not a large 

difference between the tim e taken by Copycat to  get an answer to  this problem and to  ijk: 

th e  average num ber of codelets run in y k  was 290, and here, 332. This is because (as was 

described in Chapter 3), when the program “senses” th a t there is probably no structure to  

be found, as in the target string here, it is more willing to  give up and to  give an answer 

even though the tem perature is high.

In the survey on people, 10 subjects answered this problem , and the results are again 

much the same as those on the original problem, with 10 x lh ’s and 1 x ld .
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Variant 3: abc => abd, xcg => ?

Ar.Toap: 43

Problem: abc —> abd, xcg —> ? 
Total Runs: 200

s 1

xdg xcd
Ar.Teap: 53 Av.Taip: 46

This variant is similar to Variant 2, but here the target string contains a c, so there 

should be more pressure than in the original problem to describe the a b c  => a b d  change 

as “Replace C b y  D ”. This pressure did cause the program to construct this rule and get 

answer x d g  on five out of 200 runs (this rule was not used even once in 1000 runs on ijk, 

though it is possible in principle). The presence of a c in the target string here makes the 

rule “Replace C by  D ” stronger than the rule “Replace rightmost letter by D ”, even though 

the former rule contains descriptors of lesser conceptual depth (i.e., C  versus rightmost). 

There are several reasons why the answer x d g  does not show up even more often: (1) the 

C=> Ccorrespondence, though fairly strong, is still quite a  bit weaker than  the rightmost => 

rightmost correspondence (since the latter has greater conceptual depth); (2) in addition, 

the C  =► C  correspondence has to fight against the strong “Replace rightmost by successor” 

rule, which creates pressure for the c in a b c  to  correspond to  the rightmost letter of xcg 

rather than  to  the c  in xcg; and (3) the C  =» C  correspondence prevents the b  from 

m apping onto anything in the target string, whereas the rightmost => rightmost view allows 

a  correspondence between the two strings’ respective middle letters.

In the survey, 33 subjects answered this problem. As was the case for Copycat, the 

results from people show the pressure of the c in the  target string: here there were 4 x d g ’s, 

reflecting the rule “Replace C by  D ”y whereas there was only one ijk  given for the original 

problem, which I am not even sure reflected th a t rule. It seems that in this context, people 

(like Copycat) find “Replace C b y  D ” to be stronger than  “Replace rightmost letter by D ”: 

the answer x c d  was given just twice here. The answer x c h  was given 29 times, showing that 

even under these pressures, most people, like Copycat, still considered the rule “Replace 

rightmost letter by successor” to  be the most immediate.
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Variant 4: abc =»• abd, abed => ?

184

12

Problem: abc —> abd, abed —> ? 
T ota l Runs: 200

4

abca
Av.Taap: 17

abdd
Av.TtBp: 30

abed
Av.Ttap: 32

Here there is a stronger conflict—the very same three letters appear in the initial and

target strings, so it is tem pting to  map a  to  a , b  to  b , and c to  c, and to answer a b d d . 

This additional pressure for the “Replace C  by D ” answer is reflected in the bar graph; 

it  was given 12 out of 200 tim es, more often than  in the previous two variants. B ut the 

same pressures discussed for those variants also come up here, as well as the strong pressure 

to  see the  initial string and target string m ap on to  each other as wholes, since both  

can be perceived as successor (or predecessor) groups. The result is a  still overwhelming 

predom inance of the “Replace rightm ost letter by successor” answer, abce . There are also 

4 instances of the “Replace rightm ost letter by D ” answer, yielding (coincidentally) a  string 

identical to  the target string (Copycat doesn’t notice this).

In the survey, 18 subjects answered this problem. As was the case for Copycat, the 

results from people seem to  reveal pressures resulting from the presence of instances of 

A , B, and C  in the target string: here there were 7 a b d d ’s. However, I can’t  be sure 

of this, since I don’t know whether people were using the rule the rule “Replace C  by 

D ”, “Replace third letter by successor” , or both  (one subject specified both rules for this 

answer). The “Replace rightm ost letter by successor” answer a b c e  was (as for Copycat) 

the  m ost common; it  was given 14 times. The answer a b e d  was also given once, though 

I don’t  know for sure what the  justification was. Two other answers, a b d e  and a b e f  , 

were each given once. Both reflect the rule “Replace the third and following letters by their 

successors” , interpreted in different ways.
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Variant 5: abc =» abd, cde =» ?

Problem: abc —> abd, cde —> ? 
Total Runs: 200

In this variant, as in \jkT the target string can be perceived as a  successor (or predecessor) 

group, bu t there is a C is on the left, which generates a  bit more pressure than  in the previous 

variant for the program to make a  c -c  correspondence, since it would have both a  C => C  

and a  rightmost => leftmost concept-mapping. If this correspondence is made, then there 

is considerable pressure to map the initial string to  the target string as a  whole, but in 

opposite spatial and alphabetic directions, yielding answer b d e . This pressure is reflected 

in the  bar graph: although most of the tim e the program answers c d f  ( “Replace rightmost 

le tte r by successor”), there are also a  fair number of b d e  answers. The average tem perature 

for these is roughly the same as for cdf: even though rightmost =}► leftmost and successor => 

predecessor slippages have to  be made in order to get b d e , the strength of the C => C  

m apping balances these slippages, so all in all b d e  is seen as a  strong answer. There are 

also some instances of d d e , which came either from the rule “Replace C b y  Dn, or from the 

rule “Replace leftmost le tte r by successor” (i.e., the c -c  correspondence was made, but not 

the whole-string correspondence and therefore not the successor =>• predecessor slippage). 

Also there were two instances of c d d , which came from the rule “Replace rightmost letter 

by D ”.

Overall, there are about three times as m any C=> C  answers as in the previous variant, 

illustrating  the stronger pressure here to  map the two c ’s. Many people (including myself) 

do not feel that b d e  is any more reasonable here than  a b d d  was in the  previous variant; I 

th ink  th a t the program is too  willing here to let many things slip for the  sake of making the 

C  => C  correspondence, and my feeling is th a t the answer c d f  should be even more frequent 

than  it is.

Though only a  small num ber of people in the survey answered th is problem, the ones 

who did with me and no t with Copycat. They did not appear to  feel much pressure exerted 

by the  C  in the target string: c d f  was given 10 times, and one person also gave the answer
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cd d . This is similar to  the results on the original y k  problem. No one gave b d e  or dde , 

though I think these answers would come up if there were more subjects in the survey.

Variant 6: a b c  =» a b d , c ab  => ?

Problem: abc —> abd, cab —> ? 
Total Runs: 200

cac ebe cabc cad
Av.T»p: 45 AT.T«ap: 47 Av.Taap: 32 AT.Ttap: 51

As in the previous variant, the  target string here has a  c on the  left, and as in the 

a b e d  variant, it also contains the same letters as the initial string, so there is some pressure 

to  map the two a ’s, two b ’s, and two c ’s, and the pressure is increased by the additional 

rightmost => leftmost concept-mapping. Moreover, the target string is not in alphabetical 

order (in either spatial direction), so no whole-group m apping can be made. Thus the 

C=S> C  m apping in this variant does not face the strong competition from the rightmost => 

rightmost correspondence th a t existed in the a b e d  variant and in the  c d e  variant. In both 

of those, the same-direction whole-string mapping strongly supported the rightmost => 

rightmost correspondence, but there is no such support here. This can be seen in the bar 

graph: there are m any more instances of the C =$■ C  answer (d ab ). However, in spite of 

these pressures, there are overall still more rightmost => rightmost answers than  C => C  

answers: the straightforward cac, as well as eb e , for which the program  grouped the a  and 

b  in the target string and saw this group as the string’s “rightmost le tte r” . This shows the 

strength of the  more abstract rule “Replace rightm ost le tte r by successor” over “Replace C 

by D ”, even in the  face of much pressure for the latter.

There is one instance of the usual “Replace rightmost letter by D ” answer (cad ) and 

also one instance of a  strange answer, ca b c , which came from a  view in which the target 

string was grouped as c -a b , the c being seen as a  group of length 1, and the a b  a group 

of length 2. As in m r r j j j ,  the program replaced the length of the rightm ost group by its 

successor, yielding c a b c , even though the pressures here do not seem to  be sufficient to 

w arrant building a  single letter group and bringing in the notion of group-length. This 

happened only once in 200 runs, b u t I think even th a t is too  often; the  program  is a  bit too 

willing to  perceive single-letter groups.
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In the survey, 10 subjects answered this variant, and it seemed to  have similar effects 

on the subjects to  those it had on Copycat: there were 5 d a b ’s, 5 c a c ’s, and 1 cad . Thus 

in this context, people (like Copycat) were much more likely to  make the C  => C  mapping 

than  in the previous variant.

Variant 7: a b c  => a b d , cm g  =» ?

13B

l a
cnh ding

Ar.Tnp: 42 A t .Ttap: *

Problem: abc —> abd, cmg —> ? 
Total Runs: 200

dmg cod
A t .Trap: 42 A t .Tup: 45

Here there is a c on the left in the target string (in which there are no relations between 

letters), but unlike in cab , there are no exact letter-category matches for the a  and the b. 

This increases the pressure to  make the rightmost => rightmost mapping rather than  the 

C => C  m apping. This can be seen in the bar graph, where the C  =>■ C  answer (d m g ) is 

less frequent than in the  previous variant.

Eleven subjects answered this problem, and every single one of them  answered cm h. 

No other answers were given, though I believe that the other two answers would come up if 

there were more subjects in the survey. As was the case for Copycat, people felt considerably 

less pressure here than in the previous variant to map the two c ’s, though it seems that 

here it was hardly felt a t all by people, whereas Copycat still gave the answer d m g  fairly 

often.
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Variant 8: abc => qbc, jjk =» ?

201

Problem: abc —> qbc, ijk  —> ? 
Total Runs: 200

Since A and Q have no relation in the Slipnet, the possible rules here are: (1) “Replace 

leftmost letter by Q ”, which yields answer q jk  (the only answer given by Copycat during 

these 200 runs); (2) “Replace first letter [of the alphabet] by Q ”, which would yield ijk  

(this rule, never used during the 200 runs, is possible only if the a  is given the description 

first); and (3) “Replace A  by Q ”, which would also yield ijk  (this rule is very weak, and 

was never used in the 200 runs).

Ten subjects answered this problem. Six answered q jk , and the other four gave illegal 

answers—either answers th a t involved counting long distances in the  alphabet (even though 

subjects had been instructed not to  do so) or answers using the rule “Replace the leftmost 

letter by any letter” .

Variant 9: a a b c  => a a b d , ijk k  => ?

115

Problem: aabc —> aabd, ijkk 
Total Runs: 200

i j k l j j k k h j k k j k k k d j k k l j k d
Ar.Ttap: 11 Av.Tnp: 45 Ar.Tnf): 19 At .Tm p : 45 Ar.Tnp: 56 Ar.Tasp: 49

Here there is a  double a  on the left and a  double k  on the right, creating some pressure 

for the program to  see a  mapping between the two double-letters, and on the basis of that 

m apping, to change the leftmost le tte r i instead of the rightm ost group kk  or rightmost 

le tte r k. The i could be changed in two ways: either by replacing it by its successor (jjkk ) 

or, based on the diagonal ( leftmost => rightmost) correspondence, seeing the two strings as 

going in opposite alphabetic directions and thus replacing the i by its predecessor (h jkk ). 

Even with this pressure to  change the i, the “Replace rightmost group by successor” answer
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(y ll)  is still the  most common answer and the “Replace rightmost letter by successor” answer 

(y k l)  is second, indicating the strength of the leftmost =S> leftmost, rightmost => rightmost 

view, even here. However, the pressure is felt to some extent: j jk k  has a  good showing and 

h jk k  has some representatives as well (and also has by far the lowest average tem perature). 

This is to be contrasted with the results on yk : in 1000 runs, the program  never gave 

an answer involving a  replacement of the leftmost letter. The answers on the fringe here 

include jk k k  (which is similar to j jk k ,  bu t results from a  grouping the two leftmost letters), 

d jk k  (replacing the i, bu t by a  d  instead of by its successor or predecessor), and the usual 

“Replace rightmost le tte r by D ” answer (jjk d ).

Ten subjects answered this problem. All ten gave the answer ijk l. Five other answers 

were also given, each only once: ijll, j jk k ,  h jk k  (both these “diagonal” answers were given 

by the same person), ijlk  (replace third letter by successor), and ik k k .1 The pressure to 

map a a  => k k  was not strongly felt by the subjects, though this mapping did show up in 

answers given by one subject (and most likely another subject as well).

Variant 10: a b c m  =» a b c n , r j jk  =» ?

Problem: abcm —> abcn, r i j k  —> ? 
Total Runs: 200

83 72

39

r i j l
Av.Tnp: <4

s i  jk r  jk l r i jn r i j k q ijk r lk l
Av.Tnp: <8 Av.Tnp: SO Av.Tnp: 85 Av.Tnp: 79 Av.Tnp: 89 Av.Tnp: 81

Here, an extra, unrelated letter is added on at opposite ends of the initial and target 

strings. This creates pressure for the  program to  map the two successor (or predecessor) 

groups, a b c  and ijk , generating a  leftmost => rightmost slippage, which in turn  generates 

a  rightmost => leftmost slippage, lobbying for the answer sijk . Copycat gave th a t answer 

almost as often as it  gave rijl, which is based on the straightforward “Replace rightmost

1 I am not sure w hat the justification was for ikkk , but it very likely was the following: 
make the diagonal m apping between the groups a a  to  the group kk , and the  opposite 
diagonal mapping between the groups b e  and y . Then m ap the rightmost letter of b e  (the 
c) to  the rightmost le tte r of ij (the j ) ,  and replace it by its successor, yielding the answer 
ikkk . The current version of Copycat could not get this answer because it is not able to 
make descriptions such as “rightmost le tte r of leftmost group” .
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letter by successor” rule. I t  also answered r jk l  a  fair am ount of the tim e, based on seeing 

the group y k  as the “rightm ost element” of the target string, and replacing it by its “suc

cessor” . I don’t think m any people would give this answer (this variant was not included 

in the survey). There are also four fringe answers. One of them —q y k —was unexpected, 

but actually seems to  me quite reasonable and even clever: the diagonal group => group, 

leftmost =£• rightmost correspondence caused the two groups to be seen as going in oppo

site directions, generating a  successor => predecessor slippage; thus, the  leftmost le tte r was 

replaced by its predecessor.

In this problem, people might describe the a b c m  =>• a b c n  change as something like, 

“Replace the only letter not in a  group by its successor” . This, I think, is a  quite intelligent 

way to  see the change, bu t Copycat is not presently able to  make such a  description.

5.3 V a r ia n ts  o f  “ a b c  =* a b d ,  iy jk k  =► ?”

T he bar graph for “a b c  => a b d , iy jk k  => ?”

603 Problem: abc —> abd, i i j jk k  —> ? 
Total Runs: 1000

Av.Tnp: 21
i i j j k l i i j j k d i i j j d d i i k k l l l i j k l l l j k k l l i i j j k k l i j d d d

Av.Tnp: 47 Av.Tnp: (2 Av.Tnp: 41 Av.Tnp: 44 Av.Tnp: 44 Av.Tnp: 43 Av.Tnp: (2 Av.Ttap: 46

Variant 11: a b c  => a b d ,  hh w w q q  => ?

143 Problem: abc —> abd, hhwwqq —> ? 
Total Runs: 200

hhwurr hhtreqr hhwwdd U m r r tihMwqd
Av.Tnp: 43 Av.Tnp: 46 Av.Tnp: 47 Av.Tnp: 41 Av.Tnp: 74

Here there is no successor structure unifying the groups in the target string, so, unlike 

in “a b d  =► a b d , iy jk k  =>• ?” , the  initial and target strings cannot be m apped on to  each 

other as wholes. This difference is reflected in the results on this variant: Here, the ratio
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l a p l i c i  l > t U f - c » t * t » r r  •£
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i t  f a r t  1242

Figure 5.1: The final configuration of the W orkspace on a  run  leading to  
the farfetched solution “a b c  => a b d , h h w w q q  => h h x x r r ” .

of “Replace rightmost group by successor” answers (h h w w rr)  to  “Replace rightmost letter 

by successor” answers (h h w w q r) is less than three to  one, compared with an almost five 

to  one ratio of i i j j l l ’s to  i ij jk l’s in the original problem. This shows th a t even though the 

letter =>■ group m apping is stronger than the letter => letter  mapping in both problems, the 

whole-string mapping in the original problem serves to  further support the letter =>• group 

view.

Here there are also the usual “Replace rightmost group [or letter] by D ” answers (hh - 

w w d d  and h h w w q d ), and also a  ridiculously farfetched answer, h h x x r r ,  based on assign

ing lengths of 2 to  the groups in the target string, grouping the w w  and q q  groups into a 

single group (solely on the very flimsy grounds th a t they have the same length), viewing 

th a t single group as the object corresponding to  the rightm ost letter in a b c , and replacing 

it by its “successor” . The final configuration of the Workspace on one of these runs is shown 

in Figure 5.1. Note the three levels of grouping in the target string, and the m apping of 

the c onto the “group” w w qq.

The fact th a t such an answer could be constructed two tim es out of 200 dem onstrates 

some problems with program: perceiving a sameness relation between two groups of the 

same length (not to  mention a  higher-level group based on th a t sameness relation) is very 

strange and unhumanlike, and such behavior should be suppressed in Copycat. It would 

have been easy to  explicitly prohibit this behavior (e.g., we could explicitly forbid sameness 

bonds between groups), but such an ad hoc prohibition is not in the spirit of this project. 

R ather, the  prevention of such behavior should arise naturally  from more general perceptual
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mechanisms in Copycat. An ad hoc solution would only serve to cover up an interesting 

and unexpected way in which the program went wrong. Instead, displaying the farfetched 

answers Copycat occasionally gets is much more instructive and interesting for two reasons. 

F irst, these answers point out ways in which the program is lacking as a model of human 

perception, and second, since these answers are so unexpected, they often bring up deep 

issues in perception that we might not have thought of otherwise. For example, a  person 

would never perceive hhw w qq  in the way Copycat did in Figure 5.1. W hy not? And 

how do people manage to  avoid such bizarre ways of looking at situations? Unexpected 

behavior like this on the part of the program helps make it clearer ju st how difficult it is to 

understand the mental mechanisms th a t we are investigating.

Seventeen subjects answered this problem, and the results were not very different from 

those on “a b c  => a b d , iijjk k  => ?” . The answers h h w w rr  and h h w w q r were slightly 

closer in frequency than the corresponding answers were in the original problem (11 to  8 

here versus 13 to 8 there), but there were not enough subjects to  allow one to  know if this 

difference is significant. Here, as in the original problem, people gave a  number of answers 

th a t involved parsing the target string as two groups of three letters, or replacing the third 

le tte r of the string.

Variant 12: a b c  => a b d , lm fgop  => ?

106

Problem: abc —> abd, lmfgop —> ? 
T o ta l Runs: 200

lmfgoq
Av.Tnp: SI

lmfgpq lmfqod lmghpq lmfgdd
Ar.T««p: 47 Av.T*«p: 59 A t .T up: 52 Av.Tnp: 47

Here, we have three successor groups (or predecessor groups) rather than three sameness 

groups making up the target string. The former are considerably weaker than the latter, 

since successor and predecessor bonds are intrinsically weaker than  sameness bonds.3 Thus 

tl*e program is less likely to build the three target-string groups here than it was in iijjkk .

3 This intrinsic difference is meant to  reflect the psychologically real difference (in the 
real world) between the strength of sameness bonds—as well as the speed at which they are 
perceived—as opposed to  any other kind of bonds.
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The bar graph shows th a t this is indeed the case: here the  “Replace rightm ost le tte r” answer 

(lm fgoq ) is more frequent than the “Replace rightmost group” answer (lm fg p q , though 

the frequencies and average final tem peratures are close. A more detailed statistic makes 

this difference even clearer: for this variant, the program  constructed all three target-string 

groups only 49% of the time, versus 91% of the time on iy jk k . Here there are also some 

instances of “Replace rightmost letter [or group] by D ” as well as a  single instance of the 

farfetched lm g h p q , which resulted from a  set of events similar to  those th a t gave rise to 

h h x x r r  in the previous variant.

Twenty-one subjects answered this problem, and as was the case for Copycat, the ratio of 

“Replace rightmost letter” answers to  “Replace rightm ost group” answers was much higher 

than  in the original problem. The answer lm fg o q  was given 14 times, and two “Replace 

rightm ost group by successor” answers, lm fg p q  and lm fg q r  (the la tte r of which Copycat 

cannot get), were given two times each. There were also three instances of answers involving 

the notion of “third letter in the string” , and one instance of lm fg o p , in which nothing was 

changed, though I am not sure what the subject’s justification was.

Variant 13: a b c  =» a b d , lm n fg h o p q  =» ?

101

Problem: abc —> abd, lmnfghopq 
Total Runs: 200

lmfghpqr
Av.Trap: 46

la n fg h o p r lm fg h o q r lan fg h o p d la n fg h d d d lw ifg h o p q
Av.Tnp: 54 Av.Tnp: 45 Av.Tnp: 51 Av.Tnp: 49 Av.Tnp: 54

This variant is the same as the previous one, except th a t the lengths of the groups in 

the  target string are each longer by one. Since the strength  of a  group is a  function in 

p a rt o f its  length, it is more likely th a t the  groups will be built here than  in the  previous 

variant. This is reflected in the bar graph: here, the “group” answer lm n fg h p q r  is more 

frequent than the “letter” answer Im n fg h o p r, though again, they are fairly close. Here 

th e  program  constructed all three target-string groups 63% of the tim e, as opposed to 

49% of the time in the previous variant. One of the other answers here ( lm n fg h o q r) 

reflects Copycat’s perennial grouping problems (only the  two rightmost letters of o p q  were 

grouped), two answers come from replacing the rightm ost letter or group by d ’s, and the 

answer lm n fg h o p q  resulted from the rule “Replace C b y  D ”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169

Ten subjects answered this problem. The “le tte r” answer lm n fg h o p r  was given 7 times 

and the “group" answer lm n fg h p q r  was given only once. The answer lm o fg io p r , in 

which the rightmost le tte r of each group was replaced by its successor, was given 7 times. 

Copycat cannot get this answer, but it is, like lm n fg h p q r , a  “group” answer, and its 

frequency indicates th a t people were perceiving the three groups here more readily than 

in  the previous variant; there, no one gave the corresponding answer ln fh o q . So in this 

sense, this variant affected people and Copycat in a  similar way: the ratio  of “group” 

answers to  “letter” answers was higher here than  in the previous variant. (People also gave 

4 instances of answers involving changing either the third le tte r of the string or the third 

and all following letters.)

Variant 14: a a b b c c  => a a b b c d , i ij jk k  =» ?

176

1
23

Problem: aabbcc —> aabbcd, i i j j k k  — > ? 
Total Runs: 200

1
i i j j k l

Ar.Taap: 21
i i j j l l

Av.Taap: 45
i i j j k d

Ar.Taap: 26

Here, the groups in a a b b c c  tend to  map to  the groups in iijjk k , and, since both  strings 

form successor (or predecessor) groups a t the group level, the two strings tend to  map on 

to  each other as wholes. All this serves to  prevent the rightm ost letter in a a b b c c  from 

m apping onto the rightm ost group in iu jk k , which prevents answer iy jll  from being given 

very often.

The same pressures were felt by the 10 subjects who answered this problem: all of them 

gave the answer iijjk l, and no other answers were given.
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5 .4  V a r ia n ts  o f  “ a b c  =*■ a b d ,  k ji =» ?”

The bar graph for “a b c  =» a b d , k ji =» ?”

547

Problem: abc —> abd, k ji 
Total Runs: 1000

is

— > ?

Kjj Iji Kjd dji Kji
Av.Tnp: 44 Av.Tnp: 11 Ar.T«ap: 21 Av.Tnp: 21 Av.Tnp: I f

Variant 15: a b c  =» a b d , edc  => ?

135 Problem: abc —> abd, edc —> ? 
Total Runs: 200

61

edb odd fd c M d
Av.Tnp: 13 Av.Tnp: 3K Ay .Tm »: 23 ftv.TMp: 45

This variant is similar to the original, except now there is a c on the right, increasing the 

pressure to  m ake the  vertical (rightmost =► rightmost) rather than  diagonal (rightmost => 

leftmost) m apping. (This problem also fits in with variants 3-7 given above.) This pressure 

is reflected by the  high frequencies of answers e d b  and e d d  (representing vertical mappings) 

as compared to  fd c  (representing the diagonal m apping). (The answer eed  of course results 

from one of the bad groupings Copycat is plagued with: e -dc.) In fact, in this variant, 

vertical m appings make up 99% of the to ta l, versus 80% in k ji. The answer e d b  is the 

analog of answer k jh  (fdc is the analog of Iji), and it has the lowest tem perature here.

Eighteen subjects answered this problem. Answer e d d  was given 12 tim es, e d b  6 times, 

and fd c  2 tim es. The proportion of vertical to  diagonal mappings done by people is not 

very different here from th a t on “a b c  => a b d ,  k ji =>• ?” , where vertical-mapping answers 

(k jj, k jh , and k jd )  were given a  to ta l of 12 tim es, and the diagonal-mapping answer (ji was 

given only once. However, there weren’t  enough diagonal mappings made in either case (2 

here, 1 there) to  draw any general conclusion.
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Variant 16: abc =>• abd, cba =» ?

177

1
Problem: abc —> abd, cba —> ? 

Total Runs: 200

JL 18 5
dba

Ar.Taap: If
ebb

Av.Tvap: 40
cbd

AT.Titp: 16

This is a variant of “a b c  =>• a b d , k ji =>• ?” , b u t it also has some elements of “a b c  => a b d , 

x y z  =>■ ?” , because trying to  answer the analog of k jh  leads to a snag here (A  has no 

predecessor). The bar graph shows tha t d b a  is by far the most frequent answer. Strong 

pressures lobby for this diagonal-mapping: not only axe the A  =» A, B  =>■ B, and C  => C  

m appings very compelling, but also a  vertical ( rightmost => rightmost) m apping could lead 

to  the slippage successor =>■ predecessor, and then a  snag. Thus d b a  by far predominates. 

The answer e b b  corresponds to  the answer k jj in the original problem, bu t e b b  is much 

less frequent here than  k jj, because of the strong forces described above. The answer c b d  

comes from the usual “Replace rightmost le tte r by D ” rule; interestingly, every instance of 

it was the result of the program trying to  take the predecessor of A , failing, and having to 

restructure its initial interpretation of the problem. (Its low average tem perature is due to 

the  fact that a  strong whole-string mapping was m ade on these runs.) Even though hitting 

a  snag is possible in this problem, the identical letter-category mappings help the program 

to  avoid doing so most of the time. In x y z , the program  hit the snag a t least once on 98% 

of the runs, but here, the program made the vertical mapping (involving a  successor => 

predecessor slippage) and hit the snag only 18% of the time. This is also to  be contrasted 

w ith Copycat’s behavior on k ji, where the program  made the vertical m apping (and got 

th e  answer k jh )  55% of the time.

Ten subjects answered this problem. The answer d b a  was given by 7 out of 10 subjects 

and e b b  was given by 6 out of 10 subjects. This is to  be compared w ith the  frequency of 

the  diagonal-mapping answer to the original problem , (ji, which was given by only 1 out of 

10 subjects. Thus people, like Copycat, were m ore inclined to  make the diagonal mapping 

here than  in the original problem.
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5.5 V a r ia n ts  o f  “ a b c  => a b d , m rr jj j  =*• ? ”

The bar graph for “a b c  =» a b d , m r r j j j  => ?”

70S Problem: abc —> abd, m r r j j j  —> ? 
Total Runs: 1000

2 0 3

OS 39

mrrkkk
Ar.Tvip: 43

m rrjjk mrrjkk m r r jj jj mrrddd mrr j  jd
At .T m p : 50 Av.T»p: 46 At .Tm p : 20 At .Tm p : 46 Av.T»p: <1

Variant 17: a b c  =» a b d , m r r  =» ?

6 5 2

317mm
mss mrs

A t.T m p :  4 2  Ar.Tiap: *

Problem: abc —> abd, mrr — > ? 
Total Runs: 1000

16
mrs mrrr mrd mdd mrr

Ar.Tiap: 4 6 At .Tm p : 22 At .Tm p : 5 1 At .Tm p : 4 9 At .Tm p : 7 9

Here, the string is shortened to one m  and two r ’s. There should be almost no pressure 

here for Copycat to perceive the m  as a  single-letter sameness group, since there is only one 

o ther possible sameness group in the target string, as opposed to  two in m rr jj j .  The answer 

m r r r  (viewing m r r  as a  string whose groups increase in length, and replacing the two r ’s by 

three r ’s) seems to  me almost completely unjustified here. The bar graph above represents 

1000 runs on this problem, so it can be directly compared with the m rr j j j  bar graph. 

Similar to  m rr j j j ,  the top two answers by far are m ss and m rs , though here Copycat 

answers m rs  significantly more often than it answered m rr j jk  in the original problem, 

m ostly because here, given th a t both strings consist of three letters, there is a  strong set 

of leftm ost, middle, and rightmost letter-to-letter correspondences between a b c  and m rr , 

which wasn’t  possible in m rr j j j .  This view lobbies against grouping the string as m -rr  and 

having the c correspond to  the group r r ,  which is necessary for the answer m ss.

Copycat answered m r r r  16 out of 1000 tim es, as compared with 39 out of 1000 times 

for m r r j j j j  (thus the la tte r occurred almost 2 1/2 times more often). But 16 out of 1000 is 

still too  high. It would be hard to find a  person who would ever give this answer seriously;
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it  is not justified here as m rr jj j j  was in the original problem. (In the survey, all 10 people 

who were given this problem answered m rs  and nothing else; unlike Copycat, these people 

did not seem to group the two r ’s together, 6ince no one answered m ss.) The current 

version of Copycat is somewhat too willing to  make single-letter groups and to perceive 

relations among group lengths. However, there is a  dram atic difference between Copycat’s 

behavior on this variant and on the original problem: on “a b c  =>• a b d , m rr j j j  => ?” , the 

m  was made into a  single-letter group on 42% of the runs (only a fraction of those runs 

resulted in answer m rr jj j j ) ,  whereas in this variant, this single-letter group was m ade on 

only 4% of the runs. Since m rr  is so much shorter than  m rr j j j ,  once this single-letter 

group is made, it is easier in this variant than in the original problem for the program to 

build the other structures (length descriptions given to  groups, bonds between the groups 

based on length relationships, etc.) th a t are necessary to  come up with an answer in which 

group-length (rather than letter-category) is replaced. Of course there is more top-down 

support in m rr jj j  for all these structures, but more of them to make as well. So once the 

single-letter group is m ade in m rr , there is a  m uch be tte r chance (too much better) th a t 

the “length” answer will be given than if the same event happens in m rr jj j .

Variant 18: a b c  =>• a b d , m m r r r i iii =» ?

141 Problem: abc —> abd, m m rrrjjjj —> ? 
Total Runs: 200

33
12 li

m rrkkkk —r r r j j j k aanrrjjkk -arrjk k k « M riT jjjjJ —rrrdddd
At .Tm p : 4 1 Ar.THp: 4* At .Tm p : 4 5 At .Tm p : 4 4  At .T m p : M At .Tm p :  4 f

Here the target string can be parsed as 2-3-4 rather than  1-2-3. As can be seen from 

the bar graph, the 2 -3 -5  answer (m m rr r j j j j j)  was given only two times out of 200 runs (1% 

of the time) as opposed to  almost 4% of the tim e in the original problem. This is because 

the parsing based on group lengths is less likely to  occur here than in the original problem: 

there, the building of a  single-letter group made i t  more likely th a t group lengths would be 

noticed in the target string, while here, since there  is no single-letter group, group lengths 

are noticed less often.

In the survey, 7 people answered this problem. No instances of m m rr r j j j j j  were given. 

The answer m m rrrk k k k  was given 6 times, m m rr r j j jk  4 times, and m m rrrk k k k k  ( “Re-
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place the rightm ost group by its length successor and its letter-category successor” ) 2 times. 

The last answer (which Copycat cannot get, since it is currently unable to  build more than  

one kind of bond between the same two objects) shows th a t a t least some people perceived 

the length-sequence here, though there were not enough subjects who gave “length” answers 

here or in the original problem to  make a  useful comparison. (There were also two instances 

of “Replace third le tte r” answers.)
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Variant 19: abc => abd, rssttt =» ?

731 Problem: abc —> abd, r s s t t t  —> ? 
Total Runs: 1000

16S
53 33

r s s t t u rttu u u r s s tu u rssd d d rstu uu r s s t t d r s s t t t t
Av.Tnp: 48 Av.TMf: 43 Av.Tnp: 46 At .Tm p : 4 9 At .Tm p : 4 f A t .T m p : CO At .Tm p : 2 0

In the target string here, there are possible successor bonds both  between letter cat

egories and between group lengths, so the program should not give the length answer 

( r s s t t t t )  very often, because it is able to  get a good letter-category answer (rssu u u ); 

the  pressure resulting from the lack of successor bonds (as in m rr j j j)  is missing here. I ran 

the program 1000 times on this variant in order to  show it could get r s s t t t t ,  but it got 

it only once in the 1000 runs, to  be compared with 39 instances of m rr j j j j  in the original 

problem. In addition, the final tem perature on r s s t t t t  here is roughly the same as the 

average final tem perature on rs su u u ) . The other answers are similar to  the answers given 

in the  original problem (plus a  few additional answers based on strange groupings of the 

target string).

Seven people answered this problem, and there was almost no difference between the 

results here and on the previous variant. Answer r s s u u u  was given 6 tim es, r s s t tu  3 

times, and r s s u u u u  once. Again, the current version of Copycat cannot get this answer, 

since it  is unable to  build more than  one kind of bond between the same two objects. The 

answer r s s u u u u  seems to  me to  be much more reasonable here than  m rrk k k k  is for the 

original problem. Here, since there are successor relations both  between letter-categories 

and between group-lengths in the target string, it seems justified to  give an answer th a t 

takes bo th  types of relationships into account, whereas th a t justification is lacking in m r r j j j ,  

where there are relationships only between group-lengths, not between letter-categories.

As for the previous variant, there are not enough subjects who give “length” answers 

here or in the original problem to  make a  useful comparison. (There were also two instances 

of “Replace th ird  letter” answers.)
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Variant 20: abc =>• abd, xpqdef => ?

101

Problem: abc —> abd, xpqdef —> ? 
Total Runs: 200

xp qafg xpqdeg xp qcdef xpqdfg xpqdad xpqdefg
At .Tm p : 45 Ar.T.ap: 53 At .Tm p : 21 At .Tm p : 54 At .Tm p : S t At .Tm p : 2 2

Here, the target string consists of successor (or predecessor) groups (rather than same

ness groups) th a t increase in length. As was pointed out in the  discussion of Variant 12 

above (“a b c  => a b d , lm fgop  => ?” ), successor and predecessor groups are weaker than 

sameness groups and are not built as readily. This is reflected in the bar graph, which 

shows th a t the answer x p q e fg  ( “Replace rightmost group by successor” ) is quite close in 

frequency to x p q d e g  ( “Replace rightmost letter by successor”), indicating that on a  fair 

num ber of the runs the program did not build the three target-string groups. When Copycat 

does build the groups and notices the relations among their lengths, there are two possible 

answers th a t can be given here: if the groups are seen as right-going successor groups, then 

the program  answers x p q d e fg , increasing the group length to  the  right; if the groups are 

seen as left-going predecessor groups, then the program answers x p q c d e f, increasing the 

group length to  the left. (Most people would opt for the  former, b u t the progTam does not 

have the same left-to-right bias th a t people have.) The combination of these two answers 

is 3% of the to ta l versus 4% of the to ta l for m rr jj j j  in “a b c  =>■ a b d , m rr jj j  => ?” . This 

difference is not very significant, so even though the program  perceives the target-string 

groups less often, it gives the length answer with roughly the same frequency. I am not sure 

why th is is the case.

This variant was not included in the  survey given to  people.
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Variant 21: abc => abd, mrrzzz =>■ ?

16* Problem: abc —> abd, mrrzzz —> ? 
Total Runs: 200

is ti
mrrzzzz mrrddd mrrzzd mrrzzz nrrzzz drrzzz
AT.Ttap: 21 Ar.Tnp: 47 At .Tm p : 48 At .Tamp: 76 At .T m p  : 4 5 At .Tm p : 4 3

This variant combines “a b c  => a b d , m rr jj j  =t> ?” with “a b c  => a b d , xyz  => ?” . The 

point of this variant was to  see if the inability of the program  to  take the successor of Z  

would force it to  notice the target-string length relations more often. As can be seen from 

the bar graph, this was indeed the case: the pressure of the  UZ  has no successor” snag and 

the resulting high tem perature m ade the length answer (m rrz z z z )  by far the most frequent 

one, comprising a  whopping 80% of the to tal, as compared to  only 4% in m rr jj j .  Other 

answers include the usual ones, along with a  few instances of n r rz z z  and one instance 

of d r rz z z , which were never given in the original problem. They axe the analogs of yyz 

and d y z , and come about when a  first =>■ last, rightmost => leftmost correspondence is 

built. (Copycat cannot get the answer lrrz z z  here, since there are no relationships between 

letter-categories in the target string, and thus there is no way for a  successor => predecessor 

slippage be made.)

In the survey, ten people answered, and this variant did not have the effect on them 

th a t it  had on Copycat. Not one instance of m rrzzzz  was given. Instead, the subjects gave 

a  set of answers similar to those given on “a b c  => a b d , x y z  =>• ?” . All the subjects who 

were given this variant had immediately before been given “a b c  =>• a b d , x y z  =► ?” , and 

i t  is likely that they were strongly influenced by their solutions to  this previous problem. 

I t would be useful to  collect more answers from people who hadn’t  seen the xyz  problem 

first.
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5.6 V a r ia n ts  o f  “a b c  =>• a b d , xy z  => ?”

The bar graph for “a b c  =>■ a b d , xyz  =>■ ?”

771 Problem: abc —> abd, xyz —> ? 
Total Runs: 1000

vyz yyz dyz xyy styz yzz
At .T m p  : 1 4 Av.Ttap: 44 Ar.Teip: 33 At .Tm p : 33 Av.Ttsp: 74 At  .Top: 4 2

Variant 22: a b c  =» q b c , x y z  =» ?

999

1 1

Problem: abc —> qbc, xyz —> ? 
Total Runs: 1000

qyz
At .Tm p : I t

xyz
At .T m p : 19

The purpose of this variant was to  dem onstrate th a t it is not easy for the program 

to  make an a - z  diagonal m apping based on first =>• last. As in Variant 8 (“a b c  => q b c , 

ijk  =>• ?” ), the possible rules here are: “Replace leftmost letter by Q ”, “Replace first letter 

[of the alphabet] by Q ” (possible only if the a  is given the description first), and “Replace 

A  by Q ”. If either the first or second rule were constructed, and if a  first => last mapping 

were m ade from the  a  to  the  z, then the answer would be xy q . B ut in  1000 runs, Copycat 

never made this mapping: 999 tim es out of 1000 it answered qyz , and once answered xyz  

( “Replace A  by Q ”). This shows it takes strong pressure to  make the  a —z diagonal mapping, 

pressure th a t is present in the original problem, bu t not here.

The results from people here were almost the same as for Variant 8: like Copycat, none 

of the 10 subjects given this problem answered x y q . Six answered q y z , one of those six also 

answered x y z , and the other four gave illegal answers, similar to  those given on Variant 8.
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Variant 23: rst =» rsu, xyz

1 9 5

Problem: r s t  —> r s u ,  xyz — > ? 
T otal Runs: 200

3 1 1

xyu yyz xyz *yy
At .Tm p : 22 Ar.T«»p: 1 8 At .Tm p : 5 6 A T .frBp: 3 7

In this variant, because of the lack of an a , there is no first => last m apping possible to 

create pressure for a  diagonal m apping between the initial and target strings. Accordingly, 

the program gave the answer w yz on only 1.5% of the runs, whereas this answer was given 

on almost 14% of the runs on “a b c  => a b d , x y z  =>• ?” . In this variant, the answer w yz 

comes about solely on the basis of an  unlikely rightmost => leftmost slippage (more likely 

here than  in most problems, due to  the high tem perature resulting from the UZ  has no 

successor” snag, bu t still quite unlikely). This illustrates the im portant role played by the 

first =>■ last m apping in Copycat’s w y z  solution to  the original problem.

Eleven people answered this problem, and no answers involving diagonal mappings were 

given, whereas on the original problem, there were several such answers given (w yz, yyz, 

d y z , and yzz). However, it is hard to  compare the results from people here and on the 

original problem , since there are so few subjects here compared to  the 34 subjects on the 

original problem . The answers here were x y y  (4), x y  (3), x y z  (3), xzz (3), and xz  (1).

Variant 24: k m t =>• k m u , x y z  =>■ ?

xyu
A t.T m p :  4 9 Ar.Ttas: 49

Problem: kmt —> kmu, xyz —> ? 
Total Runs: 200

Here, no t only is there no first => last m apping possible, b u t there are no successor 

relations in the  initial string, so the initial and targe t strings cannot be m apped as wholes. 

The results are similar to  those of the previous variant: on nearly every run the answer x y u  

(“Replace rightm ost le tte r by U”) is given. However, there are also some instances of yyz ,
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resulting from a  fairly unlikely rightmost =>• leftmost m apping. Somewhat unexpectedly, 

this diagonal m apping is more likely here than in the previous variant (where y y z  was not 

given once during the 200 runs and w y z  was given only three times) since here there is no 

whole-string vertical mapping between the initial and target strings. In the previous variant, 

the whole-string m apping between r s t  and xyz  supports the vertical leftmost => leftmost 

and rightmost =>• rightmost correspondences, which compete w ith diagonal correspondences. 

Here, the vertical correspondences have less support, so the diagonal m apping has more of 

a  chance. But since no whole-string mapping can be made here, the answers w yz and 

x y y  are not possible. In the original problem and in the previous variant, these answers 

result from a  successor =>• predecessor slippage when the whole initial and target strings are 

mapped onto each other in opposite alphabetic directions.

This variant was not included in the survey given to people.

Variant 25: a b c  =>• a b d , glz =» ?

134

66

■

Problem: abc —> abd, g lz —> ? 
Total Runs: 200

hlz
Av.Tnp: 42

gld
Av.Tnp: 49

Here there is  a  possible first =>■ last mapping between the a  and the  z, but since the 

target string is not a  successor group, there is no possible whole-string m apping between it 

and the initial string. Thus, as in the  previous variant, if the a  and z are seen to  correspond 

here, and the leftmost letter is changed, it can only be changed to  its successor. Here the 

frequency of the  “Replace leftmost le tter by successor” answer (h lz ) exceeds th a t of the 

“Replace rightm ost letter by D ” answer (g ld) by a  considerable am ount, a  dram atic differ

ence between the results here and on the previous variant, as well as between these results 

and those on the original problem. The reason h lz  predom inates here is th a t the first =► 

last mapping makes the diagonal a - z  correspondence strong, and, in contrast to  the original 

problem, this correspondence doesn’t face much competition from vertical correspondences, 

since no whole-string same-direction mapping supports them . So in this case, given the 

high tem perature due to the Z-snag and the intrinsic weakness of the  “Replace rightmost
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letter by D ” rule, the first => last correspondence gets built more easily, and does not face 

strong competition from incompatible bonds, groups, and correspondences.

This variant was not included in the survey given to  people.

Variant 26: a b c  =»■ a b d , cm z => ?

178

1
22

Problem: abc — > abd, cmz —> ? 
T otal Runs: 200

dmz
A t.T m p : 4*

cud  
Ar.Ttap: 49

This variant gives Copycat the possibility of an easy out from the  impasse: if it can’t 

take the successor of Z, it can resort to  changing the c in the target string instead. As can 

be seen in the bar graph, on most of its runs, the program either took advantage of this 

escape route or avoided the snag altogether, answering d m z  89% of the  tim e. This can be 

compared with the previous variant ( “a b c  =► a b d , glz =S> ?”—which has no c in the target 

string), in which a  leftmost-letter-change answer was given 67% of the tim e, and with the 

original problem, in which answers involving a  leftmost-letter change were given only 22% 

of the tim e. It is also interesting to  compare this with Variant 7 ( “a b c  => a b d , cm g  => ?”) 

which is the same as this variant except th a t there, the rightmost le tte r was an instance of 

G, which has a  successor. There, a  leftmost-letter-change answer was given only 31% of the 

time. So here, given the snag and the resulting high tem perature, m apping the c ’s becomes 

more compelling, even though a  rightmost => leftmost slippage has to  be made.

As would be expected from the results on Variant 7, the presence of the  c here allowed 

the program  to  sidestep the  snag entirely on 30% of the runs and go straight to  the answer 

d m z , whereas on the original problem, Copycat sidesteps the snag and goes straight to a 

leftmost-letter-change answer on only 0.3% of the runs.

Ten people answered this problem, but only one answered d m z , which is consistent with 

the  answers people gave on “a b c  => a b d , cm g  => ?” (Variant 7), where the two c ’s were 

also unlikely to  be m apped. It seems th a t most people are much less likely than Copycat 

to  notice superficial similarities such as th a t between the two c ’s, even when other ways of 

m aking an analogy fail. However, all the subjects who solved this problem had first solved 

“a b c  a b d ,  xyz  =£• ?” and Variant 21 (“a b c  =► a b d , m rrz zz  =► ?”), and it may be that
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they were strongly influenced by their solutions to  those previous problems (the answers 

given in the survey here were similar to the set given for Variant 21). Again, it would be 

useful to  collect more answers from people who hadn’t seen these other problems first.

Variant 27: a a b c  =» a a b d , xyzz  => ?

1 3 6
Problem: aabc —> aabd, xyzz —> ? 

Total Runs: 200

3 7

ti 10

yyzz
At .Tm p : 4 i

wyzz yzzz xydd xyzd xyzz
Ar.Tnp: 19 Av.Ttap: 39 At .Tm p : 41 Av.Tnp: 49 At .Tm p : 57

Here, the pressure to  make a diagonal m apping is increased because of the sameness- 

group => sameness-group mapping between the A  and Z groups. The results show that this 

new pressure makes a big difference: answers involving a  leftmost => rightmost mapping 

(here y y zz , w yzz, and yzzz) make up 92% of the total, versus only 22% of the total in 

“a b c  =>■ a b d , x y z  =>• ?” . It is also interesting to compare this variant with the original in 

seeing how much the group => group mapping helped Copycat to avoid trying to take the 

successor of Z  and failing (the “snag” ). In “a b c  => a b d , xyz  => ?” , as was noted earlier, 

th is  snag is very rarely avoided: in 1000 runs, only 2% of the answers were gotten without 

first running in to  the snag (most of these runs resulted in answer x y d ) , and there were 

an  average of 9 snags per answer (as mentioned earlier, the program got into the snag on 

average 9 times before getting an answer—this loopish behavior will be discussed further in 

the  next chapter). In this variant, Copycat avoided the snag on 20% of the  runs, and the 

average num ber of snags per run was 4. So the presence of the two sameness groups helps 

the  program  considerably to  avoid or get out of the snag.

I t  is also interesting to  compare this variant w ith Variant 9 (“a a b c  =>• a a b d ,  Ijkk  =>■ ?” ). 

I t  should be expected th a t Copycat would get answers based on a  diagonal (group => group, 

rightmost =>■ leftmost) m apping here more often than  it did in Variant 9, since here the 

vertical m apping leads to  a  snag. Indeed, diagonal-mapping answers make up 92% of the 

to ta l here versus only 47% of the to tal in Variant 9.

Ten people answered this problem, and it seems th a t, as was the case for Variant 9, they 

weren’t  affected as strongly by the group => group mapping as Copycat was. There were 2 

instances of diagonal-mapping answers (yyzz  and w yzz), but again it is hard to compare
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the results from people here and on the original problem, since there were so few subjects 

here compared to  subjects on the original problem. The other answers people gave here 

were xyzz  (2), x y z y  (2), x y y y  (1), xzzz (1), x y z d  (1), x y d d  (1), x y z  (1), and x y  (1).

5 .7  S u m m a ry

The 27 variants in this chapter dem onstrate the range of Copycat’s abilities, and how 

different constellations of pressures affect its behavior. O f course, many more variants 

could have been included, but the ones given are enough to  give the reader a  good sense of 

the program ’s behavior and “personality” .

I t may seem to the reader th a t what Copycat does on m any of these variants is simply 

w hat one obviously should do, given the pressures th a t are present. But this is precisely 

the best argum ent for the model’s plausibility: it is flexible enough to  to adapt to all these 

different situations and to  act in appropriate ways. Copycat also is able in some cases to 

make analogies th a t are not a t all obvious, and th a t dem onstrate a  fair degree of insight.

The other side of the coin, of course, is represented by the bad analogies th a t the 

program  makes, which reveal its internal flaws and weaknesses. B ut they also dem onstrate 

th a t Copycat has the potential to  get farfetched answers—a potential th a t is essential for 

flexibility—and yet manages to avoid them  almost all the tim e, which demonstrates its 

robustness.

Copycat’s performance on the variants to  the original five problems demonstrates the 

program ’s robustness and flexibility as it is “stretched” ; it shows how well the program 

continues to  perform as it is pulled away, little  by little, from the most central problems 

th a t it  was deliberately designed to  solve. The program was not designed to  work specifically 

on these variants; in fact, in almost every case, the program  was not tested on the variants 

until after it had been completed. Copycat’s performance on these variants thus gives 

evidence for the generality of the mechanisms th a t we are proposing and modeling.

This chapter, in  dem onstrating the range of Copycat’s intelligence (as well as the ways 

in which it lacks intelligence), has expanded on C hapter 4 in addressing the AI criteria 

for judging this project. I would argue as well th a t these dem onstrations of the program ’s 

flexibility also address to  some extent the psychological criteria, since the extent to which 

the program  performs with flexibility over a  range of different situations and demonstrates 

its ability to  deal with general issues in perception and analogy-making—the extent to 

which it dem onstrates th a t it has human-like concepts—lends plausibility to  it  as a model
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of some central aspects of hum an intelligence.

5 .7 .1  S u m m a ry  o f  t h e  C o m p a riso n s  W ith  P e o p le

The results of the survey given to  people serve two purposes: they show how well Copycat 

matches people in the range of answers it gets to various problems, and also to  what extent 

Copycat and people are similarly affected by variations in pressures.

C o m p a riso n s  W ith  P e o p le  o n  R a n g e  o f  A n sw ers

The survey produced a  fairly comprehensive list of the answers given by people to many 

of these letter-string problems (although on other problems there were too few subjects to  

get a  complete range). Copycat is able to  get a  large num ber of these answers: it can get 

about half of the answers people give overall, and it can get almost all of the answers given 

by three or more people. Most of the answers Copycat misses fall into three main classes:

1. Answers involving descriptions o f the numerical position o f letters in the target string. 

(E.g., “third le tte r” , “leftmost two letters” .) For example, some people gave answers 

such as “a b c  => a b d ,  iftjkk  => iik jk k ” ( “Replace th ird  letter by successor” ) or 

“a b c  =*► a b d , i ij jk k  => iikk ll” (“Replace all letters after the leftmost two by their 

successors” ). Copycat is currently unable to  make such descriptions; it does not have 

concepts such as “th ird” or “leftmost two” .

2. Answers involving groupings not based on bonds between letters. For example, several 

people answered “a b c  => a b d , m rr j j j  => m r r jk k ” , parsing the target string as m r- 

r j- jj  based on pressure to  see three equal-length elements, as in ab c . Copycat is 

currently unable to  group letters unless there is a  bond between them.

3. Answers involving descriptions o f letters with respect to groups. For example, several 

people gave the answer “a b c  => a b d , lm n fg h o p q  => lm o fg io p r” , using the rule 

“Replace the rightm ost le tte r of each successor group by its successor” . Copycat is 

currently unable to  make descriptions such as “rightm ost le tte r of successor group” .

All of these discrepancies point to abilities th a t Copycat lacks. Giving Copycat these 

abilities would involve extending the description-making and grouping mechanisms th a t the 

program  already has. Making these extensions would be a  worthwhile direction to take in 

fu ture work on th is project.
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There were also other answers given by people th a t Copycat is unable to  get, but they 

are harder to classify* In particular, some of the answers given by people to  the problem 

“a b c  =» a b d , xyz  => ?” involve concepts and intelligence far beyond Copycat’s. For 

example, a very common answer is xy , for which people use imagery such as “the z falls 

off the edge of the alphabet” , making an analogy between the edges of the linear alphabet 

and the edges of a cliff off of which things can fall. Copycat, of course, has no such imagery 

(it has no imagery at all, unless knowledge such as “le tter sequences are similar to  number 

sequences” , or “left-going is similar to  right-going” could be be counted as a  primitive form 

of imagery). People also sometimes answer xzz, reasoning th a t if you can’t change the 

rightmost letter, then the next best thing is to change the next-to-rightmost letter, or xyy , 

reasoning that if you can’t take the successor of the rightmost letter, then the next best 

thing is to replace it by its predecessor. These slippages do not come from correspondences 

with anything in ab c ; such slippages are made only because the analogy-maker cannot do 

the desired thing and thus does something close to  it. Copycat currently cannot make such 

slippages, though I believe th a t this is a very im portant ability for general intelligence, 

and giving such an ability to  Copycat would make it a  much more flexible program. This, 

again, is a  topic for future research. A third answer people occasionally give (jestingly) is 

a b d —th a t is, “Replace the entire string, whatever it is, by a b d ” . Even though this answer 

is given only in jest, the fact th a t it is given a t all shows th a t people are able to  describe 

the a b c  =s> a b d  change in th a t way. Copycat ideally should be able to  come up with such 

a  rule in principle, though in practice its construction should be extremely unlikely.

People also gave answers th a t dem onstrated more flexible views of the notion of succes- 

sorship than Copycat has. For example, one person in the survey answered “a b c  a b d , 

lm fgop  =$■ Im fgq r” , seeing q r  as the “successor” of the group o p . Copycat currently can 

only give p q  as the successor of o p . Also, one person in the survey (and a  number of 

people in more informal surveys) answered “a b c  a b d , r s s t t t  =>• r s s u u u u ” , replacing 

the rightmost group by both its alphabetical and numerical successor. Again, this seems 

to  me to  be a  very good answer to  this problem since r s s t t t  has both alphabetical and 

numerical successorship relations, bu t Copycat is currently able to  construct only one bond 

between two given objects in a  string  (e.g., it  cannot build both length and letter-category 

successor bonds simultaneously). Extending Copycat’s bond-building capabilities in this 

way is another topic for future research.
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Copycat also gives a  number of answers th a t people never give. These fall into three 

main classes:

1. Bad-grouping answers, such as “a b c  => a b d , iijjk k  => iijk ll” .

2. Answers involving unmotivated slippages, such as “a b c  => a b d , y k  => i jj” , which 

was based on a  view in which a correspondence involving the slippage successor => 

predecessor was made without sufficient reason.

3. Answers based on unmotivated uses o f  group lengths. These include “a b c  ^  a b d , 

h h w w q q  => h h x x r r” (Variant 11) as well as “a b c  => a b d , c a b  => c a b c ” (Variant 

6) and “a b c  => a b d , m rr  => m r r r ” (Variant 17). All these answers were discussed 

earlier in this chapter.

These are the classes of unrealistic answers that came out of Copycat’s performance 

on the letter-string problems discussed in this and the previous chapter. If more problems 

were added, other such classes would likely become apparent. The answers th a t Copycat 

gets bu t th a t people never get illustrate certain problems with the model (some of these 

will be discussed in the next chapter). It is encouraging, though, th a t these are always 

fringe answers produced very rarely by the program, showing th a t even though it has the 

capability to produce them , it avoids them almost all of the time.

I did not include “frame blend” answers, such as “a b c  => a b d , xy z  => d y z” , in the 

three classes given above. It is true that no one in the survey gave this particular answer, 

but people did give answers th a t involved similar (though perhaps less farfetched) kinds of 

frame blends. Moreover, people have proposed dyz  and other such answers in jest, which 

means th a t they do actually come to mind. Thus it is desirable th a t Copycat have the 

ability to  get such answers, though, as with the other fringe answers, it is also desirable 

th a t it not get them  very often.

C o m p a riso n s  W i th  P e o p le  o n  E ffec ts o f  V a ria tio n s  in  P re s s u re s

The point here was, again, not to  compare the frequencies of various answers people gave 

with the  frequencies of various answers given by Copycat, but rather to  see if variations in 

pressures caused similar shifts in frequency of the types o f answers given by people and by 

Copycat. For example, the people in the survey and Copycat both were more likely to  give 

answers involving a  C=> C  correspondence in Variant 6 than in Variant 5.
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The overall results here were mixed. Of the 27 variants, 23 were included in the survey 

of people. On 11 out of the 22 problems, people seemed to  feel the effects of the  variations 

in pressures similarly to  Copycat (these were variants 1, 2, 3, 4, 6, 8, 12, 13, 14, 16, and 

22). On 7 out of 22, there seemed to  be significant differences between the  effects on people 

and on Copycat (variants 5, 7, 9, 17, 21, 26, and 27), and for the o ther 5 (variants 11, 15, 

18, 19, and 23), there were not enough subjects giving a  particular type o f answer (e.g., a 

“diagonal-mapping” answer or an answer tha t involved relations between group-lengths) in 

order to  compare with subjects giving th a t same type of answer in the original problem.

The main differences between the effects on people and on Copycat were:

•  People were less likely than Copycat is to  make mappings between two objects on the 

basis of their letter-categories. For example, on Variant 5 (“a b c  => a b d ,  cd e  => ?” ), 

people were much less likely than Copycat to  map the two c ’s.

• People were less likely than Copycat to  perceive or make mappings between groups. 

This difference was d ea r in the responses to  Variant 17 ( “a b c  => a b d ,  m r r  => ?” ): in 

the survey, no one gave the grouping answer m ss. This difference was also seen 

in the responses to  Variant 9 ( “a a b c  => a a b d , ijk k  => ?” ) and to  Variant 27 

(“a a b c  => a a b d , xy zz  => ?” ), in which very few people made the group => group, 

leftmost => rightmost mapping, thus changing the leftmost rather th an  rightmost let

ter of the target string. Copycat was more likely than people to  m ake this mapping. 

However, it may be th a t many people would have preferred this m apping if they had 

seen it. People often find an answer compelling once it  is pointed out to  them , even 

if they themselves did not think of it  (for instance, this is the  case for many people 

with the answers “a b c  =*>■ a b d , m r r j j j  =s> m rr i i i i” and “a b c  => a b d ,  x y z  =>• w yz” ). 

The results of a  survey asking people to  rate different given answers to  the five target 

problems is given in Appendix D; it  would be useful to  indude the variants discussed 

in th is chapter in future such surveys of people.

•  People were less likely than Copycat is to  notice successorship among group lengths, 

even when they were faced with an impasse, as in Variant 21 ( “a b c  => a b d , m r- 

rzz z  => ?”). Again, it may be th a t once this property was pointed out to  people, 

m any would find it  compelling, bu t it seems not to  come to  mind for m ost people 

when they are solving such problems themselves.

As would be true for any restricted domain, people’s answers here m ight be influenced by
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a  large num ber of factors (e.g., previous problems they solved, extraneous knowledge about 

letters and letter-strings, assumptions about w hat they are “supposed” to answer) th a t do 

not influence the program, and for this reason there is some difficulty in interpreting the 

results of these comparisons. Also, Copycat has its own biases, and is not meant to  match 

the average behavior of a  population of people; ra ther, it is m eant to model something more 

akin to a  single individual, who has their own individual biases. For example, Copycat may 

be more inclined than most people to  notice groups in a  string, but this is not a  bad thing if 

th is bias is not an implausible human one. Also, Copycat may be more persistent and patient 

than  most people in exploring possible ways of solving these letter-string problems; most 

people tend to  give up after a  short tim e, w ithout thinking very hard about the  problem. 

Again, Copycat’s behavior is not implausible for a  person, though it might not m atch 

th a t of the m ajority of people. Ideally, Copycat is m eant to  produce not ju st reasonable 

behavior, bu t also insightful behavior, and it thus it should get answers (e.g., “a b c  => a b d , 

m r r j j j  => m r r j j j j” ) th a t very few people come up with, bu t th a t m any people a t least 

recognize as reflecting an insightful and flexible use of concepts.

These comparisons have given some evidence for the program ’s plausibility, to  the  extent 

th a t Copycat has m atched the range of people’s answers as well as the  effects of variations 

in pressures on people. The comparisons have also pointed out some flaws of the program 

and indicated some directions for future work on the project. However, the m ain criteria 

for judging the success of the program should be those given a t the end of Chapter 2: Does 

the program  exhibit flexible and insightful behavior in its microworld? Does it act, a t least 

to  some degree like it has fluid  concepts, as people do? Does it help us to better understand 

w hat concepts are?
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CHAPTER VI

SOME PROBLEMS WITH THE MODEL

The bar graphs and screen dumps in the previous two chapters have demonstrated most 

of the  mechanisms in Copycat, and in doing so have showed off not only the program ’s 

strengths, but many of its weaknesses as well. In this chapter I will discuss some of these 

weaknesses, and their general implications for models of high-level perception. The point 

of th e  chapter is not to  detail wholly new abilities the program  would need in order to 

solve a  wider range of problems (e.g., the ability to construct more complex rules, the 

ability to  build bonds between non-adjacent objects in a string, or the ability to  form new 

concepts, such as “double successor” , from existing Slipnet nodes), but rather, to discuss 

some problems with the mechanisms the program currently has. (A discussion of possible 

extensions to  Copycat will be given in C hapter 9). For the purposes of this chapter I will 

discuss two of the  more salient and serious problems of the program : problems concerning 

top-down forces and focus of attention, and problems concerning self-watching.

6.1 Problems with Top-Down Forces and Focus of Attention

Top-down (expectation-driven) forces are an essential part of perception in general. This 

po in t is brought home very clearly by looking a t some of the  difficulties Copycat has in 

solving analogy problems in its microworld. One of the m ajor weaknesses of the program as 

it  now stands is tha t top-down pressures in the system are often not strong enough. This 

can be seen in Copycat’s performance on problems involving long strings. For example, 

consider the problem “a b c  =S> a b d , y k lm n o p  =s> ?” (Variant 1 from the previous chapter). 

Here, once the notion of successorship (or equivalently, predecessorship) is deemed to  be 

highly relevant, top-down forces should take over almost completely and very quickly build
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Figure 6.1: A “bad-grouping” answer.

successor bonds throughout the target string. As has been dem onstrated, such forces exist 

in Copycat, but a t present they are not strong enough. Sometimes successor bonds are 

built too slowly, and groups are formed out of chains of bonds th a t cover only part of the 

string. Figure 6.1, which shows the final configuration of the Workspace from a run on this 

problem, illustrates a case where this happened.

As can be seen in the figure, the target string has been divided into three separate 

successor groups (y k -lm n -o p ) instead of one successor group comprising the whole string. 

W hat happened here was th a t successor bonds along the edges of the string were built fairly 

quickly, and then these bonds were grouped, leaving the  middle letters out. Only later were 

bonds built in the middle, and a  separate middle group was built out of them. In many 

cases, a  single whole-string group will successfully com pete against smaller groups such as 

these, b u t in this case that d idn’t happen, and the program  answered ijk lm n p q , replacing 

the rightm ost group of two by its “successor” .

The results of similar bad groupings were seen in some of the bar graphs presented 

in the previous two chapters. For example, on the problem “a b c  => a b d , i jjjk k  => ?” , 

the program came up with several bad-grouping answers. Screen dum ps showing the final 

Workspace configuration for two of these answers are given in Figures 6.2 and 6.3.

In Figure 6.2, the program  never grouped the two j ’s, and instead built successor bonds 

from the group I  to  the leftmost j  and from the rightm ost j  to the group K . This led to  a 

parsing of the target string as two higher-level groups: I-j and j-K . T he c was then mapped 

onto the rightmost of these two groups, all of whose letters were replaced by their successors 

in the answer.
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Figure 6.2: Another bad-grouping answer,
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Figure 6.3: A th ird  bad-grouping answer.
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In  Figure 6.3, the program  never grouped the two i ’s, and instead parsed the string 

as i— i-J-K . Thus a t the top level the string was seen as consisting of two elements, the 

leftmost letter i and the group U K . The c was seen to  correspond to the rightmost element, 

the group iJ K , all of whose letters were replaced by their successors in the answer. This 

answer, even more than the previous two, is extremely farfetched and unhumanlike.

One problem seems to  be that Copycat’s top-down codelets are too global: they are 

not targeted specifically enough. A top-down successor-bond codelet will a ttem pt to  build 

a  successor bond anywhere, but it seems that what is needed here is codelets that try  to 

build specific types of bonds in specific places. For example, in the problem above, once a  

sameness bond has been built between the two j ’s, there should be top-down pressure to  

try  to  build the  same type of bond in the adjacent position, between the i’s. There should 

be similar pressure in the problem “abc =S> abd, ijklmnop =>• ?” : once successor bonds 

have begun to  be built, top-down forces should try  to  build successor bonds adjacent to the 

already-existing ones.

A mechanism for implementing these kinds of specific top-down pressures would enable 

the program to  follow what might be a more plausible route to  the solution “abc => abd, 

m r r j ii => m r r i i i i ” . If the R  and J  groups have been given length descriptions and a 

successor bond has been created between their lengths, then there should be top-down 

pressure to  build the same type of bond in an adjacent position—namely, between the m  

and the R  group. This specific goal would create pressure to  perceive the m  as a  group 

of length 1, so th a t a  successor bond could be built with the group of length 2. As was 

seen in some of the  variants in the previous chapter, the program  is currently somewhat too 

willing to  build single-letter groups w ithout sufficient pressure. I t  seems more plausible th a t 

constructing such an unusual group should be done in response to  a strong location-specific 

top-down pressure like the one described above, ra ther than  (as is currently the case) in 

response to more general pressure from other groups in the string.

In general, Copycat needs a  mechanism for conceiving o f a  specific desired structure 

(e.g., a  successor bond between the group lengths of specific objects) in response to  top- 

down pressure, and trying to  build the  necessary prior structures (e.g., a  single-letter group) 

whose existence would make i t  possible to  build the desired specific structure.

P art of Copycat’s problem with interpreting long strings such as ijklmnop has to  do 

with the  program ’s focus of attention. One problem is th a t not enough attention (in the 

form of codelets) is directed to  parts of the string th a t need attention (i.e., unhappy objects,
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such as the middle letters of i jk lm n o p  early on in the run when no bonds involving them 

have been built). In the  current version of Copycat, codelets are indeed biased to  choose 

unhappy objects to  work on (since salience depends in p a rt on unhappiness), b u t it seems 

th a t  this mechanism is not working well enough to  avoid occasional bad groupings like the 

example shown here.

Finally, Copycat has no mechanisms for either extending  already existing groups (though 

a  large group can fight against smaller subgroups inside it)  or merging two adjacent disjoint 

groups. The ability to  fluidly extend, merge, split, and, more generally, change the bound

aries of groups seems very im portant in high-level perception (Hofstadter, 1983), and such 

mechanisms would certainly help Copycat in cases like the ones shown above.

The answers displayed in the screen dum ps above (and other strange answers) are Copy

c a t’s “misspun tales” , corresponding to  the strange and humorously nonsensical stories oc

casionally generated by the program Talespin (M eehan, 1976), which contrasted with the 

more coherent, meaningful stories that it was m eant to generate. As was the case for Tale

spin, Copycat’s misspun tales are often windows onto the program ’s internal deficiencies, 

such as those discussed in this chapter. I t  m ust be said, however, th a t not all instances of 

strange answers should be considered evidence for problems with the program . As has been 

pointed out, the potential availability of all paths of exploration is essential for the pro

gram ’s flexibility (and the current program ’s flexibility is limited by the fact th a t it cannot 

follow all the  possible paths th a t people could follow). Contrary to w hat one m ight initially 

suppose, it  should be considered positive evidence for the  program’s strength th a t strange 

answers (such as those above, or frame-blend answers such as “a b c  => a b d , x y z  => d y z” ) 

do appear occasionally, since their existence proves th a t the program is indeed capable of 

following bad pathways, and yet manages to  steer clear of them  almost all the  time. This 

is the kind of behavior that we want to  see in  Copycat. On the o ther hand, bad-grouping 

answers (and some other types of bad answers) tend to  show up too often  in the current 

version of the  program , which indicates problems (of the  kind discussed above) with the 

way the  program is working right now.

6 .2  P ro b le m s  w i th  S e lf-W atch in g

An absolutely essential feature of conscious cognition, whose necessity is shown quite clearly 

by some of Copycat’s weaknesses, is self-watching (sometimes called “meta-cognition” ): an 

ability to  perceive patterns in one’s own m ental activities. In Copycat, tem perature acts as
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a  prim itive self-watching mechanism, in which information about the s ta te  of the program ’s 

progress toward an answer feeds back into the program ’s behavior, determining the amount 

of randomness tha t should be used in making decisions. However, Copycat’s performance 

on certain problems makes it clear that more sophisticated self-watching mechanisms are 

needed. A salient defect of Copycat is its mindlessly loopish behavior when solving the 

problem “a b c  =► a b d , x y z  => ?” . As could be seen in the screen dumps on th a t problem, 

the program  returns again and again to the same state of trying to  take the successor of 

Z  and failing. As was pointed out earlier, people too are prone to some degree of loopish 

behavior, but not to the extent that it occurs in Copycat, which hits the same impasse 

on average nine times per run on this problem. A normal hum an would never do this; 

after two or three times they would notice a  pattern , and would be able to  break it. But 

Copycat lacks mechanisms for forming, or remembering, any kind of high-level description 

of its  behavior, or of states that it has been in before.1 Such high-level pattem-recognition 

mechanisms are, in effect, analogy-making mechanisms—for example, the program would 

need to recognize th a t it was doing essentially “the same thing” each time it got stuck, even 

though the events leading up to the impasse might be very different each time. Thus some of 

the  same mechanisms that Copycat uses for making analogies between letter-strings should 

apply to the problem of watching and responding to its own behavior. Giving Copycat such 

an ability would be an excellent topic for future research on this project. (Ideas about the 

relations among self-watching, high-level pattern  recognition, and creativity are discussed 

in Hofstadter, 1985b.)

A nother serious self-watching problem in Copycat is finding a  way to have the densities 

of various types of codelets on the Coderack at a  given tim e (corresponding to  the various 

types of structures—descriptions, bonds, groups, correspondences, rules) correspond a t least 

roughly to  the kinds of structures the system current needs to  build (e.g., a t a  given time, 

the  program  might need more bonds to  be built in order for more progress to  be made). 

Having too few codelets of a  given type means th a t the program  will often miss essential 

structures, and having too many of a  given type (e.g., codelets looking for bonds) causes

1 Copycat does save the exact state  of the Workspace each tim e an impasse is h it, and 
the  tem perature remains clamped until the program decides (probabilistically) th a t new 
structures of sufficiently high quality have been built, but th is is a  very unsophisticated 
mechanism compared to  the kind of high-level pattern  recognition the program needs to 
apply to  its  own behavior in order to  avoid being stuck in a loop.
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the program to  waste much of its time fruitlessly exploring again and again structures that 

already exist. M aintaining a  proper balance in the population of codelets has emerged as 

an absolutely central issue in this project. This problem corresponds to  a  general issue 

th a t is central to high-level perception. The question is, how much time should one spend 

looking for new kinds of structures (and how to  allocate this tim e among the various types 

of structures), and how much time should one spend concentrating on concepts th a t have 

already been identified as relevant? Again, th is is the “exploration versus exploitation” 

trade-off. As can be seen in the screen dumps, the proper balance of bottom-up-versus-top- 

down pressures changes as processing proceeds: the program starts  out being dominated by 

bottom -up forces, b u t as structures are built and information is gained, processing gradually 

shifts toward being dominated more and more by top-down pressures. The reason for this 

is th a t as more structure is built and more nodes are activated, more and more top-down 

scout codelets are posted, and they tend to  have higher urgencies than bottom -up scout 

codelets, and thus gradually come to  dominate on the Coderack in term s of number and 

urgency.

There are two balancing problems here: the balance between bottom -up and top-down 

forces, and the balance among codelets looking for the various types of structures. The 

m ethod just described for achieving a  good bottom-up-versus-top-down balance in Copycat 

works fairly well, and emerges naturally from other mechanisms in the system. However, it 

proved more difficult to develop ways of m aintaining a  reasonable balance among codelets 

looking for various types of structures (e.g., a t a  given time, should the program spend more 

time looking for groups than for bonds?). In order to  achieve such a  balance, the system 

requires self-watching mechanisms to determine what types of codelets it currently needs. 

Tem perature is such a  mechanism, but in the current version of Copycat, tem perature was 

not enough to  solve this problem of codelet balance; more detailed self-watching mechanisms 

seem to  be needed. In the current program, I have added a  somewhat imperfect mechanism 

to  help achieve a  reasonable balance: when an a ttem pt is m ade to post codelets (bottom-up 

or top-down) corresponding to  a  particular type of structure (e.g., bonds), the program first 

makes a  rough assessment of the current need for th a t type of structure in the problem by 

looking more specifically (i.e., more specifically than is done when calculating tem perature) 

a t the causes of the unhappiness of objects in the problem (e.g., do many objects lack bonds 

to  their neighbors?). The program then decides probabilistically, based on this assessment, 

whether or not such codelets should be allowed to  be posted (e.g., if m any objects lack bonds,
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then it is likely th a t bond scouts will be allowed to  be posted). This filtering mechanism 

works fairly well, bu t it is unsatisfactory in th a t it is too global and centralized, and thus 

goes against the philosophy of local and distributed processing underlying Copycat. Self

watching is essential, but it should be done in a  less centralized way than  in the current 

version of the program.

The weaknesses discussed in this chapter are by no means the only problems with the 

program; many more exist a t various levels of detail. But the problems of top-down forces, 

focus of attention, and self-watching are currently the most salient and interesting problems, 

and are, I think, the issues most relevant to  modeling high-level perception in general. They 

are the problems th a t should probably have highest priority in future work on th is project.
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CHAPTER VII

R E S U L T S  O F  S E L E C T E D  “ L E S IO N S ” O F  C O P Y C A T

In this chapter I give the results of six experiments designed to elucidate the roles played 

by various aspects of the program ’s architecture. The purpose of doing these experiments 

was to  further illustrate how the program  works and to dem onstrate the reason for the 

presence of certain architectural features by showing what happens when they are “lesioned” 

(i.e., removed or altered). In each experiment, the program was altered in some way, and 

was then run 200 times on one or m ore of the five target problems.

7.1 E x p e r im e n t 1: S u p p re ss io n  o f  T e rra c e d  S can n in g

Recall th a t in Copycat, a  structure is built by a  chain of codelets,

scout =t> strength-tester =$► builder

ra ther than  by a  single codelet. The purpose of this experiment was to  examine the role 

played by this breaking-up of the process of structure-building. For this experiment, the 

usual chain was compressed into a  single codelet: the program was modified so that a single 

codelet carried out all three tasks (scouting out a  possible structu re , testing its strength, 

and  if the structure was found to  be strong enough, building it). T he same types of scout 

codelets as in the original program were present here; the difference was th a t rather than 

posting follow-up codelets, each scout carried out all three tasks.

I ran this experiment on two problems: “a b c  =$> a b d , iijjk k  =s> ?” and “a b c  =s> a b d , 

m r r j j j  => ?” .

The following bar graph gives the results for 200 runs of the  original (unmodified) 

program  on the first problem:
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1 5 9
Original Program 

Problem: abc —> abd, i i j jk k  —> ? 
Total Runs: 200

i i j j k i i i j j k k i i j j d d i i k k l l

Ar.Ttap: 29 Ar.Trap: 46 Av.Taap: 62 Av.TtBp: 46 Ar.Ttip: 43

The following bar graph gives the results for 200 runs of the modified program  on the 

first problem:

123

h
i i j j l l  i i j j k :

Av.Tvap: 33 Ar.Twp: -

Experiment 1: Suppression of Terraced Scanning 
Problem: abc —> abd, i i j jk k  —> ?

Total Runs: 200

i i j j k l i i j k l l i i k k l l i i j j k k i i j j k d j i j j k k i j k k l l

At . T up: 45 Av.Tup: 45 Av.Tup: 43 Av.Tup: 58 Av.Tup: 40 Ar.Ttap: SS Av.Tnp: 43

As can be seen, the modified program produces a larger num ber of badly justified fringe 

answers than the  original program. This is because structures are built much more quickly 

in the modified version: a  structure is built in one monolithic step rather than having to  wait 

after each separate step for the next codelet in the chain to  be chosen to  run. Exploration of 

structures becomes all-or-nothing: if a  structure is explored a t all, it is fully evaluated all a t 

once, as opposed to  what happens in the original program, in which the further exploration 

of promising structures is given high urgency and tends to proceed quickly, while the further 

exploration of weak structures is given low urgency and tends to  proceed slowly. Thus in 

the  modified program , the parallel terraced scan of possibilities loses some of its parallel 

and terraced na tu re .1

In the modified version, most weak structures still fail to  pass the strength test and are 

not built, bu t some, whose exploration would ordinarily be crowded out by other, higher-

1 However, it  is not lost entirely: even though individual structures are no longer consid
ered and built in a  parallel terraced m anner, the program still carries out a  parallel terraced 
scan of coherent collections of structures. Once certain structures are built (e.g., a  new suc
cessor bond or a  new correspondence), the resulting changes in the state  of the Slipnet and 
the Workspace lead to top-down codelets and new structure-strength values th a t increase 
the likelihood and speed of exploring compatible and supporting structures.
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urgency explorations, are built nonetheless, and they then affect the building of subsequent 

structures. The effects on the program ’s behavior are statistical, and can be seen in the bar 

graph above. The modified program produces about three times as many fringe answers 

as the original, and almost twice as many instances of iijjk l, showing that statistically 

speaking, strong structures are not being built as often, and weak structures (such as those 

leading to  the fringe answers) are being built and are surviving more often than in the 

original program.

The following bar graph gives the results for 200 runs of the original (unmodified) 

program on m rr jjj:

1 4 *

O riginal Program 
Problem: abc —> abd, m rr jjj  —> ? 

Total Runs: 200

4 1

mrrkkk
At .Tm p : 43

m rrjjk mrrjkk m rr j j j j mrrddd
At .T m p : 49 At .Tm p : 4 6 At .Tm p : 21 At  . T o p :  4 5

The following bar graph gives the results for 200 runs of the modified program on this 

problem:

1 2 5

Experiment 1: Suppression of Terraced Scanning 
Problem: abc —> abd, m rr jjj  —> ?

Total Runs: 200

mrrkkk m rrjjk mrrjkk m rr jj j j nrrddd m rrjjd
At .Tm p : 4 3 Ar.Tmp: 47 At .Tm p : 44 Ar.Twp: 11 Ar.Tnp: 43 At .T m p : 54

The results here are similar to  those for iijjk k . There are about one-and-a-half times 

as many instances of m r r j jk  as in the original, showing th a t strong structures (such as the 

k k k  group) were not built as often. Perhaps m ost significantly, there are only one-fourth 

as many instances of m rr i i i i  as in the original. As could be seen in the screen dum ps in 

C hapter 4, a  careful, terraced exploration of possible structures is im portant for arriving at 

this answer, and the statistics here back this up.
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7 .2  E x p e r im e n t 2: S u p p re ss io n  o f  B re a k e r  C o d e le ts

For this experiment, breaker codelets were taken out of the program; everything else re

m ained the same.

I ran this experiment on two problems: “a b c  => a b d , iijjk k  ?” and “a b c  =>• a b d , 

x y z

The following bar graph gives the results for 200 runs of the original (unmodified) 

program on the first problem:

1 5 9

1

O rig ina l Program 
Problem: abc —> abd, i i j j k k  —> ? 

T otal Runs: 200

3 7

i i j j l l
A T .T rap : 21

i i j j k l
At .T m p : 4 6

i i j jk k
At .Tm p : ( 2

i i j jd d
At .T m p : 46

i ik k l l
At .Tm p : 43

The following bar graph gives the results for 200 runs of the modified program on the 

first problem:

Experim ent 2: Suppression o f B reaker C odelets 
Problem: abc —> abd, i i j j k k  —> ?

■  Total Runs: 200

37Hi
i i j j i i

At .Temp: 2 t

i i j j k l
At .Tm p : 4 4

i i j jk d
A r .T ia p t  46

i i j k l l
At  .Tm p  : 4 7

i ik k l l
At .Tm p : 43

As can be seen by comparing the bar graphs, the  absence of breaker codelets had virtually 

no effect on the program’s performance here. The frequencies of the m ain two answers are 

the  same (the exact equality is a coincidence) and the num ber of fringe answers is the same 

(though the set of fringe answers is slightly different in each case). This is not surprising, 

since breaker codelets, which tend to  run only a t high tem peratures, do not play much of 

a  role in a  problem like this, in which the tem perature falls fairly quickly. The average 

tim e to  produce an answer was roughly the same in the two cases (572 codelet steps in the 

modified version versus 589 in the original).

The following bar graph gives the results for 200 runs of the original (unmodified) 

program  on xyz:
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146

O rig in a l Program 
Problem: abc —> abd, xyz 

T o ta l Runs: 200

xyd wyz yyz dyz
At .Tm p : 21 A T .T tep : 1 5 Ar.Taap: 46 At .Tm p : 1C

The following bar graph gives the results for 200 runs of the modified program on this 

problem:

193 Experiment 2: Suppression  o f B reaker C odele ts 
Problem: abc —> abd, xyz —> ?

T o ta l Runs: 200

xyd wyz yyz
A t.T m p :  21 A t.T m p : 17 Av.Taap: 70 Ar.Ttap: 51

Here there is a  significant difference in performance, illustrating the role of breaker 

codelets in this problem. There are almost 7 times as many instances of w yz in the original 

as in the modified version. W ithout codelets to break structures a t high tem perature, it is 

extremely difficult to  escape from the impasse of trying to  take the successor of Z, since the 

c -z  correspondence is very strong and is supported by other strong structures. This is the 

case even though decisions are more random  at high tem peratures; thus structure-breaking 

codelets are a  very im portant mechanism for escaping from impasses. W ithout them , the 

program ’s only escape from the snag is, in most cases, to  restructure the rule from “Replace 

rightm ost letter by successor” to  “Replace rightmost le tte r by D ”, and to  answer xyd .

Interestingly, the program w ithout breaker codelets tends to arrive a t an answer much 

more quickly than the original program  (1644 codelets on average versus 3218 in the origi

nal). This is because when breaker codelets are suppressed, the program does not have to 

spend tim e building new structures to  replace structures th a t have been broken.

7.3 Experiment 3: Suppression o f Different Conceptual-Depth Values

As was described earlier, the conceptual-depth values in the Slipnet play a  number of roles. 

The conceptual-depth value of a  given node affects the node’s rate  of activation decay, the
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urgencies o f top-down codelets posted by tha t node, the strength of descriptions involving 

th a t node, the  probability of m aking a slippage involving th a t node, the strength  of concept- 

mappings involving th a t node, and the probability of a rule-building codelet choosing tha t 

node as p a rt  of a  rule. For this experiment, all nodes in  the Slipnet were given equal 

conceptual-depth values (each was given a  value of 50—see Appendix B for the  original 

values). Everything else remained the  same.

I ran this experiment on “a b c  => a b d , iijjk k  =$> ?” and “a b c  => a b d , m r r j j j  =>• ?” .

The following bar graph gives the results for 200 runs of the original (unmodified) 

program on the first problem:

1 5 9

O rig in a l Program 
Problem: abc —> abd, i i j j k k  — > ? 

T o ta l Runs: 200

i i j j l l

lA T .T rap: 2 1

i i j j k l i i j j k k i i j j d d i i k k l l

At .T m p : 4 6 At .Tm p : ( 2 AT.Ttip: 46 At .Tm p : 43

The following bar graph gives the results for 200 runs o f the modified program  on the 

first problem:

E xperim ent 3: S u p p ressio n  o f D i f f e r e n t  C onceptual-D epth  V alues 
Problem: abc — > abd, i i j j k k  — > ?

T o ta l Runs: 200

5 9 5 4
3 5 3 5

7 4 3 1 1 1

i i j j l l i i j j d d i i j j k d i i j j k i i i j j k k i i j k l l i i j d d d i d d d d d i j k k l l i i d d d d

At .Tm p : 3 0 At .T m p : 3 3 AT.T»p: 44 At .Tm p : 4 5 At .T m p : 5 9 At .T m p : 3 9 At .T m p : 4 2 At .T m p : 40 At .T m p : 4 2 AT.Ttap: 3 7

As can be seen from the bar graphs, making the conceptual-depth values all equal had 

a  dram atic effect on the  program ’s performance. The m ost striking difference here is the 

increase in answers derived from 'the rule “Replace rightm ost letter [or group] by D ”. This 

is to  be expected, since the “D ” rules axe now ju st as strong as the “rightm ost letter [or 

groups  rules. There are also more instances of iijjk k , based on “Replace C b y  D ”, though 

the to ta l num ber is still small. This rule is now ju st as strong as the other two rules, bu t the 

fact th a t th e  c is usually seen as corresponding to  the rightm ost letter or group in  the target 

string prevents “Replace C b y  D ” from being built very often. A rightmost => rightmost 

correspondence is asserting, in effect, th a t the c should be viewed as “the rightm ost letter” ,
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whereas the  “Replace C b y  D ” rule is asserting th a t the c should be viewed as “a  C ”. These 

views are incompatible, so in order to be built, this rule would have to  fight with and defeat 

the rightmost ^  rightmost correspondence. This puts it  a t a  disadvantage with respect to 

the o ther possible rules.

A nother difference is th a t here there are almost twice as m any instances of answers for 

which the rightmost letter, rather than the rightmost group, is replaced: this is because 

the urgencies of most top-down codelets are not as high as in the original, so mutually- 

supporting sameness groups are not explored or built as often or as quickly.

In general, there is less pressure from top-down codelets not only because their urgency 

is lower, but also because the activation in nodes (such as sameness and sameness-group) 

th a t originally had greater conceptual depth now tends to decay much more quickly (and 

conversely, nodes th a t were originally of lesser conceptual depth now stay active longer) 

than in the original program, so not as many top-down codelets are posted. Thus good 

structures do not get built as fast, and the tem perature stays higher longer. This helps 

to  increase the num ber of bad-grouping answers (many of which now involve replacing the 

letters in the bad group by d ’s rather than by their successors, as in the frighteningly 

blockheaded answer id d d d d ).

The reduced force (in term s of both urgency and number) of top-down codelets, along 

with the fact th a t the tem perature stays higher longer, means th a t on average it takes the 

program longer to  get to  an answer. The average number of codelets run in the modified 

program is 743, versus 589 in the original.

The following bar graph gives the results for 200 runs of the original (unmodified) 

program  on m rr jj j :

141

O rig in a l Program 
Problem: abc —> abd, m r r j j j  —> ? 

T o ta l Runs: 200

■rrkkJc m rrjjk ■ rrjkk ■ erjJJJ mrrddd
Ar.Ttap: 43 At .Tm p : 49 At .Tm p : 44 Av.TMpi 21 Ar.TMpi 45
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The following bar graph gives the results for 200 runs of the modified program on this 

problem:

Experim ent 3: Suppression  o f D i f f e r e n t  C onceptual-D epth  Values 
Problem: abc —> abd, m r r j j j  —> ?

T o ta l Runs: 200

mrrkkk
Av.Tiip: 41

mrrddd m rrjjk m rrjjd mrrjkk mrr jdd m r r jjj
At  .Temp: 41 Ar.Temp: 4 6 Ar.Teep: 4 6 At .Tm p  : 4 4 Ar.Teep: 4 4 Ar.Teep: 73

The effects here are similar to those for iijjk k . Notice th a t the modified program never 

once produced m rr jj j j  during the 200 runs, whereas it was produced 8 times in the original 

program ’s 200 runs. This shows the necessity of strong top-down forces for arriving at this 

answer (strong top-down forces are needed to create a  single-letter-group and to  notice and 

build bonds among group-lengths). Such top-down forces are significantly reduced in the 

modified program.

7 .4  E x p e r im e n t 4: S u p p re ss io n  o f  D y n a m ic  L in k -L en g th s

Recall th a t in Copycat, links in the Slipnet shrink in length when the node labeling them 

is active. For example, when opposite is active, all opposite links (e.g., the  link between 

leftmost and rightmost) shrink. For this experiment, the program was modified so that 

link-lengths were no longer dynamic: links always remained a t their original length.

I ran this experiment on three problems: “a b c  => a b d , ijk  ^  ?”, “a b c  ^  a b d , kji => ?” , 

and “a b c  => a b d , xyz  => ?” .

The following bar graph gives the results for 200 runs of the original (unmodified) 

)rogram on the first problem:

198 Original Program 
Problem: abc —> abd, ijk  —> ? 

Total Runs: 200

i l l i j d i l l
Ar.TMp: I f At .Tm p : IS At .Tm p : 41

The following bar graph gives the results for 200 runs of the modified program on the
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first problem:

t9 7

At .Tm p : 27

Experiment 4: Suppression of Dynamic Link-Lengtns 
Problem: abc —> abd, ijk  —> ?

Total Runs: 200

i j l
lAr.TMp: I t

As can be seen, the modification had basically no effect on the relative frequencies of 

answers to this problem. There is a difference here, however: the modified program took 

slightly longer on average to arrive a t an answer (329 versus 289 codelets run on average). 

It is slower because dynamic link-lengths can act as a top-down force: when the concept 

successor, say, becomes active, this causes successor links (e.g., between A  and B  or I  and 

J) to  shrink, and these relationships to  thus be seen as closer. This speeds up the building 

of successor bonds since the bonds are judged to be stronger.

The following bar graph gives the results for 200 runs of the original (unmodified) 

program on kji:

112

Original Program 
Problem: abc —> abd, k ji 

Total Runs: 200

R j j I d i k j d
At .Tm p  : 45 Av.Tnpi 17 At .Tm p : 54

The following bar graph gives the results for 200 runs of the modified program on this 

problem:

143

Experiment 4: Suppression of Dynamic Link-Lengths 
Problem: abc —> abd, k ji  —> ?

Total Runs: 200

k j h k j j k j d I j i
Ar.T««p: IS A t.T m p :  44 A t.T m p  i 39 Ar.TMp: 29

Here there is a visible difference in the two bar graphs: the number of k jh  instances
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goes way up and the  num ber of Jji instances plumm ets dramatically in the  modified version. 

The reason for this is as follows. The program answers k jh  when it has m ade vertical 

correspondences ( leftmost => leftmost and rightmost => rightmost) between a b c  and k ji. 

As was shown in the  screen dumps in C hapter 4, these correspondences force a  view in 

which one string is seen as a successor group and the other as a  predecessor group. In this 

case, when a  whole-string mapping is made between a b c  and k ji, the slippage successor => 

predecessor is made automatically (w ithout requiring th a t the link between successor and 

predecessor already be shrunk); the slippage is forced by the whole-string mapping, and 

opposite is activated only after the slippage is made. On the other hand, the answer Iji is 

harder for the program  (even the original version) to  get. As was seen in C hapter 4, it  is 

produced when the program views a b c  and k ji as moving in the same alphabetic direction 

b u t in different spatial directions. This view produces a whole-string mapping with the 

slippage right => left, which activates opposite. Only then, with links between opposite 

nodes being shrunk, is it likely th a t diagonal correspondences (leftmost =>• rightmost and 

rightmost =► leftmost) will be built. (These two concept-mappings, although closely related 

to  left => right and right => left, do not come about autom atically when the la tte r two have 

been made. They m ust be made independently, although their construction is strongly 

facilitated by the la tte r two concept-mappings.)

Thus the answer Iji relies on dynamic link-lengths, whereas k jh  does not. The difference 

is th a t the slippage needed for the la tte r  (successor => predecessor) is m ade autom atically 

when a b c  and k ji (viewed in opposite alphabetic directions) are m apped as wholes, whereas 

the slippage needed for the former ( rightmost => leftmost) can be easily made only after 

a  succession of events has taken place: the whole-string slippage ( right => left) is m ade, 

opposite is activated, and links between opposite nodes are shrunk.

I t is possible th a t this asymmetry in the routes to  the  two answers is not psychologically 

realistic, even though people tend to  answer k jh  more often than  Iji. I t  seems plausible th a t 

once the slippage right =s» left is m ade, the closely related slippage rightmost leftmost 

should come imm ediately on its “coattails” , not merely as a  result of the activation of 

opposite. However, the  current version of Copycat has no mechanism implementing such a 

“coattails” effect (see Hofstadter, Mitchell, & French, 1987, for a  more detailed discussion 

of how this effect might work in Copycat).

For this problem, the average tim e taken to arrive a t an answer was not very different in 

the modified version and the original version: 375 codelets run on average in the modified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



207

version versus 387 in the original. The reason for this was th a t even though the modified 

version is intrinsically slower (as was seen on Ijk  above), it takes longer for the program  to 

come up with the answer Iji than k jh , so in the modified version the intrinsic slowness was 

balanced by the reduction in instances of answer Iji.

The following bar graph gives the results for 200 runs of the original (unmodified)

program on xyz.

146■
Original Program 

Problem: abc —> abd, xyz —> ? 
Total Runs: 200

JL 33 20
1

xyd
At.Tmp: 21

wyz
Ar.T«.p: IS

yyz
At.Tmp: 46

dyz
Ar.TMp: 16

The following bar graph gives the results for 200 runs of the modified program on this 

problem:

lai

1
Experiment 4: Suppression of Dynamic Link-Lengths 

Problem: abc —> abd, xyz —> ?
Total Runs: 200

18

xyd 
At.Tmp: 23

yyz
At.Tmp: 54

wyz
Ar.TMp: 17

Here the num ber of instances of w yz goes way down, and the num ber of instances of x y d  

goes up. The answer w yz  is very hard to make w ithout dynamic link-lengths. In the  original 

program , once the a - z  correspondence—with concept-mappings first => last and leftm ost => 

rightmost—is built, opposite becomes active, making all opposite links shorter, and hence 

m aking i t  more likely for the c -x  correspondence to  be built and for a b c  and x y z  to  be 

seen as going in opposite spatial 'and alphabetic directions. W ithout dynamic link-lengths, 

it  is m uch harder for all these mutually supporting structures to be built, which means th a t 

the unreinforced a - z  correspondence is so weak th a t it tends to  be broken quickly. This 

is why the  answer x y d  is overwhelmingly prevalent in the modified program. The answer 

y y z  comes from building only the a -z  correspondence (with slippage leftmost S  rightmost), 

w ithout being able to  make a  whole-string m apping with a  su ccesso rs  predecessor slippage. 

As was the  case for ijk , the modified program takes longer to come up w ith an answer: on
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average 4468 codelets ran here versus 3322 in the original.

7 .5  E x p e r im e n t  5: C la m p in g  T e m p e ra tu re  a t  100

The point of this experiment was to see the effect of a  persisting high tem perature on the 

program ’s performance. In this experiment, the am ount of randomness to use in making 

probabilistic decisions was fixed at its 100-degree value (recall th a t at a  tem perature of 100, 

decisions are made with a  high degree of randomness, though they are still not uniformly 

random ).

One problem with carrying out such an experiment is, if the tem perature is always 

100, rule-translator codelets will essentially never decide that a  sufficient amount of good 

structure has been constructed in order to  translate the  rule and allow an answer to be built. 

To take care of this problem, a separate value for tem perature was maintained, calcualted 

as in the original program as a  function of the happinesses of the objects in the Workspace. 

This “real” tem perature was visible only to  rule-translator codelets. For all other purposes, 

the tem perature was clamped at 100.

The following bar graph gives the results for 200 runs of the  original (unmodified) 

program  on “a b c  => a b d , m rr jj j  => ?” .

14#

Original Program 
Problem: abc —> abd, m rr jj j  

Total Runs: 200

mrrkkk
Ur.Taap: 43

m rrjjk mrr jkk m r r jj jj nrrddd
At .Tm p : 49 At .Tm p : 46 Ar.TMp: 21 Ar.TMp: 45

The following bar graph gives the results for 200 runs of the  modified program on 

“a b c  => a b d , m r r j j j  =>■ ?” . (The average final tem perature displayed here corresponds 

to  the “real” tem perature values that were visible only to  rule-translator codelets).
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131

Experiment 5: Clamping Temperature a t 100 
Problem: abc —> abd, m rr jjj —> ? 

Total Runs: 200

mrrjjk
AT.T«tp: 53

mrrkkk mrrjjd mrr jkk mrrddd mrrjdd mrrjjj
Ar.Ttsp: 46 Av.Taap: 57 AT.Tnp: SO Av.Taap: 52 Av.Tasp: 47 fcr.TMp: ( (

As can be seen, the modified program ’s performance is vastly different from th a t of the 

original program. As was discussed in Chapter 3 and illustrated in Chapter 4, tem perature 

affects almost every aspect of the program, and it can be seen from the bar graph above 

th a t a  persisting high tem perature tends to prevent a  coherent set of structures from being 

built. The answer m rr jjk  dominates here, and the more structured m rrk k k  is much less 

likely to be given. Answers th a t were on the fringes for the original program (e.g., m rr j jd  

and m rr j j j)  are much more likely to be given here. Even if the program stumbles onto a 

good pathway, the high amount of randomness here makes it impossible for the program ’s 

resources to  shift to exploring th a t pathway. The answer m rr j j j j  was never given during 

the 200 runs; since the tem perature stays high, the  necessary top-down forces never get the 

chance they need to construct the subtler structures required for this answer.

I t can be seen that the average final tem peratures for the modified program (corre

sponding to  the “real” tem perature values, as described above) are all higher than  the 

corresponding tem peratures for the original program , reflecting the fact th a t on average, 

not as much strong structure was constructed here.

Since the persisting high tem perature makes i t  hard for a coherent set of structures to 

be built, the modified program is much slower a t coming up with answers than the original: 

on average 1130 codelets ran versus 846 in the original.

7 .6  E x p e r im e n t  6: C la m p in g  T e m p e ra tu re  a t  10

Here the tem perature was clamped a t a  very low value (10) for all purposes except deciding 

when to  transla te  the rule (as in Experiment 5, tem perature was calculated as usual for 

use by rule-translator codelets, and the average final values of these real tem peratures are 

displayed in the  bar graph).

The following bar graph gives the results for 200 runs of the modified program on
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1 2 7

n rr j jk
A r.T ta o :  5 3

mrrkkk
U -r.T «ap: 45

Experiment 6: Clamping Temperature a t  10 
Problems abc —> abd, m rr jjj  —> ? 

Total Runs: 200

mrrjkk
At .Tm p : 48

In Experiment 5, decisions were made too randomly. Here the opposite effect takes 

place: the low tem perature means that decisions are made very deterministically (e.g., a t 

any tim e, the highest-urgency codelet is almost certain to  be chosen next, the strongest 

structure in a  competition is almost certain to  win, etc.), even when very little structure 

has been built. Again, this has striking effects on the program ’s performance. Unlike in 

the previous experiment, here the answer m rrk k k  dominates, but even so, there are still 

more instances of m rr jjk  here than  in the original. The most striking difference is the 

lack of fringe answers here (though there are several instances of m rr jk k  which, as usual, 

results from the program ’s occasional grouping problems). Since the modified program is 

now quite deterministic, weaker rules (e.g, “Replace rightmost letter by D ” or “Replace 

C  by D ”) never prevail. This modification makes the program quite conservative, so it 

doesn’t produce as many farfetched weak answers (such as m rrd d d ) , but i t  also never (in 

200 runs) came up with m rr jj jj ,  which requires the exploration of some riskier routes. The 

high degree of determinism means th a t what appears to  be the best possibility gets almost 

all of the program ’s attention a t any given tim e, so less-obvious structures, such as single

le tte r groups, length descriptions, and bonds between group-lengths, are much less likely to  

be considered in any depth. The fact th a t, a t any given tim e, the program tends to  focus 

alm ost all of its resources on w hat it sees as the most promising avenue turns out to  be 

a  waste of tim e, since the program tends to  explore the same strong structures again and 

again. This is why there are more instances of m r r j jk  than  in the original program: the 

program  might, for example, spend too much tim e exploring again and again the possibility 

of building the very strong a b c  whole-string group even after it  has already been built, and 

never get around to  building the j j j  group before it  decides to produce an answer.

Unlike in Experiment 5, the modified program  here is much faster than the original 

a t reaching an answer (468 codelets on average versus 846 in the original). One reason is
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similar to  th a t in Experiment 1: the high degree of determinism results in a  quite serial 

form of exploration, in which seemingly good structures are explored and built very quickly, 

while seemingly weaker structures are hardly explored a t all, even at very early stages. Thus 

the program  doesn’t spend tim e exploring many possibilities, and can come to  an answer 

much more quickly. But again, the trade-off is th a t certain possibilities (such as building 

single-letter groups or noticing group-lengths) are in effect completely excluded from the 

s ta r t, and the program  is thus liable to miss interesting but not immediately obvious ways of 

interpreting the situations (as it did here). This shows the necessity for a  balance between 

exploitation and exploration th a t was discussed earlier; in Experiment 5, the  program erred 

on the  exploration side, and here it errs on the exploitation side. A belief underlying this 

model (and supported by the solution to  the two-armed bandit problem discussed earlier) 

is th a t not only is a  balance needed, but there must be a  smooth and gradual transition 

from a  more random  and parallel exploration mode in early stages to a  more deterministic 

and serial exploitation mode in later stages when the system has more information upon 

which to  base decisions.

7.7 Summary

The experiments described in this chapter have further illustrated the roles played by certain 

architectural features of Copycat: the role of breaking up structure-building into chains 

of codelets (i.e., the terraced scan), the role of structure-breaking codelets, the role of 

conceptual-depth values in the Slipnet, the role of dynamic link-lengths in the Slipnet, 

and the  role of tem perature. There are many more such experiments th a t could be done 

(e.g., removing all bottom -up or all top-down codelet types, running the program with no 

spreading activation in the  Slipnet, lim iting the  Coderack to  various different sizes, and so 

on), and in general it would be very interesting to  systematically vary the param eters and 

form ulas in the system  and to  observe the effects on Copycat’s behavior. This experiments 

described in this chapter represent a  first step in this longer-term process of exploring the 

effects of such variations on the model.
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CH APTER VIII

COMPARISONS WITH RELATED WORK

In this chapter I compare the Copycat project with other research on computer models of 

analogy-making and with some other artificial-intelligence architectures th a t are related to 

Copycat’s architecture. I also discuss Copycat’s place in the spectrum  of computer models of 

intelligence, which ranges from high-level symbolic models to low-level subsymbolic models.

8.1 Comparisons With Other Research on Analogy-Making

A fair amount of research has been done in artificial intelligence and cognitive science on 

constructing computer models of analogy-making, almost all of it  concentrating on the use 

of analogical reasoning in problem-solving. Most of these models concentrate on how a 

m apping is m ade from a  source problem whose solution is known to  a  target problem whose 

solution is desired, with some kind of representation of the various objects, descriptions, and 

relations in the  source and target problems given to the program ahead of time. Very few 

computer models focus (as Copycat does) on how the  construction of representations for the 

source and targe t situations interacts w ith the m apping process, and how new, previously 

unincluded concepts can be brought in and can come to be seen as relevant in response 

to  pressures th a t  emerge as processing proceeds. In short, very few com puter models of 

analogy-making are models of high-level perception, concepts, and conceptual slippage in 

the  way Copycat is.

In this section, rather than  giving a  complete survey of com puter models of analogy- 

making, I will discuss (and compare with Copycat) in detail three different projects, chosen 

for their prominence in artificial intelligence and for their relevance with respect to the 

Copycat project. This leaves out a  discussion of many other models of analogy-making less
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Figure 8.1: Water-flow and heat-flow situations (from Falkenhainer, For- 
bus, & Gentner, 1989).

related to  Copycat; a good num ber of these are described by Hall (1989) and by Kedar- 

Cabelli (1988a).

8.1 .1  G e n tn e r  e t  a l.

Dedre Gentner’s research is perhaps the best-known work in cognitive science on analogy. 

She has formulated a theory of analogical mapping, called the “structure-m apping” theory 

(Gentner, 1983), and she and her colleagues have constructed a  computer model of this 

theory: the Structure-M apping Engine, or SME (Falkenhainer, Forbus, & Gentner, 1989). 

The structure-m apping theory describes how mapping is carried out from a  source situation 

to  a  (sometimes less familiar) target situation. The theory gives two principles for analogical 

mapping: 1) relations between objects rather than attributes of objects are mapped; and 2) 

relations that are part of a coherent interconnected system are preferentially mapped over 

relatively isolated relations (the “system aticity” principle). G entner’s definition of analogy 

in effect presupposes these m apping principles. According to her, there is a  continuum 

of kinds of comparison: an “analogy” is a  comparison in which only system atic relations 

are m apped, whereas a  comparison in which both a ttribu tes and relations are mapped is a 

“literal similarity” , not an analogy. I do not make such a  sharp distinction, as can be seen 

from the  spectrum  of examples of analogy-making given in C hapter 1.

One of Gentner’s examples of an analogy is illustrated in Figure 8.1 (from Falkenhainer, 

Forbus, & Gentner., 1989). The idea “heat flow is like w ater flow” is illustrated by mapping 

a  situation in which water flows from a  beaker to a vial through a  pipe onto a  situation in 

which heat flows from coffee in a  cup to an ice cube through a m etal bar.

The predicate-logic representations given for these two situations are displayed in Fig-
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W ater-Flov Situation

Ciust

G rtU tr Flow (l«*k<r, v u l, w»Jt«r, pipe)

Prewvre (bttktr) Pressure (vul)

GreUttr

Dumtttr (Ittktr) Dum«t«r (vul)

Liquid (wittr) Clttr (b«*k«r) 
Fl*JC-top (wattr)

Figure 8.2: The predicate-logic representations for the water-flow and 
heat-flow situations (from Falkenhainer, Forbus, & Gentner, 
1989).

Heat-Flov Situation

GresU/

/  \
Temp (coffee) Temp (ice cuLb«)

Flow (coffee, ice c u lt, l*ut, l»r)

Liquid (coffee)
Fkt-top (coffee)

ure 8.2. The idea is th a t the causal relation tree on the left (representing the fact that 

greater pressure in the beaker causes water to flow from the beaker to  the vial through 

the pipe) is a  systematic structure and should thus be m apped to the heat-flow situation, 

whereas the  other facts ( “the diameter of the beaker is greater than  the diameter of the 

vial” , “water is a  liquid” , “water has a flat top” , etc.) are irrelevant and should be ignored. 

Ideally, mappings should be made between pressure and temperature, coffee and beaker, 

vial and ice cube, water and heat, pipe and bar, and more obviously, flow  and flow. Once 

these mappings are made, a  conjecture about the cause of heat flow in the situation on 

the  right can be made by analogy7 with the causal structure in the situation on the left. 

Gentner claims th a t if people recognize tha t this causal structure is the deepest and most 

interconnected system for this analogy, then they will favor it for mapping.

G entner gives the following (possibly conflicting) criteria for judging the quality of an 

analogy: 1) clarity—a  measure of how clear it is which things map onto which other things; 

2) richness—a measure of how many things in the source are m apped to  the target; 3) 

abstractness— a  measure of how abstract the things m apped are, where the degree of “ab

stractness” of an a ttribu te  or relation is its “order” : a ttribu tes (e.g., “flat-top” in the exam-
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pie above) are of the  lowest order, relations whose argum ents are objects or a ttribu tes (e.g., 

“flow” ) are of higher order, and relations whose argum ents are relations (e.g., “cause” ) are 

of even higher order; and 4) systematicity—the degree to  which the things m apped belong 

to  a  mutually constraining conceptual system.

The com puter model of this theory (SME) takes a  predicate-logic representation of 

two situations (such as the representation given in Figure 8.2), makes a m apping between 

objects, a ttribu tes, and relations in the  two situations, and then makes inferences from 

this mapping (such as “the greater tem perature of the coffee causes heat to  flow from the 

coffee to the ice cube”). The only knowledge the program  has of the two situations is 

their syntactic structures (e.g., the tree structures given for the water-flow and heat-flow 

situations given above); it has no knowledge of any kind of semantic similarity between 

various descriptions and relations in the two situations. All processing is based on syntactic 

s tructural features of the two given representations.

SME first uses a  set of “match rules” (provided to  the program ahead of tim e) to make 

all “plausible” pairings between objects (e.g., water and heat) and between relations (e.g., 

flow  in the case of water and flow  in the  case of heat). Examples of such rules are: “If two 

relations have the same name, then pair them ” ; “If two objects play the same role in two 

already paired relations (i.e., are arguments in the same position), then pair them ” ; “Pair 

any two functional predicates” (e.g., pressure and temperature). It then gives a  score to 

each of these pairings, based on factors such as: Do the two things paired have the same 

name? W hat kind of things are they (objects, relations, functional predicates, etc.)? Are 

they part of system atic structures? The kinds of pairings allowed and the scores given to  

them  depend on the set of m atch rules given to  the program ; different sets can be supplied.

Once all plausible pairings have been made, the  program makes all possible sets of 

consistent combinations of these pairings, making each set (or “global m atch” ) as large as 

possible. “Consistency” here means th a t  each element can m atch only one other element, 

and a  pair (e.g., pressure and tejnperature) is allowed to  be in the global m atch only if 

all the argum ents of each element are also paired up in the global match. Consistency 

ensures clarity of the  analogy, and the fact th a t the sets are maximal shows a  preference for 

richness. After all possible global matches have been formed, each is given a  score based 

on the individual pairings it  is made up of, the inferences it suggests, and its degree of 

systematicity. Gentner and her colleagues have compared the relative scores assigned by 

the  program  with the scores people give to the various analogies (Skorstad, Falkenhainer,
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& Gentner, 1987).

Analogy-making as modeled in the Copycat program  is in agreement w ith several aspects 

of Gentner’s theory. We agree with the main idea of systematicity: th a t in general, the 

essence of a  situation—the part th a t should be m apped—is a  high-level coherent whole, not 

a  collection of isolated low-level similarities. In Copycat, the pressure toward systematicity 

is an emergent result of several pressures:

• The pressure, coming from codelets, to  perceive relations and groupings within strings.

• The pressure to  see things abstractly (which itself emerges from the preference for us

ing descriptions of greater conceptual depth, and from the tendency of deeper concepts 

to stay active longer).

• The pressure to  describe the change from the initial to  the modified string in terms 

of relationships and roles, since these tend to be deeper than  a ttribu tes (e.g., in 

form ulating a  rule for the change a b c  =s> a b d , it is in general b e tte r  to  describe the 

d as “the successor of the rightmost le tte r” rather than as “an instance of D ”).

•  The greater salience of larger relational structures (e.g., a whole-string group), which 

makes them  more likely to  be paid attention to, and hence m apped.

•  The high strength  of correspondences between large relational structures (such as 

whole-string groups): such correspondences are strong not only because they involve 

large structures, but also because they axe based on many concept-mappings.

•  The pressure toward forming a  set of compatible correspondences th a t, taken together, 

form a  coherent worldview.

G entner captures some im portant points in her characterization of a  “good” analogy, 

and the same pressures exist in Copycat: her pressure toward “clarity” is enforced by our 

prohibition of many-to-one or one-to-many mappings w ithout first making the  “m any” into a 

grouped unit; her pressure toward “richness” corresponds to  Copycat’s preference for having 

many correspondences and many concept-mappings underlying a  correspondence; and the 

program ’s drives toward abstraction and system aticity are described above. B ut note that 

Gentner’s definition of “abstraction” (order of a  relation) is not the same as the notion in 

Copycat of “conceptual depth” (which was described in Section 3.2). In Copycat, there is 

!>o logic-based definition for conceptual depth, but rather these values are assigned by hand,
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with quite high values sometimes going to concepts th a t G entner might call “a ttribu tes” 

(such as first, which could be seen as an a ttribu te of an a).

Although there are points of agreement, there are also some fundamental issues on 

which our approach and G entner’s disagree, and some of the most im portant aspects of 

analogy-making addressed in the Copycat project are not dealt with in Gentner’s theory 

and model.

G enter’s abstractness and systematicity principles capture something im portant about

analogy-making, but there are often other pressures in an analogy: both superficial and

abstract similarities th a t may not be parts of systematic wholes, but are still strong con

tenders in a  competition. An example of this in the Copycat domain is Variant 9 from 

C hapter 5:

a a b c  => a a b d

y k k  =» ?

The abstractness and systematicity principles would, I th ink, argue for the answer y ll, 

since the a ttribu te  sameness-group describing the group of a ’s and the group of k ’s is firstly 

merely an a ttribu te , and secondly is not related to the system atic set of successor relations 

in each string; according to  the systematicity principle, it should thus not be m apped, 

but should be ignored. However, many people feel th a t the two groups should m ap onto 

each other nonetheless, and th a t the best answer is h jk k , in spite of what I think would 

be an a priori dismissal by the structure-m apping theory. M aking any analogy involves a  

competition between rival views, and one cannot be certain ahead of tim e th a t the mapping 

with the highest degree of systematicity (in Gentner’s sense) will be the most appealing.

A nother problem with G entner’s theory is th a t for any complex situation, there are 

m any possible sets of relations th a t exhibit systematicity, and it is not explained how 

certain ones are considered for mapping and not others, on syntactic grounds alone. For 

example, suppose the heat-flow domain had contained the following relation:

G rttftr

Volume feoffee) Volume (iee eule)

There would be no reason, based on syntax alone, to prefer the  structure concerning tem 

perature  over this structure for mapping; if this structure were chosen, the analogy-maker 

would mistakenly learn th a t, ju st as the pressure differential causes the water flow, the
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volume differential causes the heat flow. There is not even a semantic connection given 

between temperature and heat that might guide one to  suspect the implication of temper

ature in understanding how heat flow occurs. In short, which facts are part of a relevant 

system atic whole, and which are isolated and irrelevant, depends on the situations a t hand 

and cannot be determined by syntactic structure alone.

By contrast, in Copycat, the mechanisms for deciding what things to concentrate on 

and which mappings to make involve semantics: they involve activation of concepts in the 

Slipnet in  response to  perception of instances of those concepts (or of associated concepts) 

in the le tte r strings, competition among objects clamoring to  be noticed and among various 

descriptions of objects and relationships between objects, and certain a priori notions of 

salience. For the Structure-M apping Engine, not only are the attributes and relations in 

each situation laid out in advance, but there is no notion of differential relevance among 

them: which ones get used in an analogy is entirely a  function of the syntactic structure 

connecting them . In Copycat, the notions of differential relevance and non-black-or-white 

inclusion of concepts in a  situation (via probabilities as a  function of differential activation 

in the Slipnet)—and of the program i<se//bringing in the  concepts to  be used to  describe the 

situation—are fundamental, since Copycat is a  model of how situations are interpreted as 

well as how mappings are made between them , and of how the two processes interact. The 

philosophy of Gentner and her colleagues is th a t the interpretation stage and the mapping 

stage can be modeled independently; that there are, in effect, separate “modules” for each. 

In contrast, a  philosophy underlying the Copycat project is that the two are inextricably 

intertw ined; the way in which the two situations are understood is affected by how they 

are m apped on to  each other, as well as vice versa. Such an interaction could be seen in 

the screen dumps given in C hapter 4. For example, in “a b c  =>• a b d , k ji =>• ?” , how a b c  

was m apped to  k ji  had a profound influence on how the la tte r was interpreted, and vice 

versa. This issue of the necessity of integrating these two processes is discussed further in 

Chalmers, French, and Hofstadter (1990).

Another fundam ental difference between our approach and Gentner’s is th a t her the

ory does not include any notion of conceptual similarity or of slippage, notions absolutely 

central to  the Copycat project. In the water-flow-heat-flow example given above, the rep

resentations of the two situations are sufficiently abstract to  make the analogy a virtual 

isomorphism. For example, the concepts of water flow  and heat flow  have both been ab

stracted in advance into a general notion of flow. Likewise, in another analogy th a t Gentner
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describes, in which the hydrogen atom  is m apped onto the solar system, all the im portant 

predicates in both situations have the same labels (e.g., attracts, revolves around, mass). 

This is necessary because of the theory’s reliance on syntax alone. If this “identicality” 

constraint were to  be relaxed, semantics and context-dependence (i.e., some knowledge of 

conceptual proximity and how it is affected by context) would have to be brought in. But 

a t present, since the concepts contained in the preconstructed representations are always 

in a  sufficiently abstract form, there is no need for a Slipnet-like structure in which various 

concepts flexibly become more or less similar to  one another in response to  context. The 

analogy is already effectively given in the representations.

Another problem with Gentner’s theory is th a t it  relies on a  precise and unambiguous 

representation of situations in the language of predicate logic. The structure-m apping 

theory’s reliance on syntax alone requires th a t situations be broken up very clearly into 

objects, attributes, functions, first-order relations, second-order relations, and so on. For 

example, the water-flow-heat-flow analogy includes the following correspondences: 

water =» heat (both are objects); 

coffee =► beaker (both are objects); 

flow (beaker, vial, water, pipe) ,

^  flow (coffee, ice cube, heat, bar) (both are 4-place relations);

But suppose th a t, in the heat-flow situation, heat had been described not as an object, but 

as an  a ttribu te  of coffee, as in emits-heat (coffee), or th a t flow  had been given as a 3-place 

ra ther than as a  4-place relation: flow (coffee, ice cube, heat) where the means of heat flow 

is considered to  be irrelevant, or suppose th a t, in the water-flow situation, water flow  had 

been given as a  5-place relation: flow (beaker, vial, water, pipe, 10 cc per second) where the 

ra te  of flow is included. Any of these quite plausible changes would prevent a  successful 

application of the structure-m apping theory. The problem is th a t in the real world, the 

categories “object” , “attribu te” , and “relation” are very blurry, and people (if they assign 

such categories a t all) have to  use them very flexibly, allowing initial classifications to  slide 

if necessary a t the drop of a ha t. And to do this, semantics m ust be taken into account (this 

point is also made by Johnson-Laird, 1989). In  the water-flow-heat-flow representation, heat 

is presented as an object, but in the solar-system -atom  representations it  could plausibly 

be given as an attribute of the sun (e.g., generates-heat (sun)). The classification of heat as 

an object is necessary for the water-flow-heat-flow analogy to  work, but is no t necessarily 

a  classification th a t the analogy-maker would make before figuring out what the mappings
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were. It seems likely th a t any two people (or even one person, a t different tim es) would 

produce very different predicate-logic representations of, say, the  water-flow situation, no 

doubt differing on which things were considered to  be objects, which were a ttribu tes, which 

were relations, how m any argum ents a given relation has, and so on. Thus, a  serious 

weakness of the structure-m apping theory is its  inability to deal w ith any flexibility in the 

representation of situations.

To be sure, Copycat also breaks up a situation’s representation too cleanly into object- 

a ttribu tes (descriptions) and relations between objects, where many people would not do so. 

For example, in the string a a a b c d , should the fact th a t the b  is the  alphabetic successor 

of the group of a ’s be represented as a relation between the two objects, or as a description 

belonging exclusively to  the b? I t depends on the  context. If the problem were

a a a b c d  => a a a x c d

p q q q rs  =» ?,

then one could plausibly use th a t fact as a  description, viewing the b  and the r  as corre

sponding because they are both “successor of the sameness group” , and answer p q q q x s . 

However, such a  description m ight not be applied to  the  b  in a a a b c d  if  the problem were

a a a b c d  => a a a b c e

p q q q rs  => ?

In the la tte r, to  get the  answer p q q q r t ,  the a - b  successor relation would be used only as 

one of the relations tying together the initial string. Copycat is currently unable to  make 

descriptions such as “successor of the sameness group” , but I believe th a t the architecture 

of Copycat would allow one to  fairly straightforwardly give it  the ability to  make and 

use such descriptions appropriately. The possibility for such real-tim e representational 

flexibility is lacking in a  program  like SME, which relies solely on the  syntax of predicate- 

logic representations th a t axe supplied to  it before the fact. For such a  program to  work, 

the representations have to  be tailored carefully.

Thus, both  the architecture and purpose of the Structure-M apping Engine are quite 

different in spirit from those of Copycat. Although SME is m eant to  simulate human 

analogy-making, in th a t it  models which types of structures tend to  be mapped from one 

situation to  another, and which of the various possible mappings will be preferred, it  doesn’t 

a ttem pt to  model concepts or perceptual processes in the way Copycat does, and the  exhaus

tive search it performs through all consistent mappings is not m eant to  be psychologically
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plausible. Rather, it  seems th a t SM E is m eant to be an autom atic way of finding what 

the  structure-m apping theory would consider to  be the best m apping between two given 

representations, and of rating various mappings according to the structure-m apping theory, 

which ratings can then be compared w ith those given by people.

In summary, Copycat has a  store of knowledge about letter-strings tha t is structured 

independently of any particular problem , and th a t is adapted by the program to  each new 

problem. SME has no perm anent store of knowledge; information about each new situation 

is pu t into predicate-logic notation by people only after a  problem is given, and for each 

new problem, a  new set of facts specific to the problem is needed. SM E also relies on rigid 

predicate-logic descriptions discussed above, where the representations are fixed at the start 

of processing and cannot be altered by the program. Copycat sta rts  out with raw, unper

ceived situations, and it is in the process of describing these situations and their relations to 

one another th a t the concept network (the Slipnet) is modified dynamically and eventually 

settles into a  certain pattern  of activations and conceptual proximities. It is impossible to 

know ahead of time which concepts will be im portant and w hat reformulations and slip

pages will need to  take place in the course of making an analogy. SME does not address 

these issues, but rather starts  out with already-formed representations of situations, with 

the  task of deciding which mappings are preferable. The structure-m apping theory makes 

some very useful points about what features appealing analogies tend to  have, bu t in dealing 

only with the m apping process while leaving aside the problem of how situations become 

understood and how this process of interpretation interacts with the  mapping process, it 

leaves out some of the most im portant aspects of how analogies are made.

8.1.2 Holyoak and Thagard

Keith Holyoak and Paul Thagard have built a  computer model of analogical mapping 

(Holyoak & Thagard, 1989), based in p a rt on theoretical and experim ental work by Holyoak 

and his colleagues (Gick & Holyoak, 1983; Holland, Holyoak, N isbett, and Thagard, 1986), 

and inspired in part by research by M arr and Poggio on constraint-satisfaction networks 

used to  model stereoscopic vision. T he computer model, ACME (Analogical Constraint 

M apping Engine), is similar to SME in th a t it uses representations of a  source situation 

and target situation given in sentences of predicate logic, and makes an analogical mapping 

consisting of pairs of constants and predicates from the representations. In fact, ACME has 

been tested on several of the same predicate-logic representations of situations th a t SME
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was given, including the water-flow and heat-flow representations. For ACME, a  mapping 

between two situations is based on the following five constraints:

•  Logical compatibility: A mapped pair has to  consist of two elements of the same 

logical type. T hat is, constants are mapped onto constants and n-place predicates are 

m apped onto n-place predicates. For example, in the water-flow-heat-flow analogy, 

water could map on to  water, but not onto flow, because the former is a  constant and 

the la tte r is a  4-place relation.

•  Uniqueness: Each source element m ust map onto at most one target element.

• Relational consistency: The various pairings making up a  global m apping must sup

port each other. For example, if flow  in one situation maps onto flow  in the other, 

then th a t supports a mapping between water and heat, since they play corresponding 

roles in the flow  relations.

•  Semantic similarity: Pairings of predicates whose elements have similar meaning are 

preferred.

•  Role identity: This constraint applies to  analogies between problem-solving situations, 

which are represented in term s of initial states, goal states, solution constraints, and 

operators. This constraint requires th a t initial states map to  initial states, goal states 

to  goal states, and so on.

T he model takes as input a set of predicate-logic sentences containing information about 

the source and target domains (e.g., water flow and heat flow), and it constructs a  network 

of nodes, where each node represents a  syntactically allowable pairing between one source 

elem ent and one target element (a  constant or a  predicate). (Here, “syntactically allowable” 

m eans adhering to the logical-compatibility constraint.) A node is made for every such 

allowable pairing. For example, one node might represent the water => heat mapping, 

whereas another node might represent the  water => coffee mapping. Links between nodes 

in the  network represent constraints; a  link :s weighted positively if it  represents mutual 

support of two pairings (e.g., there would be such a  link between the flow  => flow  node 

and the  water => heat node, since water and heat are counterparts in the argum ent lists of 

the  two flow  relations), and negatively if it represents mutual disconfirmation (e.g., there 

would be such a  link between the flow  => flow  node and the water => coffee node). The 

network also has a “semantic unit” : a node th a t has links to  all nodes representing pairs
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of predicates. These links are weighted positively in proportion to  the “prior assessment of 

semantic similarity” (i.e., assessed by the person constructing the representations) between 

the two predicates. In addition, it has a  “pragm atic unit” : a node th a t has positively 

weighted links to all nodes involving elements (e.g., water) deemed ahead of time (again 

by the person constructing the representations) to  be “im portant” . Once the network is in 

place, a spreading-activation relaxation algorithm is run on it, which eventually settles into 

a final sta te  with a particular set of activated nodes representing the winning matches.

There are several points of agreement between the philosophy of this model and that 

of the Copycat program . We share the idea th a t analogy-making is closely related to per

ception and should be modeled with techniques inspired by models of perception. We 

also share the belief th a t analogies emerge out of a  competition among pressures (or “soft 

constraints” ), involving a large number of local decisions that give rise to a larger coher

ent structuring. And we agree th a t the pressure toward systematicity (as described by 

Gentner) emerges from other pressures. Copycat has counterparts to  Holyoak and Tha- 

gard’s relational-consistency constraint (Copycat’s pressure toward compatible correspon

dences) and their semantic-similarity constraint (in Copycat, correspondences involving 

close concept-mappings are strong).

There are, however, deep differences between Copycat and ACME, related to  Copy

cat’s differences with SME discussed in the previous section. First, like SME, ACME tries 

all syntactically plausible pairings, a  method that is bo th  computationally infeasible and 

psychologically implausible in any realistic situation. For example, in making a  W atergate- 

Contragate analogy, do we consider a mapping between Nixon and every person involved in 

Contragate, including Fawn Hall, Daniel Inouye, Ed Meese, and Dan Rather? O r even less 

plausibly, do we consider mapping Gerald Ford to  the Contras’ base camp in Honduras, or 

to  the  chair Oliver N orth sat in while testifying before Congress? Yet these are all plausi

ble, according to  the logical-compatibility constraint, in which semantics plays no role a t 

all. The existence of th is exhaustive (though parallel) search through all possible mappings 

shows th a t ACME is not attem pting to  model how people search through such possibili

ties, whereas this is one of the Copycat project’s main focuses. In Copycat, although any 

initial-string object can in principle be compared with any target-string object, an exhaus

tive search is avoided thanks to the parallel terraced scan, in which comparisons, if they 

are m ade a t all, are m ade a t different speeds and to different levels of depth, depending on 

estimates of their promise.
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A m ajor problem in the ACME system is the same problem I discussed with respect to 

SME: the representations of knowledge used are rigid, and are also tailored specially for each 

new analogy. ACME uses the same representation as did SME for the water-flow-heat-flow 

analogy, so the same issues discussed in the section on Gentner et al. apply here. Again, 

the program  has no ability to restructure its descriptions or to add new descriptions in the 

course of making an analogy; the descriptions are constructed by a  person ahead of time 

and are frozen. ACME differs from SME in th a t it has a  “semantic un it” giving semantic 

similarities, which correspond in some sense to those embodied in Copycat’s Slipnet, but 

the similarities are also decided in advance by the programmer for the purposes of the 

given analogy, and are frozen. Unlike Gentner et al., Holyoak and T hagard  recognize the 

necessity of considering semantics as well as syntax, but the problem is th a t it is impossible 

in general to have a “prior assessment of similarities” (as encoded in A CM E’s semantic unit); 

ra ther, analogy-making is all about similarities being reassessed in response to  pressures that 

weren’t apparent ahead of time.

ACME also leaves aside the question of how concepts come to  be seen as im portant 

in response to  pressures; this is taken care of by the pragm atic un it, which encodes the 

program m er’s prior assessment of w hat is im portant in the given situations. The pragmatic 

unit could be said to  correspond to  the activation of Slipnet nodes and to  the importance 

values of objects in Copycat. But again, unlike in Copycat, where these values emerge in 

response to  what the program  perceives, in ACME, the pragm atic unit is set up by a  person 

and then frozen for each new problem. Thus, like SME, ACME does not deal with another 

of Copycat’s main focuses: how concepts adapt to  different situations. ACM E, like SME, 

models only the “m apping stage” of analogy-making, but, as was said before, a  philosophy 

underlying Copycat is th a t the m apping process cannot be separated from the processes 

of perceiving and reformulating perceptions and assessments of similarities in response to 

pressures. Holyoak and Thagard (1989) themselves point out th a t their model does not 

address this issue—they call it  the  issue of “re-representation”—and acknowledge th a t it 

will often be necessary to  interleave mapping with m anipulation of the representations, 

taking into account top-down pressures—which is essentially ju st w hat Copycat does.

Since ACM E’s knowledge is set up ahead of time, the program ’s success, like that of 

SME, is totally dependent on the representations it is given. In the  examples given by 

Holyoak and Thagard (1989), the representations of the source and target matched each 

other almost perfectly; the essence had been distilled in exactly the right form for making
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an analogy. Thus the  program was quite successful, even though experiments done by Gick 

and Holyoak (1983) showed th a t many people have a  hard  tim e w ith the same analogies. 

As w ith SME, it is very doubtful th a t the representations given to  ACM E could have been 

m ade by someone who didn’t already have the mapping in m ind, and it is alm ost certain 

th a t the program would not succeed if the representations were m ade independently by two 

different people.

8 .1 .3  H ow  R e a l A re  T h e se  “ R e a l  W o rld ” A na log ies?

One of the criticisms th a t has been made of Copycat (as well as of Evans’ program, to 

be discussed in the next section) is th a t it makes analogies in an idealized microwoiid, 

whereas other analogy-making programs work in more complex, real-world domains. On 

the surface it would seem th a t SME and ACME make rerj-world analogies th a t are much 

more complex than the “toy” problems Copycat deals with. B ut if one looks below the 

surface (as I did here for the water-flow-heat-flow example), it can be clearly seen th a t the 

knowledge possessed by these program s (th a t is, the knowledge given to  them  for each new 

problem, in the form of sentences of predicate logic), in spite of the  real-world aura  of words 

like “pressure” and “heat-flow”, is even more impoverished than  Copycat’s knowledge of its 

letter-string microworld. The program s know virtually nothing about concepts such as heat 

and water—much less than  Copycat knows about, say, the concept successor group, which 

is embedded in a  network and can be recognized and used in an  appropriate way in a  large 

variety of diverse situations. For example, a b c , a a b b c c , c b a , a b b b c , m rr j j j ,  m m rrr j j j j ,  

j j j r r m ,  a b b c cc , x p q e fg , and k  (a  single-letter successor group) can all be recognized as 

instances of successor groups, given the appropriate pressures.1 This is not the case for, say, 

SM E’s and ACME’s notion of “heat” as given for the purpose of making a  water-flow-heat- 

flow analogy. There the notion of “hea t” has essentially no semantic content and certainly 

cannot be adapted to  any other situation. Nor can these program s recognize heat or a  heat

1 M yriad other examples of successor groups, with different degrees of abstruseness, can 
be formed in the letter-string dom ain. Many are beyond C opycat’s current recognition 
capabilities, though the same perceptual mechanisms the program  has now could, I believe, 
be extended fairly readily to recognize more complex instances, such as a c e  (a  “double- 
successor” group), a a b a b c  (which can be seen as a  “coded” version of a b c  when parsed as 
a -a b -a b c ) , k m x x rre e e jjj  (which could be described as “11-22-33”), a x b x c x  (where the 
x ’s form a  ground for the figure a b c ) , a b c b c d c d e  (which could be parsed a b c -b cd -cd e ), 
and so on.
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like phenomenon. These programs are purported to make analogies involving the concepts 

heat and water, but the program s have absolutely no sense of “heat” or “water” themselves 

as categories and cannot make the very analogies required to  recognize instances of these 

categories (as humans do) in a  variety of contexts.

Thus the claim th a t Copycat’s microworld is a  “toy dom ain” while these other programs 

are solving real-world problems is truly unfounded, and is based on a  tendency of people to 

a ttribu te  much more intelligence to a program than  it deserves based on real-world-sounding 

words it uses (such as “heat” )—concepts th a t are extremely rich for people, but are almost 

completely empty as far as the program is concerned. (M cD erm ott, in his article “Artificial 

Intelligence Meets N atural Stupidity” (1981) writes humorously but incisively about some 

related problems in artificial-intelligence research methodology.) Programs th a t use words 

with real-world connotations bu t that are nonetheless completely devoid of semantic content 

as far as the program is concerned have great potential to be misleading. An “all the cards 

are on the table” quality is one of the advantages of using explicit microworlds for research 

in artificial intelligence.

8.1.4 Evans

Thomas Evans’ ANALOGY program (Evans, 1968) was w ritten in the 1960’s to solve IQ- 

test-like geometric-analogy problems (many of which were taken from actual examinations 

given to  college-bound high-school students by the American Council on Education). A 

sample problem is given in Figure 8.3. The idea is to  choose the box in the bottom  row 

th a t has the “same” relation to  box C as box A has to box B. ANALOGY is given as input 

the information th a t box A contains two simple closed curves and one dot, along with the 

coordinates of the  vertices and the curvature of the lines; similar information is given for all 

the other boxes. The program  then computes, for each box, properties of the figures inside 

it and relations among them , using a predetermined set of possible properties and relations 

and a  “substantial repertoire of ‘analytic geom etry’ routines” . For example, for box A in
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B

cn

4

Figure 8.3: A sample problem from Evans’ geometric-analogy domain.

the problem shown, the program  would find the following relations:

(INSIDE rectanglel trianglel),

(ABOVE do tl trianglel),

(ABOVE do tl rectanglel),

(LEFT do tl trianglel),

(LEFT do tl rectanglel).

(Note: I use words like “rectangle” and “triangle” only for clarity; the program does not 

have the concepts triangle or rectangle, and has no notion of similarity a t the conceptual 

level between, say, two different triangles. It was not able, therefore, to solve problems 

involving rules such as “Replace all triangles by squares” .) In order to  describe the change 

from box A to  box B, the program  uses a given set of possible transformations to make all 

possible mappings from the figures in box A to those in box B. The repertoire of possible 

transform ations contains: removal of objects, addition of objects, rotation of objects, uni

form scale-change of objects, and horizontal and vertical reflection of objects. From this set 

of mappings the program creates a  set of rules describing the change from A to B.

Next, the program tries to m atch box C with each of the numbered answer boxes, 

discarding an answer box if the m atching does not agree with the A-to-B rules in terms of 

the  number of objects added, removed, or matched. In the example, answers 1 and 5 are 

discarded for this reason. The program then does a  (potentially huge) exhaustive search 

through all possible ways of m apping C to each of the remaining answers, given the possible
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A-to-B rules th a t have been formed. In this way, a  set of possible C-to-answer rules is 

constructed (each one is a weakened form of one of the A-to-B rules, from which statem ents 

th a t are not true of the C-to-answer match are removed). Each of these C-to-answer rules 

is scored using a  complicated procedure th a t values the amount of information the rule 

contains (roughly, the length of the rule); this reflects the heuristic th a t strong C-to-answer 

rules are ones requiring little  alteration of the original A-to-B rule. The answer given by 

the rule with the highest score is chosen.

Evans’ geometric analogies are very much in the spirit of Copycat’s microworld, not 

merely because the analogies are in the form of “proportions” , but because they are abstract; 

although such analogies have no conscious “purpose” (as in problem-solving), humans have 

definite feelings about what makes for a  deep mapping and what makes for a  shallow one. 

The fact th a t such abstract analogy problems are used without argum ent on intelligence 

tests (as a t least requiring some aspect of intelligence to solve them ) shows how generally 

accepted is the point I made earlier: th a t people are able to bring to  bear their perceptual 

and analogical abilities in an idealized domain; indeed, they are unable not to. This domain, 

like Copycat’s, has the potential for very interesting and creative analogies, in spite of its 

lim ited number of concepts. Evans’ domain is closely related to  the extraordinarily rich 

domain of Bongard problems (Bongard, 1970), which was one of the early inspirations for 

the  Copycat project.

Although Evans’ domain is potentially very rich, his program was able to  solve only a 

very limited set of problems in this domain. For example, the transform ations from box A 

to  box B are restricted to  those involving the addition and removal of objects, and Euclidean 

transform ations (rotation, reflection, uniform-scale change). Therefore, the program would 

not be able to  deal with a  problem in which a  triangle in box A was transformed into a 

square in box B, even if they both played the same role (say, “the object containing the Z” ); 

there  is no notion of conceptual similarity or of similarity of roles. The program  also has 

no notion of grouping; thus, it would not be able to  solve the problem given in Figure 8.4. 

The program  would be stymied by the fact th a t the number of dots in A is different from 

the  num ber of dots in C. The program is able to  deal only with problems in which the 

num ber of parts added, removed, and matched in the A-to-B transform ation is the same as 

in the C-to-answer transform ation. All the problems that Evans’ program attem pted (he 

displays the entire set of 20 problems the  program was tried on) had the same number of 

objects in A and C. In Copycat, the kinds of similarities possible between the initial and
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A B

Figure 8.4:
would not be able to  solve.

target strings can be much more complex. In addition, each of Evans’ problems had exactly 

one strong answer, whereas many of Copycat’s problems have more than  one good answer. 

Such problems are among the m ost interesting, because they bring out very clearly issues 

of how various pressures compete.

ANALOGY is nonetheless more similar in many ways to Copycat than  are the other 

analogy-making programs described in this section. As in Copycat, in Evans’ system the 

situations given to  the program have only minimal descriptions attached, and the  program 

itself has to  perceive the relations among the various parts. The program also has a  notion 

of adapting  the A -to -B  rule to  fit the  matchings between C and the various answers, which 

is roughly similar to  rule translation in Copycat. In addition, in Evans’ program , context 

exerts top-down pressure on the way things are perceived; for example, given the  following 

A and B boxes,

B

the  program  will decompose the figure in box A into a  rectangle and a  triangle, since these 

are the  objects in box B (though since the program has no concept of “rectangle” or “trian-
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gle” , it would not be able to  perceive the similarity between A and B if the corresponding 

figures happened to  be of slightly different shapes). However, the  role of context is limited; 

for example, the program ’s perception of box C has no effect on the perception of box A. 

In Copycat, such contextual effects can be very im portant (as they were in the  problem 

“a b c  => a b d , x y z  =► ?” , where the a  is described as first in response to w hat is perceived 

in x y z ). In general, the processes of description, m apping, and rule formation in ANAL

OGY do not interact with each other as they do in Copycat. Evans saw the desirability 

of some kind of interaction among the various processes, bu t did not implement it; his 

program  proceeds in stages in a  strict serial fashion, and no backtracking for restructuring 

of perceptions is done.

Aside from the similarities mentioned above, the workings of Evans’ program  are very 

different from Copycat’s. ANALOGY has nothing like a  Slipnet; there is no notion of 

conceptual similarity, only a  rigid notion of geometric similarity. This, along with the fact 

th a t the  roles between box A and box C have to  be identical, severely lim its the  kinds of 

problems th a t ANALOGY is able to solve. Evans recognized th a t it is not always possible 

to  adapt an A-to-B rule to a  C-to-answer rule by weakening it; in some cases, translation 

with slippage is needed. In fact, he gave one example of a  problem where th is was needed, 

bu t the great m ajority of his problems involved only identity concept-m appings, so he was 

not very concerned by this issue. He did implement a  very rough kind of slippage, in which 

one word in the A-to-B rule (e.g. ABOVE) is replaced by another word in the  C -to-answ er 

rule (e.g. LEFT). This is done only if, a t the last stage, there isn ’t  one answer th a t is 

clearly stronger than  the others. Then the program goes back to  the  A-to-B rule-building 

stage and generates some “variant rules” , using this substitution technique. Evans does not 

explain exactly how this was done.

Another m ajor difference is the lack in Evans’ program of anything like a  parallel terraced 

scan. Instead, his program adopts the brute-force m ethod of m aking all possible relations, 

transform ations, and rules, and then scoring them . This m ethod has the  usual problems of 

psychological implausibility and combinatorial explosion (though Evans cannot be faulted 

on the psychological implausibility, because his program was m eant to  be an A l program, 

not a  cognitive model). ANALOGY was tried only on cases where there was no ambiguity 

and little  com petition, so there were only a  small num ber of possibilities for the  program to  

consider in each case. It would be impossible to  use this m ethod on more complex problems 

with more facets.
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In summary, ANALOGY was an interesting early a ttem pt a t mechanizing an aspect of 

intelligence, though it used a  brute-force approach with a  completely deterministic control 

structure th a t proceeded through stages in a  fixed manner. It was not m eant to  be a  

cognitive model of concepts or perception. Its performance is in some ways impressive, 

since it was able to  solve a  number of problems considered hard enough to pu t on a  college- 

entrance test, bu t as has been pointed ou t, the range of problems it could solve was actually 

quite limited.

8 .2  C o m p a riso n s  W ith  R e la te d  A rtif ic ia l- In te llig e n c e  A rc h ite c tu re s

8 .2 .1  S eek -W h en ce

In addition to  Jum bo, another precursor to  Copycat was the  Seek-Whence project. Hofs- 

tad te r designed the domain and the original ideas for the architecture (Hofstadter, Closs- 

m an, & M eredith, 1982), which was based on the architecture of Jum bo, described in 

C hapter 3. The Seek-Whence program was developed by M arsha Meredith (1986). Seek- 

W hence is a  discovery-and-extrapolation program; it tries to  find the underlying regularity 

of a  sequence of integers—in other words, to  “seek whence” the sequence comes. The se

quences it  works on have patterns ra ther than m athem atical functions underlying them , 

in which the m ajor organizing concepts are successorship, predecessorship, sameness, and 

symmetry. The following are some sample sequences given to the Seek-Whence program:

1 2 3  4 5 6 . . . ;

1 1 2 2 3 3 . . . ;

1 8 5 1 8 5 . . . ;

1 1 2 1 2 3 1 2 3 4 . . . ;

2 1 2 2 2 2 2 3  2 2 4  2 . . .

Seek-Whence is given the terms of a  sequence one by one, and it tries as soon as it  can 

to  propose a  hypothesis to  explain the sequence. I t is thus often required to reformulate its 

hypothesis in light of new, contradicting evidence (new term s).

Sequence-extrapolation programs in  artificial intelligence (e.g., Pivar & Finkelstein, 

1964) have typically dealt with mathematical sequences, such as “1 2 4 8 16 . . . ” , or 

“ 1 2 5 15 42 . . .  ” (whose second differences axe every th ird  prime), and have approached 

them  by trying out possible solutions from a  standard repertoire of mathematical knowledge 

and tricks (e.g., primes, powers of two, Fibonnacci numbers), often recursively applying the
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techniques to  derived sequences formed by taking every other term, every third term , first 

differences, etc. This is very different from the  goal of the Seek-Whence project, which is to  

model a  much more general sort of pattern-spotting ability: sequences in the Seek-Whence 

domain contain the essence of many central issues of pattern-recognition in general (Hofs- 

tad te r, Clossman, & M eredith, 1982). (The sequences M eredith’s program was able to  tackle 

were more varied and general than the cyclical, fixed-length period sequences dealt with by 

a  well-known program w ritten by Simon & Kotovsky, 1963, which will be discussed further 

in the next section.) Analogy-making plays an essential part in solving these sequences; for 

example, to find a coherent interpretation for the sequence “1 2 1 1 3 1 1 4 1 . . . ” , one 

m ust m ap hypothesized segments against each other, perceiving corresponding roles w ithin 

segments (for example, a  reasonable parsing is “121-131-141 . . . ” , with the role played by 

the “2” in 1 2 1 corresponding to the role played by the “3” in 1 3 1, and so on). W hat 

originally gave rise to the Copycat project was Hofstadter’s desire to further isolate this 

essential role of analogy-making in Seek-Whence.

Like Jum bo, Seek-Whence has a  nondeterministic parallel architecture involving codelets, 

and the program  is based on many of the ideas Hofstadter first developed in the Jum bo 

project. As in Jum bo, a  m ajor part of the operation of Seek-Whence is the construc

tion, destruction, and reformulation of groupings built out of the raw numerical d a ta  of 

the sequence (e.g., the program could parse the sequence “1 1 2 2 3 3 . . . ” into groups: 

“11-22-33 . . . ” ). Seek-Whence proceeds by building such groupings, using the groupings to  

construct a  hypothesis enabling it to predict the next number in the sequence, and refor

m ulating th a t hypothesis via slippage when an unexpected piece of new evidence (i.e., an 

unexpected new term  in the sequence) requires such action. Such reformulation sometimes 

requires modifying or destroying the groupings the program has already made.

The Copycat and Seek-Whence projects deal with many of the same issues, and thus 

there are m any correspondences between the Seek-Whence and Copycat programs; some 

of m y ideas for Copycat have come from M eredith’s solutions to  various im plem entation 

problems. Copycat further develops many of the mechanisms used in Seek-Whence (as it 

did with Jum bo) and includes many mechanisms lacked by the Seek-Whence program , so 

there also are m any m ajor differences between the two programs.

Much of the architecture of Seek-Whence is adm ittedly “ad hoc” ; for example, the 

program  uses a  large num ber of special-purpose domain-specific codelets and structures. 

In Copycat, I tried to  avoid this problem by making codelets and perceptual structures as
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general and domain-independent as possible. Copycat’s conceptual system is much richer 

than  th a t of the current version of Seek-Whence; the la tte r’s Slipnet has fewer nodes and 

no named relations, only undifferentiated “slipping links” , with no notion of activation or 

conceptual distance—unlike in Copycat, the dynamics of the Slipnet was not a central part 

of the Seek-Whence model. In Seek-Whence, slippage does not occur unless something goes 

wrong; it  is not nearly as central a focus in the  Seek-Whence program as it  is in Copycat.

A nother extremely im portant issue for bo th  Copycat and Seek-Whence—how top-down 

pressures work to  influence the program’s conceptualization of the problem at hand—was 

dealt with by Meredith in only a  limited way; the Copycat project has m ade considerable 

progress on this issue. For example, Seek-Whence could not solve the sequence “1 2  2 3 

3 3 4 4 4 4 . . . ” , because of its lack of responsiveness to  emerging top-down pressures. 

Since it was given the sequence one term at a  tim e, the first two term s— 1 and 2—put 

the program  on the track of successorship and successor groups, and it could never recover 

enough to  perceive the sequence’s sameness groups. One problem is th a t the program clings 

too tenaciously to  its  first organizing notion, and another problem is th a t it  lacks the kinds 

of top-down codelets that Copycat has, such as codelets that expressly look for sameness 

groups if several sameness relations have been spotted. (Interestingly, Seek-Whence could 

solve “2 2 3 3 3 4 4 4 . . . ” , since that sequence allows it to start off on the  right foot.) The 

program lacked much of the interaction between bottom -up and top-down pressures th a t is 

an essential part of Copycat, as well as many other architectural features th a t are present 

in Copycat, such as dynamically varying activation and link-lengths in the  Slipnet, different 

degrees of conceptual depth for different nodes, and tem perature, among others.

8.2.2 Simon and Kotovsky

Simon and Kotovsky’s work on pattern perception and sequence extrapolation (1963; also 

Simon, 1972, and Kotovsky & Simon, 1973) involves a  domain similar in some ways to  those 

of Seek-Whence and Copycat, though the approach is completely different. M eredith (1986) 

gives a  discussion of Simon and Kotovsky’s work with respect to  Seek-Whence, and much 

of w hat she says also applies to  a  comparison with Copycat. Simon and Kotovsky studied 

human performance on understanding and extrapolating letter sequences such as:

c d c d c d . . . ;

q x a p x b q x a . . . ;  and

r s c d s t d e t u e f ___
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(The last consists of two interleaved sequences.) Simon and Kotovsky’s goal was to  show 

th a t people build a  symbolic mental model of a  given sequence based on a  set of descriptions 

such as “successor” , “predecessor” , and “sameness” , and th a t  they use th is model (or rule) to  

extrapolate the sequence. P art of the project was the construction of a  com puter program to 

model this process. There were actually two programs: one for producing a  sequence, given 

a  pa tte rn  description, and, more interesting, one for coining up with a  pa tte rn  description, 

given a  sequence. T he latter program first looked for two possible types of patterns in the 

sequence: (1) periodicity (e.g., “c d c d c d . . . ” , where the same symbol occurs in every 

second position, or “d e f g e f g h f g h i  . . . ” , where the next symbol occurs at every 

fourth position) or (2) a  relation th a t is in terrupted a t regular intervals by another relation 

(e.g., “a a b b c c d d . . . ” , where sameness relations are interrupted every second position 

by a  successor relation). (All the sequences were cyclic, with fixed-length cycles.) Once 

such a  pattern  was discovered, sameness, successor, and predecessor relations were explored 

between the successive terms within a  period, or between term s in corresponding positions 

of successive periods.

Several variants of the program were w ritten , with different degrees of success. The 

program  (or a t least some version of it)  agreed with people on which sequences were hard 

(as a  function of which ones it  could solve and how long it took).

Simon and Kotovsky’s program was not a  model of concepts or perceptual processes in 

the  same way Copycat is. It searched through possible ways of describing a  given sequence 

in a  determ inistic and exhaustive m anner, trying out all the possibilities in its repertoire 

until one of them  worked. There was no notion of top-dow n-bottom -up interaction and 

com petition, no change in processing as a  result of what had already been discovered, no 

notion of a  parallel terraced scan, and no notion of fluid and adaptable concepts (rather, 

i t  had fixed concepts of successor, predecessor, sameness, and periodicity). Also, although 

the  program  worked in a  domain th a t is similar in some ways to  th a t of Copycat, Simon 

and Kotovsky were specifically studying sequence perception, whereas Copycat is not, a t a 

deep level, about linear sequences; its focus is much broader. Thus, though the Copycat 

project shares certain general goals and methodology with Simon and Kotovsky’s work (i.e., 

investigating the  mechanisms of pattern  recognition by studying it in an idealized, abstract 

dom ain), which aspects of perception are being studied and how perception is modeled are 

quite different for the two projects.
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8.2.3 Hearsay-II

As was mentioned earlier, m any of the  ideas for Copycat’s architecture were originally in

spired by the Hearsay-II speech-understanding system (Erm an et al., 1980). The input 

to  Hearsay-II is a  waveform generated by a  spoken utterance, and Hearsay-II interprets it 

through the cooperation of various “knowledge sources” , each of which is able to perform a 

specific task, such as dividing the waveform into segments, creating phones and phonemes 

from segments, creating syllable-class hypotheses from phonemes, creating word hypothe

ses from syllables, and so on. The knowledge sources build da ta  structures—representing 

various levels of interpretation of the utterance—on a global blackboard, which is the locus 

o f communication among the various knowledge sources. The need for diverse knowledge 

sources to  deal w ith different levels of description reflects the diversity of processes needed 

in perception. This is the intuition behind the various types of codelets in Copycat. But 

Copycat’s codelets are somewhat different from Hearsay-II’s knowledge sources: codelets 

perform small, very local tasks, whereas a  knowledge source deals with all the d a ta  a t its 

level of abstraction (e.g., one knowledge source segments the entire waveform). As was dis

cussed in previous chapters, the idea in Copycat is th a t early on in a  run, the program does 

not have enough information to  make large-scale intelligent decisions about which struc

tures to  build. Instead, structure-building is accomplished via a  large num ber of small, 

local decisions th a t allow m any different possibilities to be scouted out and then looked at 

m ore deeply if more consideration seems w arranted. Later in a  run, when more structures 

have been built and tem perature is low, codelets tend to act more like Hearsay-II knowledge 

sources, building global structures (e.g., a  successor group comprising an entire string). The 

pa th  for such a  global structure has been laid both by the codelets th a t build the underlying 

structures th a t support it, as well as by the codelets th a t scouted out (and perhaps rejected 

or slowed down consideration of) alternative pathways.

The various knowledge sources in Hearsay-II, in the process of moving from a  raw wave

form to  a  fully parsed u tterance, build m any levels of d a ta  structures, where each level 

is built on the basis of hypotheses built a t the  immediate lower level (segments make up 

phones, phones make up phonemes, phonemes make up syllables, and so on). This is similar 

to  the  way codelet chains in Copycat build various levels of perceptual structures, s ta rt

ing with three raw letter-strings, and ending with high-level descriptions and a  coherent 

m apping. As in Copycat, an im portant part of Hearsay-II’s architecture is an interaction 

between top-down and bottom -up processing, where structures built a t lower levels provide
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evidence for higher-level hypotheses, and vice versa.

In Hearsay-II, a  knowledge source becomes activated through demons with various levels 

of conditions, preconditions, and pre-preconditions. This is roughly similar to  the various 

stages of exploration and evaluation that take place in Copycat before a  given structure is 

built. But although both programs perform a  parallel exploration of different pathways, 

and both have competition between different interpretation hypotheses, there is a  difference 

in m ethod. In Hearsay-II, several rival hypotheses may coexist a t each level (a  hypothesis 

being a possible interpretation of the data  a t a  given level), and the program evaluates all 

of them . Copycat constructs only one view a t a  tim e (for example, a t any given time, the 

first c in the string a b c cc  can be seen either as the rightmost le tte r of the group a b c  or as 

the leftmost letter of the group ccc, but not both), but that view is malleable, and can be 

easily reshaped, given the right kinds of pressure. Humans cannot see the same high-level 

thing in two ways at once, but, as with the famous Necker cube, they can switch back and 

forth between coherent perceptions with varying degrees of ease. Thus Copycat’s method 

is more psychologically realistic than th a t of Hearsay-II. The la tte r m ethod suffers from a 

potential combinatorial problem: competing hypotheses can exist for different pieces of a 

whole, so the num ber of compound hypotheses at higher levels can become very large.

There is also a  difference between the control structures of Copycat and Hearsay-II. 

In Hearsay-II, a  central scheduler assigns a  “priority” to each active knowledge source, 

the priority being an estimate of the likely usefulness of the knowledge source’s action in 

fulfilling the overall goal of recognizing the utterance. The notion of priority is somewhat 

different from th a t of codelet urgency in Copycat. There is no randomness in Hearsay-II; 

the scheduler always chooses the highest-priority knowledge source to  run. This reflects a 

difference in philosophy between the two programs. At each point, Hearsay-II tries to make 

an intelligent decision about what to  do next: it uses global knowledge about the current 

state  of the interpretation to  assign priorities, and chooses what seems to  be the overall best 

thing to  do next. The control structure of Copycat is simpler; since an individual codelet 

cannot see globally and cannot make very intelligent decisions, the  urgencies it assigns 

are based on local information, and since individual codelets do very small jobs, no single 

decision is very im portant. W hat to  do next is decided probabilistically, and Copycat’s 

overall “intelligence” emerges from the statistics of this probabilistic control structure. As 

was described in C hapter 3, Copycat’s strategy of parallel and fine-grained exploration 

ensures fairness  in deciding what should be explored, whereas always deterministically
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choosing the  most promising pathway (even when very little information has been obtained 

and one thus has very little confidence in one’s assessment of promise) does not allows 

alternative views the chance to be developed. This could be seen clearly in the results of 

Experiment 6 in Chapter 7, in which the tem perature was clamped a t a very low value, 

and Copycat’s control strategy became similar to th a t of an agenda system. The program 

became very conservative in what possibilities it explored, and it was unable to  build the 

structures necessary to discover the interesting answer m r r i i i i .

8.2.4 Semantic Networks

A large num ber of artificial-intelligence computer programs have used semantic networks 

in order to  represent knowledge. Copycat’s Slipnet shares some features with standard 

semantic networks, but is, in many im portant ways, a  quite different kind of structure. 

To point ou t some of the similarities and differences, I will compare the Slipnet with two 

examples of programs using semantic networks: Quillian’s semantic-memory model (with 

extensions by Collins and Loftus), and Anderson’s ACT*.

Quillian’s semantic-memory program (Quillian, 1968) was the first formulation of what 

has now become commonly known as a semantic network. The network consisted of nodes 

representing English words and links representing relations between nodes. Quillian’s focus 

was on modeling language understanding, and his network was designed to  encode the 

meanings of words. Thus each node in the network corresponds to a  word, and there are five 

different kinds of links: 1) superordinate links (e.g., “apple ISA fruit” ) and subordinate links 

(e.g., “fruit HAS-INSTANCE apple” ); 2) links connecting nouns with modifiers (e.g.,“apple 

IS red” ); 3) disjunctive sets of links (e.g., linking three different meanings of the word 

“plant” ); 4) conjunctive sets of links (e.g., linking several necessary a ttribu tes of plants, 

such as “needs air” , “needs water” and so on); and 5) links between subjects and objects 

(e.g., “person eats food”). Each link has an optional strength value associated with it, 

indicating how im portant the given relationship is to  the meaning of the word.

A typical task in which this network was used is th a t of “comparing and contrasting” the 

meanings of a  given pair of words. This is done by tracing out all paths in the network from 

each of the words and finding a  point where two paths intersect. Because of the  structure 

of the network, the two paths (up to  the point of intersection) can be put in the form of 

English sentences. For example, when asked to  compare the words “E arth” and “live” , the 

program found an intersection a t the node “animal” , and the two paths leading up to  th a t
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node were expressed as “E arth  is the planet of anim al” and “To live is to  have existence as 

anim al” . These two sentences constituted the program ’s response to  the query.

The structure of Copycat’s Slipnet is quite different from Quill an’s semantic-memory 

network. Since Quillian’s goal was to  model language-understanding, the structure of his 

network roughly mimicked the structure of English, whereas the Slipnet is a  model of 

associations and potential slippages. Thus the kinds of nodes and links included in each 

system  are quite different. A concept in the Slipnet has blurry boundaries, defined by 

a  probability distribution centered around a central node; in Quillian’s network, concepts 

(such as person or apple) are atomic, and there is no notion of conceptual slippage. Patterns 

of activation in the Slipnet signify the relevance of the activated concepts, and the spread 

of activation is a model for how associations between related concepts come about. This 

is quite different from Quillian’s notion of activation, which is used to trace out sentence

like pathways in the network, not to represent the degree of relevance of certain concepts. 

Finally, the Slipnet is m eant to be a  model of the adaptability of concepts, in th a t the 

activations of nodes and the distances between nodes change in response to  what is being 

perceived. The links in Quillian’s network can have strengths, but these are fixed ahead of 

time; the network does not respond to  varying context. In fact, this is a  m ajor difference 

between the two systems; activities in the Slipnet are tightly interrelated with the perceptual 

activities of codelets, and the two sets of activities continually influence each o ther, whereas 

Quillian’s network is used in isolation.

Collins and Loftus (1975) have proposed several extensions to  Quillian’s original network 

to  allow it to  model several experimental results on hum an memory. Four of these proposed 

extensions have features th a t are also included in Copycat’s Slipnet. F irst, they propose 

th a t  activation act like a  signal from a  source th a t attenuates (according to  the strength of 

links) as it travels outward. This is similar to Copycat’s spreading-activation mechanism. 

Second, Collins and Loftus propose th a t a  node should continue to  spread activation as long 

as i t  is being processed. This method is used in Copycat: a  node stays activated (and thus 

spreads activation) as long as instances of it continue to  be perceived. Third, Collins and 

Loftus suggest th a t, as in Copycat, the activation of a  node should decay over tim e. Finally, 

they propose th a t the network be organized along the  lines of semantic similarity, where 

conceptual relatedness between nodes is measured by the num ber of properties two nodes 

have in  common. This idea gets closer to the associative structure of Copycat’s Slipnet, 

although in the Slipnet, similarities between linked nodes are not always spelled out.
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A more recent model involving a  semantic network and spreading activation is John 

Anderson’s ACT* (Anderson, 1983). ACT* is intended to be a  theory of the “architecture 

of cognition” : th a t is, of the basic principles of operation of cognitive systems. As one 

would expect with so ambitious a  goal, Anderson’s system is quite complex. It warrants 

more discussion than I have space for here; I will only outline the similarities and differences 

between the  architectures of ACT* and Copycat.

ACT* has three memories: a  declarative memory storing long-term declarative knowl

edge, a  working memory containing the currently active parts  of declarative memory, and 

a  production memory containing the procedural knowledge o f the system. The declarative 

memory is a  semantic network in which each node is a  cognitive unit: a  sort of “unbreak

able” unit of knowledge. A cognitive unit can be either a  proposition (e.g., “Bill hates 

Fred” ), an ordered string (e.g., “one, two, three"), or a  spatial image (e.g., a triangle above 

a  square). In the examples given by Anderson, the declarative memory consists of many 

cognitive units linked together encoding knowledge about specific situations. Cognitive 

units are thus very different from the nodes in Copycat’s Slipnet—they are small pieces 

of specific knowledge rather than concepts—and ACT*’s declarative memory has nothing 

like the distributed concepts and context-dependent conceptual proximities in the Slipnet. 

However, there are some similarities between the two systems. As in Copycat’s Slipnet, 

the nodes in ACT*’s declarative memory become activated by input to  the  system, spread 

activation to neighboring nodes, and lose activation through decay. As in Copycat, the 

activation of a  node indicates its salience or relevance, and spreading activation is a parallel 

process th a t spreads relevance through the network.

All processing in ACT* is carried out by productions, which axe activated by pattern- 

m atching tests on the contents of working memory. The am ount of tim e each test takes 

is determ ined by the strength of the production (a  function of its  prior success) and the 

activations of the  dedarative-m emory nodes mentioned by the  production. This accelerates 

the execution of certain types of productions in response to  interacting pressures, giving 

ACT*’s production-m atching mechanism something of the flavor of Copycat’s parallel te r

raced scan, in which the activations of Slipnet nodes affect the  urgencies of codelets, thereby 

translating pressures into differential rates of exploration of pathways.

ACT* has been used mainly in modeling high-level cognitive skills such as decision

making, m athem atical problem-solving, computer programming, and language generation. 

Thus its focus is quite different from th a t of Copycat. This difference in focus is reflected
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not only in the difference between ACT*’s declarative memory and Copycat’s Slipnet, but 

also in the  large difference between the kinds of actions performed by ACT*’s productions 

and those performed by Copycat’s codelets. ACT*’s processing is directed by explicit, 

conscious goals, where a  goal is represented by an active cognitive unit tha t dominates 

processing until the goal is accomplished. In contrast, goals in Copycat are emergent rather 

than  explicit; they do not explicitly dom inate processing, but act as top-down pressures 

for perceptual biases. For example, the goal “Look for successor groups” is implicit when 

the successor-group node is activated; high activation results in higher urgencies and more 

success for codelets trying to form successor groups. In addition, the examples given by 

Anderson show that ACT*’s productions are quite specific and domain-dependent, and the 

tasks performed are at a  fairly high cognitive level, unlike the unconscious or subcognitive 

level of a  codelet’s task. For example, the following is one of the productions used in a 

geometry-proof generation task (the production has been translated into English by me): 

“If the goal is to  prove a  certain statem ent, and that statem ent is about a  certain relation, 

and a  certain postulate is also about tha t relation, and the teacher suggests that postulate, 

then set as a  subgoal to try  that postulate, and mark that postulate as tried.” This is very 

different in flavor from the small perceptual activities of Copycat’s codelets.

8.2.5 Connectionist and Classifier-System Models, and Copycat’s Place in the 

Symbolic/S ubsymbolic Spectrum

The philosophy behind the Copycat project is similar in many ways to  th a t of various 

connectionist or “parallel distributed processing” (PD P) models (Rum elhart & McClelland 

1986) and to  th a t of classifier systems (Holland, 1986; Holland et al., 1986).

Connectionist networks are pattern-recognition and learning systems. A connectionist 

network consists of a number of nodes connected by weighted links. In such a  network 

(at least in the  ideal PD P variety), a  single node does not symbolize anything on its own; 

rather, concepts and individual instances of concepts are represented as activation patterns 

distributed over large numbers of nodes. Typically, the nodes in the network are divided up 

into two or more layers, consisting of an input layer, possibly some internal “hidden” layers, 

and an ou tpu t layer. The recognition process consists of presenting an activation pattern  

(representing an instance of something the network is supposed to  recognize or categorize) 

to  the input layer, and allowing this activation to  spread throughout the network over the 

links as a  function of the weights of the links. The “answer” (e.g., the category the input
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instance belongs to) winds up being displayed as an activation pattern  on the  output nodes. 

As the network is given more and more input patterns, it gradually improves its performance 

as a  result of a  learning algorithm th a t adjusts the weights on the various links (there are 

many different such learning algorithms used in connectionist systems; the most common 

one is known as back-propagation, Rum elhart, Hinton, & Williams, 1986).

Classifier systems are also learning systems. A classifier system is composed of a large 

number of simple agents called classifiers. The system has an input interface and an output 

interface. Into the input interface come “messages” about the current sta te  of the environ

ment and the system ’s relation to it. The job of the classifiers is to  classify messages—that 

is, to decide what to  do in response to  them . As in connectionist networks, the principles 

of self-organization and emergence are central to classifier systems: the representations of 

concepts and instances of concepts are a t any time distributed over a  num ber of classi

fiers. There is no Central Director controlling the actions of the system; ra ther, all of the 

system ’s behavior arises from myriad cooperative and competitive interactions among the 

individual classifiers. Classifiers that produce beneficial messages for the system tend to 

get stronger (via a  credit-assignment procedure known as the “bucket brigade” algorithm) 

and thus are more likely to win competitions with o ther classifiers (such competitions are 

probabilistically decided on the basis of strength). A nother learning mechanism, known as 

the “genetic algorithm ” , effects a  kind of natural selection among classifiers in which weak 

classifiers die out and in which strong classifiers thrive and, via reproduction (involving 

recombination w ith other strong classifiers), pass their “genes” on to offspring classifiers. 

The combination o f the credit-assignment mechanism and the genetic algorithm should in 

principle allow the  system to adapt (via reapportionm ent of strength, deletion of unhelpful 

classifiers, and creation of new classifiers) to  the environment it  faces.

Connectionist networks and classifier systems are examples of subsymbolic (also called 

subcognitive) architectures. Smolensky (1988) characterizes the difference between the sym

bolic and subsymbolic paradigms as follows. In the symbolic paradigm, descriptions used in 

representations of situations are built of entities that are symbols both in the semantic sense 

(they refer to  categories or external objects) and in the  syntactic sense (they are operated 

on by “symbol m anipulation”). In the subsymbolic paradigm, such descriptions are built 

of subsymbols: fine-grained entities (such as nodes and weights in connectionist networks or 

classifiers in a  classifier system) that give rise to  symbols. In a  symbolic system , the sym

bols used as descriptions are explicitly defined (e.g., a  single node in a  semantic network
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represents the  concept “dog”). In a  subsymbolic system, symbols are statistically  emergent 

entities, represented by complex patterns of activation over large num bers of subsymbols. 

Smolensky makes the point th a t subsymbolic systems are not merely “im plem entations, for 

a  certain kind of parallel hardware, of symbolic programs th a t provide exact and complete 

accounts of behavior a t the conceptual level” (p. 7). Symbolic descriptions are too rigid 

or “hard” , and a  system can be sufficiently flexible to  model human cognition only if it is 

based on the more flexible and “soft” descriptions th a t emerge from a  subsymbolic system.

The faith of the subsymbolic paradigm is th a t  human cognitive phenomena are emergent 

statistical effects of a large number of small, local, and distributed subcognitive events with 

no global executive. This is the philosophy underlying connectionist networks, classifier sys

tem s, and Copycat as well. Fine-grained parallelism, local actions, com petition, spreading 

activation, and distributed and emergent concepts are essential to the flexibility of all three 

architectures (although in classifier systems, spreading activation is not explicit, but rather 

emerges from the joint activity of many classifiers). Some connectionist networks (e.g., 

Boltzmann machines, Hinton & Sejnowski, 1986, and Harmony-Theory networks, Smolen

sky, 1986) have an explicit notion of com putational tem perature with some similarity to 

Copycat’s (though, as was explained in C hapter 3, there is a  significant difference between 

the use of tem perature in Copycat and in sim ulated annealing, which is essentially the 

tem perature notion used by Hinton & Sejnowski and by Smolensky). In classifier systems, 

something akin to  a  parallel terraced scan emerges from probabilistically decided competi

tions among classifiers and from the genetic algorithm ’s implicit search through schem ata 

(i.e., tem plates for classifiers) a t a rate determined by each schema’s estim ated promise (see 

Holland, 1988, for a  description of the dynamics of such searches in genetic algorithms). In 

addition, the interaction of top-down and bottom -up forces is central bo th  in connectionist 

systems (see for example, McClelland and R um elhart’s model of le tte r perception, 1981) 

and in classifier systems (for example, as discussed in C hapter 2 of Holland et al., 1986).

The philosophy underlying the Copycat project is more akin to  th a t of the subsymbolic 

paradigm  than  th a t of the symbolic paradigm, but the actual program fits somewhere in 

between. Concepts in subsymbolic systems are often highly distributed, being made up of 

individual nodes th a t have no semantic value in  and of themselves, whereas in symbolic 

systems, concepts are represented as simple unitary  objects (e.g., as Lisp atom s). Concepts 

in Copycat could be thought of as “semi-distributed” , since a concept in the Slipnet is 

probabilistically distributed over only a small num ber of nodes—a central node (e.g., suc
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cessor) and its probabilistic halo of potential slippages (e.g., predecessor). The basic units 

of subsymbolic systems such as connectionist networks are m eant to model m ental phenom

ena further removed from the cognitive, conscious level than  those modeled by Copycat’s 

Slipnet nodes and codelets. It may be that these systems are more psychologically realistic 

than Copycat, bu t their distance from the cognitive level makes the problem of controlling 

their high-level behavior quite difficult, and I don’t think th a t a t this point it would be 

possible to  use such systems to  model the types of high-level behavior exhibited by Copy

cat. Ideally, a model should be constructed in which a  structure such as Copycat’s Slipnet 

arises from such a  low-level, distributed representation, but this is beyond the achievements 

of current research in connectionism. Likewise, in classifier systems, several properties im

planted directly in Copycat (such as nodes, links, and spreading activation) would have to 

emerge automatically, which I believe would make a high-level task, such as Copycat’s, quite 

difficult for classifier systems as they are currently conceived. Thus Copycat models con

cepts and perception a t an intermediate level, in term s of the degree to which concepts are 

d istributed and the extent to which high-level behavior emerges from lower-level processes.

A m ajor difference between Copycat’s architecture and th a t of connectionist networks 

is the presence in Copycat of both a  Slipnet, containing platonic concept types, and a 

working area, in which structures representing concept tokens (i.e., instances of concepts) 

are dynamically constructed and destroyed. Connectionist networks have no such separate 

working area; both types and tokens are represented in the same network. This has led 

to  a  great deal of research in connectionism on the so-called “variable-binding” problem, 

which is related to  the  larger question of the relationship between concept types and concept 

tokens. One reason researchers in connectionism may hesitate to make such a  separation 

is th a t neural plausibility is a very im portant part of their research program, and a  struc

tu re  like Copycat’s Workspace—a mental region in which representations of situations are 

constructed—does not have a  clear neural underpinning. In contrast, for the purposes of 

Copycat and related projects, we jare influenced more by psychological than neurological 

findings. We assume the existence of something like Copycat’s Workspace even though we 

do not know its neural basis, and we investigate how a  spreading-activation network with 

d istributed concept types interacts with a  working area  in which ephemeral concept tokens 

can be arranged in complex structures. The lack of such a  working area in connectionist 

networks is another reason why it may turn  out to  be very difficult to use such systems to 

model concepts and high-level perception in the way Copycat does.
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In classifier systems, the “message list” (on which all messages from the environment 

and from classifiers are posted) roughly corresponds to  Copycat’s Workspace; messages can 

serve as the tokens corresponding to  concept types (classifiers). It is possible tha t structures 

similar to  those built in Copycat could be represented in a  classifier system as messages on 

a  message list, though precisely how to do this is an open question.

Connectionist networks and classifier systems learn from run to  run, while Copycat does 

not. As was said before, Copycat is not m eant to  be a model of learning in this strict sense, 

though it does model some fundam ental aspects of learning: how concepts adapt to  new 

situations tha t are encountered, and how the shared essence of two situations is recognized.

The belief underlying the methodology of the Copycat project is th a t building a model 

a t the level of Copycat’s architecture is essential not only for the purpose of providing an 

account of the m ental phenomena under study at its interm ediate level of description, but 

also as a  step towards understanding how these phenomena can emerge from even lower 

levels. The “subsymbolic dream ”— th a t all of cognition can be modeled using architectures 

a t the subsymbolic level of connectionist networks—may be too ambitious a t this point in 

the development of cognitive science. If there is any hope for understanding how intelli

gence emerges from billions of neurons, or even how it might emerge from connectionist 

networks, we need to  understand th e  intermediate-level mechanisms underlying the struc

tu re  of concepts, a  term  referring to  m ental phenomena of central im portance in psychology 

th a t nonetheless still lack a  firm scientific basis. The long-term goal of the Copycat project 

and related research is to  use com puter models to  help provide such a  scientific basis. The 

hope is tha t the understanding th a t results from this approach will not only in its own right 

contribute to answering long-standing questions about the  mechanisms of intelligence, but 

will also provide a  guide to  connectionists studying how such intermediate-level structures 

can emerge from neurons or cell-assemblies in the brain.

In  summary, the architecture of Copycat is very different from the more traditional, so- 

called “symbolic” artificial-intelligence systems, both in its parallel and stochastic processing 

mechanisms, and in its representation of concepts as d istributed and probabilistic entities in 

a  network. These features make it m ore similar in spirit to  connectionist systems, though 

again there are im portant differences. The high-level behavior of connectionist systems 

emerges statistically from a  lower-level substrate  as in Copycat. However, the fundamental 

processing units in connectionist system s are more prim itive, concepts in such networks are 

distributed to  a much higher degree than  in Copycat, and concept types and tokens are
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required to  reside in the same network. Consequently, there has not been much success 

so far in using connectionist systems as models of high-level cognitive abilities such as 

analogy-making. Copycat thus explores a middle ground in cognitive modeling between the 

high-level symbolic systems and the low-level connectionist systems; the claim m ade by this 

research is th a t this level is a t present the most useful for understanding the fluid nature of 

concepts and perception evident in analogy-making.
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CHAPTER IX

CONCLUSION

In this chapter, I first summarize the main points of this dissertation, and then present 

some proposals for future work on this project. Finally, I discuss the contributions of this 

project to research in cognitive science and artificial intelligence.

9.1 Summary of Dissertation

This dissertation has presented the work done so far on the Copycat project, an investigation 

of high-level perception, conceptual slippage, and analogy-making in humans. The long

term  goal of this project is to understand the m ental mechanisms underlying the flexibility 

and adaptability of concepts and of perception, particularly as they are manifested in the 

context of analogy-making. The point of this section is to  highlight and summarize the 

m ajor ideas presented in this dissertation in order to give the reader a clearer perspective 

on w hat has been accomplished. The summary will be given chapter by chapter.

In  Chapter 1, the terms “high-level perception” and “conceptual slippage” were defined, 

and the relationship among various aspects of high-level perception—categorization, recog

nition, and analogy-making—was discussed. Many examples were given to  illustrate the  

blurry boundaries between these various mental activities and to support the claim th a t 

these activities arise from similar mental mechanisms. In particular, central to  all of them  

is the  phenomenon of conceptual slippage, in which some mental representations are not 

held fixed but are allowed to  be replaced by conceptually related descriptions in response to  

pressure. The central feature of high-level perception is the fluid application of one’s exist

ing concepts to the  different situations one encounters, and conceptual slippage is required 

for this fluidity. The examples given in C hapter 1 demonstrated how conceptual slippage
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shows up particularly clearly in the realm of analogy-making, and illustrated the necessity 

and ubiquity of conceptual slippage and analogy-making a t all levels of thought.

In C hapter 2, Copycat’s letter-string microworld was presented, and examples were given 

to  support the claim th a t this microworld captures, in an idealized form, many essential 

issues in high-level perception and analogy-making. A number of general abilities neces

sary for analogy-making (both in the microworld and in the real world) were discussed. 

C hapter 2 also proposed two types of criteria for judging Copycat’s success, reflecting the 

program ’s interdisciplinary goals: artificial-intelligence criteria, which focus on the range 

of problems the program can deal with, and psychological criteria, which focus on more 

detailed comparisons of Copycat’s behavior with th a t of people.

In C hapter 3, Copycat’s architecture was described, and the proposed mechanisms for 

achieving the abilities listed in Chapter 2 were detailed. The m ajor parts of Copycat’s 

architecture are:

•  The Slipnet, in which a  concept consists of a  central region (represented by a  node) 

surrounded by a  halo of potential associations and slippages (represented by neigh

boring nodes linked to  the central node). Since activations and link-lengths vary 

dynamically, and since concepts are probabilistically rather than explicitly defined, 

the  availability and relevance of concepts in the Slipnet and their degree of associa

tion with other concepts change as perception and analogy-making proceed, and the 

network gradually settles into a  state  th a t reflects essential properties of the situa

tion at hand. In other words, the Slipnet as a  whole fluidly adapts to the different 

situations the program  is presented with.

•  The Workspace, which is meant to correspond to  the mental area in which ephemeral 

representations of situations are constructed and destroyed.

•  Codelets, which scout out, evaluate, and build (and sometimes destroy) structures 

representing the program ’s interpretation of the  problem at hand. Different codelets 

correspond to different types of structures as well as to  different pressures in an analogy 

(e.g., a  pressure to  find in one situation the  counterparts of important entities in the 

o ther situation, or a  pressure to  perceive instances of a particular concept, such as 

successor group). There are bottom -up codelets, which represent pressures present 

in any  situation, and top-down codelets, which represent pressures specific to  the 

situation a t hand.
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•  Temperature, which measures the degree of perceptual disorganization in the system, 

and in tu rn  controls the degree of randomness used in making decisions.

Fundam ental to  Copycat is the notion of statistical emergence: the  program ’s high-level 

behavior emerges from the interaction of large numbers of lower-level activities in which 

probabilistic decisions are made. Codelets, nodes, and links are all defined explicitly ahead 

of time, but their interaction gives rise to  three types of statistically emergent entities: (1) 

emergent concepts, whose composition (in terms of the nodes th a t are included) and whose 

availability and relevance to  the situation a t hand are statistical (ra ther than explicitly 

defined) properties; (2) emergent pressures, which arise as statistical effects of large numbers 

of codelet actions; and (3) an emergent parallel terraced scan, which results statistically from 

a large num ber of probabilistic choices based on codelet urgencies and other factors (e.g., 

salience of objects, strengths of structures, etc.).

These three types of emergent entities interact as well. The structure  and activation of 

concepts influences both  how codelets will evaluate possible structures (a codelet’s evalua

tion of a structure almost always takes into account activations and conceptual distances in 

the Slipnet) and which top-down codelets will be posted. Concepts thus affect the popula

tion of codelets in the Coderack and their urgencies, out of which arise statistical pressures 

and a  parallel terraced scan. The parallel terraced scan, by guiding the  search through pos

sible structurings of the problem, affects the activations of nodes and thus the conceptual 

distances encoded by links in the Slipnet. This interaction has the flavor of Hofstadter’s 

vision of “emergent symbols” in the  brain, in which the top level (the symbolic level) reaches 

back down towards the lower levels (the subsymbolic levels) and influences them, while at 

the same tim e being itself determined by the lower levels (Hofstadter, 1979, Chapter 11). 

This kind of system , in which explicitly defined entities (e.g., codelets, nodes, and links) 

give rise to implicit higher-level patterns (e.g., concepts, pressures, and the parallel terraced 

scan), which in tu rn  reach back and influence the lower levels and thus each other, is an 

example of Forrest’s (1990) characterization of “emergent com putation” .

This interaction gives rise to  a  system in which concepts and perceptual exploration 

fluidly adapt to  the situation a t hand, and allow appropriate conceptual slippages to  be 

made. Tem perature-controlled nondeterminism is an essential component of Copycat. It 

allows the system  to gradually shift from being parallel, random , and dom inated by bottom- 

up forces to  being more determ inistic, serial, and dom inated by top-down forces as the 

system gradually closes in on an appropriate way of conceiving the situation, which yields a
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solution to the problem posed. The fact that the composition and activation of concepts, the 

type and strength of various pressures, and the parallel terraced scan emerge statistically 

from large numbers of probabilistic decisions imbues Copycat with both flexibility and 

robustness. Because of nondeterminism, no path  of exploration is absolutely excluded a 

priori, bu t at the same tim e, the system has mechanisms th a t allow it to  avoid following 

bad pathways, a t least most of the time. A crucial idea is th a t the program has to have the 

potential to  follow risky (and perhaps farfetched or even crazy) pathways in order for it to 

have the flexibility to  follow subtle and insightful ones. This was strikingly illustrated by the 

results of Experiment 6 in Chapter 7, in which nondeterminism was basically eliminated. 

The program no longer gave farfetched fringe answers to “a b c  => a b d , m rr i i i  =► ?” , but 

it also no longer gave the insightful answer m r r i i i i .  The program has to  have the potential 

to  bring in a priori unlikely concepts (such as group-length) into its interpretation of the 

problem, but should do so only in response to strong pressures. These pressures are w hat 

give shape to the program ’s concepts and guide the program ’s exploration.

Chapters 4 and 5 presented the major empirical results of the Copycat project.

In Chapter 4, statistics were given for Copycat’s performance on the five target prob

lems discussed in Chapter 2, and, for each problem , comparisons were made between the 

program ’s range of answers and the range of answers given by people participating in a  

survey. In addition, sets of screen dumps from runs of the program on each problem were 

given, which illustrated the mechanisms described in C hapter 3.

C hapter 5 addressed one of the most im portant questions for any artificial-intelligence 

program: How flexible is it?  T hat is, how well does it continue to  perform when it is 

stretched beyond the most central problems it was deliberately designed to  solve? In this 

chapter, statistics summarizing the program’s performance on 27 variants of the five target 

problems were given. The program ’s answers were again compared with the results of a  

survey of people’s answers.

C hapter 6 gave a  discussion of two salient ways in which the program  is lacking: its mech

anisms for implementing top-down forces and focus of attention are not effective enough, 

and it lacks sufficient self-watching mechanisms.

C hapter 7 gave the results of six experiments on the  program  designed to elucidate 

the roles played by various aspects of the program ’s architecture. In each experiment, a  

certain m ajor design feature of the program was “lesioned” (i.e., removed or altered). The 

experiments investigated the effects on the program ’s behavior of suppressing or altering the
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following features: terraced scanning, breaker codelets, different conceptual-depth values, 

dynamic link-lengths, and randomness (by clamping the tem perature a t either a  very high 

or very low value).

Finally, in  Chapter 8, Copycat was compared with some o ther models of analogy-making 

and with o ther related work in artificial intelligence and cognitive science, and a discussion 

was given of Copycat’s intermediate place in the subsymbolic-to-symbolic spectrum of cog

nitive models.

9 .2  P ro p o s a ls  fo r F u tu re  W ork

As I see it, there are three dimensions along which future work related to this project 

could proceed. Work could continue on the Copycat program itself, addressing some of the 

problems w ith the current program that were discussed earlier, and the program could also 

be extended to  deal with a larger set of problems in the letter-string domain as well as to 

produce more complete sets of answers to the problems it can currently solve. Another 

dimension of future work is to  use the same basic architecture in other microdomains of 

roughly the same complexity. A third dimension would be to use ideas from Copycat to 

develop AI and cognitive-science models tha t work in more complex domains.

As far as future work on the Copycat program goes, perhaps the first priority is to 

address the problems with top-down forces, focus of attention, and self-watching tha t were 

discussed in C hapter 6. Having more plausible and effective mechanisms in these areas is 

essential in order to further extend the program.

Extensions to  the program could be made in many directions. Every type of structure 

the program builds could be made more complex. The following are some examples of the 

kinds of extensions that could be made.

•  More complex descriptions could be made, such as “rightm ost letter of leftmost group” 

(e.g., th e  rightmost a  in a a a b b b c c c ) , “th ird  letter from the  leftmost letter of string” 

(e.g., the  r  in p q rs t) , “next-to-leftmost letter” (e.g., the j  in y k lm ), and “next-to-last 

letter (in the alphabet)” (a possible description of the y  in w xy).

•  More complex bonds could be constructed, such as allowing bonds simultaneously 

between letter-categories and group-lengths in r s s t t t ,  bonds between spatially non- 

adjacent letters such as the a  and b  in ax b x c x , and bonds representing relationships 

consisting of a  chain of links rather than ju st one link in the Slipnet, such as the
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“double successor” relations in ace.

•  More complex types of groups could be constructed, such as groups based on spatial 

adjacency rather than  on relations in the Slipnet (e.g., the three m x b  groups in the 

string m x b m x b m x b ), or groups based on symmetry (such as a  grouping of the whole 

string ax x g g g x x a ).

•  More complex correspondences could be constructed, such as the three different cor

respondences from the c in the initial string to the rightm ost letter in each successor 

group of the  target string in “a b c  => a b d , lm n fg h o p q  => ?” (Variant 13). An

other extension related to  correspondences would be a  mechanism th a t carries out the 

“coattails effect” mentioned in Chapter 7. The coattails effect should allow certain 

slippages to  be pulled along “on the coattails” of conceptually related slippages tha t 

have already been made. This would enable the program to produce additional an

swers to  problems such as Variant 25: “a b c  => a b d , g lz =>• ?” . The current program 

cannot answer flz—there is no possibility of a  successor =► predecessor slippage, since 

the target string cannot be seen as a  successor or predecessor group. The coattails 

effect would allow the slippage successor => predecessor to  be brought in on the coat

tails of the conceptually related slippage first => last, even though the former is not

• explicitly a  part of any correspondence.

•  More complex rules could be constructed, such as “Extend the  string by one” for initial 

change a b c  =>• a b e d , or “Replace all letters by X ’s” for initial change a b c  =$► x x x , 

or “Extract the rightm ost letter” for initial change a b c  => c.

These are some of the ways in which the current program could be extended. This list 

is by no means exhaustive; in fact, it  barely scratches the surface of w hat could be done. 

The letter-string domain has the potential for so many different types of problems th a t 

there  is almost no lim it to  the kinds of extensions th a t could be made to  Copycat. Much 

could be learned about the general issues we are studying by attem pting to  extend Copycat 

in various ways. (See Appendix A for a  number of examples of problems Copycat cannot 

currently solve, some of which suggest other possible extensions.)

T he second dimension for future work is to use the same basic architecture in other 

microworlds. A ttem pting to  use the same architecture in different contexts would be very 

useful for learning what aspects of the architecture are (perhaps inadvertently) domain- 

dependent and for determining how to  make the architecture more general. Such a  project
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is currently being carried out by Robert French. In his “Tabletop” project, he uses a 

similar architecture to solve analogy problems involving arrays of objects on a  restaurant 

table. There are some interesting differences between the issues contained in the Tabletop 

domain and those in the letter-string dom ain, and this work will hopefully result in a  more 

refined and general architecture. (For a  description of the Tabletop project, see Hofstadter, 

Mitchell, & French, 1987.)

Another, more ambitious project (which has not yet reached the implementation stage) 

is Hofstadter’s “Letter Spirit” project (also described in Hofstadter, Mitchell, & French, 

1987), which proposes to use an architecture related to Copycat’s to  produce “gridfonts” 

(typefaces in which all letters are designed on a  specific grid, using discrete straight segments 

ra ther than  continuously curving lines) in uniform styles. For example, the input to  the 

program  might be an ‘a ’ drawn on the grid by a  person; the program ’s task would be 

to  produce the rest of the alphabet in “the same style” . As was discussed in C hapter 1, 

the  process of recognizing or producing certain styles (e.g., in music, a rt, or typography) is 

basically a  process of analogy-making. Here the analogy problem is, given an ‘a ’, to  produce 

an analogous ‘b ’, ‘c’, and so on.

The th ird  dimension for future work is to  attem pt to  use general ideas from Copycat 

(such as the  notions of the parallel terraced scan, context-dependent concept activations and 

conceptual distances, probabilistically defined concepts with graded presence or relevance, 

tem perature, etc.) in computer models of perception working in more complex domains. 

For example, I think it would be of great interest to  try  to  use these ideas in computer 

models of real-world visual and auditory recognition processes, such as object recognition 

or speech understanding. I am not going to make any specific proposals here for how this 

might be accomplished, but I feel th a t the  ideas in Copycat are now well-enough developed 

so th a t such applications could begin to  be considered. All o f the main mechanisms in 

Copycat were designed and implemented as much as possible w ith the idea that they could 

be eventually “scaled up”—in principle, they do not rely on the  fact th a t there are only 

a  small num ber of elements in each problem or a  small num ber of nodes and links in the 

Slipnet. In practice, there will no doubt be difficulties in actually getting  these mechanisms 

to  work in more complex situations. However, as I will discuss further in the next section, 

i t  is essential to  a ttem pt to  do so, because confronting these very difficulties is what will 

lead to  new insights about the issues Copycat is meant to  address.
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0.3 Contributions of This Research

Until words like “concept” have become term s as scientifically legitimate as, say, 
“neuron” or “cerebellum”, we will not have come any where close to  understand
ing the brain. (Hofstadter, 1985c, p. 234)

No one knows how to  represent a  concept or thing on the subsymbolic microlevel, 
or even precisely what this means. If this ambition could be recognized, it 
would come close to  cracking the cognition problem. And no one is close to  
accomplishing that. (Pagels, 1989, p. 141)

These sentiments reflect the view th a t underlies the research described in this disser

tation—that the  understanding and explication of the psychological notion of “concept” is 

perhaps the most im portant problem facing cognitive science. Concepts can be said to be 

the fundamental units of thought, as genes are the fundam ental units of heredity. And the 

present state  of cognitive science is something like the s ta te  of biology before the recognition 

of DNA as the hereditary substance: the notion of a  “gene” existed, but it  was a  vague and 

proto-scientific term  awaiting an explanation in terms of lower-level biological entities and 

mechanisms. Likewise, the brain mechanisms underlying concepts are not currently known. 

It seems likely th a t a  full account of these mechanisms will be much more complex and 

much more difficult to  uncover than  was the account of genes in term s of DNA.

As was said in the previous chapter, the long-term goal of the Copycat project (and re

lated projects) is to  use computer models to  help provide such a  scientific basis for concepts. 

This goal is still quite distant. An early step in this process would be to  make clearer what 

concepts are in a  psychological sense (as opposed to a  neurological sense) and to elucidate 

the issues surrounding them . As was mentioned in C hapter 1, there has been much research 

in psychology on the internal structure of categories, and much light has been shed on those 

issues. The focus of the Copycat project is somewhat different: we are concentrating on 

investigating and clarifying the natu re  of conceptual slippage and the  dynamics of the ac

tivation and association of concepts as they interact w ith perception. The hope is th a t the 

research described here has contributed to  the understanding of these aspects of concepts.

As part of this process of elucidation, this dissertation has described a  set of ideas about 

concepts, perception, and analogy-making, and has shown th a t a  computer program th a t 

implements these ideas exhibits rudim entary fluid concepts—the program ’s concepts are 

able to  adapt to  different situations in  a  microworld th a t, though idealized, captures much 

of the essence of real-world analogy-making. The main contributions of this research have 

been to  develop and explicate these ideas, to  show th e  extent to  which they do indeed
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work, and also to  examine in what ways they are flawed or incomplete. The result is not 

yet a  complete “theory” of high-level perception and conceptual slippage, at least not in 

the standard sense of theories in, say, physics or chemistry. These ideas have not yet been 

sufficiently developed or implemented to  be predictive of hum an behavior on a  large scale, 

or to  be strictly “falsifiable” (though some of the results given in this dissertation have 

dem onstrated certain problems and incompletenesses in the program ’s mechanisms). Given 

tha t we are investigating very general abilities (rather than domain-specific performance on 

letter-string analogy problems), and th a t we are trying to  understand how high-level mental 

activities (such as concepts) emerge from lower levels, the phenom ena th a t we axe studying 

are too complex for us to  develop complete theories of them a t th is stage of research. Rather, 

the process of developing these ideas and implementing them  in computer programs allows 

us to  clarify what it is we are studying, and to  begin to see w hat components such complete 

theories might have. The ideas presented in this dissertation are m eant to  act as stepping- 

stones for the development of more complex models and more complete theories.

This kind of approach is typical of the role of current com puter models of intelligence. 

As Alfred Kobsa points out, “AI modeling certainly does provide us with deeper experience 

in recognizing what makes it possible for a  system to produce certain ‘intelligent’ behavior. 

It can be assumed th a t efforts to  make this background experience explicit and to  state it 

in the form of generalizations will eventually lead to  theories.” (1987, p. 187).

For the purposes of this explication process, the im portance of actually writing a com

puter program  and getting it to work cannot be overemphasized. Many ideas for the Copycat 

program were originally set forth by Hofstadter in a  broad, outline form (1984a) before the 

program was w ritten, bu t it  was the process of writing the program —requiring constant 

confrontation with the all-im portant “details”— that allowed the  original ideas for the pro

gram to  become more fully developed by Hofstadter and myself. Along the way, vague 

ideas were clarified, wrong ideas were discarded, and new ideas were added. This parallel 

development of ideas and models is how cognitive modeling has to  proceed. Many insights 

can come only through grappling face to  face with the real issues (and it is certain th a t this 

same process of modification will occur in attem pts to  use ideas from Copycat in modeling 

perception in more complex domains). New insights often come when things go wrong. In 

the process of writing the Copycat program , many unanticipated problems arose (such as 

the problems with top-down forces, focus of attention, and self-watching discussed in Chap

ter 6) th a t guided the  implementation and th a t sometimes helped shed light on deep issues
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in perception and analogy-making. The appearance of unexpected strange answers (such as 

“a b c  =>• a b d , h h w w q q  =$> h h x x r r” , discussed in C hapter 5) dem onstrated not only th a t 

something was wrong with the program, but also helped drive home the subtlety and com

plexity of the  m ental phenomena th a t we are studying. The process of writing a  program 

such as Copycat brings up at least as many questions as it answers, and one of the points 

of writing the program was to  find out what these questions are. There are many ways in 

which the current version of Copycat is lacking, and m any problems with the mechanisms 

the program does have, and a  result of writing the program is that these aspects and prob

lems are uncovered and brought to light; they would have remained unseen and obscured 

if the program had never been written. (Some of these points concerning the advantages 

of writing artificial-intelligence programs have also been made by Longuet-Higgins, 1981, 

among others.)

In summary, the main contributions of this work are: clarifying and making explicit 

many central features of concepts, high-level perception, and analogy-making (e.g., emer

gent concepts, conceptual slippage, the interaction of bottom -up and top-down forces, com

mingling pressures, the parallel terraced scan, the role of nondeterminism in thought, etc.), 

presenting ideas for mental mechanisms underlying these features, and verifying and further 

developing these ideas by implementing them in a  computer program. My hope is that the 

ideas and results described in this dissertation have fulfilled what I have asserted to be the 

main criteria for success—to help us to  better understand what concepts are and to  broaden 

our intuitions on how to think about these issues. All of this serves to  set the stage for the 

very long-term goal of developing more complete scientific theories th a t explain how human 

cognition comes about in the brain and th a t propose how human-like intelligence might be 

achieved in computers.
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A PPEN D IX  A

A  S a m p le r  o f  C o p y c a t A n a lo g ie s

A . l  P ro b le m s

The following is a  collection of analogy problems in the Copycat letter-string domain (not 

including the five target problems and 27 variants given in Chapters 4 and 5). These are 

all problems th a t are currently beyond Copycat’s abilities. The purpose of presenting them  

is to  give readers a  better feel for the breadth  and richness of th is microworld.

The problems given below are arranged into seven “families” , each having a  common 

idea or them e among its problems. All the problems are of the form “If S i changes to  S i ', 

how does S2 change?” . In many of the families, several problems in a  row are based on a  

single example. In those cases, the example is given only once, and the various targets are 

listed below it.

In the next section, the problems given here axe discussed, and reasons are given for 

why Copycat cannot currently solve them .

1. a b c  =>• a b d

a. a c e  => ?

b. a a b a b c  => ?

c. p x q x rx sx  =>■ ?

d. a a a b b b c c k  => ?

e. b c d a c d a b d  => ?

2. a b e d  => a b e d e

a. i jk lm  => ?

b. i jx lm  =► ?
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c. mlkji ^  ?

d. iiii => ?

e. iiiiiiii => ?

3. a. mmmkooeeeeefqxx => kfq

riipppppplooyg => 7

b. rrccmmkppbb k

Ijooooosrezv 7

4. a. abcde =>• xxxxx

pqr =t* ?

b. xxh => fgh

pxxx => ?

c. pqrxxxx => pqrstuv

efghmm => 7

d. amcmemg; => abcdefg

wxyx =» 7

5. a. ccccijcc ■ i L—r' cuuUicu

sosss => 7

b. CCCUCv => qqqeqq
sabsss => 7

c. eqe => qeq

abcdcba 7

d. eqe => qeq

aaabccc => 7
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6. a. a b c d d e  => a b c d e

pqstu =► ?

b. a b c e d  => a b c d e

ppqqrrs =>■ ?

7. a. a  =>■ z

b => ?

6. pqr =>■ rqp

a  => 1

A .2  D iscu ss io n

la . “a b c  =» a b d , a c e  =► ?” . As was discussed in C hapter 2, the target string in this 

problem  can be understood as a “double successor” group, yielding answer acg . Copycat 

currently can perceive relations or make slippages involving nodes separated by only one 

link in the Slipnet, so i t  cannot perceive a  double-successor relation. In order to  solve this 

problem , Copycat would have to perceive these relations and use them to create a new 

concept— double successor—on the fly. This new concept would have the same properties 

as the  program ’s other concepts: it would be used by codelets to  calculate strengths of 

s tructures involving it, when active it would post top-down codelets to look for instances 

of i t ,  and so on. The program does not currently have any mechanism for creating new 

concepts such as this.

16. “a b c  => a b d , a a b a b c  => ?” . As was discussed in C hapter 2, if the target string 

is parsed as a -ab -ab c , then a  strong though abstract similarity to the initial string a b c  

emerges, where the “rightm ost letter” of a a b a b c  is the group a b c , and its “successor” is 

a b e d , yielding answer a a b a b e d . Copycat can solve this problem in principle in the same 

way i t  solves “a b c  => a b d ,  m rr i i i  => ?” , but in practice it  is too hard. The program  usually 

very quickly constructs a  sameness group consisting of the leftmost two a ’s, and cannot break 

it in order to  come up with the parsing a -a b -a b c . The program usually answers a a b a b d  

(using the  rule “Replace rightmost letter by successor”), though it sometimes constructs 

an a b c  successor group from the rightmost three letters in the target string, and maps 

the c in the initial string onto this group, answering a a b b e d . On occasion, the program
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Figure A .l: Final configuration of the Workspace for a  strange route to 
the answer a a b a b c d .

gives the answer a a b a b c d  for the wrong reason: The a a  group is constructed and then 

it is bonded together with the adjacent b , and a  two-element successor group is formed: 

aa-b . The program also forms the target-string a b c  three-element group, and then notices 

a  successor relation between the lengths of these two groups. It thus parses the string as

2-3 (i.e., A b -a b c )  and answers 2-4, that is, a a b a b c d , as shown in Figure A .I.

This crazy “t lisspun tale” was the only way the  program ever got the  answer a a b a b c d  

over thousands of runs. The reason in part has to  do with the program ’s problems with 

top-down forces discussed in Chapter 6. Once the a b c  successor group is m ade in the target 

string, the combination of top-down forces and high tem perature should ideally combine to 

make it more likely for a  proposed a b  group (i.e., containing the second and third letters) to 

successfully compete with the intrinsically strong a a  group. Once the string has been parsed 

as a -a b -a b c , then the same kinds of forces as are present in “a b c  => a b d , m r r iij  =s* ?” 

should make it possible for the leftmost a  to  be seen as a  single-letter successor group 

and for length relations to  be noticed. This is all possible in principle for the current 

version of Copycat. W hat is not possible for the current program is to  see letter-category 

relations between the groups a, a b , and a b c , or concept-mappings based on letter-categories 

between the letters in the initial string and these three groups. These relations and concept- 

mappings would be based on the view th a t a -a b -a b c  was basically A -B -C  in code, in the 

same way th a t ii-jj-kk  is basically I -J -K  in code. However, Copycat does not currently 

give letter-category descriptions to successor and predecessor groups as it does to  sameness 

groups (e.g., the group ii is given the description “letter-category: I ” , but the group a b c
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is not given any letter-category description), so such bonds and concept-mappings cannot 

be made, although I believe they are in p a rt what make the solution a a b a b c d  seem very 

strong to  m any people.

lc . “a b c  =$■ a b d ,  p x q x rx sx  =► ?”. To solve this problem, once m ust separate the 

“figure” (the successor group p q rs )  from the  “ground” (the  interleaved X ’s). If this figure 

and ground are perceived, then the answer is p x q x rx tx . A more literal answer is pxqx rxsy . 

Copycat cannot solve this problem for several reasons. For instance, it  cannot build bonds 

between letters th a t are not spatially adjacent (e.g., the p  and q  here axe separated by an 

x ) and it can only make groups th a t are based on relations in the  Slipnct (thus it could not 

group the p  and its  neighbor x  together as one unit).

Id. “a b c  =s- a b d ,  a a a b b b c c k  =► ?” . Here the question is w hat to  do about th a t pesky k. 

Some possible answers are a a a b b b d d d , a a a b b b d d k , or a a a b b b c c l. The present version 

of Copycat can produce the last two (as well as the usual “Replace rightm ost letter by D ” 

answer, a a a b b b c c d ) , bu t it isn’t  flexible enough to  do w hat people could do: assume that 

the k  “really should have been a  c” , because then the analogy would make more sense, and 

given the answer a a a b b b d d d .

le . “a b c  => a b d ,  b c d a c d a b d  => ?” . This problem looks chaotic and senseless, unless 

you notice th a t the  target string can be parsed as b c d -a c d -a b d , where each triplet is a 

code for the  “missing” letter. When the string is thus decoded, it  is simply a b c , so the 

answer is a b d , b u t once again in code: b c d -a c d -ab c . This is a  very hard problem for 

people, and I don’t  know if Copycat will ever be sophisticated enough to  get this answer.

2. This family of problems shows various ways of extending a  group. The current 

version of Copycat cannot deal with any o f these problems, since it  cannot yet form a rule 

like “extend the successor group” .

2a. “a b e d  => a b c d e , ijk lm  =>■ ?” . T he m ost straightforward answer is ijk lm n .

26. “a b e d  => a b c d e , y x lm  => ?” . There are several possible answers, including jjx lm n  

(ignore the x  and the  lack of a  k), i jk x lm n  (viewing the target string as two successor groups 

separated by an x , bo th  of which should be  extended), and jjk lm n  (viewing the x  as “the 

space into which to  extend the group” ). T he last answer requires a  kind of flexibility that 

is far beyond Copycat’s current abilities.

2c. “a b e d  => a b c d e , m lk ji =>■ ?” . The main rival answers here are m lk jih  (extending

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



262

the predecessor group to  its right) and n m lk ji (extending the successor group to  its left). 

These axe similar to  the  rival answers to  “a b c  =s> a b d , k ji => ?” .

2d. “a b e d  => a b c d e , iiii ^  ?” . I f  the concept of successor group is slipped to  the 

concept of sameness group, or is generalized to the more general concept of group, then the 

answer is iiiii ( tha t is, the group length is incremented by 1). A nother reasonable answer 

is iiiii i l l , perceiving the string iiii as a  successor group of length 1 (consisting only of the 

chunk iiii), and extending it by one “le tte r” (here a  group of four j ’s). These answers (in 

my opinion) are much better than more literal-minded answers such as iiiy  (tack on the 

successor of the rightm ost letter), iiiie  (add on an e  a t the right), or iiii (do nothing, since 

the target string iiii contains no successor groups).

2e. “a b e d  =>• a b c d e , iiiijiii  => ?” . Two good answers are iiiii iiiii  (extending both 

sameness groups a t once) and

iiiiiiiik k k k  (extending the successor group seen at the group level).

3. These problems involve the notion of extracting letters from a  string, which Copycat 

does not currently have.

за . “m m m k o o ee e e e fq x x  => kfq, r iip p p p p p lo o y g  => ?” . A plausible rule is “extract 

all single letters” , yielding answer rlyg .

зб. “r rc c m m k p p b b  => k , I jo o o o o srezv  => ?” . Here there is competition between 

two rules: the rule “ex tract all isolated letters” (yielding answer ( jsrezv ) or the  even more 

abstract rule “extract the ‘oddball’ or ‘black sheep’” (yielding answer o o o o o ). Giving 

Copycat the flexibility to  recognize instances of the concept ‘oddball’ (or “objects in the 

situation th a t are different from all the  other objects) in a  psychologically plausible way 

would be extremely challenging. This is the  kind of commonsense notion th a t people can 

use very easily and flexibly, but that would be very hard to  im part to  a  computer program.

4a. “a b c d e  => x x x x x , p q r  => ?” . A plausible rule is “Replace all letters by A’s” . This 

would yield the answer x x x . Copycat cannot currently construct rules describing changes 

of more than  one le tte r, so it  could not solve this problem.

46. “x x h  => fg h , p x x x  =$>■ ?” . This problem is easy for people, who answer p q rs . 

However, Copycat is quite far away from being able to perceive the relation between x x h  

and fgh , and to deal w ith the abstract concept of “filling in the spaces” .
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4c. “p q rx x x x  =>• p q r s tu v , e fg h m m  => ?” . A reasonable way of solving this problem 

is to  see the in ’s in e fg h m m  as playing the same role as the x ’s in p q rx x x x . This view 

would yield the answer e fgh ij.

4d. “a m c m e m g  => a b c d e fg , w xyx  => ?”. This problem has am amusing twist: the 

x ’s in w x y x  play the same “mask” or “placeholder” roles as the m ’s in am cm em g , but 

what replaces the leftmost x  in the desired answer (w xyz) is another copy of x , this tim e 

playing the role of itself! This problem, like the previous two, is far beyond Copycat’s 

current capabilities.

5a. “eeeeq ee  =► e e ee ree , sosss => ?” . A reasonable rule here is “Replace the isolated 

letter by its successor” , yielding answer spsss. Copycat cannot currently describe something 

as “the isolated le tte r” , so it cannot a t present form this rule.

56. “e e eq e e  => q q q eq q , sab sss  => ?” . One very abstract rule is “switch the letters” 

(or “flip the b its”). If the a  and b  in the target string are grouped as a  single unit, then the 

answer is a b s a b a b a b . Another way to  describe the change is “turn  the string inside-out” . 

In this case, a s sb b b  is a  plausible answer. This problem is, of course, far beyond Copycat’s 

current capabilities, since it has no notion of switching letters or tu rn ing  things inside-out.

5c and d. “eq e  => qeq , a b c d c b a  => ?” and “eq e  ^  qeq , a a a b c c c  => ?” . Both these 

problems explore the  concept of “turning a  string inside-out” . A possible answer to part c 

is d c b a b c d ; possible answers for part d are b aaacccb , b b b a c b b b , and a b b b c . The last 

answer expresses an extremely abstract view, in which the letters themselves are ignored 

and “turning the string inside-out” is done a t the level of group-length. T hat is, the pattern

3-1-3 (aa a b c cc )  corresponds to e q e  and the pattern  1-3-1 (a b b b c )  corresponds to  qeq.

6. a and 6. “a b c d d e  => a b c d e , p q s tu  => ?” and “a b c e d  =>• a b c d e , p p q q r rs  ^  ?” . 

Both problems could be seen to  be about “fixing up” or “cleaning up” a  structure—a quite 

abstract concept (it would be very challenging to enable Copycat to  recognize instances of 

it) . A good answer to  part a is p q r s tu ,  and a  good answer to part 6 is p p q q r rs s . This is, 

in my opinion, somewhat better than the answer p q rs , since it reflects the idea that both 

the  initial and target strings had “just a  little bit wrong with them ” , ra ther than a  massive 

defect requiring global rewriting.
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7a. “a  => z , b  => ?”. If  the a  and the z are seen as “m irror images” of each other, 

then the answer should be y—th a t is, the b ’s mirror image. For this answer, the rule 

would be something like “Replace the first letter by the last le tte r” , and the translated 

rule would be something like “Replace the next-to-first le tte r by the next-to-last letter” . 

Copycat cannot get this answer because it cannot presently describe a b  as “next-to-first” 

or a  y  as “next-to-last” .

7b. “p q r  => rq p , a  ^  ?” . One answer is a . A very abstract answer is z , which might 

come about by seeing the essential relation between p q r  and rq p  as opposite, and asking, 

“W hat is A’s opposite?” This would involve something like the “coattails” effect suggested 

in C hapter 7. The p q r  => rq p  correspondences might involve the slippage right =>■ left or 

alternatively successor => predecessor. Then the slippage firs t =}► last might come on the 

coattails of the other slippage, since the two slippages are conceptually related. Copycat 

currently has no mechanism implementing such an effect.
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A P P E N D I X  B

P a r a m e te r s  a n d  F o rm u la s

This appendix lists the values of the param eters used in Copycat, and gives more detailed 

descriptions of some of the formulas used in the  program. The detailed formulas for the 

im portance, happiness, and salience of objects, and for the strengths of structures, are not 

given here (they were described in general term s in C hapter 3), but the original source code 

can be provided to  anyone interested in the details of these particular formulas.

All values in Copycat (param eters values, formula results, activation values, tem pera

tu re , and so on) are in the range from 0 to  100.

There are many param eters in the program whose values were assigned by me. In 

general, the values were decided by a  combination of intuition, trial and error, and some 

arbitrariness, and are not necessarily optimally tuned in the current version of the program. 

They should thus not be thought of as cast in concrete, b u t are very much open to further 

testing and refinement.

B . l  V alues U sed  in  S e t t in g  U p  th e  S lip n e t

B .1.1 C o n c e p tu a l-D e p th  V a lu es  

A , B , . . . ,  Z: 10 

1, 2, . . .5 :  30

leftmost, rightmost, middle, single, whole: 40 

left, right: 40

predecessor, successor, predecessor-group, successor-group: 50 

sameness, sameness-group: 80 

first, last: 60 

identity, opposite: 90
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letter. 20 

group: 80 

letter-category: 30 

number-category: 60 

string-position: 70 

direction: 70 

bond-category: 80 

group-category: 80 

alphabetic-position: 80 

object-category: 90

1.1 .2  L in k -L en g th s

The length of a link in the Slipnet is determined by its label, if it has one, and otherwise is 

set ahead of time by me. The labels on various links were shown in Figure 3.3.

Lengths of Labeled Links

The length of a  labeled link is equal to the intrinsic link-length of its label node (e.g., 

opposite) if the label node is not fully active, and is equal to the shrunk link-length of its 

label node if the label is fully active.

The intrinsic link-lengths assigned to  the various label nodes are:

predecessor. 60 

successor. 60 

sameness: 0 

identity. 0 

opposite: 80

The shrunk link-length for each label node is .4 times the intrinsic link-length.
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Lengths of Fixed-Length Links 

For all links from nodes to their superordinate category-type nodes (e.g., A —* letter- 

category, or left —* direction) the length is the difference in conceptual depth between the 

two nodes. T hat is, the closer they are in conceptual depth, the shorter the link.

For other fixed-length links, the lengths are set by hand. The values axe:

A —► first: 75 

Z —*• last: 75

letter-category —► number-category: 95

number-category —*• letter-category. 95

letter —► group: 90

group —* letter. 90

predecessor —*• predecessor-group: 60

successor —► successor-group: 60

sameness —► sameness group: 30

predecessor-group —► predecessor. 90

successor-group —*• successor. 90

sameness-group —► sameness: 90

single —► whole: 90

whole —► single: 90

left —» leftmost: 90

leftmost —*■ left: 90

right —► rightmost: 90

rightmost —* right: 90

successor-group —► number-category. 95

predecessor-group —*• number-category: 95

sameness-group —* number-category. 95

sameness-group —» letter-category. 50
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At present, all types of groups can have length (number-category) descriptions, whereas 

only sameness groups can have letter-category descriptions. This is why there are no 

successor-group —* letter-category or predecessor-group —» letter-category links.

In addition to the links listed above, it was necessary to add certain links for the purpose 

o f making certain concept-mappings compatible and internally coherent (e.g., first =» last 

should support leftmost =>• rightmost), but to  disallow spreading activation over these links. 

All of the following links have a  fixed length of 100, which means th a t no activation spreads 

over them , even though the program considers the nodes to  be related for the purpose 

o f calculating the strengths of correspondences. This mechanism is not ideal, and should 

probably be modified in future work on Copycat.

right —>■ leftmost: 100 

leftmost —► right: 100 

left —► rightmost: 100 

rightmost —* left: 100 

leftmost —► first: 100 

first —* leftmost: 100 

rightmost —► first: 100 

first —* rightmost: 100 

leftmost —► last: 100 

last —» leftmost: 100 

rightmost -*■ last: 100 

last -+ rightmost: 100

B.2 Other Slipnet Parameters

Number of codelets run before a  Slipnet update: 15

Number of Slipnet updates for initially-clamped nodes (i.e., letter-category and string- 

position) to  be clamped: 50
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B.3 Slipnet Formulas

Activation decay: Each node loses (100 -  conceptual-depth) percent of its activation 

at each Slipnet update.

Activation spread: If a  node is fully active, it spreads activation to  each of the nodes 

it is linked to. Each neighboring node gets link-length percent of the original node’s 

activation. In the current version of the program, the  program always uses the intrin

sic link-length, rather than the shrunk link-length, for this calculation, even when the 

label node for this link is active. Shrunk link-lengths are used only by codelets in eval

uating slippages, bonds, etc. When I used shrunk link-length for spreading activation, 

the network tended to become too active. It is possible th a t a  different mechanism 

(e.g., some kind of inhibition technique) should be used to control activation in the 

network—this is a  topic for future work on Copycat.

B.4 Temperature Formulas

The tem perature is updated along with the Slipnet, every 15 codelet steps. The formula 

for calculating the tem perature is

(.8 * [the weighted average of the unhappiness of all objects, weighted by their relative 

importance]) +  (.2 * [100 -  strength(rule)])

The factors .8 and .2 are the weights given to  the two components (the unhappinesses of 

objects in the Workspace and the inverse of the strength of the rule) in this calculation. As 

discussed in C hapter 4, there are some problems with this weighting scheme, which result 

in implausible tem perature values for some answers.

As was discussed in Chapter 3, in addition to  affecting the choice of which codelet to 

run next (how this is implemented is described in the  next section), tem perature affects 

several probabilistic choices made by codelets. This is implemented as follows.

Before a  codelet makes a probabilistic choice based on probability p  (e.g., the probability 

whether to  post a  follow-up codelet to  test the strength of a  given structure), it adjusts p  

(a  num ber between 0 and 1 according to the current tem perature by sending it through 

a  filter. The filter adjusts probabilities lower than  .5 up and probabilities higher than .5 

down by an amount th a t depends on the tem perature (the higher the tem perature, the 

closer probabilities are brought to  .5). The filter is a t present a  fairly complicated formula,
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arrived a t partially  by trial and error. It gives the desired numbers, but it is inelegant. The 

whole form ula should eventually be simplified. The formula, written in Common Lisp, is 

given below (^tem perature* is the global tem perature variable).

(defun adjust-probability (p)

(cond ((=  p 0) 0)

( ( <  P -5)
(let* ((term l (max 1 (truncate (abs (log p 10)))))

(term 2 (expt 10 (- (- term l 1))))

(min .5 (+  p (* ( /  (- 10 (sqrt (- 100 *tem perature*))) 100)

(- term 2 p )))))))

( ( >  P -5)
(m ax .5 (- 1 (+  (- 1 p)

(* ( /  (- 10 (sqrt (- 100 *tem perature*))) 100)

(- 1 (- 1 P ) ) ) » » »

Tem perature also affects the degree of randomness with which fights between competing 

structures are decided. A fight is decided probabilistically based on the respective strengths 

of the structures involved, but these strengths are first sent through a  filter th a t adjusts 

them  according to  the current tem perature, enhancing differences in strengths more and 

more as the tem perature falls. The filter is:

•»• i t i 100—temperoture . ~
adjusted-strength =  strength 30 

The constants 30 and .5 are for scaling purposes and were determined by trial and error.

B.5 Coderack Parameters and Formulas

The following describes how th£ tem perature-controlled probabilistic choice of codelets 

works. There are a  fixed number of possible urgencies th a t can be assigned to codelets 

(currently 7), and each of those urgency “bins” is given a  new value each time the tem per

ature is updated . The bins are numbered 1, 2 , . . .  ,highest-bin-number. The function for the 

value of each bin is:

(100—tcmpgromrel+lO
urgency =  bm-number is
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The constants 10 and 15 are for scaling purposes and were determined by tria l and error. 

The calculated urgency values are then used to directly make a  probabilistic choice of the 

next codelet to  run.

The coderack is limited to a  certain size (currently 100), and if this lim it is exceeded 

by new codelets being posted, codelets are chosen probabilistically (as a  function of their 

urgency and their age on the coderack) to  be deleted until the lim it is again reached. The 

following value is first assigned to  each codelet c in the Coderack:

age(c) * [highest-urgency -  urgency(c)],

and then these values are converted into probabilities th a t are used to  decide which codelets 

to  delete. Thus, the older the codelet and the lower its urgency, the more likely it  will be 

chosen to  be deleted.
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A P P E N D I X  C

M o re  D e ta ile d  D e sc rip tio n s  o f  C o d e le t  T y p e s

This appendix describes the various codelet types in more detail than  was given in Chap

ter 3. The various probability values detailed in these descriptions are the values before the 

adjustm ent for tem perature (described in Appendix B) is applied.

Description-Building Codelets 

B o tto m -u p  d e sc r ip tio n -sc o u t (no argum ents):

1. Choose an object in the Workspace probabilistically as a function of salience.

2. Choose a relevant description of the object probabilistically as a function of the 

activation of the descriptors.

3. See if this descriptor has any “has property” links in the Slipnet that are short 

enough (whether they are short enough is decided probabilistically with proba

bility equal to  ((100 -  link-length) /  100).

4. If not, then fizzle. Otherwise, choose one of the  close-enough properties proba

bilistically as a  function of degree of association and activation.

5. Propose a  description of the object, based on th is property, and post a description- 

strength-tester codelet whose urgency is a  function of the activation of the  des

cription-type (e.g., if the proposed descriptor is first, then the description-type 

is alphabetic-position).

T o p -d o w n  d e sc r ip tio n -sc o u t (argument: a  description-type node):

1. Choose an object in the Workspace probabilistically as a  function of salience.

2. Test all the possible descriptors of the given description type to  see if any can 

be applied to  this object (e.g., if the description-type is alphabetic-position, then 

first and last will be tested).
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3. If no descriptors of this type can be applied to  the chosen object, then fizzle. 

Otherwise, choose one of the applicable descriptors probabilistically (as a  func

tion of activation) and post a  description-strength-tester codelet whose urgency 

is a  function of the activation of the description-type.

D e s c r ip t io n -s tr e n g th - te s te r  (argument: a  proposed description):

1. Activate the proposed descriptor in the Slipnet (i.e., give it full activation).

2. Calculate the proposed description’s strength.

3. Decide probabilistically whether or not to continue, as a function of the proposed 

description’s strength. If no, then fizzle. Otherwise, post a  description-builder 

codelet whose urgency is a function of the proposed description’s strength.

D e sc r ip tio n -b u ild e r  (argument: a  proposed description):

1. If this description is already attached to  the given object, then fizzle. Otherwise 

build the description, and activate the descriptor and the description-type in the 

Slipnet.

Bond-Building Codelets

B o tto m -u p  b o n d -sc o u t (no arguments):

1. Choose an object in the Workspace probabilistically as a  function of salience.

2. Choose an adjacent object probabilistically as a  function of salience.

3. Choose a  “bonding-facet” (i.e., what aspect of the objects to  look at in m ak

ing a  bond—at present the only possible bonding-facets are letter-category and 

number-category) probabilistically as a  function of the possible facets’ local sup

port (i.e., a  function of how many objects in the  string have this type of descrip

tion) and activation.

4. See if each chosen object has a  descriptor of the  given bonding-facet (e.g., ietter- 

category). If  not, then fizzle.

5. If so, then see if there is a  relationship in the Slipnet between these two descrip

tors. If not, then fizzle.

6. If so, then propose a  bond between these two objects, and post a  bond-strength- 

tester codelet whose urgency is a function of the  proximity of the two descriptors 

in the Slipnet.
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Top-down bond-scout: category (argument: a  bond-category node):

1. Choose a string to  work in probabilistically, as a  function of both the support 

of the given bond-category in each string (e.g., if the  bond-category is successor, 

then the string with more successor bonds is more likely to  be chosen) and 

the average unhappiness of objects in the string (the  string with more unhappy 

objects is more likely to  be chosen).

2. Choose an object in the Workspace probabilistically as a  function of salience.

3. Choose an adjacent object probabilistically as a  function of salience.

4. Choose a bonding-facet.

5. See if each chosen object has a descriptor of the given bonding-facet (e.g., letter- 

category). If not, then fizzle.

6. If so, then see if there is a  link in the Slipnet of the given category between these 

two descriptors. If not, then fizzle.

7. If so, then propose a bond between these two objects, and post a bond-strength- 

tester codelet whose urgency is a  function of the proximity of the two descriptors 

in the Slipnet.

Top-down bond-scout: direction (argument: a  direction node):

1. Choose a  string to  work in probabilistically, as a  function of both the support of 

the given direction in each string (e.g., if the direction is right, then the string with 

more right-going bonds is more likely to  be chosen) and the average unhappiness 

of objects in the string (the string with more unhappy objects is more likely to 

be chosen).

2. Choose an object in the  Workspace probabilistically as a  function of salience.

3. Choose an adjacent object in the given direction.

4. Choose a  bonding-facet.

5. See if each chosen object has a  descriptor of the given bonding-facet (e.g., letter- 

category). If no t, then fizzle.

6. If so, then see if there is some link in the Slipnet between these two descriptors 

(in the given direction). If no t, then fizzle.
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7. If so, then propose a  bond between these two objects, and post a  bond-strength- 

tester codelet whose urgency is a  function of the proximity of the  two descriptors 

in the Slipnet.

B o n d - s tr e n g th - te s te r  (argument: a proposed bond):

1. Calculate the proposed bond’s strength.

2. Decide probabilistically whether or not to  continue, as a  function of the proposed 

bond’s strength. I f  no, then fizzle. Otherwise, post a  bond-builder codelet whose 

urgency is a  function of the proposed bond’s strength.

3. Activate (in the Slipnet) the two descriptors being related, and the  bonding-facet 

(e.g., letter-category).

B o n d -b u ild e r  (argum ent: a  proposed bond):

1. If the same bond has already been built between the  two objects, then fizzle.

2. Otherwise, fight w ith any incompatible bonds, groups, and correspondences. If 

any fight is lost, then fizzle. Otherwise, break all incom patible structures, build 

the proposed bond, and activate (in the Slipnet) the  new bond’s bond-category 

and direction.

Group-Building Codelets

Note th a t any time a  new group is proposed, the proposed group is autom atically given 

a  num ber of descriptions, including a  group-category description, an object-category descrip

tion  (i.e., group), a  letter-category description if it is a  sameness group, and a  string-position 

description if applicable. There is also some probability th a t it will be given a  length de

scription. This probability is a  function of the length of the group (the shorter, the more 

likely) and the activation of number-category (the  higher, the more likely).

T o p -d o w n  g ro u p -s c o u t:  c a te g o ry  (argum ent: a  group-category node):

1. Choose one of the strings probabilistically as a  function of support for the bond- 

category associated with the given group-category (e.g., if the group-category is 

successor-group, then  the string w ith more successor bonds is m ore likely to  be 

chosen) and the average unhappiness of objects in the string (the  string with 

more unhappy objects is more likely to  be chosen).
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2. Choose an object in the Workspace probabilistically as a  function of salience.

3. Choose a  window in the  string (with the chosen object a t one end) in which to  

look for adjacent bonds of the  given category and all in the same direction (no 

m atter which one, as long as they are all the same). The choice is probabilistic, 

with larger windows being more likely to be chosen.

4. Choose a  scanning direction for scanning the window.

5. S tart from the chosen object, and scan through the chosen window in the chosen 

scanning direction until no more adjacent bonds of the given category are found. 

(If no bonds are found, then decide probabilistically whether or not to  propose 

a  single-letter group, as a  function of local support in the string for the given 

group-category, and the activation of number-category.)

6. If no bonds are found (and a  single-letter group is not being proposed), then 

fizzle.

7. Otherwise, propose a  group based on the bonds found, and post a group-strength- 

tester codelet whose urgency is a  function of the proximity encoded by the 

group’s bond-category (e.g., successor, if the proposed group is based on suc

cessor bonds).

Top-down group-scout: direction (argument: a  direction node):

1. Choose one of the strings probabilistically as a  function of support for the given 

direction (e.g., if the direction is right, then the string with more right-going 

bonds is more likely to be chosen) and the average unhappiness of objects in the 

string (the string with more unhappy objects is more likely to be chosen).

2. Choose an object in the W orkspace probabilistically as a function of salience.

3. Choose a  window in the string in which to  look for adjacent bonds of the given 

direction and all of the, same category (no m atter which one, as long as they tire 

all the same). The choice is probabilistic, w ith larger windows being more likely 

to  be chosen.

4. Choose a  scanning direction for scanning the window.

5. S tart from the chosen object, and scan through the chosen window in the chosen 

scanning direction until no more adjacent bonds of the given direction are found.

6. If no bonds are found, then fizzle.
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7. Otherwise, propose a group based on the bonds found, and post a group-strength- 

tester codelet whose urgency is a function of the proximity encoded by the 

group’s bond-category (e.g., successor, if the proposed group is based on suc

cessor bonds).

G ro u p -s tr in g -s c o u t (no arguments):

1. Choose a string at random.

2. See if there is a set of adjacent bonds of the same type and direction spanning 

the string.

3. If not, then fizzle. Otherwise, propose a  group based on these bonds, and post 

a  group-strength-tester codelet whose urgency is a  function of the proximity 

encoded by the group’s bond-category.

G r o u p - s t r e n g th - te s te r  (argument: a proposed group):

1. Calculate the proposed group’s strength.

2. Decide probabilistically whether or not to  continue, as a  function of the  proposed 

group’s strength. If no, then fizzle. Otherwise, post a  group-builder codelet 

whose urgency is a  function of the proposed group’s strength.

3. Activate (in the Slipnet) the group’s bond-category and direction.

G ro u p -b u ild e r  (argument: a  proposed group):

1. If  the same group already exists, then fizzle.

2. Otherwise, fight with any incompatible bonds, groups, and correspondences. If 

any fight is lost, then fizzle. Otherwise, break all incompatible structures, build 

the  proposed group, and activate (in the Slipnet) all the descriptions given to 

the  new group, including the new group’s group-category.

Correspondence-Building Codelets

B o t to m -u p  c o rre sp o n d e n c e -sc o u t (no arguments):

1. Choose two objects, one from the initial string and one from the target string, 

probabilistically as a  function of salience.
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2. Take all the relevant descriptions of each object and make a  list of ail possible 

concept-mappings between the descriptors. A concept-mapping is possible if the 

two descriptors are identical or if they <uc linked in the Slipnet by a  lateral 

slippage link (see Section 3.3 for a discussion of the different types of links in the 

Slipnet).

3. See if there is any concept-mapping on the list th a t w arrants proposing a  cor

respondence between the two objects. Such a  concept-mapping has to  consist 

of distinguishing descriptors (e.g., the concept-mapping letter => letter does not 

warrant a  correspondence on its own) and has to  represent a “close-enough” 

relationship in the Slipnet. Identity mappings are always considered to be close- 

enough, so if there is a distinguishing identity m apping (i.e., a  mapping with 

distinguishing descriptors, such as rightmost => rightmost), then it is a  sufficient 

basis for a correspondence. For slippages, the probability of being considered 

close-enough is a function of both  link-length and conceptual depth o f the de

scriptors. The shorter the link, the more likely it is for the the concept-mapping 

to be judged close-enough, and, as discussed in C hapter 3, the deeper the de

scriptors, the more resistance to  slippage, so the less likely it  is for them  to be 

considered close-enough for a slippage to be made.

4. If there is no concept-mapping th a t warrants proposing a  correspondence, then 

fizzle. Otherwise, propose a  correspondence with all the possible concept-map

pings th a t were found in step 2. Once one concept-mapping (e.g., rightmost => 

rightmost) has been determined to  be sufficient, then all the others (e.g., letter => 

letter) come along for the ride. Post a  correspondence-strength-tester codelet 

whose urgency is a function o f the strengths of the proposed correspondence’s 

distinguishing concept-mappings.

I m p o r ta n t-o b je c t  c o rre sp o n d e n c e -sc o u t (no arguments):

1. Choose an object from the initial string probabilistically as a function o f impor

tance.

2. Choose a  descriptor (from th a t ob jec t’s relevant descriptions) probabilistically 

as a  function of conceptual depth (e.g., it might be the descriptor rightmost).

3. Try to find an object in the target string with the same descriptor, possibly 

taking into account a  slippage th a t has already been m ade (e.g., if the  chosen
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descriptor is rightmost, and if the slippage leftmost => rightmost has already been 

made, then th a t implies the slippage rightmost => leftmost, so this codelet will 

look for the leftmost object rather than  the  rightmost object).

4. If no object in the target string with th a t descriptor is found then fizzle. O ther

wise, proceed as in steps 2-4 of the bottom-up-correspondence-scout to  propose 

a  correspondence.

C o r re s p o n d e n c e -s tre n g th - te s te r  (argum ent: a proposed correspondence):

1. Calculate the proposed correspondence’s strength.

2. Decide probabilistically whether or not to  continue, as a  function of the proposed 

correspondence’s strength. If no, then fizzle. Otherwise, post a  correspondence- 

builder codelet whose urgency is a  function of the proposed correspondence’s 

strength.

3. Activate (in the Slipnet) the description-types and descriptors of all of the pro

posed correspondence’s concept-mappings.

C o rre s p o n d e n c e -b u ild e r  (argument: a  proposed correspondence):

1. If the same correspondence has already been built, then fizzle.

2. Otherwise, fight w ith any incompatible bonds, groups, and correspondences, and 

the rule, if an incompatible one has been built. If  any fight is lost, then fizzle. 

Otherwise, break all incompatible structures, build the  proposed correspondence, 

and activate (in the  Slipnet) the nodes representing the labels of any slippage in 

the  new correspondence’s concept-mappings (e.g., if one of the concept-mappings 

is rightmost =» leftmost, then activate opposite).

Rule-Building Codelets

R u le -sc o u t (no arguments):

1. Find the letter in the  i tial string th a t has been changed, th a t is, whose replace

m ent in the modified string does not have the  same letter-category (the program 

assumes that exactly one letter will have changed).

2. Get a  list of the possible descriptors of the  changed le tter th a t can be used in 

filling in the rule tem plate. These descriptors have to  be taken from relevant and
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distinguishing descriptions, but there  are sometimes some other restrictions as 

well. If a  correspondence has been built from this le tte r to  an object in the target 

string, then the possible descriptors have to be part of the  concept-mappings 

underlying the correspondence. For example, in “s b c  => a b d , ijk  =>■ ?”, if 

a  correspondence has been built from the c to  the k , then this codelet would 

not propose the rule “Replace C  by D”, since the descriptor C  is not part of 

th a t correspondence. Likewise, in “a b c  => a b d ,  x cg  =>• ?” , if a  correspondence 

has been built between the two c ’s, then this codelet would not propose the rule 

“Replace rightmost letter by successor” , since the descriptor rightmost is not part 

of tha t correspondence. If there is no correspondence attached to the changed 

letter, then all the relevant, distinguishing descriptors are eligible.

3. Choose a  descriptor from the list of eligible descriptors probabilistically, as a  

function of conceptual depth.

4. Choose a  descriptor of the le tte r in the modified string corresponding to  the 

changed letter in the initial string. The choice is also m ade probabilistically, as 

a  function of conceptual depth. W hen a  replacement structure  has been built 

between the initial-string letter and the  modified-string letter, the modified-string 

le tte r is given a  description corresponding to  the relationship between the two 

letters if there is one. For example, for a b c  ^  a b d , the d  would be given the 

description “successor of the c” , b u t for a b c  a b q , no such description would 

be given, since there is no relationship in the Slipnet between C  and Q.

5. Propose a  rule with the two chosen descriptors, and post a  rule-strength-tester 

codelet whose urgency is a  function of the  conceptual depth  of the  two descriptors.

R u le - s t r e n g th - te s te r  (argument: a  proposed rule):

1. Calculate the proposed rule’s strength.

2. Decide probabilistically whether or not to  continue, as a  function of the proposed 

rule’s strength. If  no, then fizzle. Otherwise, post a  rule-builder codelet whose 

urgency is a  function of the proposed rule’s strength.

R u le -b u ild e r  (argument: a  proposed rule):

1. If the proposed rule already exists, then fizzle.
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2. Otherwise, if there is a  different existing rule, fight with it. If the fight is lost, 

then fizzle. Otherwise, break the incompatible ru is ; and build the proposed rule, 

and activate (in the Slipnet) the two descriptors m aking up the rule.

R u le - t r a n s la to r  (no arguments):

1. Decide whether the tem perature is too high to  translate the rule. To do this, 

choose a  threshold probabilistically as a  function of the am ount of structure that 

has been built so far (this is described in Section 3.4.3), and see if  the tem perature 

is above the chosen threshold. If so, fizzle.

2. Otherwise, construct a translated rule by applying the slippages tha t have been 

made in the various correspondences to the descriptors in the original rule. Once 

the translated rule has been built, the program will stop running codelets, and 

will produce an answer by applying the translated rule to the target string.

O ther Codelets

R e p la c e m e n t- f in d e r  (no arguments):

1. Choose a  le tte r a t random in the initial string. If this letter already has a 

replacement structure  attached to  it, then fizzle.

2. Otherwise, get the  letter in the corresponding position in the modified string.

3. Build a replacement structure between the two letters.

4. If the two letters have different letter-categories, then if their letter-categories are 

related in the Slipnet, add a  description to  the modified-string letter describing 

the relation (e.g., “successor of the c” ).

B re a k e r  (no arguments):

1. Decide probabilistically, as a  function o f tem perature, whether or not to fizzle 

immediately (the  lower the  tem perature, the more likely this codelet is to  decide 

to  fizzle).

2. If  the decision was made to  continue, choose a  structure  a t random. Decide 

probabilistically, as a  function of the structure’s strength, whether or not to 

break it (the weaker it is, the more likely it is to  be broken). If the decision is 

m ade to break the  structure, then break it.
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A P P E N D I X  D

R e s u lts  o f  F u r th e r  E x p e r im e n ts  o n  P e o p le

D . l  In tro d u c tio n

Several experiments on people have been suggested to  give evidence for Copycat’s psycho

logical plausibility, and it is worth discussing which ones I feel are useful, and which not. 

One suggestion has been to measure precisely the relative tim es it takes the program to solve 

various problems and to  compare them  with people’s relative tim es on the same problems. 

This is clearly too fine-grained a comparison, since Copycat is not and was never meant to 

be a  model of how people read and process letter-strings. Another suggested experiment is 

to  test whether or no t the  frequencies of Copycat’s different answers for each problem match 

the  frequencies given by a  group of hum an subjects. The suggestion is th a t, for example, if, 

given “a b c  => a b d , k ji => ?” , 6 out of 10 people answer k jj, 3 answer k jh  and 1 answers Iji, 

then  the program should be judged on how well it  matches these frequencies. This would 

not be a  useful experiment: Copycat is not meant to  be a  model of how a  population of 

people responds to  these analogy problems; it  is closer to  being a model of an individual 

person, with high-level preferences emerging statistically from micro-biases.

The answer frequencies and tem peratures displayed in a  bar graph represent the different 

degrees to  which various answers are obvious and preferable to  the  program. They are 

m eant to  correspond to  the degree to  which an individual would feel a  certain answer 

was obvious or good. For example, in “a b c  =>• a b d , i jk  => ?” , Copycat’s more than  50- 

to-1 ratio  of frequencies of answer ijl over y d  is meant to  model the vast difference in 

immediacy of these two answers in a  single person’s mind: although the route to  y d  is 

always open, it is quite unlikely and is almost never followed. Likewise, the average final 

tem peratures are supposed to  represent how an individual, w ith individual biases, would 

ra te  the different answers (though, as was discussed previously, there are some problems
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with the way tem perature is currently calculated in Copycat). Thus, m atching Copycat’s 

answer frequencies against those of a population is not the right experiment to  do; it would 

be better to see if Copycat’s micro-biases could be tuned to  m atch the behavior of a single 

person. However, a t this point even this experiment is too  fine-grained, since there are so 

many factors th a t go into a  person’s answers that involve knowledge th a t Copycat lacks, 

and it is also unclear how such a  comparison would be done, since it is hard to  know, for 

example, how likely the path  to an answer like y d  would be in a  single person’s mind.

At this point, therefore, only limited direct comparisons can be m ade with people in 

order to lend more plausibility to  the model. The comparisons I felt would be useful and 

chose to  do are the following:

1. Comparing the range o f answers given by the program and by people. The results of 

these comparisons were discussed in Chapters 4 and 5.

2. Comparing the effects (at a coarse-grained level) on the program and on people o f small 

variations in pressures. The results of these comparisons were discussed in Chapter

5.

3. Comparing preferences on answers. If people generally agree th a t, given the restric

tions of the  microworld, a given answer is very strong or very weak, then Copycat 

should concur with this judgment, in the sense of having a  low or high average final 

tem perature for that answer. This would lend some plausibility to  the program ’s 

mechanisms for judging the quality of various ways of perceiving situations. However, 

if the quality of a  given answer is controversial among people, then a  comparison with 

Copycat’s judgm ent cannot be made, since the program  is in effect exhibiting its own 

“taste” in the m atter (a result of a  large number of micro-biases).

4. Comparing relative difficulties on different problems. If  people generally find certain 

problems much more difficult than others (e.g., if “a b c  => a b d , x y z  =» ?” is more 

difficult than  “a b c  => a b d , ijk  =>• ?”), the program should experience the same relative 

difficulties: it should take longer to solve problems difficult for people than  problems 

simple for people, and if there are any specific difficulties people reliably run into (e.g., 

in “a b c  ^  a b d , xyz =S- ?” , trying to take the successor of Z  and h itting  an impasse), 

the program should run into them as well. This would lend some plausibility to the 

program’s underlying mechanisms as models of similar mechanisms in humans.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



284

D .2  C o m p a r in g  P re fe re n c e s  o n  A n sw ers

For this comparison I used 19 paid subjects who were already familiar with the letter-string 

domain, having ju st participated in either the survey described in Chapters 4 and 5 or the 

timing experiment described in the next section. The subjects were given a  list of problems 

(including the five target problems or slight variants) along with a  set of possible answers 

to  each problem with a  detailed written justification for each answer (I don’t repeat the 

justifications for each answer here, but they should be clear from earlier discussions). The 

subjects were asked, for each problem, to  rate  each given answer on a  scale from 5 to  1, 

with the following adjectives associated with each num ber: “intelligent” (5), “reasonable” 

(4), “barely reasonable” (3), “weak” (2), and “stupid” (1). My goal was to  see, when there 

was more or less general agreement among people on the strength or weakness of a  certain 

answer, whether or not Copycat also judged th a t answer to  be strong or weak, as measured 

by its average final tem perature for that answer.

The interesting statistics here for a given answer are the mean rating, which indicates 

how well people liked the answer on average, and the standard  deviation, which indicates 

how much agreement there was on the rating for th a t answer. A standard  deviation of 

roughly 1 or less indicates a reasonable am ount of agreement on the rating of the answer.

a b c  => a b d , p q rs  => ?: This is a  slight variant of “a b c  => a b d , ijk  => ?” . Copycat’s 

performance on this problem is no different from its performance on the original. Four 

possible answers were given for people to  ra te , and their ratings were:

Answer Mean Rating Std. Dev.

p q r t 4.6 .5

p q rd 3.2 1.3

p q rs 2.8 1.2

o q rs 1.9 .9

C opycat’s average final tem peratures for these answers (1000 runs) are as follows:

Answer Average Final Temperature

p q r t 20

p q rd 27

p q rs 60

Again, the  point here is not to  make a  fine-grained comparison between people and 

Copycat, bu t rather to  see whether, when there is general agreement among people, Copycat
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agrees as well. The answer p q r t  is a  clear winner here among people, with a  high mean 

rating (between “reasonable” and “intelligent” ) and a  low standard  deviation, indicating 

general agreement on its merits. This answer is also rated  highly by Copycat, with an 

average tem perature of 20. People also fairly reliably rate  o q r s  (simply “Replace leftmost 

letter by predecessor” with no other justification given) as “weak” or “stupid” . In 1000 

runs, Copycat never answered o q rs  (though it is theoretically capable of doing so) since, in 

the context of this problem, the rightmost =» leftmost correspondence is extremely weak and 

unlikely to  be made. The other two answers are generally seen by people as weak or barely 

reasonable, bu t these ratings are a  bit more controversial. Like people, Copycat views p q rs  

as quite weak. Copycat’s tem perature on p q r d  is fairly low, which, as was discussed in 

Chapter 4, reflects a  problem with the way tem perature is calculated in the program: it 

does not sufficiently take into account the weakness of a  rule like “Replace rightm ost letter 

by D ”.

a b c  => a b d , ijjjk k  => ?: (This was actually given as “a b c  =► a b d , n n o o p p  ^  ?” , but 

for consistency’s sake, here I use the letters i, j ,  and k). Four possible answers were given 

for people to  rate, and their ratings were:

Answer Mean Rating Std. Dev.

iujU 4.1 1.0

iijjk l 3.7 1.3

iijjk d 3.0 2.1

iijjd d 2.8 1.2

Copycat’s average final tem peratures for these answers (1000 runs) are as follows:

Answer Average Final Temperature

iu jii 28

iijjk l 47

iijjkd 62

Ujjdd 41

Here, people more or less agreed th a t ijjjll is a  good answer, w ith a  mean rating of 

“reasonable” , and a  standard deviation of 1. Copycat is in agreement with th a t assessment: 

th is answer has by far the lowest average tem perature. There was less agreement among 

people on the  other answers, though it was agreed to  some extent th a t iy jk l  is be tte r than 

the two D answers. Copycat ranks iy jd d  higher than iy jk l  (although it gets the latter
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much more often), since the former reflects a  correspondence between the c and the group 

k k , which is stronger than  a  letter => letter correspondence. This, though, once again shows 

a  flaw in the way Copycat’s tem perature is calculated: the weakness of the rule “Replace 

rightmost le tte r [or group] by D ” should affect the tem perature more than  it does.

a b c  =» a b d ,  k jih  =» ? : This is a slight variant of “a b c  => a b d , k ji =>• ?” . Copycat’s 

performance on this problem is basically no different from its performance on the original. 

Four possible answers were given for people to rate , and their ratings were:

Answer Mean Rating Std. Dev.

kjii 3.9 1.1

Uih 3.6 1.3

kjig 3.4 1.3

k jid 2.9 1.2

Copycat’s average final tem peratures for these answers (1000 runs) are as follows:

Answer Average Final Temperature

k jii 48

Ijih 22

k jig 17

k jid 34

People on average judged k jii as a  reasonable answer, with a fairly low standard  de

viation: 14 out of 19 people judged it as “reasonable” or “intelligent” . Copycat disagrees 

with this rating; this answer has a  fairly high average tem perature because it does not take 

into account the  structure of the target string k jih . The program much prefers Jjih and 

k jig . People were more divided on these two answers; on each, more than half the  subjects 

judged it as “reasonable” or “intelligent”, b u t each got a  number of low ratings as well.

a b c  =» a b d .  m rr j j i  =» ?: Three possible answers were given for people to  rate , and 

their ratings were:

Answer Mean Rating Std. Dev.

m rrk k k 4.2 .9

m rr jjk 3.6 1.3

m rr ii i j 3.3 1.5

Copycat’s average final tem peratures for these answers (1000 runs) are as follows:
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Answer Average Final Temperature

m rrk k k 43

m rr jjk 50

m rr ii i i 20

Here people more or less agree th a t m rrk k k  is a  good answer, w ith a mean rating  of 

“reasonable” and a  standard deviation of .9. Copycat does not agree with this assessment; 

its average final tem perature on this answer is fairly high, since this answer reflects the fact 

th a t the program was not able to  form a  coherent structure out of the the target string. 

The other answers are more controversial, all having large standard deviations. Copycat’s 

favorite answer by far, m rr ii i i .  had a  mean rating of 3.3 by people with a  large standard 

deviation of 1.5, indicating th a t it was the most controversial answer. Out of 19 subjects, 

10 thought it was reasonable or intelligent, 8 thought it was barely reasonable, weak, or 

stupid, and one rated  it between “barely reasonable” and “reasonable” .

a b c  =>■ a b d , xyz  => ?: Four possible answers were given for people to  rate (they were 

reminded th a t x y a  was not allowed) and their ratings were:

Answer Mean Rating Std. Dev.

x y d 3.2 1.3

xyz 3.0 1.2

w yz 2.9 1.6

yyz 2.7 1

Copycat’s average final tem peratures for these answers (1000 runs) are as follows:

Answer Average Final Temperature

x y d 22

xyz 74

w yz 14

yyz 44

Here, people more or less agreed th a t y y z  is a  fairly weak answer (Copycat also rates 

it  as fairly weak, w ith a  tem perature of 44), but otherwise there was not much agreement 

among the subjects. Again, the most controversial answer is Copycat’s favorite, w yz. It 

got the highest number of “intelligent” ratings (5) of all answers to  th is problem, but it 

also got the highest number of “stupid” ratings (5). Out of 19 subjects, 7 thought it was
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reasonable or intelligent, 11 thought it was barely reasonable, weak, or stupid, and one 

rated it between “barely reasonable” and “reasonable” .

In summary, I think it is difficult to  draw any strong conclusions from the overall results 

of these comparisons of answer-ratings over the  five target problems. The m ain reason is 

th a t there was a  good deal of controversy on most of the answers (there were only three 

answers in the entire study whose ratings had standard deviations less than 1). This is to 

be expected, since one of the reasons for choosing these five problems was the fact that each 

does have a  number of different plausible answers, and our goal is for Copycat to  have the 

flexibility necessary to get different answers.

On the few answers where there was a  fairly clear consensus among people as to  the 

strength or weakness of one answer relative to  the others, Copycat agreed, except in the 

case of m rrk k k , which the people in this study tended to rate  high, but which Copycat 

rates low. Also, as might be expected, the more “creative” answers (e.g., m rr i i i i .  w yz) 

were also among the most controversial; some people liked them very much, whereas others 

thought th a t they were too farfetched.

A nother problem is th a t Copycat’s calculation of tem perature is imperfect, leading to 

implausibly low final tem peratures on answers such as y d  or i ij jd d .

In order to draw stronger conclusions, it would be necessary to  make such comparisons 

over a  wider range of problems (involving more problems with clear-cut “best” answers) 

and involving more subjects. An interesting, more detailed comparison would be to see if 

the  m odel’s micro-biases could be tuned so th a t the program’s performance matched the 

different tastes and styles of individuals. However, the program is currently not a t the level 

a t which such a  fine-grained comparison could be made.

D .3  C o m p a r in g  R e la tiv e  D ifficu lties  o n  D iffe ren t P ro b le m s

For th is comparison I used 14 paid subjects, who were each given a  verb vl description of 

the letter-string domain and its lim itations. They were then asked to  solve a  set of eight 

problems th a t appeared one by one on a  com puter screen. The first three problems were 

for train ing  purposes, so th a t the subjects could get used to  the experimental cetup, and 

the next five problems were the five target problems (or slight variants) in random order 

(different orderings for different subjects). The subjects were tim ed on how long it took 

them  to  give an answer to each problem (though I did not tell them  they were being timed 

because I did not want them to  feel any tim e pressure). The purpose here was to  see if the
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order of difficulty of the five problems (judged by the amount of tim e taken to  solve them ) 

was the same for the program as for people. After solving each problem, each subject gave 

a short verbal report on how they thought they solved it.

Unfortunately, a number of factors make it very difficult to  compare the results here 

with those of the program. First, the tim e taken by Copycat to  solve a  given problem 

depends very much on what the final answer is. For example, on the problem “a b c  =£■ a b d , 

m r r j j j  =>• ?” , the  program takes an average of 705 codelet steps to reach answer m rrk k k  

versus 1332 for answer m r r i i i i : the la tte r  is a  harder answer to  reach. So any useful 

comparison with people would have to  involve an answer-by-answer tim e comparison, but 

the num ber of subjects here was too small to  get the range of answers and number of 

samples needed for a  comparison (e.g., only one subject answered m rr i i i i .  and on some 

of the problems, a  number of subjects gave answers that Copycat cannot get). Another 

problem is noise in the data: even with the three training problems, a few of the subjects 

still had trouble using the keyboard correctly, which increased the tim e recorded for various 

answers, and again, the num ber of subjects was too small to overcome the noise problem. My 

conclusion is th a t in order to  be useful, this experiment would require many more subjects 

than  I was able to  run, and certain design problems would have to  be corrected (e.g., more 

training problems should be used in order for subjects to  get used to  the experimental 

setup). Therefore, the results given here should be considered to  be those of a  pilot study 

rather than  those of a  full-fledged experiment.

The comparisons of average overall tim e for each problem are given below, with the 

caveat th a t I don’t think th a t these results are very meaningful. In any case, what is to  be 

compared here is the time-ranked order of the  five problems, and any significant differences 

in tim e between different problems within a  set. The times for the  human subjects are given 

in average num ber of seconds, and the tim es for Copycat are given in average number of 

codelets run; these numbers cannot be directly compared in any way.

The times for the five problems solved by the 14 subjects were:

1. “a b c  => a b d , jjk l =>■ ?” (average tim e: 24 seconds)

2. “a b c  =s> a b d , eeffgghh  => ?” (average time: 37 seconds)

3. “a b c  =► a b d , s rq p  => ?” (average time: 54 seconds)

4. “a b c  => a b d , m rr j j j  => ?” (average time: 55 seconds)
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5. “abc =>■ abd, xyz => ?” (average time: 59 seconds)

The times for these five problems when solved by Copycat are:

1. “abc => abd, ijkl => ?” (average number of codelets run: 341)

2. “abc => abd, eeffgghh => ?” (average number of codelets run: 800)

3. “abc => abd, s rq p  => ?” (average number of codelets run: 497)

4. “abc => abd, m rr jj j  => ?” (average number of codelets run: 850)

5. “abc =>• abd, xyz => ?” (average number of codelets run: 3322)

In spite of the caveat given above, a  few interesting points can be made here. As common 

sense would tell us, the problem “abc =$■ abd, ijk l => ?” seems to  be the easiest for both 

people and Copycat (and, of course, almost everyone answered ijk m ), and the problems 

“abc => abd, m rr jj j  => ?” and “abc => abd, xyz => ?” seem significantly more difficult 

for both the subjects and Copycat. On “abc => abd, m rr jj j  => ?” , one subject gave a 

report expressing a  sense of pressures similar to  those pushing Copycat: “I was pretty  lost 

w ith th is one, since I didn’t  see any patterns resembling the given example; the letters in the 

string I was given [i.e., m rr jjj]  d idn’t relate to  each other in the same way th a t the others 

in the given example [i.e., abc abd] did. The given letters weren’t successors in the 

alphabet.” On “abc => abd, xyz => ?” , all 14 subjects reported “hitting  the  snag”—that 

is, trying to take the successor of Z  and failing (as reported by them ). Thus it would be 

implausible if Copycat easily bypassed this snag and went directly to another answer: the 

program  hit this snag on all bu t 2% of its runs. After h itting the  snag, all but one of the 

subjects proposed the answer xya (the other one reported thinking of it, bu t assumed it 

would not be allowed). They were told tha t this answer, while very reasonable, was not 

possible given the restrictions of th e  dom ain, and were then asked to  come up with another 

answer (the time taken to  give these instructions was not included in the recorded solution 

tim e).

Some of the problems with the  model discussed in  Chapter 6 have an effect on the timing 

differences here. The problem “abc => abd, eeffgghh => ?” takes Copycat significantly 

longer than “abc => abd, ijkl => ?” does, whereas the difference for people is not that 

great. As was discussed in Chapter 6, one reason for this seems to  be th a t once people start 

to  perceive groups in the string, they get the idea very quickly, whereas such top-down

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



291

forces in Copycat, although they exist, are still too weak; they don’t  sufficiently accelerate 

th is view on<v it begins to  be perceived. Likewise, the problem “a b c  => a b d , xyz  => ?” 

takes Copycat far longer than  any other problem, whereas the difference for people is not 

th a t  great. This is in part due to  the fact that people tend to  give up fairly quickly when 

faced with an impasse and give an answer that they may not find to tally  satisfying. But the 

large amount of time taken by Copycat on this problem is also due to  its loopish behavior: 

since it lacks appropriate self-watching mechanisms, it gets trapped in the same state again 

and again, trying to take the successor of Z  and failing.

D .4  S u m m a ry

Of the four types of comparisons I did, the first two (comparing the range of answers given 

by people and by Copycat, and comparing the effects on the program  and on people of 

small variations in- pressures) were the most useful in showing where the program succeeds 

and  where it is lacking. The other two comparisons were more problem atic. The answer- 

ratings comparison showed th a t there is a  good deal of disagreement among people on the 

quality  of various answers to  these five problems, and I don’t think any general conclusions 

can be made about these results. It would be very interesting to see if Copycat could be 

“ tuned” to match the preferences of different individuals on a  wide range of problems; this 

is an  experiment th a t will be left for future work on this project. The comparison of relative 

difficulty made a  few interesting points, discussed above, but had some design problems and 

also lacked enough subjects to  be conclusive. These last two comparisons could obviously 

be extended, and the way in which they were carried out could be much improved.
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