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Foreword

In the course of some of my jobs I visited quite modest-sized industrial
laboratories. The director of the laboratory, perhapsa little overawed by a
visit from someonehe thoughtof as an eminentscientist, wasliable to start
his description of the work ofthe laboratory with the remark ‘What we do
here is really not science atall, it is just trial and error’. I used to respond,
perhaps a trifle unkindly, that I did not know that there was anything to
science otherthantrial anderror.

This identity of science and trial and error is often obscured by the
opacity of jargon and of sophisticated mathematics, but Dr. Michie,in this
bookas elsewhere, demonstrates with charm on every pagethat he appre-
ciates that identity. The charm owes muchto anothertruth that he appre-
ciates, that playing is an excellent way and often the best wayof learning.

_ This fact is often hidden by an abnormaldistinction that is drawn between
playing and ‘the serious work of learning’. Dr. Michie is never under that
apprehension. Thejoy of reading throughthis volumeis precisely that oneis
neverleft in doubt that he is enormously enjoying his games, and learning a
very great deal in the process, learning thatis, with the pleasure of playing,
vicariously transferred to us, his readers. I was myself involved in space
affairs when, in-April 1970, a serious malfunction in the Apollo 13 mission
to the Moonled to great anxiety for the safety of the crew. By a rapidly
devised brilliant strategy, the crew returned to the Earth safe and sound,
albeit without having landed on the Moon. When I expressed myastonish-
ment to my friends at NASAthat this strategy had been thought up and
adopted in the very short time available, I was told that this had only been
possible because the staff at Mission Control had been spendingall their
time playing games with their equipment. Rescue from disaster had been
one of the games,and so they were familiar with what was needed, though of
course the exact problem that actually occurred had not been foreseen. A
less wise management would not have allowedtheir staff to play games with
their expensive equipment (perhaps to save the taxpayer’s money?) and
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then the rescue could notpossibly have occurred. Ourplayinstinct 1s always
something to be fostered and Dr. Michie showsus once again howfruitful
this indulgence canbe.

In my younger days there werestill plenty of people around in the
university world, largely, though not wholly in the humanities, who would
dismiss study of this or that with the words: ‘But of course it is a mere
machine’. It is worth stressing to-day that such views were nonsensealready
fifty or even a hundred years ago, though their absurdity was only made
plain to everybody by the development of the computer. Yet even less
blinkered people took a long time to appreciate that there weredifficulties in
understanding how a system containing even a quite modest number of
switches could act in circumstances not envisaged by the designer. Control
engineeringis a new subject not because the needfor it is new, but because
we humanswereso slow to appreciate this need.

Dr. Michie’s subject of machine intelligence 1s seen by him, to our
benefit and enjoyment, very largely in this light. Putting a few devices of
relative simplicity together makes a system the responsesofwhich cannot be
forecast but have to be explored. Nowhereis this more pleasantly displayed
than in his MENACE machine for playing noughts and crosses, where
machine learning throughtrial and error led with such speed to excellent
results. But altogether the sections on machine learningare veryfascinating.
However, there are worrying aspects too, especially the point so well
brought out in this volume that by such or other means programs are
developed whichare effective in practice but inscrutablein the sensethatit is
not clear what the program is and therefore how it would handle unusual
situations. It 1s a matter of concern that, in the future, issues of real

importance maybe decided(orat least decisionsgreatly influenced) in, say,
military matters by such inscrutable programs. If I may digress for a
moment,this is precisely the point that is perhaps most worrying to me about
non-democratic systems of government. In a democracy, the range of
opinionsand attitudes is manifest. Their changes and the cross-currents are
there for all to see so that the response of governmentand opposition parties
to a developing newsituationis, if not always predictable, yet is invariably
understandable. In the Soviet system orin that of, say, Franco Spain thereis
no such decision taking with full public coverage. Decisions are reached
quite possibly efficiently but the process is opaque and cannotgenerally be
understood, let alone predicted.

To come back to my remarks abouttrial and error at the beginning,
developmentthroughtrial and error is necessarily messy andfollowsa zizag
course. Thus, as Polanyi has said, science does not progress like a steam-
roller, much as this fact surprises manyof our non-scientific fellow citizens.
The progress of science is piece by piece, and even the most brilliant
contributions are only keystones to arches of manyirregularly laid other
stones.

Of course this is true of work on machineintelligence, but Dr. Michie
makesthe intriguing and to me convincing pointthatit is likely also to be
true of humanintelligence, quoting Herbert Spencer and stressing the
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essential messiness of evolutionary’ advances. Therefore the insights and
hints on the nature of humanintelligence that maybe gained from work on
machine intelligence are likely to be of just the right incremental type and
not of the ‘suddenlight’ kind so much hopedfor by non-scientists and so
unlikely to be really helpful.

I hope andtrust that most readers of this volumewill share mydelightin
it and thereforewill agree with mein wishing more powerto the elbow of Dr.
Michie and others in the field who will surely advance it with many
hesitations and false turnings, but overall progress, in the truly human
mannerofall science.

Sir Hermann Bondi

April 1986
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During a recentvisit to ChinaI was fascinated by the dexterity of the abacus
users in banks, shops and factories. This simple device, whose moveable
beadsare the digits to be manipulated in accordance with the usual processes
of arithmetic, illustrates how ancient is man’s urge to supplementthe digits
of his hands for calculating purposes. In the 1850s Babbage designed an
ambitious computing engine in which the processing of the digits was
performed by mechanical elements. Alas! his ideas were too far aheadof the
available technology and his success was limited. Nevertheless, Babbage’s
design concepts were sound,andbythe use of thermionic tubesin place of
mechanical linkages the electronic engineers of World WarII were able to
produce successful digital computing machinesin response to the military
needfor high-speed calculation.

The invention of the transistor in 1948 removed the power-consuming
tubes from the first generation computer and ultimately led to the modern
high-speed digital electronic computer in which the active elements are
solid-state integrated circuits. Such calculating engines have becomeindis-
pensable, not only in scientific research but in all aspects of engineering and
in the handling of business data. But the modern computeris not merely a
mammoth abacus, rather is it to be regarded as a general processor of
information. In order to perform the arithmetical operations the program or
sequenceofinstructions necessary to execute the calculationis held in store
in the form of coded binary digits, as are also the numerical data to be
processed. Other types of information may besimilarly coded and stored
and ultimately subjected to a sequence of logical operations in accordance
with the program. Thus the modern electronic computer is concerned with
information processing in the broadest sense and has becometheessential
tool of the age of Information Engineering in which we live — a small but
significant step towardsthe Intelligent Machine?

Computerprogramsandtheir ‘authors’ have becomeof crucial import-
ance in this broadened field of use. In modern jargon we say that the
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‘software’ whichis to direct a mathematical investigation, the design of an
engineering componentorthe control of an automated chemical plant now
transcendsin importancethe ‘hardware’itself, which is the computer andits
associated input and output devices. How is software engineering to be
advanced? Surely by the perfecting of computer languages which mustfar
exceed in power and flexibility the simple sequences of binary coded
instructions which formedthe early programs. To be sure, new techniques of
programmingwill be developedaspart of the specific engineering projects
they are intendedto serve, but there is need also for broaderresearch into
the whole software problem;this is just what the university team is ideally
fitted to perform. Improved computer languages have already stemmed
from the Edinburgh work,and these are finding applicationin fields remote
from the study of Machine Intelligence and computerized games which
prompted them.

I have been deeply involved in the design and operation of large radar
systemsas usedfor airspace invigilation and controlofcivil air traffic. Here
the problem is to detectall aircraft flying within the region of surveillance
and to form the aircraft echoesas displayed uponthe planposition indicator
into tracks that maybeassociated with the flight plansofthe aircraft as filed
by the captains. The programsso far devised for computer-controlled target
recognition and tracking show manypoints of similarity with the trial and
error computer learning systems developed by Professor Michie and his
colleagues. Certainly, the radar problem is very much a case of the engineer
playing a gameagainst the environmentandthereis need for theflexibility
of the programsto be such thata veritable learning processis requiredif the
computer tracker is to match the performance of the experienced radar
operator.

Again, the integrated circuit which is the essential component of a
modern computercan fulfil a multiplicity of very complex functions whether
of logic or storage, and a small waferofsilicon, the size of a pin-head, may
contain a large numberof active elements. The design of such a device, and
the layout of the interconnections, is an extremely difficult topological
problem. It is therefore singularly appropriate that the computeritself
should be invokedto help design the vital elements of which it is composed.
CAD,i.e. computer-aided design, is now an essential activity within the
semiconductor industry, but the programs required are very complex and
tedious to write; new methodsfor preparing them are urgently needed.

In his essay on ‘Machine Intelligence as Technology’ Professor Michie
discusses the possible practical applications of the results of research
conducted in his own laboratory and others like it. Certainly Machine
Intelligence should not be regarded as the only approach to the automatic
factory, nevertheless it has a great contribution to make to the better
understanding of the role which the modern electronic computercanplayin
such automated systems. In this essay one of the major goals of Machine
Intelligence researchis identified as the discovery of ‘better design principles
for teachable programming systems’. I recognize the need for deep study of
programming techniques and also for methods of representing within the
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computerthat knowledgeofa limited part of the outside world whichit is the
aim of the program to influence. Studies in university departments which
lead to better understandingofthe total modelling processwill be extremely
valuable to scientists and engineersin industry.

I have foundthese papersfascinating to read, elegant and persuasive in
their presentation of a complex subject, yet stimulating in their relevance to
my own technological problems. I trust that they will be widely read, not
only byscientists and engineers, butby all those interested in therole of the
computer in our modern world.

Sir Eric Eastwood

December 1973



Preface

A collection of mine was published in 1974 by Edinburgh University Press
under the title On Machine Intelligence, but sold out without reprinting.
The publishers of this new edition acquired the rights of the old one and
suggested that it be revised and extended by incorporating new material.
With the encouragement of John Campbell as Series Editor I took this in
hand, initially as something of a chore. But I found myself becoming
engrossed. In the event it has become more a new book than a newedition.
About half by bulk is newly written since the earlier publication. The
Introduction comes more or less unchanged from the earlier book, but
introductory notes have also been supplied for each of the new book’s four
main Sections.

I have not attempted to stamp out the duplications of topic which
inevitably crop up in this kind of collection. Such stringency would make
sense if I were expecting the readerto start at the beginning and to proceed
from left to right. But I see no reasonto be officious. He should feel free to
hop about,if he prefers, or to read the book backwards.If he does,he will

still, I hope, find every Chapterself-sufficient.
Those whofind themselves stimulated to pursue these topics further,

whether along academic or commercial lines, should know of various
institutions through which applied AI has become professionalized, in
_ particular the British Computer Society’s Expert Systems Specialist Group
and the American Association for Artificial Intelligence. These societies
coordinate a range of activities, including seminars, conferences, and

publication of periodic newsletters. In addition the National Computer
Centre offers a range of informationservices and other formsof assistance.

Thethirst for information and advice in these areas is growing. Exposi-
tions of topics in artificial intelligence are a correspondingly urgent need,
admirably addressed by this series published by Ellis Horwood under
Professor John Campbell’s distinguished editorship. I am pleased to have
becomea part of their endeavour.

Donald Michie

January 1986



Introduction

Certain tasks are generally agreed to require intelligence, for example
playing chess, translating from one languageto another,building a boat, or
doing mathematics. Preceding and accompanyinganyofthe physical trans-
actions involved in the aboveare certain operations of thought. Since the
earliest recorded times attempts have been madeto construct systematic
rules for thinking. The high-speed digital computer has enabled us now to
discoverthat these attempts havecarried us only a negligible part of the way
towards the desired objective. It is possible in principle to take any
sufficiently well specified theory of ‘howit is done’and, bytranslation into a
programming language,to ‘run it on the machine’. When weturn, however,
to a chess primer, a grammar,a boat-builder’s manual, or a mathematics
text-book we encounter an uncomfortable hiatus. Even the rules proposed
by scholars with a special and systematicinterestin the formalization of ‘how
it is done’, such as de Grootin chess, Chomskyinlinguistics, and Polya in
mathematics, fail disappointingly to bridge the void. Afterthe first flush of

_ excitement comesthe question: ‘How would I program it?’ The conviction
follows that although here perhapsis a foothill or two, the mountainis yet to
climb.

Weare faced, then, with an intriguing possibility, and it is one from
which MachineIntelligence derives its name and aim. If we can form a
sufficiently complete and precise theory of any given aspectofintelligence,
then we can convert it into a computer program. The program itself
constitutes an expression of the theory, but it shouldalso,if the theory is
valid, have the power to cause the computer to manifest behaviourentirely
similar to that which the theory purports to describe. If we believe that we
really and truly understand Euclid, or cookery for that matter, there is an
acid test. We can be askedto convert our understanding into program, and
so cause the machine to do geometry or composerecipes as the case may be.
Wemust certainly own, from the present level of achievement in computer
programming for complextasks, that we do not yet understand either Euclid
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or cookery: we may possess a kind ofinstinctual ‘understanding’ of such
tasks, analogousto that by which a high-jumpergets himself over the bar or
an acrobat balanceson a wire, but we have not achieved understandingof
the understanding. If we had, we could program it. If we cannot, then
although, as Homo sapiens, we may displaythis or that capability, we cannot
claim truly to understand,in the given respect, whatit is to be human.

The question of what most distinguishes man from the beasts remains an
open one. Manisnot, for example, the only tool-using animal. In addition to
the recorded uses of tools by birds and mammals, some highly elaborate
procedures have been observedin the insect world. Thetree ants of Africa
and Australia fasten leaves together with silk. A numberof ants pull the
edgeof a leaf into position. Others pick up mature larvae, squeeze them so
that they secrete liquid silk, and use them as we would a tubeof glueto fasten
the leaf down. Otherlarvae are used as shuttles to weave the nestitself. A.
B. & E. B. Klots, from whom myaccount is taken, comment:‘Asfarasis
known,this extraordinary habit is unique in the animal kingdom,the nearest
thing to it being the exploitation of child labour by humans’.

Noris manthe only language user, as recent studies of the use of sign-
language by the chimpanzee haveestablished.It is even in doubt whether
the use of syntax, as opposedto association of signs without regard to order,
may possibly be unique to man.

Manis undoubtedly ‘wise’or ‘intelligent’ (the right translation of sapiens
is hard to hit), but comparison with horses, dogs, dolphins, and apes seems
to reveal a difference in degree rather than kind. According to Tennyson,it
was not so much wisdom that Pallas Athene offered to Paris as

‘Self-reverence, self-knowledge, self-control’.

To frame from this a distinctive picture for our species, Tennyson’s line
should perhapsbe capped:

‘And self-preoccupation mostofall’.

Manworries about himself. On the high philosophical plane: ‘Who am I?
Where do I come from? Where am I going? Whatis my nature? How should
I live?’ On the planeofdaily intimacy: ‘How do I look? What do I feel? What
sort of person am I?’ Andin his leisure life of books, music, magazines,
plays, cinema,andtelevision, there is blended with the purely cultural and
the purely frivolous the same perpetual quest for mirrors, mirrors to
enlarge, mirrors to elucidate, mirrors to produce and to present himself to
himself.

In his loving and anxiousquestthereis no professionalskill which has not
been enlisted. Yet man remains

‘Most ignorant of what he’s most assur’d—
His glassy essence.’

In the centuries which have passed, man’s ignorance of almost every-

thing else has been lessened or abolished. But the stubborn persistence of
self-ignorance has actually now cometo endanger him. Man mayor may not
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survive the next two hundredyears withoutobliteration in waror strangula-
tion throughindustrial and population growth. Experts differ on magnitudes
of disaster and on time-scales. But on one point they seem to be in
agreement;that the needis notfor more physics, for more chemistry, or for
moreof the old-style industrial technology, but for better understanding of
the physiology, psychology, sociology, and ecology of our own species.

Thus MachineIntelligence is an enterprise which may eventually offer
yet one more mirror for man, in the form of a mathematical model of
knowledge and reasoning. From such work we may perhapslearn

a

little
more about our owncapacities. When one speaks of MachineIntelligence,
one speaksof a collective venture to build ‘knowledge machines’; but one
also speaks of an unintended consequence:to fashion a mirrorforthefirst
knowledge machineofall, the machine within the skull.

This book consists of a selection of semi-popular essays written from
time to time over the past twentyfive years. Others may discern thematic
development. My owncriterion for inclusion has mainly been thatif I
enjoyed writing the essay in the first place, and if now I enjoy re-readingit,
then I putit in, and otherwise not. If it impels some of my readers to learn
moreof this new subject, then I am content. Man’s culturalandintellectual
environment in the 21st century may possibly be conditioned more by
developments from this one field of enquiry than byany single pre-existing
branch of science or technology. So portentous-sounding a statement
deservesa solid basis, so I have included,in the last Chapter or two of each
Section, variousdistillations which bear on the question.
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section 1 Computer gameplaying

INTRODUCTORY NOTE TO SECTION1

The time-honoured tension betweenartist and patron is by no meansto be
explained bythe follies or knaveries of the two parties, much as each would
have you believe so of the other. The contradictions areintrinsic. Raising
the stakes, as when ‘research scientist’ and ‘institutional sponsor’ are
substituted for ‘artist’ and ‘patron’, only heightens the contradictions. It
finally becomes a wonder whenthese partnerships advanceatall.

So whatare the problems? I believe that there are two. Being myself a
scientist I can only expound them from certain point of view, in which the
sponsors are of course the villains. Equally seeing eyes, in the heads of
others, will perceive the same two problems in termsdestructive of the
scientists’ rather than of the sponsors’credit.

Thefirst contradiction is that scientists prefer to be given the moneyfirst,
so as to use it to do the work. To sponsorsit is obvious that funding is a
reward, which by its nature belongs after the event. Samuel Johnson’s
account of this phenomemonis apt:

Is not a Patron, my Lord, one who looks with unconcern on a man

struggling in the water, and, when hehas reached ground, encum-
bers him with help? (letter to the Earl of Chesterfield, 1755).

There are no known formalsolutionsto this problem. An informal solution
is to makea practice of handingin forthis year’s help the work completed by
spendinglast year’s. This depends,of course,on aninitial‘float’ which must
come from somewhere.

The second contradiction surfaces afterbroad topics and goals have been
agreed and materials and applications are being chosen. The scientist wants
to choose with a view to the discoveries or demonstrations which heis after.
The sponsor knows, however,that it is precisely the materials and appli-

cations whichwill be picked up by the technical and other media, to form the
image which heis buying with his money.
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Howcan the two agree? They cannot. Again, though,constructive guile
may bridge the gap. With luck, good workcan be carried on the back of a
sufficient massof otheractivity. In AI the matter comesto its sharpest focus
in the computer emulation of game-playing skills, How would sponsors look
if it were revealed in a Parliamentary or Congressional debate that tax-
payers’ money had been going on chess?

They would of course look bad. Notsurprisingly, then, only an infinitesi-
mal fraction of national AI budgets is available for what is by far the most
searching proving-ground for experimental advance. Eventhis infinitesimal
expenditure, though, can be consequential. The papersin thisfirst Section,
apart I hope from diverting the reader, can be usedfor assessing this claim.
Let us preview them in turn, picking out points on which light was thrown.

‘Trial and Error’ was an archetype of what the knowledge engineering
industry sees today as a design platitude: top-down decomposition into sub-
problems,with a rule-structured solution for each individual sub-problem.
This is the platitude, or in modern jargon the paradigm, of ‘rule-based
programming’. As a key move, the humble MENACE machine addeda crude
form of rule-learning shown viable for serious problems by the BOXES
adaptive pole-balancer described in Chapter 3. A remote descendant of
BOXES, supplied by the author’s laboratory, is today keeping a Pittsburgh
nuclear fuels factory in balance with estimated savings in excess of $10M per
year.

The fuel-refining processis sufficiently puzzle-like as opposed to game-
like in structure, to use the terminology of Chapter 2, that a deterministic
form of rules-from-examples learning proved adequate. While re-reading
this Chapter I recalled many an industrial problem wherethis was notso,
and which cried out for a control automation capable of probabilistic
inference. Chapter 2 poses the problem, using the animal psychologist’s
hard-worked experimental subjects to model it. Chapter 4 elaborates the
same problem,using the chess-player as model, and introducesan operatio-
nal test: can the automated controller in an uncertain world not only make
good decisions but also evince some understanding of what is going on, in
the form of evaluative comments? Leading up through applications to
software technique in Chapter 5, Chapter 6 places the need for machine
articulacy in a context of social urgency. Failure by either side of a man-
machine partnership to form operational models of the other’s decision-
taking under uncertainty could seriously damagethe planet’s health.

These partnerships today control powerstations, military warning sys-
tems,air traffic and the like. On commission from the EEC’s programmefor
Forecasting and Assessmentof Science and Technology, Danny Kopec and
I reported on the prevalent mismatch between machinerepresentations and
human concepts (FAST series no. 9, 1983) as a spreading emergency.
Subsequent ‘Star Wars’ talk of military ventures in space has further
sharpened that argument.
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Trial and error (1961)

Can machinesthink? The short answeris ‘Yes: there are machines which can
do what we wouldcall thinking, if it were done by a humanbeing.’

Consider the well-known theorem of Euclid, which states that the two
angles at the base ofan isosceles triangle are equal to each other. Most of us
can probably remember,or reconstruct, Euclid’s own proof, which requires
as construction that a straight line be drawn from the apexto the base. Can
you devise an alternative proof which requires no construction? You may
spend hours or days of painful thought on this and will probably notfind a
solution. As far as I know no humanbeinghas ever succeededin doingso.
But Marvin Minsky recently gave a computing machine a simple program
for Euclidean geometry and it produced a new proof [1] which has the
above-mentioned property: it is construction-free. It is also shorter and
simpler than Euclid’s, and has an additional quality which an impartial
geometer might well describe as‘brilliance’. Hereis the proof:

A

B C

AB = AC (given)
AC = AB (given)

£2 BAC = €CAB
~» AABC = A ACB
°° 2ABC = Z ACB QED.

It is even possible to read this through a few times without getting the point,
so daringis the ruse of treating triangles ABC and ACB asseparateentities
for the purposes of proof, but a single entity for the purposes of the
conclusion.
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If you or I had madethis achievement, no one would grudgeusthe credit
of having done some thinking: indeed, thinking of a rather spectacular
quality. On the other hand a machine might conceivably arrive at the same
result by some set of procedures quite different from those involved in
humanthought. From this pointof view the use of the word ‘thinking’ could
be as misleadingasto say that a boat swimsorthat a porpoise sails. We might
even decide to define ‘thinking’ to include the subjective experiencesof the
thinker; it would then follow automatically that insentient beings, which

might be held to include machines, cannotthink.
The argumentis, of course, purely linguistic. Since boats have existed

long enoughfor there to be a separate word for their motion through water,
weare willing to say that they‘sail’ rather than swim,and thusreap a gain in
precision. Aeroplanes, on the other hand, are such recent innovationsthat

we are content, for the time being, to say that they ‘fly’, although their

method of doingso haslittle in commonwiththatof birds, bats, or bees. We

are in the same quandary with the even more recent development of
complex computing machinery.It will therefore not be through perversity,
but through need,if in describing mechanical processes I intermittently
borrow words from the vocabulary of humanor animal psychology.
A much moreinteresting objection is sometimes made to comparisons

between human thought and mechanical reasoning. The objectors allege
that a machine can ‘in principle’ perform calculationsonly byrote,that is, by
following slavishly the train of thought dictated by a human master.It is
often alleged that howeverfast and accurately a machine can perform the
arithmetical or logical operationsbuilt or fed intoit, it could never simulate
the two most important components of humanintellectual activity, namely
(1) originality, and (2) the ability to learn. By learning I mean here the
modification of behaviour, in the light of experience, in a ‘purposive’ or
‘goal-seeking’ fashion.

The geometrical proof which was cited earlier should be sufficient to
dispose of the objection concerning originality. This chapter is devoted
mainly to discussion of the second question, concerning the nature of
learning and the possibility of simulating it mechanically.

THE MECHANICS OF LEARNING

There are two main reasons whya biologist like myself should beinterested
in learning machines. Thefirst is that being a biologist he is (pending the
developmentof mechanicalbiologists) also a man,and as such can expect to
have his habitat transformed by the advent of such machines, possibly
duringhis lifetime. The post-war development of electronic computers has
already had a resounding impact upon science, industry, and military
engineering. Yet most of the research effort has so far been limited to
improving the speed and storage capacity of what are in essence no more
than glorified desk calculating machines,or ‘high-speedidiots’ as they have
been called. Attention is now turning to the developmentofmachines which
improve their own proceduresas they go along, from machines which learn
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to recognize anddistinguish symbols,letters, or pictures, to machines which
learn to play a passable gameof draughts. The technical revolution whichis
brewingis not to be compared with such eventsas the transition from sailing-
boats to steamers, for at some point a tearawayprocessis likely to get under
way: learning machines will be harnessed to the job of designing better
learning machines.

The second pointof interest for biologists is more strictly professional.
Will the design and investigation of learning machines throw light on the
mechanismsof learning in the central nervous systems of man and animals?
There is a way in which a model ofa biological function can be illuminating,
and a wayin whichit can offer a dangerous temptation. The temptationis to
construct a device which performs a given bodily function, and then to
exclaim: ‘That must be how the body doesit!’ No biologist in his senses
would look at a modern aeroplane and concludethat birds, despite appear-
ances, must workona jet-propelled fixed-wingprinciple, but the temptation
sometimes presents itself in more subtle guises. All that we have a right to
expect from a modelis that it may deepen our understandingofthe matrix of
physical laws within which both the model and the biological system have to
work. In this sense the study of aeroplaneflight can advance our understand-
ing of animal flight, not directly, but by elucidating aerodynamic laws to
which flying animals are also subject.

During the coming decades the machine-builders will be forced to
analyse in increasing depth and detail the logical and mathematical structure
of learning processes. The biologist will be able to use the results of these
analyses to sharpenhisinvestigation of living nervous systems, which quite
possibly operate through entirely different mechanisms. At the sametime,
whenever a learning machine exhibits a striking parallel with human or
animal behaviour,the biologist should be onthealert: it may be a clue to a
biological mechanism.

This last pointis part of my justification for the construction of the simple
learning machine which I shall later describe. The starting-point was to
divide certain formsoftrial-and-error learning into two components: one
whichis difficult to simulate, and was therefore evaded, and one whichis
easy. The two components maybe termedclassification of the stimulus and
reinforcement of the response. Classification of the stimulus is essential to
any form for learning, for if you cannotclassify a situation as similar to one
previously encountered, how can youprofit by your past encounters? If Mr
A raiseshis fist at Mr B, the latter is faced with a situation which he has never
metbefore in exactly that form. Even if Mr A has frequently menaced him in
such a fashion, even wearing the sameclothes with an identical posture and
facial expression, he has never before produced precisely the same pattern
of stimulation on Mr A’s retina, owing to differences in lighting, back-
ground,position in Mr B’sfield of view, and so on. Yet Mr B ‘instinctively’
raises his arm to wardoff the blow. Actually instinctis precisely whatis not
involved. Mr B haslearntthe response from the manyoccasions, probably in
his boyhood, whena raisedfist was followed by a blow.

The problemsposedbysuch

a

featofclassification are quite extraordi-
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narily complicated. It is the central problem facing those who are developing
machinesto read a printed text—ahighly desirable accomplishmentfor the
translating machinesof the future, which will otherwise have to be spoon-
fed with texts laboriously punched onto teleprint tape by humantypists. The
fact that it is difficult enough even to make a machinespot that ‘O’is the
sameletter as ‘o’, underlines the magnitudeof the problem.

The second problem, reinforcement of the response, is much more
tractable. The response leads to an outcome (for example, Mr is either
struck or not struck) which producessensations in the responderwhich are
to some degree agreeable or disagreeable. The outcomecanthusbesaid to
have a value which expresses in numerical terms the degree of pleasure or
displeasure associated with it. The probability of the person responding in
the same way whenthe ‘same’ stimulusis presented later depends on the
value of the last outcome of this response. If it has a positive value, the
probability is increased. If it has a negative value, the probability is
decreased, and the probabilities of alternative responses (if inaction is
included as a form of‘response’) are accordingly raised. The word‘reinfor-
cement’ will be used for the change of probability, with the understanding
that a decrease in probability represents a negative reinforcement.

THE MATCHBOX MODEL

Wenowhave a conceptualblueprint for devising a simple learning machine,
provided that the problem ofclassification can be side-stepped.Forthis, the
numberof discrete situations encounteredin the task which the machineis
to learn must be sufficiently small for them all to be separately enumerated.

The task which I wish to consider from this point of view is that of
learning to play the gameof noughts and crosses, known in Americaastic-
tac-toe, but apparently unknownonthe continent of Europe.

It would be easy to devise a machine which would play impeccable
noughtsand crosses from the outset, but thatis not the point. The pointis to
construct a machine whichstarts with no prior information about how to
play, apart from the rules, but which will becomean effective player through
practice. Such a machine would embark on its career making its moves
entirely at random, and endas an acknowledged expert.

An extremely simple machine ofthis sort is shown in Fig. 1.1. It was
made by glueing some three hundred empty matchboxestogetherso as to
form a chest-of-drawers, and placing different numbers of variously col-
oured small glass beadsin the various boxes. In addition, each box has a V-
shaped cardboard fence fixed in the front, so that when the boxis tilted
forward, one of the contained beadsis selected by chance throughbeing the
first to roll into the apex.

This machineis always allowed the opening move.Foreach of the three
hundred or so distinct positions with which Nought (by convention the
opening player) can be confronted, there is a corresponding box bearing on
its front a drawing of the position, together with a code numberfor ease of
reference. All three hundred boxescan thus be arranged in numerical order
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in the chest-of-drawers: this has not in fact been doneentirely consistently in
the model shownin the photograph, andits castellated appearanceis an
unnecessary refinement thoughtat one stage to facilitate indexing.

Each box contains a numberof beadsof assorted colours: there are nine
colours, correspondingto the nine squaresof the board,and theselection of
a bead of a particular coloursignifies a move to be madeto the correspond-
ing square. A given box contains only beads of colours corresponding to
unoccupied squares, so that only legal moves can be made. Knowledge of
the rule defining legal movesis thus ‘built-in’ to the machine.If it were not,
the machine would simply learn the rule as it went along, but this would
complicate the problem unnecessarily. Moves which, owing to symmetry of
the position, are equivalent to each other are not separately represented.
For example, the figure below represents a position which is symmetrical
about one diagonal. It is Nought’s turn to play, andatfirst sight he appears to
have seven alternative moves, as there are seven squares unoccupied. But
the symmetry of the position makesthe two squareslabelled A equivalentto
one another, also the two labelled B, also the two labelled C. So a choice

need only be made between fouralternatives, A, B, C, and D. Similarly

there are only three essentially distinct opening moves (corner, side, and
centre squares). The first box of the matchbox modeltherefore contains
beads of three coloursonly.

pla |X
ClO] a
D|C B

 

 

  
Suppose wewish to play against the machine. Weascertain its opening

moveby taking outthefirst box, shaking it so as to randomizethe positions
of the beadsinit, and tilting it forwards so that the beads runto thefront.If
the colour of the bead arriving in the apex of the cardboard fenceis, say,
pink, we place a nought on the machine’s behalf in the centre (square 4). We
now replace the boxin the chest-of-drawers, but for applying the reinforce-
mentsat the end of the play(a ‘play’ is the complete series of moves leading
from the initial state—all squares empty—to an outcome—win, draw, or
lose) it is convenient to leave the drawer open. Wereply with a crossto,say,
the top left-hand square (square 1). The position is now 51 in the code which
was adopted, and we must take out, shake, andtilt the box with this code

numberin orderto ascertain the machine’s next move; and so on until the

end of the play.
Wenow apply the ‘reinforcements’. If the machine haslost, we confis-

cate the apical bead from each of the three or four boxes which have been
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left open, thus makingit less probable in each case that the same movewill
be repeated when the sameposition recursin the courseof futureplay.If the
machine has donewell (whenit is playing against an expert, wecall it ‘doing
well’ if it draws) each open box is given a bonusof one bead of the same
colour as the apical bead, thus encouraging repetition of the move con-
cerned. The open drawers are pushed shut and the machineis now ready for
the nextplay.
A little reflection should convince the reader that such a machine cannot

help improvingits standardof play, after a fashion and to some degree. But
we haveasyet said nothing about how manytimeseach colouris replicated
in the various boxes. This matter is of great importance since it determines
the rate at which the probabilities are changed by the system of unit forfeits
and bonuses. With so crude a mechanical contrivance we cannot hope to
makeits reinforcement system fully rational, and indeed the reinforcement
problem, as applied even to a much more simple system than the machine
under discussion, remains unsolved by mathematicians. A reasonably
workable system wasarrivedat in the present case along the followinglines.
It is clear that if the machine’s fourth move(stage 7 of the game)is followed
by defeat, it is a bad move without qualification, and thereis no pointinits
ever being repeated. Hence the boxes at stage 7 should have only one
replicate of each legal move, so that the confiscation of one bead expunges
the offending move for ever. It is equally clear that a defeat should be
regarded as a black mark against the move which was madeatstage 5, but
the evidenceis not so strong as against the stage 7 move.In like mannerthe
weight of evidence from a given outcome must continue to lessen as we
approach the beginning of the game. But even an opening move should
receive some reinforcementin thelight of the ultimate outcome.

For thetrial run, the simplest possible system was adopted,as follows:

machine’s numberof

stage move replicates
1 1st | 4

3 2nd 3

5 3rd 2

7 4th 1

It turned out that the allotment of only twelve beadstothefirst box (three
legal moves quadruplicated equals twelve) gave the machine scarcely
sufficient resources to withstand repeated discouragements in the early
stages of play against an expert. On more than oneoccasionthefirst box
nearly ran out of beads: if it had actually done so, we should have
understood the machineto be refusingto play. It sometimes happenedthat a
boxat later stages became empty,but this was as it should be:it is reasonable
to resign in a hopelessly lost position. But at all events this reinforcement
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system in all its crudity was sufficient to make a surprisingly good showing
whenthe time camefor the machineto be challenged byits inventor. This we
shall now see.

MAN VERSUS MENACE

For its maiden tournamentthe machine, which wasgiven the name MENACE
(Matchbox Educable Noughts And Crosses Engine), wasset up as already
described. The forfeit for a defeat was confiscation of the apical bead from
each open box. The reward for a draw wasthe addition of one bead of the
same colour as the apical bead. Against best strategy, as made clear by
D. W.Davies in a recentarticle [2], it is impossible to win at noughts and
crosses. One might therefore think, assuming that its human opponent
would adopt best strategy, that the question of rewarding MENACEfor
victories would not arise. But in practice the machine quickly found a safe
drawingline of play against best strategy, so that its human opponenthad to
resort to unsound variations, risking machine victories in the hope of
trapping it into a more than compensating numberof defeats. This possibi-
lity had been foreseen (although not the speed with which it matured) and
the bonus for a win wasfixed at three beads added to each open box. The
bonuses and forfeits can be regarded as equivalent to the value of the
outcome, if we take a defeat to have the value —1, a draw +1, anda win +3.

The tournamentlasted for 220 plays of the game, occupying two eight-
hoursessions on successive days. By the endof thefirst twenty plays the
machine wassettling into a stereotyped line which ensured a drawin face of
‘best strategy’. I therefore resorted to a series of theoretically unsound
variations, in order to draw the machine into unfamiliar territory. Each of
these paid off for a time, but after 150 plays the machine had become capable
of coping with anything, in the sense that whatevervariations I employed I
could notget a better average result against it than a draw.In fact after this
point I did much worse than this, by unwisely continuing to manoeuvre in
various ways. The machine wasby then exploiting unsound variations with
increasing acumen, so that I would have done better to return to ‘best
strategy’ and put up with an endless series of draws, or retire from the
tournament. This I eventually did after sustaining eight defeats in ten
successive games. At every stage, I used whattactics I judged to be the most
hopeful. It is likely, however, that my judgement was sometimes impaired
by fatigue.

Theprogress of the tournamentis showngraphically in Fig. 1.2. The line
of dots gives a complete representation of the outcomes throughout the
tournament: the line jumps one level down for each losing outcome, one
level up for each draw, andthreelevels up for each win. The angle oftheline
with the horizontal at a given stage of the tournament shows how well the
machine wasdoingat that stage. An upward slope of 45° correspondsto an
average drawing result, which is the best that the machine can do against
‘best strategy’. This is exemplified by the ‘testing run’ of twenty plays which
was madeat the endof the tournament(see Fig. 1.2).
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Fig. 1.2 — Performance of the MENACElearning machineinitsfirst noughts and
crosses tournament

Weshall now turnto the consideration of what parallels may possibly
exist between the mechanical model and phenomena encountered in
biology.

PARALLELS WITH ANIMAL LEARNING

Weshall adopt W. H. Thorpe’s [3] division of animal learninginto five main
categories: habituation, conditioning (or the formation of conditionalref-
lexes), trial-and-errorlearning, insight learning, and imprinting. In all but
the simplest acts of learning, an animal will of course combine several of
these mechanisms.

Habituation describes the ‘Wolf! Wolf!’ situation. A sight or soundor other
stimulusarousesourattentionthefirst time we meetit; but on repetition we
get usedto it and take no notice. This happensonlyifit is not accompanied
by any happening significant for us, such asthe offer of something we want,
or the infliction of pain. In the terminology which we have used earlier, the
original responseleads to an outcomeofzero value (noxious outcomes have
negative values). Ifthe matteris put in these terms, MENACE clearly does not
show habituation, if only because the reinforcement system does notallow
zero outcomevalues.

Conditioning. In a conditional reflex the most prominentfeatureis that a
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response such as blinking or secreting saliva comes to be evoked by a
stimulus, such as a sound, which did not evokeit at first. The animal

becomes‘conditioned’ to respondin a particular way. This has noparallel in
the workings of MENACE,although it is well simulated by some other
learning machines,such as that designed by A. M.Uttley [4].

Trial-and-error learning is defined by Pringle [5] as follows: ‘Essentially, the
animal makes more-or-less random movements andselects, in the sense that

it subsequently repeats, those which produced the “desired”result . . .’ This
description seems tailor-made for the matchbox model. Indeed, MENACE
constitutes a modelof trial-and-error learningin so pure a form,that whenit
shows elements of other categories of learning we may reasonably suspect
these of contamination with a trial-and-error component. To illustrate this
point, it is convenientto take next the last category listed by Thorpe, namely
imprinting.

Imprinting has chiefly been described andstudiedin certain bird species. A
single experienceat a critical phase of the animal’s developmentmayresult
in permanent modifications in its behaviour. A famouscaseis that of the
greylag goslings studied by Konrad Lorenz. The hatchlings ‘unquestioningly
accept the first living being whom they meet as their mother, and run
confidently after him’. One is reminded of Oberon’s threat concerning
Titania in. A Midsummer Night's Dream:

‘The next thing then she waking looks upon,
Be it on lion, bear, or wolf, or bull,

On meddling monkeyor on busyape,
She shall pursue it with the souloflove.’

In analogous fashion Lorenz contrived to gain the devotion of newly-
hatched goslings.

Imprinting is not quite as specific, or as long-lasting, as this description
suggests, but there is no doubtof the existence of the phenomenon.Atfirst
sight it has nothing in commonwithtrial-and-error learning. But consider
what would happenif, at some stage in the tournament, MENACEhad been
given an over-riding reinforcementof the response to somestimulus,in the
shape of an arbitrarily large bonus of beads for a move made in some
particular position. From then on, whenever it encountered the same
position again, the machine would almost inevitably produce the same
move, just as the ducklings could not help following Lorenz. Is it possible
that imprinting operates through a mechanism analogousto that of trial-
and-errorlearning, differing only in that the reinforcementis very large?

If so, we must ask what changes occurring during imprinting could result
in an overriding reinforcement. One possibility is that the process is
associated with the relief of acute anxiety. Support for this idea would seem
to be lent by the fact that imprinting in hatchlings does not occur, or occurs
less strongly, if they are pre-medicated with tranquillizing drugs. There are
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also suggestive resemblances between imprinting and some types of human
neurotic behaviour.

Insight learning, Thorpe’s remainingcategory,is perhaps the mostinterest-
ing and the mostinaccessible to analysis. I can bestillustrateit by describing
the results of testing human subjects under exactly the same conditions as
those under which MENACEwastested in the tournamentdescribedearlier.
All three subjects were Continental scientists with no previous knowledgeof
the gameof noughts andcrosses. Foreachtest the subject was informed of
the rules of the game,butnot ofits object. I then invited him or her to a
series of plays of the game, the subject having thefirst move of each play. At
the end of each play I announced ‘You havelost’ or‘It is a draw’, but gave no
other information. Theresults in the three cases were closely similar. After
three or fourplays the subject spotted the point of the game, andafterfive or
six plays had adoptedbeststrategy.

Whateverelse it involves, insight learning must certainly depend upon
highly sophisticated feats of stimulus-classification, and also upon sustained
flights of logical deduction. It seemslikely that it also involves a process of
silent trial-and-error: imaginary stimuli are self-administered, trial res-
ponses are performedin fantasy, their outcomes are envisaged, and the
appropriate reinforcements are applied internally. The idea can be illus-
trated by a description of how

a

trial-and-error machine could simulate
insight learning.

With the aid of Mr John Martin of Ferranti Ltd, the matchbox model has
been programmedfor a digital computer. The advantages, apart from a
thousandfold increase in speed of operation,are that bothsides of the game
can be mechanized(so that a mechanical Noughtplays against a mechanical
Cross), and either side can besetto play as an expert, as a random player, as
any sort of hybrid between the two,oras a self-improving player with any
desired degree of previous experienceofplay. In this way the properties and
merits of an unlimited variety of reinforcement functions can be tested over
a wide range of fully specified conditions. Could ‘insight learning’ be
exhibited by the electronic version of MENACE?

During play the computer producesa printed record, the printout, of
every move made.In fact, the printing of symbols on paperconstitutes the
only overt behaviour of the machine.If nothingis being printed, then there
is no play in progress, according to the criteria which we apply to human
players. Let us now imagine that we set the Crossside of the program to
makeits movesat random (excludingillegal moves), and let Nought run asa
mechanizedlearneras was doneforthetest of the matchbox model. We now
Start the program running, but omit to switch on the printout mechanism.
What happens? Nought proceeds to run off a series of trial plays ‘in his
head’, without making any marks on paper, but, just as though he were
engaged in actual play, the outcomes of these phantom plays leave their
mark onhis strategic habits through the reinforcement system. We might
then interrupt the machine’s reverie and, leaving the Noughtside undis-
turbed, set the Cross side to play at somefixedlevelof skill (for example,
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expert). When nowtested (with the printout switched on of course), Nought
will come out with a standard of play whichis fair, good, or excellent,
depending on how long a period was previously allowed for him to gain
‘insight’ through silent meditation.

If any parallel at all exists with the behaviour of the aforementioned
Continental scientists, it is with the second phaseof their behaviour, during
the rapid transition from knowledgeof the values of different outcomes to
adoption of best strategy. It seems likely that part of what was going on in
their minds consisted of trial sequencesof the form:‘If I do this, then he may
do that, to which I might reply thus, and so on.’ But it is damagingto the case
which weare here considering to put much weight on any alleged parallel
with humaninsight learning, since the part played by thought processes
other than thoseoftrial-and-error is so preponderant in our species. When
we consider insight learning as it is found in lower animals, the example
afforded by the behaviour of the computer with its printout switched off
seems less obviously objectionable. Defining insight learning Pringle
remarksthat ‘. . . the animal in this case appearsto be able to work out the
consequences of a number of possible alternative responses to sensory
stimuli without actually performing them,and then, on the addition of a

further stimulus, to perform only the one which leads to a favourableresult’.

LEARNING AS AN EVOLUTIONARY PROCESS

An evolutionary process is usually thought of as characterized by such
features as increase of complexity, and increase of orderliness. On such a
definition, learning is just as much an evolutionary processas is organic
evolution, that is the evolution ofliving organisms.It is therefore naturalto
wonder whether the mechanisms by which the two processes operate have
anything in common; whether, in particular, as Pringle has suggested,
learning can profitably be studied with the concepts of Darwinian theory.

It is quite possible to think of the matchbox model as a Darwinian
system. The reader can divert himself by thinking of the boxesasdiscrete
habitats through which is dispersed a species of organism which takes the
form of glass beads. Each habitat is occupied by several varieties, one of
which, by reason of greater fitness to that particular habitat, usually
displaces the other and becomesthe local type. Of morethantrivial interest
is the fact that equally Darwinian systems are found incorporated in other
learning machines under current development. Thus, O. G.Selfridge’s [6]
machine Pandemonium,whichhasthe task of learning to read Morse Code
as tapped out by human operators and converting it into typewritten
English, operates through a hierarchy of demons and subdemons(a demon
is a computing operation): subdemonswhichprove unworthyare eliminated
by the program,andtheir place is taken by new subdemonsprocreated by
the worthy survivors. The essence of subdemonselection had already been
foreshadowed in A. L. Samuel’s machine which learns to play checkers
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(anglice: draughts) [7]. Whether or not Samuel’s work influenced Selfridge,
it emphasizes how direct can be the road leading from games-playing
problemsto applications of practical importance.
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Puzzle-learning versus game-learning

in studies of behaviour (1962)

This chapter is concerned with an elementary distinction which,it will be

argued,is of crucial importance in the study of animal and humanlearning.

The distinction is that between a one-person gameor ‘puzzle’, and a two-

person game[1].

In a puzzle, as the term is here used, the player makesa succession of

moves,each of which results in a changedstate of the apparatus. After each

movetherulestell the player whether the puzzle has now beensolvedornot.

They maytell him that there are no morelegal movesavailable to him, even

thoughthe puzzlehasstill not been solved, in which case he mustrestore the
apparatustoits initial state and start again. In this event the value assigned
to the outcomeof his attempt can be conventionally described as a minus
quantity, say —1. The outcome of a successful attempt may be given the
value +1. One could imagine a more complex case wheredifferent valid
solutions of the puzzle were graded (for example according to economyin
the number of moves) on a quantitative scale, having values +1, +2, +3,

etc, and that unsuccessful outcomes mightbe assigned similar gradations on
a scale of negative numbers. Weshall, however, take the simpler two-valued

case for ease of exposition.
The distinguishing feature of a puzzle, as opposed to a game,is that the

change effected in the apparatus by a given moveis fully determined. In a
game,on the other hand,the player has to take into accountnot onesingle

necessary consequence of his move, but a range of alternative possible

consequences,a selection from which will be made by his opponent’s move

or movesbeforeit is again his turn to move.

A game,it will be contended, summarizesthe essential features of most

of the situations with which animals are confrontedin real life, whereas most

of the problems given to animals in conventional studies of learning are

‘puzzles’. I shall attempt to show that mechanismsof learning which give

high efficiency for games are ill-suited to puzzles, and vice versa.
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Consequentlyit is possible to arrive at misleading conclusionsifone presents
puzzles, as is the custom of experimental psychologists, to central nervous
systems which have been adaptedbynaturalselection to cope with games.

ANIMAL-ENVIRONMENTINTERACTIONAS A TWO-PERSON
GAME

In the language of gamesthe two ‘persons’ are the animalandits environ-
ment. Moves are made alternately. The environment’s movesare called
‘stimuli’ and the animal’s movesare called ‘responses’. The outcomeofthe
gameis assessed after some numberofmoves. Theobject, from the animal’s
point of view, is. to secure an outcome of the highest positive value,
outcomesbeing valued accordingas they contributeto the satisfaction of the
animal’s needs,or, on the negative side of the balancesheet,to the causation
of discomfort, pain,etc. It is not, of course, supposed in anyliteral sense that
the environment’s play is guided by any object, although in special circum-
stances it may be, as when theeffective environmentconsists of a human
being or another animal. Onthe otherhand,it will necessarily be subject, as
are the animal’s responses,to the ‘laws of nature’, which correspond to the
rules of the game. They determine what alternative moves are possible
(legal) in a given situation. Additionalrestrictions on the animal’s movesare
imposedby the limited rangeof responsesto a given stimulus allowed by its
innate behaviour patterns. Purringis not a possible movefor a cat to make
on receipt of a painful blow.

The essence oftrial-and-error learning consists in whittling down the
range of innate potential responses to a small number which become
habitual. The processofselectionin the light of experience can belikened to
that which transformsa beginnerat chess, who may(as Black) make any one
of the twenty legal replies to ‘White 1. P-K4...’, into an expert who would
not seriously consider more than at mosteight, and who probably uses only
three or four of these habitually. This analogy should not be pressed further
than its simple illustrative purpose demands,since human learning of a game
like chess makes heavy use of‘insight learning’ in addition to ‘trial-and-
error’; this chapter is concerned only with thelatter category.

Before examining the mainthesis: that optimal mechanismsoftrial-and-
error learning are fundamentally different according to whether the task
constitutes a puzzle or a game, it remainsbriefly to substantiate the claim
that mostreal-life situations are games rather than puzzles. This can be seen
to be true as soon as we recognize that at any point in time an animalis
responding notto thetotal actual situation (whichit is in no position fully to
assess) but to the total stimulus-situation. Thus, the sight at noon on
Mondayof a pine-tree from a westerly point at five metres distance
constitutes the samestimulus-situation as the sight of the same tree from the
same vantage-point at noon on Tuesday, assuming reasonable constancy of
climatic and other conditions. This is so even though every pine-needle of
the tree has meanwhile moved.Buttheactualsituation underlying the same
stimulus-situation on the two occasions maybe very different. A mountain
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lion maybein the tree on Tuesday which was not there on Monday,with the
consequence that a response which leads to a favourable outcome on one
occasion (e.g. using the tree for shade) may have a disastrous outcome on
another occasion. This multiplicity of actual situations underlying a single
stimulus-situation, and the resulting multiplicity of consequences attendant
upon a given response,is a sufficient criterion of game-like rather than
puzzle-like structure. The animal’s ignorance of the actual situation which
underlies the current stimulus-situation corresponds to the predicamentof
the chess-player, who is inevitably ignorant of his opponent’s strategy
although fully aware of the current position on the board to which that
strategy has contributed.
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Fig. 2.1 —The interaction between animal and environmentrepresentedin termsof
a puzzle. So, S;, S2 denote successive states of the environmentor ‘actual situation’
with the corresponding ‘stimulussituation’ denoted by S’o, S’; and S’. The sequence
of states of the animal Ap, A, ;, Az, Showsthe path actually taken, with alternative

choices leading to potential states A;2, A;3and A22, A»3, etc.

To summarize the ideas outlined above, we present two diagrams. Fig.
2.1 depicts a sequence of choices made by an animal confronted with a
puzzle. In this case (unlike that of a game)the stimulus-situation containsall
relevant features of the actualsituation. In Fig. 2.2 the diagram reproduced
in Fig. 2.1 is reproducedwith a new feature added, which converts the puzzle

into a game. The new feature is the existence of alternative potential

transitions of the environmentofwhich the animal must take account. These

transitions are entirely compatible with the stimulus-situation, although not

with the actual situation of which the animal is necessarily unaware.

Weshall now consider the kinds of learning behaviour which would be

appropriate to these two very different kinds of problem.
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Fig. 2.2—The interaction between animal and environmentrepresentedin terms of
a game. The new feature as comparedwithFig. 2.1, is that a given response,say that
arising from A,,, may trigger off any one of several alternative changes in the
environment for example those leading to states S,,, S; 2, or S;3. These paths
SoS1.1-S2.1, and Ag>A,>A,represent those taken by environment and

animal respectively on a given occasion.

LEARNING TO PLAY A GAME VERSUS LEARNING TO SOLVE A
PUZZLE

Within the strict context of trial-and-error learning there is no alternative,
whenfaced with a new gameor a newpuzzle, but to embark ona series of
randomly-chosen moves. Soonerorlater the series of moves will terminate
in an outcome,favourable or unfavourable; this is where learningbegins.It
is obvious that the probability of the terminal move,the next time that the
same position is encountered, must be modified in some way. More
specifically, if the outcome-value was negative the probability must be
reduced,andif it waspositive, it must be increased. But by how much? We
here come uponthefirst important contrast between puzzle-learning and
game-learning. It can be seen at once that, in a puzzle, the probability
change,or ‘reinforcement’, should be maximal. Thatis to say, if the move
has immediately led to a solution of the puzzle (outcome-value = +1), then
the probability of repetition should be adjustedto zero.

This is only true of a game where the outcome immediately followsthe
last move, without an intervening move by the opponent. When a delay,
occupied by the opponent’s move, precedes the outcomethestate ofaffairs
is entirely different. Consider the following example from the game of
noughts and crosses (otherwise knownastic-tac-toe):

OO

OX
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On the first occasion when this position arises Cross places his move in the
lower right-hand corner, and is defeated when his opponent promptly
completes the left-hand column of noughts. In a world of puzzles this would
be sufficient for Cross to ‘learn his lesson’ and never again repeatthe fatal
move. But in a world of games this move may bethe one whichin the long
run gives the best results. One unfavourable result is not sufficient to
excludethe remotepossibility that Nought has a ‘blind spot’ which causes
him on most, but notall, occasions to reply to the centre square and thus to
allow Cross to win. Evidently Cross should be chary of repeating the losing
move, but should not discard it completely until further evidence on its
actuarial risk has accumulated: the probability of this particular response
should be reduced, but notto zero. This principle does not hold (anartificial
case from thereal-life point of view) when the opponent’splay is guided by
‘best strategy’.

In real-life situations the outcome evenof a terminal moveis frequently
indeterminate,as in the case of Cross’s movein the above example. All that
can be attachedtoit in thelight of the animal’s accumulating experienceis an
increasingly well-charted frequency-distribution estimating the relative pro-
babilities of the various possible outcomes. Yet this is not true of the
laboratory conditions under which learning behaviour is commonlytested.
In the typical and simplest case, the animal is rewardedifit turns left and
punished if it turns right, and this rigid connexion between move and
outcome-value is held invariant throughout the experiment. The animal,
however,is not to knowthis. If, therefore, it requires a substantial number

of trials before settling decisively for the left rather than the right turn, its
sluggishness should not be imputed to imperfect learning powers: it may
merely indicate that the animal hasa better grasp than has the experimenter
on the realities of its own dailylife.

The second major contrast between game-learning and puzzle-learning
concerns the relation between temporal sequence and the strength of

reinforcement. In formulating his classical Law of Effect, Thorndike [2]

drew attention to ‘the effect of increasing the interval between the response

and thesatisfaction or discomfort’, namely a diminution of the amount by

which the probability of response is modified in the light of the outcome.

In terms of game-learning weinterpret‘interval’ as meaning the number

of further moves intervening before an outcomeis reached. Anefficient

game-learning mechanism should modify the probability not only of the

move immediately preceding the outcome,but, in diminishing degree,also

that of the penultimate move, the antepenultimate move,and so on. This

principle hasbeenutilized in constructing a simple machine which‘learns’ to

play noughts and crosses[3]. Even thoughthe desirability of applying non-

zero reinforcementto pre-terminal moves may seem obvious,we have to ask

ourselves whatis it precise justification. Asa first approach we can frame our

answerin rather loose language:the rationale of discouraging earlier moves

which haveled to one particular unfavourable final outcome (or encourag-

ing those which have ledto a particular favourable outcome)is that we take

the outcome-value as evidence that a given earlier move was bad (or good)
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in some more generalsense than that it happenedto leadto this particular
result in this particular case. More rigorously, we must consider the formal
representation of a gameor puzzle as a branchingtree. Theprinciple of ‘guilt
by association’ to which we have given a loose expression above can be
expressedbysaying that twigs of the same branchtendto bearsimilarfruit:
that is to say, the total variation in outcome-values, instead of being

distributed at random over the terminal spots, shows a trend towards
homogeneity within families of spots, and heterogeneity between families.

The principle is well known to game-players, and is a commonplaceof
real life. But is it also true of puzzles? Doubtless it is true of many puzzles,
butit can easily be seen thatit need not betrue of any given puzzle, and that
there is no reasonatall whyit should betrue of the particular puzzles which
experimental psychologists devise for their animals.

In the first place, there may be no opportunity for the principle to
operate owing to insufficient variation of outcome values. This is so in a
maze in which only one terminal spot contains a reward, the remainder
carrying punishments. A simple maze which does not allow re-tracing is
shownin Fig. 2.3. The terminal spot containing the reward is boxedin the

Terminal spot (a) (b) (c) (d) (e) (f)
Outcome value -1 +] -| ~| ~] -|

Fig. 2.3 — A simple maze without retracing, drawn andlabelled in such a wayas to
exhibit the formalstructure of a puzzle.

diagram.
The three pre-terminal spots represent choice-points, of which thefirst

can be termed‘primary’ and the othe two ‘secondary’. Sincethis is a puzzle
and not a game,the mostefficient learning procedurewill, as we have seen in
an earlier section, discard immediately and irrevocably any secondary
choice which has once been followed by a negative outcome.A real animal,
as we havealso seen earlier, will not do this because, in our submission,it is

adapted to game-learning rather than puzzle-learning. It will also display
another behavioural feature irrelevant to puzzle-learning, namely a modifi-
cation ofprimary choice consequent upon a negative outcome. Ifits first run
of the maze tookit to terminal spot(a) whereit received a punishment,it will
tend on the next occasion to make left rather than a right turn at the
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primary choice-point. This spread of reinforcementto a preterminal moveis
an adaptive mechanism in game-learning, owing to family likeness of
terminal spots. Yet in the puzzle underconsideration the average numberof
trials needed for solution of this puzzle (given maximal reinforcement of
secondary choices) is exactly 3.5, and this expectation is completely unaffec-
ted by any spread of reinforcementto the primary choice.
A different version of the same maze might contain two reward-boxes,

and these could be disposedin twoessentially different ways, as shown in
Fig. 2.4. Hereit is less obvious that spread of reinforcementis ineffective in
contributing to learning-speed. Everything, in fact, depends on whetherthe
puzzle belongs to type A or type B. For type B, which exemplifies the ‘family
likeness’ of outcome characteristic of games, a negative outcome should
indeed result in a negative reinforcementof the primary choice: if twigs of
the same branch tendto bearsimilar fruit, it is better, after a disappoint-
ment, to try another branch! But for type A, a negative outcome should
result in a positive reinforcement if a maximumefficiency is required. Thisis
because having eliminated one negative outcomein the family, we except a
corresponding higher proportion of positives in the surviving membersof
the same family. In such a case a fundamental feature of learning which
forms a normaland necessary part of animal behaviour would not only be
useless to the animal, but would be actively harmful and serve only to leadit
into trouble.

Type A Type B
(homogeneity between (heterogeneity between

families) families)

Fig. 2.4— Simplified representation of two contrasting types of puzzle, one in which
twigs of the same branchtendto bearsimilarfruit (type B) and onein whichfruits are
dispersed evenly over branches. For more general application of this distinction we
would have to consider sub-branches, sub-sub-branches, etc., before arriving at the

twigs, or ‘terminal spots’.

The main ideas that have been advanced can be summarizedasfollows:

(1) Reallife has the structure of a game rather than of a puzzle.
(2) Efficient game-learning by trial-and-error requires two fundamental
features in the reinforcement system: (a) partial rather than absolute
reinforcementof the terminal move,and (b) spread of reinforcementto pre-
terminal moves.
(3) Both these features are exemplified by trial-and-error learning in
animals.
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(4) By testing experimental animals with puzzles rather than games these
features can be nullified and may even unwittingly be turnedto the discredit
of the animal’s estimated powerof learning.
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3
Machinesthat play and plan (1968)

Proposals to construct man-like machines are nothing new. The following
particularly charming excerpt from the Scotsman newspaper of 100 years
ago recently came to myattention:

A STEAM MAN — The ‘Newark Advertiser’ (New Jersey) de-
scribes the very extraordinary invention of a machine which, moved
by steam, will perform some of the most important functions of
humanity — stand upright, walk or run, as he is bid, in any
direction, and at almost any rate of speed, drawing after him a load
whose weight would tax the strength of three stout draught horses.
In order to prevent the ‘giant’ from frightening horses by its
wonderful appearancethe inventorintendsto clotheit andgiveit as
nearly as possible a likenessto the rest of humanity. The boilers and
such parts as are necessarily heated will be encasedin felt or woollen
garments. Pantaloons, coat and vest, of the latest styles, are

provided. Wheneverthefires need coaling, which is every two or
three hours, the driver stops the machine, descends from hisseat,

unbuttons ‘Damel’s’ vest, opens a door, shovels in the fuel, buttons

up the vest, and drives on.

Here the attempt is dominated bythe ideas of motion andforce centralto
nineteenth century technology. In the twentieth century our technology
revolvesincreasingly around the notionof information,andit is the rational
rather than the muscularfaculties of man which now challenge the machine
builders.

Games of mental skill devised by humans for amusement provide the
research worker in machineintelligence with ideal material. In such exer-
cises aS programming a computerto play draughts (checkers), or chess, or
Kalah or Go,all the intellectual faculties on which we pride ourselves are

brought into play. Amongthese I would place high on thelist the distinc-
tively humanability to look ahead, predicting the consequencesofalterna-
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tive actions. This activity is normally called planning, and the design and
testing of machines that can play andplan is a central interest in all those
laboratories around the world dedicated to the machine intelligence
objective.

During the war I was a member of Max Newman’sgroupat Bletchley,
workingwith prototypes ofwhat we now call the electronic digital computer.
Oneof the people I came mostin contact with was Alan Turing, a founderof
the mathematical theory of computation and thefirst apostle of the idea of
designing a machinetothink asintelligently as a man. He was also much
interested in chess. But he was so profoundly intrigued by the deep
principles of the game that he could never keep his mind for long on the
tactical details. Beng one of the few peoplein the Bletchley environment
bad enough to give him a reasonably even game, I became his regular
Sparring partner. After the war he and I engaged in some experiments with
the mechanizationof chess which I think werethe earliest to be conducted in
this field.

In those days we attached considerable polemical importance to showing
that even one non-trivial exercise of thought, and chess certainly qualifies as
that, could be convincingly mechanized. Looking back, I am notat all sure
why we thought this so important. The mental solution of differential
equations or the inversion of matrices constitute equally non-trivial tasks
and yet they can be solved byalgorithms; that is, they can be clearly stated
and solved by applying a sequenceof specified operations. No-one doubted
even in the 1940s that computers could outgun most humanbeingsin these
feats of numerical mathematics. Consequently the discovery of equivalently
powerful algorithms in non-numerical problems such as chess should not
logically convey any added conviction.

So indeed it has turned out. The Greenblatt chess program is today
operating in America, under the professional name MacHack,as a tourna-
ment player of reasonable competence. But no-one hails MacHack as the
world’sfirst intelligent machine. Rightly so, since MacHack would be as
useless at solving differential equations as someone else’s differential
equations program would beat playing chess. The humanintellect is marked
not so muchfor anyspecial brilliance at some particular task but rather for
its ability to make a plausible shot at almost anything. We accordingly
suspend judgement aboutthe idea of an intelligent machine, waiting until
onearises with the versatility and the powersof integrative behaviour which
we demandof ourcolleagues.

Machineintelligence is not about chess nor aboutany particular mental
task. It is about what can be generalized, including proceduresinitially
developed on a task-oriented basis but possessing the seed of generality.
Into this category fall various tree-searching techniquesinitially developed
in mechanized game-playing. They include such fundamental features of

planning as the generation ofpossible future states by a look-ahead process
followed by assessment of the relative desirability of these states by
approximate rules of strategic evaluation. The object of machine intelli-
gence workis to tie togetherall essential general components of cognition
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into a single library of computer programsheld in the machine’sstore in such
a way that the machine can respond to humaninterrogation in a coherent
and resourcefulfashion. In Table 3.1 are listed the topics which I regard as

Table 3.1 — Design topics which must be studied in depthif intelligent machinesare
to be developed are listed below. Thefirst item is in the nature of supporting
technology: it is an essential ‘springboard’ for the development of adaptive and
problem-solving computer programs. Last item leads into the realm of robots —

intelligent machinesable to see, feel, and move about.

 

Time-sharing systems and ‘conversational’ programming languages
Learning by rote
Learning bytrial and error
Learning by generalization
Elementary deductions about a simple world
Tree-searching and automatic problem-solving
Theorem-proving by machine
Theorem-proving representations of the problem to be solved
How manylibrary routines make a mind?
Talking to the library
Linguistic skills: syntax and semantics
Associative storage andretrieval
Sense organs: pattern perception
Exploratory behaviour and theory formation
 

the minimumset to be studied in depth. Each posesa design problem for
which solutions are necessary before the parts can be assembled into
something with which we might hope to hold a usefully intelligent
conversation.

The primary motive of work on machineintelligence is an engineering
one: we want to make a machine whichis man-like in certain respects. At the
same timethere is every reason to hopethat spin-off may be produced which
the brain scientists can use. An excellent example ofthis kind of spin-off can
be foundin the fact that we now have an understandingof the principles of
flight in birds, particularly in relation to the evolutionary changes in
anatomywhich can be foundin the fossil record. This new understanding has
been largely achieved through the work of John Maynard Smith, whose
application of the engineering concepts of feedback and aerodynamic
instability to birds and other flying animals was madepossible bythe fact
that he spent the war years workingas an aircraft designer.

Learning by rote is perhaps the simplestofall cognitive aptitudes.I shall
use it to illustrate the theme of taking overa trick from someone’s special-
purpose program in orderto fashion a general-purpose implement.

A. L. Samuel’s learning program for the game of draughts nowplaysat
respectable county championshiplevel, although Samuel believes thatit is
still a long way from attaining the calibre of a world champion. A fundamen-
tal feature of Samuel’s program is the evaluation of a board position by
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means of a ‘scoring polynomial’, in which the terms describe different
strategic properties of the board position and the coefficients denote the
respective weights to be attached to them. In addition, two learning
mechanisms operate in parallel: ‘rote learning’ and ‘learning by
generalization’.

Thefirst of these basesitself upon a dictionary of previously encountered
board positions held on magnetic tape. A position is added to the tape with
its value as calculated by the scoring polynomial. The dictionary thusacts as
a look-up table for evaluating positions. If the position can be found on the
tape, then the value is obtained relatively quickly; otherwise the scoring
routine is entered and the value obtained bycalculation. In the latter case
the new position—value pair is added to the dictionary at the end of the
evaluation. Thereis also a ‘refreshing and forgetting’ scheme whereby the
least used entries are allowed to drop out of the dictionary wheneverit is
necessary to economize on storage space. As a result of this simple rote
learning system, evaluations are performed with increasing speed as exper-
lence accumulateson the tape. Timeis thus freed for pushing the look-ahead
analysis deeper, with a gain in playing strength, and otherlearningeffects of
a more subtle kind accrue.

Another illustration, this time from work by R. A. Chambers and
myself, is the surprising efficacy of crude rote learning for enabling a
computer to master a difficult control task: balancing a pole on a motor-
driven car under ‘black box’ conditions(see Fig. 3.1). The task, in common
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Fig. 3.1 — Trial-and-error learning enables a computerto balance a pole on a motor-
driven cart. The task has the samestructureas that of learning to play a game, with
nature as the opponent. The computerlearns by experience from aninitial state of

ignorance.
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with adaptive control tasks generally, has the same formalstructure as the
task of learning to play a game; a ‘game against nature’. The opponent’s
‘strategy’ is determinedby the causal laws which govern the responsesof the
unstable system to the control signals. The controlsignals themselves can be
thoughtof as the ‘moves’ madebyourside, and the successivestate signals
correspondto successive ‘boardstates’ in the play of the game.

Whatwe need nowis a wayof generalizing these simple ideas, adding
them to the mental furniture, so to speak, of general-purpose computing
systems. We would like computersto learn from experience not only when
doing unusualthingslike balancing poles but even when engaged onthe run-
of-the-mill tasks of ordinary arithmetic.

Contemporary programming languages provide for the definition of
mathematicalfunctions, subject to more-or-less awkwardrestrictions which
I shall not discuss here. But existing languages such as ALGOL make no
provision for the fact that when a certain function is applied to a given
argumentfor the second time it may be more expeditiousto recall the result
from memorythanto workit out again from scratch. The means of making
any function into a ‘memo function’, complete with attached memory,has
now been provided in our Multi-POP system at Edinburgh. Typing the
appropriate instruction will attach to any function a memorywith spacefor a
specified number of entries. There are other refinements analogous to
Samuel’s ‘refreshing’ and ‘forgetting’. The observed effect of the memo
facility is in the expected direction: with increasing experience of using a
given function, the computercarries outits task faster and faster. Theself-
improvementeffect turns out to be substantial, and speed-upsofthe orderof
tenfold are easily attainable in appropriate cases.

Now I want to consider the automation of mental processes more
sophisticated than ordinary arithmetic. I shall restrict my remarks about
graph-searching and problem-solving to a certain family of problemsfirst
treated along these general lines by Alan Newell and Herbert Simon at the
Carnegie Institute of Technology. These are problems which can berepre-
sented as a set of discrete states and a rule book.Therule bookspecifies a set
of operators — ‘legal moves’ — by which somestates can be transformed
into others. For example,in a sliding-block puzzle like the oneillustrated in
Fig. 3.2 the operators are the physical sliding movements of individual
square blocks. AlthoughI speakofthis as a restricted class of problem,it is
rich enoughto provide formal representationsof a wide variety of problems
in which oneis required to find a sequence of transformations leading from
someinitial state to a goal state, defined either explicitly or by possession of
some desired property.

The activity known as problem-solving can be divided into twolevels.
The higherlevel is concerned with finding improved representation of the
problem to be solved. This meansin general replacing a problem graph— a
diagram of nodes, representing the states in the problem, linked byarcs
representing transformations—with anothergraphcontaining fewer nodes.
An example using the eight-piece sliding puzzle might involve identifying
states with symmetryclasses instead of with individual board configurations.
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Fig. 3.2 — Sliding-block puzzleillustrates the treatment of problems which can be
represented asa set of discrete states and a rule book of transformations or‘legal
moves’. All such problems can be represented in the form of a graph of nodes,
representing states, connected by arcs representing transformations,asin figure 3.4.

Another example with this type of puzzle could consist of replacing the
simple moves of the rule book with compound moves — for example, the
eight ‘corner twists’. (A corner twist is a cyclic sequence of four simple
movesconfined to one corner which rearranges the three pieces occupying
this corner. The use of this operator set reduces the nodes of the problem
graph by a factor of nine, that is, to those representing ‘centre empty’
configurations.) I am not goingto talk further aboutthis higher level, which
is concerned with problem representation. Impressive workis being done in
this vital area by Saul Amarel of the Radio Corporation of America.

The lower level of problem-solving concerns what you do with your
graph once you haveit. J. E. Doran and I have developed a simple search
algorithm in the form of a computer program called the Graph Traverser
(Fig. 3.3). To set it to work, the user mustgiveit definitions for two ofits
functions. Theseare, first, the ‘evaluate’ procedure which when applied toa
State produces a score intended to estimate, however imperfectly, the
distance of that state from the goal; and, second, the ‘develop’ procedure
which when applied to a state selects an operator andusesit to produce a
descendantstate. While the ‘develop’ procedure thus embodies the rule
book,the ‘evaluate’ procedure embodies whatever information or notions
may be available concerning desirable or undesirable features of interme-
diate states (Fig. 3.4).

The real interest of the Graph Traverseridealies in the possibility thatit
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Fig. 3.3 — Graph traverser search algorithm is a computer program developed to
solve problemsrepresented as graphsof nodesandarcs. By ‘develop’ is meantselect
an operation from the rule book, apply it to the state in question, and evaluate the
descendantstate so produced. X,,;, denotes the minimum valuedstate ofall those

currently known to the program,that is, the most ‘promising’ of the states.

might be able to improve its own search strategy by exploiting in some way
its accumulating experience of the problem. The ‘develop’ and ‘evaluate’
proceduresconstitute two separate points of entry for the introduction of
learning ability. It is the ‘develop’ procedure which is concerned with the
order of preference in which operatorsare selected. In our experimentswith
the Graph Traverser the program has alwaysselected at random,butin the
next phase weshall allow it to re-order the set of operators by promoting on
the list those which turn out retrospectively to lie on the main path. A stage
beyond this very simple learning method lies the attempt to set up a
‘plausible move generator’ based on abstracted features of the current
problem state. This is done on a non-learning basis by the Greenblatt chess
program MacHack,but there is no reason whythe process should not be
made adaptive. The preference orderings attachedto the different classes of
problem state defined by the abstracted features need notbe fixed forall
time but would be revised by a promotion process.

As for the ‘evaluate’ procedure, the problem here is essentially that
called by Samuelin his checkers program ‘learning by generalization’. His
scoring polynomial is a weighted sum of terms which measure various
strategic features of the board position; the program’s problem is how to
adjust these weights so as to improveits playing ability. Assuming that the
Graph Traverser’s evaluation function likewise takes the form of a weighted
sum of terms,is there any way of adapting Samuel’s approachto our needs?
The keyideais that, as search proceeds, past experience accumulatesin the
form of a stored search tree with labelled nodes, the labels being the values
assigned by the evaluation function. To the extentthat the functionis a good
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Fig. 3.4— Search method used by Graph Traverser program is shown diagrammati-
cally. Back-tracking automatically occurs when all arcs leading from a node are
blocked. These blocked arcs denote developments which fail to produce improve-
ments in the form of a reduction of the numerical values which are attached to the

nodes.

one, the numerical values of the labels will correlate well with the distances

from each otherof the corresponding nodes. Moreover,the program is free
to ‘ruminate’ over this stored record, adjusting the scoring function so as to
improvethis correlation. R. Ross and I have madepreliminarytests of this
idea, using sliding-block puzzles, with promising results.

Whydid the hen cross the road? Actually there were three hens. Thefirst
wasa clockworkhenandit crossed the road because its owner had woundit
up andpointedit in that direction. The second hen crossed the road because
an experimental psychologist was using it to illustrate a ‘taxis’ to his
behaviourclass: the hither side of the road was in darknessandthe visual
response to the illumination of the far side, together with reflex locomotor
responsesto tactile and proprioceptive inputs from its limbs, were sufficient
to unroll a chain of actions which got it across the road. The third hen crossed
the road in orderto get to the other side. The explanation for this behaviour
in a memberofso unintellectual a species turned outto be that this hen was
an intelligent robot. Hence it was able to operate uponan internal model of
external reality, alternately updating the model inductively and usingit
deductively to foresee the consequencesofits actions.

Myengineer-psychologist colleague Richard Gregorypoints outthat this
predictive processing of stored information can be regarded as a way of
exploiting the redundancy present in the real world, and helists the
following advantages which hen numberthree would enjoy:

(1) It can achieve high performancewith limited information transmission
rate... The gain results because perception of objects (which are always
redundant) requires identification of only certain key features of each
object...

(2) It is essentially predictive. In suitable circumstances can cut reaction
timeto virtually zero.

(3) It can continueto function in the temporary absence of any input,e.g.
turning the music page, blinking or sneezing while driving...
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(4) It can continue to function whenthe input changesin kind. Thus in maze
learning, rats can continue to run a maze once learned though each
sensory input in turn is denied it — vision, smell, kinaestheticsetc...

(5) It can extract signals from ‘noise’, if internal models are highly redun-
dant. They can be called up with minimal sensory information. This
means that the models can enormously improvethe effective signal/
noise ratio of sensory systems.

(6) Provided a particular situation is similar to the situations for which a
‘model’ was developed, behaviourwill generally be appropriate. This,
in the language of experimental psychology, is ‘positive transfer of
training’.

As disadvantages,helists:

(1) Whenthe currentsituationis sufficiently similar to past situations which
have been selected and combinedto give an internal model, but the
current situation differs in crucial respects, then the system will be
systematically misled by its model. Thisis ‘negative transfer’.

(2) Internal model systemswill be essentially conservative (showing inertial
drag to change), for internal models mustreflect the past rather than the
present.

Gregory’s notion of ‘internal models’ is decomposable into interpreta-
tive models, according to which the pattern of sensory stimulation is reduced
to ‘features’ and ‘objects’, and predictive or planning models, according to
whichthe likely consequencesof applying alternative actions are computed
by combining these interpretations of current sensory input with stored
experience from the past. Fig. 3.5, which indicates where Gregory’s internal
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Fig. 3.5 — Intelligent robot’s cycle of activity as it reacts with its environmentis
shown schematically. It operates by means of an internal model of externalreality
(grey boxes). This internal model is composedof an interpretative model, which
reduces sensory stimulation to features and objects, and a predictive model which
combines these interpretations with past experience to determinethe likely conse-
quencesofalternative actions. The short circuit from ‘recognition’to ‘action’ (dotted
arrow) is for skills which are either inborn or have become automatic by meansof

practice.
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models may be thought to reside, bears a close relationship to the scheme
followed by my colleague J. E. Doran in his computersimulations of robots
able to explore, learn, and plan. The ‘predictive model’ box of the diagramis
mimicked in some essential respects by the Graph Traverser program
discussed earlier. When the program growsa search ‘tree’ it is using an
internal model to construct a plan, but whenit is restricted to growing a
‘bamboo’, corresponding to what I have elsewhere called a ‘conditional
choice strategy’, it is operating in reflex mode (a bamboostem hasnodesbut
no branches). The correspondence between Gregory’s formulations in the
behavioural realm and those of Graph Traverser design turn out to be
engagingly simple. Those which most immediately leap to mindarelisted in
Table 3.2

Table 3.2— Correspondenceofthe processes of exploration and learningin
the biological world and in machines is remarkably direct if biological
exploration and learning as formulated by R. Gregory is compared with the

notation used in the Graph Traverser program.
 

Biological exploration
and learning
(Gregory’s formulations)

Machine exploration
and learning
(Graph Traverser notation)
 

State of environment

Perceivedstate
Repertoire of acts
Pleasure-pain associations

Predictive model

Use of internal model
to construct a plan
Selection of action

State ofproblem (for example, slid-
ing block puzzle configuration)
Node on problem graph
Set of operators
Evaluation function
The ‘develop’ function of the Graph
Traverser program
Application of develop function
to grow a partial search tree
Printout ofpartial path under ‘dyna-
mic pruning’ regime

Chain of reflex actions Conditionalchoicestrategy
 

Ofparticular interest are ideas which we are investigating experimen-
tally for enabling the Graph Traverser to apply increasingly severe pruning
procedurestoits tree-growing activity, as its experience enlarges, until it has
converted its operations from ‘tree’ mode to ‘bamboo’ mode.Thebiological
analogy is with the embedding into fixed chains of habitual actions of
patterns of behaviour which the organism originally elaboratesfor itself on a
trial and error basis. WhenI first learned to tie my tie, the process was
painful and fumbling with many false starts, backtracks and abandoned
experiments. Now the sequenceof actions proceeds in smooth stereotype,
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each action creating a new state which in turninfallibly elicits a unique
successor action, until it has run to completion. Onlyif I take a seriously
wrong turn — if, for example, I have selected a bow tie by mistake — am I
thrownbackinto ‘tree-growing’, as opposed to ‘bamboo’ mode,until I have
workedbacktoa state sufficiently familiar to allow stereotyped habits to
resumecontrol.

Aggregation into larger units so as to exploit redundancyis called
‘chunking’ by George Miller. The extreme product of this process in
linguistic behaviouris the cliché, the immense benefits of which in terms of
neural economyis evidenced bythe cliché-ridden speech of the general
citizen. Chunkinginvolves both input and output streams. Output chunking
corresponds to what are sometimes called ‘compound moves’ or ‘macro-
moves’in the literature of automatic problem-solving.

Someof this discussion has been vague. The time for generalities is,
however, drawing to an end,as laboratories in different parts of the world
embark onthe concrete task of constructing intelligent robots. In our own
laboratory we plan to construct a FREDERICK (Family Robot for Enter-
tainment, Discussion and Education, the Retrieval of Information, and the

Collation of Knowledge). In future time the readerwill be rightly impatient
of any treatment of these topics which does not include accounts of the
exploits by brain, eye, and limb of actual machines perambulating the
laboratory proving ground. When that time comesI believe that certain
fundamental capabilities will be found commonto all such machines,
including rote learning, generalization, the growing of look-aheadtrees,
tree-to-bamboo conversion, and the inductive up-dating of predictive rules
in the light of accumulating sensory experience. Althoughthefirst explo-
rations of these design topics were made in the attempts to program
computers to play games, the nascent planning abilities of intelligent
machineswill increasingly be devoted to playing ‘the gameagainst nature’.
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Evaluative comments in chess (1981)

Classical game theory partitions the set of legal chess positions into three
evaluative categories: won, drawn andlost. Yet chess commentators employ
a much larger repertoire of evaluative terms than this, distinguishing (for
example) a ‘drawn’ from a ‘balanced’ position, a ‘decisive’ from ‘slight’
advantage, an ‘inaccuracy’ from a ‘mistake’, and a ‘mistake’, from a
‘blunder’. As an extension ofthe classical theory, a modeloffallible play is
developed. Using this, an additional quantity can in principle be associated
with each position, so that we have not only its ‘game-theoretic value’ but
also its ‘expected utility’. A function of these two variables can be found
whichyields explications for many evaluative terms used by chess commen-
tators. The same model can be used as the basis of computerplay.It 1s shown
to be easier to justify, and to adjust to realistic situations, than the minimax

model on whichstate of the art chess programsare based.

REQUIREMENTSOF A THEORY

The game tree of chess contains about 10* positions (Good 1968), a
substantial proportion of which are terminal. The rules of the gameassign a
value to every terminal position, +1, 0, or — 1 according to whether the

position is won, drawn,orlost for White. These values can be backed up the

gametree using the minimaxrule,so that in principle every position can be
given a value, includingtheinitial position. This last is knownas‘the value of
the game’, and is widely conjectured to be 0 for chess.If this conjecture is
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correct, and if both sides play faultlessly, i.e. only execute value-preserving
moves(it follows from the ‘back-up’ method ofassigning valuesthat thereis
at least one such move available from every non-terminalposition), then the
game must end in a draw.A fragment of a hypothetical gametree is depicted
in Fig. 4.1. In Fig. 4.2 the method of attaching game-theoretic values to

Cl C2 C3
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Fig. 4.1 — A gametree with its terminal nodes (shown as squares) labelled with
outcomevalues from the set { + 1,0, — 1}. Shading of the remaining nodes(circles)

indicates which player has the move.

positionsis illustrated.
Anevaluation function could,in principle, map board positions into a

larger set of values making it possible to express a distinction between
positions which are ‘marginally’ won and positions which are ‘overwhelm-
ingly’ or ‘obviously’ won, or between drawnpositions in which White, or
Black, ‘has the edge’ and drawnpositions which are ‘equally balanced’, and
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Fig. 4.2—The gametreeof Fig. 4.1 with its non-terminal nodeslabelled (underlined
values) by minimax back-up. White’s best strategy from B1 is drawn with a heavy
line. Arcs are marked with the conditional move-probabilities corresponding to
perfect play: since the game-theoretic value of B1 is +1, Black chooses with

probability 1 to moveto B2.

so forth. Two circumstances suggest that a useful purpose might be served by
multi-valued functions.

(i) Chess Masters and commentators have developed a rich descriptive
languagefor the expression of such distinctions.

(11) Computer chess programs employreal-valued functions for evaluating
terminal positions, not of the gametree whichis too large, but of the
look-ahead tree. Values backed up from the look-ahead horizon are
used to select the next move. Welack a formalbasis for assigning definite
interpretations to such values.

Thereis thus a need for a stronger theory of position-evaluation. This paper
discusses chess, but the treatmentis general and coversall two-person zero-
sum gamesof perfect information without chance moves.
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A good theory should explicate a variety of commentators’ concepts.
Table 4.1 is a representative list. Where a conventional symbolis availableit
precedes the verbal comment.

MAIN FEATURES OF THE THEORY

The game-theoretic model presupposesperfect play, whereasin the real-life
game of chess (whether human or computer) both sides are susceptible to
error. Our theory is based onthis distinction, and presents the following
main features:

(1) We follow Good (1968) and interpret the values of terminal positionsas
utilities as though the game wereplayedfor a unit stake. Values for pre-
terminal positions are then calculated as expected utilities. In order to
avoid confusion weshall refer to these throughoutas ‘expectedutilities’
or ‘scores’, never as ‘values’, reserving the latter term for game-

theoretic values.
(2) A modelof imperfect but skilled play is developed. Chessskill appears

in this model as an adjustable parameter running from 0 (random play)
to © (perfect play).

(3) In the new model the classical game-theoretic treatment appears as a
special case.

THE CALCULATION OF EXPECTED UTILITIES

Consider a state, 59, from which transitions to successorstates 51, 55, 53,... Sy
can occur with respective probabilities p,, pz, p3,... P,. Let us supposethat
these successor states have associated utilities u,, uz, u3,... u,. Then the

expected utility associated with 5p is

“1

> PH;
i=1

It followstrivially that if we interpretasutilities the values attached by the
rules of chess to the terminal position, then the values assigned to the non-
terminal positions by minimaxing canbeinterpreted as expectedutilities. In
this special case the ps associated with those arcs of the game tree which
carry a change of game-theoretic value are all 0. Consequently, the evalu-

n

ation of Ss p,u; at each node reducesto obtaining the ‘min’ or the ‘max’ of
i=1

the successor-values according to whether White or Black has the move. The
abovespecification is ambiguousin the case when two or more of the moves
applicable to a given board position are value-preserving. We can either
select one of these at random andassign a probabilitty of unity to it and zero
probabilties to the rest, or we can divide the unit probability equally among
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Table 4.1 — A representative list of commentators’ comments
 

(1) A dead draw (nothing that either players can do can avert a
draw)

(2) A complicated position
(3) = A balancedposition
(4) + White hasa slight advantage
(5S) + White has a clear advantage
(6) +-— White has a decisive advantage
(7) A certain win for White
(8) A difficult posiiton for White
(9) A losing move

(10) An inaccurate move: White weakenshis position
(11) White strengthenshis position
(12) ? A mistake
(13) ?? A blunder
(14) ! A strong move
(15) !! A very strongorbrilliant move
(16) !? A brilliant but unsound move
(17) Best move
(18) (!) Best movein difficult circumstances
(19) A safe move
(20) White should press homehis advantage
(21) Black should play for time
 

them. In the case of error-free play, calculation of expected utilities
according to either procedure leads to the same result. As the basis of a
model of actual play we shall adopt the second alternative, which is
illustrated in Fig. 4.2.

Wenowrelax the game-theoretic condition that at each choice-point on
the tree there is a probability of unity that a value-preserving move (‘sound’
or ‘correct’ move) is chosen, and weintroduce the possibility of error. In
constructing a model of error, we express the relative probabilities of
making alternative moves from a given position as a monotonic increasing
function (decreasing function for Black,since all utilities are expressed from
White’s standpoint) of the expectedutilities of the corresponding successor
positions. Thus the move leading to the highest expected utility will be
chosen with highest probability (but not with probability 1 as in the game-
theoretic error-free model), the move leading to the next highest expected
utility with next highest probability and so on. We thus envisagean idealized
player whosestatistical behaviourreflects the rank-ordering of the expected
utilities of chess positions. Using such a modelit is again possible to labelall
the nodesof the tree, working upwards from the terminal nodes, but by a
procedure whichdiffers from the minimax method.
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THE NOTION OF DISCERNIBILITY

In order to carry out someillustrative computations based onthis idea, we
now choose an actual monotonic function. No significanceis claimed for the
particular choice, since the points which weseek to establish are qualitative
rather than quantitative. Certain ideas must, however, be reflected in any
such function. A central oneis that of discernibility. We conceive the player
as standing upon a given node of the game-tree and looking towardsits
successors. These are labelled with their expectedutilities, but the labels are
not fully discernible to him. Discernibility is directly related to the strength
of the player (the labels are fully discernible to an infinitely strong player)
and inversely related to the number of movesseparating the node from the
end of the game: next-move matesand stalematesarefully discernible even
to the beginner, but next-move expectedutilities obtained by backing up are
less so. Reflecting these considerations, we shall define the discernibility
from a boardstate Sp of the expectedutility of a given successorstate s; as:

d= (M + 1)BOF3G E)] (4.1)

where M is the merit of the player in kilopoints of the US Chess Federation
scale, so that0 < M, and,,is the numberof movesthatthe value associated

with s; has been backed up. The symbol e€ denotes an arbitrarily small
quantity introducedto avoid the expression becominginfinite for r; = 0.

The expected utilities themselves are real numbers lying in the range
from —1 through 0 to +1. They are interpreted as being in logarithmic
measure, to base d. Using this base, we take the antilogarithms of the
expected utilities associated with the n successors of a given position as
giving the relative probabilities with which a player of merit M who has
reached 5S, selects the corresponding moves. Thus,for the transition sy—> Sp

P, « d¥ (4.2)

Normalising these so as to obtain actual probabilites, p,, p»,... p,, the
n

expected utility of a position is evaluated as Ss pj;, where u; is the expected
i=1

utility of the position generated by the ith memberofthe set of available
moves. Starting at the terminal positions, this gives a methodfor assigning
expectedutilities to successively higher levels of the gametree until every
position has been labelled.

A SAMPLE COMPUTATION

Consider the terminal fragment of game-tree shown in Fig. 4.1. We shall
illustrate step by step the calculation of expectedutilities so as to label every
node in the diagram. First we make assumptionsforthe playing strengths
My, and My,of White and Black respectively. If we are to extract examples
of the broad range of evaluative concepts from so ultra-simplified a game
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tree we mustset these strengths very low. Let us set My = 0.2 and M, = 1.4:
Whiteis thus an abject beginner and Black a weak tournamentplayer.In our
model M = 0 implies random play. The notation u(s) denotes the expected
utility of position s.

H4:

HS:

+1.

G1:

G2:

G3:

F9:

E1:

E2:

ES:

D9:

C1:

CS:

C6:

B1:

All successors have the same value, + 1: u(H4) = +1.
There is only one successor, so the move-probability is unity: u(H5) =

Uniquesuccessor: u(G1) = 0.
Equivalued successors: u(G2) = — 1.
Equivaluedsuccessors: u(G3) = + 1.
From proportionality (4.2) we have
Move to G1: d° = 1 = relative probability.
Move to G2: r=1, so, from Eqn(4.1), d= 1.2!7 = 8.915.

Relative probability = 1/8.915 = 0.1121.
Move to G3: r=2, so d= 1.2’ = 3.925 = relative probability.

Normalized probabilities: G1, 0.1985; G2, 0.0222; G3,

0.7792.
u(F9) = (0.1985 x 0) + (0.0222 x — 1) + (0.7792 x +1) = +0.757.
Equivalued successors. u(E1) = — 1.
r=0. u(E2) = — 1, and similarly for u(E3) and u(E4).
Unique successor. u(ES) = 0.757.
Move to El: r=1. d=1.2'*. Relative probability = 1/8.915 =0.112

and similarly for moves to E2, E3, and E4.

Moveto E6: Relative probability = 1, and similarly for moveto E7.
Moveto ES: r= 4. d= 1.2575 = 2.604. Relative probability = 2.0640.
Normalized probabilities: El, 0.025; E2, 0.025; E3, 0.025; E4, 0.025;

E5, 0.457; E6, 0.222; E7, 0.222 (total
1.001).

u(D9) = (0.457 x 0.757) — 0.100 = 0.246.
r=(0. u(C1) = —1, and similarly for u(C2), u(C3) and u(C4).
Unique successor. u(C5) = 0.246.
Equivalued successors. u(C6) = 0, and similarly for u(C7) and u(C8).
Move to Cl: r=1. d=1.2'. Relative probability = 1/8.915 = 0.112

and similarly for moves to C2, C3 and C4.
Move to C5: r=6. d= 1.24 =2.272. Relative probability = 1.2240.
Normalized probabilities: C1, 0.06703; C2, 0.06703; C3, 0.06703; C4,

0.06703; C5, 0.73190 (total 1.00002).
u(B1) = (0.7319 x 0.246) — 0.2681 = — 0.088.

: Equivalued successors. u(B2) = 0.
Move to B1: r=7. d=2.4+-78, Relative probability = 1.391.
Move to B2: Relative probability = d°= 1.
Normalized probabilities: B1, 0.582; B2, 0.418.

u(A) = (0.582 X — 0.088) + (0.418 x 0) = — 0.051.

In Fig. 4.3 the tree of Fig. 4.1 is shown with expectedutilities, calculated
as above, attached to the nodes. The expected utility of the root node, A,
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Fig. 4.3 — The game tree of Figs 4.1 and 4.2 labelled with expected utilities
calculated from a model of fallible play. White has been credited with playing
strength My = 0.2 and Black has Mg = 1.4. Conditional move-probabilities gener-
ated by this model are entered against the correspondingarcs and used to ‘back-up’
expected utilities to successively higher levels. As before, backed up values are

underlined.

turns out to be one twentieth of a unit in Black’s favour—

a

‘slight plus’ for
Black. The analysis of Black’s ‘plus’ is worth pursuing, for it illustrates
certain fundamental concepts to which our theoryis directed, in particular
the idea that a losing move(in the game-theoretic sense of a transition for
White to value — 1 or for Black to value +1) can also be the ‘best’ move
against a fallible opponent.

Note that Black can secure a certain draw by moving to B2. Note also
that the moveto B1is a losing move in the game-theories sense, for White
can then win by the sequence B1 > C5 > D9 — E5 > F9 - G3, asshown
by the heavyline in Fig. 4.2. Yet the expectedutility of the move, — 0.088,is
marginally better for Black than that of the ‘correct’ move (expectedutility
zero), and our model of Black, possessed of a weak tournament player’s
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discernment, shows a 58%preference for the move. Thestatistical advan-
tage arises, as can be seen by inspecting the diagram, from thefactthat play
is switched into a subtree where the error-prone White has numerous
opportunities for error presented to him. Hehasto find the needle of sound
play in a haystack of hazards. In such a situation we sometimes saythat
Blacksets‘traps’ for his opponent.If the aesthetic features of the move to B1
appeal to the commentator, he may evenusethe annotation ‘1?’ which we
take to mean ‘brilliant but unsound’. A sufficient increase in the strength of
White could give cause to removethe ‘!’ or even to convert it into a second
‘?’. To illustrate this point we have recalculated the entire diagram after
setting My = Mz =1.4, shown in Fig. 4.4. Here the move to B1 doesnot
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Fig. 4.4 — Expectedutilities backed up the game-tree using a different assumption
about the strength of the players, namely My = Mg 1.4;i.e. both players are of
weakclub standard. The expected utility associated with the root node now favours
White, and the modelof Black’s play showsa 40:1 preference at this choice-point for

the ‘safe draw’.
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appearas‘best’, nor even as a mistake, but as a blunder, and correspond-
ingly our model of Black showsa preference of approximately 40:1 for B2.

Returning to the list of specimen evaluative comments in Table 4.1, we
can now derive explications for them (Table 4.2). Wherever possible, an

Table 4.2 — Explication of the evaluative comments of Table 4.1
 

(1)

(2)

(3) =,

(4) +,

(5) +,

(6) + -,

(7)
(8)

(9)

(10)
(11)
(12) ?,

(13) 22,
(14)!,

(15) !1,
(16) !2,
(17)
(18) (!),

(19)
(20)

(21)

Comment

A dead draw

s is complicated

sis balanced

Case 1: s is lifeless

Case 2: s has high tension
White hasa slight advantage
White has a clear advantage (good winning chances)
White has a decisive advantage
Case 1: White has excellent winning chances
Case 2: Although White’s gameis theoretically lost, he is amost
bound to win
Case 3: An easy win for White
A certain win for White
sis difficult
Case 1: White needs accuracy to secure the draw
Case 2: White needs accuracy to secure the win
Case 3: Although theoretically won, White’s position is so difficult
for him that he should offer a draw
A losing move

An inaccuracy: White’s move weakenshis position
White’s move strengthenshis position
A mistake

A blunder
A strong move

A very strong or brilliant move
A brilliant but unsound move

Best move

Best movein difficult circumstances

A safe move
“White should press homehis advantage.’ Therationale for trying
to shorten the game when ahead can be understood by noting in
Fig. 4.3 how the advantage decays as we move backwardsfrom the
terminalpositions. In Fig. 4.5 White, in moving from B1, has been
given an additional option in the form of a move to C5.1, from
which Black is forced to movedirectly to F9 (S-shapedarc in Fig.
4.5). Game-theoretically the choice between moving to C5 and
moving to CS5.1 is equally balanced since they are both ‘won’
positions for White. But the expected utilities, + 0.246 against
+ 0.757, tell the true story, thatif he incurs needless delay in a won
position, especially if it is a complicated position (high branching
ratio of immediately dependenttree), he multiplies his chancesof
error. Our model selects the move to C5.1 with 1.7 times the
frequency of CS, with a corresponding increase of u(B1) (see Fig.
4.5).
‘Black should play for time’ is the complementary advice one
should give to the other player in the foregoing situation. If our
hypothetical node C5.1 had a second branchleading to D9 (shown
as a brokenline in Fig. 4.5), then Black should preferit to F9.

Explication
v=0Q for all terminal

descendantsof s
The first few levels of

the tree rooted ins have

high branchingratios
v=Qandu = 0

var (v,) = 0 }
+ see text

var (v,)>0 |
v=OQandu>0

v=Oandu>0

u= +1

v=Qandu = +1

v= —-landu= +1

v= +landu= +1

v= +landu= +1

v>u

v=OQandu <0

v= +land0<u<l

v= +landu<0
v(s2) = —1 and v(s,)>

Av=0Oand Au<0
Av=Oand Au>0
Av= —1 and not (Au
< 0)
Av<0OQand Au <0
Av=OQand Au>0 and
S, 1S difficult
Av=Oand Au>0
Av<OQand Au>0O
Au is max
Au is max and5,is diffi-
cult

Av=0 and 5;is lifeless
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explication is expressed in terms of two functions of a board position,
namely its game-theoretic value v andits expected utility u. Where a move,
rather than a position, is described, we use the notation Av and Au to
denote the changesin the corresponding quantities affected by the move.
Wedenote by s, the position from which the move is made and bys, the
position which it generates. Some items of the original list have for
completeness been differentiated into sub-concepts. Some of these would
never appear in a chess book although under assumptions of very low
playing strength they are generated by our model. Case 2 of (6) is an
example of this: a ‘decisive advantage’ of this kind would characterise, for
example, the initial position if Bobby Fischer gave Queen odds to a
beginner.

Weexhibit systematically in Table 4.3 various combinationsof u and v,

Table 4.3 — Evaluative comments on positions (comments on moves are now shownhere)
corresponding to various combinations of expected utility, u, and gametheoretic value, v

 

1.

10.

u=0

.u=-1

u=t+)

.ux~=Q

v=—-1
S$ is virtually impossible (be-
cause of the unlikelihood
that u should be identically
zero).
5 iS a certain win for Black.
s is impossible.
White has excellent drawing
chances. Black needsaccur-
acy to ensurehis win.
An easy win for Black (deci-
sive advantage).

Black has a theoretical win

but is almost boundto lose.

. ~1<u<0 Black has a mildly difficult
win.

. +1>u>0 Black needs extreme accur-

acy to makesure of his win
(a very difficult win for
Black).

. ~1<u<0 Black has aclear advantage.

+ 1>u>0 Black has a theoretical win

butis likely to lose.

v=0
s is a certain draw (‘dead
draw’).

s is impossible.
s is impossible.
s is a balanced position.

Black has excellent winning
chances. White needs ac-
curacy to make sure of the
draw.
White has excellent winning
chances. Black needs great
accuracy to makesureof the
draw.
Black has a slight advan-
tage. White needs care to
make sure of the draw.
White has a slight advan-
tage. Black needs care to
makesure of the draw.

Black has good winning
chances. White needs ac-
curacy to makesure of the
draw.
White has good winning
chances. Black needs accur-
acy to make sure of the
draw.

v= +1
S is virtually impossible (be-
cause of the unlikelihood that
u should be identically zero).

s is impossible.
s is a certain win for White.

Black has excellent drawing
chances. White needs accur-

acy to ensurehis win.
White has a theoretical win

but is almost boundtolose.

An easy win for White (deci-
sive advantage).

White needs extreme accur-
acy to makesure ofhis win (a
very difficult win for White).
White has a mildly difficult
win.

White has a theoretical win

butis likely to lose.

White has a clear advantage.

entering in each case the evaluative comment which seems most
appropriate.

‘TENSION’

The minimax value of s can be regarded as in some sense summarizing the
values of the terminal nodes of the tree rooted in s. More obviously, the
expected utility of s, which has the form of a weighted mean,constitutes a
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summaryof a different kind of this same set of quantities. It seems natural to
proceed tostatistics of higher order, i.e. from representative values and
means to variances. Might such second-momentstatistics also possess
recognizable meaning in terms of the chess commentator’s vocabulary?
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Fig. 4.5 —A modified version of Fig. 4.3 in which a new node, C5.1, has been added

leading to F9 (the brokenline represents a hypothetical delaying move for Black, see
text). Although withouteffect on the game-theoretic values of nodeslying aboveit in
the tree, interpolationof this short-cut optiontips the balance of expectedutilities, so

that at the root the move to B2 becomes‘best’.

Good (1968) discusses a property of chess positions which he calls
‘agitation’. He definesit by considering how sharply the estimatedutility of a
position is changed by investing a further unit of work in deepening the
forward analysis. This quantity will necessarily be positively related to the
variance of the distribution of u values over the dependent sub-tree, and
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hence to the measure which we develop belowforthe ‘tension’of a position.
The formerBritish Champion, Alexander,uses this term in an introductory
chapter to Fischer v. Spassky, Reykjavik 1972. Alexander (1972)writes (see
Fig. 4.6),

Giuoco Pianissimo Gruenfeld defence
.

 
Fig. 4.6 — Positions of low and high ‘tension’ (from Alexander 1972).

‘Let meillustrate (a little crudely) this question of tension by
comparing two openings:
A. (Giuoco Pianissimo) 1. P-K4, P~K6; 2. Kt-KB3, Kt-QB3;3.
B-B4, B-B4; P—Q3, P-Q3; 5. Kt-B3, Kt-B3.
B. (Gruenfeld Defence: see the Siegen game Spasskyv. Fischer)1.
P-Q4, Kt-KB3; 2. P-QB4, P-KKt3; 3. Kt-QB3, P-Q4; 4. Px P,
Kt x P; 5. P-K4, Kt x Kt; 6. Px Kt, B-Kt2; 7. B-QB4, P—QB4.
The moves in example A are perfectly correct — butafter five
moves the gameis as dead as mutton;it is too simple, too balanced,

andis almost certain to lead to an early and dull draw. The movesin
example B are objectively no better — but the position is full of
tension; White has a powerful Pawn centre but Black can exert
pressure onit and,if he survives the middle game, maystand better
in the ending— the players are already committed to a difficult and
complex struggle in which a draw is notvery likely.’

A simple way of capturing the spirit of Alexander’s definition within the
frameworkof ourtheory is to use the weighted mean square of the terminal
values of the tree rooted in s, 1.e.

var(v,) = >» Pw?
teT
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where is the set of terminalpositions andp, is the probability of arriving at
the ‘th memberof this set starting at s. A value of unity corresponds to
maximal tension and a zero value to minimaltension (the latter can only be
attained by a ‘dead draw’). The tension of the root node of Fig. 4.3 is
estimated by this method at 0.559. Referring to comment No.(3) above we
assign this root node to Case 2 rather than to Case 1 of the category
‘balanced’. Note that although ‘tension’ is calculated from game-theoretic
values, v,, use is madeofthe uin the calculation of the probabilities, p,, and
hence the measureis affected by variation of the merit parameters My, and
Mg.Assoon as wepostulate greater playing strength on the part of White
some of the tension of the position is reduced. The tension of node A in Fig.
4.4 1s only 0.024, reflecting the fact that the Black is almost certain to steer
play into the ‘dead draw’ sub-tree.

Note that > pv? is equal simply to the probability of a non-drawn
teT

outcome. But we have preferred to formulate the expression explicitly as a
variance, since in realistic cases game-theoretic values are not likely to be

available, or calculable in practice. The approximating formula>Pymay
teU

then prove useful, where the ys have been assigned by someevaluation
function (or by humanintuition) to the membersofU,theset of states on the
lookahead horizon.

SUMMARYOFIDEASSO FAR

We have extendedthestrict game-theoretic modelof chess, which assigns to
board positions only three values: + 1,0 and — 1. A good model should do
justice to the profusion of chess commentators’ evaluations. Specimen
evaluative comments have been displayed as benchmarksagainst which to
assess the extended theory. We haveillustrated with worked examples a
simple modelbased onthe notionsof utility and statistical expectation. Our
modelfinds no particular difficulty in explicating the specimen evaluative
comments. It also reduces to the game-theoretic modelin the special case of
error-free play.

APPLICATION TO COMPUTER CHESS

A worthwhile study would be to explore parts of a non-trivial sub-game of
chess of which complete game-theoretic knowledge exists, as in K +N
versus K+ R (Bratko & Michie 1980, Kopec & Niblett 1980). The pro-
gram’s own comment on sample end-gameplay could be comparedwith the
intuitions of experiencedplayers.
A moresatisfying use of the model would be for generating computer
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play. The procedure exhibited earlier for calculating scores by backwards
iteration from the terminal nodes of the game-tree was derived from
classical decision theory. State of the art tournament programsalso use
‘backed-up’ scores and they base move-selection on them. But they follow
the minimax model. Might not such programsbenefit from using expected
utilities rather than minimax? Afterall, the near-universal adoption of the
minimax rule in computer game-playing rests on no demonstratedtheoreti-
cal foundation‘.

Whenlook-ahead is conducted to the end of the game,the validity of
minimaxingrests onits built-in guarantee against selecting a game-theoreti-
cally ‘losing move’. The reader can remind himself of this by inspectingFig.
4.2: the constant-value sub-tree rooted in a given node defines a value-
preserving strategy for all play ensuing from that node, provided that we
have somerule for tie-breaking among a node’s equivalued successors. But
Fig. 4.3 shows that against a fallible opponent, this concept of validity is
harmful, for here a ‘losing move’ is Black’s decision-theoretically best
choice.
A further difficulty arises when computational resources do not permit

complete look-ahead . For this Shannon and Turing independently pres-
cribed that the program should look ahead to some limited depth, and then
assign to the terminal nodes of the look-aheadtree estimates of their game-
theoretic values supplied by an ‘evaluation function’ — typically a linear
combination of terms corresponding to measurable features of the position
(piece advantage, mobility etc.). These scores are then backed up bythe
minimax rule to the current position’s immediate successors, in place of the
desired but inaccessible game-theoretic values. The rule of play selects the
successor with the most favourable backed-up score (moveB in Fig. 4.7).

Except in the (unrealistic and uninteresting) case that the evaluation
function approximates the game-theoretic value so closely that the decisions
given by the rule are invariant with respect to the depth of lookahead,this
rule has lacked formal justification. We are thus free to attribute its
empirical successto the fact that it can be regarded as an approximationto a
decision-theoretically correct rule of the kind developed earlier. Note that
the larger are the values of My and Mg, thecloser is the approximation;in
the limit the two models coincide.

The new modelraises a point of particular relevance to the present
situation in computer chess. Fast, partly parallel, special-purpose chess
machines have recently been developed and interfaced to powerful com-
puters (see for example Moussouris et al. 1979). Chess programs of conven-
tional type interfaced to such machines becomecapable of searching to an
average depth in excess of 9-ply, almost twice that attained by chess masters
(see de Groot 1965; note that we are speaking of the average length of the
longest branch of the look-ahead tree). To give such a machine the best
chancesit should be endowedwith a ‘hungerfor complexity’. The idea must
be continually to drive for high-tension positons avoiding simplifying

+ Beal and Bratko have, however, recently established a sufficient condition (in Advances in
Computer Chess, Vol. 3, Pergamon).
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White to play

 
Fig. 4.7— Positions are shownas circles in this look-ahead tree, in which the nodes
are marked with ‘face scores’ (bars over negative). Boxed figures are values backed
up from the look-ahead horizon. If move-selection were decided by face scores then
move A would be chosen,butifbacked-up scores then move B. Whatis the rationale

for B?

exchanges wherepossible. In this way cognitive strain on the human player
is intensified by the need for vigilance against tactical traps which maylie
29-ply deep. Such, a policy calls for a model incorporating opponent
fallibility.

CONCLUDING REMARKS

An objection to the theory here developed is that the opponent modelis
arbitrary. Two commentsarein order.

(1) It is of no theoretical consequence what particular opponent modelis
used for illustration, provided only that it has the right overall proper-
ties. The readeris free to use the theory with any opponent model he
pleases.

(2) No choice of opponent model is as arbitrary, or as inflexible, as
minimax.Moreover, even on the basis of complete look-ahead to the
end of the game, minimax back-up does not yield the best strategy
against a fallible opponent.
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2D
Computable sub-gamesof chess

A well-known argument, set out in the preceding chapter, demonstrates a
sense in which chess—and otherfinite two-person games in which both
players are allowed to see what is going on—is a foregone conclusion. The
same imagined computation for assigning a won—drawn-lost value to the
starting position (and any other position which we wish to evaluate) also
defines correct strategies for the players.
A strategy whichis no morethancorrectis unsatisfactoryin that it lacks a

‘sense of direction’. In a won position an ideal strategy presses forward to
victory, preferably by the shortest route. In a lost position a Fabiantactic of
delay is indicated: in case the opponentwerefallible, we would wantto give
him as many opportunitiesto slip as possible. These ideas can be formalized
by an appropriate modification of the minimax rule described in the earlier
chapter by which the won—-drawn-lost values of terminal nodes are backed
up the tree of the game. Thetrick is to modify backed-up values according to
their distance from the end and then to proceedas before. Theeffectis to
pick out from the correct-strategy tree found by the unmodified procedure
an optimal-strategy sub-tree defining the behaviour of ideally motivated
players.

Note that a strategy which is ‘optimal’ is always ‘correct’, but the
converse does not hold. Correct but non-optimal moves could perhaps be
describedas‘inaccuracies’; they are not ‘mistakes’. Thereis a sense in which
an inaccuracy, or even a mistake, might be a ‘good move’relative to the
limitations of an opponent. Such a sense, extensively explored in the
previouschapter, is not consideredfurtherhere.

Considerable interest would attach to the computation by this method of
an optimal, or even a merely correct, strategy for the complete game of
chess. But the gameis too large. Claude Shannonestimatedthat to perform
the required calculation, working back fromall the terminalpositions to the
start, a machine operating at the rate of one variation per micro-micro-
second would require over 10 to the power 90 years. He assumedan average
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move-choice of 30 from each position and a duration of 40 movesfor the
typical game.

Atfirst sight, then, the intersection of chess and practical computing
seems too small to be of interest. Actually this is far from the case.

At a lower level of aspiration than exhaustive computation of the
complete game,two different avenuesare open, bothinviting. First, one can
accept a degree of approximation orerror in the results of chess compu-
tations, and decide simply to developpractical playing programsable to hold
their own with human masters. The second avenue, to which the present
chapter is devoted, exists by virtue of the fact that exhaustive computation
can fully solve sub-games of chess which are not fully understood by
Grandmasters, or even by life-time students of the end-game. Wherethis
has been done, results of interest have emerged.

The Grandmaster’s secret weapon(typically secret even from himself) is
his voluminous chess knowledge. Computers have now madeit possible to
probe such knowledge, and to investigate how it can be acquired, applied,

refined, corrected, compacted, measured, and validated. Chess invites such

machine-basedstudy, not least because ofits vast accumulationsof codified
lore. It has been something of a shock that the first machine analyses have
indicated that this corpus may beso deficient as to be almost valueless. A
Grandmaster is made by a combinationof innate talent, inspiration from
mentors, and sustained study and practice. None of these, it seems, endows

him with the ability to articulate what he knows.It is in this sense that his
acquired knowledgeis secret even from himself, as we shall see.
A first step of machine analysis is to chop a small fragmentat a time from

the total game for detailed examination. Perhaps the smallest and most
elementary fragmentis the ending King and Rook against King. Reuben
Fine’s Basic Chess Endings devotes one pagetoit, including a diagram of a
position said to require sixteen moves to mate. A computer tabulation by
Clarke of the legal configurations of pieces (28056 after allowing for
symmetries) reveals that with optimalplay only fifteen movesare needed for
this position, and that the longest mating pathfor any position is 16, not 17 as
stated by Fine. Even the smallest sub-games,then, raise questions on which
Grandmaster knowledge errs. Levels of increasing complexity can be
arrangedin the following progression.

Level1. Correct play is trivial for a Grandmaster, such as the
King—Rook—King (KRK) case cited, and other standard endings such as
KOK, KPK, KBBK, KBNK.Note that we distinguish between correct and

optimalplay.

Level 2. A Grandmaster finds the problem of correct play sufficiently
soluble for practical play against human opponents, but finds serious
difficulty against an optimal machine opponent. Examples are the
King—Rook—King—Knight (KRKN), KQKR, and KPKP end-games. Opti-
mal-play tabulations have been computed not only for these but forall
pawnless four-piece endings, notably by Kenneth Thompsonof Bell Labor-
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atories. Such a database can be used to detect departures from optimalplay,
as also from correctplay.

Level 3. Correct play is beyond the capability of the Grandmaster when
facing optimal opposition. Even if he has specially prepared for the given
end-game,soonerorlatererrors will rob him of the theoretically anticipated
outcome. Yet the problem spaceisstill small enough for a complete look-up
database to be machine-constructed. Examples are KQPKQ, KRPKR,

KRBKR, KNNKP, and KBBKN.All the interesting pawnless five-piece

endings have now been tabulated by Thompson. Each such table comprises
upwards of a hundred million entries. With present technology complete
exhaustion in this style of the space of possibilities is probably feasible
(although not yet attempted) for end-gameswith as manyas seven pieces on
the boardin all, including the Kings.

Level 4. Endings are too complex to be fully penetrated by exhaustive
computation,let alone by the skill of Grandmasters or end-gamespecialists.
Possibilities remain of constructing by man—machine cooperation complete
strategies even for endingssuch asthese, and of proving them correct. But in
this case proof must of necessity be helped by formal reasoning, and cannot
rely on total exhaustion of the problem space. Even then exhaustive
databases can offer useful tests for gaps or mistakes in the proof, or can
support the main proof by brute-force verification of key lemmas.

LEVEL 1 END-GAMES

In the beginners’ manuals the King-Rook—King (KRK) ending is usually
followed by exposition of the much harder King—Bishop—Bishop—King
(KBBK) and of the very hard King-—Bishop—Knight-King (KBNK).
Another level 1 end-game, namely King—Pawn-King, although easier to
play correctly than KBNK,has properties which makeit a serious program-
ming challenge. Programs can be checked for correctness against a complete
look-up table computed by M.B. Clarke which gives the won—drawnvalue
for each position with the minimax-optimal path-length to pawn-promotion
in the case of wonpositions. The longest such path is 19 moves.
A program by M.Bramerusesa list of goal-patterns ranked in order of

desirability, and selects whichever moveattains the highest-ranked of those
attainable in a single move. It has a modular structure which allows
modification of its play by incrementalinjection of additional goal-patterns.
At the cost of increasing the length of its goal-list from 20 patterns to 38,
adequate (correct) play was converted into play describable as ‘locally
optimal’, i.e. optimal with respect to the goal of safe pawn-promotion,
rather than going on to calculate the subsequent moves of the resulting
queen. A move which minimizes the numberof steps to promotionis not
necessarily that which minimizes the numberofsteps to mate.

This result, incidentally, suggests at least a rough-and-readybasis for the
quantitative measurement of the difficulty of a task. One can say that
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optimal KPK has about twice the difficulty of correct KPK, judging by the
number of patterns that must be memorized in order to perform the
respective tasks in a calculation-sparing manner.

LEVEL 2 END-GAMES

Addition to the KPK game of an enemy pawn, even underthe restriction
that it be on the samefile as the friendly pawn,is sufficient to introduce the
possibility of the machine’s finding positions which a human masteror end-
game scholar would recognize as ‘studies’. A study, or composition, is a
position with a unique winning(or in appropriate cases drawing)line of play:
for every variation introduced by the opponent there must be oneandonly
one way of bringing about the desired result. Also the composition should
exhibit certain properties of elegance, surprise, didactic value, and even wit,
whichare noteasy to define. Clarke has endowedhis program withcriteria
for searching through an exhaustive database to retrieve ‘study-like’ pos-
itions. Fig. 5.1 showstwoof its discoveries for KPKP not previously in the

   oz ae

(a) White to win (b) White to win

 
Fig. 5.1 — Two computer-assisted study compositions in the KPKP domain. The
natural-looking Pd4 for (a) and Kg6 for (b) fail. Correct are Kc3 and Pd5

respectively.

chessliterature.
Clarke’s computations showedthat, allowing for symmetries, there are

245 760 White-to-movepositions, comprising 60271 wins, 29 804 losses, and
155685 draws and illegal positions. The longest path to a won KPKP
position is 23 moves.

The King—-Rook—King—Knight end-game is comparablein playing diffi-
culty with that of the general KPKP game whenthisis notrestricted to the
case where the pawnsare on the samefile. There are 1 347 906 legal positions
with the stronger side to play (White, let us say). There are 1567222 legal
positions with Black to play. In 1970 Thomas Strohlein performed the
earliest recorded exhaustive chess computations, for which he chose the
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KQOKR, KRKB, and KRKNend-games.Thelatter has been further studied
in our laboratory. White can force the win in 696 414 of the 1347906 White-
to-play positions and in 1364561 of the 1567222 Black-to-play positions.
Two worst-case won-for-White positions exist with no fewer than 27 moves
(53 ‘plies’, counting Black’s replies) until capture of the knight. These are
shownin Fig. 5.2.

Position; WK:d1, WR:h1, BK:b1, BN:g4
1 Rh4 NeS 2 Re4 Nf7 3. Rb4+ Ka2
4 Ke2 Ka3 5 Kce3 Nd6 6 Rb6 Ne4+
7 Kd3 Nf2 8 Kc4 Ndl 9 Rb3 + Ka4
10 Rf3 Nb2+ 11 Kce3 Ka3 12 Rg3 Na4+
13. kc4 Ka2 14 Kb4 Nb2 15 Rg4 Nd3+
16 Kc3 NcS 17 Rc4 Ne6 18 Ra4+ Kbl

19 Ra5S Ng7 20 Re5 Ka2 21 Kd4 Kb3
22 Kd5 Kc3 23 Kc6 Kd4 24 Kd6 Kd3

25 Ke7 Kd4 26 Rg5 etc.

Position: WK:c1, WR:f8, BK:a3, BN:e2

1 Kd2 Nd4 2 Kce3 Nb5+ 3 Kce4 Nd6

4 Kc5 Nb7 5 Kb6 Nd6 6 Rf4 Kb3

7 KceS5 Nb7+ 8 Kc6 Nd8&+ 9 Kb5 Ne6

10 Rf3+ Kc2 11 Kc4 Kd2 12 Rf5 Kc2

13. Rf2+ Kdl 14 Kd3 NcS+ 15 Kd4 Nb3+

16 Kc3 Kel 17 Rb2 NcS 18 Kd4 Ne6

19 Ke3 Kfl 20 Rb6 Nc7 21 Ke4 Kf2

22 KeS Ke3 23 Rb7 Na6 24 Kd6 Kd4

25 Rb6 NeS5 26 Rb4 etc.

Fig. 5.2 — Optimal move sequencesfor the two longest wins in the King-Rook-K-
ing—Knight ending (White to move), from D. Kopec and T. Niblett, 1980. Many
positions, for either side, have more than one optimal continuation. The above two

lines should therefore be regarded as specimenpaths excerptedarbitrarily from two
optimal-strategy trees.

To execute the winning manoeuvresreliably, or to conduct a good
rearguard action against them with the knight’s side, lies beyond the powers
of the chess-master, although the leading end-gamespecialist John Roycroft
wasable by special study to acquire complete optimal-play mastery of play
of the Rook’s side from won-for-White positions (contrast Level 3 endings,
later).

A small step beyond KRKN in complexity bringsusto territory in which
a new and unexpected effect compounds the problems of the human
opponent.
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This phenomenon madea public appearance whenInternational Mas-
ters Hans Berliner and Lawrence Day undertook at the 1977 meeting at
Toronto of the International Federation of Information Processing to
demonstrate winning play of king and queen against king and rook. They
played against a minimax-optimal database of Kenneth Thompson.
Although every position with which they were faced at every stage was
theoretically won, they found themselves unable to make progress. They
complained that the machine’s style of defence was counter-intuitive and
even bizarre. This event dramatized the human’s dependence on economy
of mental representation, a need which is not shared by the machine.
Simplified rules of thumb must be adopted by the humanplayer, yet these
will often be sub-optimal and sometimes erroneous. Mastersself-trained to
play against masters only have experienceof strategies which are compactly
describable and memorizable, and can flounder whenfaced with a strategy
which cannotbe defined in humanly comprehensible terms.

LEVEL 3 END-GAMES

Working in Moscow on a British ICL System 4/70 computer, Vladimir
Arlazarov and Aaron Futer tabulated minimax-optimal strategies for
KQPKQand KRPKR,storing the results in each case on 8 magnetic tapes.
Fast tape-search routines enabled the machine to demonstrate play at
tournament speeds. These were used for an adjudication by Grandmaster
Averbakh of a wagerby International Master David Levy, which helost, to
the effect that a correct KRPKRstrategy could not be implemented on a
computer within a stated timelimit.

In KRPKRthegreatest length of any optimal path to pawn-promotionis
60 movesby each side. Thereare just two essentially distinct types ofstarting
position, each with two instances. The four positions are the following,all
with Black to move.

1. W: Kc3 Rc4 Pb2 B: Ke4 Rd.

2. W: Kc3 Re4 Pb2 B: Kf4 Rdl.

3. W: Kdl Rd6 Pb2 B: Kh6 Ra8.

4. W: Kdl Rd6 Pb2 B: Kg7 Ra3.

The KQPKQdatabase computed by the samelaboratory hasthe distinction
of being thefirst ever to be consulted during Grandmaster tournamentplay.
Bronstein, playing at Kiev, was left with a KOPKOQposition at weekend
adjournment, leaving time for his secondsto arrange for a suitable excerpt
of computerprintout to be sent by train from Moscow. After resumption
Bronstein played on to win. This databasehas also shownthat the worst-case
optimal path to pawn promotion from a pawn-on-7th-rank position is 58
moveslong, so that the win would beforfeit under the present tournament
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50-move rule. More extreme discoveries of this type had previously been
made without machineaids. Notably the King—-Knight-Knight-King—Pawn
ending had beenstudiedintensively by Troitzkyin the early 1930s, following
a treatment by Chapais in 1780. There is a position from which Troitzky
states that 85 moves must elapse before the next advance of the pawn.
Experience with computable end-games indicates that all quantitative
assertions of this nature should be machine-checked. The same qualifica-
tion, a fortiori, attaches to the introductory pages of Troitzky’s celebrated
60-page treatise, which contains the words:

‘This end-game contains no moresecrets’.

Returning to the computer era, Kenneth Thompson’s recent discoveries
of significant facts new to chess-include the status of King—Bishop—
Bishop-King-Knight (KBBKN)previously believed to be drawable pro-
vided that the Knight’s side can establish a ‘Kling—Horwitz’ position as in
Fig. 5.3(a) (either side to move).

White to move

 (b)

Fig. 5.3 — Twopositions from the KBBKN ending(seetext).

The position dates from 1851. The verdict that the defending side can
draw positions like this (based on the placing of the two black men and
largely ignoring the white placement) is repeated in all relevant chess end-
game textbooks. In 1983 Thompson demonstrated the general win of this
end-game in at most 66 moves, and the particular win in Kling-Horwitz
positions in about 40-45 moves. Cases of this kind have pushed the World
Chess Federation into an increasing numberof ad hoc modifications of the
50-move drawingrule.

Not only does the Thompson database, comprising some two hundred
million legal positions, show that the Bishops’side can win from all but a few
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freak starting positions, but the manner of winning passes master compre-
hension. Thecritical fourth stage of a 5-stage win from thestarting position
shownin Fig. 3(b) involves a procedure ‘not to be found in any book and
characterized by excruciating slowness and mystery’ (Roycroft). Moreover,
following more than a year’s study by the leading end-game specialist
A. J. Roycroft and others, with access to a variety of computeraids, it seems

possible that human mastery (as opposed to machine mastery)of this ending
may neverbeattained.

REASONING IN PLACE OF EXHAUSTION

Proving properties of sub-gamesof chess (e.g. that mate can or cannot be
forced from someorall starting positionsin a given ending) introduces anew
perspective on feasibility in chess computations. Shannon’s earlier-cited
arguments were conducted entirely within the constraints of a self-imposed
assumption, namely that complete solution of a position or of a sub-gameis
to be performed entirely by exhaustive deductions, i.e. in a space of
individual positions and moves. There is, however, another wayto exhaust

large spaces, namely by reasoning about generalized categories: indeed by
this method infinite spaces can just as readily be subdued. The author has
used computer-assisted reasoningto validate a long-standing conjecture by
the Hungarian chess analyst Jeno Ban. Place the White king and rookin the
sole cornerof an infinite board. Place the Black king anywhereelseatall, as
in Fig. 5.4. Ban conjectured that White can force matein a finite numberof
steps.

Plainly, exhaustive computations are powerless against such a problem.
It succumbs, however, to pattern-directed case-analysis together with a
proof of properties of an optimal solution strategy. A formula for the
minimal numberof solution steps from any given starting configuration was
also derived.

Although Troitzky’s treatment of the KNNKP gamewasnotformal, the
spirit of this approach breathes throughhisclassic analysis. He writesof ‘the
discovery of regularities’ and continues: ‘In this way I found it possible to
concentrate attention not on separate movesbut on sequencesof moves,to
find manoeuvres and combinations of manoeuvres,to devise tactics for both

sides andfinally to construct entire strategical plans’.
For machine implementation,the Troitzky approach needsto be raised

to the levelof full logical rigour and completeness. Although we maythinkit
unlikely, there is nothing in the present state of knowledgetotell us that the
space of some 10 to the power46 legal positions could not be reduced to a
manageable numberof theorems,and the gameof chess brought within the
reach of complete analysis. As a corrective, however, to naive expectations

it would be prudent if an excursion or two in the foothills were first
attempted, such as rigorous symbolic proof of Troitzky’s KNNKPtheories
or of Thompson’s empirical discovery that KBBKN is a won game. Suppose
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Fig. 5.4 — A problem of KRK on an infinite board with one corner (topleft).
Intuition says (correctly) that the White king mustget to the south-eastof the Black
king so as to drive him backto the corner. Intuition also says (incorrectly) that the

Black king can flee as fast as the White king can pursue him.

that such attempts met with failure, or just rough going. The main game
would then stand revealed as unconquerable — certainly without aid of
locally exhaustive computations and possibly altogether. Be that asit may,
the use of symbolic reasoning, especially whereit can be partly mechanized,
puts a new complexion on the notion of practical computability.

Let us illustrate by means of a toy example. ‘Everybody knows’ that
King-Knight-Knight-King (KNNK)is impossible for the knights’ side to
win. But how to prove it? An exhaustive approach might compute out the
space of a few hundred thousandlegal positions by forward repetition-free
search and note failure to arrive at any forced mates. Could the same
generalization be arrived at more directly and economically?

The answeris ‘Yes’. The generalidea of such reasoningwill be familiar to
everyone whohas ever pondered about whatthe knights can and cannot do
against the lone king. His argumentwill have gone somethinglikethis.

First, no checkmateposition is possible with the opponent’s king away
from the edge of the board, since the king’s square and the eight squares
surrounding it must all be attacked for the king to be in checkmate.It can
quickly be seen that no arrangementof the three White pieces exists which
controls a total of more than seven altogether ofthis block of nine squares,
since each knight can take care of at most two, and their king of only three.
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Computer chess and the
humanization of technology (1982)

Chess provides the opportunity for studying the representation of human
knowledge in machines. Butit took more than a centurysinceits conception
by Charles Babbagefor chess playing by machines to become reality. The
World Computer Chess Championship and other computer chess tourna-
ments where program is matched against program occur regularly. But can
the less clever but more intelligent human Master use the computer’s brute
force technologyas a source of new chess knowledge?

Thefirst serious proposal to have a machine play chess was made by
Babbage [1], the British pioneer of digital computing, but was never
executed. In the early years of this century the Spanish engineer Quevedo
demonstrated an electromechanical device for mating with king and rook
versus king [2]. But it was not until the late 1940s that serious experiments
with the complete game were conducted. The British logician and compu-
tation theorist Turing [3], in collaboration with Champernowneandothers,
constructed and tested various ‘paper machines’ embodying mechanized
strategies for chess [4]. Play was poor. In 1950 the American founder of
information theory Claude Shannon[5] published theclassic paper for the
theoretical ideas. During the same period Groot’s [6] study of the thought
processes of chess masters revealedthat their special ability does not derive
from ‘computer-like’ qualities of memoryorof accurate, fast, and sustained
calculation, but from powers of conceptualization. This result had been
foreshadowed by Binet’s [7] investigation in 1900 of the ability of chess
masters to play many gamesof blindfold chess simultaneously. He con-
cluded that in addition to la mémoire this accomplishment rested on
Pérudition (the use of accumulated chess knowledge to form meaningful
descriptionsofpositions) and ’imagination(ability mentally to reconstruct a
position from a description). Progress has been madein mechanizing the
‘computer-like’ mental attributes, but little in respect of ’érudition and
Pimagination.
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DEVELOPMENTS

The earliest chess programs, developedin the 1950s, have been reveiwed by
Samuel [8]. The modern era dates from the 1967 entry into human tourna-
ments of the Greenblatt-Eastlake—Crocker [9] program underthe playing
name MacHack. This program played at the level of a weak-to-middling
club player — Category III, USCF rating 1400-1600 (Candidate Master
level begins at 2000, National Master at 2200, International Master at 2400,

Grandmasterat 2500).
Computer chess tournaments, in which all games are program-against-

program, are now organized annually in the United States by the Associa-
tion for Computing Machinery (ACM). Thefirst took place in 1970 in New
York. In addition, every three years a World Computer Chess Champion-
ship sponsored by the International Federation of Information Processing
Societies is held. The first [10], in Stockholm in 1974,resulted in a victory for
the program KAISSA developed in Moscow by V. L. Arlazarov, G. G.
Adelson-Velskiy, A. R. Bitman, and M. V. Donskoy. CHESS4.0, entered
by L. Atkins and D. Slate of Northwestern University, United States, came
second. Standardsofplay corresponded approximately to USCF 1600-1650.
In 1975 the ACM tournament evokedplay at the same generallevel, but
produced one game, between CHESS 4.4 and CHAOS,of a more dis-

tinguished standard.
In the late 1970s most progress in computer play resulted from a

combination of improvements in the efficiency of deep tree-searching
methods with faster speeds of available computing hardware. CHESS4.6
won the Second World Computer Chess Championship at Toronto in 1977,
and domination of the ACM byupdated versions of CHESScontinued until
BELLE (Bell Labs) won in 1979. The Third World Computer Chess
Championship at Linz, Austria in 1980 was also won by BELLE. The
program [11] ran on an LSI 11/23 micro-computerlinked to a hard-wired
chess machine andcould ‘see’ of the order of 100,000 board positions per
second.

In 1981 the four strongest programs BELLE, CHESS 4.9, NUCHESS,
and CRAYBLITZ,wereall in the Candidate Master (2000-2199) range of
play. The same year saw the emergence of several commercially available
portable chess machines claimed by their manufacturerstorate at least 1900
(Category1).

Computerchess has been described as the Drosophila melanogaster of
machineintelligence. Just as Thomas Hunt Morgan andhis colleagues were
able to exploit the special limitations and conveniences of the Drosophila
fruit fly to develop a methodologyof genetic mapping, so the gameof chess
holds special interest for the study of the representation of human know-
ledge in machines. Its chief advantages are: (1) chess constitutes a fully
defined and well-formalized domain; (2) the game challenges the highest
levels of humanintellectual capacity; (3) the challenge extends overthefull
range of cognitive functions such as logical calculation, rote learning,
concept-formation. analogical thinking, imagination, deductive and induc-
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tive reasoning; (4) a massive and detailed corpus of chess knowledge has
accumulated over the centuries in the form of chess instructional works and
commentaries; (5) a generally accepted numerical scale of performanceis
available in the form of the US Chess Federation and International ELO
rating system.

COMPUTATIONAL AND COGNITIVE MECHANISMS

The fundamental procedure, proposed independently by Turing and by
Shannon,involves look-ahead from the current position along a branching
tree of possibilities. Of course, chess-masters also look ahead (concrete
analysis) but on a severely restricted scale. According to de Groot, 30
positionsis aroundthelimit of whatis normally held in look-ahead memory.
By contrast chess programs commonly grow look-ahead trees comprising
millions of nodes.

Branching of the look-ahead tree ranges from around 25 branches per
node(if no pruning is applied) downto less than two branches per node for
Masters. The number,variety, and severity of pruning rules vary from one
program to another. In one or twoofthe stronger programsall but the alpha-
beta rule are effectively absent. In such a case the program seeks to make up
in brute-force calculation what it lacks in selectivity. All programs apply
terminationrules to halt growth of the tree beyondcertain limits. The main
factor in termination is the occurrence of quiescent positions (Turing’s
‘dead’ positions) in which no capture or other violent changes are in
immediate prospect. At the deeperlevels of the look-ahead tree quiescence
is taken as a sufficient indication to discontinue forward analysis.

In the Turing-Shannon schemeon completion of the look-aheadtree the
program applies an evaluation function to the terminalpositions, labelling
them with computed estimates of their degree of strategic strength or
weakness. The labels are then backed up the tree by the minimaxrule:that
is, a node for whichit is white’s turn to play is credited with the maximum-
valued of the labels attached to its successors, while a black-to-play node
receives its label from the minimum-valuedofits successors. The wave of
labelling thus spreads through the tree from the terminal nodes towardsthe
root node (representing the current position) until all its successors are
labelled. The program then selects the move leadingto the highest-valued of
these successors,if it is white’s turn to move; otherwise the move leading to
the lowest valued successor.

The functioning of this basic mechanism can be improved by various
devices aimedat eliminating redundantcalculations and redundant storage.
In favourable conditionsthe alpha-beta rule [12] for pruning almost doubles
the realized depth of look-ahead withoutaltering the final result of the
computation:the spirit animatingthis rule is that once the search has found
that a particular line falls short of being selected there is no point in
exploring its further ramifications to determine by just how farit falls short.
Look-ahead depthsattained in modern computer chesslie in the range 6-15,
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somewhat in excess of the typical depths to which Masters and Grandmas-
ters look (average 6-7 as found by de Groot). In spite of this the standard of
computer chess remainsfar below Grandmasterlevels. Some of the reasons
are as follows:

(1) Horizon effect. The computer scientist and former World Correspon-
dence Chess Champion, HansBerliner[13], has pointed out that reliance on
the unaided Turing-Shannonprocedure renders a program obliviousto all
events which may occur beyondits look-ahead horizon. Even thougha post-
horizon loss, or a post-horizon gain, may appearinevitable and obvious to
the human onlooker, the program plans from hand to mouth, foolishly
sacrificing material to delay a loss which cannot indefinitely be averted;
alternatively it may forfeit an eventual large expectation by grabbing at a
small gain.

(2) Lack of long-range ideas. A Masterplansat the conceptuallevel, linking
the main milestoneswith detailed steps as a separate operation. Contempor-
ary programshave no corresponding capability. In the end-gamein particu-
lar, where long-range reasoning of this kind is at a premium, programs can
flounder aimlessly, promoting small disconnected goals with no unifying
strategic thread.

For these reasons, computer programs make a poorer showingin the
end-gamethanin the opening and mid-game, performinglike club players
rather than candidate masters. Advances in sheer computer power, even
micro-microsecond processors or mega-megabyte memories, are not
expected in themselves materially to improvethis situation. Remedies must
take their departure from an appreciation of the ability of the chess-master
to utilize very large bodies of highly conceptualized and cross-referenced
chess knowledge. But in programs of the Turing-Shannon type the only
significant repository of chess knowledge is in the evaluation function,
typically a linear combination of terms measuring such features as material
advantage (conventional scores: 9 for Q, 5 for R, 3 for B, 3 for N, 1 for P),
king safety, piece mobility, pawn structure, rook controlof files, and so on.
Typically the number of features contributing terms to the evaluation
function in state-of-the-art tournament programslies in the range 30-50.

So simple a schemeis too weakto representthe fine structure of human
knowledge marshalled in the standard expository works such as Reuben
Fine’s Basic Chess Endings. Contemporary research is directed towards
buttressing the Turing—Shannon paradigm alonga line sometimes described
as the ‘knowledge approach’. Essential to this approachis the extension of
studies like Binet’s and de Groot’s to the discovery of the basic concepts
(properties andrelationsof pieces, files, ranks, and so on) which the Master

uses as the bricks and mortar of his mental descriptions. Chase and Simon
[14] foundthatthe relations of defence of one piece by another, proximity of
pieces, and being of the same denomination or colour were all used as
mental building-blocks, and that a particularly important relation for
binding togetherclusters of pieces held as a unit in memory was combination
of pieces of the same colour to converge on the opponent’s king position.
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Tan [15] formalized the process of conceptualization for the special case
of pawnstructures. His computer program wasable to describe pawns-only
positions in termsof‘islands’ and ‘fronts’ forming pawn-relations graphs,
from which ‘attack-defense-diagrams’ are automatically constructed. The
dynamicpotentialities of the position are thus summarized. Morerecently a
computerinduction algorithm [16] derived from Hunt’s “‘Concept Learning
System” [17] has been used to synthesize complete machine-executable
theories for the endings king and pawnversus king [18] and king and pawn
(on a7) versus king and rook[19].

Chessis a two-personfinite game with perfect information whichsatisfies
the zero-sum condition— an outcomewhichis good for oneplayeris bad in
equal measurefor the other. For any such gameitis theoretically possible
exhaustively to calculate backwards from the terminal (checkmate or
drawn) positions in such a wayas to determinefor every position whetherit
is drawn, won, or lost, and in the latter two cases what continuations
correspond to best strategy. In practice such computations, even if per-
formed onthe fastest conceivable computers, are infeasible except for end-
games simple enough to contain less than a thousand million or so legal
positions. Such computations werefirst done [20] for elementary ending
such as king and rook versus king (KRK) and king and pawnversus king
(KPK) which consist respectively of 50 015 and 179 656 legal positions.
They have been extendedto all the non-trivial four-piece endings, such as
KOKR, KRKN,and so on and to a subset of KPKP (M.R.B. Clarke,
personal communication). The most complex enumerations to have been
performedin this way are KQPKOQ[21] and KRPKR[22],of whichthefirst
is notable for having been consulted with good effect by Bronstein during
adjournmentof a master tournamentin Kiev. Significantfindings have been
made with the use of these end-game‘databases’, including the previously
unsuspected prevalence of serious error in master texts on the end-game.
Thus Fig. 6.1 showsa derivative of the celebrated position given by al-Adli
in the ninth century, rediscovered and(incorrectly) analysed in The Chess-
players’ Chronicle in 1859, and repeatedly (and incorrectly) re-analysed
since then. Amongerrors of Grandmaster Fine’s analysis in Basic Chess
Endingsis hisclassification of the position in Fig. 6.1 as a draw. Computer
analysis showsthat knight-capture or mate can be forcedin 12 further moves
[23].

BRUTE-FORCE COMPUTING IN TECHNOLOGY

The available power of computation advancesat the rate of almost tenfold
every five years. For today’s large machines one hundred million calcula-
tions per second is not abnormal. Measured on a comparable scale, the
human brain musters perhaps five per second. The brain, being able to
deploya large associative store of pattern-based concepts, is not normally
usedin this restricted sequential way. Otherwise feats such as recognizing a
person from a photograph,or understanding his speech, would be imposs-
ible for a device with such weak calculational powers. On the other hand
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black’s Kb8, white can only draw. Computeranalysis reveals that by Kc6 white can
then win in 12 moves. As shownin ref. 23, lesser errors abound.
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computing systemsstill rely primarily on brute force. So long as the present
rate of advance in hardware technology continues, they can afford to. But
can we,their less clever but moreintelligent masters, afford-to let them?

Several recent incidents have involved complex computercontrol sys-
tems. The suggestionis that reliance on the escalating power of brute force
may be heading towards danger. However effective and reliable such
systems may be in normal conditions, use of brute force may not be worth
the price paid during the rare episodes when a computer-controlled power
station or military installation or air-traffic control system malfunctions. On
these occasions a new factor becomes paramount: the human operatoror
supervisor needs to follow what the computing system ‘thinksit is doing’.

The computer’s processes are measured in millions of steps per second.
The human’s proceed very slowly — but in a richly furnished space of
descriptive concepts. These concepts are not mirrored in any wayin the
machine’s relatively small memory. So when operating conditions stray
from the norm,useful dialogue between the two breaks down.In its report
on the Three Mile Island accident the Kemeny Commission concluded that
the main failures were operatorfailures, and that the main cause of operator
failure was bewilderment by the stream of messages, warning displays and
the like from the control computer[24].

If such unsettling phenomenadeservelaboratory analysis, then we could
hardly find better material than the game of chess. The current world
computer chess champion examinesa tree of more thanten million possibili-
ties in look-ahead analysis before selecting a move, andis able onthis basis
to stand up to Grandmasters in purely tactical play. The Grandmasters, by
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virtue of their associative stores of conceptualized chess knowledge, have
the edgein strategic, or positional play. But as earlier stated a Grandmas-
ter’s mental investigation of look-ahead positions averages at most 30. So
the kind of mismatch that was noted by the Kemeny Commission, namely
between the calculation-rich but concept-poor computer andthe calcula-
tion-poor but concept-rich human,should be reproducible in the computer
chess laboratory. This is indeed the case,as has already been shown through
an analysis of the mechanisms employedin state-of-the-art computer chess
andits theoretical basis [25].

MACHINE PENETRATION

Machine penetration into complex positions began to reach beyond the
human horizon as early as 1977. In the Second World Computer Chess
Championship held that year in Toronto, the position shown in Fig. 6.2
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Fig. 6.2 — Position in the Toronto game DUCHESS against KAISSAafter white
had played Qa8+. Black’s play ofthe apparently meaningless rooksacrifice Re8 was
seen by an audience which included several Strong chess-masters as a grotesque

blunder. Overnight analysis by KAISSA’s programmers showedotherwise.

arose in a game betweenthe thenreigning champion KAISSA, a Moscow
program running on an IBM 168 computer,and the North Carolina program
DUCHESS. DUCHESShadjust given check with the queen. To the several
hundred computerscientists and chess players in the auditorium the only
reasonable option was to move the king out of check. KAISSA instead
interposed a rook, promptly losing to QXR check. With a whole rook
advantage DUCHESShadnodifficulty in crushing KAISSAin another 15
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or so moves,and the Russian team handed in KAISSA’sresignation in the
conviction that they had been robbed by an unsuspected program error.

Next morning Arlazarov and Donskoy announcedtheresult of a retrace
operation which had occupied them half the night and had revealed no
evidence of error. On the contrary, deep-going scrutiny showed KAISSA’s
apparent blunder to have been a brilliancy which purchased an extended
lease of life for a program which had already arrived in a hopelessly lost
position. The rook sacrifice had cleverly averted a mating combination
which both KAISSA’s and DUCHESS’s look-ahead were deep enough to
spot, but which eluded onlookers who included former world champion
Grandmaster Mikhail Botvinnik.

EXPERT VERSUS MARTIAN SYSTEMS

Now consider chess as a laboratory model of real-life decision-taking.

Imagine KAISSA’s brute-force computations to be those of an automated

control system for a nuclear powerstation. Let Grandmaster Botvinnik be

the engineering supervisor, highly knowledgeable about the domain,

assigned to monitor the system’s decisions and to intervene with manual

over-ride when he judges malfunction to have occurred. The machine makes

an unexpected decision. Does the supervisor intervene? Lackingthe calcu-

lational powerfully to probe the system’s martian mentality, let us suppose

that he does. Disaster follows. Yet had he been able to interrogate the

system he would have realized that the seemingly aberrantaction wasreally

geared to buying vital time — time in which staff could be evacuated,

population warned, ambulances and fire engines summoned,and so forth.

Yet he has to decide onthe basis of his knowledge and best judgement. Not

being a martian, he decides wrongly.

This problem cannotbe brushed aside by improvements to the program’s

surface features, such as better trace and diagnostics and more ‘user-

friendly’ command languages. For the particular case, chosen from 1977

vintage computerchess,this might suffice. But as the depth ofcalculation

increases, a pointis reached at which mere surface modificationswill notdo.

Radical reconstruction of the program becomesnecessary, using as building

blocks machine representations for the very same concepts as those which

the knowledgeable humanbrings to bear on the problem.

This approach leads to a new form of computing system, known as the

‘expert system’, whichis deliberately built in the humanrather than martian

mental mould. The use of such systems to act as interpretative buffers

between the two mentalities wasfirst demonstrated at the Rand Corporation

in RITA, a computer program knowledgeable both abouttheintricacies of

the ARPAtranscontinental computer network and aboutthe limitationsof

non-programming personnel desirousof using the network [26].

Brute-force computing is pushing information technology towards re-

gions of complexity which only machineswill be able to penetrate. To make

it possible for them to report back whatthey see, RITA-like developments

in human-interface software will be required. An eight-year programmeof
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research and development in advanced computing technology recently
announced by the Japan Information Processing DevelopmentCentre is
based in part on this conception, namely on the design and construction of
intelligent knowledge-based systems [27]. Their role will be to mediate
betwen the world of machines and the world of people.

FUTURE WORK AND PROSPECTS

Large-scale transfer of human knowledge from books(or brains) to com-
puters has not been achieved in any humanintellectual domain. Computer
chessis at the leading edge of experimental attempts to achieve it. Endea-
vours centre roundthree foci:
(1) The design of data-structuresin forms suitable for representing concep-
tualized knowledge (descriptions, patterns, and theories) which are also
convenient for the humanuser to modify and incrementinteractively.
(2) Improvedfacilities for inductive inference, so that programscan acquire
new knowledge both fromillustrative examples supplied by humantutors,
and also from the results of their own internal generation of examples for
self-administration.
(3) The engineering of conceptual interfaces between program and human
expert, makingit easier for the latter to ‘teach’ the machine.

Advances underall of the above headingsare required before the goalof
Grandmaster play by machine can beseriously envisaged. By the same
token, few investigators doubt the ultimate attainment during the present
decade of Grandmasterlevels. Apart from benefits to the arts of program-
ming, such an extension of technique also has a bearing on the study of
cognition.

I thank Senior Master Danny Kopecfor helpful comments.
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section 2 Intelligent robots

INTRODUCTORY NOTE TO SECTION 2

It has been noted by moralists that on every issue of Significance human
society takes two distinct views. It is not that a question is perceived as
having two sides, although this is sometimes asserted. On the contrary,
social manselects oneside, the ‘right’ side, to which he then proceedsto give
two contradictory expressions. Contradiction vanishes whenit is realized
that the expressions are intended for two different modes of being, con-
cerned respectively with doing and withacting.

The word‘acting’ is here used in the theatrical sense, and corresponds,
one maysay,to the ritual view of some matter, developed to Shape and guide
mutually supportive feelings within a group. The otherviewis the operatio-
nal view, directed towards shaping and guiding reality. Interviewed in Dr
Jonathan Miller’s television series ‘States of Mind’, the Princeton anthropo-
logist Clifford Geertz spoke of the accumulated technical lore by which
certain Pacific islanders guide the fashioningof their canoes. Alongwith this
lore is another valued accumulation, namely traditional incantations for
projecting safe and prosperous futures onto the vessel under construction.
The interviewer seemed taken aback:the second approachto boat-building
must surely beat best ineffective, at worst vacuous. How could one and the
same person practise and believe in both? That misses the point, insisted
Professor Geertz, since the domainsofapplication of the two proceduresare
entirely different and do not overlap. The incantations are not instrumen-
tally motivated in the sense of impacting causally on the external world.
Rather they are aimed at regulating a different world, an internal world
around which communal consciousness is assembled.It is important that
everybody should feel right, and feel in harmony, about the boat-building
operation. Thisis the role of the acting mode— to save the doing mode from
its own kind ofvacuity.

I want nowto introducea sacrilegious fantasy. Supposethatthetribal
boat chants include imaginings of what a Superperfect canoe should be —
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how it should look, how it should handle in the water and progressat magical
speeds, a boat for the gods. Suppose that these passages are very detailed
and could in principle be put together and interpreted as a functional
specification. There is little danger that anyone will disrupt the practical
building work byactually trying to do this. For one thing the technologyof
the islanders, optimized over centuries, contains its own detailed perfor-
mance specs suited to the constraints of the traditional methodology. In
addition it may be supposed that trained craftsmen can in anycase dis-
tinguish between dreamings and blue-prints, between religious art and
technology, between acting and doing.

Suppose, however, that some canoe-builder, perhaps with the aid of
someofhis peers, begins to attemptjust this. In the processof straining for
forms and features not attainable by the old ways, his breakaway groupis
forced along paths of exotic innovation. How will his fellows in the
community feel?

I think that this personis likely to be bannedfrom the boat-yard. He may
fail to appreciate this as communal wisdom. He may imaginethatit is the
fact of innovationitself which has offended. If so, then he will fail, as socially
insensitive innovators do, to understand what in the mindsof othersis at

stake. The stake is nothing less than the integrity of accumulated cultural
wealth. To revise the dreamings in order to restore them to harmonywith
changed blue-prints must, to be sure, on occasion be contemplated.Forthis,
care and deliberation must be used as Cardinal Bellarmine repeatedly
counselled Galileo. Corruption of the culture in the reverse direction, i.e.
redirection of technical practice into conformity with literal interpretations
of mythology, has less sense and perhaps more danger: so muchso that no
sane society will encourage it without deeppriorreflection.

In Chapter 3 a scientific project to build a robot of a new type was
mentioned. Chapters 7-13 record the conception, design objectives, and
development of FREDDY.In retrospect I see these chapters asa series of
stills from an anthropological disaster movie, eventually resolving happily in

Chapter14’s note addedin proof.
Robots permeate the myths and legends of all ages. Homer’s god of

crafts, Hephaestus, built a team of gold androids (more properly ‘gynae-
coids’, since they were female) to labour for him at his forge. Judaeic lore
portrays a robotic creature, the Golem,of which we have a modern

rabbinical appraisal from the American AI pioneer Azrael Rosenfeld. In the

childhood of Mary Shelley, who waslater to write the tale of Dr Franken-

stein, the Swiss clockmakers were already animating life-size simulations of

people. These performed feats of piano-playing and hand-writing on de-

mand, with melodies and messages respectively supplied by the user. The
level of humanlikeness and naturalness of movementthen achieved has not
subsequently been equalled.

Herethenis the acting-modeview of the robot: human-like to the closest
attainable degree of simulation, including human-like knowledge andintel-

ligence, if that too can be implemented. The burden of the FREDDY

project, and more broadly of this book,is that predictable developmentsof
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automation makeit imperative to attempt precisely what I earlier said no
sane societywill lightly encourage: namely without detrimentto operational
effectiveness to restructure the technology of man to the formsofhis inner
world.

Asfor doing-mode models, these were well established in the 1960s, not
only in concept but as practical factory devices: a blind, dumb,insentient
race of pick-and-place manipulators. When Richard Gregory and I, meeting
in New Yorkin 1966, conceived the FREDDY project we wanted notto
dedicate yet one more laboratory to the stepwise refinement of what we
regarded as a cul-de-sac technology. As is madeclear in the “Tokyo—Edin-
burgh Dialogue’ (Chapter 8), we sought a pattern-oriented approach to
cognitive modelling, as a means, amongothergoals,of promoting changein
the methodology of programming. The penultimate paragraph of
Chapter 10 seems worth picking out for relevance unaltered over the years:

Our aim is to contribute to restructuring the arts of programmingso
that much of whatis today done by programmers can ultimately be
done by machines. Thescience of programming needs, as does any
other science, such as physics, to develop both theoretical and
experimental sides. Robot work is an example of the use of
experimental programmingto validate theoretical conjectures and
results and to suggest new hypotheses.

This passage outlining technological objectives was published in 1973, along
with a separate statementofscientific intent ‘the developmentof a systema-
tic theory of intelligent processes, wherever they may be found’
(Chapter 11). It was a time of great vulnerability for AI robotics. The task
was to balance pressures towards theoretical psychology against evenless
welcome pressures from Government sponsors towards blind pick-and-
place automation. My ownaspiration lay with neither, but with a new
approach to software which I christened ‘Knowledge Engineering’ to
symbolize the aimed-for confluence of programming methodology with
machine cognition (Chapter12).

Chapter 13 was written to rebut ignorant charges that AIscientists had
been making overblown promises. It was also an opportunity to give wider
exposure to FREDDY’stechnical triumph reported to the 1973 Internatio-
nal Joint Conference on Artificial Intelligence and subsequently in the
specialist literature (Pat Ambler, Harry Barrow, Christopher Brown, Rod
Burstall, and Robin Popplestone, Vol.6 of Artificial Intelligence, 1975).

At that momentthe scene received an incursion from an onlooker of
great eminence. His complaint was that it was not easy to distinguish
knowledge engineers from people naively trying to apply Mary Shelley’s
Frankenstein romance and other anthropomorphic myths. In my Pacific
island parable, collective wisdom prescribed a measure of discouragement
for aberrant canoebuilders. To quell AI’s impiousroboticists the instrument
of discouragementwasthe ‘Lighthill Report’ entitled Artificial Intelligence:
a general survey, published by the Science Research Council. In computing
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circles this interpolation from a distinguished outsider— Sir JamesLighthill

is a theoretical physicist — was seen as inappropriate.

It is possible that objections couched in these terms may rest on a

category confusion, as though Lighthill expected computerscientists to sit

downwith solemn faces andreadhis report as a technical review document.

It is clear even from a cursory glance that it was not intendedas anything of

the kind. It does not seek to assess technical or operational merits, but

choosesrather to question from a higherlevel: is it a respectable activity to

take the realities of automation and seek to wire them upliteralistically to

creatures of folk-lore and science fantasy? Eminenceis normally sufficient

entitlementto advise at the level oftribal attitudes. If anything waslacking,

therefore, it was not so much appropriateness as soundnessof the advice.

Lighthill partitioned the domain of discourse with a celebrated ABC:

A— Advanced Automation
B — Bridge, or Building Robots
C — Cognition, or Central Nervous System

withthe rider that B was not respectable and should cease.

The FREDDYproject has the ABC:

A— Automation
B — Better software (via use of C as a functional spec for A)

C — Cognition

with the rider that B is all-important.

The last Chapter of this Section, number 14, completes the continuing
theme. Early in 1985 the project was relaunchedin incarnation no.3 at the
Turing Institute in Glasgow. My personal assessmentis that, fourteen years
on, it is time to take a look at the FREDDYproject’s own ABC andrider.
The eight chapters which follow supply a meansfor doing exactly this.



7
Integrated Cognitive Systems (1970)

Work is in progress in several laboratories [1-6] directed towards the
construction of an integrated cognitive system (ICS). I avoid the phrase
‘intelligent robot’ because ofits science fiction connotation of humanoid
appearancesand otherattributes. The research is concerned with intellec-
tual attributes, involving sensorimotor and reflex capabilities only to the
extent that these form a necessary substratum for the acquisition or display
by computing systemsof purelyintellectual skills.

At this early stage the ‘intellectual’ skills which research aspires to
emulate may seem to the onlookerso primitive as scarcely to deserve the
name. Let him, however,reflect on the struggles of small children with the
simplest tasks of deduction, generalization, and description, and their
dogged attempts to construct and refine world-models adequate for their
growing needs, representing a succession through which every developed
humanintellect has passed. Eventhesefirst exploits of the infant mind are
beyond the abilities of any computing system yet devised. Computers
equippedwith optical input and manipulative devicesare availablein at least
two laboratories, but understanding of machine perception and cognition
has not advanced so far that they could be programmed to compete with
humaninfants, for example on tasks such as the following, which is taken
from Stanford-Binet IQ tests [7]. The task involves obeying simple com-
mands,andis designedfor 23 year old infants. With a brick, a button, a dog,
a box, and

a

pair of scissorslaid in order on

a

table, the child is told (a) ‘give
me the dog’; (b) ‘put the button in the box’, and(c) ‘putthe scissors beside
the brick’. A machinepassingtests of this sort would be disqualified if it had
merely been pre-programmedad hoc for each individualtest. An artificial
intelligence worth the name must show some degree of generality.

Problems of abstracting from the world of crude sensations and of
planning and physically doing things in Space and time are dominantin
intellectual activity at this early stage; possibly they also form an indispens-
able springboard for the flights of abstract thinking attained later. Emula-
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tion by machine therefore demands,as a matter of technical necessity, the
design of non-standard computerperipherals to serve as ‘eyes’, ‘hands’, and

the like. The alternative course would be to simulate entire real-world

problem situations inside the machine, a desperate measure of unimagin-

able scale and cost. R.L. Gregory (private communication) has truly

remarkedthat the cheapest store of information aboutthe real world is the

real world, andthis indeedis the rationale of the recent emphasisbyartificial

intelligence projects on ‘hand-eye’ and‘robot’ devices.

Howlongis it likely to be before a machine can be developed approxi-

mating to adult human standardsof intellectual performance? In a recent

poll [8], thirty-five out of forty-two people engagedin this sort of research

gave estimates between ten and one hundred years. There is also fair

agreementthat the chief obstacles are not hardware limitations. The speed

of light imposes theoretical boundsonratesof information transfer, so that

it was once reasonable to wonder whethertheselimits, in conjunction with

physical limits to microminiaturization of switching and conducting ele-

ments, might give the biological system an irreducible advantage. But recent
estimates [9, 10], which are summarized in Tables 7.1 and 7.2, indicate that

Table 7.1 — A comparison of information-handling powers of brain and
computer.

 

Brain Computer
 

Speed 1000 bits traverses 1 neurone 1000 bits transferred in or out of
inls core memoryin 1 ps

Store 10!7-10?° bits 10’? bits, retrieval 50 ms

This table is based in part on data from ref. [9]. The upper comparison,
which appearsto give the computer the advantagein speed, is compensated
by the brain operating in a highly parallel fashion, as opposed to the
sequential processing characteristic of the computer.
 

this is not so, and that the balance of advantage in termsof sheer infor-
mation-handling power mayeventually lie with the computerrather than the
brain. It seems a reasonable guessthat the bottleneck will never again lie in
hardware speeds and storage capacities, as opposed to purely logical and
programmingproblems.

Granted that an ICS can be developed,is now the right time to mount the
attempt? Is it possible that effort should instead be put into some abstract
field of philosophy, linguistics, or pure mathematics? Perhaps only by
postponingrash attempts to construct actual systems can a sufficiently deep
understanding be gained to enable artificial intelligence problems to be
tackled in the right way.

Theoretical studies are certainly central. But it is not clear that they
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Table 7.2 — The supply position of mechanical energy and mechanical
information processing capacity.

 

(a) Ratio of energy available from mechanical sources and from human
muscle power

Year 1500 1700 1800 1900 1945 1965
ER 10-4 10-° 107? 1 5 10

Total human muscle powerpotentially available is assumedto be of the
order of 0-25 10°P Wh/annum (P = world population). For 1965 it has been
assumed that mechanical energy supply wasofthe order of 4X 10"° kcalories
or 0-75 10'° What 15-20 per cent conversion efficiency.
 

(b) Ratio of mechanical and human information processing capacity
Year | 1955 1965 1970 1975
CR 5x1074 10-2 2 50
This comparisonis based on those tasks where the human channel capacity
of c. 20 bits/s is a major rate-determining factor, as may be the case in many
routine clerical operations and computations.

Asin (a), (b) attempts to comparefacilities available world wide. Both
assessments, and in particular (b), are obviously very tentative only.
 

would be aided by abstention from experimental work. Indeedthe lessons of
history point in the opposite direction, as with the relationship between
classical thermodynamics and the developmentof the steam engine. Typi-
cally engineering artefacts comefirst, and providethe theoreticiansnot only
with the neededspurto rationalize whatis being done,butalso with test gear
on which to check their formulations. There are elements of a similar
relationship between the robot building now in progressin various labora-
tories and the recentspate of activity by theoreticians in the samelaborator-
ies in two areasin particular: visual scene analysis by machine [1,3, 11], and
construction and formal description of abstract models of the world for use
as the basis of plan-formation [12-14].

Yetthe principle of ‘unripe time’, distilled by F. M. Cornford [15] more
than half a century ago from the changeless stream of Cambridge academic
life, has provided the epitaph of more than one premature technology. The
aeroplane industry cannot now redeem Daedalus nor can the computer
industry recover the money spent by the British Admiralty more than a
hundred years ago in support of Charles Babbage and his calculating
machine. Although Babbage wasoneofBritain’s great innovative geniuses,
support of his work was wasted money in terms of tangible return on
investment. It is now appreciated that of the factors needed to make the
stored-program digital computer a technological reality only one was
missing: the meansto construct fast switching elements. The greaterpart of
a century had to elapse before the vacuum tubearrived on the scene.
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It can reasonably besaid that time was unripefor digital computing as an

industrial technology. But it is by no means obviousthat it was unripe for

Babbage’s research and developmenteffort,if only it had been conceived in

terms of a more severely delimited objective: the construction of a working

model. Such a device would not have been aimedat the then unattainable

goal of economic viability; but its successful demonstration might, just

conceivably, have greatly accelerated matters whenthe time was finally ripe.

Vacuum tube technology wasfirst exploited for high-speed digital comput-

ing in Britain during the Second World War[16]. But it wasleft to Eckert

and Mauchly [16] several years later to rediscover and implement the

conceptions of stored program and conditional jumps, which had already

been present in Babbage’s analytical engine [17]. Only then could the new

technology claim to have drawn level with Babbage’s design ideas of a

hundredyearsearlier.

Howis ripeness of time to be diagnosed for projects to build intelligent

machinery? The only absolute safe methodis to wait until someonedoesit,

just as the only error-free pregnancy test is to wait for the birth of a

demonstrable infant. We would prefer, I think, to detect whatis still in the

womb,and accept a risk of being wrong. Table 7.3 shows four possible

Table 7.3 — Checklist of signs and symptomsfor the early stages of five
technological projects.
 

A E
 

(1) Multiplicity of effort V
(i.e. how manylaboratories?)

(2) Availability or feasibility of all
essential instrumentation

x

X
<
.
<
<
.

|

x

X
e

<
<

KL
]

UO

<

(3) Demonstration of a working model xX x (?)
(4) Theoretical proof of overall x x x

feasibility
Fate: S succeeded F S F S ?

F failed

(A) Transmutation of elements in the time of alchemy; (B) steam
engines in the time of Watt; (C) stored-program digital computing in the
time of Babbage;(D) heavier-than-air flight in 1900; (E)intelligent machi-
nery in 1970. The symbol ‘(?)’ is used to mean ‘possibly imminent’ in
distinction from ‘?’ which means‘undecided’.
 

criteria of ripeness which might be applied, from the outside asit were, to
budding technological enterprises.

The fourcriteria are listed in decreasing order of superficiality. Criter-
ion 1 is of a kind which can be applied by a policy-maker ‘off the cuff’,



Ch.7] INTEGRATED COGNITIVE SYSTEMS 95

without delving into technical considerations.It says: “This is not a bee in an
isolated bonnet. Laboratories all over the world are in the race. Can we
afford not to join?’. Thefactthatit is so widely persuasive stemschiefly from
the fact thatit is superficial, and hence cheap andeasyto apply:also it acts on
the ‘keeping up with the Joneses’ reflex. For whatit is worthit is favourable
to the proposal to construct an integrated cognitive system, whichis being
studied actively in America, Britain, and Japan. But we must rememberthat
the highest recorded score for this particular criterion could probably be
claimed for the alchemists.

Jumping to the other end of the range, criterion 4 is in generaloflittle
assistance because of the ‘pregnancy test’ argument. Overall theoretical
analysis is usually only achieved on the morrow of success. An interesting
counter-exampleis Lovell’s project to build a giant radio telescopeat Jodrell
Bank[18]. Here criterion 4 wassatisfied in advance. Butof course there was
never any problem concerning unripenessof timein the feasibility sense. All
that was in question wasthe balance of expectedbenefits against expected
costs. This issue wasfinally settled when the first Russian sputnik was
successfully tracked by an instrument designed for other purposes, and the
world founditself dependent on Jodrell Bank for accurate data onsatellite
orbits. This decisively ended the era of uncertainties of funding for the
project. One may wonder whether some elementofinternational ‘keeping
up with the Joneses’ was at work here, to the great good fortune of
astronomicalscience.

An even moreinteresting case is radio broadcasting. Feasibility was
shown theoretically by Maxwell in 1865, and verified experimentally by
Hertz about twenty years later. Shortly afterwards Popov and Marconi
independently achievedthefirst ‘working models’. An equally clear exam-
ple is the modern (junction) transistor, the basic action of which was
predicted by W.Shockley in 1949. A further application of criterion 4 arises
if theoretical infeasibility is demonstrated, as in the case of the perpetual
motion machine. Anti-gravity is another example, in spite of rumours of
continued multiplicity of effort behind the security curtain. Butit is well to
look on such negative proofs with caution. The possibility of broadcasting
radio waves across the Atlantic was convincingly excluded by theoretical
analysis. This did not deter Marconi from the attempt, even though he was
as unawareof the existence of the Heaviside layer as everyoneelse.

INSTRUMENTATION

To summarize the uses of the fourcriteria, no. 1 is so weak thatit is better
left alone, while no. 4 is so strongthatit is usually not available in real cases
of doubt. We are therefore thrown back on criteria 2 and 3. It will be
interesting to relate these, if possible, to the present scene in machine
intelligence research. First, I shall consider availability of instrumentation.
Four categories are involved: (1) computing hardware; (2) programming
systems; (3) utility packages (such as deduction routines, parsing routines,
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learning routines, search routines and so on), and (4) ‘robot’ input-output

devices.
These can be interpreted as stages in a development programme.First,

get your computer. Then develop a software and programming language

base adequate for the needs of machineintelligence research. Only thenisit

feasible to build a library of useful packages and to construct special

peripherals such as ‘hand-eye’ attachments. The next step, at least in

aspiration,is the construction of a working modelofan intelligent machine.

Most workers who partake of this aspiration would, I think, agree that

categories 1-4 are beginningto be in reasonable shape to provide thetools

for the job.

WORKING MODEL

A working model is almost a necessary condition of confidence in the
feasibility of any proposed technological innovation. It is by no means a
sufficient condition. New and possibly prohibitive difficulties may be
brought into being by the scaling-up process. We would do right to be
impressed by a power-driven model aeroplane. But supposethat an inventor
proposed to develop a man-sized jumping machineable to clear the top of St
Paul’s Cathedral. A flea-sized model jumping a similar multiple of its own
height would scarcely be convincing. So if the objective which I shall discuss
wereto be attained within the next few years, this would by no means imply
that an intelligent machine was round the corner. But it might indicate that
significant success at the scaled-up level was perhaps only a decade or two
away.

What is meant by a working modelof an intelligent machine? The best
approachis to map out roughly the principal constituents of such a machine’s
‘mental world’, and then say that a working model is constructed on
somethinglike the same overall plan, differing only in the relative poverty of
the individual subsystems which are linked together. Also it must be
‘working’ in the sense of displaying the various constituents and their
collective operation in interacting with real-world problems; for example
problemsofthe typeillustrated by the Stanford-Binettests for infants which
I cited earlier. An ICS able to operate at this level would bear the same
relation to the intelligent machinesof the future as a powered toy aeroplane
to passenger-carryingairliners. But even such a primitive ICS has two rather
interesting features: first, its achievement lies, in the opinion of some
workers, only a few years in the future; and second, such an ICS could

almost certainly be madethe basis of an industrial development programme
to produce before the end of the 1970s a range of commercially useful
devices.

APPLICATIONS

At Edinburgh we recently commissioned the consultantfirm Scicon Ltd to
do a study addressed to the question: ‘Assuming solution of the technical
problems,what industrial applications can be envisaged for the late 1970s?’
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The possibilities included in their report were, first, anchored devices for
luggage-handling at airports, crane-controlled assembly, and automatic
control and inspection of machine tool output; and second, free-roving
devices for exploratory vehicles for the space programme, ocean bed
exploration, laying pipelines in deserts, and tree-felling in remote forests.

Activities such as these in inhospitable or inherently unstructured
environments are difficult and expensive when conducted by conventional
means, so that any prospect of delegating them to cognitive machineswill
have attractions. At Edinburgh weare assisting in a feasibility study of
automatic parcel-handling for the Post Office Telecommunications Head-
quarters, and a Japanese group[5]are interested in applications ofICS work
to assembly line operations. The robot project at Stanford Research
Institute envisages exploratory vehicles of various kinds as a major indus-
trial payoff. |

PROGRAMS AND PLANS

Leaving industrial implications, I shall now consider the quintessential
activity of an integrated cognitive system,in the sense that locomotionis the
quintessence of a motorcar. This, it can be argued, is planning,forit is by
the relative absence of this activity that we recognize that existing automatic
systems of prediction and control, however sophisticated and ‘clever’, are
not true examples of intelligent behaviour. Further, when we speak of
machines able to form plans and to reason about the adequacyof a plan to a
given task we can be quite precise about what we mean,by pointing outthat
a plan ofaction can be usefully treated as formally equivalent to a computer
program (‘plan of computation’). Forming a planis then seen as having the
samelogical status as writing a program,andvalidating a planasutilizing the
same mathematico-logical apparatus which programming theorists have
developedin recent years for proving things about programs. This insight,
elaborated recently by C. C. Green [12], is of profound importance for the
future developmentofartificial intelligence, and may well be destined to
occupy a place as central as, say, the equivalence of the corpuscular and
wave models in the theory of optics.

An integrative cognitive system, then, can be conceived as a plan
constructor and plan implementer. At anymomentitis either in interactive
modeor in planning mode.‘Planning mode’is interpreted in a broad sense
to includeall processes of inference involvedin the formationof new plans,
including purely internal reorganizations or extensions of stored
descriptions.

In interactive modeit is executing a plan. No reasoning in the sense used
here occurs in this mode, until an interrupt generated by an input device
causes reversion to planning mode. Input (for example ‘eye’) and output
(for example ‘hand’) devicesinteract directly with an external worldin such
a way that the next sense-datum received is dependent on the past input-
output sequence. The precise form of this dependency is governed by the
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laws of nature.It is part of the business of an ICS to form an approximate
picture of these by processes of abstraction.

Whatelse is in memory, apart from plans, and to whattop-level control
are the contents of the memory subject? Four major categories are envi-
saged (Fig. 7.1): ‘plans’ (in the form of programs); ‘images’ (in the form of
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Fig. 7.1 — Schematic representation of relations between an integrated cognitive
system andits external and internal worlds. The fixed systems are shown with solid
lines, while those which are subject to change in the interaction process are drawn

with brokenlines.

data structures); ‘representations’ (for example in the form of relational
structures), and ‘descriptions’ (in the form of logic sentences).

Atthe top level a commoninference system operates on: (a) plans, not
only to construct them,butto verify in advancethat they will work,using in
the processs (b) images, which are direct point-to-point projections of
objects in the external world (for example a mapis an imageofa particular
geographical area); (c) representations, which modelobjects in the external
world by abstracted features, and (d) descriptions, usually called ‘theories’,
which makegeneral statements about objects in the external world andtheir
relations to each other in space and time.

It is worth commenting on the extraordinary faithfulness with which the
brain can store images:the extremecaseis ‘eidetic imagery’ in which a visual
pattern can be stored for periods in considerable detail. It is possible, and
has been argued by Richard Gregory [19], that this type of direct modelling
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is biologically more primitive, and hence has had timeto evolveto a higher
pitch, than the storage and sequential processing of symbolic information,as
in natural language and in formal reasoning.

AUTOMATIC PLAN-FORMATION

The idea of getting a computerto write its own programs has appeared and
disappearedseveral timesin the past two decades. Early attempts, inspired
by the example of biological evolution, were based on generating program
symbols randomly, conserving the moresuccessful sequences [20,21]. Such
an approachis now considered naive, and nature tends to be thought a poor
modelfor cost-conscious designers. Present ideas centre round the systema-
tic construction of a program, either as a side product of mechanically
proving from given axiomsthat the task which the programis to accomplish
is theoretically capable of accomplishment, or alternatively as an end-
product of a processof heuristic search. Keeping in mindthe formal analogy
between programsandplans, it may help fix ideas to consider an example
from an unpublished study by Popplestone in which elements of both
approachesare used.

The theorem-proving approach, developed by C. C. Green, uses the
apparatusof formal logic to form plansof action. Thereare difficulties in the
approach. Oneis the ‘frame problem’: it is necessary to say not only what
things are changedbyanaction,but also what remains unchanged.Notonly
are the frame axioms tedious to write, but they also tend to lead the
theorem-proving process astray. This raises the second principaldifficulty,
the Achilles heel of present-day mechanized proof procedures, that they
very easily stray into unprofitable inference paths through lack of any
adequate formulationsof the notion of relevance.

An alternative approach to plan-construction, suggested by the work of
Floyd [22], is to start at the goal and work backwardsto the present
situation. The goal is represented by a sentence, which is conceived as
having been deduced from the conjunction of a preceding situation (pre-
sented by a sentence) and an antecedent action. A backwards search tree
can be grown until a state-description is produced which is a logical
consequence of whatis knownabouttheinitial pre-planning situation. This
process, which is currently being developed by R. J. Popplestone,is illus-
trated in Fig. 7.2 for a housekeeping task in a world furnished with a
cupboard,a table, and a chair. Initially the cupboard contains exclusively
forks and the robot’s hand is at the chair. A plan is required to create a
situation in whichat least one fork is at the table. The example is exhibited
here forits didactic value rather thanforits originality of approach. Novel
features do, however, exist (a) in the way in which general statements,
rather than detailed specifications, are handled in the search, and (b) in
Popplestone’s method for guiding the search heuristically. For this he uses a
notion of approximationto the desired condition of beinglogically implied
by theinitial situation. The degree of approximationis estimated from the
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Fig. 7.2 — Successful action-chain constructed by backwards search from the goal
situation, using logical inference to associate descriptions with successively earlier
situations. The process terminates when a description is produced whichis a direct
logical consequenceoftheinitial state-description, in this case giving the sequence
D, C, B, A as the answer. A plain-language transcription of comments 1-5 might
read as follows: (1) there is at least one fork at the table; (2) the things at the table
together with the things held in the handincludeat least one fork, and the handis at
the cupboard; (3) the things at the table together with a random selection from the
things in the cupboardincludeatleast one fork, and the handis at the cupboard;(4)
the things at the table together with a random selection from the things distributed
between the cupboardandthe handincludeat least one fork, and the handis at the
chair; (5) the things at the table together with a random selection from the thingsin
the cupboard include at least one fork, and the hand is at the chair. This last
statement can be obtainedas a logical deduction from theinitial state-description:
thingsat (cupboard) +¢; thingsat (cupboard) C forks; placeof (hand) = chair. There
is also a goal description: thingsat (table) M forks +¢. The method by which
description (2) is obtained from description (1) and action A,(3) is obtained from (2)

and B, and so onis due to Floyd [22].

 

numberofinterpretationsof the description of the initial situation which are
inconsistent with the current one. The smaller this number the more
‘promising’ the given situation as a point of departure for extending the
backwardssearch.
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‘“HAND-EYE’ PROBLEMS

Theprovisionofa suitable formal basis for reasoning about even such simple
systemsis by no meanstrivial, and the properties which must be possesed by
a Satisfactory calculus of situations and actions have been re-examined by
McCarthy and Hayes [13] and by Burstall [14]. In several laboratories,
including our ownin Edinburgh, experiments are in progress with various
‘hand-eye’ and ‘robot’ attachments to computers in order to provide
instrumentation and a software base adequateto put such calculi to thetest
of practice. Each laboratory doubtless hasits own graded repertoire of tasks
with whichto challengeits local evolving ICS. Our schedule [6], designed to
fill the next two to three years, is concerned withsix typesof task:first, as far
as vision is concerned wewish to develop a machinethatwill identify single
objects (definitions provided by the programmer) placed within thefield of
vision, and learnto identify single objects (by generalizing from examples);
second, manipulating a hand to move to any accessible prescribed position
and pick up an isolated object, and also an object from a group. Thethird
task is that of world modelling to enable the machine to ‘know’ relative
locationsof objects and ‘self’, and to update the internal model on thebasis
of sensory input; to integrate several views of an object andtactile infor-
mation. The fourthis simple planning by simulation (graph traversing)[23],
and is concerned with planning a route for ‘self’ from one location to
another, avoiding contact with obstacles and planning movementsof the
handto pick up an object from a set and moveit without disturbing other
objects, also executing plans and reformingthemif they fail, or are about to
fail. The fifth task is that of higher-level planning (theorem proving) [12]
whereby,given a set of world axioms, means of achieving simplestates are
designed, for example ‘Goto a cube’, ‘Put a ball into a cup’. The sixth task
we have set ourselves comes under the heading of generalization (induc-
tion): to learn general statements about simple events from specific occur-
rences, e.g. ‘‘‘Put cup onto ball” implies failure’, ‘“Put ball onto cup”
implies success’; to generalize from several similar specified observations,
for example ‘“Put anything onto ball” implies failure’; and eventually to
generalize to qualified sets, e.g. ‘“Put anything flat onto cube” implies
success’.

EDUCATIONAL AIDS FOR YOUNG CHILDREN

There are similarities between some elements of our schedule and the
Stanford-Binet tests for infants. This circumstance justifies a speculative
postscript to the earlier list of industrial uses.It is generally agreed that an
important application for advanced computer systemswill be in educational
technology.It is also already apparent that very youngchildren, for example
of primary school age, are in some ways the most rewarding subjects,
because the teacherto child ratio is too low fully to satisfy the youngchild’s
appetite for continual responsiveness. Anyone whohas watched 6 yearolds
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wrestle absorbedly, through the complexities of the teletype, with com-

puter-supplied arithmetic homework cannot help being struck by the moti-

vating powerof the interactive terminal. What about even younger age-

groups or mentally handicapped older children? Something can be done

using the cathode ray display and voice output, permitting communication

between child and machinein pictures and words. This possibility is being

investigated in our laboratory amongothers. Butjust as the humanteacher

supplements pictures and wordswith direct demonstrations, by manipula-

tion, for example,of cuisenaire rods for arithmetic, of buttons and beadsfor

sets, of cups and sand andliquid for conservation lawsandso on,so it may

turn out that when computer terminals can be equipped with adequate

‘hand-eye’ capability these too will be pressed into service as teachers’ aids.

The possibility of such a development deservesserious attention.It is

particularly attractive for the research worker wholikes to have some

specific application in mind, because the subject matter of infant teaching

has a certain relevance to the intellectual content of artificial intelligence

research: namely the explication of real-world phenomenain termsof basic

logical and mathematical concepts. To the lay onlooker, however, there

may seem to be something de-humanizing, even psychologically dangerous,

in the exposure of the very young to interaction with machines.I shall not

trespass on the province of the educational psychologist, beyond sayingthat

in our own work with small children at Edinburgh [24] this criticism has

indeed been encountered in some quarters; but it has been conspicuously

lacking from three specific categories of person, (1) the teachers, (2) the

children’s parents, and (3) the children themselves.
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8
Tokyo—Edinburgh dialogue on robots
in artificial intelligence research

(1971)"

At the Conference of the International Federation of Information Process-
ing Societies, which was held in Edinburgh in 1968, E. A. Feigenbaum of
Stanford University, USA, delivered a paper entitled ‘Artificial Intelli-
gence: themesin the second decade’[1]. In it he said:

‘History will record that in 1968, in three major laboratories for AI research,
an integrated robot consisted of the following:
(a) a complex receptor(typically a television camera of somesort) sending
afferent signals to...
(b) a computer of considerable power; a large core memory; a variety of
programs for analysing the afferent video signals and making decisions
relating to the effectual movementof...
(c) a mechanical arm-and-hand manipulator or a motor-drivencart.

The intensive effort being invested in the development of computer
controlled hand-eye and eye-cart devices is for me the most unexpected
occurrence in AI research in the 1963-68 period.

*This chapter was written with H. G. Barrow,R. J. Popplestone, and S. H.Salter.
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| Since then research on computer-controlled robots, as a majoraid to
artificial intelligence research, has proceeded apace, for example in the
three laboratories mentioned by Feigenbaum,directed respectively by M.
Minsky at MIT, J. McCarthy at Stanford University, and C. Rosen at
Stanford Research Institute.

Recently, Japanese groups have been entering the field in strength,
notably the Electro-technical Laboratory in Tokyo. This laboratory was
represented by S. Tsuji on a survey team of robot engineering recently sent
on a world tour by the Japan Electronic Industry Association under the
leadership of Professor Y. Ukita. The team paida visit, among otherports of
call, to the Departmentof MachineIntelligence and Perception, University
of Edinburgh, and submitted a list of thirty-five questions concerning the
project in progress here. We foundit an extremely useful and clarifying
exercise to answer these questions, which seem to us wide-ranging and
shrewd.

Since the aims and content ofartificial intelligence research, and of
experimentation with robot devices in particular, are not yet widely known
outside a very few specialist groups, there mayalso be benefitin making the
dialogue available to a widerscientific readership. We producedthetext of
the exchange below: |

GENERAL

(1) Q Whatis the purpose of your research on intelligent robots?
A Toinvestigate theoretical principles concerning the design of cogni-

tive systems and to relate these to the theory of programming. To devise
adequate methodsfor the formaldescription of planning, reasoning, learn-
ing and recognition, and for integrating these processesinto a functioning
whole.In termsof application (long-range) we can envisage a possible use of
an intelligent robot as a teaching machine for young children. But our
project is a research project, not an application project. Robots for us play
the role of test gear for the adequacyof the formal descriptions referred to
above.

(2) Q Which do you think most important in your research — scene
analysis, problem-solving, dexterous manipulation, voice recognition or
something else?

A Problem-solving.

(3) Q Do you have a plan for developing any new hardware for manipu-
lators, locomotion machinesor special processorsfor vision?

A Weplan to use equipment already developed by ourselves and
others, and weprefer to simulate locomotion by movementof the robot’s
worldasfirst suggested to us by Mr Derek Healy. The present ‘world’is a 3
feet diameter sandwich of hardboard and polystyrene which is light and
rigid. It rests on three steel balls and is moved by wheels, driven by small
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stepping motors, mounted on the anchoredrobot. A pair of bumpers, one in

front, one behind, operate two microswitches to determine contact with

obstacles. Our next piece of equipmentis a platform 5 feet square which may

be moved anywhere in a 10 feet square by flexible drive wires from two

servo-motors. The platform can carry weights of 200 Ibs and will moveat up

to 10 inches per second with accelerations of 1/10 g. Various types of

hand-eye systems may be hung from a bridge abovethe platform.

(4) Q We assumethatthe speed of available digital computersisstill too

slow for real-time processing of complexartificial intelligence problems.Is

this true? If so, do you have anyideasfor solving the difficulty?

A Weagree that the speed of available computersisstill too slow,

especially for sophisticated peripheral processing such asvision. Dedication

of satellite processors to sub-tasks (e.g. pre-processing the video signal) is

one approach. Special-purpose hardwarecouldof course increase the speed

of processing, but it seems doubtful whetherit can exhibit behaviourofgreat

logical complexity which a digital computer is capable of doing. An

improved instruction set, or more parallel computation (multi-processor)

may yield significant improvements. But the immediate obstacles lie in

fundamental problems of software design, rather than in hardware

limitations.

(5) Q Which language do youusein robot research, FORTRAN, ALGOL,

PL/1, ASSEMBLER,LISPorotherlist processing language? What would

be the features of robot-oriented languages?
A Weuse POP-2 [2], [3]. The nearer a programming languageis to a

fully general mathematical notation, the more open-endedits structure, and
the moreflexibly adapted to conversationaluse, then the better the language
for robot research. Wefeel that an ideal robot-oriented language would be
one thatdealt in relations as well as functions, and would have deductive and

inductive capabilities.

(6) Q Can you describe the software hierarchy structure in your robot
system?

A The mechanism of hierarchy is simply that of function call and a
typical hierarchy might be (example taken from thevision hierarchy)
top — program for guiding object recognition.
middle — region-finding program and program for matching relational

structures.

bottom — eye control program.

(7) Q What performance capability do you predict forintelligent robots in

1975?
A We expect demonstrations of feasibility before 1975 in the child

teaching machine application; that is a system able to recognize and

manipulate materials used in teaching children the elementsof arithmetic,

sets, properties and relations, conservation lawsetc.

(8) Q Will there be any chance of applying the newly developed techniques
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in research on intelligent robots to some industry (for example assembly
line) in the near future?

A Weseepossible industrial applications in the late 1970s including
assembly line. Other conceivable applications are luggage handling at
airports, parcel handling and packing, machinetoolcontrol and repair, and
various exploratory vehicles, e.g. for pipe-laying in deserts, forest clearing
in remote areas, ocean-bed work andplanetary exploration. Applications
for cognitive vehicles will probably remain restricted to work in environ-
ments whichareessentially intractable.

(9) Q Whatdo you thinkofthe control of manyindustrial robots by a mini-
computer? Whatlevelof‘intelligence’ would such a computer-robot system
have?

A Wewould certainly expect to see the control of many‘fixed program’
robots by a mini-computer. Such a system would not show much
intelligence.

(10) Q May we knowthe budget and manpoweravailable for your project?
A Wehave £500 per annum from the Science Research Council for

‘construction of models for on-line control experiments’ supplemented by
small sums earned as revenue through consultancy andrental of computer
time. In additon the GPO Telecommunications Headquarters have awarded
a contract for £10 000 over two yearsspecifically for the robot research.

The mechanical engineering for our Mark 1 robot, costing about £1000 to
construct, was largely the work of Mr Steve Salter of the Bionics Research
Laboratory of this Department, at that time directed by Professor R. L.
Gregory and supported by the Nuffield Foundation. The electronics,inter-
facing and software have been mainly done in the Experimental Program-
ming Unit by one grant-supported researchscientist working part-time on
the robot work (Dr Harry Barrow) and one University Lecturer (Mr Robin
Popplestone). But the workis being carried out in the generalcontext of a
large-scale study of machine simulationoflearning, cognition and percep-
tion, financed on a generous scale by the Science Research Council
(£260 000 overfive years) and by the University of Edinburgh. The POP-2
software and conversational computing system has received support also
from the Medical Research Council to the amount ofabout £70 000 overfive
years. About a dozen research scientists are employed in the general
project. Seven of these constitute a ‘Robot working party’ which meets
fortnightly under the chairmanship of Professor Donald Michie, and plans
the robot work,butthisis a side-line activity for them with the exception of
the workers mentioned above.

EYE

(1) Q What are the aims and targets of your research in the context of
vision?

A Picture-processing performance should be sufficient for forming
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plausible recognition hypotheses concerning members of limited reper-

toire of simple objects (e.g. ball, pencil, cylinder, wedge, doughnut, cup,

spectacles, hammer) as a basis for experimentalverification or modification

of such hypotheses by the robot through action (changing angle of view or

interfering with objects manually).

(2) Q Which input device do youuse: vidicons, image dissector tubes, or

other special devices?
A Weusevidiconsbutare investigating image dissectors.

(3) Q What is the performance of the input devices in areas such as

resolution, dynamic range, sampling rate of A to D converters? In such

areas are there any possibilities of improving the input devices?
A Presentresolution of TV sampling system is 64x64 points and 16

brightness levels. Speed of conversion of A to D converteris approximately

100 kHz. This system is to be improved to 256X256 points and 64, or more,

levels. A to D conversion should be about the samerate.
Sampling time for a picture pointis largely determinedbythe time taken

for the TV scan to reach the point (up to 20 ms maximum). Weare
considering image dissectors, which have negligible settling time.

(4) Q Do the eyes of your robot move (electronic or mechanical move-
ment)? What are the merits of eye movement?

A Theeye does not moverelative to the main frame. Weare consider-
ing relative movement of two eyes for depth perception. Also, we are
considering using one camerafor wide angle views and a second camera with
a long-focus lens for investigation of details. Merits, obvious; demerits,
complication.

(5) QlIsthere any processorfor visual input? Is it special hardware? Whatis
the role of the preprocessor?

A Wehaveinstalled a small processor for pre-processing visual input
and thus reducing the load on the multi-access system. Later on we may
build special hardware, for instance for doing ranging by stereoscopic or
focusing methods.In the case of the stereoscopic method we would probably
use hardwarecorrelators. We might also build hardware contour followers
for the region analysis approach,if it could be shownthata very significant
saving in processing time wouldresult.

(6) QDo you uselinguistic methods to recognizethe picture input? Is there

any trouble whenthe line drawing ofthe solids suffers noise? How do you

solve the shadow andhiddenline problems? Whatis the most complexsolid

which your robot can recognize?

A Weare experimenting with a method which involves describing

pictures in terms of properties of regions and the relationship between

regions [4, 5]. We believe that the system will be moderately immuneto
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noise. The shadowproblem will be solved initially by allowing the combi-
nation ofregionsofdifferent intensity level to form a new region andtrying
recognition again. Later we might attempt to decide whether something was
a shadowornot by measuring differencesin texture or distance on each side
of boundaries betweenareasof different light intensity.

At present the robot is capable of recognizing the simple objects
described under heading (1) of this section, under controlled lighting
conditions and viewing them from a roughly standard position.

(7) Q Doesyour robot have colour sensing? What are the merits ofthis?
A No.Colour sensing would, however, undoubtedly aid region analysis

and also facilitate communication with the human user concerning a given
visual scene. It would be easy to have a single colour-sensitive spot in a
moving eye system.

(8) Q How do yousolvethedifficulties of texture?
A At present we have no methodof coping with texture. In the future

we will think of dealing with it by ideaslike spatial frequency and spatial
correlation, e.g. for distinguishing between textures like wood grain and
textureslike sand.

(9) Q Which do you think best for range measurements, stereoscopic
cameras, range finders as with SRI’s robot or sound echo method?

A Possible methods of range measurementthat we are considering are:
stereoscopic cameras, focusing adjustment with a monocular camera, and a
touch-sensitive probe.

Focusing has the advantage overstereoscopy in that it cannot be
deceived by vertical stripes. Howeverit is probably less accurate. We did a

_ little investigation of soundechoranging techniquesbut rejected them. The
wave-lengths of practical generators are too long for good resolution on our
scale of equipment.

(10) Q How does your robot measure a parameter such assize or position
of the objects? Are the accuracy and speed of measurement satisfactory for
real-time manipulation?

A At presentit does not make such measurements. We are prepared
to be satisfied with errors of approximately 5%. Speedlimitationsare likely
to be more severefor vision than for manipulation.

ARM AND HAND

(1) Q Describe the hardware specifications of the manipulators such as
degrees of freedom orsensors.

A A manipulator has been designed and is under construction. Two
opposedvertical ‘palms’ can move independently towards and away from
each other overa range of about 18 inches and can move togethervertically
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through about 12 inches. Objects may thus be gripped between the palms,

lifted and moved a small distance laterally, in a linear cartesian frame of

reference.
Absolute accuracy of positioning will be about 0.2% of full range of

movement, but backlash, rigidity and repeatability should all be only a few

thousandthsofan inch.

Later, it is intended to add rotation of the manipulator abouta vertical

axis, and rotation of the palmsto turn objects over.

Strain gaugesat suitable points will give indicationsof the forces exerted

by the armsandthe strength of grip.

(2) Q How dexterouswill manipulation be andwill it be successful?

A Tooearly to say.

(3) Q How doyou design the control loop of the manipulators?

A The controlling computerwill output positional informationas 10-bit

digital words. These will be converted to an analogue voltage to control a

DC servo motor. Potentiometers will be used to measure position and

tachogenerators to measurevelocity.

(4) Q Do you have any suggestions for a system with two hands which
would co-operate in a job with humanbeings?

A Notat this stage in terms of implementation. As an application area
we have already mentioned teaching aids for children.

(5) QDo the manipulators have anyreflex actions? Is there any need of a
small computer for the exclusive use of the manipulators.

A A peripheral loop will stop movement if an unexpected force is
sensed by the strain gauges.

Exclusive use of a satellite computeris not necessary. Weshall, however,
be using such a machineto pre-processvisual information and wewill make
use of it in controlling reflex movements.

LOCOMOTION

(1) Q Is there any great need to use legs instead of wheels?

A No.

(2) Q Howdoesthe robotdirect its position in the real world?

A Combinations of dead-reckoning with landmark-recognition are

possible, and have been examinedbysimulations.

(3) Q Doesyourrobot have balance-detecting and controlling equipment?
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A No.

(4) Q What are the application fields of robot-like machines with loco-
motive ability in the near future?

A Mowinglawns!If by ‘near future’ is meant the next two or three years
we do not see commercial applications abovea rathertrivial level.

COMMUNICATION

(1) Q How does your robot communicate with the digital computer?
A The robot communicates with the computeras a peripheral of the

Multi-POP time-sharing system, running on an ICL 4130 computer. Com-
municationis via transfers of single 8-bit bytes. The output byte is decoded
as a commandto sample the picture or drive the motors. The input byte
contains the state of the bumpdetectors and brightness of the picture point.
Whenthesatellite is installed, communication will be via a high-speedlink
with the ICL 4130. The robotwill be interfacedtothesatellite, essentially as
it is now to the ICL 4130.

BRAIN

(1) Q What performanceandabilities does the brain of your robot have?
Doesit haveself-learning ability?

A Wehave engagedin the past in experiments involving developing
variousabilities in isolation and havenotyet finished building an integrated
system using theseabilities.

For instance there is the Graph Traverser program for problem solving
(Doran & Michie [6]; see Michie & Ross for an adaptive version [7]).
BOXESand memofunctions for rote-learning [8-10], programs for deduc-
tion and question-answering [11], and the Induction Engine [12]. Full
learning ability requires whatis learnt to be expressed in a language more
powerful than simply a sequenceof weights,as in Perceptrons or Samuel’s
Checkers learning program.

(2) Q What can the question-answering system in your robot do?
A Wehave implemented a numberof approaches to question-answer-

ing. We have theorem-proving programs, which, as Cordell Green [13] has
shown, can be modified for question-answering. We also have a program
called QUACbased onrelational combinators [11].

(3) Q What wouldbe thebestinterface between robots and human beings?
A Thebest interface from the human’s point of view would be spoken

and written natural language, togetherwith theability to pointat things with
the robot watching through its television camera. In the immediate future,
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for research purposes, typewriter and visual display using a flexible com-

mand language: e.g. ‘imperative mode’ POP-2.

(4) Q Whatis the most difficult problem in future artificial intelligence

research?
A Possibly the internal representation of the robot’s world, which will

certainly involve automatic methods for inductive reasoning from a very

large massof(mostly irrelevant) data. It seemsto us that, to be usable by the

robot for serious planning, internal models must involve both direct rep-

resentations in the form of appropriate data structures, as when a mapis

used to modela terrain, and indirect representations in the form of axiom

systemsand sentencesin a formal language suchaspredicate calculus. Facts

are retrieved from the former by look-up and from the latter by reasoning

procedures. Whatis lacking at present is any general theory concerning the

relative economics of these two forms of representation, or any principles
for automatic transfers of knowledge from oneto the other. Weareinclined
to think that present work on automation of induction will help in the

required direction.
Onthe deductive side, we would mention the problem of discovering the

relationship betweensolving a problem bylogical inference andsolvingit by
an algorithm (i.e. no redundantinferences made), so that opportunities for
reducing an inference process to an algorithm may be automatically

detected and exploited.
A certain confluence is now apparent between work on robot cognition

and the field known as theory of programming. This is because formal
equivalences can be set up betwen provingthat a plan will be adequate to
bring about a given result in the real world and reasoning as to whether a
program will compute a given function [14]. We attach importancein this
connection to recent advancesin the theory of formal proofs about programs

[15-17].
In terms of implementing systems capable of operating within reason-

able time constraints, methods for handling highly parallel processeswill be
crucial, and thesearestill in their infancy.
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J
Artificial intelligence (1971)

A numberof laboratories around the world are investigating how to
program computers to be a little more ‘intelligent’ than they are. Such
studies soon come up against a fundamental problem concerned with
‘understanding’. We haveto discover, in rather precise terms, whatis meant
by ‘understanding’ a topic, or a problem. Otherwise, attempts to get
computers to do things normally requiring human intelligence, are likely to
remain superficial and, in the long run, unproductive.
A classic example is the rosy dream about the possibilities of ‘machine

translation’. In the 1950s and 1960s, millions of dollars were spent in the
United States on research-and-development projects aimed at this. The
techniques of machines breaking up texts grammatically and looking up
meanings in a computerdictionary proved too shallow to crack the machine
translation problem unaided. Fundamental progress had to wait for the
developmentof an adequate theory of whatis involved in ‘understanding’ a
passage of English-language text. The needed theory is only just beginning
to emerge.

The syntactic and semantic problems presented by natural language are
at present under study by the theoretical section of the Department of
Machine Intelligence and Perceptionin Edinburgh, headed by Professor H.
C. Longuet-Higgins. But this is only one of many areas in which we can
attempt to achieve ‘computer understanding’. An obvious and particularly
challengingareais that of understandingthe ordinary material world around
us. Consider a very simple world, consisting of a play-pen with a few
commonplace objects. On first tackling this world, a child has to come to
terms with, and mentally organise, not only the visual and mechanical
properties of material objects, but also the basic laws of nature, such as
gravity, which determinetheirinteraction.

To program knowledgelike this into a computer, so that it can inspect
such a world through a TV cameraand then carry Out a particular plan of
action (for example, piling bricks, sorting buttons), is a task of at least
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comparabledifficulty to the language-understandingtask I have referred to.

In order to do research in this area we have to equip computers with

cameras, movable platforms, mechanical ‘hands’, and other‘robot’ devices.

But this should not distract attention from the real point. The robotitself is

not the objectof the exercise. In the robot project in our department, we are

concernedwith the use we can makeofa robotin order to developtheories of

‘computer understanding’ofthe real world. Theacid test of such theoriesis

providedbythe robotitself.If it can be got to understand whatis involved in

operations such as‘find’, ‘fetch’, ‘build’, ‘tidy’, and so on, then, and only

then, can we program it to do these things.

In fact, a new technology, even morerecent than software engineering

(the mechanics of computerinstructions), is coming into existence. This

rapidly growing art might appropriately be called ‘cognitive engineering’.

To ‘engineer’ means to design and construct devices which actually

work. In case it seems premature to talk of man-made devices, even

software devices, which possess cognitive ability, let me first give an example

of something a cognitive software device can do. Take the integrated

arrangement of computer programs of which the program developed at

Massachusetts Institute of Technology and called PLANNERformsa part.

Fig. 9.1 depicts the simulated ‘world’ in which problem-solvingis carried
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Fig. 9.1 — Problem-solving carried out by machine. Man’s commandgiven via the

computer’s typewriter. Machinefinally responds with OK.

out underthis system, in response to a commandgiven in English, by means

of the computer’s typewriter. The figures show successivesteps taken by the

system in order to carry out the command,and the following is a brief

excerpt from the accompanying dialogue between man and machine:
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MAN:Will you please stack up both ofthe red blocksand either a green cube
or a pyramid?
MACHINE:OK.

MAN: Whichcubeis sitting on the table?
MACHINE: THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.

MAN:Is there a large block behind a pyramid?
MACHINE: YES, THREE OF THEM: A LARGERED ONE, A LARGE GREEN CUBE
AND THE BLUE ONE.

MAN:Put a small one onto the green cube which supports a pyramid.
MACHINE:OK.

The arrangementofprograms which producedthis behaviourconsists of
about a dozeninterlocking units, which, together with a dictionary of two
hundred English language words, give about 2.5 million separate units of
information, to comprise the computer memory requirements of experi-
mental artificial intelligence work today. But problems involving real
interaction with the outside world through TV cameras make even heavier
demands. People at the Massachusetts Institute of Technology laboratory,
in common with the other American computercentres regarda total of a
quarter of a million words of fast memory as necessary for a research
machine.

The constructionof integrated intellectual or cognitive systemsis among
the more ambitious aims pursued by workers in the field of artificial
intelligence. As a quick sketch of what I mean by the term ‘integrated’,
consider two hypothetical chess machines.

Machine

1

is capable of beating International Masters. They communi-
cate their moves to it in a standardized format through the typewriter.
Machine 2 plays bad amateur chess. But it inspects the board position
visually through a TV camera, makes its own moves foritself with a
computer-driven hand, can describe its own plans and explain its movesin
passable English, improves its play with practice, and can accept Strategic
hints and advice from atutor.

Which machine is the moreintelligent? This is not a particularly
meaningful question;‘intelligence’ on any reasonable definitionis related to
a particular activity rather than being an absolute term.

Which machine would make the more ambitious goal for a research
project? Quite impossible to say: both goals would be very ambitious.

Which machine more properly belongs to the category of an integrated
cognitive system? Without any doubtat all, machine 2, where theinterestis
not in the depth of any oneskill but ratherin the effective knitting together
of manyskills.

Both machine 1 and machine 2 are figments of the imagination. The
nearest to machine 1 which hasyet been achieved is probably the Atkins—
Slate chess program, which recently defeated a strong amateur player.
Possibly the system with strongest superficial resemblance to machine 2 is
not a chess program atall, but a program for makinga robotplay the game of
‘Instant Insanity’. The robot is the computer-controlled ‘hand-eye’ device
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developed in Professor John McCarthy’s Artificial Intelligence Project at
Stanford University. The gameof Instant Insanity is played with fourlarge,
specially constructed dice, which have colours (red, white, blue, green)
rather than numbersontheir faces.

If the four dice are pressed togetherside byside,the ‘left-right’ faces are
all hidden. Weare interested heresolely in the four colour sequences which
we can see as we look alongtherow;first at the four ‘top’ faces; then at the
four ‘near’ faces; at the four ‘bottom’ faces; and at the four‘far’ faces. The

aim is to arrange things, by rotations of individual dice, so that no colouris
duplicated in any one of these four rowsof faces.

Myinvestigations lead me to believe that there are three and only three
essentially distinct solutions, but I have not proved it. A cube can be given 24
different orientations in space. So we can calculate 24x24x24x24as the
upperlimit of the arrangments we haveto check. Allowing for symmetries
and redundancies, this comes down to about 2000 essentially distinct states.
A brute-force method of solution would have to examine all these
individually.

The Stanford program does not rise even as high as brute force. At
present the programis set up so that it knows the winning configurationin
advance. It concentrates its problem-solving efforts on inspecting and
identifying the four blocks and carrying outtheir final assembly. But like
machine 2, in my fanciful chess example, it does do everything foritself. It
inspects the cubes through a colour TV camera, and it performsall the
manipulations with its computer-controlled hand. One can thussay that a
coordination of ‘hand’, ‘eye’, and ‘brain’ exists, even though the individual

performance of each memberof the trio may leave muchto be desired.
Theaim of the laboratories working with integrated systemsis to master

real-world problems that are more and morechallengingintellectually.
Now what would bea suitable task, intellectually more challenging than

Instant Insanity puzzles? A classic problem in artificial intelligence is known
as the ‘monkey and bananas’ problem,posed by John McCarthy almost ten
years ago. A monkeyis in a room wherea bunch of bananasis hanging from

the ceiling just out of the monkey’s reach. Somewhere in the room thereis a

chair. Can the monkey manageto get the bananas?
At first sight, my example may arouse a sense of bewilderment. Why

should sotrivial a problem be solemnly discussed as a matterof intellectual

depth? Afterall, real monkeys are capableof solvingit, though they find it

difficult, whereas no one suggests that a monkey could solve Instant

Insanity. But thetriviality is relative, rather than absolute; i.e.it is relative

to the amountof relevant knowledge a monkeyor a person or a machine has

previously amassed and organized in its memory. Before a machine can be

even asintelligent as amonkeyin real-world problem-solving, a great dealof

this kind of knowledge must somehow begotinto it. Only then will these

problemsbeginto betrivial in the sense that they are trivial to a human

being.
The background knowledge required for problem-solving in someparti-

cular domain constitutes what has beencalled a ‘micro-theory’. The ‘micro-
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theory’ needed for problems of the monkey-and-bananas type must deal
with the fundamental logic of the location in space of physical objects
(‘bananas’, ‘monkey’, ‘chair’, are all instances of such objects) and their
translation through space by the operation upon them ofactions (of which
‘go to’, ‘climb’ are instances). Such a micro-theory,if it is to mirror the world
we know,should, for example, assert that if object X is at position A, and A
is not equalto position B, then X is not at B (i.e. one thing can’t be at two
places at the same time). It should assert thatifX is at A andX is not equal to
Y, then Y is notat A (i.e. two things can’t be at one place at the sametime).

I shall come backto the formidable complexities of building an adequate
amount (and arrangement) of such general facts into a machine. But, to
begin with, let me describe the first recorded solution by a computer-
controlled robot of a monkey-and-bananas problem. This was done by
Stanford Research Institute’s Artificial Intelligence Group and reported by
Stephen Coles.

Fig. 9.2 shows Stanford ResearchInstitute’s robot ‘Shakey’. It stands the

  

 

   
 

 

   
Fig. 9.2 — ‘Shakey’in action. Therobot is remotely controlled overa radiolink.

height of a man, and the computercontrols it remotely by radio. Shakey has
no hand and cannotclimb. The monkey-and-bananas problem wasaccord-
ingly translated into terms appropriate to the robot’s own input-output
devices. The reformulation, knownas the ‘robot and box’ problem,is as
follows:
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The robotis in a room in which a boxrests on a platform too high for the
robot’s wheels to mount. Somewherein the room is a ramp.Therobot’s task
is to cause the boxto be onthefloor.

The successful solution of the problemis illustrated in Fig. 9.2. Ican here
only sketch the wayin which the capability to reason out the solution from
first principles is programmedinto the system. The key techniques are
derived from mathematicallogic. Thetrick is to dress up the formationof a
plan of action so that it looks exactly like the task of proving a theorem in
somelogical calculus. The kind of theorem the machinetries to prove is one
whichasserts that ‘a possible state of the world exists in which the box is on
the floor’. It is possible to arrangethat, as a side-effect of a successful proof,
a chain of actions is produced for bringing about the desired state of the
world.

Thereareall sorts oftechnical difficulties related to mechanical theorem-
proving even in such simple situation-and-action problemsas this. One in
particular, is called the ‘frame problem’. For example, though you and I
knowthat, after the monkey pushesthe chair, the bananasarestill where
they were, a mechanical reasoning system must have such facts explicitly
representedin its knowledge base. In some other world,it might be the case
that chairs exert a repulsive force on bananas.

Coles sets out the stream of ‘thoughts’, if I can call them that, which go

through the robot’s ‘brain’ (by which I mean the program running in
Stanford’s SDS 940 computer)in the form of the following informal English
translation:

‘Myfirst subtask is... to move the ramp overto the platform andalignit
properly. To do this, I mustfirst discover where the rampis. To dothis, I
mustfirst see it. To do this, I mustfirst go to the place where,if I looked in

the right direction, I might see it. This sets up the subsubtask of computing
the coordinates of a desirable vantage point in the room, based on my
approximate knowledge of where the rampis.

‘Next, I have the problem of getting to the vantage point. Can I go
directly, or will I have to plan a journey around obstacles? Will I be required
to travel through unknownterritory to get there if I go by an optimal
trajectory; and, if so, what weight should I give to avoiding this unknown
territory? WhenI get there,I will have to turn myself, andtilt the television
camera to an appropriate angle, then take a picture in. Will I see a ramp?
The whole ramp? Nothing but the ramp? Do I need to makea correction for
depth perception?

Andso on. And so on. The reasoning part takes about twenty minutes,
and the vision and pushingactivities another fifteen minutes. So the whole
operation takesoverhalf an hour. Great speed-upsofthe different functions
are likely to be achieved overthe next few years of robot engineering. (We
have oneor twoideas of our own at Edinburgh, where weare just beginning
to experimentwith a reasonably advanced robotdevice.) But before I leave
Shakey,I would like to mention one concept which Colesraises, thatis likely
to be importantin the future.

This is the numberof subgoals that are necessary to solve the problem;
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how direct orindirect the solution is. The robot-and-box problem has one
level of indirectness (associated with the sub-problem ofhow to get the ramp
to the platform). But, as Coles points out, any system that is complete
logically could,in principle, solve problemswith as manylevels as youlike.
Yet problemspossessing merely half-a-dozenlevels of indirectness begin to
overtax humanintellectual capability. We may think that, at the moment,
the humanbrain has much more sheer computing poweratits disposal than
even the biggest computerin the world. But the time may be approaching
when such thoughts will require careful qualification.



10
Machine intelligenceat Edinburgh
(1973)

Programming a computer to control an experimental robot (TV ‘eye’,
mechanical ‘hand’ and steerable viewing platform) seems a far cry from
management science. A point of relevance, however, can be found in
current plans, under active study in America and Japan, to bring into
existence the fully automatic factory.

The US Defense Department’s Advanced Research Projects Agency
met recently to discuss a report which it had commissioned two years ago
from the Rand Corporation concerning the feasibility of an automatic
factory project. These findings indicated feasibility in about ten years, given
a massive R & D programmeto create the technical preconditions. A
Japanese plan with a similar time-scale, but on a larger scale (including
amongits aims an entire computer-controlled city), has been described by
Yoneji Masuda, Director of Japan’s Computer Usage DevelopmentInsti-
tute. The total cost will be £25 000 million.

It goes without saying that the administrative processes of a factory must

be entirely computerized if the aim of total automationis to be realized. Less

obvious is the fact that a diverse range of mechanical handling operations

must also be coordinated and that these necessarily include operations of

‘eye’ and ‘hand’ which require somedegree ofintelligence when performed

by humans. Such tasks might include sorting out components from a

disorderly heap andfitting them together to constructa finishedarticle, in

accordance with written and pictorial descriptions. To program a computer

to do this using children’s construction kits of the ‘Meccano’ type is an

important sub-goal of our project at Edinburgh.

Our general aim is to develop an integrated robot system capable of
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interesting behaviour in response to requests and ‘hints’ supplied by an
interactive user. Such work should lead ultimately to knowledge of how to
program what Hitachicalls ‘intelligent robots’, and I have called (Nature,
Nov. 21, 1970) ‘integrated cognitive systems’. This phrase is notideal: it
appearsto irritate, by its mental association with psychology, and hence to
distract from the technical content. The opening passage of myarticle is
reproduced here (Chapter7 in this book):

‘Work is in progress in several laboratories directed towards the
construction of an integrated cognitive system (ICS). I avoid the
phrase“intelligent robot” becauseofits science fiction connotation
of humanoid appearances and otherattributes. The research is
concernedwith intellectual attributes, involving sensorimotor and
reflex capabilities only to the extent that these form a necessary
substratum for the acquisition or display by computing systemsof
purely intellectualskills.’

‘At this early stage the “intellectual” skills which research
aspires to emulate may seem to the onlookerso primitive as scarcely
to deserve the name. Let him, however,reflect on the struggles of
small children with the simplest tasks of deduction, generalization
and description, and their dogged attempts to construct and refine
world-models adequate for their growing needs, representing a
succession through which every developed humanintellect has
passed. Eventhese first exploits of the infant mind are beyond the
abilities of any computing system yet devised. Computers equipped
with optical input and manipulative devices are available in at least
two laboratories, but understanding of machine perception and
cognitionhas not advancedso far that they could be programmedto
compete with human infants, for example on such tasks as the
following, which is taken from Stanford-Binet IQ tests. The task
involves obeying simple commands,andis designedfor 24 year old
infants. With a brick, button, a dog, a box and a pair ofscissors laid
in order ona table,the childis told (a) “give me the dog’’; (b) “put
the button in the box’’. and (c) “‘put the scissors beside the brick”. A
machine passing tests of this sort would be disqualified if it had
merely been pre-programmedadhocfor each individual test. An
artificial intelligence worth the name must show some degree of
generality.’

Performancegoals of the type indicated already seem, in terms of the
presentstate of programmingtechnique,too ‘easy’. In our currentspecifica-
tion for a ‘working model’ of an integrated robot system we envisage
facilities for ‘teaching’ the system elementary tasks of assembly initially
presented by the user as ‘unseens’ (i.e. no pre-programmed knowledge of
each given taskor of the materials providedfor it). Although there may be
eventual applications for such work in automating factory assembly-line
operations (the Japanese Government,by voting expenditureoffive million
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poundsper annum for research on ‘Pattern Information Processing’ includ-
ing robot work indicate that they believe this), our own selection of such
tasks has been guided by theoretical questions concerning the impact upon
current programming language concepts. At the same time, in order to
equip ourselvesatall to use such novel input-output devices as TV cameras
and motor-driven ‘hands’ we have hadto do a certain amountof baseline
work in areas such as machine perception and the design of software for
controlling the physical manipulations of perceived objects.

THE VISION PROBLEM

Before television cameras had been attached to computers, there was a
tendency to regard computervision as a technological problem and not an
integral part of the field of machineintelligence. However, the consensus of
opinion is now that the problem of making a computersee whatis going on
aroundit is inextricably linked with such problemsas dealing with unreliable
information, making hypothesesandtesting them, making plansof action,
using knowledge about the state of the world and its laws, integrating
fragments of information to produce a coherent whole and learning complex
relationships.

Werequire to produce a visual system for an intelligent machine. Our
first step has been to design a system for extracting and matching descrip-
tions of the retinal image adequate to identify with fair reliability a
repertoire of ordinary objects (hammer, cup, doughnut, ball etc., see
Barrowand Popplestone [1]; Barrow, Ambler and Burstall (2]). A complete
picture is read and stored in the computer. The programfirst tries to divide
the picture into areas which havestrong contrast across their boundaries.It
does this by finding areas of approximately uniform brightness and then
merging together to form larger areas those which are adjacent and have
little contrast across their common boundary.

The picture is then described in terms of properties of the regions,e.g.
COMPACTNESS (measured as 47.Area/Perimeter*) and the relations
between them, e.g. ADJACENT, BIGGER THAN.

Finally, the program matches the picture description against stored
descriptions of views of objects. These have been formed by the program
from examples presented to it during a teaching session. The best match
identifies the object.

Identifications are currently made with about 95 per cent accuracy
(Turner [3]) at the expense of several minutes’ processing time for each
identification. Present workis directed towards improving the accuracy of
identification by various means, including the extraction of ‘depth
information’.

The above system was developed withoutinitial reference to operational
criteria, i.e. to the robot’s use of tests and actions to perform tasks. We are
currently engaged uponsetting up a visual system for our Mark 1.5 robot
which will enable it to perform a variety of simple tasks, especially such
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operations as picking up objects and placing them in or on other objects.
Until recently, workin the field of robot vision had been concentrated upon
the problem of making the computer produce a description of a picture. For
any single picture thereareinfinitely many waysin which that pattern oflight
and shading could have been inducedto fall upon the image plane of the
camera(e.g. a smallthing close up,or a big thing a long way away). In order
to producea likely interpretation the program must havebuilt into it various
types of knowledge aboutthe world, e.g. the objects are standing on

a

table
top, all surfaces of objects are planar, objects must be supported. Current
work at other laboratories is aimed at making the assumptions madebythe
program moreexplicit, at examining the implicationsof certain assumptions
in considerabledetail and allowing hypotheses to be madeandretracted. So
far, however, research has been concentrated on the relationship between
polyhedra andtheir images.

Weattack the problem of robotvision from

a

slightly different direction.
In real situations a robotis likely to be looking at a scene that it has seen
manytimes before and therefore about whichit already knowsa greatdeal,
€.g. positions of objects, their orientation and type. In such circumstancesit
is unnecessary and even detrimentalto performanceto process every picture
as though it were being seen for the first time. A much more flexible
approach is required; sufficient processing should only be carried out to
confirm that one’s present world model is not radically incorrect. For
example,if a blobis seen in the topleft of the picture and the robot knows
that there is a hammerata correspondingpointin its world, then it does not
need to analyse the blob further but it can assume thatit represents the
hammer. Attention canalso bedirected to specific parts of the picture if we
are only concerned with a localized change in the world. We have already
found that it can be extremely cheap in termsof computer time to check
visually that there is not an objectat a particular location,e.g. when looking
for a clear space to put something down, or making sure that a particular
object has been picked up. A few years ago the view was usually taken that

_ picture processing was always expensive and therefore should be used as
sparingly as possible. However,if the program knowswhatit is lookingforit
can carry out highly specific tests which can be computationally cheap.
A working program written by oneof our diploma students, Bill Dallas,

can be askedto sort the objects which are on the viewing platform, putting
objects of one typein one area and those of a second type in a secondarea.
Since we then had notactile feed-back from the hand, the only way the
program cantell whetherit has picked up an objectis by lookingat the place
where the object was and makingsureit is no longerthere.Ifit is still there
the program will make repeated attemptsto pickit up. A visual checkis also
made before putting the object down that the space into which the object
will be putis in fact empty.If it is not, a new destination can be calculated.
The program hasa data-base of information aboutits world and will first try
to sort objects thatit knows about; for each object that it knows about,if that
object is to be moved,a visual check is madethatitis still at its expected
position and then it is picked up and placed in a clear space in the
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appropriate area. When the program has run out of known objects,it
searchesthe platform. Having takena picture, it tries to interpret blobsinits
field of view as known objects.

THE ASSEMBLY PROBLEM

We aim to get the robot to put objects together. The repertoire of
components for building objects is to be extended beyond the plane
polyhedra of other projects, and must include such thingsas slotted rods,
shafts and bearings. Optical methods are required for measuring complex
surfaces, and the ‘shadowgraph’ methodhas been developed for 3-dimen-
sional perception. This uses a projector casting stripe of light on a scene
together with the TV camera to build up a ‘depth map’. The principles
involved are similar to those used by the independently developed system of

Shirai and Suwa[4].
Whena shadowis cast by a horizontal edge onto a surface, the irregular

path which the shadow appears to follow can be used to reconstruct the

relative altitude of every point on the surface lying on the path. Thus,if a

computer-controlled camera is looking vertically, and if the height and

position of the edge casting the shadow are knownand also the position of

the light source, then a suitable program can reconstruct the entire 3-

dimensional contour of the surface by moving the shadow-casting edge to

successive positions.
A program has been developed which performsthis reconstruction. An

angle of 45° for the light seems to give the best compromise between having

the light too oblique (when the edge of the shadow cannoteasily be
determined) and havingthe light too vertical (when the shadowis so short as
to reduce the accuracy of the method). Light and edge are together moved

across the object so asto get height readings from most pointson the surface.

It will be appreciated that there will be areas beside objects, of width less

than the height of the object, for which no height estimation is obtained.

Mostof these lacunae canbefilled by traversing the light from the opposite

direction leaving only a few unfathomed depths.
Somecareis neededin distinguishing shadow boundaries from naturally

occurring changes in the object such a as white label on a dark parcel.

Various devices can be usedto resolve such confusions: for instance, moving

the light source under computer control to exploit the fact that only

boundaries that move whenthe light moves can be shadow boundaries.

As a first step towards assembly by computer we are working on

automatic packing of parcels into boxes. This problem is of interest to the

GPO.Thecurrentversion of the program analysesthe outline of an object

into line segments. The outlines of the holes in the container are also

analysed into line segments. The program places parcels by trying ‘in its

head’to putthe parcel in a hole, with one cornerof the parcel in a cornerof

the hole. Studies are in hand to use look-ahead techniques to optimize

placing. In this connection a system is undertrial for translating statements

about desired relationships of rigid bodies (‘makethe rod fit into a hole in
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each of the blocksso that the blocksare against the wall’) into equalities and
inequalities as vectors, scalars and rotations, and then automatically trans-
lating these into program foriteratively solving them.

THE PROBLEM-SOLVING PROBLEM

Considera sliding-block puzzle, such as the ‘Passalong’, shownin Fig. 10.1.

  

 
 

    

 

        

 

               

  

 
By a succession of sliding movements of the blocks in the tray we are
required to transform (a) into (b). This is plainly a problem.It belongs to a
class of games characterized by the properties:

(1) One or two-person;
(2) Perfect information;
(3) No chance moves.

This class extends from simple puzzles to the mechanization of mathematical
manipulations. Thusthethreerestrictionslisted do not make such problems
necessarily trivial. They do, however, render them accessible to a rangeof
techniques which can be broadly describedas ‘look-ahead’. Looking ahead
along a branchingtreeof possibilities is an activity familiar to anyone who
has played a gamesuchaschess.

Now consider another problem.A blind, insentient robot must operate
in the world shownin Fig. 10.2. The robot has a ‘hand’, able to execute the
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actions GOBOX1, GOBOX2, GOTABLE, GODOOR, GOOUTSIDE, PICKUP,

LETGO.The laws governing this world, and the effects of the actions, can be
axiomatised in first-order predicate calculus, of which the following is an ~
informal translation. We have attempted a consistent use of upper case to
label constants. The readeris not asked to slog throughthis in detail, but to
try to get the general idea.
If a thing, t, is held in a situation, s, and the HAND is at a place,p, ins, then

the thing,f, is at pins.
If t is at p in s and the HANDisat p in s then a thing takenin is heldafter

doing a PICKUP in s.
Nothing is held after doing a LETGO ins.
If tis at p ins then tis at p after doing a PICKUP in S.
If a thing,t, is held in s then t is held after doing a GO to pins.
If a thing,t, is at p in s then the thing, ¢, is at p after doing a GOto pins.
If a thing, ¢, is not at p ins and tis not held in s then tis not at p after doing a

GO topins.
If tis at pins then tis not at p after doing a LETGO ins.
If tis not at p ins then is notat p after doing a LETGOins.
t is at BOX1 or BOX2 or the TABLE or the DOORor OUTSIDEin s.

Wecan then define the axioms[5] which specify a particular problem.

If a thing, x, is at BOX1 NOW and a thing,y, is at BOX2NOW theneitherx ory is

a handle.
A thing, A, 1s at BOX1 NOW.

A thing,B, is at BOX2 NOW.
A thing, C, is at the DOOR NOW.
Nothing is on the TABLE NOW.
If a thing, ft, is at the DOOR NOW thentis red.
BOX!1is in the room.
BOX2 is in the room.
The TABLEis in the room.
The DOORis in the room.
Ifp is in the room then the handisat p after doing a GO to pins.
Ifa thing, t, is at the DOOR ins and tis a handle then the HANDis at OUTSIDE
after doing a GOOUTSIDEin s.
Nothingis held NOW.

Wenowpose a problem,asfollows:
If a thing,t, is OUTSIDE in s and tf is red then s is an ‘answer’situation.
Is there an action-sequence guaranteedto bring aboutan ‘answer’ situation?

Can a robotbe so designedasto be capable of generating valid plans of
action? The nub of this gestion can be re-expressed: ‘Can an algorithm be
specified which will generate and validate such plans?’ The execution of
plans in the real world belongs to the realm of (difficult and interesting)
engineering. Weare not concerned withit here.

Thefirst thing to notice is that unaided lookahead techniquesare put out
of court by imperfect information (the initial state is not fully specified: we
do not know where the handis), and by the intrusion of chance moves (the
PICKUPaction transfers a randomly selected object from the place where the
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handis into the hand).Is there an alternative approachsufficiently powerful
to do the job?

The answeris ‘Yes, in principle, but not in practice’. As sketched by
McCarthy & Hayes [6] and implemented by Green [7], the problem of
finding a valid plan can be distinguished as a problem of deduction from the
axioms which describe the problem.In the present case, such a deduction
might lead to (informally):

‘The situation resulting from the sequence
GOTABLE LETGO
GODOORPICKUP GOTABLE LETGO
GOBOX1 PICKUP GODOOR LETGO
GOBOX2 PICKUP GODOOR LETGO
GOTABLE PICKUP GOOUTSIDE LETGO
GOTABLE PICKUP GOOUTSIDE

is an ‘‘answer”’situation.’

Thetrouble is that the best of contemporary theorem-provingstrategies are
nothing like adequate to performing such a deduction with an acceptable
expenditure of computing time, andit is arguable that unaided deductionis
inherently inadequate to such a task.

An approach underinvestigation in collaboration with J. A. Robinson
combines the generation of plans with their logical validation. The two
systems are harnessed to work side by side within the same master program.
An automatic rote memory is incorporated which gradually builds up a
dictionary of conjectured and proved solutions to problems and sub-
problemswithin the task domain. This dictionary represents the system’s
accumulated operational knowledge about the domain and can be regarded
as a growing store of miniprogramsfor performing tasksin it. Proposals for
enabling the system to generalize over this knowledge, using ‘relational
description matching’ as developed by Ambler, Barrow, Burstall, Popples-
tone, and others, are now being considered.

At the momentthe problem-solving work is not being used to control the
actual robot apparatus. Automatic creation of plans is a longer term
enterprise and in the immediate future we intend to program the robot more
directly. But we hopeto try out the planning techniquesusing the hardware
whenthey have been further developed.

THE PROGRAMMING PROBLEM

Given a computer with a TV camera, a hand and a moveable table as
peripherals with certain manipulative tasks to be performed, one might well
ask “Whynot simply program the computer to perform thesetasks, just as
one programs a computer with a card-readerand

a

line-printer to perform a
payroll task?’ Webelieve that even familiar and apparently simple manipu-
lation taks are very difficult to program in the conventional sense of the
term; at best one could devise inflexible programsfor a few specific tasks.
The reasonsare:
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(1) Imperfect and ambiguous information from the TV camera and other
sensors;
(2) the tedium of weaving into each part of the program our detailed and
largely subconscious knowledgeof physical objects, manipulations and the
laws which govern them.

The robot problem directs our attention to techniques beyondthe scope
of classical programming. Two such techniques have been intensively
developed in Artificial Intelligence work: search techniques and logical
inference techniques. We are now beginningto find out how to incorporate
them in programming languages in a really smooth and unified way (for
example the PLANNERlanguage developedat MIT by C. Hewitt [8]).

To incorporate search techniques we discard the notion that thereis a
unique next instruction to be obeyed and say execute this instruction or that
instruction (i.e. do the first one but be prepared to back-track and do the
secondif things don’t work out). We can use sophisticated heuristic control
to guide the searchif welike.

To incorporate inference werealize that evaluating expressionslike if on
(x,y) then... can be quite different from evaluating ifx>y then..., since it can
make references to a data-base of facts and uses inference rules, either
standard onessuchasresolution or ad hoc onesspecific to the task. It is most
important that we can now improveour programspiece-meal by adding new
facts and inferencerules, instead of trying to program the whole task in one
gargantuaneffort.

The theme that has emergedin the last year or so is that search and
inference techniques alone are too weakto perform interesting tasks unless
intimately combined with the full power of a programming langauge.

The languageenablesusto tell the machine what to do, the search and
inference mechanismsenable us

(1) to avoid spelling out each step in explicit detail (if I say ‘Shut the door’ I
don’t haveto tell you to walk to it first), and
(2) to have the machine doa little more than wetell it by piecing together
new plans from given components.

Thus we aim ultimately to develop a teachable system as opposed to one
which has to be programmed monolithically.

EXPERIMENTAL PROGRAMMING

Our aim is to contribute to re-structuring the arts of programmingsothat
much of what is today done by programmerscan ultimately be done by
machines. The science of programming needs, as does anyotherscience,
such as physics, to develop both theoretical and experimental sides. Robot
work is an example of the use of experimental programmingto validate
theoretical conjectures and results and to suggest new hypotheses.

Insights acquired in this way are not, of course, to be developed for
ultimate application within the limited domain of laboratory hand-eye
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problems, but hopefully to the design and implementation of real-world
interaction systems which have economic significance, whether factory
assembly, navigational guidance,traffic control, air-line booking, chemical

engineering or other complex commercial systems. It is, however, often
desirable to learn to walk before attempting to run. Approached in this
spirit, the study of laboratory ‘hand-eye’ problems mayhelp lay foundations
on which others can build more ambitious, and more economically appli-
cable, software systems.
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Machinesandthe theory of
intelligence (1973)

The birth of the subject generally referred to as‘artificial intelligence’ has
been dated [1] from Turing’s paper[2] Intelligent Machinery written in 1947.
After twenty-five yearsof fitful growth it is becoming evident that the new
subject is here to stay.

The scientific goal of research work in artificial intelligence is the
developmentof a systematic theory of intelligent processes, wherever they
may be found; thusthe term ‘artificial intelligence’ is not an entirely happy
one. The bias towardsartefacts is reminiscent of aerodynamics, which most
people associate with aeroplanesrather than withbirds(yet fruitful ornitho-
logical application has been achieved) [3]. HereI shall review briefly some of
the experimental knowledge systems which have been developed, and
indicate how piecesof theory abstracted from these mightfit together.

SOME PERFORMANCE SYSTEMS

Gameplaying was an early domain ofinterest, and Shannon[4], Turing [S],
and Newell, Shaw, & Simon [6] contributed classic analyses of how
machines might be programmedto play chess. Thefirst significant perfor-
mance system was Samuel’s program [7] for checkers (draughts), which
eventually learned to play at the level of a good county player, far higher
than that of Samuel himself. This last circumstance played a valuable part in
discrediting the cruder manifestations of the doctrinethat ‘you only get out
whatyouput in’.

The fundamental mechanism underlyingall this work has been a cycle of
processes: look-ahead, evaluation and mini-maxing. These derive ultima-
tely from a method usedto establish a ‘foregone conclusion theorem’for
such games (two person, zero sum, perfect information, no chance moves)
whichstates that the outcome value can be computed on the assumptionthat
both players follow a (computable) best strategy. Fora trivial game, such as



134 INTELLIGENT ROBOTS [Sec. 2

that schematized in Fig. 11.1(a), the computation can actually be per-
formed: all terminal board positions are assigned valuesbythe rules of the
game,and these are ‘backed up’ by the minimax assumptionthat White will
always choose the immediately accessible position which has the maximum
value and that Black will select the one with the minimum value. Clearly the
procedure not only demonstrates a theorem butalso definesa strategy.

But whatis to be done when,as in any serious game, it is not practicable
to look ahead to the end? Turing and Shannon independently suggested
looking ahead asfar as practicable, to what may be termedthe ‘look-ahead

horizon’, assigning some approximatevaluesto the positions on the horizon
by an evaluation function, and backing these up by the same minimaxrule.
The correspondingstrategy says ‘choose that immediate successor which has
the highest backed-up value’.

This rule has been proved empirically in numerous game-playing pro-
grams,butin spiteofits intuitive appealit has never been formally justified’.
The question is posed diagrammatically in Fig. 11.1(b).

Search procedures form part of the armoury of the operations-research
man and the computerprofessional. Stemming from such work as Samuel’s,
people concerned with game playing and problem solving have imple-
mented mechanismsfor guiding the search, first, by forming sub-problems
[8] or, second, by making heuristic estimates of distance-to-goal[9]. Various
theoremshave established conditions under which such techniques can be
used withoutsacrificing the certainty of termination or the optimality of the
solution found [10, 12, 13].

The use of an ‘evaluation function’ to guide the search is a way of
smuggling human ad hoc knowledgeof a problem in through the back door.
Thereis no cause to disdain such a route; it is after all one of the principal
channels through which naturalintelligences improvetheir understanding of
the world. At the same time automatic methods have been developed for
improving the reliability with which problem states are evaluated [11].

Samuel’s early work on game-learning [7] indicated that seemingly
pedestrian mechanismsfor the storage and recall of previously computed
results can have powerful effects on performance. Recently the combination
of rote learning schemes with heuristic search has been shown to have
applications to plan formationin robots [13, 14]. To exploit the full powerof
this combination, whether in game-playing, in robotics, or in other appli-
cations, one would like the rote dictionary to contain generalized descrip-
tions of ‘concepts’ (for example, of classes of game-positions ‘essentially
similar’ from a strategic point of view) to be looked up by processes of
recognition, rather than by point-by-point matching. Such a dictionary is to
be usedin thestyle: ‘If the situation is of type A, then perform actionx,if of
type B, then action y’, and so on. Oneis thenin effect processing a ‘decision
table’ which is formally equivalent to a computer program. Thereis thus a
direct link between work on the automatic synthesis of strategies in game
playing and robotics, and work directed towards automatic program-writing
in general.
*Beal and Bratko have recently proved sufficient conditions (in Advances in Computer Chess,
Vol. 3, Pergamon, 1986).
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(0) Black to play

 
Fig. 11.1 — (a) The root of this two-level look-ahead tree acquires a value by
alternate application of the ‘max’ and ‘min’ functions. If alternation is extended
backwardsfrom all terminal positions of the gametree, the initial position of the
entire game will ultimately be assigned a value. Terminal positions are shown as
boxes. (b) Look-ahead tree in which the nodes are marked with ‘face values’ (bars
Over negative values). Boxed figures are values backed up from the look-ahead
horizon. If move-selection were decided by face values, then move A would be

chosen, but if backed-up values then move B. Whatis the rationale for B?

Recognition usually involves the matching of descriptions synthesized
from sensory input with stored ‘canonical’ descriptions of named objects,
board positions, scenes, situations and so on. Choice of representation is
crucial. At one extreme, predicate calculus [15] has the meritof generality,
and the demeritof intractability for updating and matchingdescriptions of
objects, positions, scenesorsituations; at the other extremelie simple ‘state
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vector’ representations, whichfall down through awkwardnessfor handling
complex inter-relationships. Somewhere in the middle lies the use of
directed labelled graphs (‘relational structures’, ‘semantic nets’) in which
nodes stand for elements and arcs for relations. Impressive use of these
structures has been madein a study of concept formation in the contextof
machinevision [16].

Language interpretation has been the graveyard of many well-financed
projects for ‘machinetranslation’. The trouble proved to be the assumption
that it is not necessary for the machine to ‘understand’ the domain of
discourse. One of the first demonstrations of the power of the semantic
approachin this area was Bobrow’s STUDENTprogram [17] for answering
school algebra problems posed in English. A program by Woods, Kaplan
and Nash—-Webber[18] for the interrogation in English of a database with a
fixed format has been used by NASAscientists to answer questions about
Moonrocks. An essay by Winograd [19] on computer handling of English
language dialogue, again making intensive use of an internal model of the
dialogue’s subject matter, has left no doubt that machinetranslation can
only be solved by knowledge-based systems. The knowledge base required
to render arbitrary texts non-ambiguousis now recognized to be bounded
only by the knowledge possessed by their authors. Winograd comparesthe
following two sentences:

The city councilmen refused to give the women a permit for a
demonstration because they feared violence.
The city councilmen refused to give the women a permit for a
demonstration because they advocated revolution.

The decision to refer ‘they’ to ‘councilmen’ in the first case and to
‘women’in the second implies a network of knowledge reaching into almost
every corner of social and politicallife.

Massspectrogram analysis was proposed by Lederbergasa suitable task
for machineintelligence methods. The heuristic DENDRAL[20] program
developed by him and Feigenbaum nowoutperformspost-doctoral chemists
in the identification of certain classes of organic compounds. The program is
a rich quarrying-ground for fundamental mechanisms of intelligence,
including the systematic conjecture of hypotheses, heuristic search, rote
learning, and deductive and inductive reasoning. I shall refer back to this
worklater in connexion with the use madebyintelligent systems of stored
knowledge.

Of all the knowledge systems which have been attempted, robotics is
perhaps the most simple in appearance.In reality, however, it is the most
complex. The chess amateur can appreciate that Grandmaster chess has
depth and subtlety. But there is no such thing as a human amateurat tasks of
navigation and ‘hand-eye’ assembly. Every man is a Grandmasterat these
tasks, having spent most of his waking life in unwitting but continual
practice. Not having been informed that he is a Gramdmaster, and having
long since stored most ofhis skill at a subliminal level, he thinks that what
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seems subjectively simple is objectively so. Experience of research in
robotics is a swift and certain cure. Something of the depth of analysis which
is required can be gleaned from the discussion by McCarthy & Hayes[21] of
the properties which should be possessed bya calculusof situations, actions
and causal laws.

The crux of any such calculus is how to represent in a formal language
what the robot knows about its world. McCarthy & Hayes distinguish
‘epistemologically adequate’ and ‘heuristically adequate’ representations.
(In an earlier generation Ryle [22] contrasted ‘knowing that’ and ‘knowing
how’.) “The epistemological part is the representation of the world in such a
form that the solution of problems follows from the facts expressed in the
representation. The heuristic part is the mechanism that, on the basis of the
information, solves the problem and decides whatto do.’

I shall consider now whatis probably the simplest world to be seriously
discussed, that of Popplestone’s ‘blind hand’ problem (internal report,
Department of MachineIntelligence, Edinburgh), with the object of indi-
cating that there is more to robot reasoning than meets the eye, and

expandinga little the epistemological-heuristic distinction.
A blind, insentient, robot shares with one or more ‘things’ a world

consisting of only two places, ‘here’ and ‘there’, and has available to it the
actions ‘pickup’, ‘letgo’ and‘go’. ‘Pickup’ is non-deterministic and causes(if
the hand is empty when the action is applied) a ‘thing’ selected at random
from the place where the robotis, to acquire the property ‘held’. Aninitial
situation called ‘now’ is defined, in which it is asserted that everything at
‘here’ (and thereis at least one such)hasthe property ‘red’. A goal situation
is defined as one in whichatleast one red thingis at ‘there’.

INVARIANT FACTS AND LAWS

The kinds of facts which the robot needs to knowincludethat the robot and
anything held by it must be in the same place, and that something cannot be
in both placesat once. Usinga prescription of Green [23], a formalization of
this apparently trivial problem in first order logic might start along the
followinglines. (Thevariables t, p ands are to be interpreted as standingfor
objects, places and situations respectively.)

for all t,p,s: held(thing(t),s) and at(thing(t),p,s) implies
at(robot,p,s),

for all t,p,s: held (thing(t),s) and at(robot,p,s) implies
at(thing(t),p,s),
for all p,s: at(robot,p,s) implies at(thing(taken(s)),p,s),
for allt,s: at(t, here,s) implies not at(t, there, s).

The conjunction of these statements describes someofthe physicsofthis
world. The last statement, for example, asserts that an object cannot be both
at ‘here’ and at ‘there’ in one and the samesituation.

The initial situation, ‘now’, is described in like manner:
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for all t: at(t, here, now) implies red(t), at(thing (a), here, now).

The latter statement merely asserts that at least one thing (represented
by the constant (a) is at ‘here’ in situation ‘now’. The function ‘thing’is a
conveniencefor distinguishing other objects from the robot, whom we may
wish to exclude from some otherwise universal statements — like one
implying that the robotis ‘held’, for instance.

How can the machine be enabled to reason aboutthe chainsof possible
consequences derivable from ‘now’ and so to construct an action chain
leading to a goal situation? The goal may be defined, using Green’s ‘answer’
predicate [24], as:

for all t, s: at(t, there, s) and red(t) implies answer(s).

But how do we handle the actions? The contrast between epistemological
and heuristic criteria becomes very sharp at this point. Consider two
approaches.

One can go the whole way and stick to formal logic, defining the
transition laws of our world underthe variousactions. For example, thefirst
of the following three ‘letgo’ axioms translates freely ‘in the situation
produced by doing a “‘letgo’’, nothing is held’:

for all t, s: not held (thing(t), do(letgo, s))
for all t,p,s: at(t,p,s) implies at(t, p, do(letgo, s))
for all t,p,s: not at(t,p,s) implies not at(t, p, do(letgo, s))

and similarly for the other actions.
Now the problem of plan construction is reduced to one of logical

deduction, in fact deduction of the statement ‘answer (do(go(there),do-
(pickup,do(go(here),do(letgo,now)))))’. This says, in English, that ‘the
goal situation is the one resulting from doing a “‘go there”in the situation
resulting from doing a ‘‘pickup”’in the situation resulting from doing a “go
here” in the situation resulting from doing a “‘letgo”’ in the situation “‘now”’’
andit is clear how this can be reinterpreted as an algorithm.

This deduction canin principle be mechanized, but there are two severe
snags. First, the need to incorporate ‘frame axioms’ [24,25] (which spell out
all the facts which remain unchangedafter the performanceof given actions,
as in the last logic statement above) escalates for nontrivial problems and
renders the automatic deduction processintractable even in the present toy
problem. Second, the logic representationis not heuristically adequate.

On the other hand, one can go to the other extreme, and express the
whole problem as a computersimulation couchedin a suitable programming
language, matching situations with data structures and actions with pro-
cedures. But this approach encountersdifficulties with the epistemological
criterion, for the structure of the problem world can be readily complicated
so that it can no longer easily be described by the use of simple represen-

tations of the ‘state vector’ type. Various attacks are being made on the
representation problem in an attempt to makethe best of both worlds, the

9



Ch. 11] MACHINES AND THE THEORY OF INTELLIGENCE 139

epistemological and the heuristic. Some good early suggestions were made
by Popplestone, using essentially the same blind hand problem, and were
reviewed in Nature [27] two years ago. Since then powerful new program-
ming aids, such as the PLANNER[28], QA4 [29] and CONNIVER [30]
languages have comeinto play. In addition particular mention should be
made of the Stanford Research Institute’s study of autonomous plan
formation [14, 15], in which manyof the matters discussed above have been
under experimental investigation.

The key ideas on which much workcentres is that plan construction
should be conceivedas a search througha space of states of knowledgeto
generate a path connectingthe initial knowledgestate to one whichsatisfies
the goal definition. Everything turns on finding ways of representing
knowledge states so that the transformation of one into another can be
neatly computed from the definition of the corresponding action (‘Whatwill
I know aboutthestate of affairs after doing A?’).

EXPERIMENTAL ROBOTICS

The STRIPS system [14,15] at Stanford Research Institute combines rea-
soning in first-order predicate calculus with heuristic search. In the situation
depicted in Fig. 11.2 the robot must devise a plan for pushing objects around
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Fig. 11.2 — Robot environmentfor a constant problem [31].

so that one of the boxes ends up in room R1, subjectto the constraintthat at
no time must the wedgebe in the same room asa box.If the plan goes wrong,
the system must be capable of recovering from errorstate and,if possible,
‘mending’ the failed plan appropriately. Facilities are incorporated whereby
successful plans are automatically ‘remembered’ and their elements recom-
bined for use in appropriate futuresituations [14].

Following simultaneous developmentof the idea of optical ranging in
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Japan [32], Britain (R.J. Popplestone, personal communication) and
America [33], Stanford University’s robot project uses a laser optical
ranging system for mappingthe three-dimensionalsurfacesof ‘seen’ objects.
Another branch of the same project is currently able to assemble an
automobile water pump comprising two pieces, a gasket and six screws
(J. Feldman, personal communication). This is done blind, using mechani-
cal feedback.

At Edinburgh automatic assembly is also under study. Programsexist
for packing simple objects onto a confined surface, identifying a limitedset
of objects by visual appearance, and solving problemsof stacking rings on
pegs [34].

In industrial laboratories, notably in America (for example, the Charles
Stark Draper Laboratory of MIT) and Japan [35], automatic assembly
studies are multiplying.

IDEA OF A THEORY

I have already mentioned the abstracting of pieces of theory from perfor-
mance systems such as thoselisted above. What is meant by ‘theory’ in this
context? I have just considered a fragmentof simple robot world theory, and
one can, of course, speak of a piece of chess end-gametheory (for example,

that expressed by Tan’s program [36] for the two-kings-and-one-pawn end-
game) or of the theory of mass spectrometry embedded in the heuristic
DENDRALprogram. One can even legitimately speak of Winograd’s
program as constituting a linguistic theory, or at least as containing or
implying one. But these theories are descriptive of specific domains, not of
intelligenceitself.

It would be naive to pretend that the search for a meta-theory 1s
something new,or even thatit is anything but old philosophyin new dress.
An early name suggested for what is now “artificial intelligence’ was
‘epistemological engineering’ (P.M. Woodward, personal communica-
tion). The new epistemology, however, has a trick which the old philoso-
phers lacked, namely to express any given theory (of knowledge, reasoning,
abstraction, learning and thelike) in a sufficiently formal style to program
andtest it on the machine.

Hencethere is no longer a meaningful distinction to be drawn between a
theory of some given intelligent function, and an algorithm for carryingit
out (which could in turn be converted into a program for someparticular
machine) together with any useful theorems for describing the algorithm’s
action. Algorithms,then, are theories, and this has beentrue for a long time.

But there have been no reasonable mechanismsavailable for handling them.
Mathematics, on the other hand, has had the necessary mechanisms for
manipulating the formalisms which it uses for describing physical systems.
Hence closed-form mathematics has been the ‘typical’ embodiment of
theory in the physical sciences. By contrast, the ‘typical’ embodimentof
theory in cognitive engineeringis algorithmic.
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WHAT USE IS KNOWLEDGE?

The value of stored knowledge to a problem-solving program again divides
into epistemological and heuristic parts. In the first place sufficient know-
ledge must be presentfor solutionsto be in principle deducible. But thatis
only the start. Heuristically, the value of knowledgeis thatit offers ways of
avoiding, or greatly reducing, processes of search. The natural enemyof the
workerin the field of artificial intelligence is the ‘combinatorial explosion’,
and almost his entire craft is concerned with ways of combating it. The
following three examplesillustrate the use of stored knowledge to dampoff
combinatorial explosions.

First, Tables 11.1 and 11.2 show the numberof combinatorially possible

Table 11.1 — A labelling scheme[43]

 

1 Convex edge

2 Obscuring edges — obscuring body lies to
right of arrow’s direction.

row’s direction

4 Cracks — obscuring bodylies to right of ar-

| Shadows — arrowspoint to shadowedregion

EA
EE
EH

LL

7

8 Concave edge

9
Separable concave edges — obscuring body

10 lies to right of arrow’s direction — double
arrow indicates that three bodies meet

11 along theline.
 

waysin picture-processing of labelling various patterns of intersectinglines,
contrasted with the numberthat are physically possible on the assumption
that theyarise in retinal projections of three-dimensional scenes composed
of plane polyhedral bodies, such as that shownin Fig. 11.3(a). The com-
puter program achievesthis order of reduction by the use of an appropriate
theory. Here I shall review briefly a subset of the theory, adequate for
interpreting line drawings of plane-surfaced polyhedra, with trihedral ver-
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Table 11.2 — Comparison of number of combinatorially possible labellings
with the numberthat are physically possible [43]
 

 

Approximate number Approximate number
of combinatorially of physically
possible labellings possible labellings

4 2500 80

—-> 125 000 70

—~< 125 000 500

Ko 125 000 500

AN 6x 10° 10

N 6x10° 300

\ 6x10° 100

xX 6x 10° 100

— 6x 10° 100

\L- 6x 10° 30
 

tices only and without shadows.In this way the flavour can be imparted of
the kind of reasoning involved in more complex cases.

Eachline in such a drawing can beassigned to oneor anotherof various

possible causes: it corresponds to a convex edge, a concave edge,or to an

edge formed by twosurfaces, only one of whichis visible. A corresponding

label can be attached to each line, as has been donein Fig. 11.3(b) using

Huffman’s conventions[37]. The remarkable fact emerges from Huffman’s

analysis that only a few of the combinatorially possible ways of labelling such

drawings correspondto physically possible structures in the outside world:

only twelve distinct configurations of lines around vertices are possible. A

computer program canuse the theoretical constraints to process the picture,

by searching through the space of possible labellings for those which are
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Fig. 11.3 — (a) A complex three-dimensional scene. (b) Huffmanlabels for a cube.
Plus implies a convex edge, minus implies concave, and an arrow implies that only
one of the edge-forming surfaces is visible The cube is assumedtorest on a plane

surface.

legal (i.e. do not entail that any line should receive two different labels)
under the constraints.

Second, Table 11.3 contrasts the numberof topologically possible mole-
cular graphs corresponding to given empirical formulae with the number of
candidate interpretations remaining after the heuristic DENDRALpro-
gram has applied its stored theory of chemical stability. The program
constructs, using evidence of various kinds, a GOODLISTofsubstructures
which must appear in any structure hypothesized by the program and a
BADLISTof substructures which must not appear. As a simple example,at
a given stage down a search tree might be the partial hypothesis
—CH7—O—CH,— and a possible next move for the structure-generator
procedure might be to attach a terminal carbon, forming
——-CH,—-O—CH,—-CH. Butunless the data contains peaksat mass 59 and
at the molecular weight minus15 this continuation is forbidden. Again, the
structure-generator can be made to handle as a ‘super-atom’ a fragment
indicated by the mass spectrum. Additional opportunities to do this arise
when the presence of methyl super-atoms can be inferred from nuclear
magnetic resonance data, whenavailable.

Third, McCarthy’s problem ofthe mutilated checkerboard [38]is quint-
essential to the point here discussed. The squaresat opposite corners of an
8X8 checkerboard are removed, leaving sixty-two Squares. Thirty-one
dominoesare available, each of such a size and shapeas to cover exactly two
adjacent squares of the checkerboard. Can all the sixty-two squares be
exactly covered by sometessellation of the thirty-one dominoes?

Howeversophisticated the search procedure which a heuristic program
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Table 11.3 — Comparison of the numberof topologically possible molecu-
lar graphs corresponding to given empirical formulae with the number of
candidate interpretations remaining after the heuristic DENDRALpro-

gram has applied its stored theory of chemicalstability

 

 

Number Numberof
of inferred isomers

isomers A B

Thiol 1-nonyl 405 89 1
n-decyl 989 211 1
n-dodecyl 6045 1238 1

Thioether di-n-pentyl 989 12 1
di-n-hexyl 6045 36 1
di-n-heptyl 38322 153 1

Alcohol n-tetradecyl 38322 7639 1
3-tetradecyl 38322 1238 1
n-hexadecyl 151375 48865 1

Ether di-n-octyl 151375 780 1
bis-2-ethylhexyl 151375 780 21
di-n-decyl 11428365 22366 1

Amine n-octadecyl 2156010 48865 1
N-methyl-n-octyl-n-nonyl 2156010 15978 1
N,N-dimethyl-n-octadecyl 14715813 1284792 1
 

A, Inferred isomers when only mass spectrometry is used; B, Inferred isomers when the
numberof methyl radicals is known from nuclear magnetic resonancedata [20].
 

mightuse to attack this problem bytrial and error, the combinatorics of the
problem will defeat it. If the reader is unsure of this, let him mentally enlarge
the board to say, 8080, or 10®x10°. But so long as the dimensionsof the
board are both of even or both of odd length (such boardsare called ‘even’
boards) then the problem stays the same for any solver armed with certain
crucial pieces of knowledge, namely: that the two squares which are
removedfrom opposite corners of an even board must be ofthe same colour,
and that each domino must cover exactly one white and one black square.
The problem now falls apart. The mutilated checkerboard cannot be
covered.

To discover formal schemes within which such key facts can automati-
cally be mobilized and their relevance exploited in an immediate and natural
fashion is closely bound up with what was earlier referred to as ‘the
representation problem’. A familiar exampleis that certain representations
of the game of Nimtrivialize the calculation of a winning strategy; but the
program capable of inventing such representationsis yet to be devised.

PROGRESS TOWARDS AN ICS

Two years ago I discussed in Nature [27] the possibility of implementing in
- software an Integrated Cognitive System (ICS). The attainment on a
laboratory scale of a ‘working model’, it was suggested, could be used as an
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indicatorof ultimate feasibility. A working modelofan ICS,as a minimalset
of requirements, should be able: to form an internal representation ofits
task environment, summarizing the operationally relevant features; to use
the representation to form plans of action, to be executed in the task
environment; to perform directed perceptual sampling of the environment
to switch execution along conditional branchesof the plan; to recover from
error state when execution fails; to cope with complex andill-structured
environments; to be told new goals and to work out its own approachesto
them; and to use the record of past failures and successes to revise and
extend the representation inductively.
A computer program which was not able to do most of the above,

howeverexcellenta feat of software technologyit might be, would not count
as anartificial intelligence program. The guidance software for the Apollo
on-board computer, written for NASA by Draper Laboratories (J. Moore,
privately circulated report, Department of Computational Logic, Univer-
sity of Edinburgh) and charged withthetask of getting the spacecraft to the
Moonandback,is disqualified on this criterion. On the one hand,it is an

acknowledged masterpiece, and on the other, in common with other and
lesser automatic control systems, it scores a significant mark only for the
third item in the abovelist.

The on-board computer does not need to plan because hand-coded
routines have been provided for all probable situations — analogous,
perhaps,to the elaborate, but essentially reflex, nervous system ofan insect.
The reason for regarding the Apollo on-board system as sub-intelligent is
thus concerned with the nature of the internal model which it has of its
environment. More than a quarter of a century ago Craik [39] first called
attention to the crucial role in thought and perception of internal models.
The world of the Apollo computer is so simple and determinate that its
behaviour can be completely characterized by computationally simple
equations. These equations, which comprise the system’s ‘internal model’ in
Craik’s sense, capture the dynamics of all possible configurations of the
objects of its world, and supply all information needed abouttheir interac-
tions and properties.

But consider the mission: not to go to the Moonand back,but the much
harderone of going downto the tobacconist and back. By contrast with the
space mission, the task environmentis exceedingly complex and ‘messy’ and
the unexpected lurks at every point of the route (the stairs may be swept,
unswept, blocked ..., the front door may be open, shut, locked ..., the
weather maybebright, dull, wet, windy ... and so on). Alternatively, and
only a little less taxing (at least the environment does not contain other
autonomousbeings to worry about), consider the mission of a Mars Rover
vehicle, such as that already envisaged by NASA [40] and by the space
section of the USSR Academyof Sciences (N. Zagoruiko, personal commu-
nication). Arising from the fact that it is not possible to pre-program
solutions to all problems which might arise while exploring an unknown
terrain, a specific ten-year programmeof machineintelligence researchis
regarded as a necessary preliminary condition for putting such operational
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vehicles into commission. Note that if such a vehicle is to handleall the tasks
of autonomousexploration, and assembly anduse of instruments, whichwill

be demandedofit, then it must score seven out of seven onthecriteria posed
earlier.

That achievementlies in the future. How do matters stand today with
regard to ‘working models’? Each of the seven capabilities listed can now be
found in one or another experimental system, and there are some systems
which exhibit many, or even most, of them. Unfortunately the most

interesting capability of all, central to the phenomenonofintelligence, is the
one whichisstill the least well understood, namely inductive generalization.
Yet significant progress has been made [11,31].

In summary, incomplete systems are becoming commonplace and com-
plete ‘working models’, at the most primitive level, now seem notvery far
off. The likely technological lag before such systems might be upgraded to
near-humanintellectual performanceis a topic for separate consideration.

IMPLICATIONS AND FORECASTING

It would plainly be desirable to find some objective basis for predicting the
rate of developmentandsocial impact of machineintelligence. An objective
basis is lacking at present and it is only possible to record samples of
subjective opinion andto categorize lines of enquiry which moreobjective
studies might follow. Fig. 11.4 summarizes someofthe results of an opinion
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poll taken last year among sixty-seven British and American computer
scientists working in, or close to, the machineintelligence field.

In answer to a question not shownin Fig. 11.4, most considered that
attainmentof the goals of machineintelligence would cause humanintellec-
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tual and cultural processes to be enhancedratherthan to atrophy. Of those
replying to a question ontherisk of ultimate ‘takeover’ of humanaffairs by
intelligent machines, about half regardedit as ‘negligible’, and most of the
remainderas ‘substantial’ with a few voting for ‘overwhelming’.
A working party recently convened under the auspices of the Rocke-

feller Foundation at Villa Serbelloni, Lake Como, on June 11 to 15, 1972,
considered the gradations through which complex information systems
might evolve in the future, ranging from contemporary industrial control
systems, and ‘data look-up’retrieval, to autonomous computer networks
developed for controlling urban functions (telephones,electricity distribu-
tion, sewage,traffic, police, banking, credit systems, insurance, schools,
hospitals, and so on). The backbone ofsuch systemswill develop anyway, by
straightforward elaboration of conventional computing technology, includ-
ing the integration of the various computational networksintototal systems.
It seemslikely that such systems will also ultimately incorporate auton-
omousplanning and decision-taking capabilities, derived as ‘spin-off’ from
developments based onartificial intelligence in, for example, space and
oceanographic robotics. A dangercould thenarise of city dwellers becoming
dependent on systems which could no longer be fully understood or
controlled. Counter-measures to such dangers might include the introduc-
tion of auditing procedures for computer programs, research on program-
understanding programs, and system-understanding systems generally, and,
finally, the adventof programsto teachthe usersofintelligent systems.

On the otherside of the balance sheet, the working party took prelimi-
nary note of several anticipated benefits. The mechanization of industrial
production has beenassociated in the past with the imposition of a deaden-
ing uniformity of design. Automatedintelligence in the factory could offer
the possibility of restoring the diversity and the ‘one-off’ capability originally
associated with human craftmanship. Related to this is the introduction of
computeraidsforthe artist, composer, writer, architect and mathematician.
Eventhe ordinary hobbyist might be enabled to perform feats which would
today seem daunting or bizarre — building his own house, publishing his
own writings, for example. The possible effects on computer-aided edu-
cation have been stressed by others [42]. Advancesin this area will be of
value notonly to the youngbut also to older people as a meansof acquiring
new skills.

The formulation of an outline schemeoftopics, and the compilation of
relevant documents,represents an early stage of a study expected to occupy
a numberof years. Technical developments which occurin the intervening
period will doubtless give such studies a firmerbasis.
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12
Knowledge engineering (1973)

A widespread theme in artificial intelligence is an interest in problem-
solving mechanisms. One canrelate this to automatic program-writing: will
computers ever be able to write their own programsto a significant extent?
Thetopic is beginning to enjoy a considerable vogue in America, where
there tend to be two directions of approach. On the one handthereis the
approach through computation theory, and on the other hand thereis the
artificial intelligence approach via study of how knowledge can be rep-
resented and used in the machine. Signs of merging of approaches are
already apparent. A recent advance by Boyer & Moore,[1] working in
Professor Meltzer’s Department of Computational Logic at Edinburgh,
demonstrates automatic methods for proving LISP programs. Their pro-
gram, as well as writing new programson its own account, uses generaliza-
tion and generates its own induction hypotheses — true elements of
‘knowledge engineering’.

THE KNOWLEDGE APPROACH

In the knowledge approach wedistinguishthree levels, as indicated in Table

12.1.
The lowest level is the one at which AI programmersarestill struggling

today. The highestlevel of all, a long way from attainment,is a ‘knowledge

machine’ able to find out how to do things by reading books— howto play

better chess by reading books, how to build model aeroplanesby reading the
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Table 12.1 — Threelevels at which task-specific knowledge canin principle
be got into the machine. The arrow indicates the desired extension of

technique for ‘hand-eye’ vision and assembly tasks
 

. Transfer (by pro-
grammer) of algor-
ithmic knowledge
from book+pro-
grammer into pro-
gram

. Generation (by ma-
chine) of descrip-
tions and generation
(by machine) of ac-
tion-Scheme se-
quences(plans), e.g.
to bridge gaps in
book knowledge

. Acquisition (by ma-
chine) of algorithmic
knowledge by read-

Chess
Program executes
standard end-games
Strategies (Huber-
man [2], Tan [3])

Program uses given
knowledge plus si-
mulated playing ex-
perience to extend
end-game __theory
(i.e. generate end-
game strategies de
novo)
Program improves
its play by reading
chess books

Assembly
Program takeskit of
parts and makes mo-
del car (e.g. Michie
et al. [4])

 y
Program uses_ in-
structions and dia-
grams to make mo-

Chemistry
Program interprets
mass spectrograms
(Feigenbaum er al.

[S])

Program extends
theory of molecular
bondstability in light
of example identifi-
cations (Buchananet

al. [6])

Program copes with
new families of com-
pound bylooking up

ing books del car chemistry texts
 

written instructions and diagrams, how to fashion furniture by reading
cabinet-making manuals, how to interpret mass spectrograms by reading
chemistry textbooks, and so forth. The obstacles to their doingthis are not
purely linguistic, but are to do with the need for machine ‘understanding’of
the book’s subject-matter.

Level 3 clearly demands mastery of computational linguistics (and much
else besides). Terry Winograd’s success [7] at MIT with his ‘blocks world’,
and his computer program which discourses convincingly about this world in
plausible English, encourages the belief that ‘doing a Winograd’ for more
complex worlds, such as those of chess, hand-eye assembly, or chemistry,
will come within reach. What is very clear from his work is that linguistic
success can only be built on a thoroughly engineered knowledge system for
the domain concerned.

KNOWLEDGE ABOUT CHESS

To get the flavour of level-1 programming in chess, Dr Soei Tan in our
Departmenthas recently transferred into program the knowledge about
king and pawnvs king endings whichis contained in a few pagesoftext in the
classical chess books. It turns out that there is much more to transferring
such material into program than meets the eye. The main reasonis that most
of the knowledge which oughtto bein the book looksatfirst sight as though
it’s there, but turns out on closerscrutiny to be largely missing. The book,of
course, is written not for a machine butfor an intelligent human reader, who
can be guaranteedto ‘bridge the gaps’ byreferring to his own understanding
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of the problem. In the process of bridging the gaps for the computer, Tan
found that he had to extend the theory of King and pawn end-games, and
that level-2 problems, connected with abstraction and learning from exam-
ples, cannot be postponedif efficient level-1 processes are to be devised.

One of the first tasks given to the chess beginner is to master certain
elementary strategies for checkmate. Chapter 1 of Reuben Fine’s Basic
Chess Endings deals with (1) QO and K vs K,(2) Rand K vs K, (3) 2 B’s and K
vs K, (4) B, Kt and K vs K. This entire chapter occupies only six pages of
explanatory text and diagrams. Yet the problem oftransferring just (2), (3),
and (4) — four pages of the book — into program sustained a three-year
PhD study by Barbara Huberman[2]. The difficulty is connected with the
fact that the humanreader of Fine’s bookbringsto it a considerable prior
body of knowledge, while Huberman had to write her programsfor a system
containing no pre-existing knowledge of any aspects of chess at all. The
connection between ease of transfer of knowledge from a book and the
possession of prior knowledge bythe target system can beillustrated in an
extreme fashion by asking the readerto imaginetrying to learn Rand Kvs K
without even knowing the rules of chess armed only with Fig. 12.1 and the

 
Fig. 12.1 — The ending Rook and Kingagainst King.

following text from Capablanca): Theprinciple is to drive the opposing King
to the last line on any side of the board. _In this position the powerof the
Rookis demonstratedby the first move, R-R7, which immediately confines
the Black King to the last rank, and the mate is quickly accomplishedby: 1
R-R7, K-K1; 2 K-Kt2...

(The combined action of King and Rookis neededto arrive at a position
in which mate can be forced. The general principle for a beginnerto followis
to keep his King as muchaspossible on the same rank,or,as in this case, file,
as the opposing King. When,in this case, the King has been broughtto the
sixth rank,it is better to place it, not on the samefile, but on the one nextto it

towardsthe centre.)
2...K-B1; 3 K-B3, K-K1; 4 K-K4, K-Q1; 5 K-Q5, K-B1; 6 K-Q6...
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(Not K-B6, because then the Black Kingwill go back to Q1 andit will take
much longer to mate. If now the King moves back to Q1, R—-R8 matesat
once.)
6... K-Ktl; 7 R-QR7, K-R1; 8 K-B6, K-K1; 9 K-Kt6, K-R1; 10 R-B8
mate.

It has taken exactly ten moves to mate from the Original position. On
move 5 Black could have played K-K1, and, accordingto principle, White
would have continued 6 K-Q6, K-B1 (the Black King will ultimately be
forced to movein front of the White King and be mated by R-R8), 7 K-K6,
K-Kt1; 8 K-B6, K-R1; 9 K-Kt6, K-Kt1; 10 R-R8 mate.

The problem of developing a super-teachable programming system in
which Huberman’s accomplishment wouldbe, say, a three-day instead of a
three-year task shades into the problem of endowing a program with so
much prior understanding of chess that it would be capable of doing the
whole Huberman’s job for her— synthesizing Strategies (2), (3), and (4) de
novo. R. RossandI are starting to look at what mightbe involved in such a
feat, using a ‘search-memorize-generalize’ scheme described elsewhere [8].

KNOWLEDGEABOUT ‘HAND-EYE’ ASSEMBLY

Similar issues are raised by work with ‘hand-eye’ robots, such as Edin-
burgh’s FREDDY.This project, under Dr R. M.Burstall’s supervision, has
reached the stage wherethe usercan in a few hours transfer to the machine
his knowledge about how to recognize the parts of a construction kit and
how to assemble them to make,say, a toy car. At the endofthis ‘teaching’
phasethe robotis able to perform the desired assembly, using its TV ‘eye’
and mechanical‘hand’, with fair reliability. Once again, further streamlining
of the man-machine process demands methodsby which the machinecanfill
in the gaps in whatits instructortells it. Mechanizing this gap-filling process
is of course a particular instance of the automatic programmingproblem.R.
J. Popplestone [9] is developing just such a system with reference to fairly
complex robot movements, for examplefitting a rod into a socket, subject to
variousconstraints.

Experimental robotics, to which Robin Popplestone’s study belongs,
involves the wider international sceneofAI in its relationship to technology.
The broad spectrum ofthis relationship was reviewed in the USAat the
recent ‘First National Conference on Remotely Manned Systems (RMS)’
which included an AI forum to consider such questions as: what kind of
advice can an AIresearcher provide to the RMS designer? Whenshould a
system designer expect to be able to use AI results? Are there likely to be
any software packagesfor other users coming out of AI laboratories? What
is the adaptability potential to other workers of high-level software such as
LISP Or PLANNER? Shouldthere bea field of applied AI that bridges the gap
between the AI laboratory and other engineering laboratories? Andfinally,
what relationship should there be between AI and other engineering
disciplines, for example control theory, material science, etc.?
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Martin Levine (McGill) and Meir Weinstein [10] (Cal Tech) have written

the following summing up of the forum’s outcome:

‘It seems that the field of artificial intelligence could be a rather

large source of support to other disciplines. It can support with

know-how particularly with regard to robotics, manipulators and

sensors. AI has developed and is developing new concepts in

software which could also be extended and used in other

disciplines.’

MACHINE-ORIENTED NOTATIONS

Associated with this new technologyare certain scientific and philosophical

issues. I believe that we are seeing, not only in AI but in Computer Science

more generally, the emergence of new techniques for handling ourinternal

intellectual models of the world in symbolic forms. Amongpast revolutions

of this kind one mightinstance the invention of writing and the introduction
of algebra. Machine-oriented notations for describing our messy and com-
plex surroundingsare now arising from pressures exerted by AIresearch for
more flexible programming languages: LISP, POP-2, PLANNER,SAIL, QA4,
CONNIVER, and others. Ultimately, perhaps in radically modified form,
these innovationswill reach the market place, as has already occurred in the
case of POP-2. But the point of origination has been in almost every case
academic.
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13
Machineintelligence as technology

(1973)

From timeto time the Hitachi Corporation and othersin Japan proclaim the
goal of building intelligent robots. Their research, and similar projects
elsewhere, will contribute in the long run to a development of great
industrial novelty — the fully automated factory. In the USA the Rand
Corporation is even of the opinion that this is attainable in less than ten
years.

If the prevailing social and moralclimate werelike that of 1873, whenall
new technology was regarded as an unqualified Good Thing, then predic-
tions of this kind would arouse optimistic excitement, coupled perhaps with
someratherjingoist reflections. After all, the United Kingdom could have
excellent chances of cornering a share of the world robotics market. But
British attitudes have changed since the days when Tennyson[1] wrote:

‘Men, mybrothers, men the workers,

ever reaping something new:
That which they have done but earnest
of the things that they shall do.’

For Tennyson and his contemporaries the common-senseview prevailed
that technologyis our living, and this view was coupled withidealistic beliefs
about inevitable progress towards general well-being:

‘... Forward, forwardlet us range,
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Let the great worldspin forever,
downtheringing grooves of change.’

(Tennyson’s poetic imagination outran his grasp of railway technology
whichis based, of course, on raised tracks, not grooves!)

The twentieth century has seen these beliefs severely shaken. Congested
cities, polluted air, contaminatedrivers, military devastation of large rural
areas— what has happenedto the Victorian dream? The shock to those with
responsibility for science and technology has beensubstantial. In the United
Kingdom there are now those who arguefirst, that Britain’s best chanceis to
identify an appropriate national life-style and live it to the exclusionofall
else; and second,that the appropriate role for a peoplerich in history but
poorin resourcesis to act as a cultural oasis for the world’s tourists.

Extremists might maintain that in order to sustain this role we should be
prepared evento relapseinto

a

rustic economyandpopulationsize. I would
prefer to argue that national revival depends on grasping rather than
surrendering world leadershipin oneparticular sector— the art of instruct-
ing computing systems how to do difficult things. Is the communication,
computation and control networkof the future going to occupyitself at the
1973 level of programming technique? Alternatively will today’s laboratory
systems of machinelearning and perception bebuilt into the public facilities
available to the automation specialist?

Four computerscientists [2], from Stanford Research Institute and from
Lockheed, recently examined likely industrial consequences of machine
intelligence research, with results which make the second alternative look at
least plausible. They used the Delphi techniqueoftechnological forecasting.
A large and carefully designedbatteryof questions concerningfuture trends
was put to an international panelof experts. The replies were analysed and
summaries fed back to the experts, each of whom wasasked for comments
on, and revision of, his earlier estimates. After the third re-cycling, an
additional questionnaire was employedto calibrate each individual’s degree
and directionoferror in unrelated tasks of numerical estimation, and a self-
rating scheme was employedto assess his professional expertise over the
various sub-topics involved.

Table 13.1 summarizes someoftheresults.it will at once be noted that
one of the earliest products to reach prototype stage is expected to be what
the authors term ‘industrial robot’. They are using the phrase sloppily, for
industrial robots have been aroundfor many years. Whatthe authors hadin
mindis rather vaguely indicated by the following passage taken from their
report:

‘The addition of simple visual andtactile sensors would significantly
broaden the application. For example, the General Motors Re-
search Lab successfully demonstrated a system which could mount
wheels on a hub,usingvisual techniquesto align the wheel with the
studs.’

If the authors’ survey results can be criticized, it is on grounds of
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Table 13.1 — Summary of Delphi results, reproduced from Firschein,

Fischler, Coles, & Tenebaum (1973). This tabulation is given for its broad-

brush indication only. For explanation of the various concepts the original

papershould be consulted.

 

Median Median

prototype commercial

Products date date

 

High potential significance

 

 

Automatic identification system 1976 1980

Automatic diagnostician 1977 1982

Industrial robot 1977 1980

Automated inquiry system 1978 1985

Personal biological model 1980 1985

Computer-controlled artificial organs 1980 1990

Robottutor 1983 1988

Insightful economic model 1984 1990

Automatedintelligence system 1985 1991

Generalfactotum 2000 2010

Medium potential significance

Voice response order-taker 1978 1983

Insightful weather analysis system 1980 1985

Talking typewriter 1985 1992

Mobile robot 1985 1995

Automatic language translator 1987 1995

Computerarbiter 1988 1995

Computerpsychiatrist 1990 2000

Robot chauffeur 1992 2000

Creation and valuation sysem 1994 2003

Lowpotential significance

Universal game player 1980 1985

Animal/machine symbiont 2000 2010
 

conservatism. The median prototype date given for ‘industrial robot’ as

defined by them is 1977. But Hitachi have already announced in Tokyo a

system which must be fairly close to qualifying. A computer—controlled

hand-eye device inspects mouldsfor concrete poles as they pass on the belt,

finds the bolts, confirmstheir location by tactile sensing and then tightens

the bolts with an impact wrench. Other protuberances are avoided, and the

task is performed with a consistency and efficiency which will make the

device cost-effective, it is claimed, relative to human labour. Hitachi also
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State that they expect the system ‘to find a widefield of application in other
industrial fields such as assembly andinspection processes’,

This emphasis on versatility is, of course, the central theme, and indeed
the entire justification, of the machine intelligence approach. The thrust of
such work is directed at the process of re-instruction. Most automatic
assembly machines, for example cannot be re-instructed at all, or at best
only within very narrow ranges of variation of the task. Consequently
whereverthere are short runs, large and costly upheavals of re-tooling and
write-off occur. A year ago, re-instruction of an experimental programm-
able hand-eye machine wasa matter of days for very simple tasks. By next
year we and othersbelieve that this will have shrunk to a few hours. Thetrick
hasto do with replacing as much aspossible of the conventional step-by-step
programming by a process of of instructing by examples and outline
sketches, leaving the machinetofill in the rest. Thus teaching the Edinburgh
system [3] to recognize objects seen through the TV camera involves no
programmingatall; the user merely shows a numberof viewsof each object
associating in each case the view with the object’s name.Thisis preliminary
to the task of picking physical componentsout ofheap, visually identifying
them and using them to assemble

a

specified object, say a toy car. It is
performedbythe‘hand-eye’ robot underthe control of a computer program
in the following stages:

Instructional phase

(1) Individual parts are tossed onto the platform and the robotis told, for
each possible view of the object, its designation, howtopick it up, and what
to do with it (e.g. ‘turn it over’, or ‘put it exactly here in preparation for
assembly’).

Approximately five of these training views are neededfor each designat-
ion (e.g. ‘car-bodyon side’, ‘car-body on back’); of course it only needs to be
told once what to do withit.
(2) Starting with the parts laid outin the fixed position, the robot, working
blind, is guided through the assembly operation. Theinstructions developed
at this time to guide the robot constitute the assembly program; thenceforth
running the assembly program transformsthe laid-outparts into thefinal
product.

Execution phase

(1) Someone dumpsa pile of parts (perhaps with missing or extra parts)
onto the platform andstarts the inspection and layout process (Fig. 13.1).
(2) The robot examines the platform andlays out any recognized parts for
assembly.
(3) Any unrecognizable pile of parts is pulled apartinto its component parts
by a set of routines which can deal with arbitrary heapsofarbitrary parts.
(4) If all the parts for the assembly are found,extra parts are dumpedin a
special location. If someparts are missing, the robot appeals for help.
(5) The assembly program is run (Figs 13.2-13.5). The above described
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Fig. 13.1 — Viewing platform and computer-controlled mechanical arms. The work-
bench used during assembly and the componentsof the toy car are also shown.

performanceis based on an elaborate suite of programs which confera fair
degree of versatility on the system — it can be taught a new assemply,say a
model ship, at a day’s notice. Howfar westill have to go in incorporating
‘teachability’ into software can be judged from thefact that a three-year-old
child can be taught a new assembly at the same level of complexity in five
minutes! The discovery of better design principles for ‘teachable’ program-
ming systemsis a major goal of most research laboratories in the machine
intelligencefield.

Will self-programming and ‘teachable’ systems be developed to a degree
sufficient to bring quite new behaviours within reach of automation? Will a
computer everbe able to makea real, as opposedto a toy, car, or (even more
difficult) to drive one?

The Delphi report doesnot envisage the possibility of a robot chauffeur
before 1992. On the other hand the introduction of computer-controlled
robot assistants on the automobile assembly line, complete with visual
sensing, tactile feedback, some higher-level planning of movements, and a
limited capability to receive English-language instructions from a human
supervisor is certainly not remote in time. It is of interest that at the
beginning of 1973 General Motors in America were devoting no R & D atall
to this topic. By the end of the year they had more than twenty research
roboticists working full time.

It does not take much imagination to predict that a not inconsiderable
shake-up andre-tooling of conventional assembly-line methods may ultima-
tely follow. New concepts in manufacture, which at present seem absurd,
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Fig. 13.2—FREDDYuses a crudevice to clamp a wheelwhile fitting in the axle. The

car body and another wheelcan beseenin the background.
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Fig. 13.3 —Two wheels with axles are now in place, with two wheelsstill to befitted.
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Fig. 13.4 — Havingstabilised the incomplete assembly against a vertical surface,

FREDDYadjusts the third wheel.
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Fig. 13.5 — The assembly is complete.
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may become commonplace. One man, controlling a team of computer-driven assembly machines, might be able to assemble whole cars as an actof
individual craftsmanship — instead of assembling one-thousandth of a car
every few seconds as at present. This image can be enlarged. We can
envisage the automobile craftsman being freed of the necessity to travel each
day to his robotic workshop. Just as the office worker in the era of the
universal computer network, so the factory worker may be able to ply his
trade at homevia high-speedvideo links andtherestofthe apparatusoftele-
operator technology. Some expert observers (Professor John McCarthyof
Stanford University is one of them [4]) foresee large-scale development
along thisline in the 1980s.

These speculations, and the overall indications of Table 13.1, may seem
somewhat revolutionary, and it is of course fashionable to speak of the
computer revolution. Yet if we take as ourcriterion the idea of sudden
discontinuity then what we are witnessing is better described not as revolu-
tion, but rather as an extremeacceleration of an evolutionarytrend as old as
civilization.

Since the earliest times man has been storing and processing information
in symbolic form,so asto predict andcontrolhis environment.Judging from
the extent of Maeceneaninventories revealed by deciphered fragments of
Linear B, not to mention the vast bureaucratic book-keeping of the Roman
Empire, ancient peoples handled information of considerable complexity
with no mechanical aids beyond tallyand stylus. Civilization is the growth,
typically occurring in sudden bursts alternating with phasesof consolidation,
in the ‘machinery’ of information processing. On the one handthere is
abstract machinery ranging from the Egyptian architect’s vade mecum of
geometrical calculations and the Arabian notation andrulesfor arithmetic
to the whole imposing structure of modern applied mathematics. On the
other handthereis physical machinery such as parchment and quill in place
of stone and chisel and the developmentof printing presses, typewriters,
cameras,slide rules and calculating machines, culminating in the high-speed
digital computer. In this last species of machinery the two evolutionary
processes, abstract and concrete, or as we must now say software and
hardware, finally join.

But if something happens fast enough, does it matter whetherit is
described as evolution or revolution, as expansion or explosion? The
present development of computer technologyis faster by orders of magni-
tude than anything which has happenedbefore.Soif computing should be
classified as evolution, let us rememberthatit is an evolutionary process
undergoing very rapid acceleration, and that there is no corner of automa-
tion into whichit will not penetrate. The pattern of penetration will of course
be determined by industry, but academic centres have a part to play,
particularly in the training of the new generation of engineers. Thereis a
peculiar belief that the academic mindis of so sensitive a nature that its
bloom can be corrupted by injudicious contact with industrial technolgy.
Samuel Johnson[5] tooka different view. To him the academic cloister was
the really bad spot:
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‘Deign on the passing world to turn thine eyes,

And pause a while from letters to be wise;

There mark whatills the scholar’slife assail,

Toil, envy, want, the patron, and thejail.’

Withoutgoingall the way with Johnson,the machineintelligence worker

need not be averse from seeking a direct coupling between academic

research andindustrial technology. Indeed, the nature of his subject is such

that this coupling will assert itself in the end whether he seeksit or not.
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14
Steps towardsrobotintelligence
(1985)

In 1972, the Science Research Council received a report from a panelset up
in the previous year to review long-range computing research. Among a
numberof constructive and timely proposals the panel urged increased‘use
of the robotas an analytical tool’. Although endorsed by Council, this report
was overtaken by events which need not concern us here. Whatwill concern
us is the meaning of those words.

INSTRUMENTATION FOR MACHINE INTELLIGENCE

The panel was evidently saying that, along with the robot as technology,
there is a notion of the robot as instrumentation for scientific enquiry. But
enquiry into what? The answer I shall give is: enquiry into the design
principles of cognitive processes. Oneparticular processwill be singled out
becauseofits topicality, namely machine learning.

The Royal Institution very often mounts displays and exhibits from
outstanding academic andindustrial laboratories, all devoted to the techno-
logical issue. In our country’s precarioussituation, this issue gains urgency
with every year that passes. But by way of complementation I propose to
address another issue, namely the rationale of experimental robotics as a
branch of machineintelligence, with goals distinct from, although by no
meansin isolation from, industrial robotics. The aim of such workis to build
and test operational theories of what is sometimes called the ‘recognise-act
cycle’. I draw strength from the knowledgethat,in thisfield at least, today’s
science has a habit of becoming tomorrow’s technology. In particular, robot
technologyis beginning to knock on the door of machine learningstudies.
This is because the automation engineer requires of the machine, more than
anythingelse, that it be a teachable machine.
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NECESSITY FOR SENSORS

To exhibit the undeveloped state of teachability in present-day industrial

robots, considerthe steps in teaching a Control 6R Research robotthe trick

of describing a figure in the air.

The methodisto use thetypicalfacility of step-by-step key-pad program-

ming, followed by imprinting the trajectory in the machine memory. The

path can then be repeated indefinitely, moving (let us say) a paint-spray over

its prescribed course for each of a continuous sequence of replicate objects.

All is well until the unexpected happens. Perhaps one of the objects is

wrongly positioned, or missing, or the line stops. Regrettably, industrial

robots of this first generation are blind. They are also deaf, dumb, and

devoid of tactile sense. A level of teachability above that of mere rote

learning would be desirable. Not only this, sensors are needed— preferably

smart sensors. Without them the recognition part of the recognize—act cycle

cannot operate. Whether viewed from the stand-pointof industrial machi-

nery orscientific equipment,it is in the interests of all concerned for both

sensors and effectors to be reasonably cheap.

For those who wish to experiment for themselves, the 6R robot des-

cribed can be purchased for about £2400. For the home hobbyist, or the

hard-up machine intelligence laboratory, the little 6E which can be

instructed by voice command can be got for about £800 and driven from a
personal micro such as the Apple IJ. A few hundred pounds more can cure
deafness. With a microphone and associated speech-recognition package,
voice instruction presents no difficulty. For the ambitious, a further few
hundred pounds will secure a TV camera complete with picture-input

programsfor capturing and pre-processing frames of 256X256 resolution.

MACHINE LEARNING OF RECOGNITION RULES

Manywill already know of the pioneering work on image-processing by Dr
Michael Duff and his colleagues at University College London. W. K.
Taylor’s robot vision group is likewise part of this same initiative. At
Edinburgh we have been combiningthe parallel array principle of Duff’s
CLIP-4 machine with machine learning of recognition rules from examples.
To give a quick flavour of whatit means to teach a machinestrategies rather
than trajectories, consider the teaching of an Apple IT a decisionstrategy for
the circumstances underwhich the robot should open its umbrella.+ This toy
example can help clear up a point of terminology which otherwise will give
trouble later. The decision rule which is synthesised can be thoughtof as a
theory of somekind,in this case a theory of umbrella management. Butit is
also a program. The Apple can executeit, or output it for another machine
or a human to execute. Whenexecutedit is like a program. Wheninspected,
analysed,or evaluateditis like a theory. In other words, theory and program
are wordsdescriptive of one and the same object, the nuance being derived

+ The computerdisplays on its screen hypothesised strategy rules to account for the example
decisions whichit has so far been given (Fig. 14.1).
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from the purpose in mind. The pointwill assume importance whenI laterdiscuss machine synthesised theories which, unlike our umbrella-manage-ment theory, can take forms which cannot be inspected, analysed orevaluated by people.

 

 

Weather Inside Soaked Decision Class

wet no yes DON’T-USE
dry — no DON’T-USE
— yes no DON’T-USE
wet no no USE
 

Decision Tree
Weather

dry: DON’T USE

blustery: DON’T USE
wet: Inside

true: DON’T USE

false: Soaked

true: DON’T USE
false: USE

Fig. 14.1 — The upperpart showsthe first four example-decisionsof a trainingset
input to the machine. The symbol ‘—’ meansnot specified. The lower part shows a
machine-generatedstrategy, whichis, in effect a program. Programming by example
is a processofinductive learning whereby examplesare used to refine incrementally a
partial solution to a problem.Theparticular algorithm described in this Discourse is
called ID3 (Iterative Dichotomiser Three) QUINLAN 79 based on Hunt’s Concept
Learning System HUNT, MARIN & STONE66. There are two phases: 1. A
teaching phase, consisting of supplying examples in order; 2. An execution phase,
using the decision tree as a program that informs of the correct action for any

situation covered by the new rule.

   

ARTIFICIAL INTELLIGENCE

Returning to models of cognitive processes, the five questionslisted in Fig.
14.2 exemplify foci of intense scientific activity. Any substantial artificial
intelligence laboratory today may be expected to have ready-to-use exemp-
lars of most of these categories of experimental program, categories absent
from the commercial computing world outside. The top half of Fig. 14.2
concerns a capability now being transferred, under the name “expert
systems’, from research laboratories into industrial organisations. To an
important extent this work has been found to require the use of inductive
learning as a meansof speeding the acquisition of expert capability by the
machine partner. The lower two items of Fig. 14.2 are concerned with the
use of mechanised deduction, in some sense complementary to machine
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> @ What expert SKILLS can be modelled by COMPUTER?

“heuristic programs”

/ @ What HEURISTIC MODELScanbe induced from tu-
torial EXAMPLE DECISIONS?

“teachable programs”

@ What HEURISTIC MODELS can be induced from

TRIAL-AND-ERROR explorations in the problem

M space? 
“learning programs”
 

@ What PROBLEM WORLDScan be modelled as SITUA-

TIONS, ACTIONS, and CAUSAL LAWS?
“‘orograms with common sense”

@ What FORMAL LANGUAGESareappropriate for han-

dling WORLD MODELS?

 
“logic programs”   

Fig. 14.2 — A classification of the kinds of questions posed by the study of robot

intelligence. The upper half is concerned with the acquisition of logical models of

decision-taking from data. The lowerpartis concerned with the software technology

for expressing models directly.

learning. Before leaving it, we shouldrealise that mechanised deductionis

fundamental to the developmentof robots able not only to learn strategies

but also to reason out strategies for themselves. Instead of imperative

commands, the computeris told relevant facts aboutits world together with

rules of inference. The requisite new discipline of logic programming has

arisen from Robert Kowalski’s pioneering work at Edinburgh and was

subsequently developed by him andhis colleagues and students at Imperial

College. Its embodimentin the programming language PROLOGhas now

been adopted by Japanese authorities as a central plank of their recently

revealed national computing plan which hasalready beenstarted.

ARE PATTERNS NECESSARY?

In the present context, inductive learning is concerned with the acquisition

of pattern-based strategies from examples. Perhaps patterns, then, are

necessary design ingredients for an effective decision engine?

In the philosophy of the mathematician orthe theoretical physicist, the

time-cost of performing the calculations necessary to interpret and verify

formaldescriptions tends to be ignored. In such a philosophy the answerto

the above question is given as ‘no’. In a classic paper published in 1950

Claude Shannon dramatised the point in regard to the design of a decision

engine for two-person zero-sum games, in the following terms:
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The unlimited intellects assumed in the theory of games... never
make a mistake and the smallest winning advantageis as good as
mate in one. A gamebetween twosuch mental giants, Mr A and Mr
B, would proceedasfollows. Theysit downat the chessboard, draw
for colours, and then survey the pieces for a moment. Theneither

(1) Mr A says‘I resign’or
(2) Mr

B

says ‘I resign’ or
(3) MrA says‘I offer a draw’ and Mr B Says ‘I accept’.

According to Shannon’s estimate the lookahead rule of calculation
followed by the two mentalgiants would occupy a machinefaster than any of
today’s supercomputers for more than 10” years: sufficient for the physicist
or pure mathematician; notsufficient for the engineer.

“l offer a draw” “| accept”

 
Fig. 14.3 — Unlimited intellects assumed in the theory of games, a branch of
mathematics, apply to a class of games exemplified by chess which hasthe following
properties: two-person; perfect information; no chance moves; zero-sum; finite.

There are approximately 10*° positions and 10'*> gamesof chess.

IS CALCULATION NECESSARY?

Is calculation then necessary, evenif not sufficient, for an effective decision
engine? If this time we disregard memory-cost, then the answeris ‘no’.
Given enough patterns, calculation can virtually be dispensed with, asit
must be under acute time-constraints suchasbicycling or piano playing, and
also of course when a Grandmasterplays lightning chess. Workat Carnegie-
Mellon University and at the University of Illinois has shown that the
number of patterns stored in a chess-master’s long-term memory lies
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between 10 000 and 100 000. This is well within the boundsof today’s rapid-

retrieval storage media. So in contrastto the time-costfor Shannon’s mental

giants, we can legitimately disregarded memory-cost even for quite complex

skills. Cheap computer memories have accordingly permitted therise of the

new programmingcraft of ‘expert systems’ or ‘pattern directed inference

systems’ as they are sometimescalled. Thiscraft has roots in insights gained

from earlyartificial intelligence work of the 1960s, of which three particu-

larly relevant examples will be given, namely from rule-based adaptive

control, chess concept learning by machine, and perception and cooperation

in robots.
In all three cases a relatively small numberof patterns wassufficient to

defuse otherwise intractable combinational explosions. The pole-balancing

system, based on 225 patterns, will be discussed. Here, a human subjectis

required to learn how to movea cartso as to keep a pole balanced. The

following points are of importance:

(1) Therole of patterns.
(2) Trial-and-error learning by machine.

(3) Sufficiency for the humanof a heuristic model. Hiding the underlying

physical systems from the user is no impediment to his learning

performance.

In parallel with this study, the late Sir Eric Eastwoodtackled exactly the
same problem for his Faraday lectures using modern adaptive control
methods. When we subsequently discovered each other’s existence we met,
exchangedfilm showings, and analysed the respective trade-offs involved in
the two approaches. The rule-based program BOXESscoredin run-time
computation cost, resilience of learning to arbitrary changes in physical
parameiersof the task, and in the existence of a man—machine mode.Butit
was morecostly in the operation of its learning component. I learned more
from these discussions than from the project itself, and I value this oppor-
tunity to pay tribute to Sir Eric’s memory.

PRODUCTION-RULE PROGRAMMING

The contro! structure underlying the experiment in Fig. 14.4 is extremely
simple. It is today commonly called ‘production rule’ programming. The
fundamentalidea is to separate the program into, on the one hand,a set of
facts descriptive of a modifiable situation and, on the other hand, a set of

rules for making modifications. Thisis illustrated in Fig. 14.5. In the case of
the pole and cart the ‘database’ contains simply the currentstatus of each of
the four variables: position, velocity, angle, rate of change of angle. The

rules are if-then constructions of which the left-hand parts, or antecedents,
are conjuncts defined over these variables and the right-hand parts, or
consequents, are actions(either ‘rightwards’ or‘leftwards’ for each case), as
below:

if cart is far left
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___ !o~-o}

vr
Fig. 14.4 — The pole and cart problem. Chambers and Michie’s BOXES program
generated a rule-based controller. The controller’s task was to keep the pole

balanced andthe cart on the track.

 

  

 

 

(Generalised) Production System

“Situation Map”

 

 

Situation-action

    
 

 

Database
rules

Situation: something that may or maynot besatisfied in
the database

Action: some process that possibly changes the
database   

Fig. 14.5 — Production-rule programming: a break with the past. The driver of a
rule-based system is the situation map,not the sequence.

andcart is hardly moving
andpole is hardly leaning
and pole is swinging to right
then do
rightwards
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In each cycle (20 per secondin ourcase) one of the 225 rules is selected by

pattern match and the corresponding action is executed.

ACQUISITION AND MODIFICATION OF PATTERNS

During machinelearning, the BOXESrules were continually revised in their

right-hand parts, i.e. by re-setting the given action in the light of locally

accumulated experience — local, that is, to the region of state space

specified by the pattern part of the given rule. Modification of left-hand

parts, the antecedentpatterns themselves,is also possible, and wasthe basis

of the teachable performance of the Edinburgh robot FREDDY.Theskill

studied with this system wasthatofidentifying by sight and touchtheparts of

simple kits and manually assembling them. Some of the methods have

becomeclassical,in particular the manipulation of internal descriptionsin a

form nowadayscalled ‘semantic nets’; also the development by Rod Burstall

and Harry Barrowoffast algorithmsforfinding partial matches between one

such net and another. But FREDDY’sprimitive algorithms for the induc-

tion itself have been superseded, for example, by decision-tree approaches

which we use in Edinburgh today. These stem from Ross Quinlan’s ID3

algorithm, in turn developed from Hunt’s CLS (Concept Learning System)

of the 1960s. Its task can be describedasfollows:

Given: collection of positive and negative instances, where each

instance is the description of an object in termsof a fixed set
of attributes or properties

Produce: a decision tree for differentiating positive and negative

instances.

It would be interesting now to go back to the pole and cart and compare

on this hard task our present learning programs with the crudestatistical

induction methods we employed then. We have now brought these pro-

grams to what we regard as a fairly high pitch, providing options for

sampling humanaswell as machine data-sources, and incorporating facili-

ties for handling attributes which present themselvesas real-valued measur-

ements. In fairly complex recognition problems taken from chess they can

be madeto give performanceconsistently higher than human. Moreover we

confirm Quinlan’s finding that, at relatively high levels of complexity,

simplistic use of these programs generates decision rules for which high

efficiency of machine execution is matched bytheir total opacity to human

comprehension. Recently, however, Shapiro and Niblett at Edinburgh have

succeeded in developing a man-machine style which we call ‘structured

induction’ and which results in humanly transparent decision rules. The

price paid to achievethisis prior expert scrutiny of the problem with the aim
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of partitioning it into a few major sub-problems, before the inductionprogram runs are commenced.
Fig. 14.6 shows the top-level rule induced in this structured style for

classifying the space oflegal king-pawn-king positions into ‘won for white’
and ‘drawn’. This little semi-automated constructionandits dependent sub-
theories has provedto beof interest to chess-masters as a replacement for
the fragmentary and flawed codifications foundin the chess books. Not very
far up on the complexityscalelie levels beyond humancapacityto acquire in
entirety, let alone to codify. Shapiro has induced a complete, human-
readable, machine-executable theory for a subset of the ending king and
rook against king and pawn for which complete human mastery is at best
marginal. Rather than illustrate what we mean by ‘concept learning’ from
such esoteric material I have elected to display an engaging tutorial example
from myIllinois colleague, Ryszard Michalski, shownin Fig. 14.7.

The same induction program which Michalski used for trains has also
successfully constructed diagnostic rules for diseases of the soy-bean, a
staple crop in the State of Illinois. Not only do these, when run on the
machine, out-perform professional pathologists: they also constitute an
improved classification scheme for human use. Michalski’s results thus
exactly parallel our ID3-based results in chess and those of our colleague
Ivan Bratko in the classification of lymphatic cancers. Applicability in
robotics seemsinviting: in a class projectatIllinois my students were able to
teach the robot to discriminate good, bad and unacceptable table settings,
using white plastic tableware set on dark cloth, just from showing examples
of these three categories.

THIRD-PARTY INTERFACE

I want to turn from this homely task to a curious problem. Thetask of the
shopfloor robot supervisor is already a responsible, and sometimes harass-
ing one. I do not know anyoneconnectedwith this trade who is not aware
that in course of time facilities for setting two robots to work together on
given taskswill be part of the industrial scene. Will the robots communicate
with each other by electronic signals which the human supervisor cannot
hear and could notinterpret if he heard them?If soit takeslittle imagination
to see how rapidly the complexity of his task will escalate, assuming that we
are nowfirmly in the era of second-generation machines with smart sensors
and improvedlearning capabilities. The easiest way of providing what may
be called a ‘third-party interface’is to insist on a literally audible signalling
convention. One could cite a nursery example toillustrate the idea. When a
large robot requires a blue box it emits a high-pitched squeakand for a red
box a lower-pitched one. Hearing this, the small robot pushes a box of
appropriate colour from the dispenser which lands within its coworker’s
reach. It could becalled a ‘recognize-squeak’cycle.

Perhaps the industrial safety rules of the future will lay down that
automation devices musttalk to each otherin this ratherliteral sense! But as
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“TRAINS GOING EAST”

 
Fig. 14.7 — Larson-Michalskitrains with rules of human and machine Origin. The
following were the three simplest rules found by Larson and Michalski’s inductive
learning program:(i) if there is a triangle-containing car immediately followed bya
polygon-containing car then Eastbound else Westbound (polygonsof course include
triangles); (ii) if there is a short closed car then Eastboundelse Westbound;and(iii)
if there are twocars,orif there is a jagged-top one then Westboundelse Eastbound.
Of 70 humansubjects many produced(iii) and some (ii). In addition the following
two were produced:if there are more than twokindsoffreight, then Eastbound else
Westbound. Numberofsides in the cargo(circle counts 1, triangle 3, etc) is a factor

of 60 if and only if the train is going West!

the content of messages becomes more complex, how are human and
machine partners to remain in adequate rapport? A much deeperstudywill
be needed thanis yet being conducted of the nature and pre-conditions of
whatis comingtobecalled ‘cognitive compatibility’.

TOWARDS A TECHNOLOGICAL BLACK HOLE?
In our work and in Quinlan’s, preliminary sightings have been madeof a
potentially disturbing phenomenon already mentioned in the harmless
context of laboratory tests with chess. I refer to the possibly inscrutable
nature of products of computer induction when these products are control
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programs for domains of high complexity. Inscrutability is of no conse-

quence in sometask environments. Butit is of more than passing concern in

situations such as the control of nuclear powerplants,air traffic control or

 

Lost 3-ply Experiments
(CDC Cyber 72 at Sydney University)

49 attributes (Mixture of 35 pattern based
4 low-level predicate
10 high-level predicate)

715 distinct instances
177 — node decision tree found in 34 seconds

 
Classification CPU time

method (msec)

Minimax search 285.0

. Specialised search 17.5

Using decision tree 3.4  
 

Fig. 14.8 — Different ways of constructing a program to recognise the property‘lost
in three-ply’ in King-Knight-King-Rookchesspositions: 1. hand-coding the minimax
general search algorithm;2. hand-constructionof an expert system based onpattern-
directed search;3. inductive synthesis of a recogniser from a training set of 715 cases
selected by the induction program from thefull set of 23 million cases. Run-timecosts

are compared.

the operation of military warning systems. The programs which control such
installations are today of exclusively human authorship. Yet anxiety is
already expressed concerningtheir lack of transparencyto technical person-
nel at times of suspected malfunction. At some time the developersof these
systemswill succumbtothe lure of inductive and other synthesis techniques
at present under development in various laboratories. The evidence is
compelling that unless special methods are employed the products of
induction can be expected to be opaqueto those whowill depend upon them
at run time.

The economic inducementto prefer such products may sometimesbe
startling, as suggested by Quinlan’s results in the accompanying table. Here
a five-fold gain in run-time efficiency was obtainable by use of machine-
maderules in preference to hand-made ones. Moreoverhandsynthesis took
man-months in contrast to a few minutes for machine-synthesis. The
eventual spread of such methodsthrough the programmingindustry seems a
certainty.

It is important to understand the nature of the technological black hole

towards which we are headed. Let mespellit out:
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(1) Machines can now beusedto generate super-efficient descriptions as
programs.

(2) These descriptions, although accurate and efficient when run on
machines, makenosenseto people.

(3) Even with pre-learning technology, an inscrutable machine can be a
dangerous machine.

(4) It seems inescapable that during the coming decadethe programming
industry will be transformedinto a factory operation based partly on
automatic synthesis.

NEED FORA ‘BRIDGE’ SCIENCE

Apart from the EEC,which has funded a preliminarystudyofthis issue, the
centre of awareness appears to be Tokyo.In the 85-page report recently
released by the Japan Information Processing Development Centre the
diagram reproduced in Fig. 14.9 appears. This picture seemsin itself to
provide an answerto the question: why has Japan decidedto build her 8-year
computing plan aroundartificial intelligence? Strippedofits aura of mysti-
cism, the picture says that without a major AI component(represented in
the diagram bythe central circle) the computing systemsof the 1990s will
pass forever beyond human mental ken. The guarantee of cognitive compa-
tibility between manthesorcerer and the new apprentices is to be sought by
building the ‘bridge’ scienceofartificial intelligence. The task is to design
systems which can manipulate on the one hand models of the mentality,
requirements and limitations of the human user and on the other hand
models of brute force problem solvers of the fourth generation and beyond.
There can belittle doubt that the sameissue will raise its head in factory
automation. Hence it would be timely to revive the study of machine
intelligence in robotics.
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NOTE ADDED IN PROOF

Following on from theclosing sentenceof this text, which was delivered as a
RoyalInstitution Friday Evening Discourse on 26th March 1982, a resump-
tion of the FREDDYseries of experiments in robot intelligence has since
been madepossible by the generosity of the Westinghouse Corporation,
USA.At the time of writing FREDDY

3

can be taught to build simple
blocks-world constructions. Planning and learning capabilities are co-ordi-
nated via a PROLOG-oriented software base and include complex as-
sembly-line operations involving two or more co-operating robots.



Section 3 Mechanics of cognition

INTRODUCTORYNOTETO SECTION3

Biologists and engineers have always shared a dream that they can solve
each other’s problems. Underits spell in 1967 the distinguished experimen-
tal psychologist Richard Gregory moved to Edinburgh andset up his Bionics
Research Laboratory. A re-orientation was thereby impartedto our experi-
mental programming work which was,I believe, far-reaching. The closing
passage of the Edinburgh-Tokyo dialogue (Chapter 8) makes the point
specifically. Japan’s current ‘Fifth generation’ programme, diagrammati-
cally sketched in Figure 14.9 has recently endorseda similar re-orientation.

When Gregory himself left the project in 1970 he said to mea little
gloomily that he no longer believed in bionics. As a subject, it had
disappointed expectationsof serving as a two-waystreet. The contributions
of technology to biology, both as instrumentation andasintellectual models,
flood in daily. They are pervasive. But what animal devices have ever been
adopted by engineers with major industrial success?

I believe that Gregory’s over-reaction arose from looking for the
contributions of biology in the wrong place. The payoff to the engineer,
whenit doesaccrue,lies in copying not the mechanismsof animals but the
methods and models of those who study them,notleast those of Gregory
himself. Not that the humbler forms of life do not make quite direct
contributions,as in industries based on fermentation, and more recently in
bio-synthesis. But to the generalscientific technologist with a problem, an
animalis just another, complicating, problem. A biologist on the other hand
may throughhis training havetricks quite new to thetraditional engineer—
the use of scientific method, for example, to subdue complexity;or the habit
of allowing for human factors in the design of instrumentation. More
significantly, the biologist may have a factual or philosophical angle on the
engineer’s problem from which it can be shownthatradical departureis
necessary from this or that traditional design dogma.

Chapter 15 considers such a case in the interpretation of scenes via



184 MECHANICS OF COGNITION [Sec. 3

computer-controlled sensors. A needis there discussed to combine map-like

representations and symbolic representations, as suggested by phenomena

of humanvisual thinking. Chapter 16 makes a more far-reaching foray with

the proposal that the development of information technology has been

consistently and almost fatally stunted by a philosophical strait-jacket from

the physical scientists. A Spencerian ‘bottom up’ basis, customary in

biological thought, must be substituted. Otherwise progress with machine

perception will continue to be slow.

A particularly disabling consequence of ignoring the biological design

principles of man’s problem-solving brain is addressed in Chapter 17.

Essentially a distinction is necessary between the phenomenaof‘under-

standing’ andof‘skill’. The former carries high executioncosts; this is why

the expert brain invokesthelatter in its place wheneverpossible. Chapter 18

sketches a formal framework within which,it is hoped, information techno-

logists and cognitive scientists may be persuadedto live together. In Chapter

19 the section closes by reviewing some indications that cohabitation is

overdue.



15
Memory mechanismsand machine
learning (1974)*

The authorsof this paper are almost wholly ignorantof natural, as opposed
to artificial, nervous systems. In machine intelligence our business is to
design and experiment with home-made nervoussystems: experimental
computer programs. Unlike the systems studied by neurobiologists, our
artificial ones are transparent. We know and document everything whichis
inside them, and so in principle we can explain their total behaviour.
Perhaps, then, they might be a source of models for the real nervous systems
which, howeversimple, remain distressingly opaque.

Building computer models of biological systems has become the vogue.
They comein twokinds,free-floating and anchored. To make free-floating
models, proceedas follows:

(1) Invent an arbitrary theory of how some observed system might work,
complete with reverberating circuits, feed-back loops, encoders and
decoders and anythingelse youlike.
(2) Program it.
(3) Play with it on the machine, adjusting parameters and patching, until
Satisfied.
(4) Write up and goto (1).

If the theories which are implemented in this way have sufficient
aesthetic appeal then no otherjustification is required.

Now consider the other kind of model — ‘anchored’. Two anchorages
are possible:

T'ype-I anchorage is a knowledge of the given nervous system’s micro-
structure and functional connections so detailed as to lead moreor less
directly to the conjectured model. It may be doubted whetherso firm an

+ Written with Pat Ambler and Robert Ross, of the Department of Machine Intelligence,
University of Edinburgh.
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anchorageis possible in the present state of neurobiology,oris likely to be

for some time.
Nevertheless, we believe that programmed models canplay a useful role

in the development of exact theories. In particular, they impose on any

candidate theory an important constraint, namely, that it be expressed

precisely. Implicit assumptions which might otherwise be concealed are

consequently madeexplicit and therefore susceptible to experimental inves-

tigation. To be really useful, however, a programmed model must be

capable of making verifiable predictions about the behaviourof the system

being modelled. Given a complex theory such predictions might only be

calculable if the theory is expressed as a computer program.

An interesting exercise in computer simulation is described in the

doctoral thesis of Clymer[1]. This work is based on the ‘mnemon’construct

suggested by Young [2] as the principal mechanism for discrimination

learning in the octopus. Clymer’s program can produce, with a reasonable

degree of accuracy, learning curves similar to those obtained with real

animals. In addition, the program can simulate the effects of operations

which interfere with the upperlobestructures. Of greaterinterest is the fact

that the simulation has been used to makepredictions aboutthe effect on

performanceof variationsin the training regime. These predictions can be

tested experimentally.

Type-2 anchorageis the attemptat efficient engineering implementation of
the given behaviour without regard to biologyat all. On the gross plane of
mechanical engineering, the developmentof the pump ultimately madeit
possible to understand the working of the heart. In computer technology,
the development of computer vision may, or maynot,ultimately help us to
understandbiological visual systems.

To recapitulate, the three categories are: (1) free-floating; (2) biologi-
cally anchored;(3) technologically anchored. Whetheror notthe timeis ripe
for successful application of computer modelsin any of these three categor-
ies is something on which only professionally qualified neurobiologists are
competent to pronounce. However,wefind it easier to be dismissive about
(1) than about (2), and about (2) than about (3). Interestingly, the same
order of dismissibility has obtained historically in the study of bird flight,
where wecan consider models of types (1), (2), and (3) as follows:

(1) Balloons: beautiful, but useless as models of bird flight.
(2) Artificial birds: too messy and difficult to be of practical help.
(3) Aeroplanes:highly influential. The interpretation of the fossil record of
extinct birds achieved by John Maynard Smith [3] was a direct consequence
of his employment during the waras anaircraft designer.

In the end somethingfit to be called machineintelligence theory will be
developed, pushed ahead bythe pressures and needs of technologically
minded experimentalists. It may then at last become possible for neurobio-
logists with a foot in this new campto ‘do a John Maynard Smith’ with simple
nervoussystems.
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In this paper we exhibit a modestfive-finger exercise under type (3). We
describe, in particular, a computer program which behaves on a task of
learning and discrimination in a way reminiscent of an animal. We explain
whatis going oninsideit to cause this behaviour, andin what waysit could be
extended to cause more complex and more ‘intelligent’ behaviour. Thething
to bear in mindis that both the robot device and the computer program
driving it were developedin the course of research done with a strictly non-
biological motivation. About six hours’ programming was subsequently
done in orderto ‘dress it up’ in a biological-looking idiom. Thus weare
dealing with a genuine, if elementary, type (3) model.

MATERIALS AND METHODS

The experimentwasbased on a hierarchy of computer programs developed
over a numberof years to form an integrated software system for tasks of
‘hand-eye’ assembly. The hardware and software systems have been des-
cribed elsewhere [4, 5]. A typical task might be the construction by the
computer-controlled robotof a toy car from

a

set of parts, as shownin Fig.
13.1. The programmingaids have attained a rather high level of flexibility
and ease of use: the user can nowinstruct the system in a completely new
assembly task in the span of a day or two. This is done in part by directly
‘teaching’ the system the visual appearanceof objects by offering examples
for inspection through the television camera. Elementary powers of form-
ing, learning and matching descriptions are thus incorporated. The com-
plete system is known locally as FREDDY.

As a result of a reading of J. Z. Young’s Croonian Lecture[2], the idea
suggested itself of concocting a task of the kind used in studies of animal
behaviour. We settled on phenomena of discrimination learning and
transfer of learning between sensory modalities. A hypothetical animal,
Freddypus vulgaris, was defined which has two kinds of object in its
environment: inanimate objects, distinguished by being hard to the touch
and simple in shape; and food objects, distinguished by being soft to the
touch and having complex andirregular outlines. In our experiments hard
objects were made from wood andsoft objects such as crabs, starfishes and
waterbeetle larvae from foam rubber(see Fig. 15.1). The task wasto learn,
initially by tactile probing, which objects to put in the discard area and which
to carry off into the food area. With experience the system should start
performing the appropriate actions without anytactile probing onthebasis
of visual inspection alone.

Our question then wasthe following: how quick and easy wouldit be to
set up a model of such simple behaviour by scooping out the necesary
software from the full FREDDY system andstitching it together into a
working model? Oneof us (P.A.) took this in hand, and at the expense of
only six hours’ work had a convincing Freddypus vulgaris fully operational.
The outline flow-diagram of the resulting program is shownin Fig. 15.2. Figs
15.3-15.6 summarize the behaviour of the program (illustrated in the
original presentation by a film) when presented with a numberof objects of
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Fig. 15.1 —- Examplesof hard andsoft objects.

the kinds shownin Fig. 15.1. Fig. 15.7 showstheresultsof fitting curves to
the outlines of objects.

WHAT MORALSARE TO BE DRAWN

It is possible to hope that our precise knowledge of the data-structures and
algorithms inside a complex computer program should guide a search for
similar structures and processesin nervous systems. Wethink that this may
be naive, andit is probably regarded as naive by mostpeople. Atthis early
stage the best we can hopeforis help from computer models in approaching
one or two majorissuesat a rather high level of generality.

Onesuchissueis that of direct representation versus symbolic represen-
tation of external reality, or (as we might rephrase it), maps versus
descriptions. An example of a mapisa literal map,like those printed in the
AA book. An example of a descriptionis the triangular table printed at the
end of the AA bookgiving inter-city distances, from which manyofthe main
features of the map of the UK can be reconstructed. Indeed, Gower has
developed a technique which achievesprecisely this reconstruction more or
less successfully [6, 7].

Whathasthis to do with the neural representation of the outside world
and with Freddypus vulgaris? Consider two questions:

(1) Are both categories of representation (‘maps’ and ‘descriptions’) used
in technological models?
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Fig. 15.2 — Outline flow-diagram of the Freddypus program.

(2) Are both categories of representation used in nervous systems, or only
one?

Asfar as question 1 is concerned, the answeris that both are used. A
rather extreme case of map-like representationis provided by recent workof
Bakeroniterative arrays of sequential logic circuits [8]. Each circuit is in
effect a miniature computer, occupying a distinct cell of a 3-dimensional
array, and capable of receiving inputs from its neighbouringcells, and in
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Fig. 15.3 — Layout of objects at the start of the task.

 
Fig. 15.4 — Feeling an unknownobject for hardnessv. softness.
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Fig. 15.5 — Picking up an object.
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Fig. 15.6 — The completedtask.
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Fig. 15.7 — Examplesof line drawings extracted by machine from TV views.

(

turn delivering to them the results of computations performed on these
inputs. Baker developed his computingsystem with a technological aim in
mind, namely, to make it quick and easy to compute predictions of the
trajectories of rigid bodies moving through space. He points out the
wastefulness of handling such simulations by conventional sequential com-
puting. He also points out that we have a powerful subjective impression
that our own predictions are computed map-wise, or as we should say once
we introduce the time dimension,by runninga sort of cinematographin the
head. Baker’s proposal, verified in trial computations on easy cases, is to
represent an object in 3-space by assigning 1 to each occupied cell of the
array and 0 elsewhere, and to run the cinematograph by appropriately
organizing the computation rules of his 3-dimensional array of automata.

Related to this, Sloman [9] gives as an example of what humans
sometimescall ‘visual thinking’ the problem illustrated in Fig. 15.8: what
will happen if we pull the A end up?
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A A
Fig. 15.8 — Whatwill happenif we pull the A end up?

MAP-LIKE REPRESENTATIONS

Clearly, we do not determine this by formulating the problem and the
physics of pulley systems as expressions in some formal logical language,
from which we then compute the answerby deduction.Is there evidence in
the brain of direct map-like representation of dynamic eventslike this? At
the present state of knowledge there does not appear to be any such
evidence. However,at a more prosaic level Hubel and Wiesel have shown
that detectors sensitive to movinglines exist in the visual cortex of the cat
[10].

In the case of Freddypus there are representations of both kinds
interwoven: map-like co-ordinate representation for the viewing platform
‘in the large’; and a mixture of the two for constructing the visual descrip-
tions and matching onedescription with another‘in the head’as it were.

In the table-top world of Freddypus the positions of objects are specified
by meansof a 3-dimensional co-ordinate system whoseorigin is at the centre
of the platform. The X and Y axesareparallel to the sides of the platform,
and the Z axis points vertically upwards. For each object variouspositional
data are calculated. Of these the most important is the point on the table
corresponding to the centroid of the object, since it is this point that is
actually used to specify the position of the object on the table.

DESCRIPTIONS

Fig. 15.9 showsthekindof data-structure used for description of objects ‘in
the small’. It is termed a ‘tree’. The root of the tree consists of a list of the
names ‘hard’ and ‘soft’, and associated with each nameis a list of visual
descriptions of the objects so far encountered that have the respectivetactile
property. A visual description consists of a ‘region’, which is formed from an
‘outline’ of the object and a ‘holeset’. Associated with each region are two
properties of it, namely its area and its compactness. At the next level of
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Fig. 15.9 — Example of the type of data structure used in the description of objects.

description we consider‘outline’ and ‘holeset’. Both these have a numberof
associated properties and components. The componentsof‘holeset’ are the
individual holes containedin the object, if any. Holes are described in terms
of line segments and have associated with them their area and compactness.
Outlines of a region are also described in terms of line segments.
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Since such tree structures do notlookin the least like starfishes, crabs,
bricks, etc., they belong to the symbolic category. How neurobiologists are
going to determine whethersuch a category exists in the world of neural
representationsis notfor us to say, but the question seems a valid one. The
material we have presented may perhaps help to call attention to an issue
concerning internal representations which AI people worry aboutalready,
and which we suspect will sooner or later have to be tackled at the
neurobiologicallevel.
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Machine models of perceptual and

intellectual skills (1979)

Figure 16.1 shows an unusualresult obtained by drawing a square and asking

CHILD'S OWN COMMENTARY

‘There forstiff things

‘For going up
and down’

‘These are the side bits

——

A B

Fig. 16.1 — Copies of a square drawnbya 34-year-old girl. By asking herto indicate
on the original modelthe‘stiff things’, things ‘going up and down’, and‘sidebits’, it
was ascertained that these phrases denoted the square’s corners, uprights, and

horizontals respectively.

a 34-year-old girl to copy it. Herfirst attempt is on the left. Her second
reproduced on the right, departs wildly from the first, and from anything
which the ordinary onlooker might have expected her to do. As will be
explained later the phenomenonreveals the normally hidden operation of a
particular way of compactly encoding percepts of external reality. The
species of symbolic description underlying thegirl’s drawing is today routine
in work on computervision. But without contact with artificial intelligence
techniquesit is not easy to spot whatthis strange beetle-like representation
is saying about the class ‘square’, nor to empathize with its neat graphic
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encoding ofthe class’s defining properties and relations. Even less obvious,
but necessary to complete the insight, is the realization that the more
conventional drawing onthe left is also not to be interpreted asan effort to
trace the retinal image out onto paper. Indeeditis thought to represent the
culmination of an even more complex project than the right-hand drawing:
more complex, because of the inclusion of an additional Stage, namely
reconstruction, from the symbolic description, of something which(as the
adult wouldsay) ‘lookslike a square’.I shall return later to this mental skill
of drawing a square.

That our most distinctive quality is mental skill was recognized some
time ago whenthe taxonomists gave our species the name Homosapiens.
That it is put together like other biological functions, as a large and
heterogeneousboxoftricks,is a notion slower to gain general acceptance.
Explanatory models of man’s attributes taken from religion, art, and
literature still hold some sway, and the most biologically minded person can
on occasion find himself seeking special exemption for the cognitive attri-
bute, picturing himself perhaps as Michelangelo’s Adam. Propped on one
arm, he stretches theother towardshis airborne Creator, to receive... what?
Not the spark of life surely, for Adam is already plainly, if somewhat
languidly, alive; but the spark of reason to set him above the beasts. Pure
Reason, Pure Thought, Pure Faith... all essence, no detail. Such attributes
are seen as bestowed from the top down, rather as mathematics — weare
told — received the integers. Yet biologicalattributes invariably come bya
different route, and they evidence evolution’s bottom up modeof construc-
tion in the rambling and complexarchitectures which confrontevery serious
investigator. The medieval scholar’s explanation of the effects of chewing
poppy seed: *... Quia est in eo Virtus dormitiva!’ gives place to the
pharmacist’s catalogue of soporific compounds and the pharmacologist’s
detailed maps of molecular structures and their neuronalinteractions.

_ Alreadyin the nineteenth century audacious voices were proposing that
attempts to account for the phenomenaof cognition must tread just such a
path. In this ChapterI hope to indicate that a new and exceedingly forceful
model has come amongst us, derived from recent uses of computers in
complex problem domains, andthatin so far as lessons can yet be read they
reinforce the bottom-up philosophy. Indeed those of us whoare professio-
nally concerned to emulate advanced mental skills by machine could and
should have been quicker to appreciate this essentially biological perspec-
tive. Self-regulating systems of high complexity, whether animateorinani-
mate,are (it will be argued) best viewed in this way.

Priority for this appreciation of the matter seemsto belong totheself-
taught English social philosopher Herbert Spencer. He was, as William
Jamesputit, ‘the first to see in evolution an absolutely universalprinciple’
and he boldly applied it to cognitive phenomena amongothers. The
evolutionary principle as he conceivedit proceeds byprogressive individua-
tion. He describethis idea in Social Statics published in 1851:

Betweencreatures of the lowest type, and creaturesof the highest,
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wesimilarly find the essential difference to be, that in the one the

vital actions are carried out by a few simple agents, whilst in the

other the vital actions are severally decomposedinto their compo-

nentparts, and each of these parts has an agent to itself.

Spencerindeed intendedthe principle to be absolutely universal, and to

apply to tissues, organisms, species, minds, societies — presumably to

computing systems, too, had they existed in his day. Yet each discipline, it

seems, must painfully learn it all anew. The history of machineintelligence

researchoverthe past ten years has consisted in a progressive abandonment

of sweeping uniform procedures for search, deduction, linguistic analysis,

and the like, in favour of a more Spencerian approach in which the

representation in machine memory of human knowledge in all its ad hoc

complexity is seen ascritical.

It is significant that this methodological revolution was pushed forward

by the world’s leadinginstitute of technology (at Cambridge, Massachu-

setts) and not by somecentreofpure science. There-orientation hasindeed

been painful for many in a field populated largely by those trained in the

conspicuously non-Spenceriandisciplines— the mathematical and physical

sciences. Particularly embarrassing to those who look for progress in the
form of a succession of blindingflashesis the realization that the knowledge

sustaining a given skill— whetherin visual perception, in medical diagnosis,
in automated chemistry, in game-playing or in mathematical reasoning —
reveals itself as typically vast in total bulk and highly individuated, to use
Spencer’s term, into a mosaic of interlocking sub-domains and sub-sub-

domains. The successful computer program turns out in each case to be the
one which, while preserving a degree of overall control, seeks to associate

with each separate part of the mosaic its own special packageoflocal advice
and useful knowledge. Spencer’s schemecan be traced in the microcosm of
visual perception built by Waltz (1972) for the restricted but non-trivial task
of interpreting line-drawings of polyhedral scenes with shadows,asin Fig.
11.3, which illustrates the task, and Table 11.1 which showsa part of the
program’s internal catalogue of knowledgeuseful for that task. Table 11.2
compares the numbersof labellings of different kinds of vertex in a line
drawing which are possible before and after application of the constraints

derivable from this catalogue. Notice (1) how effectively even a little
knowledge can defuse a large combinatorial explosion, and (2) the complete

absence of ‘top-down’ knowledgein the form of conventional theories of
optics and mechanics. In macrocosm,the bottom-up philosophy has been
expanded by Minsky (1975) into an ambitious proposal as to how we might
endow a machinewith a usable stock of knowledge about the world atlarge.
At an intermediate level Spencer’s characterization applies with wonderful

exactitude to Buchanan and Shortliffe’s knowledge-based program for
clinical bacteriology (Shortliffe 1976), to Buchanan, Feigenbaum, and
Lederberg’s DENDRAL program for mass spectroscopy (see Buchanan,
Smith, White, Gritter, Feigenbaum, Lederberg, and Djerassi 1977 for a
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very recent development) or indeed to every oneof the as yet small cohortof
knowledge-based computer programs which can claim, within their specia-
lized areas of competence, to match human experts in complex domains.

Machineintelligence thus turns out to have the character more of biology
than of physics. Although we must always strive for the great unifying and
simplifying principles wherever they may be gained, we haveto live with the
fact that there is such a thing in scienceas irreducible complexity. Elsewhere
I discuss quantitative measures of complexity in the contextofintellectual
difficulty and of knowledge (Michie 1977). |

Let us nowtry out the Spencerian scheme by interpreting his ‘creatures’
of higher or lower type as computer programsof the kind created in the
laboratory today in machineintelligence work, i.e. machine implemen-
tations of humanskills. The formatofthe interpretation goesasin Fig. 16.2.
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Fig. 16.2 — Interpretation of Spencer’s scheme of ‘progressive individuation’ in
terms of experimental computer programs developed to implement complex mentalskills.

Among humanskills I shall consider visual perception, bicycle riding,
clinical bacteriology, mass spectrometry, mental arithmetic, and chess. The
first of these, computervision, has the farthest to go, yet the experimental
attempts have yielded some of the more interesting insights into the
Spencerian nature of the knowledge problem.

VISION

The existence of internally stored visual patternsis clear to anyone who
knowswhatitis to ‘see things’ in an apparently randomly patterned surface.
The following accountis by Leonardo da Vinci:

If thou wilt look carefully at a wall spotted with stains, or at stones
variously mixed, thou may’st see in them similitudesof all sorts of
landscapes,orfiguresin all sorts of actions andinfinite things which
thou may’st be able to bring into complete and good form.

It would seem thatthis harmless, and apparently pointless, phenomenon
reveals a mechanism ofcrucial utility when we want to see things which
really are there,as in Fig. 16.3 from R.L. Gregory (1970). The photograph
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Fig. 16.3 — Atfirst sight ‘a wall spotted with stains’ (see text). This photographof a

dalmation dog is from R. L. Gregory’s Theintelligent eye. (Used with the permission
of the McGraw-Hill Book Company.)

might almost be of Leonardo’s ‘wall spotted with stains’, so that the eye’s

instant discovery of a Dalmatian dog suggestsan internallibrary of dog-part

patterns from whichthe successful identification has been assembled. There

is no suggestion that such patterns are like Identikit parts, which take the

form of actual templates. On the contrary, Gregory and otherstell us that

the evidence is for Helmholtz’ idea that percepts are reconstructed from

stored descriptions of a more generalized nature. The Helmholtz assump-

tion is that perception operates by evocation, a kindoftriggering one might

say, of appropriate reconstructions from a vast stored treasure-house of

knowledge about how the world looks. A brutally direct test of the

assumption would be provided if a congenitally blind man were to have the

use ofhis eyesrestoredin later life. The assumption predicts that, lacking

any internal accumulation of perceptual models, he wouldatfirst be unable

to ‘see’ in any useful sense.
R. L. Gregory studied just such a case,in which the patient had hadsight

conferred on him at the age of 51 by an operation of corneal grafting. Atfirst

the man could makelittle of the images received throughhis eyes, except in

the case where he had prior knowledge throughtactile experience. He read



Ch. 16] MACHINE MODELS OF PERCEPTUAL AND INTELLECTUAL SKILLS 201

upper case blockletters immediately on sight, but it took him timeto learn
lowercase letters. It turned out that at the blind school he had been given
raised letters on woodenblocksto learn by touch, but only uppercase, not
lower case. Soon after he left hospital, writes Gregory, ‘we showed him a
simple lathe and he was very excited. We showed himit first ina glass case,at
the science Museum in London,and then we opened the case. With the case
closed he was quite unableto say anything aboutit, except that the nearest
part might be a handle... but when he wasallowedto touch it he closedhis
eyes and placed his hand on it, when he immediately said with assurance that
it was a handle. Heran his hands eagerly overthe rest of the lathe, with his
eyes tight shut for a minute or so; then he stood back a little, and staringatit
he said: “‘NowthatI’vefelt it I can see.””’

Forty-eight hours after the corneal grafting operation,the patient saw a
Londonbus, a two-decker. Fig. 16.4 gives the ‘camera’s-eye view’ of such a

ae
-
8( 

Fig. 16.4 — ‘Camera’s eye view’ of a London two-decker bus (London Transport).

bus. Compare with this the patient’s drawing, reproduced in Fig 16.5. Six

 

Fig. 16.5 — Patient’s drawing two days after the operation.

monthslater he producedFig. 16.6, and after a further six months Fig. 16.7.
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Fig. 16.6 — Patient’s drawing after 6 months.
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Fig. 16.7 — Patient’s drawing after a year.

Note how experiencehasfilled in the detail of what heis able to see, except

for the front of the bus which Gregory conjectures he would not have had

opportunities to explore with his hands.

These observations merely support the necessity of internal models

without saying anything abouttheir structure.

Piaget’s school has accumulated instances of a rare and revealing

phenomenonwhich canbeelicited from normal 3-5 year old children asked

to copy simple geometrical figures. Returningto Fig. 16.1, which was taken

from Hayes (1978), we see the phenomenonin unusually clear-cut and

striking form. The beetle-like object on the right does not look in the least

like the square whichthe small girl was askedto copy. But this is not because

she cannot make a ‘proper’ adult-type copy, as evidenced by herfirst

attempt, whichis on the left. The child hasin this case been inducedtotell us

in her own words,as shownin thefigure, just what she thinkssheis doing.It

seems as though, as it were without noticing, she has on this occasion

omitted the final reconstruction phase and is symbolizing in a graphical
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language the descriptive structures with which she represents squaresin
memory. Hayes introduces her observations in words which can hardly be
bettered as a statementofthe role of internally stored patterns:

Work on machineperception in different laboratories has for some
time been converging onessentially the same formatfor represent-
ing visual scenes, according to which the scene is decomposed into
primitive elements which are then characterized by properties and
relations holding among the membersof sub-sets of elements (see
Barrow and Popplestone 1971, Winston 1970). Representational
schemata formed in this way are often referred to as relational
structures...

This can here be exemplified by a generalized relational structure taken
from the Edinburgh robot work, reproduced in Fig. 15.9. She continues:

... The possibility suggestsitself that somepart of the humanfaculty
of visual recognition (which is immensely more powerful than any
machine system yet developed) may be based onsimilar processes
of decomposition into primitive features and re-aggregation of
these to form internal schemes.

and proposesthat‘the child presents a graphic representation of his concept
of whatis perceived rather than attempting to copythe retinal image on to
paper.’ A bizarre exercise on the theme ‘diamond’ is shownin Fig. 16.8,
accompaniedbyits interpretation in relational structure form. The more
complex structure required to interpret the earlier drawing of a squareis
shownin Fig. 16.9.

In this chapter the word‘pattern’ will appear from time to time. No more
is meantby it than a description,in the form of somecollection of primitive
elements together with properties and relations defined on them. Could
some description-handling formalism be developed into an actual ‘seeing
machine’?

In 1966 R. L. Gregory and I chanced to meet in New York and we
planned a project to develop a machine capable of visual perception,
interpreting perception as extending to the actions andusesassociated with
perceived objects. This robot project was ambitious — absurdly ambitious,
some felt. But thanks to generous sponsors and to the moral support and
hard work of some exceptionally gifted colleagues,it got a surprisingly long
way— atfirst base, while Gregorywasstill with us, sufficient to demonstrate
successful acquisition and matching of descriptive patterns, and eventually
far enoughto be able to address questions like ‘How manystored patterns
doesit take to “‘see” a simple world?’

In 1973 the work was discontinued (documentation of the project has
been given by Ambler, Barrow, Brown,Burstall and Popplestone, 1973).
Subsequently the National Engineering Laboratory, intrigued by the poss-
ible industrial uses of a seeing machine, came forward to enable a small-scale
recommencement of the work. Today we have a visual command language
for instructing a parallel array processorin the extraction and manipulation
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Fig. 16.8 — (a) a square; (b) a diamond; (c) a diamond;(d)interpretation of (c) as a
relationalstructure.
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Fig. 16.9 — Symbolic representation of a square as a relational structure, following
the child’s graphical representation shownin Fig. 16.1.
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of descriptive primitives. Execution timesof the order of a millisecond seem
attainable for the simpler tasks (Armstrong & Jelinek 1977), and solutions
have been found for the problem of programming higher-level descriptions
in parallel mode.

After this dip into visual perception to set a mental frame, we shall turn
to other domains. Butfirst a digressionis in order on the subject of top-down
versus bottom-up theoriesin science.’

TOP-DOWN AND BOTTOM-UP

The house of science has always had two levels. Upstairs live the great
explanatory theories, which proceed top-down from the highest level of
abstraction and show with great conciseness how particular consequences
can be derived. In the basementare the servants’ quarters, the abode of
various compilations and catalogues of useful know-how.In general these
latter, the bottom-up representations, are expected to keep themselvesto
themselves, except when called to serve some particular need— to mend or
make a chair, to cook a meal, to run a message. Very occasionally some
servant-scholar arises— an Aristotle, a Bacon, or a Spencer— and we have

an explanatory annotation on the bottom-uptrade, arguingthatit, too, has
its unifying principles. Upstairs people have always smiled indulgently at
such quaintness — except in one very exceptional circumstance, which has
to do with the introduction of mechanical aids, regarded as being by their
very nature downstairs property. In his Life ofMarcellus, Plutarchtells us of
the reactions of Plato, the earliest recorded exponent of the top-down
mystique, on learning that two mathematical colleagues had been so
engaged:

Eudoxus and Archytas had beenthe first originators of this far-
famed andhighly-prized art of mechanics, which they employed as
an elegant illustration of geometrical truths, and as a means of
sustaining experimentally, to the satisfaction of the senses, conclu-
sions too intricate for proof by words and diagrams... But what with
Plato’s indignation at it, and his invectives against it as the mere
corruption and annihilation of the one good of geometry — which
was thus shamefully turning its back upon the unembodiedobjects
of pure intelligence to recur to sensation, and to ask help... from
matter; so it was that mechanics came to be separated from
geometry, and, repudiated and neglected by philosophers, tookits
place as a military art.

Developments in programming the digital computer, so as to invade
territory which could not otherwise be easily penetrated by the human

‘These terms clash with a similar but distinct use by Arbib (1976). Since heis in printfirst, I
should byrights give way. But as yet I have found no satisfactory alternatives to ‘top-down’ and
‘bottom-up’for the categories which were already revolving in my mind before I came uponhis
paper: ‘intensive’ and ‘extensive’ seem to hit it off in some contexts, and they will also be given
sometrial runs here.
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intellect, have revived the issue ratherforcibly and have at the same time
removedthe last ground for Platonic indignation. A startling recent instance
which Plato would have foundhardto dismissis the recent triumph of Appel
& Haken (1976) over the celebrated four-colour problem using some 10 000
hours of processor time on a powerful computer. The authors of the
computer-aidedproof believe that the problem, although simple to express
— hamely that every map drawn ona planeor

a

sphere canbecolouredusing
only four colours in such a way that no two same-coloured regions share a
boundary — isintrinsically ‘bitty’ and that no elegant Platonic demon-
stration ever will be, or ever could be, discovered.

Anessential feature of their proof is a catalogue of some 1800 sub-maps
which are ‘unavoidable’ in the sense that any map whatsoevermust contain
at least one memberof this catalogue. The authors do not believe that the
size of the catalogue is open to substantial reduction.If they are right, then a
truly top-down theory in the form of a concise demonstration of the
theorem’s truth may simply notexist.

Thespecialfunction of a top-downor‘intensive’ representationis to give
us the ‘Aha!’ feeling— the sensation that we have understood something. A
bottom-up ‘extensive’ representation is more like a manual of how to do
something. Becausethis distinction wasnotfully grasped, someofthe early
computer approaches to complex problem domains (by ‘early’ I do not
necessarily mean anything earlier than about ten years ago) were pointed
firmly in the wrongdirection. Bitter experience in language-translation,in
computer game-playing, and in other areas had to teach us that you cannot
implement a skill simply by translating into a computer program the
correspondingintensive theory.

Consider bicycle-riding. The intensive theory is all there in Newtonian
physics. John Brakewell, however, of the Aeronautics and Astrophysics
Laboratory at Stanford University recently abandoned the attempt to
program a computer for this particular task. Increasingly we see that in
machineintelligence work oneglanceat biology is worth at least two glances
at established computer science and perhaps a hundred and two at mathe-
matical physics. After all, we already knew,or should have done, thatskill
(as opposed to understanding)is not acquired in this way. Children become
language-users without taking a course in theoretical linguistics, they
become chess-players without first studying game theory, and they ride
bicycles — and circus seals balance poles — in complete innocence of
Newtonianstatics and dynamics.

A QUESTION OF BALANCE

Pole-balancing was the subject of one of the earliest ‘bottom-up’ exper-
iments to be done in machineintelligence, little more than ten yearsago.It is
marginally possible (but not very economical) to control an inverted
pendulum by computer program using the classical theory, as shown by
Eastwood in the mid-1960s. He illustrated his Faraday lectures with an
adaptive computer program able to control a pole balanced on a motor-
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driven cart, as in Fig. 14.2. Meanwhile Chambers and I had independently
developed a program for the same task based on an elementary bottom-up
representation depicted in Fig. 16.10.
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Fig. 16.10 — The state space (for clarity omitting the fourth, i.e. 6 dimension)
divided into ‘boxes’ with an independent automationin each box and a ‘leader’ supervising.

Each local region of the four-dimensional state-space defined by the
axes: position, velocity, angle, rate of change of angle, is supervised by a
separate computationalprocess(a ‘demon’, to use the now-fashionable term
originally coined by Oliver Selfridge in 1959) which accumulates its own
private store of knowledgeuseful for that particular region. Fig. 16.11 shows
a specimen ‘learning’ run. When it was all over I had the pleasure of
illuminating discussions with Eric Eastwood in which we comparedthe two
approaches. The BOXES program,as wecalled it, exemplified Spencer’s
schemewith a crudity and literalness redeemed by its demonstratedeffecti-
veness on a hardtask.

The program comprised 225 pattern-based rules, which could have been
halved by exploiting symmetries. It could be used in a man-machine co-
operation option in which at each time-slice the light-pen was interrogated
for a control signal from the human partner. The human’s signal was
adopted whenever there was one: otherwise the needed decision was
retrieved from the appropriate ‘box’ amongthe 225 boxes coveringthe state-
space. In this way a human‘tutor’ could feed his ownskill into the machine in
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Fig. 16.11 — The pole-and-cart system,set up for pure trial-and-error learning. The
lower curve shows a smoothed average (‘merit’) of the time-until-crash, plotted

against the total accumulated learning time.

reinforcement of the program’s self-learning. Actually neither partner was
carried by the othersincethe task ofskill-acquisition proved to be extremely
taxing for the unaided human,andtransferof skill undoubtedly proceeded
in both directions. Some regions of the space exhibit markedly counter-
intuitive features, as when the cart is wandering dangerously near to the
‘precipice’ at the end of the track. In a proportion of cases, according to the
values of pole angle and angularvelocity, the solution is to drive initially
towards the precipice, so as to impart a swingofthe pole awayfrom it. Only
thenis it safe to direct the motor away from the dangerarea, ‘chasing the
pole’ with propercontrol overits angle.

The BOXES program wasoneofthe earliest confirmations of what Allen
Newell and his school had already been saying, namely that the mostnatural
machine representation of human skill is the production system, as such
organized collections of pattern-based rules are known these days. Newell
and his colleagues made the further conjecture, documented by a growing
experimental corpus, someofit derived from machineintelligence work,

that the sameskills are similarly implementedin the brain. Table 16.1 gives
some figures for a few skills which have been intensively studied in man or
implementedto a high level of performance on the machine. The DENDRAL
and MYCIN programs, within their restricted domains of scientific know-
how, have now attained peformance levels comparable to that of highly
trained humanprofessionals. DENDRAL, moreover, manifests at a sophisti-
cated level the capabilities both of taking instruction and of improvingits
repertoire autonomously. These were both mentionedata primitive level in
the case of pole-balancing. The lesson is already clear that bottom-up
representations of knowledgeare forced uponthe designerif his system is to
lend itself to the incremental acquisition of new knowledge. Note that the
numberof rules underlying these two applied scienceskills is about 400 in
the two cases. To obtain an exact picture of the range of expertise thus
implemented, the original literature should be consulted. The expertise is
wide enoughto be useful in a competitive professional context. I now passto
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Table 16.1 — Somecontrasts between the two kinds of theory from the standpoint of machine
models of mental skills. The figures indicating the numbersofrules used to implementvarious
skills must not be interpreted as indicating that there is more knowledge in Grandmaster chess
than, say,in clinical pathology. DENDRALand MYCINeach coveronly a smallfraction of the

total problem domainasyet.

 

Skill Top-down (intensive) Bottom-up (exten- No. of pattern
theories (suitable for
understanding; lend
themselves to com-
puter implementation
as algorithms).

sive) theories (suitable
basis for skill; lend

themselves to com-
puter implementation
as catalogues of pat-
tern-based rules).

based rules in im-
plemented system.

 

Seeing a scene Geometry and optics. Incremental catalogue 10
First-ever vision pro- of visual patterns.
gram, Roberts, early Simple scenes of sha-
1960s. dowed polyhedra,

Waltz, early 1970s.
Balancing a pole Mechanics, control Incremental catalogue 225

theory. Eastwood, of pattern-basedrules.
mid-1960s. Michie and Chambers

mid-1960s.
Identifying organic Topology, combina- Incremental catalogue c. 400
compounds from mass_torics, physics. of pattern-basedrules.
spectra DENDRAL program

of Lederberg, Feigen-
baum, and Buchanan.

Identifying bacteria NONE Incremental catalogue c. 400
from laboratory tests of pattern-basedrules.
on blood andurine MYCIN program of

Buchanan and Short-
liffe.

Calculating-prodigy Peano’s axioms with Alexander  Aijtken, ?
arithmetic definitions and infer- studied by Hunter,

encerules. 1962, used pattern-
based rules.

Chess-masters, _stu-

died by Binet, de
Groot, Chase and Si-

mon, Nievergelt, use

pattern-based rules.

Zermelo-Borel-von
Neumanniterated mi-
nimax algorithm.
Tournament programs
— with heuristic trim-
mings. Masterskill not
yet attained.

Grandmasterchess 30 000 v. approx.

 

a skill which in today’s world must be judged non-useful in the extreme,
namely mental arithmetic.

PRODIGIOUS CALCULATIONS

The world has a false belief about calculating prodigies, namely that they
calculate prodigiously.

They would of course need to calculate prodigiously if they had built
their skill from someintensive theory of arithmetic; in the extremecaselet
us imagine some theory such as Peano’s axiomstogetherwith a sufficient set
of rules of inference for their use! Such a theory would be, in McCarthy &
Hayes’s (1969) terminology, ‘epistemologically adequate’; even for a pro-
digy speeded up by a factor so great as to compress the history of the
universe into a few secondsit would notbe ‘heuristically adequate’. If, asis
generally but mistakenly supposed,calculating prodigies relied solely on the
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more effective and less concise apparatus which weall learned at school, the
calculation required for, say, squaring a four-digit number would be formi-
dable enough. But it turns out that this mentalskill is no different from the
others and indeed constitutes another refutation of the Pure Thought
fallacy. The greatest calculating prodigy ever recorded was Alexander
Aitken, who held the chair of Mathematics at Edinburgh until his death. He
wasthe subject of a careful study by the psychologist I. M. L. Hunter (1962)
whodiscovered that Aitken’s extraordinary.capabilities did not include any
special aptitude at calculation itself. Aitken’s powers turned out to be
generated from a vast internal catalogue of pattern-based rules about the
natural numbersystem, which he invoked duringthefirst few secondsafter
each problem wasput. Heusedthis phaseto set up a calculative plan, andit
wasin this first phase that all his special ability was concentrated. While
executing the plan he proceedednofaster or slower than anyone else — in
other words by machinestandardsat a snail’s pace. So much, however,does
phase 1 dominate in importancethatthere is no facetiousness in saying that
machine simulation of Aitken’s skill would not be easy, even with the aid of

the best libraries of numerical routines in the world. The challenge wouldlie
in building a program so ‘knowledgeable’ as to be able rapidly to react to
each new input problem by the marshalling and invocation of just the right
combinationof special methods. Thefollowingillustrations of his virtuosity,
with illuminating comments by Hunter,give us an intriguing glimpse of the
Aitken production system at work.

Here is Problem 6 of a series in which he was asked to supply an
introspective and explanatory account:

Decimalise 1/851. ‘The instant observation was that 851 is 23

times 37. J use this fact as follows. 1/37 is 0.027027027027... and so

on repeated. This I divided mentally by 23 [23 into 0.027 is 0.001
with remainder4]. In a flash I can see that 23 into 4027 is 175 with
remainder2, and into 2027 is 88 with remainder3, and into 3027is

131 with remainder 14, and even into 14,027 is 609 with remainder

20. Anso on like that. Also before I everstart this, I know howfarit

is necessary to go in this manner before reaching the end of the
recurring period: for 1/37 recurs at 3 places, 1/23 recurs at twenty-
two places, the lowest common multiple of 3 and 22 is 66, whence I

knowthat there is a recurring period of 66 places.’

On this and many other such records Hunter comments in terms
strikingly reminiscent of those used by de Groot (1965) in his study of the
powerof the chess-master to apprehenda chessposition at a glance:

A numberis apprehended as a multiplicity of numerical attributes
and, so to speak, as bristling with signalling properties. This
apprehendingis immediate, simultaneous, and often autonomous.

Hunterlater makesthe explicit connection to chessskill:

.. with this thinker, as with many people, 12 is the immediate
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product of 3 and 4: but unlike most people, the transition from ‘9
times 12,345’ to ‘111,105’ is also immediate for this thinker. Con-

sider also his ‘simply seeing in one go’ the number1961 as 37 times
53, and 44 squared plus 5 squared, and 40 squared plus 19 squared.
Other leaps concern procedural judgments,that is, diagnosing what
method is best to use in calculation. These high-level procedural
diagnoses derive from a breadth of past experience whichis fully
comparableto (and possibly in excess of) that which lies behind the
so-called position sense of the chess master...

SKILL IN CHESS

Nowhere is the Pure Thought fallacy more firmly rooted than in popular
ideas about chess. Chess-masters are also (quite falsely) believed to calcu-
late prodigiously, executing essentially the Zermelo—Borel-von Neumann
top-downtheory which suggests that one should try to look aheadalongall
possible paths to the end of the game. A detective story written by Jacques
Futrelle around the turn of the century is reviewed by Julian Symons (in
Bloody Murder, 1974):

... Professor Augustus S. F. X. Van Dusen (Futrelle’s hero-
detective) is introduced to us whenhe refers contemptuously to
chess, saying that a thorough knowledgeofthe rules of logicis all
that is necessary to become a masterat the game,andthat he could
‘take a few hours of competent instruction and defeat a man who
has devotedhislife to it’. A gameis arranged between the Professor
and the world champion, Tschaikowsky. After a morning spent
with an American chess-masterin learning the moves, the Professor
plays the game.Atthe fifth move Tschaikowsky stops smiling, and
after the fourteenth, when Van Dusensays‘Matein fifteen moves’,
the world champion exclaims: ‘Mon Dieu!’ (he is not one of those
Russians who knowsno language but his own) and adds: ‘You are
not a man: you are a brain — a machine — a thinking machine’.

Whatis wrongwith this story?
Twofacts are in combination destructive of the credentials of Professor

Augustus Van Dusen.

1. Grandmasters do not on the average calculate more than ordinary
players. In a classic monograph de Groot(1965) showedthat 6-7 half-moves
ahead tends to be the limit, with a total of perhaps about 30 positions
considered on the lookahead tree. The great Richard Reti dramatized the
true pattern-based nature of Grandmasterly skill when he was asked how
many moves aheadhelookedin tournamentplay. ‘One...’ he replied, ‘the
right one!’ This must of course be almost literally applicable when a
Grandmasterplays lightning chess, andit is sobering to reflect that when
BobbyFischerplays lightning the quality of play looks substantially better
than expert chess:it looks like Master chess.
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2. The current ranking U.S. chess program CHESS4.6 when running on
the CDC Cyber 176 computer examines of the order of half a million
lookahead positions when choosing each move. By exploiting this stupen-
dous advantageofbrute-force calculationit is able to perform at approxima-
tely ‘expert’ level, with Grandmasterplay, basedasit is on subtle apprecia-
tion of positional values, still seemingly unattainable.

To incorporate the Grandmaster’s accumulation of chess knowledge an
edifice of pattern-basedrules will need to be built brick by brick, just as has
been done for chemical knowledge in the DENDRAL program over the
fifteen years since Joshua Lederberginitiated the work. To know whether
such a projectfor chess is possible (leaving aside whetherit is desirable) we
require an estimate of how manysuch patterns form the basis of Grandmas-
ter skill.

Independent estimates (Simon & Gilmartin 1973; Nievergelt 1977)
suggest a figure between 10 000 and 100 000. This is about a hundred times
the numberinvolved in knowledge systems such as the MYCIN system for
clinical bacteriology which took no more than a couple of man-years to
construct. The conclusion would seem to be that a Grandmaster chess
project, although doubtless strenuous and time-consuming, would not
necessarily be resistant to a determined assault. To point up the differencein
heuristic adequacy betweena brick-by-brick representation — which could
ultimately come to occupy 10°° bits or more of computer memory — and a
‘top-down’ representation of great compactness, let it be stated that the
second already exists (referred to above as the Zermelo-Borel-von Neu-
mann theory), is well knownto constitute a complete theoretical solution to
the problem, and need occupy no more than 10°-10* bits of store nor
consume more than a few programmer-hoursto write. It would, however,as
pointed out by Claude Shannon (1950) take of the order of 10”? years’
continuous running on a super-fast machine to select a move. Contem-
plation of this beautiful theory certainly gives us the ‘Aha!’ feeling about
finite two-person zero-sum games with perfect information and without
chance moves.It tells uslittle if anything about the nature of Grandmasterly
mental skill. Study of brick-by-brick implementations engineered in the
spirit of the modern trend of experimental epistemology might, just conceiv-
ably, tell us a very great deal.

CONCLUDING REMARKS

Whetherthe insights obtained from machine models by students of cogni-
tion will prove to be sparse or abundant, the process of harvesting them
cannot begin until thefirst large lessons have been truly learned. Theseare:

1. Compact, algorithmic, intensive ‘top-down’ theories form the basis of

understanding; that and that alone constitutes their essential purpose.
2. Their use as the basis of skill only makes sense for tasks of low

complexity — as, to take an extreme example, the extraction of the square
root, for which Newton’s tour-de-force of concision is also a widely used
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machine representation. The fact that all tasks attempted by machine were
until recent times of low complexity in this sense, blindedthefirst generation

_ of AI workers to the essential unworkability of such representations for
tasks of high complexity.

3. For complex tasks the attemptto create skilled programsas transcrip-
tions of intensive theories runs foul of the ‘combinatorial explosion’. For
such tasks, skill must, for every computing device whether protoplasmic or
electronic, be built as a ‘bottom-up’ creation in which (to recall once more
Herbert Spencer’s words) ‘the vital actions are severally decomposedinto
their componentparts, and each of these parts has an agentto itself’.
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High-road and low-road programs
(1981)

Consider a class of computing problem for which all sufficiently short
programsare too slow andall sufficiently fast programsare too large [1].
Most non-standard problemsofthis kind wereleft strictly alone forthefirst
twenty yearsor so of the computing era. There were two goodreasons.First,
the above definition rules out both the algorithmic and the database type of
solution. Second, in a pinch, a humanexpert could usually be found who was

able at least to compute acceptable approximations— for transport schedul-
ing, job-shop allocation, inventory optimisation, or whatever large combin-
atorial domain might happento be involved.

Let us now place problem-solving by machinein the more precise mental
context of evaluating two particular kindsoffinite function, namely:

s: Situations — Actions, and

t: Situations <x Actions — Situations.

These expressions say that s maps from set of situations (state-descrip-
tions) to a set of actions, and that t maps from setof situation-action pairs
to a set of situations. The function symbol s can be thoughtofas standing for
‘strategy’ and ¢ as standing for ‘transform’. To evaluate s is to answer the
question: ‘Whatto doin this situation?’. To evaluate ¢t correspondsto:‘If in
this situation such-and-such were done, what situation would be the imme-
diate result?’.

If the problem-domain were bicycling, we could probably construct a
serviceable lookup table of s from a frame-by-frame examination of filmed
recordsofbicyclists in action. But t would certainly be too large for such an
approach. The only wayto predict the next frame of a filmed sequence
would be by numerically computing ¢ using a Newtonian physics model of
the bicycle, its rider and theterrain.

Machine representations corresponding to s and ¢ are often called
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heuristic and causal, respectively. Note that they model different things.
Thefirst models a problem-solving skill but says nothing about the problem-
domain. The second models the domain includingits causality, but in itself
says nothing about howtosolve problemsinit.

The causal model partakesofthe essenceofthe traditional sciences, such
as physics. The school physics text has much to say aboutthe tension in a
string suspending bananasfromtheceiling, aboutthe string’s breaking point
understress, the force addedif a monkeyofstated weight were to hang from
a boat-hook of given mass and dimensions having insertedits tip into the
bunch,°and so forth. How the monkey can get the bananasis left as an
exercise for the reader, or the monkey.

Whenit has been possible to couple causal models with various kinds and
combinationsof search, mathematical programming and analytic methods,
then evaluation of t has been taken asthebasis for ‘high road’ proceduresfor
evaluating s. In ‘low road’ representations s may be represented directly in
machine memoryasa set of (pattern> advice) rules overseen by some more
or less simple control structure. A recent pattern-directed heuristic model
used for industrial monitoring and control providesfor default fall-back into
a (computationally costly) causal-analytic model [2]. The system thus
‘understands’ the domainin whichits skill is exercised. The pattern-based
skill itself is, however, sufficiently highly tuned to short-circuit, except in
rare situations, the need to refer back to that understanding.

The distinction here spelled out corresponds roughly to that made by
Rouse and Hunt betweenS-rules and T-rules in the context of computer-
aided fault-diagnosis in complex machinery [3], for example, in automo-
biles. Their diagram, reproduced here (Fig.17.1), is simple but
illuminating.

The s versus ¢ distinction has nothing whatsoeverto do with the strange
but widespread notion that problem-solving representations built from
causal models are necessarily error-free, proved so bytheir implementers,
and thus in some importantsense ‘sound’, while heuristic modelsare by their
nature tainted with unbounded and unquantifiableerror.In actuality formal
proofs of correctness are noless obtainable for heuristic models [4,5] than
for models of other kinds, provided that the domain is such as to sustain
precise mathematical reasoningatall. The only problem-solving device yet
to achieve a good andversatile record (the expert brain) has been shownto
proceed at ‘run-time’ overwhelmingly by the low road. Moreover, know-
ledge engineers are beginning to find in one domain after another that
almost all the skill comes from the S-rules and almostall the implement-
ational and run-timecosts from the T-rules.

Perhapsthis discovery should not have taken people by surprise in quite
the wayit seemsto have done.Afterall it had already been noted that when
a Fischer or a Karpovplays lightning chess (S-rules only, no time for
anything else) he canstill hold his own against an ordinary Master whois
allowedall the time in the world for search and reasoning.

In real-world domains no more complex than chess,insistence on ‘high
road only’ has usually led to solutions which are
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Fig. 17.1 — Overall structure of the model used by Rouse and Hunt. Thereare
really two models, so arranged that (as in the system of Pao et al.) the system’s
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familiar patterns’ and ‘structural information’ of the present Figure.

— opaqueto the user, and
— unbelievably costly at run time.

Someonesays: ‘I need to build an expert problem-solver, but I don’t buy
heuristic production-rule models. How do I knowthattheyare correct, or
with proved error bounds?’.

He could equally say: ‘I need to make an omelet, but I don’t buy eggs.
How doI knowthat they are not addled?’. The answercan only be: ‘Get
your eggscertificated; or at the very least buy from a reliable farm. If you
don’t wantto do that, then you’ll have to lay them yourself’.
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Measuring the knowledge-contentof
expert programs(1982)

The theory of what computers cannot ever do, sometimesreferred to as
intractable problems, can be used to define a class of ‘semi-tractable’
problems. Such problemsare intractable to programsof standard form but
accessible to heuristically-based programs. Restriction of the latter to
human boundsof storage and calculation yields a subset of semi-tractable
problems which we term ‘reducible’. This property will be used to explicate
an informal notion familiar to problem solvers, namely the subjective
difficulty of a problem domain.

INTRACTABLE PROBLEMS

In recent years, certain problems have been show to be intrinsically
intractable. Although knownto be solvable in finite time, they will never be
solved in the life-time of our planet, regardless of how computertechnology
may develop, how clever people become, or how many resources are
committed to the project. Knuth [1] cites an example of Meyer and
Stockmeyerwherethe problemis to decide whether statements expressedin
a restricted logical language about the whole numbersaretrue orfalse.
Sample statements from the easy endof the spectrum areto the effect that
every pair of numbers two or more aparthasat least one numberin between,
or that every non-emptyset of numbers has a smallest element.

It was already knownthatthe truth-value of any well formed statement
of this language can be determinedin finite number of steps. Meyer and
Stockmeyer envisaged evaluation of each input statement by anelectrical
network, this being the design for fastest evaluation. They provedthat for
input statements of 617 symbols or longer every such network must use at
least 10'2° components. This numberis much greater than the numberof
protons and neutronsin the observable Universe.
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SEMI-TRACTABLE PROBLEMS

Translationof this type of result into algorithmic computation on a sequen-
tial digital machineyields the conclusion that every space-minimal represen-
tation of such an algorithm (as a shortest program)is time-infeasible and
every time-minimal representation (as a giant look-up table) is space-
infeasible and every store-time compromise between the twois either time-
infeasible or space-infeasible or both. Thestingis in thetail italicised to bring
out a distinction between genuinely intractable problems, which will never
be solved, and a special kind of problem for which I have elsewhere used the
term ‘semi-hard’[2] but have subsequently adopted ‘semi-tractable’. Algor-
ithmic solution on a sequential machine of problemsin this latter class has
the property that every space-mimimal representation (as a shortest pro-
gram) is time-infeasible and every time-minimalrepresentation(as a giant
look-up table) is space-infeasible yet representations exist which are both
time-feasible and space-feasible.

Solutions for semi-tractable problems can thusbe feasibly implemented,
but only by exploiting the store-time trade-off. Feasible solutions to such
problemsrequire additional store for incorporation of heuristics into the
program. Whenthelatter take a human-oriented form which we recognise
as domain-specific knowledge we have a program of a kind generally
referred to as knowledge-based, or expert [3]. In knowledge-intensive
domains such as medical diagnosis, chess or mathematical reasoning, the
human advantage does not rest on superior ‘hardware’. Informational
measurements on the transactions involved in cognition suggest that
although the humanachievementis strong, the equipmentis relatively weak
[4,5]. A semi-tractable problem, feasibly computable by heuristically based
programs on fast machines, may or may not be humanly solvable. For
human-solvability the problem must possess a further property of reducibi-
lity. This is illustrated in Fig. 18.1 for three hypothetical functions, one
intractable and two semi-tractable. Of these last two, one is reducible and

the other not. Semi-tractable sub-domains can be found within intractable
domains, for example, mass spectroscopy and chess. Within these semi-
tractable sub-domainslie reducible sub-sub-domains.

Gregory Chaitin [6], in an outline of 10 years of mathematical work by
Solomonoff, Kolmogorov and himself, uses ‘complexity’ for a certain
property of a sequenceofbinary digits. His usageis not related in any simple
way to the ‘complexity-theory’ connotation of the same word. Weshall
accordingly introduce prefixes and rename Chaitin’s quantity ‘a-com-
plexity’. To understand Chaitin’s sense, first fix on some abstract computing
machine. Then for each given binary sequence ask the question ‘Whatis the
shortest sequence which, when runas a program onthesaid machine,will

reproducethe original sequence?’ The length ofthis shortest representationis
the original sequence’s «-complexity. The ratio of the first to the second
length measures the sequence’s absolute compressibility. If we restrict
ourselves to sufficiently long sequences, as explained in Chaitin’s outline,
the choice of machine can be disregarded. In essence weare considering a
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Fig. 18.1 — Store-time trade-off curves for hypotheticalfinite functions f, g and h.
Each has the sameinformation-content (10°° bits) and the same «-complexity (104
bits). Time-feasibility (B) and space-feasibility limits for machines have somewhat
arbitrarily been placed at 10!! time-bits and 10! store-bits, respectively. Time-
feasibility for human evaluation of the same functionsis set at 10* time-bits indicated
by B’ and space-feasibility at 10!! store-bits. The hatched rectangleis the ‘zone of
feasibility’, through which curves f and g pass. Only f passes through the cross-
hatched ‘zone of humanfeasibility’. The five upward arrowsat the base-line mark,
respectively: the «-complexity off, g and h; the B’-complexity off; the B’-complexity
of g; the B’-complexity of h; the information contentoff, g and h. fis semi-tractable;
it is also reducible, since its B’-complexity is less than the humanstore-bound. This
property offers, without guaranteeing, the possibility of human mastery of-f as a
problem-solving domain.g is also semi-tractable, but not reducible. h is intractable,

and a fortiori not reducible. A useful quantity to keep in mind is the maximumbit-
rate of human mental calculation, usually taken to be equivalent to about 20 binary
discriminations per second.In setting time-feasibility equal to 10! we assume the
availability of machines capable of calculating ten million times faster than the brain,
say 200 million binary discriminations per second. Onthis basis it takes the same
length of time to wait for a machine to execute 10"binary discriminationsasit does

for a humansolverto execute 10.

property intrinsic to the sequences themselves, a property of ‘randomness’.
A random sequence has an «-complexity not materially less than its own
length — no compressed representationexists.

INFORMATION-CONTENT OF A FUNCTION

Suppose that the original sequence is a Shannon-minimal encoding of the
extensionalform ofa finite functionf: X — Y,i.e. of alook-uptable ofpairs
(X1, ¥1), (X2, Y2), (X3, ¥3), -- +> (XN, Yn) WhereN isthesize offs domain. For
sufficiently large X, information theory allowsus to equate the lengthofthis
sequencein bits to the information-contentoff, calculated as:
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| N

K(f) = 2 logs p(y)

where p(y,) is the frequency with which the value y, occurs as a right-hand
elementinfs function-table. The formula sumsovertheentire sequence the
individual ‘surprisals’ [8] of successive symbol-occurrencesin the sequence,
and is equivalent to the more familiar-looking

Nx - p> P(y;) log2 p(y)

Thelatter first derives the average surprisal per symbol-occurrence in the
message by summing over the complete alphabet of M symbols, and then
multiplies by the sequence-length N to get the total information-content of
the sequence.

DIGRESSION ON INFORMATION

The theory of information hasclassically been concerned with infinite
sequencesandtheir steady-state properties. Objection may consequently be
raised that the information-contentoffinite messages is not well defined in
the theory. Steady-state problems, however, represent a particular speciali-
sation of a formalism which has a more general interpretation. We exploit
this generality by using the surprisals associated with successive symbolsof a
message as the central concept. Of each symbolin turn weask:

‘How surprised would a rational receiver be on receipt of this next
symbol?’

‘Rational’ is here used in the sense of the ‘rational belief’ of Bayesian
probability (see reference [9]), and surprisal is defined as — log, (p;) for the
ith symbol, wherep; is its prediction-probability. This scheme in effect
parameterises relevant properties of source, message andreceiver in such a
way that any behavioural properties of source and receiver whatsoever,
whetherprediction bestatistically or logically based, can be postulated. It
makes no difference whether messages arefinite or infinite. The basic
information expression can always in principle be computedto yield the
expected information-content of the next symbolto be received,as

information (source, symbol-string-received-so-far, receiver).

The last argument-place is reserved for a specification of the receiver’s
computational capability and degree of accessto the values of the other two
arguments. The condition for zero expected informationis perfect predic-
tion: namely, access is total and computational capability is complete. The
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last argumentcanbe‘frozen’ in the mannerof Schoenfinkel (POP-2‘partial
application’ [10]) to some given value, to create an information function of
two argumentsspecialised to someparticular receiver. Thus, corresponding
to receivers 1, 2, 3, ... we create function-procedures information,,
information, information;, ..., all of which maygive different answers to
any given information problem. Someofthese functions will correspond to
Shannon’sfirst-order, second-order, etc. information-measures,but others

will not, being responsive to logicalas well asto statistical regularities of the
message. This treatment has the merit of removing obscurity from such
questionsas: ‘How muchinformation is conveyedbyreceipt of the Nth digit
of the decimal expansion of x?’. There is a reminiscence here of Good’s [11]
notion of ‘dynamic probability’.

o-COMPLEXITY OF A FUNCTION

Anotherinteresting property of f is its «-complexity L,(f) in a natural
extension of the Chaitin sense: the length in binary digits of a minimal
program for computing f. Solomonoff [7] relates the compression achieved
when L,// is small to the notion of an explanatory theory in science. He
likens the original series of binary digits to a scientist’s observations and the
program to a theory which enables him to ‘understand’ them. Using a form
of Occam’s razor, he says that if different programs p,, p2, p3, ... all
reproducethe original sequence, then we should take the shortest as the
preferred explanatory theory. The shorter the program, the more compre-
hensible and elegant the theory. ~-complexity can thus be seen as a measure
of the extent to which the given sequence can be given a scientific
description.

B-COMPLEXITY OF A FUNCTION

But explanation is not the only use of a theory. There is also its use for
prediction and control. This brings in the idea of applying it, either by
runningit ‘in the head’ or on a computing machine. When measuredagainst
the criterion of actual computation a snag appears in Solomonoff’s scheme.
For explanation we do indeed wantthe shortest program,but operationally
we want somethingquite different, namely the shortest program able in the
worst case to evaluate f(x) within a user-acceptable numberofsteps. In the
context of machine computation we denote this boundby the symbol B and
define fs B-complexity as the length of the operationally minimal program.
To explicate an operational interpretation of Solomonoff’s requirement to
the effect that the user must be able to make mental application of the theory
in addition to simply understanding it or running it on the machine, we
replace B with a parameterspecialised in its numerical range to the rates of
calculation possible for the brain rather than to those of computers. Forthis
we use the symbol 8’ andin place of Solomonoff’s rule we substitute an
ordering of alternative programsbased on their B'-complexities rather than
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their B-complexities or their w-complexities. We again apply Occam’s razor
to theories of f, by selecting the shortest of these alternative programs.

Once we leave «-complexity where running time is no object, informat-
ionalandstructural properties of the machine on which the programsare to
be run are neededforfully specifying B-complexities. This is so whether we
are concerned with abstract machines or with practically implemented
electronic hardwareor with biologically implemented neuronal ‘hardware’.
In an adequately general formulation, specification of a finite function’s B-
complexity is a function of three arguments, thus

B-complexity: Fx Sx B > Nt,

whereFistheclass of finite functions, S is the class of machine-specifications
and B is the class of possible time-limits for the decoding computation. If we
allow unrestricted computation time andrestrict F to functions requiring
sufficiently long programs, the S argument can be ignored. Then for
functions defined oversufficiently large domains we have

a-complexity: F > Nt,

as in the Kolmogorov-Chaitin scheme.
If we choose from B a boundto calculation-length appropriate to human

solvers working to humanly acceptable waiting times, andspecialise S to ans
with information-processing properties similar to those of the humanbrain,
then as a convenient explication of the intrinsic difficulty of a problem to a
humanwe have

B’-complexity: F > N*.

To achieve masteryofthe evaluation of somef, a human mustpack a certain
amountof materialinto his head. The B’-complexity offsets a lower bound
to this amount.

If we choose from B a bound to calculation-length appropriate to a high-
speed machine working to a humanly acceptablewaiting time, and specialise
S to some physically realisable s;, where s; might for example be the Cray-1
supercomputer, then we have

B;-complexity: F — N*.

In general we speakloosely of a givenf’s B-complexity, having in mind some
general class of ‘fast machines of the day’ for order-of-magnitude decisions
concerningtractability.

Returning to Solomonoff’s search for models of scientific theories,it
seems that different theories, and different parts of the same theory, are
developedin science to perform different services.
(1) A purely explanatory theory, uncontaminated with the necessity forits

use for prediction, does indeed haveits length low-boundedby f’s a-
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complexity as Solomonoff proposes. The smaller this is, the simplerin

general for a human brain to comprehend.

(2) A theory which a scientist may wish to test using high-speed compu-

tation has length boundedbyf’s B-complexity.

(3) A theory whichis to be applied to test cases ‘in the head’is not to be

assessed either on «-complexity or B-complexity, but on fs B’-com-
plexity. The smaller this is, the simpler the theory which can be found
for a humanbrain to apply for prediction.

COMPREHENSION VERSUS PREDICTION

To exemplify these ideas, consider the following series of observations:(19,
true), (199, true), (1999, true), (19999, false), (199999, true), (1999999,
true), (19999 999, true). Here is a theory,of “‘primeness’’, to explain them:

f(n)is true if n is greater than 1 andiffor all m greater than 1 andless
than n, m does notdivide n; otherwise f(n)is false.

The aboveis clearly satisfactory as an explanation, or ‘comprehension
theory’. As ‘prediction theory’it is a fiasco. This is immediately discovered
if one interprets it as a program and tries some numerically large inputs.
Suppose that we try the program on f(x) where x = 28-1, a 39-digit
decimal number. Evenatthe rate of one million divisions per secondit will
take about 2000 years to discover the smaller of x’s two factors, a 17-digit
number.In 1970, however,Brillhart and Morrison performed the factorisa-
tion at the expenseofonly about 14 hours of computertime using, in Knuth’s
words,‘a combination of sophisticated methods, representing a culmination
of mathematical developments which began about 160 yearsearlier’.

Now suppose that they had embodied enough of this mathematical
knowledge in the routines and data-structures themselves to make the
operation fully automatic, rather than the machine-aided paper-and-pencil
approach whichtheyin fact followed. Such a program would represent a
formidable accomplishmentin machineintelligence. It would also constitute
a theory of primesquite different in nature from the simple ‘explanatory’
program given earlier. Essentially the distinction correspondsto the antith-
esis set up by McCarthy and Hayes [12]: an epistemologically adequate
representation of a problem-domaincontainsall the facts logically required
for solving all solvable problems of that domain; a heuristically adequate
representation contains everything required for solving these problems
within practical resource-bounds. A natural further step, implicit in our
notion of reducibility, is to separate out cognitively adequate representations
as a special case of those which are heuristically adequate. A problem-
domain is reducible ifand only ifit has a cognitively adequate representation.
Equivalently it is reducible if and only if its B’-complexity is less than the
quantity of human memory which can be loaded with such material in a
life-time.
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Wehave considered above one epistemologically and one heuristically
adequate representation of the prime-tester function. A similar pair for
chess would bethe total look-ahead algorithm of Borel and von Neumann
on the one hand,and, on the other, the program to play faultlessly which
chess programmers wouldlike to write, but will never be able to testif chess
turns out to belong to the intractable category. Note that this would
correspond to the case that chess, which has high a-compressibility (see
earlier), turns out to have low B-compressibility. To give anintuitive flavour
of what property of a problem-domainis denotedbyits B-compressibility,
we can informally equateit to the ratio ofits size to the terseness with which
a feasibly computable solution-strategy can bespecified for the domain.It is
convenient to measure the amountof processing not in secondsbutin units
which are independentofthe intrinsic speeds of different devices. Forthis
reason in Fig. 18.1, we express B in terms of the numberofbinary discrimi-
nations performedin the course of evaluating f. In a practical context, the
user will choose B as the productof the worst-case acceptable waiting time
and the knownspeedin bits per second of the evaluation device. The idea
then is that of a minimal heuristically adequate program,i.e., the shortest
program capable of B-evaluating f for every argument in its domain. This
shortest length is fs B-complexity as earlier defined.

To recapitulate, «-complexity measures how difficult a domain is ‘in
principle’, i.e., how much memory would be required bya solverallotted an
arbitrarily large solving time. B-complexity is expressive of a problem’s
practical machinedifficulty, and measures the memory neededif the given
device is to complete every evaluation at the expense of no more than B
binary discriminations. B’-complexity is expressive of a problem’sdifficulty
to the human solver.

Havingfixed on a value for B, we can say that if the B-complexityofis
larger than the bit-contentof any feasible store (function h in Fig. 18.1),
then the problemis B-intractable: if this is so under any reasonable choice of
B then no heuristically adequate representation can exist and the problem is
intractable without qualification. As earlier implied, the possibility is open
that chess is intractable. We can, however,be sure that chessis at least B’-
intractable. A negligibly small proportion of all positions in master games
can claim master consensusas to whetherthey are game-theoretically won,
drawnorlost.

KNOWLEDGE AND ADVICE

For a problem suchas chess, compactsolution algorithmsexist, yet heuristic
adequacycan only be attained by increasing the occupancyofstore by large
factors. What doesthis additional material consist of? The general answeris
‘heuristics’, remembering that a theorem, too, can be used as a heuristic. A

heuristic is any addition to store which increases the total quantity of
realisable information about f. A useful heuristic is one for which (assuming
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all f-evaluations in X to have equal utilities) the increase of realisable
information exceedsthe increase of store-occupancy.If it is the other way
round, then the heuristic is in this localised context worse than useless.

If the heuristic rules, patterns, descriptions, etc. take certain special
forms which are humanly recognisable and usable as concepts, then wecall
these structures advice [2]. In this style the storeis strictly partitioned (as in
Fig. 18.2) into a fixed algorithmic part and an incremental advisory part,
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translation _and transcription
selection
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solution A advice look-up
program | program program
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control
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Fig. 18.2 — Relations among various kinds of mathematical and computational
objects. Abstract objects are ringed, concrete are boxed. A and T denote two
contrasted abstract representations of the function f, namely as an evaluation

algorithm and asa function table (orderedset of pairs), respectively.

plus a small part consisting of fixed control routines which makethe advice
accessible to the algorithmic part. ‘Advice’ is thus a special category of
heuristic.

The role of heuristics is to facilitate the operation of the original naive
algorithm in such a wayas to increase the system’s total realisable infor-
mation about f, i.e., the information content of that part of f which is B-
evaluable by the system. When and only whenthefacilitating heuristics take
the form of advice, then realisable information may be referred to as a
program’s knowledge about f. It corresponds to a special case of the
program’s ability to answer questionsof the form ‘Whatis the valueoff(x)?’.
Note that question-answering ability cannot in general be identified with

knowledge. A billion-entry database, or a Martian, or a number-crunching
super-computer might all perform impressively as information sources:
none of these would qualify as a knowledge source. ‘Knowledge’ is thus a
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special kind of information. Heuristics increase an expert program’srealis-
able information content. Advice increasesits knowledge content. How can
we measure this?

COST-BENEFIT OF PROGRAM COMPONENTS

Therealisable information containedin a given program can be measuredin
informationbits, as follows.

Considerthe partial functionf, correspondingto that subsetoffwhichis
B-evaluable by the given program running onthe given machine.f; is thus
definedfora ‘realisable’ subset X, offs domain. How much informationis
required to specify f,? Following our earlier reasoningit is

K = — > log p(f(x)) bits
xe xX,

plus the information associated with the N ‘Yes/No’ decisions involvedin the
selection of this particular subset X, out of X.

Writing L for the store-cost of the program in binary digits we have a
benefit-to-cost ratio K/L. Wecall this the program’s computational advan-
tage. For some purposesthe logarithm ofthis ratio, D = logy)K — logioL, is
convenient. Wecall it the program’s penetration, and note that the measure
of a good heuristic is that it increases this quantity.

The main use of the theory is not for comparing cost-benefit measure-
ments on whole programs with similar measurements performed on other
whole programs. The pay-off comes from detailed examination of the fine
structure of a given program’s heuristic part— this rule versus that, this table
versus the other, this heuristic versus noneat all. How do we dothis?

A body of advice has its proper values Kg and Lg determined by
measuring K and L without the advice loaded and again with it loaded and
doing the appropriate subtractions, according to the relations:

K = K,+Kgt+Kc

L = Lat+LptLe.

The subscripts A, B and C stand for ‘algorithm’, ‘body of advice’ and
‘control’, respectively. Incremental gains in Kg and Lz,associated with
additions to B can be measured in the same way. Thevalidity of the
assumption of additivity and independence underlying the above-described
procedure may becriticised. Thus the goodness of a heuristic may be
annulled, or even reversed in sign, by the presencein store of certain other
heuristics. The prevalence and magnitudeof such interactions will vary from
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one domain to another. An approximating assumptionofthis sort has to be
approachedempirically, as with the treatmentof ‘weights of evidence’ in the
Turing—Good[9] Bayesian calculusofuncertain inference andalso the zero-
interaction assumption implicit in various procedures in the Fisherian
analysis of variance.

LEARNING

Refinements for which there is not space here allow the economics of
knowledge-acquisition (learning) also to be monitored. Learning indices are
defined in terms of gain in penetration relative to costs of learning. In
Watterberg and Segre [13] this finer analysis showed thata particular rote-
learning mechanism wasceasing to be cost-effective for larger dictionary
sizes. Such warningsignals, which could not have been obtained without an
appropriate measurement method, can be used to prompt program impro-
vements — for example, by introducing rote-learning into key subroutines
as well as into the main program,or augmenting rote-advice with conceptua-
lised knowledge in the form of descriptions, pattern-based rules or useful
lemmas.

Advice Theory is intended as a measurementtool for the information
engineer. It stands or falls by application to practical knowledge-based
programs for domains so complex that human brains hitherto have consti-
tuted the only available evaluation mechanisms. Machine representations of
chess end-game knowledge are under study for initial validation of this
formalism. With its use a comparative cost-benefit accountancy wasrecently
performed on the inductive learning and execution by machine of variant
operational theories of the king-pawn-king ending in chess[14].
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Automating the synthesis of expertise
(1984)

Automating the construction of machine-interpretable knowledge-basesis
one of the immediate next moves in the emerging technology of infor-
mation. Feasibility of computer induction of new knowledge from examples
has been shownin more than one laboratory. Can we generate knowledge-
based programsthat are automatically guaranteed analysable and execu-
table by machine and humanbrainalike?

INDUCTIVE LEARNING

A number of computer programs have been developed which ‘learn’ by
generating rules from examples, i.e. by induction (see Michalski & Chi-
lausky [1]; Quinlan [2,3]; Shapiro & Niblett [4]; Paterson & Niblett [5]; and
papers in Michalski, Carbonell & Mitchell [6]).

As a result of a long sustained interest in machine learning [7], our
Edinburgh group has recently become a practised computer induction shop,
along with I. Bratko’s Artificial Intelligence division of the Josef Stefan
Institute, Yugoslavia, R. S. Michalski’s group in the University ofIllinois,
and J. R. Quinlan’s laboratory in the New South WalesInstitute for Science
and Technology, Sydney. We can now routinely synthesize machine-execu-
table descriptions (in the form of PASCAL, FORTRAN, PROLOGor C

programs) for classification tasks too complex for human experts either to
program,to verbalize complete strategies for, or even reliably to perform.
According to the style adopted, the machine-generated descriptions can be
madeto take either ‘Martian’ or human form.In the secondcase,in spite of
its synthetic origin, we call a machine-made description a concept-expres-
sion. A recently-developed programming technique [8] has added the
following capability: when a machine-made conceptis ‘run’ on trial case,
the system .not only classifies the case but also displays an explanatory
narrative in intelligible English as to how it arrived at the classification —
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something that cannot always be donebythe possessor of the equivalent
human-made concept. This is a help both to the end-user and to the
knowledge engineer.
A brief description of methods and principles used by one of the

Edinburgh learning programs, ACLS,is given below. The program is a
development from Quinlan’s ID3, in turn derived from Hunt, Marin and
Stone’s CLS (Concept Learning System) [9]. A commercially enhanced
version of ACLShasalso been described by R. McLaren [10].

ACLS (ANALOGUE CONCEPT LEARNING SYSTEM)

A ‘training set’ of examples of classifications within a chosen field is
presented to ACLSasa list of records. All fields of the record exceptthelast
are entered with the values of those attributes considered by the user to be
relevant to the classification task. These are knownas‘primitive attributes’.
The last field is entered with the name of the decision class to which the
record is to be assigned (e.g. CIRCLE, ELLIPSE, TRIANGLE, SQUARE,POLY-
GON, OTHER; or MALIGNANT, BENIGN, IMAGINARY;or ALLOWED, DISAL-
LOWED,SPECIAL-CASE;or just TRUE, FALSE).

From these example records ACLSderivesa classification rule in the
form of a decision tree, branching according to values of the attributes
situated at the nodes. ACLSalso generates a PASCALconditionalexpres-
sion logically equivalent to the decision tree, and this PASCAL code can be
run to classify new test examples. Whenever a new example is found which
refutes the current rule, ACLScan beaskedto restructure the rule so as to
accommodate the newcase,and to display, store or outputit as before.

The set of attributes should be chosen by an expert in the given problem
domain to be sufficient for classifying the data. In choosing the set of
attributes the maximis:ifin doubt, put itin . Any attribute whichisin reality
redundantwill be set to one side by ACLSandnotincludedin the tree (and
corresponding PASCALcode) whichit generates.

It is not necessary that the expert should be armed with a clear mental
picture of the rule which he himself uses when performingthe given task.

His role is simply to structure the problem into sub-problems, to supply
the list of primitives andto act as an oracle by assigning example data to what
he considers to be their correct classes. ACLS observes his behaviour as a
classifier, and from this constructs the simplest rule it can, using the
primitives supplied, which will assign the same example data to the same
classes as he does. As the training set grows with the addition of fresh
examples, so the ACLS-synthesized rule grows more sophisticated. Asit
doesso it tends to approximate to a form on which the expert may comment:
“That looks like the way that I think I probably doit’.

The expert is thus enabled to transfer to the machine a judgemental rule
which he already had in his head but has notexplicitly formulated.

Welist below four closely related questions underinvestigation with the
aid of ACLSandsimilar programs:
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(1) the possibility that a learning program,such as the one described above,
can be used to extend the mental grasp of the humanuser;

(2) the use of the machine-synthesized programsasinstructionalor refer-
ence texts;

(3) numerical measurement of the knowledge (see later) contained in
machine-synthesized programs;

(4) development of human-intelligible concept description languages as
mandatory vehicles for output from induction systems.

For a numberof reasons,chessis specially qualified as a test domain for
experiments of this kind. However, in order to confirm the generality of
observed results, after basic work has been donein this measurable ‘test-

tube’ world, ACLS-type programs can be used to investigate knowledge
enhancement in the domain of school algebra, robot vision, industrial
engineering, fault diagnosis, chemistry, etc. A general idea of how ‘pro-
gramming by examples’ is doneis given in a recent paper by Shapiro &
Michie[8].

KNOWLEDGE MEASUREMENT

Tests using an information theory approach to measure the knowledge-
content of machine-produced (synthetic) programs are under way in Edin-
burgh [11,12] and Illinois [13]. Relevant theoretical work has also been
conducted at Stanford [14].

Use is made of machine-oriented definitions, such as the ‘knowledge-
content’ of a program, ‘computational advantage’, ‘penetration’, ‘grasp’,
and rate of knowledge acquisition, ‘Difficulty’ of a problem can also be
expressed within the same numerical calculus. The current objective is to
build the measurement system referred to above into rule-synthesis pro-
grams. Induction programswill then be enabled not only to producerules
which can be executed by machinebutat the sametimewill be able to give
the user a quantitative evaluation of eachruleasit is synthesized— in terms
both of its information content andof its anticipated suitability as a human-
usable concept. This style of proceeding can be exemplified from recent
work of Shapiro [15]. Shapiro’s synthetic rules combined a reasonable
approximation to machine optimality with brain feasibility. No general
guarantee canbegiven that the two goals can be combinedin anyparticular
case. Moreover, from the pointof view of brain feasibility, the problem of
program transparency has been found to have somesurprising twists.

SUPER-PROGRAMS

Recent results have shown that programs constructed by systems such as
Quinlan’s ID3 can be,in onesense, ‘super-programs’ and at the same time
quite incomprehensible to people. By a super-program we mean onethatis
at least twice asefficient in terms of execution cost as the best which could be
written by a programmer. For an example weturn back to Chapter 14.
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Fig. 14.8 shows the execution costs on a CDC Cyber 72 for three
different programs written to solve the same difficult problem. Thefirst
implements a standard algorithmic approach. The second wasthe fastest
pattern-codedsolution which J. R. Quinlan, the author of ID3 and also an
outstanding programmer,could achieve after many months of work. About
two monthsof these were expended onfinding an adequateset of primitive
descriptors for the problem. The third was a machine-generated program,
produced by ID3itself, equipped withthe file of primitive descriptors and a
complete file of example data. ID3 running on the Cyber 72 generatedthis
decision-tree program in 34 seconds. The ID3-synthesized program clearly
qualifies as a super-program (see Fig. 14.8). Further and perhaps alarm-
ingly, however hard they try, chess experts cannot understand it. Even
thoughit constitutes a complete and correct description,it does not qualify
as a concept expression.

Work triggered by this observation has shownthe reason,whichlies in
theway the decision tree generated by ID3 (or the corresponding PASCAL
expression)is structured. We have therefore developed a method known as
‘structured induction’. This is a hierarchical approachin the sense that the
rules, or concept-expressions, generated by the program usingtheoriginal
primitive attributes themselves become the primitives for the next pass
throughthe data (see Shapiro and Niblett [4]). Shapiro subsequently applied
the approachto the ending:

king and pawn versus king and rook (pawn on a7).

This work generated a complete and self-documentingclassifier for a space
of over 200000 positions, using some 350 expert-supplied examples. Since
human experts are unfortunately not self-documenting, no codified classifi-
cation theory of the domain previously existed. The classifier thus consti-
tutes an original if miniscule contribution to end-gametheory.

The method described constrains the output of the inductive generator
to take the form of decision structures which people can recognize as
concepts. The constraints have been embodied in the syntax of a rule
language CDL (Concept Description Language 1), for which a compileris
operational on the VAX-750. A new version, ts under development which
enablesthe user to define ‘fuzzy’ as well as strictly logical building blocksfor
his synthetic concept.

A KNOWLEDGE REFINERY

Expert systems have commercial promise. A system of over 2000 rules
called R1 is used at Digital Equipment Corporation for configuring com-
puter systems to customers needs (see McDermott[16]). It already outper-
forms their best technical salesmen. But in knowledgerefining and synthe-
sis, the focus is not on the product which expert systems were originally
designed to deliver, namely interactive advice in conversation with a client,
but on the unexpected by-product, the finished knowledge-baseitself.
Expert system languages and induction systems can be used:
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to get knowledgeinto the machine;
to testit;

to debugit;
to fill gaps;
to extendit;

to modify it.

Finally the knowledge can be put back into the human world in
unrecognizably improvedshape. This important phenomenon was shown by
Bratko to be generalisable across different knowledge domains using one
and the same computerinduction program.In the differential diagnosis of
lymphatic cancers Bratko successfully used an Edinburgh learning program
derived from Ross Quinlan’s ID3 to generate an improved classificatory
schemefor this category of malignant disease. The Edinburgh program had
been developed by Shapiro and Niblett [4] using the domain of chess.
Strategies for chess end-games were conveyed by examples. The resulting
correct and complete theory of king and pawnagainstkingis itself of interest
to chess masters. Bratko then used the same program,in collaboration with
clinical oncologists, to construct a diagnostic scheme for the lymphatic
cancers. In this experiment, with help only in extracting data from medical
case histories, Bratko wasable to perform asif he werea clinical expert,
although knowing nothing about medicine[17].

REQUIREMENTS FOR A REFINERY

Whatare the necessary ingredients for knowledgerefining?

(1) Knowledge-engineering software able to make inferences from data
supplied, and to retrace anddisplay the lines of reasoning.

(2) Induction modulesable to generate rules from examples.
(3) A good software development environment, e.g. UNIX or

INTERLISP.
(4) Trained knowledge engineers familiar with the abovetools.
(5) One or more experts. Even with inductive knowledge generation

automatedto the limit of current technique, an expertis still needed to
choose the repertoire of primitive measurementsorattributes to eva-
luate as relevant to the given problem domain, and to assist the
knowledge engineer in the task of decomposing the domain into sub-
problems, sub-sub-problems, etc. This top-down analysisis the heart of
the structured methodof induction referred to earlier.

Originally designed to deliver interactive advice, it now appears that
expert systems have a by-product whichis in the long term more important
— the finished knowledge-baseitself. A concluding example maybeuseful,
taken from a recent study by Mozetic, Bratko, & Lavrac[18].

Using the logic programming language PROLOG,the authorscollabor-
ated with senior clinical cardiologists at the Ljubljana University Medical
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School. The Yugoslav group applied a generalisation of the ‘easy inverse’
method [19] to the machine construction of a complete and ultra-reliable
diagnostic scheme for multiple arrhythmias andtheir relation to the ECG
wave form. The new knowledge,although small in extent, is sufficient to
have a use in teaching and as a reference text for the specialist (see next
chapter).

COMPUTERS AS CO-AUTHORS

To recapitulate, expert systems can be used:

to get knowledge into the machine;
to test it;

to debugit;
to fill gaps;
to extendit;

to modify it;

andfinally

to put the knowledge back into human handsin an improved form.

Thus, the possibility now exists of superseding (as the automobile has
superseded the horse) a craft which has been in existence for thousands of
years — namely, the writing of manuals and texts on how to dothings.
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Section 4 Al and society

INTRODUCTORY NOTE TO SECTION 4

Every studentofsociety is at the same time its creature. Margaret Mead’s
Growing up in Samoa,it is said, can be moreeasily understood by someone
acquainted with Greenwich Village in the 1920’s than by a resident of the
South Seas.

The essay reproduced here as Chapter 20 has no claim to special
dispensation. Yet reading it nearly 20 years later I foundlittle to revise.
There is, however, a great deal which can today be amplified. In particular
the coming knowledgerevolution, indicated with rather vague wavesof the
handin this Chapter, is given technological substance in the immediately
following “Towards a knowledgeaccelerator’.

Manyof the accomplishments and tactical approaches introduced into
the world by machineintelligence are new.In aspiration andstrategic thrust,
however,they are as old as mankind’s recorded culture. A year or two ago
the University of Illinois honoured me with an opportunity to spread myself
on the subject of ‘MachineIntelligence: thefirst 2400 years’. I have used my
write-up of what I said on that occasion to roundoff this book.



Computer — servant or master (1968)

It used to be possible to sweepthe social challenge of computers under the
carpet, with the dismissive phrase ‘high-speed morons’. Today, however,
computers play draughts at a good club standard,solve difficult problemsin
logic, composedull but passable music, outperform librariansin the relevant
retrieval of certain classes of document, translate Russian into useful dog-
English, and perform manyotherexacting tasks of a non-numerical nature.
Clearly if we are to bolster ourself-respect as humansin face of the new wave
of machine accomplishments we mayhaveto find someother wayof doingit
than by talking about morons.

INTELLIGENCE

Myownresearchasa scientist is concerned with teaching computers notto
be morons,and with attemptsto find generalrules for doingthis. I am fairly
optimistic, if that is the right word, aboutthe rate of progress in our own and
in other similar laboratories elsewhere, in Britain and abroad. I qualify the
word‘optimistic’ because manypeople view the objectives of such work with
deep unease. If informed that in a decade or twothefirst intelligent
machineswill be in our midst, their dominant feeling would not be oneof
optimism, but rather of gloom andanxiety. I shall leave to a later stage the
discussion of whetherthereis justification for these fears — de-humaniza-
tion of life, mass redundancy amongbrainworkers, suffocation of man by
surplus leisure, computer-aided snoopers and ‘thought-police’ — and con-
sider first in more detail what is meant by the conceptof intelligence in a
machine.

TURING’S TEST

The problem of testing a machine to see whetheritis intelligent wasfirst
discussed bythe great British logician and computer pioneer, Alan Turing,
whodiedin the early 1950s. It was from my personalassociation with Turing
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during the war and the early post-waryears that I acquired myinterestin the
possibilities of using digital computers to simulate someof the higher mental
functions that we call ‘thinking’. Turing proposed the following test. The
machine wasto be placed on oneside of a screen and a human examiner on
the other side. Conversation between man and machine was permitted
through the medium of a teleprinter. If after an hour or two’s type-written
conversation the machine had managed to fool the examinerinto thinking
that he had been conversing with a humanbeing, then according to Turing
the machine’s claim to intelligence should be conceded.

There was undoubtedly an excellent idea here, and one whichforesha-
dowed the modern trend towards ‘conversational computing’. Unfortuna-
tely Turing’s test, in its original form, has been refuted by an ingenious
conversational computer program called DOCTOR written by Joe Weizen-
baum of Massachusetts Institute of Technology. I reproduce below a
fragment of a conversation with DOCTOR.

HOWDOYOU DO. IAMTHE DOCTOR.PLEASE SITDOWNATTHETYPEWRITER

AND TELL ME YOUR PROBLEM
I wish I had my baggage
CAN YOU ELABORATE ON THAT?
I am not quite clear as to what sort of elaboration is wanted
DO YOU BELIEVE IT NORMALTOBE NOT QUITE CLEAR AS TO WHAT SORT OF

ELABORATIONIS WANTED?
Yes, quite normal
I UNDERSTAND

I have lost my baggage
YOU SAY YOU HAVE LOST YOUR BAGGAGE

I feel lost withoutit
DO YOU OFTENFEEL LOST WITHOUTIT?

No,this is the first time

WHY NOT?
Because I normally do not lose my things
WHAT OTHER REASONSMIGHT THEREBE?
My mothertrained me notto lose things
TELL ME MORE ABOUT YOUR FAMILY

I have lost my baggage
DID YOUR PARENTSEVER LOSE YOU?

Atfirst sight this has an air of (slightly scatty) plausibility. In reality it is a
trick — the sametrick as most of us employ when keeping a conversation
going, perhapsat a cocktail party, while our mind is elsewhere. Instead of
attending to the sense of our companion’s remarks we merely pick up key
words (e.g. ‘mother’) to which we reply with stock phrases (e.g. ‘Tell me
more about your family’). If really stuck, we merely play back our com-
panion’s last remark with somesuitable trimming.

This is essentially how DOCTOR works. Its success as measured by
Turing’s test is impressive. Patients in Massachussetts General Infirmary
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were allowed to converse with the program, after being warned that a
computer, not a doctor, wasat the other endof the line. 60 per cent of them
subsequently rejected this information and insisted that they had been in
communication with a flesh-and-blood doctor— ‘No machinecould under-
stand methat well’.

So Turing’s test has to berefinedif it is going to be useful in the way
intended. Perhaps we should insist that the machine should fool Nobel
Prize-winning scientists rather than hospital patients, or alternatively per-
haps we should direct attention to whether the examinersfeel that they have
been having an intelligent conversation. To apply these definitions, they do
not need to be philosophically watertight. Machineintelligence is not an
exercise in philosophy but an engineering project.

One side of this engineering project is concerned with defining and
implementing the separate components of mental aptitude— such capabili-
ties as trial-and-error learning, pattern-recognition, generalization from
individual instances, deductive and inductive reasoning, problem-solving
and linguistic skill. Somehow these different capabilities, each represented
in the computerby a different program,have gotto be integrated togetherso
that they function as an organized whole. We have someideas about how
this co-ordination of computer programs might be achieved, but these are
still rather primitive and will not be discussed here. WhatI shall do is to take
one of the constituent capabilities as the subject of a brief digression, before
considering someof the social and psychological apprehensions which are
voiced concerning the developmentofintelligence in computers.

LEARNING

The mental capability which I shall single outis trial-and-error learning. This
is the simplest and lowest form of learning, in which the learner proceeds
entirely ad hoc. He says to himself merely: ‘Have I been in this situation
before? If so, what did I do? What were the consequencesof myaction?If
satisfactory, I shall choose the same action again. Otherwise I shall try
somethingelse’.

Note that no generalization from experienceis involved. Situations are
separately assessedin thelight of past experience, without attemptingto link
them together into meaningful categories according to higher-level con-
siderations. The surprising thing aboutpuretrial-and-error learning is how
far a computer system can getusing this trick alone, without venturing into
the realm of generalization. Samuel’s famous computer program forplaying
checkers (draughts) wasable totrainitself to a passable amateurlevel with a
system of puretrial and error (Samuelcalledit ‘rote-learning’), even before
its standard of play was further improvedbythe addition of a learning-by-
generalization component. The program askeditself: ‘Have I beenin this
checkers position before? If so, what move did I make? What were the
consequences ...?’ etc. Some years ago I extracted much spare-time
amusement from constructinga trial-and-error machine out of matchboxes,
whose task was to learn to play tic-tac-toe (noughts and crosses). More
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recently with the help of my colleague R. A. Chambers I have developed a
computerversion, and this has been tested on a difficult problem which on
the face of it does not look in the least like a game.

POLE AND CART

Thetask is to learn to control an unstable physical system which I shall call
the “Donaldson system’, after the Cambridge physiologist whofirst usedit in
studies of machine learning. A motor-driven cart is free to run on straight
track of limited length, and balancedonit is a pole pivoted at the base which
is free to fall downeitherleft or rght along theline of the track. The motoris
controlled by a single switch which determinesat each instant whether the
motor’s force shall be appliedin theleft or the right direction. The taskis to
manipulate the switch so as to keep the cart running backwardsand forwards
along the track withouteither runningoff the end or dropping the pole. This
task has obvious similarities to one which most of us attempted, with
eventual success, during childhood — namely learning to ride a bicycle.
Inevitably the child learns by sheertrial and error to begin with.

Our computer program does in fact learn to master the Donaldson
system — without utilizing any special knowledge aboutit or being ‘taught’
by any humanor mechanical mentor. The program is no more,and noless,
designed to tackle a pole andcart than to learn to guide a car round a closed
track or to monitor and control some simple industrial process. In this it
illustrates a property which is a ‘must’ for any componentofan intelligent
computing system — task-independent capability. The striking feature of
the human brain is not so much any outstanding performance at any
particular task but rather its ability to make a useful, even if fumbling
attempt at almost any task.

COOPERATION

An option in the program allows the humanuserto intervene and perform
the control task himself, and a further option permits program and user to
work on problemscooperatively, each benefiting from the other’s trials and
errors. I believe that this type of cooperative interaction betweenintelligent
user andintelligent machine will come moreand moreto the forefront, and
indeedwill set the pattern in the future. |

Whenthinking recently about the subject of particular mental capabili-
ties, of which trial-and-error learning is just one example, I amused myself
by copying out the late Ludwig Wittgenstein’s list of what he called
‘language games’ and measuring each item against the presentstate of the
art in machineintelligence. I reproducehis list below.

Giving orders and obeying them.
Describing the appearance of an object, or giving its measurements.
Constructing an object from a description (a drawing).
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Reporting an event.
Speculating about an event.
Forming andtesting an hypothesis.
Presenting the results of an experimentin tables and diagrams.
Makingup story and readingit.
Play-acting.
Singing catches.
Guessingriddles.
Making a joke — tellingit.
Solving a problem in practical arithmetic.
Translating from one language into another.
Asking, thanking, cursing, greeting, praying.

Nowlet us run throughthe list again. Giving orders and obeying them
has been a routine function of computing systems for many years. Describ-
ing the appearance ofan object, or giving its measurements,is a difficult task
facing those engaged on ‘hand-eye’ computerprojects. For a machine to
inspect an object with a mechanical ‘eye’ and manipulate it with a mechani-
cal ‘hand’thefirst step must be to form a description from the visual image.
Constructing an object from a description (e.g. building a tower from a
photographof a tower) is among the mostdifficult long-term goals of hand-
eye projects — such as Marvin Minsky’s at MIT and John McCarthy’sat
Stanford, USA. Reporting an event is beyond present technique. Again
synthesis of a description from primary sense-data is the first step. The
second is use of the synthesized description to generate appropriate lan-
guage text. Speculating about an event is even further beyond present
technique. Forming and testing a hypothesis is a process under active
current study. Presenting the results ofan experimentin tables and diagrams
is a routine operation of contemporary computer programs for survey
analysis. Making up a story is beyond present technique, although readingit
from printed text is now marginally feasible. Play-acting would require a
great extensionto the arts of robotics: as for singing catches, humming the
tunes is easy to program,butsingingintelligibly is not. Guessing riddlesis
under active current study, but making a joke is very far beyond present
technique. Solving a problem in practical arithmetic presents no difficulty
even to primitive computer systems. Translating from one languageinto
anotheris just attaining marginal feasibility by commercial criteria. Asking,
thanking, cursing, greeting, praying are activities which express emotions,
attitudes, desires, sympathies. It is meaningless to talk of them except on the
basis of consciousness and self-consciousness in the intelligent system
concerned. Many workers in machineintelligence believe that success on a
really significant scale will hinge on the degree to which machine-represen-
tations of these phenomena can be devised — at least to the degree of
permitting themachine to form somesortof internal logical model not only
of the external world but also ofitself in relation to that world.

Whots to be master? I am inclined to regard the dilemma ‘Computer:
servant or master’ as a false one. To clear the ground for whatI have to say
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under this heading, let me first sketch a division of tasks into three
categories.
(1) Tasks suitablefor humans alone. This category is concerned withvalue,
i.e. what sort of result do we want to see? For example, what weather do we
want, irrespective of problems of prediction. Or what rate of road deaths
relative to motorists’ convenience are we preparedto tolerate?
(2) Tasks suitable for computers alone. These tasks are those of compli-
cated detail and‘tactical’ decisions: for example prediction of weather, or
controlofa city’s traffic light system. The caseoftraffic lights has a special
point of interest in the present context; the citizen seems prepared quite
happily to acceptthis form of computer interferencein his life, even though
he mayexpress great alarm over other forms. The implication is, I think,
that the emotions of doubt and opposition to the computer revolution do not
in reality hinge on a matter of principle — that control by machine is a bad
thing. On the contrary it seems to be a matter of the appropriateness or
otherwise of computercontrolin the given case. As applied totraffic lights,
the sheer inhumanequitableness of computer control hasa positive appeal.I
believe that something similaris involved in the popularity among school-
children of computer programmingas opposedto Latin. With programming
there is no conceivable vulnerability to possible biases or prejudices of the
teacher. The entire proof of the puddingis (if I may be allowed to mix a
rather sticky metaphor) in the running ofit on the machine.
(3) Tasks suitable for cooperation. These are tasks which are either too
difficult at present for either partner to do alone or are in some way
intrinsically suitable for conversational computing. In the second category I
would place the use of a console connected to a conversational computing
system as a ‘hometutor’ whereby the user can be steered through courses
and subjects of study of his own choosing.It is not always easy, once one has
taken the plunge into conversational computing, to distinguish between a
program to help you do something andoneto feach youto doit.

In this category of intrinsically conversational uses is the ‘question-
answering’ facility which will one day becomeavailable as a service. Not
only schools, hospitals and commercial firms but also the ordinary house-
holder will be able to tap information and problem-solving powerfrom a
national computing grid with the same ease and immediacy as that with
which he now drawsoncentral supplies of gas, water andelectricity. Along
with question-answering services, which will allow us to enquire about
restaurants in our locality or politics in Paraguay, will come the games
opponent, the puzzle-setter, the quiz-master. An increasing demand upon
computer systemswill be for aid in coping in a stimulating way with the
growing burden ofleisure.

HELPERS AND HOBBIES

For manyyearsonlythe rich will be able to install terminals in their private
homes,but I have no doubtthat the coming decade will see public telephone
boxes up-gradedto include a keyboard terminal connected to the computing
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grid, and it is well within the reach of foreseeable software technology to
offer services which will tempt ordinary people to place their coins in the
slot.

Will the computer ‘take over’? In the world of information-handling of
course the computerwill take over. The questionsis will it take over as
servant or master? To this one must reply: not as servant nor master, but as
tutor, as secretary, as playmate, as research assistant. Noneof thesein their
human embodimentsis a servant or a master; each is better described as a

helper. The lessons of experience with computers do not support the idea
that brain workers will be thrown out of employmentby the machine. The
indications are that as soon as brain workerslearn to use the new facilities
their work will be enlarged and enriched by the new possibilities which
becomeavailable to them. The working weekwill, of course, continue to
shorten in advanced countries as productivity rises, but this 1s a question of
technological progress in general, and not specifically a consequence of
computers. Whetherthe increase ofleisure timeis felt as a burden or a joy
will depend on the means available for developing spare-time activities
which can exercise and challenge man’s varied capabilities.

It is my confident prediction that computer-aided self-instruction in
science, history and the arts will have become a consuming hobbyoflarge
sectors of the population bythe turn of this century. As for fears sometimes
expressed that by then Big Brother will be able to watch us over the
computational grid, or that our superiors or our neighbours may be able
secretly to tap our dossiers kept on the universal electronic file, these fears
can be dismissed. It is easier to devise ‘unpickable locks’ in a computing
system than in the world of bank vaults and safes.

THE CONVERSATIONAL TERMINAL

The present fears of computers represent nothing new. Whenthefirst
passenger-carrying railway services were opened, eminent medical men
warned that if the human frame were transported at these speeds, fatal
haemorrhagesandseizures would be caused. Thereis a goodparallel here.
Imagine framing the question ‘Railwaytrain: horse or rider’. The answer,of
course, is ‘Neither horse nor rider but travel assistant’. As soon as people
discovered this, their fears of rail travel disappeared. When computer
terminals can offer a useful coin-in-the-slot service, the citizen will, I

believe, cease to regard the computer as an alien monster or a ruthless
competitor. Instead, the conversational terminal of the future will be
welcomedfor whatit will do to enlarge daily life — as planningassistant, as
budgeting assistant, and above all as a novel and challenging type of
conversational companion.



21
Towards a knowledge accelerator

(1986)

In the last century it was demonstrated in the numerical domain by Babbage
and others that calculating machines make possible the discovery and
tabulation of large bodies of factual (as opposed to conceptualized) know-
ledge. Todayit is becoming apparent that computing techniques developed
in expert systems work can be harnessed to a similar purpose for non-
numerical domains, including those which extend beyondthe codifying
powerof the unaided expert intellect. It is moreover possible semi-automat-
ically to render the new material into conceptualized form. Computer chess
studied as a branchofartificial intelligence has a central role to play.

INTRODUCTION

Recent findings in a numberof laboratories have shownthefeasibility of
machine-aided synthesis of bodies of knowledgefar exceeding in quality and
extent any formulations achievable by unaided specialists.

The foregoing statement implies a rather far-reaching possibility,
namely that the construction with automatic aids of new knowledge is
destined to become a mass-production or manufacturing industry. In the
same waythat the manufacturedarticles of the nineteenth century in thefirst
Industrial Revolution took the form of physical objects of use to consumers,
now we have the demonstrated feasibility in the laboratory of automating
the construction of a new range of commodities, namely, bodies of know-
ledge which did not pre-exist and in general case could not have pre-existed.

The power of the human specialist to execute knowledge which he
already has is impressive. But his powerto codify it is quite extraordinarily
limited, far more limited than was expected. Asa result (see Figs 21.1, 21.2
and 21.3) the knowledge engineering profession duringits first decade went
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ponding to Feigenbaum’s ‘bottleneck problem of applied AI’, narrows to non-

existence with increasing task-complexity.

the wrong wayabout the knowledge-acquisition task and is only now making
a course correction and turning to computer induction of expertise from
examples.

Welookto the developmentof the new induction-assisted craft at three
levels.

Level 1
Atthefirst level the processis essentially one of extraction and tabulation of
expertise which already exists coded in certain humanbrains.Thatinitselfis
novel and commercially promising. A laboratory example is discussed by
Alen Shapiro and myself elsewhere (ref. [8] of Chapter 19).

Level 2
Beyondthatlies the possibility of automatically constructing new codifica-
tions of knowledge which are then accepted and used by the human
professional, but which did not pre-exist in human brains and hence
constitute genuine de novo synthesis. An example due to Bratko andhis co-
workers (Mozetic, Bratko, & Lavrac, 1983) is discussed later.

Level 3
Finally, automation can in principle be extended to the synthesis of new
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know-howcould in principle be communicated from expert to machine.

knowledge which notonly did not pre-exist but could not have pre-existed;
that is to say, knowledge whicha brain could not possibly synthesize but can
assimilate and use if synthesized by someother agency.

AN HISTORICAL PARALLEL

A parallel in the history of technologyis the synthesis early in the nineteenth
century of organic chemical compounds. Manyofthe same barriers—some
of them mental barriers — as exist now to the automated synthesis of
knowledge, existed then to the proposition of automated synthesis of
organic compounds. For example the only urea that had ever existed was
synthesizedin living cells. Most of the chemists of the day were persuaded by
the more mystically-minded biologists that this situation was eternal, and
that it was unreasonable to expect synthesis by artificial meansto be feasible
for the carbon compounds. These were the sacred preserve of cellular
anabolism, dependent on somevitalforce.

When,in 1828, urea was synthesized in the laboratory, it wasinitially
synthesized in very small quantities, much too small to be of industrial
interest. The amounts weresufficient, however, to upset the principle that
organic compoundslay out of reach of technology. Within a fairly short
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Fig. 21.3 — Confirmationis provided by the routine use in the author’s laboratory of
inductive expert system generators. Under instruction, the expert operates the
induction cycle himself, inspecting on the screen, and correcting by applying
remedial examples, successive versions of each induced rule. The outer cycle

represents feed-back from tests of the rule-basein thefield.

period the synthesis of urea was a mass productionindustry for fertilizer in
agriculture. In the chemical industry, even to the present day,thereisstill
large-scale reliance on extractive methods— insulin until recently cameinto
that category — where it is a matter of extracting a compound already
synthesized by some biological agency. This is analogous to extracting
knowledge from a domain specialist and recodifying it in machine memory,
regardless of whetherheis alreadyarticulately aware of the knowledge.Ifhe
is not aware, then extraction canstill be achieved by rule-induction meth-
ods, as recently demonstrated by Shapiro (1983). If he is aware, then rule
induction may evenso offer higher extractive effectiveness.

The chemical industry todayrelies not only on extractive processes, but
also on the synthesis of compoundsalready synthesizedbiologically. Moving
on to the post-waryears of this century wefind a third category: the synthesis
on an almost overwhelmingscale of a vast variety ofnew organic compounds
which have never been synthesized by biological systems, never could be
synthesized by any knownbiological system, but nevertheless are accepted
by humantissues (as exploited for example in the pharmaceutical industry)
as useful new products. A case can be madethatall these phases,difficulties,
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and opportunities which technology has passed throughin the case of the
chemical industry are beginning to be re-enacted in the computer-based
knowledgeindustry.

INVERTING COMPUTATIONS

Provided that a problem domain can be exhausted by a tabulation of, shall
wesay, a merebillion or tenbillion entries, as in the case of the chemical task
of mapping massspectral patterns onto molecularstructures, then instead of
despairing becausethe function that we wouldlike to computeis effectively
intractable, one can say: I am only interested for the momentin a subdomain
of ten million elements and, although the function is adverse to compute,it
may have an easy inverse — its inverse may be of low computational
complexity.

Such functions have beencalled trap-door functions, because one can go
through one way,but one cannoteasily go through the other way. Whenthat
is the case, then there is a cure. Imagine that somebodyhaspointed out a
straightforward algorithm to go from mass spectra to molecular structures
or, if you like from chess endgamepositions to game-theoretic values. Old
style (processor intensive), the user inputs his questions into the question-
answering machine, andsince the algorithm is correct and complete and
must terminate, eventually the user gets an answer. The trouble is thatit
comesafter an unacceptable delay.

Instead he can nowproceed as follows. Thefirst step is to specify the
space of answers: we are going to start from answers and work back to
questions. The next requirementis an exhaustive generator, which from that
specification will generate an answerand from that generate the next answer
and so on until it has enumerated the complete answer space. Nowwe need a
routine which embodies the hypothesised computation. In the case of mass
spectroscopy, the inverse computation takes the form of simulating the
action of the mass spectrometer, which given a molecularstructure, beams
electrons at it to break it down into fragments, weighs the fragments and
formsa statistical histogram (mass spectrum) of those fragments according
to abundancyand ion weight.

Deriving for each answerthe linked question, an insertion routine puts
the newly-discovered question-answerpair into the giant incrementaldic-
tionary, but doesits indexing on the question rather than the answer. Hence
this manufactured mountain of factual knowledge can be putinto thefield as
an indestructible, everlasting, fast, cheap question-answering machine,to

which the user can input questions and immediately get the answers by look-
up. That whole process has been routine in a number of laboratories
studying aspects of computerchessforatleast the last fifteen years. Thefirst
person to do it was ThomasStrohlein, who constructed a data-base for the
King-Rook-King-Knight end-game for his doctorate in Munich in 1970.

It follows from the prevalence of hard combinatorial problems in
industry — scheduling problems, allocation problems, sequencing prob-
lems, optimization problems of all kinds — that whereever trap-door
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functions exist, the industry will move in with large memory techniques.
Whatdo these techniques buy? In termsofartificial intelligence nothing at
all. Interest from an AI point of view begins whenthe needis foundtofree
up some of this mountainous storage space by compacting part of the
tabulated material into description form. New facts can then be tabulated
and found room for in the memory and generalized in turn. Thus the
information-base is by degrees convertedinto a description-base subject to
human-like constraints. Even in terms of sheer brute-force manufacture of
knowledge at groundlevel, the pre-conceptualized level, it is a technology
which will become part of our lives. When automated compression from
look-up form into conceptual form has been maderoutine, the technology
will become part of our culture.

AN AI EXAMPLE

Is there any way of using the same trick — the easyinverse trick — for
proceeding in an AIstyle from the start? In order to do that, one would be
dealing, not with irreducible facts and atomic queries, but with descriptions
— concept-expressions in fact. The question space would be a space of
concept-expressions and theanswer space a space of concept-expressions.
Bratko’s work at Ljubljanaillustrates these notions. The customer require-
ment is for a program which will take descriptions of electrocardiogram
traces and generate diagnostic descriptions of heart disorders. There are
automated systems in the market-place which do that after a fashion. I say
‘after a fashion’ becauseof limitations in reliability and accuracy of ECG
interpretation based on purely statistical, as opposed to concept-based,
models. The commercial systems implementstatistical decision functions
which do not embody anything which could be called cardiological know-
ledge. In general the first-rate cardiologist can outperform them. Instead of
operating at the superficial level of direct statistical association between
cardiac arrhythmias and ECG wave form Bratko decided to deal with the
cardiac arrhythmias as an enumerable set of descriptions. He and his co-
workers generated descriptions on the machine ofall the possible arrhyth-
mias, subject to, the physiological constraints. These constraints say which
arrhythmias can physiologically coexist with which others. Moreoverin
building this catalogue of physiologically possible arrhythmias Bratko’s
program goes through a qualitative modelofthe heart, constructing for each
arrhythmia a prediction of what the ECG should look like, expressed
qualitatively as a PROLOGdescription (see Fig. 21.4).

Notice that it is a true example of the easy inverse trick. The adverse
function is the one that maps from ECGto arrhythmiadiagnosis. However,
all the computing goes in the reverse direction. Bratko’s program uses a
deep model, in somesensea causal model, of the biological system thatis
generating the ECGtraces. Wereit not for the physiological constraints, the
enumeration task would blow up — the number of mathematical combi-
nations goes up exceedingly fast. Fortunately the constraints dampen the
combinatorial .explosion, which levels out at approximately 580 different
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Fig. 21.4 — Program-synthesized rule-base for ECGinterpretation exemplifies the
difference between modelling an intuitive skill (‘shallow’ knowledge of ECG-
arrhythmia associations) and modelling the causal and physical properties of the
corresponding domain (‘deep’ knowledge of the heart’s functioning and of the
physiological constraints on the co-occurrenceofdifferent arrhythmias). By exhaus-
tive enumeration of the physiologically possible arrhythmias and logical reconstruc-
tion from each of a corresponding ECG description, the program was able to

generate‘shallow’ from ‘deep’ knowledge.

multiple arrhythmias. The reason whythe diagnosis of the multiple arrhyth-
mias is of importance is that even a medical studenthaslittle difficulty in
relating an ECG to a simple arrhythmiasincethereis only onespecific defect
of the heart — sometransmission pathway is blocked or some generator
which should be generating pulsesis not, or is in the wrongsite. But in the
presence of multiple arrhythmias, the description of the waveforms cannot
in any way be obtained by simple-minded summingor averaging or other
way of combining the descriptions that belongto the individual constituent
arrhythmias. :

This machine-synthesized catalogue can give useful service in either
direction, either as a diagnostic catalogueto be looked upin the machine(or
on paper), or the other way round, going from arrhythmias to ECG
characteristics. It is the second mode that is now in use in that particular
hospital, namely as a teachingaid.

Here is a path that could lead to a substantial systematic automated
manufacture of new knowledge. Not all of that cardiological knowledge
catalogue was knownto cardiologists. The head cardiologist wasinitially
sceptical. Bratko put him to the test by using the machine knowledge-baseto
generate unusual and complex cases. In some of these the cardiologist
stumbled, mainly through overlooking secondary possibilities. This work is
the first recorded case of automated construction of new conceptualizations
on otherthan an extractive basis. It was not donebycollecting or inductively
extracting diagnostic rules from existing human diagnosticians. The diag-
nostic rules were synthesized de novo.

The senior authorof the work, Dr Ivan Bratko, has for many years been
one of the world’s leading contributors to the study of computerchess from
the artificial intelligence point of view. It has been said that chess is the
Drosophila melanogaster of AI. The reference is to the pioneers of the
chromosometheory of heredity who bredfruit-flies in the laboratory rather
than chickens or cows. It must have beena relief to the early geneticists
whentheresults of the work found practical applications.It is gratifying to
record the start of a similar migration of technique today.
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22
Machineintelligence:
the first 2400 years

The field known byits practitioners as AI has attracted attention of a kind
usually associated with great novelty. Moreover many people, among whom
I include myself, believe thatartificial intelligence is about to re-shape our
world. So it may seem surprisingif I assert that AI is not the youngest but the
oldest of mankind’s systematic studies.

The modern mind has been conditioned, partly by Dr Kuhn with his
revolutions and paradigmsand partly by the media. We expecta scientific
technology to jump suddenly into our ken, and then to advancein a series of
paroxysmscalled breakthroughs. But the story of machineintelligence has
not beenat all like this. Over a traceable span of 2400 years AI has been the
slow plodder, and possibly owes the world an apology for taking such an
unconscionable time arriving. But as will emerge from mynarrative there
have been retarding circumstances, including ignorant opposition — not
from the lowest mindsof each age but from the most cultivated.

The story begins with the attitudes expressed by Socrates to the inven-
tion of writing. To us writing stands forth as the first necessary device to be
placed in AI’s box of mind-enhancers, the key to the rest. Socrates saw it
differently. Speaking in Plato’s Phaedrus of one of Egypt’s junior gods, by
the name of Thoth, he says:

Amonghis inventions were number and calculation and geometry
and astronomy,not to speak of various draughts (i.e. checkers) and
dice, and, aboveall, writing.

Thoth goes to the arch-god Ammonand declares: ‘Here is an accomplish-
ment, my lord the king, which will improve both the wisdom and the
memoryof the Egyptians’. Ammonreplies that, on the contrary, writing 1s
an inferior substitute for memory and understanding. “Those who acquire
it’, he says, ‘will cease to exercise their memory and becomeforgetful; they
will rely on writing to bring things to their remembrance by external signs
instead of on their own internal resources.’

This argument has re-appeared in many contexts, most recently in
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connection with today’s hand-held calculators. But Ammon’s next pointis
more subtle, and goes to the heart of our topic, namely the nature of
knowledge whenpredicated of an interacting pair of systems when one of
them is a person and the otheris an inanimate device,in this case a book. ‘As
for wisdom’, says Ammon about book-users, ‘your pupils will have the
reputation for it without the reality: they will receive a quantity of inform-
ation without proper instruction, and in consequence be thought very
knowledgeable whentheyare for the most part quite ignorant’. Ammon’s
crushingfinale is: ‘And because theyarefilled with the conceit of wisdom
instead of real wisdom theywill be a burden to society’.

The objection here is concerned with the simulation of knowledge by the
possessorof a rapid-access source. Precisely because the distinction can be
blurred between possessinga sufficiently fast knowledge-source and actually
possessing the knowledge, we see Ammon’s pointas notonly subtle but also
topical. To Ammonthedistinction is critical. Herbert Simon’s contrasting
view, hatched in 1955, is expressed in a passage published in 1971:

The changein information processing techniques demandsa funda-
mental change in the meaning attached to the familiar verb ‘to
know’. In the commonculture, ‘to know’ meant to have stored in

one’s memory in a waythatfacilitates recall when appropriate. By
metaphoric extension, ‘knowing’ might include having access to a
file or book containinginformation, with the skill necessary for
using it. In the scientific culture the whole emphasis in knowing
shifts from the storage or actual physical possession of information
to the process of using or having accessto it.

Note that Simon’sposition paves the wayfor a philosophy of knowledge
in which both members of a man-machine partnership can be allowed to
‘know’things, jointly with, and in somecases independently of, each other,
or even — as explained in previous chapters — to create and codify new
knowledgeforjointuse.It is interesting that Socrates goes on to scourge the
passive technologyof booksforfailure to be precisely the kinds of products
which today’s AI scientists are striving for, notably knowledge-bearing
devices able to explain their own contents. Socrates is particularly, and
rightly, scornful of booksin this regard: ‘... if you ask them what they mean
by anything they simply return the same answeroverandoveragain.’

I want now to movea few years on from Socrates and to look over the
shoulder of Aristotle as he struggles to pin down a different but related
ambiguity in the meaning of the word to know, concernednot so muchwith
whether informationis retrieved from an internal or an external store but
rather with whetherretrieval is effectively instantaneous.

Aristotle’s study of knowingandinferring, the PosteriorAnalytics, starts
briskly and provocatively: ‘All instruction given or received by way of
argument proceeds from pre-existent knowledge’. If someofusat thestart
of the 1960’s had marked,learned and inwardly digested this passage, that
decade’s unfulfilled quest for knowledge-free mechanisms as the key to
machineintelligence might have been shortened. Not that we do not need
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these mechanismsofgeneral-purpose search and general-purpose deductive
inference. We do need them,andderivatives of what was invented then can
be discerned in the workings of Prolog and other computer languagesof the
1980’s. What we do not needis the Platonic fancy that in these pure forms
lies all that is required for a machine to receive instruction by way of
argument. Aristotle wasright. There is an additional requirement, namely
for the cognitive agentto befirst loaded with relevant knowledge.

Obviousnow,this insight was far from obviousin 1970, when boldspirits
at MIT announced the knowledge approachand beganto push it down the
reluctant throats of the rest of us. Now thatthe dust has settled, one of the
most elegant worked examplesstill remains: David Waltz’ program for
interpreting pictures such asthat of Fig. 16.2, i.e. shadowed scenes formed
by varied and partially occluding polyhedra resting on a plane landscape.
The problem posed bythe line drawing in that Figure is: how can a machine
identify the solid bodies represented by the draughtsman,andthusin a sense
understandthe picture? Clearly it must somehowassociate every face, edge
and vertex with its proper body, while avoiding hypothesized associations
which contradict the facts of three-space and the conventionsof projection
onto two-space. The Aristotelian answer must be in termsof‘pre-existent
knowledge’, whatever that phrase might meanin termsof interpreting such
drawings. Weshall approach the meaning conferred by Waltz’ program by
first digressing back to Aristotle and the notion of pre-existent knowledge.

Aristotle categorizes the notion under two headings, namely facts about
individual objects (qualified knowledge) and facts about classes (unquali-
fied). An example hegivesof the first is that ‘this figure inscribed in the
semicircle’is a triangle. His example of the secondis that the angles of every
triangle are equal to two right angles. He now poses the problem: can a
student who knowsthe second fact, about triangles in general, be said
already to knowits truth in relation to every particular triangle, including
one suddenly shown him which hehas neverseen before?

Aristotle realises that before the knowledge becomes complete, some
computation must be done.First the student has to run a mental recognition
routine (to use today’s language)so as to knowthatthis objectis a triangle.
Then he mustapply his rule abouttrianglesso as to infer that this one too has
angles equal to two right angles. Aristotle holds back from Herbert Simon’s
usage, which credits the student with already having knowledge of the
properties of this particular triangle provided that when asked aboutit he
can mobilise the answer with sufficient immediacy. Instead Aristotle sits
with one foot on either side of the fence and saysof the student: ‘Before he
wasled on to recognition or before he actually drew a conclusion, we should
perhaps say that in a manner he knew,in a manner not’. If Aristotle had
taken just one morestep he might have formed the suspicion that the chains
of mental calculation demanded by sometests of student knowledge could
be infeasible for the examinee to complete, even in a lifetime, such as for
example the primeness or otherwise of some 40-digit integer suddenly
shown him.If in such a case Aristotle were to discard the equivocation ‘in a
sense he knew’, he would step over the threshold which Simoncrossed in
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1955 and of which much of the AI world hasstill to become aware. This
threshold separates the world of unboundedrationality shared by philoso-
phers, mathematicians and physical scientists, and the world of bounded
rationality meaning the term very strictly to mean brain-bounded rationa-
lity. We must cometo termswith the laws of brain-boundedrationality if we
are to understand anything at all about knowledge, whether realised in
people or in machines.

With this in mind let the reader now turn back to Chapter 16 for the
meaning given to the word by Waltz’ program. Knowledge here takes the
form of a catalogue of classes of vertex, in Table 16.1 of that Chapter,
labelled accordngto a line-labelling scheme embodying certain elementary
facts of optics and geometry: unqualified knowledge,in Aristotle’s termino-
logy. The immediately following Table shows the respective sizes of the
combinatorial spaces which must be searched under two alternative
assumptions.

Alternative 1 says that the cognitive agent (let us suppose some visually
naive student) has no knowledgeof the above-mentioned elementary facts,
but only of a rule for deciding whethera given allocation of labels to local
featuresis globally legal. If asked to say, by analogy with Aristotle’s triangle
test, whether a given drawing does or does not depict a physically possible
arrangementof polyhedra,the only strategy open to him is thatof ‘generate
and test’. During the student’s execution of this laborious phase, Aristotle
has to say that in a mannerhe knows,in a mannernot. Unfortunately from
the standpoint of this method the computational complexity of even simple
line drawingsis intractably large. For the drawing shown in Chapter 16 the
student could not possibly complete a generate-and-test strategy within a
life-time. So Aristotle would presumablynotin this case say ‘in a manner he
knew’. Like the rest of us he might rather conclude that the student did not
knowat all, and never would know unless he were to abort the attempt to
answerthe question and take more knowledge on board.

Is promptness in supplying good answers, then, the only credential
required to support a claim to knowledge, even whenthe claim is advanced
on behalf of a machine? Notso. Certain structuralcriteria must additionally
be met if the machine’s answers are to accredit a claim that it ‘knows’.
Suppose that one were to run on a supercomputerthe naive generate-and-
test algorithm for Waltz’ pictures, regularly obtaining correct answersin less
than a second. Manya bystander, including even from the ranks of AI,
might be temptedto say of each answer:‘In a manner the machine knew...’
— so long as no-oneaskedit: ‘But how do you know?’. An answersuchas ‘I
generate andtest, but I do it very fast’ would, one supposes,fail to satisfy
most examiners.

A brain or a computer program gives solutions to problemsin a given
domain on the basis of some stored complex of relevant procedures,
methodsandfacts. For a person knowledgeable about the domainto credit
another agent with knowledge, as opposed to mere problem-solvingability,
the stored operational descriptions employed by the twoparties must satisfy
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some minimal matching relation. More particularly, description A and
description B must showa level of match not only in what they DENOTE
(they must give the same answers to the same questions) but also in what
they CONNOTE (the two descriptive complexes must be essentially
similar).

A more detailed basis can be found in Chapter 18 for analysing whatis
and what is not knowledge in a machine. Here we simply point out that
customary usage of the term ‘knowledge-based’ includes the requirement
for such a system that it be able to explain the process by which a conclusion
was reached. Moreover this process must be such as to support the
generation of explanatory comments which matchthe user’s wayofthinking
about the problem. Plainly Alternative 1 cannot be madethe basis of a
knowledge-based system atall, but only of a super-clever black box.

Alternative 2 says that the cognitive agent has in memory the facts concern-
ing labelling constraints and physical possibility and uses them to confine the
amountof generate-and-test to what can be quickly accomplished by even so
sluggish a calculating engineas the brain. If the agent, whether machine or
student, then answers promptly and correctly then it seems reasonable to say
‘In a manner he knew’, even though Student (2) strictly speaking has no
more initial information about the answer than Student (1): both have all
that is needed(in principle) to answer the question. What has changedin the
transition from 1 to 2 is not the information-content concerning the answer
but the amountof information whichthe brain can mobilise aboutits value
at short notice. In a neo-Aristotelian system of definitions we mightcall this
latter quantity the knowledge-contentof the stored materials. Notice that
when operating under Alternative 2 the supercomputer’s reply (this time,
One supposesin a fraction of a nanosecond) can reasonably becredited to
knowledge. The machine this time observes a regime of brain-bounded
rationality in the selection of facts and representations held in memory.
Hence its explanatory trace is intelligible to any equally informed user
imprisonedin the same bounds.

The phrase ‘boundedrationality’ is from Herbert Simon’s introduction
to the first section of his book ‘Models of Thought’ in which his papers
published before the year 1979 are collected. By wayof a definition suited to
my themewecansaythat AIis

THE COMPUTATIONAL MODELLING OF
BRAIN-BOUNDED RATIONALITY

MODELLING BRAIN-BOUNDED RATIONALITY

The elaboration of Simon’s ‘bounded’ may seem needless, since Simon
plainly refers to the bounds imposed by various information-processing
limitations of the brain,in particular the size of short-term memory and the
speed of sequential operations. But it is necessary to distinguish between
Simon’s boundedness and that of computational physicists and computer
people susceptible to their way of thinking, whoprefer to modela rationality
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bounded only by hardware technology and the constraints of solid-state
physics. I made earlier mention of circumstances which have retarded the
development of an effective science of AI. I mentioned resistance from
other disciplines. A greater retardant, though, has been neglect even by
some AI practitioners of Simon’s qualification concerning the brain’s
boundedness, and the inescapable consequencesof this for the forms which
the modellers must follow. Yet the Nobel Prize awarded to Simon in 1979
wasforhis use in the mid-1950sof precisely this qualification to demolish the
models of von Neumann and Morgenstern, which were based on the
unboundedrationality of an imaginary being, Economic Man.In the key
paper of 1956, Rational Choice and the Structure of the Environment, we
find:

A comparative examination of the models of adaptive behaviour
employed in psychology(e.g. learning theories) and of the models
of rational behaviour employed in economics showsthat in almost
all respects the latter postulate a much greater complexity in the
choice mechanisms,and a muchlargercapacity in the organism for
obtaining information and performing computations than do the
former. Moreover, in the limited range of situations where the
predictions of the two theories have been compared ..., the
learning theories appear to account for the observed behaviour
rather better than do the theories of rational behaviour.

Yet realization has comeonly slowly that the potenthistorical example set
by the physical and mathematicalsciencesis the worst possible example for
AI. Artificial intelligence must build its models around the very same
peculiar shapes and constraints of brain-bounded cognition which the
physical scientists seek so rigorously to exclude. To makethe exhortation
morespecific, I have set out in Table 22.1 someofthese peculiar constraints.

Table 22.1 — Some information-processing parameters of the human
brain. Estimation and othererrors can be taken to be around 30 per cent
 

1. Rate of information transmission along
any input or output channel 30 bits per second

2. Maximum amountof information explicitly
storable by the age of 50 10!°bits

3. Numberof mental discriminations per second
during intellectual work 18

4. Numberof addreses which can be held in
short-term memory 7
 

Between the time of Socrates and that of Aristotle we find thefirst
machine builders. As already related in Chapter 16, the mathematicians
Eudoxus and Archytas enjoy a doublepriority, in the first place for devising
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mechanicalaids to reasoning andin the secondplacefor provokingthefirst
of the succession of eminent counter-blasts which have punctuated AI
history. These two employedtheir art, in Plutarch’s words, ‘as a meansof
sustaining experimentally, to the satisfaction of the senses, conclusions too
intricate for proof by words and diagrams’, muchto the annoyance of Plato
at their meddlesome encroachmentonthepreserve of pure thought.

I shall not follow the further progress of special-purpose computing
engines, which continued long into the Roman era and included such
elaborate wonders as complete clockwork simulators of the solar system.
Rather, in keeping with my chosen Aristotelian emphasis, only that strand
will be traced which bears on the inductive side, on the synthesis of
generalities from particulars, discovery of new concepts, and machine
learning. |

How doesone get knowledge from a knowledgeable humansource,i.e.
an expert, into a computer? Two waysare open:

(1) let the experttell his rules of thought and rules of thumbto a program-
mer whothencodes up what he hasbeentold;

(2) let the expert teach the machine by showing,thatis by feedingit pre-
classified examples of expert decisions.

In the case of (2) the machine must have the powerof inducing rules from
examples; it must be able to generalize. Table 22.2 showsthe results of an

Table 22.2 — Expert system generated exclusively from examples com-
pared with hand-crafted variants (from‘Chilausky, Jacobsen, and Michalski
1976, Proc. VI Internat. Symp. on Multi-Variable Logic, Utah). The AQ11
induction procedure was codedin the PL1 programming language

 

AQ11 in PLI1 120K bytes of program space

SOY-BEAN DATA: 19 diseases
35 descriptors (domain sizes 2—7)
307 cases (descriptor sets with

confirmeddiagnosis)

Testset: 376 new cases

> 99% accurate diagnosis with
machine runs machine rules
using rules of 83% accuracy with Jacobsen’s
different origins rules

93% accuracy with interactively
improved rule
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early experiment conducted by Ryzsard Michalski and colleagues at the
University of Illinois on how to build a machine diagnostician of soy-bean
diseases.

By this and by muchcareful follow-up work Michalski decisively estab-
lished that method(1)is not as effective as might be hoped,andisalso rather
costly, while (2) is not only cheap butalso effective by the highest standards.
A feature of special interest in view of the brain-bounded nature of human
rationality is that Michalski’s machine-synthesised rules are intelligible to
the soy-bean experts and also mentally executable by them.In spite of their
largely synthetic origin, these products could reasonably be called concept-
expressions. This demonstration must rankas a highly significant milestone
in the practical modelling of brain-boundedrationality.

Let us go backin timeto the first milestone along the trail of machine
concept formation. Wefind it in 13th Century Spain. Here was made what
Martin Gardnerhas described in his book Logic machines and diagrams as

... the earliest attempt in the history of formal logic to employ
geometrical diagramsfor the purposeof discovering non-mathema-
tical truths, and thefirst attempt to use a mechanical device — a
kind of primitive logic machine — to facilitate the operation of a
logic system.

The tale of Ramon Lull’s long, tempestuous, and almost unbelievable
career, and of his cognitive contrivances, is enjoyably told in Gardner’s
book. Lull’s fundamental idea was the generation of new and complex
concepts by mechanical assortment and recombination of pre-existing
simpler ones. This he accomplished by elaborate systems of concentric
spinning disks. Aroundthe edgesof the disks could be inscribed the names
of component concepts from which more complex multiple conjunctions
were generated. Fortheless intellectual audiences, perhapsforsite visits to
his theological laboratory (one of whose products wasa set of 100 sample
sermons generated by his spinning disks), he prepared somesimplified
popular versions. But in Martin Gardner’s words ‘the method reachesits
climax in a varicolored metal device called the figura universalis which has
no less than fourteen concentric circles! The mind reels’, Gardner con-

cludes, ‘at the number and complexity of topics that can be explored bythis
fantastic instrument.’

Lull’s influence in exciting the minds of his own and succeeding gene-
rations was immense,both pro and contra. Four hundred yearslater, as a
lampoon on Lull and his method Jonathan Swift describes in Gulliver’s
Travels a generate-and-test treatise-writing machine. The professor in
charge reminded Gulliverthat

everyone knew howlaborious the usual methodis of attaining to
arts and sciences; whereas by his contrivance the most ignorant
person at a reasonable charge, and witha little bodily labour, may

write booksin philosophy, poetry, politicks, law, mathematicks and
theology, without the least assistance from geniusorstudy.
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Onthe otherside of the Lullian controversy, Leibnitz was much taken by
Lull’s combinatorial machines, and employed similar methods exhaustively
to crank out formulas of propositional logic which were then checked for
validity, on the generate-and-test principle. His own faith in what might be
accomplished through machine-style symbol processing was astonishing:

If one could find characteristics or signs for expressing all our
thoughts as clearly and exactly as arithmetic expresses lines, we
could in all subjects, in as far as they are amenable to reasoning,
accomplish whatis donein arithmetic and geometry.

Commentingonthis passage, the British logician John Shepherdson writes:
‘His full programme would have embraced not only pure and applied
mathematics but also grammar,law,politics, physiology, theology, the art
of discovery etc. He was rather optimistic about the time it would take:

I think that a few selected men couldfinish the matterin five years.
It would take them only two howeverto work out by aninfallible
calculus the doctrines most useful for life, those of morality and
metaphysics.’

Three hundred years before recognition of the notion of the intrinsic
complexity of computations, whether mental or otherwise, Leibnitz exhibits
in its most florid form the nonsenseinto which the neglect of such bounds can
still lead the AI enthusiast. The kind of neglect assailed in 1955 by Simon had
even earlier beensatirised by Claude Shannoninthe contextof the theory of
gamesapplied to chess. Shannon’s point was not that grandmasterchess, or
even move-perfect chess, was unimplementable, for that would be over-
dogmatic. His point was that this goal, as with Leibnitz’ more grandiose
enterprise, needs more than a sound mechanisation of in-principle solu-
tions. It needs what today wecall the ‘knowledge approach’, for which both
Shannonandhis great contemporary Alan Turing madespecific, prescient,
and largely neglected proposals.

Turing created, in the intellectual sense, the concept of the universal
machine. In design and implementation, however, the chapter was opened a
century earlier, by Charles Babbage. Hein turn was undoubtedly inspired
by the ‘universal machine’ idea implicit in Leibnitz’ great knowledge
project. It is noteworthy that Babbage,as passionately devoted to the aim of
machine intelligence as Leibnitz, was also Leibnitz’ great admirer and
champion. Babbage was largely instrumental in gaining acceptance of
Leibnitz’ ‘d’s to replace Newton’s ‘dots’ in the teaching and practice of the
calculus in England. He also showed a campaigning zeal to compel accep-
tance of the feasibility of machineintelligence by effecting some dramatic
demonstration. As with Shannon and Turingin a later age, his mind was
drawnto the gameofchess, for which he advanced proposals for formalizing
principles of play.

Certain writings of Turing, in particular the unpublished Lecture of 1947
to the London Mathematical Society (‘The Automatic Computing Engine’,
typescript in King’s College Library, Cambridge), have not received atten-
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tion — understandably since they have yet to acquire relevance in relation to

the more immediate and obvious developmentsof his main work. The multi-

billion-dollar industry set to dominate the century’s closing years traces

directly from the Universal Turing Machine (UTM)formalism of his 1937

paper. Andrew Hodge’s biography provides a good route-map of develop-

ments already become so dazzling as to eclipse from view the more

speculative themes. It was these themes, however, which Turing perceived

as the wave of the ultimate future. In the UTM therest of the world saw a

formal modelfor a revolutionary concept: programmability. To its author

this was the obvious part. What Turing saw as the revolutionary part was the

conceptofself-programmability. Since not everyone outside the ranks of Al

is aware ofthis, I close with a pertinent passage from the 1947 Lecture:

Let us suppose that we have set up a machine with certain initial
instruction tables, so constructed that these tables might on oc-
casion, if good reason arose, modify those tables. One can imagine
that after the machine had been in operation for some time, the
instructions would have been altered out of recognition, but
neverthelessstill be such that one would have to admit that the
machine wasstill doing very worthwhile calculations. Possibly it
mightstill be getting results of the type desired when the machine
wasfirst set up, but in a much moreefficient manner. In such a case
one would have to admit that the progress of the machine had not
been foreseen whenits original instructions were putin. It would be
like a pupil who had learnt much from his master, but had added
much more by his own work. Whenthis happensI feel that oneis
obliged to regard the machine as showingintelligence.

The passage endson a note of expectation, robbed of fulfilment by his early
death:

As soon as one can provide a reasonably large memorycapacityit
should be possible to begin to experimentontheselines.

Turing died in 1954. A. L. Samuel was then just beginning to take over
from Christopher Strachey the programming groundwork for experiment-
ing with the game of checkers, and to embark on some compelling illus-
trations of thé idea of table-modifying tables. A year or two later, as
described in Chapter 1, my own impatience to experiment had me immersed
in glass beads and matchboxes. Learningofthis, Strachey visited me. Might
I not, he enquired gently, advance with greater speed by the use of more
modern equipment? Strachey and I were soon to collaborate in a Govern-
mentinitiative led by Lord Halsbury to implementcertain thoughtsat that
time new to Whitehall, namely that

— computation is a subject of scientific study, on a par with physics,
chemistry, biology etc;

— scientific study requires enablement;
—enablementhasto include the provision of appropriate equipment.
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Extraordinaryas it may seem today, noneofthese propositions wasseen as
in the least self-evident. Each had to be buttressed in detail and argued
through. In 1964 on commission from the nascent Science Research Council
I conducted a poll in British Universities of some hundred under-40
computer scientists. I asked respondents to rank different subdivisions of
computing according to estimated importance and personalinterest. It is
interesting to recall that even at that early stage the two topics which
dominated the replies were the man-machine interface and machine
intelligence.

In these and other waysit came about that Britain’s partin the first 2400
years was re-animated. A selective sample of the activity which ensued has
contributed some of the subject matter of this book.
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