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Preface

The message of this book has implications not just for technology

but for every sector of our society. We want to reach as wide a

readership as possible, both inside and outside the technical com-

munity. In considering who ourreaders are, we are consciousthat
the explosive growth of computing in recent years has enormously
widened the numberof people whoare acquainted with the concepts

involved, many using computers in their work, in education or at

home. Atthe sametime there are many people to whom this tech-

nology is still strange. We need to address both groups, because
they are equally concerned with the future of society. Not only that:
the ‘two-cultures’ divide between technology and thearts showslittle
sign of narrowing, and weare convincedthere is a need to open a new
dialogue between the twosides.

Our requirementtherefore has been to make the book understand-

able to the intelligent layman. At the same time we havetried to
avoid bogging down the argument by continually returning to first
principles, and to provide enough detail to satisfy the technical
reader’s need to be convinced. To dothis the bookis structured in

an unusual way. Detailed knowledge of computer technologyis not

necessary for understanding it but familiarity with the conceptsis,
so an Appendix is provided to introduce these concepts. Readers

with no experience ofcomputing shouldstart there and then proceed
to Chapter 1. This chapter is largely background, much of which

will be familiar to technical readers, but they may find it a useful

summary. The central theme of the book starts with Chapter2.

Our subject matter is specialized, and it would be counter-
productive to avoid using the languageof the specialism, which has
been evolved to express precisely the ideas at hand. Technical ideas

are explained as theyarise in the text. However, non-scientist readers

may occasionally encounter unexplained termsthat are new to them,

included to provide extra detail for the initiated. In all cases we
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have beencareful to ensure that these are not central to the argument,

so readers need feel no concern about skipping over them, getting

the general sense from the context. Anyone curious to know more
will find these terms explained in full in the Glossary.
On the other side of the coin, scientific readers will find that for

the sake of comprehensibility, arguments are not gone into with the

rigour that would be expected in a report of research. For those

wishing to investigate more deeply, references to the scientific
literature are given. By this approach weaim to capture the imagina-
tions of both groupsof readers.
As would be expected with any novel subject matter, the ideas in

this book are not easy. But we are certain that the educated layman

will be able to follow and appreciate them alongside readers with
technical backgrounds, and will be especially well placed to assess
their social significance and to take steps to see that the opportunities
here offered are not missed. The book will also, we hope, give a

glimpse inside the fascinating world where these developments are

taking place.
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Introduction

The world is sliding precariously close to disaster. This conclusion
follows from anysoberanalysis of the state of the planet. Economic
stagnation, poverty, rampant inflation, massive unemployment,

over-population, political strife, terrorism, wars and rumours of

wars, and the threat of Armageddon permeate every cornerof the

globe. Of course, mankind has always faced problems, and present
ones naturally seem more formidable than those in the past, but we
do appear nowto have reached a point where something very sub-
stantial will have to give. The height of irony is that much of the

blameis now beinglaid specifically on mankind’s systematic efforts

to find solutionsto its problems — thatis, on technology.

Technology has been around for millennia and is nothing more
than man’s cumulative search for means to improvehis lot. Now,

however, someclaim that technology is making his life worse, not

better. The problemslaid at its door range from the social upheavals

caused by technical change, unemployment, pollution and the threat

of nuclear extinction, to alienation andthe loss of job satisfaction
andfulfilment. To these can be addedthevery real possibility that the

complexity induced by technology is to blame for the intractability
of our economic malaise, and the substantial danger that technical

systemsare getting so complicated that soon their human operators

will lack the knowledge and understandingto control them.

In the face of this array of problems, we ask from where might

answers come? Could inanimatecreatures of technology possibly
produce solutions to the problems it has spawned, and to myriad

others that afflict humanity? Could machines themselves conceive

solutions that have eluded human minds? The messageof this book

is that in principle they can, and that in the world of tomorrow they
will.

This assertion is not simply dreaming by technological optimists.
It is based on fact — in the shape of discoveries that are beginning
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to emerge from someof the world’s advanced computerlaboratories.
It has long been wrongly assumed that you can only get out of a
computer what you putin. This notion is certainly justified in the

case of most of the workaday data processing of the last three

decades. Now, however, it has been demonstrated incontrovertibly

that something new can come out of computers, and that new
something is knowledge. That knowledge, in turn, can be original
ideas, strategies and solutions to real problems.

Asyet the knowledgethat has been generated by machinesoflittle

practical use to the deeperafflictions of the world. This is to be

expected — the biologist who first synthesizes life will come up with

possibly a virus, not a full-grown horse. But the implications are
clear and important. Eventually it will be possible to set computers
going on the search for solutions not to the winning of games but
to the harsher problemsthat confront society, and solutions will be

found.

Certainly this will take a long time, but equally certainly given

humanresolveit will happen. We can foresee the day when poverty,
hunger, disease and political strife have been tamed through the use
of new knowledge, the product of computers acting as our servants,

not ourslaves. In addition, the mental andartistic potential of man

will be expanded in ways as yet undreamtof, and the doors of the

humanimaginationwill be opened as neverbefore.

Taking the opportunities will not be easy. It will require a complete

reversal of the approachtraditionally followed by technology, from
one intended to get the most economical use out of machinery, to
one aimed at making the processes of the system clearly compre-
hensible to humans. For this, computers will need to think like

people. Unless the computer systems of the next decade fit the

‘human window’they will become so complex and opaque that they
will be impossible to control. Loss of control leads merely to frustra-
tion as far as many applications now are concerned, but when society
becomes more dependent on computers, and where such things as

military warning systems, nuclear powerstations and geopolitical

and financial communications networks are operated by them, loss

of control can lead to majorcrisis.
The prospect of machines becoming as capable and powerful as

we describe can be daunting, even frightening. The notion of some-

thing non-human applying thought and judgement appears to

encroach on what the human holds most dear: his consciousness.
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The creative computerhasartistic, religious, political and emotional

associationsofall kinds. Butit is important that these philosophical
considerations, interesting as they are, do not confuse our commit-
ment urgently to seek to exploit the beneficial potential of the new
technology. With it, our future looks brighter than we can imagine.

Withoutit, we may have nofutureatall.



CHAPTER 1

Brute Force and Ignorance

Amid the euphoria that followed man’s first landing on the moon

in July 1969, there appeared in the London Evening Standard the

followingletter:

Watching the Apollo 11 Moon Shot with enthralled and uncritical
admiration, I am particularly amazed (as weall must be) with the sheer
technological brilliance of the whole thing, and wonder why computers
cannotbe used to solve our economic problems.Is it because the men who

programme them would tend to ‘build in’ their own prejudice and short-

sightedness? Our humanexperts seem to be full of both and have been most
unsuccessful to date.

A few days later came anotherletter in reply:

A computeris nothing more than a very elaborate adding machine, and

it cannot solve any problem that the programmer does not know exactly

how to solve already. Every one of the calculations involved in navigating

Apollo 11 could have been solved by hand, but, of course, it would have

taken far too long. A computeris a slave that does exactly what wetell it
— it will do all our tedious arithmetic and correlation of data, but how to

solve our economicandsocial problems — that, unfortunately, will have to

be worked out by people.

Some would disagree with the word ‘unfortunately’ in that last
sentence, but the second letter reflects a view that is widely held,

especially among those who have spent many long hours pro-

gramming computers, making a machine perform totheir will. It is
satisfying to see a complicated mechanism obey one’s instructions
faultlessly and uncomplainingly for hours, months or years on end.

The natural conclusion to reach is that since no Jess can come out

than you expected, no more can either — a point often expressed as,
“Youonly get out what you putin.’ This seemsso obvious,in the light
of personal experience of programming.

It is already apparent, however, that what seemed obviousis not
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obvious at all. Computers can create, and what they create could
constitute solutions to major problems. To be sure, the creative

computeris still far from being able to tackle the sort of problem
raised by the Standard’s correspondent. Thelevel of difficulty of a
problem is often deceptive. Getting a robot to guide a spacecraft to
the moonIs today straightforward. A difficult problem would be
to get it to go downto the corner of the road and buy a packet of

cigarettes. Compared to that, even sorting out the economy may

prove to be simple.

The needfor creativity

The fundamental difference between the task of controlling a space-

craft and that of walkingto the street corneris the need to deal with

unforeseen occurrences. If the number of things that can possibly

happenis relatively small, the computer program can be told what
to do in the event of each of them. In real-life situations, however,

the range of possibilities is so enormousthat they could neverall be
thought of beforehand. Consequently, the machine hasto be able to

store an internal model of its world from which to derive its own

solutions to problems. Beyond that, it must be able to adjust or
extend the model as experience accumulates, and thus, on occasion,

to be creative.
It also has to be intelligent in another but related sense. If a

robot tries to pick something up and burns its hand because the

object is hot, it must realize that the next thing to try is not to pick

it up with the other hand. Simple ‘chronological backtracking’ will
not do.

Asyet, the ability of machines to solve problemsis very limited.
A prime example is the near disaster ofApollo 13, which was success-

fully piloted to earth after an explosion had crippled the main engine

and powersystems. Only the ingenuity of men, overriding the com-
puter, saved the day, although all credit should be given to the
system design which supportedthis overriding. On top ofthis, there
are much morebasic tasks that are so commonplace that human

beings are seldom conscious that they are showing remarkable

capability in carrying them out, but which computer technology in

its current state can barely tackle at all. These include using natural

language (English, French, etc.), deciphering speech, and making  
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sense of the physical world through sight. Since these are funda-

mental to most humanactivities, the abilities to cope with them are
ofhigh priority in computer research and development. But there are
other less obviousfaculties which computers ought to have, such as

common sense — an essential human attribute. Take the two sen-

tences: ‘Clyde is an elephant’ and ‘Clydeis sitting in the back row of
the cinema.’ A useful computer oughtto be able to say, ‘Now,wait
a minute!’ In the late 1950s, John McCarthy,oneofthe great pioneers
of the scientific quest for the intelligent computer, posed as the

central problem the construction ofa mechanizable logic ofcommon-

sense reasoning. Througha quarterofa centuryoffitful but accelera-

ting progress, this has remained the central technical challenge.

Intelligence by machine

It is the finding of solutions to such problemsthatis the raison d’étre

of the branch ofcomputerscience that is knownbythe rather strange
title of ‘artificial intelligence’. Quite apart from the subject matter, the
nameitself is controversial. Some people hold the view that intelli-
gence is an essentially humanattribute, and that therefore ‘artificial

intelligence’ is a contradiction in terms. Others are convinced that

howeverclever computers become,they will never produce anything

that is genuinely intelligent. This leads to problems of definition.
How would youtell if a computer had produced something in-

telligent? An answer put forward in the early days by Marvin Minsky
of Massachusetts Institute ofTechnologyis that the machine1s being
intelligent if the task it is carrying out would require intelligence if

performed by humans.Totest this notion we ask, does a human use
intelligence when doing arithmetic? Of course! Then according to the
definition, machines becameintelligent with the first floating-point
arithmetic package, a nonsensical conclusion.

Another phenomenonin the controversy concerns understanding.

‘Would it be intelligent if a machine could read a newspaper and

give you a summaryofits contents?’ asks the AI scientist.

‘Certainly!’ concedeshiscritic.
‘Mystudent’, replies the AI man, ‘has just written a program to

do that (and it does not cheat simply by printing out the headlines).’
‘But how does his program work?’ asks the critic with an air of

suspicion. After a spell with blackboard and terminal he decides



18 The Creative Computer

that his suspicion was justified. ‘So that’s all! I don’t call that

intelligent.’

There appears to be a feeling that if one understands how some-
thing works,it is not intelligent. This leads to the idea coined by
Larry Tesler that‘artificial intelligence is whatever hasn’t been done
yet’, placing AI workersin a ‘no-winsituation’.

It is not altogether surprising that there is a problem with names

here, since we have no sounddefinition of natural intelligence either.

Some psychologists define it thus: ‘Intelligence is what intelligence

tests measure.’ So what then are intelligence tests? In the absence

of anything morerigorous, for the time being we are going to have

to define intelligence in machines in the same waythat Justice Potter
Stewart described pornography: ‘I can’t define it but I know it when
I see it.’

Roving on Mars

Quite apart from the general problems described above, there are

specific areas in which the need for machineswith built-in intelligence

is strikingly clear. One example is the Mars Rover project under

development at the US National Aeronautics and Space Adminis-
tration. Since landing a man on Marsis outof the question for the
foreseeable future, the idea is to have an unmanned robot vehicle
which can be landed on the planet. The robot then drives around,

taking pictures and soil samples and sending the data backto earth.

The conventional way of operating this would be by remotecontrol,
with a technician at base watchingthetelevision pictures sent back
by the Rover, and returning radio signals to the steering mechanism
on board. When the vehicle is on Mars, however, it takes

between four and twenty minutes for the TV signals to reach earth,

depending on the relative positions of the two planetsin their orbits,

and the same time again for the control signals to get back. Clearly,
if a chasm appears in front of the Rover, by the time the ‘Stop!’
command arrives from earth, the machine will long since have
crashed. Inescapably, a great deal of real intelligence will have to

be built into the Rover in order for it to look after itself, getting
only its broad strategic instructions from earth. Asa result, the space

roboticists at the Jet Propulsion Laboratory in Pasadenasee their

problem as primarily one ofartificial intelligence.
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Closer to home, the enormousgrowthin air travel has placed so

muchstrain on air traffic control systems that in someparts of the
world these systems look ready to break down altogether. The
operators can only be relieved of the requirement for unblinking

vigilance and its accompanying tension by computer systems having

the kind of dependability and resourcefulness associated with
intelligence. The scale of the catastrophe that might ensue from a
computermistake brings hometo us howreliable both the hardware

and the software must be.

The hostile environmentof the North Sea provides an application

for automatic unmanned submersibles capable of carrying out the

hazardoustasks of inspecting and repairing oil platforms, currently
done by humandivers with all-too-frequent loss oflife, or injury.
On landthere are jobs for whichintelligent ‘gofers’ would be useful.

(The name comes from American political parties — someonedetailed

to ‘go for coffee, go for the mail ...’) These would be ‘find and

fetch’ mobile robots capable of laying pipelines in the Libyan desert,
working in mines, and fault-finding inside nuclear reactors oblivious
of deadly radiation.

In the developing countries of the Third World, the need for

expert medical care is acute, and the fundamental shortage is of

trained staff. Sometimes moneyis not the problem at all. British

medical visitors to Saudi Arabia and neighbouringterritories report
widespread purchase ofthe latest and shiniest American equipment
which the local level of medical and technical education is not
adequate to put to use. Computer systemsare needed that incorporate

the expert knowledge of specialists in the developed countries, not

only so that correct diagnoses can be madebyless skilled people in

remote areas, but also so that those people can acquire moreofthis
knowledge through machine-aided training.
The computer industry world-wide, and consequently business as

a whole, face a continuing ‘softwarecrisis’ in the shortageof skilled

programmersand the ever-increasing cost of designing and writing

systems. This will become worse as the new microchip technology
of very large-scale integration floods the market with faster and
cheaper computers. On present showing, the software industry even
at the highest imaginable rate of recruiting will be unable to provide

programsforall these machines. Thestoryis told in Figure 1.
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Indicator 1955 1965 1975 1985

Industry growth ] 20 80 320
Hardware performance/cost 1 100 10,000 1,000,000
Programmerproductivity ] 2:0 2:7 3-6
 

Figure 1. Data processing industry trends!

If the markets of the booming microelectronics industries are not
to collapse from program starvation, radical innovation, not just

improvement, is needed in automatic programming. This meansthe

development of systems capable of producing software from only

a general statementof the user’s requirements, perhapsusing a stored
sample of expert decisions — in effect very high-level languages with
built-in intelligence.

Tua culpa

Anothercrying needin the field ofcomputersis for ‘error tolerance’.

Most computersystemsstill require their users to provide commands

with every jot and tittle in exactly the right place. A comma missing
or a single character wrong in a commandwordwill cause a whole
instruction or request for data to fail completely, a source of much
irritation for fallible humans. ‘It was obvious what I meant!’ we

cry, but to the machineit was not obvious. Addto this the difficulty

of errors in data that have already been stored. Suppose a word
in an information retrieval system has been misspelled: ‘guage’
instead of ‘gauge’ for instance. When a user puts in a search for
that word, unless he happens to make the same mistake himself in

keying in his request, the answer to his retrieval query may never

be found. Improved forms of ‘fuzzy’ matching are needed, together

with a more flexible understanding of language on the part of the
machine.

‘Fault tolerance’ is an even bigger problem. In any machine with
millions of componentsit is inevitable that some of the components

will be faulty. A complex system of redundantpartsis often needed

to avoid catastrophe. A failure can easily be far more serious than
the fate of the cetologist in Catch-22 who was posted to the army
medical corps by a defective anode in an IBM machine. Even more
alarming is the fact that in a large computer program — say, a  
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Fortran compiler of 150,000 instructions — some of the instructions

will inescapably be wrong.There will always be somethat are wrong,

because changesto fix errors can have unforeseen adverseeffects on
other parts of the program. Work is being donein the area offault-
tolerant software, notably by Brian Randell’s team at Newcastle Uni-
versity, who haveso far taken the rather long-haul route ofproviding
duplicate software routines which do the samejobin different ways,

on the principle that it is unlikely they will both be wrong.

Domainsnot reducible by bruteforce

Transcending all these examples, the fundamental need for a new

form of intelligent computing is in the subject areas that simply

cannot be handled by the traditional approach of data processing,
best characterized as ‘brute force’. These include such complex,
open-ended tasks as route-finding, scheduling and allocation of
resources, network design and most ofthe ‘real world’ problems we
have been discussing, where it is simply not practicable to foresee

all possible eventualities. The idea is best illustrated by comparing

two games: noughts and crosses, and chess. To make a computer
play noughts andcrosses, all a programmerhasto dois work out
every possible gamesituation andtell the machine what to do in
each case. There are only a few hundred of these, and the number

is further reduced by symmetry. This is why noughts and crossesis

basically a boring game. Chess on the other hand has 10!2° different

possible games, and although a completestrategy for playisa trivial
matter for a mathematician to formulate, the drawback, as Claude

Shannon pointed out in 1950, is that it would take 109° years of
processing on a super-fast machineto select one move.” Theage of

the solar system is but a flash by comparison, a mere 10!5 years or

so. Perhaps we could harness all the atoms in the universe into a
giant multiprocessor and bring the time for one move downto 10*°
years! However one doesit, the attempt to construct a ‘tree’ ofall
possible moves, by saying, ‘If I move here, he might movehere, or

here, or I could movethere...’ rapidly leads to what hasbeencalled

the ‘combinatorial explosion’ (Figure 2). One can of course limit

the number of moves ahead that are examined, and there are chess-

playing programs that work entirely by ‘look-ahead’ in this way,
but in order to match a humanplayer whouses his intelligence
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Vy

Figure 2. A look-ahead tree

(combined with experience), the computer still has to calculate

millions of possible moves. Either the storage capacity of even the

largest machines is exceeded, or the program takes an impossibly

long time to run. Consequently progress requires a more selective

approach. In chess playing, as in most other problem solving by
computer, brute force and ignorance are the waveofthe past.

A gift oftongues

Lookingat the limitations of current computing technology in more
detail, an obvious area to choose is speech. Talking and listening
are such basic humanactivities that it would clearly be useful for
computers to be able to take part in them.Asit turns out, talking

is not difficult. Cheap speech synthesizers are available now that

produce a Dalek-like, but nonethe less recognizable, voice. Pronun-
ciation is carried out according to general rules about the soundsof
letters and letter sequences in English, with an ‘exception dictionary’
for words that are pronouncedirregularly. This dictionary is never

100 per cent complete, of course, and it is not unknownfor instance  
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to hear a synthesizer pronounce ‘guide’ as ‘gwee-duh’. That may not

present a problem, but distortion of meaning can. Take a sentence
from an advertising poster seen in London: ‘Live at the Barbican.’
Whetherthe‘i’ in ‘live’ is long or short depends on the meaning of
the sentence, and that depends on knowledge of the world, namely,

what the Barbican is. But even that is not sufficient, because the

Barbicanis both an arts centre and a housing complex,and the sign
could belong to a show promoteror to an estate agent. The clue
comes from the preceding part of the poster. Complete it reads:
‘India. Live at the Barbican,’ andit is only this that tells us the ‘1’ 1s

long. Knowledge — a very considerable amount of knowledge — 1s the

key to successful handling of this task by machine.

Earsfor hearing

Listening by computer, or speech recognition asit is called, is a

very different matter. Human speech patterns are very complicated,

and not only are there many different words that sound the same,
but the same wordcan be pronouncedin different tones and accents.
The biggest problem though is detecting the breaks between the

words. We imagine when wehear speech that there are clear gaps

between the words, but in fact there are not — our brains supply

them as welisten, through our knowledge of the language. A
computer has to have that knowledge to make sense of the sound
too. There is only an infinitesimal difference between the sounds of
‘She was a tanker’ and ‘She was at anchor’, and it usually has to

be worked out from the context, including prediction of what is

expected next. Prediction can run into problems too. Imagine that
‘the machine hearsthesyllable ‘six’. That’s fine. Then it hears ‘teen’.
Quick backtracking is needed to change the number from six to
sixteen. Then the machine hears ‘agers’. Ah, six teenagers! The six
wasright after all. Confusion is never far away.

If the number of words that has to be deciphered is relatively

small, the problem can be manageable. If all you are talking about

is chemicals you can be confident that what you heard was‘nitrate’

and not ‘night rate’, and common sense could tell you that
‘abominable’ is seldom ‘a bombin a bull’. But as the world gets
larger and we try to make our machines moreversatile, the problem

compounds.
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Current commercial speech recognition devices are limited to a

vocabulary of a few hundred words, and usually the words have to

be spoken with deliberate gaps in between. Also the machine has
to be ‘trained’ for every person whose voice is to be deciphered.
Theuser has to say every word several times over into the machine.

Some experimental systems can accept continuousspeechof, say,

three or four words withoutgaps, but with a commensurate reduction
in the size of the workable vocabulary. Others take many times

longer to process the speech than it took the humantosayit and

these are obviously of limited practical use, since they continually

get further and further behind. The day of the typewriter that can

be talked at to produce good English text is certainly a long way

off, although in countries where there is a phonetic alphabet, such
as Japan, the idea is a more practical proposition.

Chatting with a computer

Most communication with computers at present is by means of

typewriter or video terminals with keyboards, and this avoids the

problem of handling sound.It still would be very useful to be able

to converse in ordinary English rather than in the extremely stilted

and strict syntaxes of existing programming and data-base query
languages. Again, a general solution to this problem is thwarted by
how little we know of how humans understand language. A few

years ago it was thought that a comprehensive theory of parsing

sentences was just aroundthe corner, but it has turned out to be

much moredifficult to find a unique parsing of a sentence than was

realized.
Takethe two sentences: ‘Helmets must be worn’ and ‘Dogs must

be carried’. They are identical in form, yet they meantotally different

things. The would-betraveller on the London Underground needsto

knowseveral unspoken things about the way the world worksto be
confident that he does not have to acquire a dog before boarding the
escalator. Again, extensive knowledge of the world is essential to
making sense of language.

Despite this, it is surprisingly easy to make a computer carry ona

plausible conversation (by screen and keyboard) so long as the

domain of discourseis strictly limited. One of the earliest and best-
known programsto dothis is called Eliza, written by Joseph Weizen-
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baum at MIT.? This simulates a Rogerian psychotherapist, en-

couraging the human ‘patient’ to type in his troubles, in ordinary
sentences, while the machine makes supposedly helpful commentsin
reply. A dialogue could looklike this:

Patient: MY FATHER HATED ME

Computer: TELL ME MORE ABOUT YOUR FAMILY

Patient: I REMEMBER MY CHILDHOODIN BOSTON

Computer: DO YOU OFTEN THINK OF YOUR CHILDHOODIN

BOSTON?

and so on. The program is actually very simple. It looks for certain

key phrases in the ‘patient’s’ statements, and for each key it has a
preset reply. In the last two examples the key phrases are ‘my father’
and ‘I remember’. Sometimes the part of the patient’s sentence
following the key phrase is included in the machine’s reply, with the

pronounsandverb forms swapped round:‘T’ for ‘you’,‘are’ for ‘am’

and so on.It does this without having the slightest understanding of
the content of whatit is repeating. Given this very crude procedure

' it is uncanny how plausible the ‘doctor’s’ conversation is. Only
occasionally does the grammar come out wrong, and sometimesthe

machine will say something silly. For example, in reply to: ‘I CAN’ T

SLEEP AT NIGHT,it will say: ‘HOW DO YOU KNOW YOU CAN’T

SLEEP AT NIGHT?’
Eliza is nothing but a very carefully worked-out parlourtrick.

Weizenbaum intended it as a joke — a parody — and was appalled
whenestablished psychiatrists took it seriously and started talking

aboutthe possibility of automated psychotherapy. Perhapsthistells

us more aboutpsychiatry than it does about computing.

In contrast, there is a great deal of practical value in the program
Intellect produced by the Artificial Intelligence Corporation of
Massachusetts. This is a system for interrogating a commercial data-

base, using ordinary English so that executives do not haveto learn

tiresome sets of special instructions. The user can type: ‘WHICH

SALESMEN HAVE PASSED THEIR TARGETS THIS YEAR?’ and the
program will produce a paraphrase of the question in its ownter-
minologyto confirm it has understood andthendisplay the requested

information in tabular form.If the program misunderstandsthis can
be seen from the paraphrase,andsince, unlike Eliza, Intellect has no

gameto give away, if it cannot makesense of the queryatall it says

so.*
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In the absence of any general theory ofgrammar the method used
is distinctly ‘hammerand tongs’. The system includesa dictionary of
several thousand words,with instructions to theprogram about what
to do with each word should it appear in the query. Another well-
knownnatural-language interface system was Ladder, developedat

Stanford Research Institute as an experiment in helping US Naval

officers get information on operational resources from a com-
puter without having to know aboutthe technology.* This program
does not even attemptto classify words as nounsorverbs. Rather,it
tries to match the query against a large range of expected sentence
patterns suchas:

WHATIS THE <ATTRIBUTE)OF <SHIP)

rather than the moregeneral:

<NOUN-PHRASE> <VERB-PHRASE)

One notable power Ladder hasis to rememberearlier queries and
assume that pronounsorelliptical queries refer to them. However,
the essential feature ofall these systemsis that they only work within

a very limited domain of discourse (such as sales reports or disposi-

tion of ships). Were their worlds to becomesubstantially larger, the
crude methodsthey use would require their programsand dictionaries
to be expanded beyond the boundsofpresent-daypracticality.

Similar problemsarise with computertranslation ofnatural langu-

age (English into German, Russian into English and so on). Funny

stories aboundof the howlers that attempts at computer translation

have produced, such as ‘water sheep’ for ‘hydraulic ram’. Thediffi-
culty comes back to knowledge. The translator (human or machine)

needs a detailed mental model of the world being described in the

text, and providing computers with such knowledge in the form of

such modelsis one of the key tasksofartificial intelligence.

Despite the serious limitations of present-day natural-language
processing, the fact that a machine appears to be able to converse
impresses lay people more than practically anythingelse in computer
technology. One assumesthat if something can talk, it is human, or

humanoid. A detailed examination of the workings of Eliza is an

excellent antidote to this delusion.° Most importantly, people must
not be distracted by the natural-languagefrills a program has from
grasping the significance ofits substantive core.
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Eyesfor seeing

The general-purpose home robot after which we hanker, and the
imminentarrival ofwhich is regularly announcedin the less informed
press, will have a fundamental requirementaside from the ability to

receive instructions, namely,vision.If it is to vacuum thesitting room

it will have to be able not to run overthe cat. If it is to weed the garden
(non-chemically) it must be able to tell the difference between flowers
and weeds. Obviouslythisis difficult (it 1s difficult enough for human
beings). Much research has been doneinto the problem of ‘pattern

recognition’, some of it with computers trying to make sense of

television images of scenes consisting of simple geometrical objects:

blocks, pyramids, boxes, etc. Sometimes the computer manipulates
the objects with a robot arm. Amongthe things the machinehasto
understand are: the view of an object can be obscured by another
in front of it; everything must be supported by something

or it will fall; some things the machinecanbe told to do are possible

(such as ‘Put the ball in the box’) while others are not (‘Put the box

in the ball’). As soon as the objects becomereal, that 1s, not regular,
things start to get out of hand.

Central to the problem is the fact that a picture contains an enor-
mous amount of information. One television frame contains over

two million bits, and this is repeated twenty-five times a second. A

computer has even moredifficulty in keeping up with this torrent of

information thanit does in speech recognition.In fact, it is out of the
question to do this processing with a conventional computer, because
essential to the principle of such a machine1s thatit processes every-
thing in a strict sequence, one item of data after another, and present

circuits just cannot movefast enough. Owingto this ‘von Neumann

bottleneck’, for image processing in particular, information must
unavoidably be processed manybits at a time,thatis, in parallel.

Research into the workings of animal eyes seemsto indicate that
this is how nature processes pictures too. A celebrated paper by
Lettvin, Maturana, McCullough and Pitts was called, “What the

Frog’s Eye Tells the Frog’s Brain’.’” Their general conclusion wasthat

most of the practical chore of vision, including virtually all the
calculation involved in recognizing simple objects such as bugs, was
carried outin parallel processors in the frog’s retina, rather than by
sequential operations in its brain. For machinesto dothis, a com-
pletely new type of hardwareis needed.

“
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Thinkingin parallel

Noris it practicable simply to take a bank of processors and some-

howdivide the task up between them. As Michael Duff of University
College, London,explains, multiple processors introduce overheads

in the amountof time needed to do the housekeeping and sort out
which processoris doing what. As few as twelve processors working

together can spendall their time talking to each otherandgetnoreal

work done at all. Duff’s solution is to build a special-purpose
machine with processorslaid out in a rectangular array, onto which

the picture to be processed, from a television camera, is super-

imposed. Thisis called the Cellular Logic Image Processor, and the
falling cost of integrated circuits allows the latest operational model,
CLIP4, to incorporate noless than 9,216 separate microprocessors.®

A picture brokenupinto 9,216 dotsis still fairly coarse, but all the

processors can worksimultaneously, giving a speed-up offour orders

of magnitude. Each processor is connected to its eight immediate
neighbours (Figure 3). The significance of this arrangementis for

t

Figure 3. (After Michael Duff)

example thatit is easy to detect where the picture changes, by seeing
where adjacent processors have different levels of light rather than
the same. Thus the machine can directly find edges of objects, a
fundamentaltask of image processing (Figure4).
  

 

      

Figure 4. (After Michael Duff)
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Finding edges and other local features is still a long way from

recognizing actual objects, especially if the objects are as complex as,
say, humanfaces. It is to tackle this problem of recognition that a
quite different device called Wisard has been built at Brunel
University. This is entirely purpose-built electronics that can match
an imageit receives against a set of perhaps three or fourthat it has
previously been ‘taught’ about, and decide which1s the closest. The
machine can cope withslight variationsin the images, such asin the

angle of presentation of the object, or in the expression on a face,

because in the learning processit is shown series of images of each
object, not just one (Figure 5). What it stores is not the images

themselves but an ingenious internal representation of what they
have in common. Connected to a voice storage device, the machine

can be madeto say,as a person sits downin front ofit, ‘Hello, John’

or ‘Hello, Mary’ as appropriate — an unnerving experience for the

person. Still, it is important to remember that Wisard can only
recognize images, it cannot process them further as CLIPcan.

Parallel processing turns outto be useful for other purposesas well
as vision. Some computing tasks are so enormousthat, to make any

real advance in the technique,things will have to be donein parallel.

For example, in weather forecasting, data from thousands of moni-

toring stations have to be merged using complex equationsof physics
to predict how the weatheris going to change.

In the field of information retrieval, the quantity of data similarly
threatens to swamp those handling it. Keeping track of scientific

research, changes in the law and many other human endeavoursis

the object of the giant bibliographic data-bases that are now pro-
liferating, and to get information out ofthem it 1s necessary to match
up records with index termsfed in by an inquirer. For instance, one
may wish to find out about discoveries to do with copper-doped
germanium.It is not sufficient, however, simply to search the data-

bank for that string of characters because it would fail to match

against for example ‘germanium doped with copper’. Thus the sub-
stantive words need to be searched for separately, disregarding their
order. But then a search for ‘general powersof attorney’ will mishit
against ‘powers of the attorney general’.

Where computingoverall is falling behind the amountofworkthat

needs to be done,parallel processing can give a much-needed boost.

Forinstance, much computinginvolves operationsin logic. Suppose
we need to work out whether A is true, and we know that in order
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Figure 5. To recognize a face, Brunel University’s Wisard is ‘taught’ with

a series oftelevision picturesof the face, all slightly different (top and middle

row). In ‘recognizing mode’ (bottom row), the machine displays above the

head a bar chart showing howclose a match it senses between the imageit

is seeing and that whichit ‘knows’. At the bottomleft, the length of the lower
bar showsmatching ofover 90 per cent. With the different face in the middle,

matchinghas gone downto 40 per cent. On the right, when the subject covers

his beard with his hand, recognition goes upslightly, but it is still clearly

distinguished from the ‘learned’ face. Likewise, removing his glasses makes
hardly any difference. The upperbar of the histogram showshowclosely the

image matchesan emptypicture (photographs: Tony Firshman)
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for A to be true, B and C must both be true. Thus we needto find

out whether or not B and aretrue, but we can do these bothat the

sametime, rather than one after the other, speeding up the process
considerably. In the same wayifA is true wheneither B or C is true,

again working out B and C simultaneously will save time.

Connections

Aninteresting new use of parallel processing is the subject ofa project

being carried out by someresearchers from MIT,in an attempt to

deal with the problem mentionedearlier of how to give a computer

commonsense. As wesaid, fundamentally this involves knowledge,
and knowledgeheld not in a random fashion but in a complexinter-
connected structure. This can be represented by what is known as

a ‘semantic network’, by which objects and attributes are linked.

Figure 6 is an example ofpart ofa semantic networkdealing with fruit.

Cseeds has See from(plants) 

isa isa isa

lemon
\

colour taste taste colour colour taste

Geto) Cour
taste

er

Cougar)
Figure 6. A semantic network (after DannyHillis)

The network consists of nodes (junction points) and links. Danny
Hillis’s team at Thinking MachinesInc. believes that to automatethis
properly, every node and every link in a network should haveits own
processor. Naturally, for a semantic network of a usefulsize this will

be an enormous task. Undaunted, they are proceeding to build a
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machine with one million processors, each admittedly much cruder

than a normal microprocessor, containing only about 100 bits of

memory. These units are being built into custom-designed chips,
sixty-four per chip, so there will be 16,000 chips in the complete
machine. Predicting how the ‘Connection Machine’is going to work
is difficult, explains Hillis. Simulating it on a conventional computer,

it takes all night to get through one clock cycle!

Whatis creativity?

The notion of connections brings us backto that of creativity. It is

notat all clear exactly whatcreativity is, and that contributes to the
reverence in whichit is held. We stand in awe of the works of Bach,

or El Greco, or Faraday, and the awareness that we would have no

idea how to do whatthey did increases our awe. But it may be that

creativity is not as amazingas it seems. To a great extent it appears
to consist of noticing connections between things where no connec-
tion had been seen before. When Shakespearesays:

How sweet the moonlight sleeps upon this bank!

Herewill we sit, and let the sounds of music

Creep in ourears: soft stillness and the night

Becomethe touches of sweet harmony

on the face of it he is talking nonsense. Moonlight does notsleep;

sound doesnot creep;stillness and night cannot becometouches. But

Shakespeare sees connections between these things that never
occurred to us before, and so produces poetry that moves us in a way
that a less original assertion never can.
Newton based his laws of motion on the conjecture that both

heavenly bodies and objects on earth were subject to exactly the same

physical laws. This notion seems to the untutored observer absurd —

the planets behavetotally differently from the things close aroundus.
Yet, as Newtonrealized, this is only because the environments are

different.
Even the box of transistors that implements somestate-of-the-art

image-recognizer finds connections, in that it assembles all the

features andattributes that are the same in the imagesit is learning

from and then makes connections with the image it is meant to
recognize.  gee
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There is also a form of creativity that consists of building up new

structures that are more complex than the preceding ones. Aaron
Sloman,in considering creativity mainly from the viewpoint of the
formation ofnew ideas, describes three layers on whichcreativity can
take place: semantics, syntax and notation. On the semantic level,

new meanings can be attributed to existing words, or whatever

material is being dealt with. Lower down,the syntactic rules by which

these are connected can be changed; an example of this could be
discoveries ofnew techniques ofharmonyin music. At the mostbasic
level, and possibly the most creative, new notation can be invented,

for instance the tempered scale in music, or tensor calculus, which

opened up a whole new wayof dealing with physical phenomena.In

any case, he says, there is no single metric of degrees ofcreativity.
Notall creativity is momentous. Indeed, Sloman points out, there

is plenty of creativity in ordinarylife, as for instance in recognizing
a face we havenotseen for a long time — we have to imagine what the
ravages of time would have done,andfill in the gaps for those things

only half remembered. What we must bewareofis the view thatifwe

understand it, it cannot be creative. (The reverse is also clearly
fallacious: it often happens that nobody understandsexactly whatis
going on inside large computersystems, yet the outputis for the most
part not creative.) It should be possible to recognize creativity
entirely by output, not by origin, nor by whether the mechanism that

produced the output wasorganic orelectronic.

Creativity will be a vital attribute of the computers of the future.
Withoutit they will be unable to generalize to solve problems,to act
on their own new descriptions and concepts rather than the ones
provided by the programmer. They will be unable to make the
connections that are an essential part of even the most mundane

tasks. Mostseriousofall, they will be unable to learn from examples,

the only practical way of supplying them with the vast amount of
knowledge that we haveseenis essentialifthey are to bereally useful.
In this way, computers can becomevaluable assistants and notslaves.

Knowledgeis indeed the key. Just how computer systems can be

based:on knowledgeis the subject of the next chapter.



CHAPTER 2

Computers Join the Experts

The machines built by the pioneers of computing in the 1940s were

popularly known for a long timeas ‘electronic brains’. The name

‘computer’, when it took over, was more appropriate, because the
machines were very far from being able to do anyof the things we
consider important as far as the brain is concerned; all they could
do was numerical calculation. Computers now are routinely pro-

grammedfor handling non-numerical information,but theyarestill

for the most part stuck with dealing with explicitfacts: hard-and-fast

objective data about whichthereis little, if any, uncertainty, and

which can befiled and retrieved directly. This is a major drawback,
because muchofthe information used by humansin their daily lives

is far from clear-cut and certain. We do not just want to ask com-

puters questionslike, ‘What is the square root of 35,769?’ We want
to ask: “What is wrong with this patient?’ ‘Would this be a good spot
to drill a well?’ ‘Are there precedents for this application of patent
law?’ “Whatis the likely molecular structure of this compound?’
‘What would be a good wayto synthesize insulin?’ ‘Whokilled the

sheriff?’ The information involved in these questionsis the stock-in-

trade of those knowledgeable and respected people we know as
‘experts’.

Computers up to now havebeenlargely confined to doing tasks
that can be specified in exact detail — mindless and predictable work
that would otherwise be done byclerks. To overcomethis limitation

and tackle the sort of problem that hitherto could only be dealt with

by highly skilled experts such as doctors, engineers, lawyers and
accountants, artificial intelligence researchers have developed the
programming technology knownas‘expert systems’.
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The experts’ lore

Edward Feigenbaum of Stanford University explains the idea thus:
while conventional programsdeal with facts, expert systems handle
‘lore’. By this he meansthe rules of thumb, the hunches,the intuition |

and facility for judgement that are seldom explicitly laid down but

which form the basis of an expert’s skills, acquired overa lifetime’s

experience. Often the lore does not appear in the textbooks;it is

seldom even discussed or brought to view. Commonly the expert
himself is not even consciousofit and haslittle understanding ofhow
it works. For instance, much ofthe time a doctor does not know why
his treatmentis effective; he just knowsthatit usually is. Yet despite

the intangibility of expert knowledge, it has been found possible to

encapsulate it in computer programs that can then rival the com-

petence of highly skilled humanpractitioners.
Expert systems that have been constructed so far advise on such

diverse areas as the diagnosis of infectious diseases, mineral
exploration, analysis of organic compounds, income tax and the

operation of an area defence system. Each of these subjects not only

involves imprecise information butis also highly complex, makingit

difficult to deal with using a conventional computer program but
ideally suited to an expert system. In each case, the knowledge has
been acquired from a human expert in the form of rules, typically
many hundreds of them, which together make up the computer’s

‘knowledge-base’. The expert system consists of this knowledge-base

together with an ‘inference engine’, a program which worksout the
logical consequencesofall the rules taken together. Somerules are
unequivocal, in the form for example: ‘IF this AND that THEN some
result’, Others are vaguer and involve probabilities: ‘IF (to some
degree) this AND (to somedegree) that THEN (to some degree)result’.

It is here that the ability to deal with lore rather than facts comesin
moststrongly. The machine worksthroughtherules, asks for appro-
priate information, and then announcesits conclusions.

Oil at sea

A good example ofan expert system is one developed at the Machine

Intelligence Research Unit at Edinburgh University to help diagnose
faults on North Sea oil platforms, commissionedasa feasibility study
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by British Petroleum. Each oil platform is a maze of pipes, pumps
and storage vessels, and to ensure the highestpossible level of safety,
there are a large number of sensors and emergencytrips which shut
down production automatically should anything go wrong. When

this happens, the engineers on the spot have to get production going
again as quickly as possible, but the system is so complicated that
they can often havegreat difficulty in working out what exactly has
failed. Lost production timeis lost revenue, so BP wasinterested to
see whether an expert system mighthelp the engineerstrace the fault
quickly.

The Edinburgh pilot system carries on a dialogue with the

engineers via a screen and a keyboard.It asks such questionsas:

HOW CERTAIN ARE YOU THAT THE V-—OI PRESSURE CHARTIN

THE CENTRAL CONTROL ROOM INDICATES THAT THE RELIEF

VALVE PRESSURE WAS REACHED?

The engineer replies with a number in the range + 5 (meaning ‘I am

completely sure it 1s true’) to — 5 (‘I am completely sureit is not true’)
with 0 meaning ‘I have no idea’. For example, he mighttype ‘4-5’.
The machine then goes on:

Computer: HOW CERTAIN ARE YOU THATGAS FLOW NOISE OR

COOLING IS NOTICEABLE NEAR THE V-Q1 RELIEF

VALVE?

User: 0

Andso on,until the computer reaches a conclusion, such as:

AFTER CONSIDERING ALL RELEVANT QUESTIONS, THE

PROBABILITY THAT AN UNSOLICITED CLOSURE OF ONE OR

MORE OF THE SCRUBBER INLET VALVES CAUSED HIGH

SEPARATOR PRESSUREINITIALLY WAS 0-002. IT IS NOW 0-909.

CERTAINTY FACTORIS4°55.

Note that already we are dealing with information that is inexact
and uncertain,as is so much in normallife.

Languagesfor advice

Constructing the expert system is a long involved process. An expert

humanpractitioner in whateverfield sits down with a person called  
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a ‘knowledge engineer’, who corresponds to the programmer in
conventional computing. Together they work outin laboriousdetail
whatall the rules should be, and how they interrelate. These are
drawn up as an ‘inference network’, similar in some waysto the
semantic network described in Chapter 1. An example from theoil

platform system is shownin Figure 7. Formidable as this appears,it

only covers a small part of the whole system. Each boxrepresents a

belief, the truth ofwhich implies otherbeliefs in a pattern that can be
seen from the diagram. The figures above and below each arrow are
the ‘sufficiency factor’ and the ‘necessity factor’, that 1s, they show to

what degree the second box must be true if the first is true, and to

what degree the second cannot be true if the first is not. When the

network is finished, the knowledge engineer rewrites the rules in a
special-purpose ‘advice language’ which the computercan accept. In
the Edinburgh project this language is called AL/X, as shown in

Figure 8. He includes with each rule a piece of English text which the

computerinserts into the question it asks the user when thatrule is
encountered, such as the words ‘THE RELIEF VALVE HASLIFTED’. A

fixed routine in the expert system outputs the words ‘HOW CERTAIN

ARE YOU THAT, the text for the individual rule follows, and a

 

Space relvlift
text description

/* the relief valve on V-01 has lifted*/
inference

prior .005
rules antecedents ( rvliftind ls 800 ln .001

liftpress ls 400 ln .005
rvnoisecool ls 200 ln .5 )

control
goal

Space rvliftind
text description

/* the V-01 relief valve lift indicator is on (on the CCR, MOL
room, or separator panel)*/

inference
prior .01

control
askable    

Figure 8. A sample ofthe ‘advice language’ by which the human knowledge
is fed to the computer. Drawing uprulesin this form is the job ofa skilled
‘knowledge engineer’ (John Reiter)
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question mark is tagged on at the end: ‘HOW CERTAIN ARE YOU

THAT THE RELIEF VALVE HAS LIFTED?Thusa fairly natural con-
versational mode of workingis provided for the user.

In operation therules are dealt with in order accordingto priorities
specified by the knowledge engineer. However,the user can volunteer

information that he knowsis relevant by interrupting the machine’s
sequence and directing it to ask a particular question for which he
has the answer. He needs of course to be quite familiar with the
particular expert system to be able to dothis.

After being put together an expert system needs ‘tuning’, in inter-

action with the humanexpert, until he is happy withit. It is unlikely

ever to be ‘finished’, because the expert’s own knowledge of the
subject may grow, so the system needs to be continually adaptable.
The process of putting the rules together has to be exhaustive (and
so, exhausting). For example, as can be seen from the network,

the fact that the relief valve lift indicator is on does not mean for

certain that the relief valve haslifted, but only that it probably has,

because there might be something wrongwiththe indicator.
Onesurprising aspectof this processis that the knowledge engineer

typically has great difficulty in getting the expert to articulate his
knowledge. Experts tend to underestimate the amount of knowledge

they possess and to overestimate their own ability to describe it. At

the same time,all kinds of curious facts and practices comeoutthat

never appear in the official operating manuals. At one point the
expert will say, ‘Oh, we never trust those gauges!’ so the network has
to be adjusted to allow for that. Normally rules are given ‘certainty
factors’ reflecting how confident the expertis that the given ruleitself

is valid. Sometimes the expert is more surprised than anyone by what

emerges in the knowledge-engineering process. He had knowledge
and wasfollowing practices that he was not awareof.

Explaining on demand

To help the expert and the knowledge engineerfind their way through

all the confusion that can easily result from this complex process, an
essential feature of expert systems is the ability of the computer to
explain on demand whatis going on. Examplesof this can be seen in
Figure 9, which is a sample dialogue with one of the best-known

expert systems, Mycin. This was developed at Stanford for diag-
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Computer:

User:

Computer:

User:
Computer:

User:

Computer:

User:

Computer:

User:

Computer:

User:

Computer:

Figure 9. Excerpt from a consultation with Mycin

22. WAS ANY CHEMOTHERAPYRECENTLY BEGUN
SPECIFICALLY TO COMBAT ORGANISM-1?
NO
23. Is JEREMIAH SAMPLE(PATIENT-1) A BURN
PATIENT?
RULE
RULE047
IF: 1. THE SITE OF THE CULTUREIS BLOOD, AND

2. THE IDENTITY OF THE ORGANISM IS NOT
KNOWNWITH CERTAINTY, AND
3. THE STAIN OF THE ORGANISMIS
GRAMNEG, AND
4. THE MORPHOLOGYOFTHE ORGANISMIS
ROD, AND
5. THE PATIENT HASBEEN SERIOUSLY
BURNED

THEN: THERE IS WEAKLY SUGGESTIVE EVIDENCE
(4) THAT THE IDENTITY OF THE ORGANISM IS
PSEUDOMONAS

NO
24. IS THE PATIENT’S ILLNESS WITH ORGANISM-1 A
HOSPITAL-ACQUIRED INFECTION?
YES
25. DO YOU CONSIDER JEREMIAH SAMPLE(PATIENT-
1) TO BE A COMPROMISEDHOST? (ALCOHOLIC,
IMMUNOSUPPRESSED,ETC.)
NO
26. HAS JEREMIAH SAMPLE(PATIENT-1) HAD ANY
GENITO-URINARY SURGERYOR MANIPULATION
OF THE URINARYTRACT? (E.G. INDWELLING
CATHETER, CYSTOSCOPY, ETC.)
WHY?
1 AM TRYING TO FIND OUT ABOUT THE IDENTITY
OF THE ORGANISM. I ALREADY KNOW THAT:
THE PORTALOF ENTRYOF THE ORGANISM IS
UPPER-GU
THE MORPHOLOGYOF THE ORGANISM IS ROD
THE STAIN OF THE ORGANISM IS GRAMNEG
THE SITE OF THE CULTUREIS BLOOD
THEREFORE,IF:
1. THE PATIENT HAS NOT HADA GENITO-URINARY
MANIPULATIVE PROCEDURE, AND
2. URINARY-TRACT-INFECTIONIS NOT A PROBLEM
FOR WHICH THE PATIENT HAS BEEN TREATED
THEN:
THERE IS SUGGESTIVE EVIDENCE (-6) THAT THE
IDENTITY OF THE ORGANISMISE. COLI
(RULE156)
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nosing infectious diseases such as meningitis.! Information about

the patient is fed in by a doctor or medical assistant in answer to
questions from the computer. Most of these answersare simply ‘YES’
or ‘NO’, but instead of answering, the user can type ‘RULE’, andthis

will cause the machineto display the rule thatit is currently evalu-

ating. This gives the user an idea of what is happening. For a more

detailed explanation the user asks ‘wHy’ and receives a summary of
the logical process that is being worked through.The‘explain’facility
is one of the most importantaspects of expert systems, and one with
profound implicationsfor the rest ofcomputer technology. This issue
we discussin greater depth in the next chapter.
The explanations are composed from the English text that is held

in the machine in conjunction with each rule; the rules that the

machine actually operates are held internally in advice language.

Some expert systems allow the user to volunteer information in

simple English sentences. Again,this is not too difficult for the system
to cope with, because the subject area in question is always narrow,
so the possible interpretations of words are few. Experts tend to use
jargon andstereotyped waysof expressing things, with the result that

text templates and simple parsing routines will usually work. When

they do not, the program will simply say, ‘I don’t understand.’
Mycin doesits logical reasoning by a simple processcalled ‘back-

ward chaining’. This enables a large numberofinterrelated rules to
be dealt with together. To see howthis works, considerthe rule

IfA is true and is true, then is true

whereA,B andF areall beliefs. This can be represented in the form

A&B->F

where the ampersand stands for the logic ‘and’ operation and the
arrow Is read as ‘implies’. Suppose we have a wholeset of rules, such

as:

1.A&B-F

2C&D—-G

3. E-H

4,.B&G-- J

5. F&H>X

6 G&E -K

7.3 &K->X
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In a particular case, we are told that beliefs B, C, D and E are all true,

and weneed to work out whether X is true. By backward chaining,

we look to see which beliefs imply X by finding where X is on the
right-hand side of a rule. Then we look atthe left-hand side of those
rules, and work out howto tell whether they are true, and so on until

wearrive at facts that we know tobe true orfalse.* The advantage

of this over forward chaining is that we do not waste time working
out lots of unwanted conclusions, or asking questionsirrelevant to
the goal. For dealing with probabilities rather than clear-cut ‘true/
false’ facts, a more complex inference process of the same general

kind is needed, using the laws of statistics to work out combined

probabilities of events.
Mycin can also contain ‘metarules’, that is, rules aboutrules, that

help in working outthe conflicts of rules and uncertainties of priority
that inevitably arise with a large knowledge base. For example:

METARULE2

IF:

1) THE PATIENT IS A COMPROMISED HOST, AND

2) THERE ARE RULES WHICH MENTIONIN THEIR PREMISE

PSEUDOMONAS, AND

3) THERE ARE RULES WHICH MENTIONIN THEIR PREMISE

KLEBSIELLAS

THEN:

THEREIS SUGGESTIVE EVIDENCE(-4) THAT THE FORMER

SHOULD BE DONE BEFORETHE LATTER.

The output of Mycin is suggested diagnoses, but it can also re-
commendantibiotic treatment. In onetrial, ten difficult cases were

selected and detailed clinical summaries of these were presented to a

group of nine doctors of varying levels of experience, and to Mycin.

Theprescriptions they came up with were given to a panel of menin-
gitis experts to assess, with no clues as to the identities of the pre-
scribers. The highest score was achieved by Mycin.?
To help construct expert systems in other spheres the disease rules

were taken out of Mycin, leaving a general-purpose system called

Essential Mycin or Emycin. Usingthis, a quite separate expert system
was constructed to diagnose lung disease. This is called Puff and is
now in routine use at the Pacific Medical Center in San Francisco.It

* In the example, X works out to be true.
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takes data from a spirometer, a machine which measuresair flow

rates and volumesasthe patient breathes in and out through a tube.It
also asks questionsaboutthe patient’s history — how manycigarettes
a day and so on — and then using a knowledge-baseofabout 100 rules
produces a detailed description of the patient’s apparent condition
and a diagnosis of disease. The doctors who check all of Puff’s

reports sign 85 per cent of them unchanged.? With medical expert

systems, as with thosein otherfields, the story 1s the same: the systems
consistently perform as well as humanclinicians.

Prospectingfor buried treasures

In a completely different area, an expert system has been exciting
interest among mining corporations as well as in US government
agencies concerned with the energy problem andwith exploitation of
natural resources. SRI’s Prospector takes in geological data about
the rocks andores observedin a given area ofland,levels of erosion

and so forth, and producesforecasts ofwhat valuable minerals might

be found there.* It can display its forecasts as a coloured map on a
computerscreen, as shownin Plate 1. With its 1,600 rules, Prospector
uses an inference network of hypotheses, whichit tests according to
the evidence. One hypothesis mightbe: ‘The alteration ofhornblende
suggests the potassic zone of a porphyry copperdeposit.’ The hypo-

theses are tested by asking appropriate questions, and with much

juggling of probability factors they are confirmed or refuted. They
can also be linked by ‘context constraints’. These sayin effect, ‘Don’t
even consider hypothesis A unless the probability of hypothesis B
falls within such and sucha range.’

Prospector can also reasonintelligently about the information it

holds. Forinstance, using a separate ‘taxonomynetwork’it can know

that pyrites are a type of sulphide,soif it already has some informa-
tion about pyrites it can avoid asking redundant questions about
sulphides. Similarly,ifthe usertells it, ‘There are pyrites present’, and
then, ‘There are no sulphides’, the machine cansay, ‘Hold on! There’s

a mistake there.’
An importantissue which the designers ofProspector hadto tackle

wasthatofsensitivity. The user does not wantslight variationsin the
certainty of his input to cause wild fluctuationsin the conclusions the
system reaches. As evidence of the effectiveness of the SRI team’s
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design, Prospector has succeeded in finding a major deposit of

molybdenum, previously unknown, in the Mount Tolman area of
Washingtonstate. Drilling at the site has uncovered ore in remark-
ably close correspondence with Prospector’s forecast.

Otherfields in which expert systems are nowbeing applied include:

Defence

At the US Naval Oceans Systems Center a 400-rule expert system
called TECA(Threat Evaluation Countermeasures Agent) has been

developed. This is to help officers work out whether blips on a radar

screen are hostile ships or planes, what the supposed enemy mightbe —

trying to do, and which of a large number of possible defensive
actions hasthe highest chance ofsuccess.

Organic chemistry

Stanford University’s earliest excursion into expert systems was

Dendral, used to work out the molecular structures of complex

organic compounds. The user gives the program the chemical
formula ofthe compoundand data from mass spectrometeranalyses,

andit then suggests the mostlikely arrangements of the atoms in each

molecule from the vast numberpossible.

Discovering a structure is quite a different task from diagnosis,

which has been the purpose of most of the expert systems discussed
so far. Thus Dendral worksratherdifferently, and is one ofa class of
expert systems based on searching, using rules to narrow downthe

Figure 10. ‘Pruning’ a search tree. The shears indicate a place where the
system could have grown a whole extra sub-tree in its search, but was saved

the labour bythe intervention of a pruningcriterion whichindicated lack of

promise in that direction (after Mark Stefik)
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searches to manageable numbers. Eliminating whole sections of a

search tree in some wayis aptly called ‘pruning’, as in Figure 10.
Producing a plan is yet another possible task for expert systems; an
example of this is Molgen.

Genetics

Molgen is an expert system for helping molecular geneticists plan
experiments that involve the manipulation ofDNA,the basic carrier
of heredity. This entails cutting up the very long molecules ofDNA,
joining pieces together, inserting new materials in a myriad dif-

ferent possible places, and keeping track of the biological con-
sequences and the chemical tools and instrumentation required.
Molgen producesa plan, often thousandsof steps long, to organize

all these. It has been used effectively in a number of experiments

including a notable one involving gene cloningin rat insulin, and will

doubtless become an importantpart of the promising and contro-
versialfield of genetic engineering.

Computerfaultfinding

IBM is cooperating with Stanford to produce an expert system for

diagnosing componentfailures in computers and networks, a job
which is often very difficult, requiring highly skilled engineers who
are always in short supply. The expert system requires an internal
‘model’ of the computer system, and much of the research work

involves defining an adequate ‘machine-definition language’ in which

the computercan be described.

Computer system planning
Related to this, Digital Equipment Corporation, following on from
work at Carnegie—Mellon University, has devised expert systems to

help work out the configuration of a computersystem best suited to

the customer’s requirementsand, having donethat,to fit the hundred
or so componentsinto the various cabinets so thatall the necessary
electrical connections can be made.

Structural engineering

Some expert systems are even experts about computer programs. For
example, civil engineers use in designing structures a very complex

set of programscalled the Finite Element Analysis Package. The
instruction manual alone for this is four inches thick. The expert
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system Sacon has been put together to guide engineers and provide
them with plansfor their use of the analysis programs.

Political-risk assessment

SPL International in Abingdon has produced for Shell an expert

system to assess the advisability of investing in a foreign country,
accordingto the likelihood of war, riot, nationalization and so on.It

asks questions along the lines of: ‘Has there been civil commotion?’
‘Is the governmentleft-wing?’ ‘How big is its majority?’ The program

then makes hypotheses and produces recommendations. The major

problem the system has is assessing how muchreliance to place on

the judgements madeby the humansin answeringits questions.

Benefits and tax
An offshoot of work at the Rand Corporation in the USA1s an

expert system called Demsoc,designed to help people workout their

eligibility for Social Security benefits. Several similar projects are
afoot to build expert systems which advise on how to arrange one’s
business affairs in order to minimize tax. Workingat the University
of Illinois as a graduate student, Robert Michaelsen, whois also a

professional accountant, put together an expert tax adviser using
Emycin as an inference engine. “Taxadvisor’ generates shrewd pro-
posals for each given case. The nextstep will be to feed these into a
separate simulator program which faithfully encodes the intricacies
of the tax system so that the financial consequences of alternative
proposals can be precisely computed,so as to select the best scheme
put forward bythe ‘adviser’.

MsFriday to the rescue

Somesuch poolof electronic sanity in the proliferating jungle of tax
regulations is certainly overdue. A senior partner in one of the
longest-established accountancy firms in the City of London has

confided that the suicide rate among accountants is exceptionally

high. The reason,he explained,is that accountants by character tend
to be lovers of orderly precision, cautious, exact, upset by sudden
change or the tendency of things to fall apart. Imagine such neat
and rigid personalities under the full blast of successive waves of

revisionist hysteria propagated by new Treasury pronouncements —
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unintelligible, voluminous, ambiguously drawn, and tested in a

welter of mutually inconsistent court decisions!
Certainly business as a wholeis a field ripe for the introduction of

intelligent systems. So far computersin offices have been used mainly
to get marginal increases in the efficiency of typing and the

planning of appointments. An expert system in the office should

enable the Girl Friday to make a more substantial contribution than

simply protecting her boss from unwanted telephonecalls. That
accountant whois just about to jumpoff the windowledgeis noless
important to the small business than the medicine man1s to the small

village ... The chief executive and the companysecretary bicker

dejectedly among the ruins. After consultation with her desk-top

computer, Friday sweetly intones: ‘If I might suggest ... we could

form a subsidiary, which in turn could act as a holding companyfor

certain ofour assets. The new companygoesinto temporary liquida-
tion, is bought by an educational charity consisting of the original
directors, and meanwhile transfers its trading address to the

Bahamas. The old company sacks its board and re-engages its

directors as consultants, who promptly sue for emotional damage.

The costs of the company’s out-of-court settlements are written off
as expenses, and the directors donate their compensation payments
to the charity.’

‘Say no more MsFriday! Write me a very short memo.Oh,and if

it works take an increase in your expense allowance!’

Wherethe old way is best

There are still of course very many fields of human endeavourfor

which no expert systems exist as yet. Indeed, there are plenty for

whichthese techniquesare just not suitable. Richard Duda and John
Gaschnig give an example:

Although a mathematician possesses specialized knowledge, the addi-
tional knowledge neededto function in that role is far more extensive than
current knowledge-based expert systems can handle. On the other hand,
wherethere are well-defined mathematical proceduresfor solving a problem,

knowledge-based expert systems are unnecessary.°

Douglas Lenat of Stanford relates how the expert-systems com-
panyset up by him andhis colleagues wasvisited in its early days by
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a gambler from Las Vegas who wantedto build a system for shooting
dice. Herattled off 50 to 100 rules alongthelinesof, ‘Ifthere has been

a six, hold the dice this way.’ They were just the sort of rule that

knowledge engineers need. The Stanford people listened in fascina-

tion. Eventually, as Lenat comments, ‘It was only our fundamental

beliefs in the workingsof the universe that got us to push him out the

door.’
It is important to rememberthatnotall problems involving know-

ledge need an expert system, or even a computer, to solve them. For

instance, whatto do if your car won’t start (check the battery leads,

check the plugs ...) is better illustrated by a printed flowchart than

by acomputer. To be suitable material for an expert system, a subject

area needs to be large and to include uncertainty and incomplete
knowledge.
The uncertainty leads to another feature of expert systems which

John McDermott of Carnegie—Mellon brings out in referring to R1,

the computer-layout system he designed:

It is not clear thatall (or even most) of R1’s supportersrealize that R1 will

always makemistakes. The problemis that atleast some of R1’s supporters
think of it as a program rather than as an expert. There is, of course, a big

difference between programsand experts. Finished programs, by definition,

have no bugs. Whenexperts are finished, on the other hand, they’re dead.

During the last two years, I have hammered onthe theme that a knowledge-
based program mustpass througha relatively lengthy apprenticeship stage
and that even after it has becomean expert,it will, like all experts, occasion-

ally make mistakes. Thefirst part of this message got through, but I suspect
that the second has not. My concern,then, is whether, as this characteristic

of expert programsis recognized, Digital (or any large corporation) will be
emotionally prepared to give a significant amountof responsibility to pro-

gramsthat are knownto befallible.°

The tendency to confuse expert systems with programsusing very
large data-basesofuseful scientific facts is widespread. The difference
is that a question can only be answeredby reference to a data-baseif
the answeris already stored. An expert system, which mayitselfhave

access to one or more data-bases, answers questions by reasoning and
intelligent conjecture. Whatis stored consists not only of individual
facts but also of more general patterns, rules and ‘theories’ from
whichit infers its answers.



 

 

Computers Join the Experts 49

Intelligent data-base at the zoo

Having said all that, we have no doubt that the techniques of
knowledge-based systems will come to be applied in areas where they
are notstrictly necessary. Pat Winston of MITgivesa light-hearted

example of a rule-based system for identifying animals.’ This could

actually be incorporatedin a data-base kept by a zooofdetails of all

its stock: their pet names, keepers, cages, diets, ages, dates of acquisi-
tion, health records and so on,as well as descriptive features (‘lays
eggs’, ‘swims’, ‘has dark spots’) and genus names(‘penguin’, ‘tiger’).
An extra feature of the system would be thatit could infer facts from
fragmentary observations.

The zoo manager rings up from home. ‘This animal which seems

to have got into my back garden — I don’t know whatit is, or whether

it belongs to our collection. Connect me to the new system and I'll
try to find out.’ Using his home terminal, he has the following
conversation with the computer:

Manager: CALL TAXONOMY

Computer: TAXONOMY HERE. TELL ME SOME FEATURES.
Manager: DARK SPOTS

Computer: IS IT A CARNIVORE?
Manager: I HOPE NOT

Computer: DOES IT HAVE POINTED TEETH?
Manager: I DON’T KNOW

Computer: DOES IT HAVE CLAWS?

Manager: WHY?
Computer: I AM TRYING TO ESTABLISH WHETHERITIS A

CARNIVORE. DOES IT HAVE CLAWS?
Manager: NO

Computer: DOES IT HAVE HOOFS?

Manager: YES

Computer: DOES IT HAVE VERY LONG LEGS AND NECK?
Manager: YES

Computer: THEN IT IS A GIRAFFE. WANT TO KNOW WHICH
RULES GOT THAT?

Manager: YES

Computer: RULE 7. IF ANIMAL IS A MAMMALAND ANIMALHAS
HOOFS THEN ANIMALIS AN UNGULATE.
RULE I1. IF ANIMAL IS AN UNGULATE AND
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Figure 11. A possible inference network for an animal classificationexpert system (after Winston, Duda and Gaschnig®)
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ANIMAL HAS LONG NECK AND ANIMAL HAS LONG

LEGS AND ANIMAL HAS DARKSPOTS THEN ITIS A

GIRAFFE.

The inference network for Pat Winston’s toy system is shown in
Figure 11.

Wehave been aiming to makeclear the distinction between rule-

based systems and conventional programming; this is summed up
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rule base

Figure 12. The difference between conventional programs and rule-based
systems(after Duda and Gaschnig?)

schematically in Figure 12. For expert systems, using rules instead of
programsprovides four basic advantages:

1. It is easy to add rules and change existing ones to expand and

improve the system.
2. The system can easily be madeto explain itself by printing out the

rules it is acting on. This is useful both for those building the
system and the eventual ‘real’ user.

3. The system can be madeintrospective, that is, it can check rules

for consistency, and it can modify rules and learn new ones.

4. The same knowledge-base can be used for different purposes by
changing the software.

Admittedly, as yet, rule-based systems exhibiting these useful charac-
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teristics are notall that large. How they will behave, and whetherthey
will continue to be manageable, whentheyget 20,000 or 100,000 rules

remainsto be seen.

Toolsfor building

The big problem holding up the development of new expert systems

is the work involved in discovering and encodingtherules. This can

take anywhere from a couple of man-monthsto several man-years.

First of all it requires the attention of a highly skilled knowledge

engineer, and there are not nearly enough of these around. Training
more runs up against the shortage of people to teach them.In the
USA especially, the growth of the whole computerindustry is being

held up because the universities find it hard to hang onto skilled

technologists to do the teaching, in the face of the leap-frogging

salaries being paid by industry. This is like nothing so much as
ripping apart the carriages of the train in order to stoke the engine,
but it shows nosigns of changing. Second, the time of a valuable
domain specialist has to be taken up for most of the knowledge-
acquisition process, and often for much longerthan he expects.

It is not just the content of the rules that varies from one expert

system to another. It would be nice to be abletolift the rules out of a
system andjust slot in those for another subject domain, but differ-
encesin the types of output of systems, according to their purposes,
meanthat there often has to be wide variation in the syntax ofrules.

This forces knowledge engineers despite themselves to make changes

throughouttheir software.In an effort to get around this and produce

an all-purpose framework for future expert systems, Stanford has

been working on a package called AGE, or Attempt to Generalize.
This provides a selection of modules that can be incorporated in the
new expert system, including facilities for forward or backward
chainingand a knowledge representation package knownas UNITS.

AGEcoachesthe user on howrules should belaid out: what should

be on the left-handside, the right-hand side and so on. Othertools
that have been developed for those constructing expert systems are
the advice language AL/X with its associated rule generator ACLS
(Analog Concept Learning System), and the interface builder RITA
and model builder ROSIE from the Rand Corporation.

However,it is essential in the long run that expert systemsbe able
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to acquire their own rules automatically, from data or key examples

they are given. In other wordsthe problem is one oflanguage: instead

of telling the machine things, we want to show it things, and haveit
understandtheir significanceitself. A picture, as we know, 1s worth a
thousand words because what the picture can be used to conveyis a

key example. Just how it is possible for a computer program to learn

by example is something we gointo in Chapter5.

An additional and very promising use for expert systems is in

teaching humansaboutthe subject domain. Guidonis a variation of
Mycin with extra rules added to direct a dialogue with a student so
he can learn about the infections in question and the techniques of
diagnosis. With Puff’s rules instead of Mycin’s the system has also

been teaching aboutlung disease. The IBM computer-fault diagnosis

system is similarly expected to be used for training humanfield

engineers.
While new subject areas for expert systems are being worked on,

changes in technology are promising to make the systemsnot only
more powerful but more accessible. Expert system packages are now
available for use on microcomputers, putting them within reach of

private individuals and small businesses and organizations. At the

other end of the technological scale, research into what 1s known as

Dataflow architecture will open up newvistas for expert systems. The
Dataflow work, notably at Manchester University and MIT,is an

attempt to get around the ‘von Neumannbottleneck’ in general
computing with a machinein whichinstructions do not simply wait

until they are activated in sequence, oneat a time. Instead, each‘fires’

independently as soon as the data it requires are available. This
speeds things up since much work can get donein parallel, but
naturally it requires a far more complex structure ofmachine to keep
track ofeverything that is going on. The advantagefor expert systems
is that a rule can be madeto trigger wheneverits preconditions are

satisfied, rather than waiting to be called specifically by a central

controller. The process of extracting patterns also becomeseasier.'!°®

Expert systems and society

It looks as if it will not be long before people will be able to buy

knowledge-bases in their local W. H. Smith’s aseasily as they pick up
a magazine. Interactive as these will be, many people will find them
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more attractive and easy to use than passive booksand papers. Other
knowledge-bases will be held on large central computers, easily
accessible to anyone with a telephone and a television-set-cum-
terminal. But would this necessarily be a good thing? There are

doubts. Researchers envisage terminals in public libraries which in

return for a few coins would provide diagnoses of all and sundry

health problems. Doctors may be uneasy about someaspectsofthis.

Despite the obviousattractions of getting scarce medicalskills to the
Third World, the prospect of ‘Mycin for the Eskimos’, with para-
medics taking over the work and responsibilities, is a possible cause

for concern among qualified practitioners. There is a fundamental

problem of responsibility. At the moment,all output from medical

systemsis checked by doctors, but presumably there will come a time
whenit is not. What then if (or rather when) the system makes a
mistake?

Alternatively, if a doctor is relying on an expert system for

specialist advice, what happensifa malpractice suit arises? Assuming

that he did notuse the ‘explain’ facility, or he cannot rememberwhat

it said, or he trusted the system’s facts to be correct, heis in difficulties

if all he can say to the courtis, ‘I took this action because the box

told me to.’ Thus, doctors might well be reluctant to use computer-

based diagnosis. Nevertheless many are not, and have cooperated

enthusiastically in providing knowledge for their development.
Royal Sussex County and Brighton General Hospitals on their own
initiative asked Sussex University, in collaboration with Tim de
Dombal of Leeds University, to construct a system for diagnosing
acute abdominalpain. Its principal use so far is in helping to train
junior surgeons.

Certainly there is a rational elementin the fear of expert systems

putting highly paid professional people out of work. Hitherto the
threat from new technology has always hung overthe low-skilled and
the low-paid — those in factory or clerical jobs. Whether professionals
will really be seriously affected is in some doubt, but there are those
whoare sure that lawyers, for instance, specifically solicitors, could

be replaced by computers and that an expert system,albeit a very big

one, could actually do the job better. It is true that finding chainsof

consequencesin laws, and finding where lawscontradict each other,

are ideal tasks for computers and are often done poorly by humans
at the moment. An improvedlegal service to the public would be an

undoubted boon.Still, plenty of legal barriers as well as technical
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onesstand in the way of these developments, such as changesin the

law that have to be made for computer output to be admissible as

evidence in criminaltrials. The day is yet to come whenthe opinion
of a computer, and perhapsits reasoning, are admitted. Then,ifit is

an expert system with an explanation facility, it will at least be

possible to cross-examineit!
Notall expert systems are doing work that humans are happy

to be doing. The computer layout task at Digital for instance 1s
extremely boring as well as being difficult, and resistance there to the

R1 system was based not onself-interest but on scepticism about

whetherit would work. R1 has now been accepted as a useful assistant

and one that provides interest for humans who have the task of

improvingit.
Overall, thereis little doubt that the world’s demandfor experts will

continue far to outreach the supply. Ronald Clark of the Inter-Bank

Research Organization points out that each individual branch bank

manageris supposedto be able to provide his customers with know-

ledgeable advice on any of the 300 to 400 services he can offer. So

fears of de-skilling can be balanced againstthe fact that it is normally
not humanly possible to haveall the skills that ideally one needs. The

humanrace needsail the knowledge-sourcesit can get.



CHAPTER 3

Human Window on the World

A few seconds after 4.00 a.m. on 28 March 1979, an alarm echoed

throughthe No. 2 control room at the nuclear powerstation at Three

Mile Island, Pennsylvania. The operators were unperturbedatfirst

as minor breakdowns were not uncommon,but it was only a few
minutes before they realized that this one wasfar from minor.A tiny
valve in the pneumatic system hadstuck, causing the plant’s supply of

secondary cooling water to be shut off. Within seconds the uranium

core of the reactor started to overheat, and despite everything the
operators tried in order to contain the problem,it becamesteadily
worse.A reliefvalve stuck open, spewing radioactive water and steam

into the reactor building and thence into the atmosphere outside. A

bubble ofhydrogen collected at the top ofthe reactorvessel, threaten-

ing to explode at any minute. The possibility arose of the uranium

core itself melting. Either of these occurrences would cover the
Pennsylvania countryside with radioactivity.

Over the next few days, the operators together with experts from

the Nuclear Regulatory Commission struggled to get the reactor

under control, while a horrified world looked on. State Governor

Richard Thornburgh ordered the evacuation of children and preg-

nant women from the area, and large numbersofother people started
to leave of their own accord. It was a week before the owners, the

Metropolitan Edison Company, announcedthat a cold shutdownof

the reactor wasfinally in sight and life in Pennsylvania started
gradually to return to normal. Cleaning up the Augeanstables of the
reactor buildings has taken several years.

Dispute still simmers over how muchradiation wasreleased into

the atmosphere during the incident, how dangerous wasthe 50,000

gallons of radioactive waste water that was dumpedinto the Susque-

hanna River, and how nearwasthe ultimate catastrophe of a melt-
down. The repercussions have been enormous, with ‘Three Mile
Island’ a rallying cry for the anti-nuclear movementthe world over,
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together with the slogan ‘Weall live in Pennsylvania’. But one point

over which thereis no dispute is why a problem that should have been

containable almost becamea disaster. President Carter’s Commis-
sion, reporting on the causesofthe accident, said: ‘The major factor

that turned this incident into a serious accident was inappropriate

operator action.’ In turn that was caused, as the Commissionputit,

by onething: ‘confusion’.!

This is hardly surprising, considering the circumstances. Within
the first few minutes between 100 and 200 alarms wentoff. As Bill

Zewe, the shift supervisor, described it afterwards:

I noticed that we had every alarm, just about every alarm, on panel 15,

which monitors most of the ICS parameters for feed water limited by

reactor, reactor limited by feed water, BTU limits, and so on. Mostof these

werelit.?

The experts from the Nuclear Regulatory Commission were in the
same plight. Reactor inspector James Higgins told a Congressional

committee:

 
Figure 13. President Jimmy Carter visiting the Three Mile Island control
room atthe height of the crisis on April Fool’s Day, 1979 (AP)
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There was a tremendous amountofactivity going on in the control room.
A lot of people were involved with a lot of different problems, and that [an
indication that some hydrogen had exploded] was one of many things.

Operators were — alarms were going off; pumps were being started and
stopped; valves were being cycled, and this wasjust one of a myriad of those
things that was occurring throughoutthe entire day. And I was thoroughly
not able to follow what was going on. AndI did notpickit up atall.3

A committee chaired by Dr Thomas Malone investigated the

humanfactorsof the incident, and reported:

... the operator was bombardedwith displays, warninglights, print-outs and
so on to the point where the detection of any error condition and the
assessmentof the right action to correct the condition was impossible.*

The President’s Commission agreed,stating that ‘lack of attention to
the humanfactor in nuclear safety’ was to blame. Thelessonis clear:

that unless a technical system is designed in every detail so as to be

comprehensible to the humansoperatingit, unless the way informa-

tion is presented fits in with the way human eyes and minds work
rather than the way the machinery works, then oncethe system starts
to malfunctionit will tend to become unmanageable.

Trouble at steel mill

In 1975 the Dutch steel companyEstel Hoogovensinstalled a highly
automated new hot-strip mill at its plant in Ijmuiden, on the coast

near Amsterdam. Expecting productivity to be given a boostbythis

advanced equipment, the managementwasshockedto see the output

of the mill actually fall. Consultants from the British Steel Corpora-
tion were called in, and their report laid the blame squarely on the
design of the interface between machine and operator. New Scientist
summedit up thus:

The operators became so unsure of themselves that, on some occasions,

they actually left the pulpits used for control unmanned ... The operators
also failed fully to understand the control theory of the programsused in the
controlling computer, and this reinforced their attitude of ‘standing well

back’ from the operation — except when things were very clearly going awry.
By intervening late, the operators let the productivity drop below that of
plants using traditional control methods. So automation had led to lower
productivity and operatoralienation simultaneously.°
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Matters were made worsebythe fact that, in the new design, the

path ofthesteel strip being rolled had been enclosed, so the operators

could not even see the material they were supposed to be working
on. The consultants’ report firmly asserted that, among otherthings,
the operators had to be put in closer touch with the process, and
that information displays should help them understand the decisions

taken by the automation, instead of just indicating the state of a

process.
Air traffic control is causing worries to planners and travellers

alike in North America and Europe. Near misses in the air have
become alarmingly commonplace, along with breakdowns in the

complex radar and computer equipment that can leave controllers

helpless for vital seconds or even minutes. According to the Co-
ordinated Science Laboratory at the University ofIllinois, American

computerized air traffic control is getting so complicated that opera-

tors have serious difficulty in telling what is going on. As for the

future, there is controversy about how replacement systems should

be designed. Some expertscall for even more automationto eliminate
the uncertainty of the human element, and others argue for schemes
in which humans and machinesshare the load in a kind of partner-

ship. Whatever wayit is done, there will always arise the case where

something goes wrong and a humanhasto intervene.If the system

is not designed so that he can understandit, his interventionislikely
to be too little and toolate.

The endof the world, almost

Within an eight-month period over 1979-80 three false alerts were
sent out to United States forces that the country was underattack
from Soviet missiles. These alerts came from the North American Air

Defense Command’s control centre deep inside Cheyenne Mountain,

Colorado.Thefirst was an operator error, when a data tape intended
only for exercise was inadvertently fed into the system. The second
was a componentfailure of a single integrated circuit. The third was,
apparently, deliberate — an attempt to reproduce the conditions of

the second asa test.°

Happily, the false alarms were all cancelled within a few minutes,

but the nerve-jangling they caused has hardly subsided yet. Clearly,

a system that canliterally bring about the end of our world hasto be
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very carefully designed to avoid the possibility of misunderstanding
between man and machine.

The moralin thesestories is the same: that as technical systemsget
more complicated, they become more and moredifficult to under-

stand and therefore to control. This applies especially to computing

systems, which have to be complex even to do the simplest things. As

westrive to give them powerto handlesubstantial tasks from thereal
world, we increase their complexity to a level outside the ability of a
human or even teams of humansfully to grasp. This is happening
already: as we have described, large computer programs and opera-

ting systems are growing increasingly unmanageable both for their

designers and for their users.

If technologists carry on designing computer systems as they do

now,adding more and more powerto an already shakyarchitecture,
there 1s little doubt that the machines of the 1990s will become

unusable — uncontrollable and demoralizing — the Sorcerer’s

Apprentice on a global scale. Our society, which is becoming depen-

dent on these machines, will be faced with a crisis of monstrous

proportions. Computersin their present form havein a sense gone as
far as they can go. No longer can they be built with the central aim
of maximizing performance and making the best of machine re-

sources. Instead, they will have to work on a totally different basis —

one designed to be anthropocentric. To make computers compre-

hensible, we must build them in the image of the human mind.

The inscrutable planet

Onecan takethe baleful scenario very much further by recalling the

view of the future which has appeared and reappeared in science

fiction ever since Samuel Butler: a world being taken over by
machines. This tends to be dismissed by technologists as nonsense.

But is it nonsense? Consider the computers that are already being
used to run ourcities. Include not just the town hall but the public
utilities, sanitation, medical and education services, the banks, the

airline system, the traffic control system, the building and planning

authority and so on. There comes a point when their computing

networksbegin to talk to each other,initially for quite simple prag-
matic reasons. If the road is being dug up,refuse collection must be
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re-routed. When someoneis booking flight, the airline needs to

check the validity of his credit card.
Extend these ideas to the year 2010 whenthe city administration

network and the medical network and the news media network and

the bank network andthetraffic control network have considerable
intelligence built into them so that they are smarter than people for

most tasks. They also have their own radio-linked, free-moving
effectors. The networks are all communicating quite richly and
densely with each other. Imagine then an eventual situation in which

computer control networks for entire cities set their own goals, in

which nobody can be found any more who understands even the
documentation, let alone the systems themselves. Each person sees

only onelittle pathway in the electronic jungle. We will then have to
be certain that all evaluation functions and heuristic rules are tuned

just right, because an electronic city will have to carry out all the

normal administrative trading and bargaining with otherelectronic

cities. Each city controls certain resources and can makecertain

concessions. One city wants something done aboutthe watersupply,
but another’s control system can makethat cheap or expensive for
them. In exchange, if the traffic system could be altered so that the

football crowds on Saturday go by another route ... and so forth.

By the year 2500 or 3000, Homo sapiens could end up as a race of

uncomprehendingparasites, living, like fleas on the backs of dogs,
in the nooks and crannies of automatedcities run by giantelectronic
nerve networks with their own inscrutable strategies and laws of

action. Worse than that, we might becomea superseded species, when

the dogs ask of the fleas, “What have you done for us lately?’ To

prevent this happening it is not a matter just of taste but of dire
necessity that technology acquire a humanface andstyle.

The chaos scenario

Turning to a less cataclysmic but more immediate set of problems,
let us ponder the widespread economic stagnation, soaring un-
employment and crises of confidence that have been gripping the
globe ever more tightly over recent years. The phenomenaarereal

enough, but superficially they are distinctly odd. Consider first

economic growth, or non-growth. The productive capital of indus-
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trial nationsis not actually shrinking. It is, however, being steadily

transformed by the continuing advance of technology. Whatis the

nature of this steady transformation? Fixed capital is getting more
productive. Workersin factories can produce far more in a day than
they could thirty years ago. A man can mow more meadowsthan are

neededto offset the rental of his mowing machine. Next comes the

self-piloted mower.

Moreover, technology is not merely advancing at a constantrate.
All reasonable scales of measurementshowit to be accelerating. So
why are we not much better off? Even allowing for the inevitable

disturbance that is caused in sectors immediately affected while

changeis taking place, the humanrace as a whole should bereceiving

substantial benefit. Something must be in the works, clogging up the
cornucopia whichby nowwe would expectto be delivering abundance

to usall.

Everyoneis,it seems, united in a commonsenseofgrievance about
the matter. But people differ as to which componentin the whole
process should bein the pillory. To someit is evident that the union
shop-stewards of our land, possibly in league with tightly knit,

politically motivated subversives and wreckers world-wide, have

worked the whole baleful trick. To others the master culprits are to

be found in the boardroomsof the giant corporations and finance
houses, possibly in league with tightly knit, politically motivated
multinationals and cartels, topped up with a gnomeortwoofZurich.

There is a third school of thought, not inflammatory like the fore-

going two, but twice as loony. This school puts the blame on tech-

nology itself. It is not unknown for a frustrated user to set out

systematically to punish a non-vending vending machine,not being
satisfied until all future capability has been removedfrom it.

Perhaps, though,the anti-technology schoolis not entirely loony.

At least we should consider the idea, since the analysis given here

makes technology look uncommonlylike a non-vending vending
machine.

Wehaveto take a long look back over the sweep of ourhistory,
and ask whetherthere has beenanysettled evolving pattern running

throughit. Such a pattern does stand out — the discovery of agricul-

ture set it going. But through the dozen millennia since then our
ancestors seem to have been unawarethat a unidirectional process
wasin train until the last phase of acceleration during the nineteenth
and twentieth centuries. The consistent pattern, step by painful step,
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with many falterings and setbacks, has been the augmentation of

man’s comprehension and control of his world.
Howhas this come about? Without doubt through technology,

leavened in recent centuries by a pinch or two of science. ‘Tech-
nology’ is here used in its broadest sense to includeall the usefularts.

So if science and technology give us comprehension and control, and

if their power and extent are growing faster and faster, does it not

follow that so too must man’s mastery of his environment, including
the production of wealth?

Ifthe environmentdid not change, then well and good, but compre-
hension and control must be measured as a ratio. Specifically, we
must relate the power of our instruments for comprehending and

controlling to the complexity of the environmentto whichtheyare to

be applied. A prime consequence ofthe rise of technology has been
that man’s environmentis increasingly man-made, becoming,in the
nature of the whole process, more and more complex.
So let us consider the comprehension/complexity ratio. So long as

the numeratoris growing faster than the denominator,we are winning.

Ifit is the otherway around,sooneror later complexity beginsto over-

take our ability to understand and subdue it. The change-overpoint
wasreachedby industrial man at some point during the past decade.
Fewer and fewer people are employed to produce. More and more
are employed in the effort to keep track of whatis going on.

Complexity the culprit

Unfortunately, their efforts are not doing much good.It is becoming
increasingly clear that it is this very administrative complexity that

is in large part to blame for our economicstagnation. Production and

trade entail action, and this is blocked by complexity and confusion.

Ifwe do not understand howto operate the system, we cannot expect
to get muchoutof it. Complexity slows things down — surely thatis
the spannerlodged in the works.
Again the solution becomesclear: for us to escape from complexity

pollution, we must reshape technology into a form designed specifi-

cally for comprehension. We maythusbe able to turn the compre-
hension/complexity ratio on its head.
To get an idea of howit is possible to dothis, let us consider again

the commodity which we have already shownto be crucial to any
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cognitive activity, namely, knowledge. The question is, how is know-

ledge represented in a machine? Traditionally, in a waytotally differ-

ent from the way humansrepresentit. This has occurred for reasons

ofeconomy, or simply because technology has not accepted compre-

hensibility as a primary goal. Either way, the result is that while the
machine maydoits job satisfactorily under normal conditions, if
something untoward happens the humansaround the machinewill

be hard put to know whatto do, or even to be sure whether something

has gone wrongat all. A striking example can be drawn from thefield

of computerchess.

Whychess? Readers acquainted with research into genetics and

heredity will be aware of the significance of the fruit fly Drosophila

melanogaster. This insect’s small size, fecundity and generation cycle
of only eleven daysallow scientists to observe the effects of their
manipulative breeding on subsequentgenerations without having to

wait long periods and commit large floor spaces and fundsfor feed-

ing. Chess is a problem-solving task compact enough to be embodied

to a workable extent in a computer but large enough to makeindus-
trial problems of scheduling seem almosttrivial. Chess has been
described as the Drosophila of machineintelligence.

The strange case of Thompson's table

At the meeting in Toronto in 1977 of the International Federation
for Information Processing, Kenneth Thompson ofBell Telephone
Laboratories presented a computer program for playing the chess

end-game of King and Queen against King and Rook. He had done

this by the ultimate in ‘hammerand tongs’ methods: in the absence
ofa completeset of rules for playing the end-game,he had previously
programmed the machine to work out what to do in every single
possible position — and there were four million ofthem. This was done

backwards, by taking every position and working out what the

best-move predecessor would have been. All these moves were then

loadedinto a gigantic ‘look-up’ table in the machine’s memory,each

entry in the table simply saying, ‘If the pieces are in these positions,
movethis piece there.’

It is known from the theory of chess that given best play, this

end-gameis an inevitable win for the Queen’sside, except for a few

special starting positions. Chess masters can ordinarily guarantee to
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win against any opponent. So whenplaying with the Rook, Thomp-

son’s program merely made whatever move would stave off defeat
for longest. Present at the conference were two International
Masters, Hans Berliner, former World Correspondence Chess

Champion, and Canadian Champion Lawrence Day. Thompson

invited them to demonstrate winning play for the Queen’s side

against the machine. To their embarrassmentthey found they could
not win, even after many attempts. Yet every position they were
confronted with in the entire course of play was a winning onefor
their side.
The machine repeatedly conducted the defence in ways which to

them wereso bizarre and counter-intuitive that they were left grasp-

ing air, time and again missing the best continuation. For example,

the cardinal rule which chess players learn about this end-gameis,
‘Never separate King and Rook’. The assumption is that the Rook

needs the King to help protectit from the Queen. Yet the super-table
separated the King and the Rook again and again, having found

some path, however narrow and convoluted, through the problem

space that maximally postponedits supposedly inevitable doom.

Naturally Berliner and Day found the experience upsetting. They
wanted to ask the program to explain its strategy, but this of course
neitherit nor its author could do. The answerin every case was,‘It’s
in the table.’ Its knowledge was comprehensive but there was no

representation of the knowledge in terms of goals, opportunities,

risks, themes, tactical ideas and the rest of the rich conceptual struc-

ture in terms of which chess masters frame questions and receive

answers. The machinewasin no position to give answerslike: ‘At this
stage White must drive the enemy Kingonto the edgeof the board.’
Whatit was lacking wasa conceptual interface whereby the machine

and the human could share knowledge in forms which humanscould

grasp, namely, concepts. It is the task of knowledge engineering to

design and construct such conceptualinterfaces to allow people (who
are still much more intelligent than machines) and machines (which

are already much cleverer than people) to understand eachother.

Hazards of the super-table

It may be said that chessis just a game. Butlet the reader generalize
a little. Thompson’s super-table is not an unrealistic example. While
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the search for solutionsto difficult problemsstruggles slowly ahead,
electronic technologyis galloping. This has been bringing the price
and physical size of computer memory downat an unheard-ofpace.
Trillion-bit memories are already in existence, and Lawrence Liver-

more Radiation Laboratories have issued specifications which call

for this capacity to be pushed up by a factor of several thousand.
Optical storage promises to exceed eventhesescales ofcapacity. Such
changeswill inevitably tempt people to setup in such memories huge

data-bases of questions and answersin a very wide range of subject

areas, wherever problems need to be solved. While these might

appear a boon to man,they actually pose a majorsocial hazard.

At first sight the ability to hold in a crude fashiontrillions of

questions paired with their answers might seem notvery useful, but
in fact most practical knowledge can be expressed in this form:

“Whatts the square of 31?’ ‘961.’

“Whatis the right thing to do whenlost?’ ‘Ask a policeman.’

“Whatis the freezing point of the seas?’ ‘-2°C.’

‘Whatis the truth-value of Fermat’s Last Theorem?’ ‘Unknown.’
Computer technology seeks today to moveinto tackling difficult

problems of the sort computers now cannotsolve, problemsfor

which there is no straightforward procedure which in a feasible

numberof steps can find the answer directly from the question by

calculation. But it often happensthat although a problemis difficult,
its inverse is not. For instance, calculating a square root is quite
involved, but finding a squareis easy. So a schoolchild might consider
it more economical to work out the squares of every numberhe or

she could conceivably be asked for and fill a huge table with the
answers(listing the answers, not the questions, in numerical order,

perhaps with someinterpolation to fill in gaps). Then, whenever a

Squarerootis needed,it is looked up in the table. This is the ‘inverse-

function method’, by which Ken Thompson’schess-playing program
wasbuilt. But as we saw, this technique has one major drawback —

the result is inscrutable to humanusers.

Socrates agrees

One might say that a race of blind question-answerers such as this

which so debases — by dispensing with — human understanding and

judgement would be better uninvented. Interestingly enough,this
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argument wasfirst raised over 2,300 years ago by Plato. In the

Phaedrus he has Socratestell a story about the Egyptian god Thoth,
who goes to the god-king Thamus and says: ‘My Lord, I have

invented this ingeniousthing called writing, and it will 1improve both

the wisdom and the memory of the Egyptians.’

Thamusreplies that, on the contrary, writing is an inferior substi-

tute for memory and understanding. “Those who acquireit will cease
to exercise their memory and becomeforgetful; they will rely on

- writing to bring things to their remembranceby externalsigns instead

of on their own internalresources.’

Socrates cites Ammon againstthe fallacious view that ‘one can

transmit or acquire clear and certain knowledgeofan art through the
medium of writing, or that written words can do more than remind
the reader of what he already knowson anygiven subject’. In other

words, men will be led to think that wisdom resides in writings,

whereas wisdom mustbe in the mind. ‘You might suppose’, Socrates

adds,‘that written words understand whatthey are saying; but ifyou

ask them what they mean by anything they simply return the same
answer over andoveragain.’

In short, Socrates’ complaint is that writing fails to pass Alan

Turing’s famous test (by which a machine can proveit is really

intelligent if it can fool a questioner, over a teleprinter link, into

thinking he is conversing with a human being’). Andsoit doesfail.
If it could explain what it contained, we could say in a senseit
‘understood’ and so was showing intelligence. As writing fails the
Turing Test, so too will the trillion-bit question answerers of the

future. But like writing, they will assuredly survive and help to change
our world. Will this be good or bad? Unless the substance ofSocrates’
complaint is seriously investigated in the new context, these giant
question—answer systems will be a mixed blessing and could on
occasion get their users into trouble. Such data-bases, remember,

store only the basic elemental unvarnishedfacts ofthe given case, and

contain nothing corresponding to understanding, inference, judge-

ment, classificatory concepts and thelike. Truly,*... if you ask them
what they mean by anything they simply return the same answerover

and over again’.
So long as the contents of the electronic super-table remain purely

factual in the ordinary sense, then nothing worseis likely to result

than exasperation. Infallible answers obtainable on tap, over un-

imaginably vast domains of discourse, will be readily accepted. But
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the absence of any explanations to accompany the answerswill be
taken by the users in bad part. ‘Why’, a chemist user will say, ‘does
this pattern from the mass spectrometerindicate that the unknown
compound Is someparticular poly-keto-androstane?’

Answer: “Becausethetrillion-bit dictionary says so!’

The chemist then asks, ‘How does it know? Howdid that answer

get there in thefirst place?’ If the super-table has been constructed by
the inverse-function method,eventelling him exactly howit got there

will not make him much the wiser. He and his colleagues may be
goaded into building new explanatory theories of what they find in

their super-tables. If so, then this is to the good, and presages new

pathwaysofscientific advance.

The lunatic black box

Onthe other hand,a table of question—answerpairs is not restricted
to encoding factual information of this kind. The formatlendsitself
equally well to expressing strategies, with the table consisting of

situation—action pairs. This is exactly what Ken Thompson’s chess

program consisted of, and we haveseen the problemsthatled to. But

whatif the system were doing somethingof social importance, such

as managing a complex control function in factory automation,
transport or defence? Two supervisors,let us imagine, are responsible.

for intervening manually in the event ofmalfunction. The system now

does the equivalentin industrial or military terms of ‘separatingits

King and Rook’. ‘Is this a system malfunction?’ the supervisors ask

each other. They turn to the system for enlightenment. Butit simply
‘returns the same answeroverandoveragain’.
The problem becomesof global importance when the system being

operated is in air traffic control, air defence or nuclear power.It is

not too difficult to decide that a human decision-taker, say, a

policeman directing the traffic at a crossroads, is drunk or mad. But
USplans for air traffic control envisage ultra-powerful data-base
and scheduling computations encapsulated in giant ‘black boxes’.

Whatwill the humansupervisors do on the presumably rare occa-

sions when East Coastflights are mysteriously re-routed to Dallas, or

inexplicable groundings of harmless carriers raise doubts as to the
system’s sanity? As control devices and their programsproliferate,
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their computations may more and more resemble magical mystery

tours. Mostcritical of all, if an air defence warning system suddenly
says, ‘There are twenty Russian missiles heading this way,’ before the
officer in charge pushes the Doomsdaybutton he must be able to ask,

“What makesyouthink that?’

Anysocially responsible design for a system must makesure that

its decisions are not only. scrutable but refutable. That way the

tyranny of machinescan be avoided.
There is of course a method ofsolving difficult problemsthat1s

totally different to the use of super-tables, namely, exhaustive search-

ing through branchingtrees of possibilities: ‘look-ahead’, as when

working out the outcomesof possible chess moves and choosing the

best. Tables — we could call them ‘look-up systems’ — require vast

amounts of data storage butlittle processing. In contrast, in order
for a look-aheadsearch to be completedin a tolerable length of time,
a great deal of processing poweris needed butlittle memory. These

two extremes are shown in Figure 14.
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Figure 14. The spectrum of processing versus memory

Whathappens whenyou get a pronouncementfrom a look-ahead

system and youaskit ‘Why?’ Canit tell you anything? Mostcertainly!

It can detail all the calculationsit did in sequence. It can even disgorge
the entire analysis tree. Could anyone wish for a more profound

response?
On the contrary, no mortal mind could possibly digest so much
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information. The tree could contain a million nodes, or a hundred

million! The Three Mile Island fiasco is to the point — the operators

made more mistakes, not fewer, because they were deluged with
alarm signals, meter readings and computer print-outs. While a
look-up system is too shallowin thatit gives toolittle information,a
look-ahead system tends to be too deep bygiving too much.Thisis

a separate issue from the powerof the system — how muchitis capable

of doing. This distinction is shownin Figure 15.
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Figure 15. Two dimensions of a computer embodyinganintellectual skill

© The human window

Onthe scale shownin Figure 14, ‘deep’ systemsare at the processor-

intensive end while ‘shallow’ ones are at the memory-intensive end.

Somewhere in between is a narrow band where both the processing

capability and the scales ofmemory are equivalent to those possessed
by humans. Wecall this the ‘human window’, andit is here that

computers must operate in order to be comprehensible to us whom

they are intended to serve. Both the reasoning power required and

the way in which information is held must be on a humanscale —

elsewherelies inscrutability.
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A view which weshall call ‘technomorphic’ goes as follows: “The

machine’s way of going aboutchess, or weather prediction, or plant

control, or route scheduling, is bound to be different and oughtto

be different. The relative costs and constraints associated with the
variousaspects of the problem-solving process are quite disparate for

machines and brains. Strategies which optimize performance with

respect to two such contrasted profiles are doomedto diverge. What-
ever way is mostefficient for the machine to do the problem is the
way we wantto go. If Karpov has notgotthe calculating speed and
working memory to grow a mental look-aheadtree ofa million board
states, or if our top meteorologists are not smart enoughto be able

to do partial differential equationsin their heads, thatis just too bad.

Whyshould the programmerseek to copytheir defects?’

From the point of view of optimizing the use of the machine the
technomorphis right. Butin the light of the brain’s woeful disabilities
as regards storage andprocessing speeds,efficient machine programs
are not workable as representations for people. Where the techno-
morph goes wrongis in supposingthat thereis no criterion involved
but machineefficiency.

Futurologists, in particular I. J. Good and Ed Fredkin, directorof

MIT?’s celebrated Project M AC, have speculated about the develop-
ment of an ‘ultra-intelligent machine’ which would be able to
‘reprogram itself within hours, constantly improveitself and rapidly
become hundreds of times smarter than humanintelligence’. Some
people are worried aboutthis. But the real social danger, certainly
the first we shall see becoming manifest, is not the ultra-intelligent
machine but the ultra-clever machine. The dangeroussystem is the
one tuned by economicpressures to perform its task with machine-
efficient inscrutability. These machine-oriented criteria can be shown
to be irreconcilable with easy communication of concepts between
man and machine. So performance mustbe sacrificed for the sake of
transparency. Is that an economically acceptable sacrifice? Surely it
is. Machines continue to become cheaper; humanbeingsonthe other
hand do not. Addingartificial intelligence to the machine can offer
the needed humanizing bridge. But 1fmachine-optimality rather than
human-optimality remains the design criterion, we are ultimately

headed towardsa technological black hole.
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Syntactic sugar is not enough

So how should we design our machinesto fit the ‘human window’?

The answeris not as straightforward as it may seem. Interactive

diagnostics and trace routines, even whensprinkled with the very best
syntactic sugar, do not necessarily suffice. Such things resemble
orthopaedic shoes built to correct a patient’s rolling gait: they may
help, but if his trouble stems from a congenital abnormality at the
hip joints, then the patient also needs reconstructive surgery. Just as

there are walkable and non-walkable skeletal structures in human

anatomy, so there are explainable and non-explainable computa-

tions, and the differences can be traced to the respective program
structures.

Putting it another way,the addition ofa simple‘user-friendly front
end’ whenthe subject area is very complexis like distributing power-

ful telescopes to inhabitants ofDover anxious to gaze upontheEiffel

Tower. To people ignorant of the curvature of the earth it could seem
like a goodidea.

In order for any beings, human or machine,to talk to each other,

they must share the same mentalstructures. People’s mental struc-

tures cannot be changed, so we must change the machines’. We need

to restructure the entire way problem-solving programsdotheirjobs,
not just how theyinteract with the user. The way the program holds
information — its problem representation — must be recognizable to a
humanas a concept with whichheis familiar. Both Ken Thompson’s
table and the weather-forecasting differential equations are non-
starters in this respect. Rule-based expert systems on the other hand

are specifically designed to operate with human concepts, both

accepting them from the domainspecialist and displaying them to the
user as explanations. These provide a start, but much researchstill
needs to be done on the technology of the conceptualinterface.

Softly, softly automation

Wecall the application of these ideas to factory equipment and other
control systems ‘soft automation’. This is increasingly needed for
cleaning up the complexity pollution which hard automation tends
to generate. The greatest social urgency attaches not to extending

automatic processes but to humanizing them. Of course, for tasks of
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low-to-middling complexity, opacity is not really a problem. We have

lived with it for a long time withoutanyill effects. Suppose that a

resource allocation program schedules a job better than a human
project director. How muchdesire doeshefeel to pry into its detailed

workingsor to arguewithit, so long as it 1s doing what he wants? It

can be as muchofa ‘black box’ as it chooses.
However, there are other applications for which an ‘open box’

modeis essential. As yet, there are few of these, since information

processing hasyet to penetrate far into the more complex and respon-
sible levels ofhuman affairs. ‘Complex’ and ‘responsible’ are separate
reasons for insisting that a program operate within the human

window. Someproblemsareso difficult that a man—machineintellec-
tual partnership is needed. Others involve life and death, or the

manageability of the economy.

One computer program for diagnosing acute abdominalpain,en-

tirely lacking in ‘explain’ facilities, continues to be used by the doctors
involved only through pressure from higher authority. Despite its

potentially life-saving power, clinicians cannotfeel confident using a
black box. True expert systems such as Mycin, however, are capable

of giving answersto the question, ‘How did you workthat out?’

With soft automation, systems are forced at the design stage into

the human mental mould. Looking to the future when teams of
cooperating robots are at work in ourfactories, we should ask, ‘How
should signals be passed between robots? Along wires, by infra-red

beams, radio or some other humanly inaccessible channel?’ Synthe-

ized voice would be better, so that human supervisors can keep an

ear open for whatis going on, as has been shownto befeasible by

work at Edinburgh.

Enter the might ofJapan

Whetheror notthese ideas are widely accepted in Europe and North
America, they certainly are in Japan. The Japanese government has
unveiled plans for a highly ambitious programmeto design and build
a completely new range of computers for the 1990s — the Fifth

Generation,asit is called.* These machinesas projected will be able
to understand natural language and speech, interpret the visual

world, tap large knowledge-bases, and solve problems by deductive
and inductive inference. How exactly are they going to do these
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things? They have a few details to work out yet! However,it is clear
from what the Japaneseare saying that the notion of the conceptual
interface is central to their ideas. Despite their lack of experience in
intelligent knowledge-based systems up to now,they are determined

to movesubstantially in this direction. They are even talking about

the main programming of their machines being done in a ‘logic
programming language’, a technique originating from artificial in-
telligence work anddiffering radically from conventional computer
languages, as we discuss in Chapter8.

Edward Feigenbaum points out the interesting fact that the

Japanese are not uncomfortable at all with the idea ofintelligent

machines. There are few debates in Japan agonizing overthe social
impact of this new technology. He suggests this is because a central

part of Shintoism is reverence for objects, in which sentient beings
are seen.
Be that as it may, the Japan Information Processing Development

Centre as part of its exposition of the Fifth Generation programme

has produceda widely circulated picture which we reprint as Figure
16. While the diagram may seem confusing, it clearly shows the
central position of the conceptual interface. Certainly the Japanese
plans are ambitious, even grandiose, butin the light of that country’s

industrial success in otherfields so far, it may be prudent for Europe

and North America now to think hard about wherethey are going.

All over the world certificates of humanoid mentality may one

day be demanded before certain responsible tasks are entrusted
to machines. Motorists have their vehicles certificated for road-
worthiness. More recently society has extended its interest beyond

the question ofwhetherthe vehicle functionsreliably, to the question,

‘Doesit also make anintolerable noise, or emit clouds of poisonous
fumes?’ In future time any computing system on whose functioning
large numbers of people depend maybe refusedcertification if its
strategies are hidden in clouds of impenetrable complexity.



CHAPTER 4

Thinking About Thinking

The use of computers to implementprocesses of thought has given

rise to more nonsense than ever came from Bishop Wilberforce. In

1860 in Oxford this worthy debated publicly with Thomas Henry

Huxley the newly published evolutionary theories ofCharles Darwin.
Thelevel of the debate can be judged from his question to Huxley as

to whether he claimed descent from the monkeys through his father

or his mother. Even today, children of the American Bible belt are

taughtto sing:

I ain’t no kin to the monkey, no,no, no,

And the monkeyain’t no kin to me.
I don’t know muchabouthis ancestors

But minedidn’t swing from tree!

Regrettably, the artificial intelligentsia are to blame for contri-

buting their share of nonsense. As an example, one can evenfind in

textbooksthe definition ofAI referred to earlier which equatesit with

solution by computer of problems that would require intelligence if

performed by humans. Thatis nonsense even now, when unintelli-

gent computersare taking on tasksthat require high ordersofintelli-
gence from human solvers. Ken Thompson’s program Belle em-
bodies little chess knowledge, and no capacity at all for general
reasoning, but by dint of growing a tree of several million possible

future board-states in its analysis of each move, it can without

difficulty defeat 499 out of every 500 chess players in the world. Any
one of these would surely have our sympathy were he to exclaim:

I ain’t no kin to the chess program,no, no, no,

Andthe program ain’t no kin to me.
I don’t know muchaboutits thought processes

But mine don’t grow ona tree!  
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The van Dusen delusion

It is clear that the machines we build must think the way humans
think. So how do humansthink? That 1s a large question, but we can

shed light on it by looking at someresults of research into vision,

speech, the way people with prodigiousskills in memory andcalcu-
lating seem to work, and the techniquesall of us use to make sense

of the world around us. Prodigies at mental arithmetic provide an

interesting example. Some make a living as stage or fairground

performers (or nowadaysastelevision performers), while to othersit
is Just a pastime. In the age of computers human calculators are

not of great economic value. The comparison with computers is

apt, because most people imagine that these human prodigies have
brainswith the raw bit-handling capacity ofat least an eighty-million-

instructions-per-second Cray 1 machine. This is the ‘van Dusen

delusion’, brought out by Julian Symons in reviewing the short

stories of Jacques Futrelle, an American thriller writer of around the
turn of the century. Futrelle’s hero-detective is Professor Augustus
S.F.X. van Dusen.

Heis introduced to us when herefers contemptuously to chess, saying that

a thorough knowledge of the rules oflogicis all that is necessary to become
a master at the game, and that he could ‘take a few hours of competent
instruction and defeat a man who has devoted his life to it’. A gameis
arranged between the Professor and the world champion, Tschaikowsky.
After a morning spent with an American chess masterin learning the moves,

the Professor plays the game.Atthe fifth move Tschaikowskystops smiling,
and after the fourteenth, when van Dusensays ‘Matein fifteen moves,’ the

world championexclaims: ‘Mon Diew’ (he is not one of those Russians who
know no language buttheir own), and adds: ‘You are not a man; you are a

_ brain — a machine — a thinking machine.”!

To calculate a matein fifteen moves knowing nothing but the moves

would occupy the Cray 1 for something like 10°° years ofcontinuous

running, so it is hard notto feel sympathy with Tschaikowsky. Had
he known more physics Tschaikowsky would haverealized that the
great detective’s performance wasnot just superhumanbutactually
supernatural. Limitations of the speed of light and the atomic dimen-
sions of matter decree that no machine could ever perform by brute-

force, look-ahead calculation the feat which he had witnessed, not

even a ‘thinking machine’!
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The puny humanbrain

In fact, real calculating prodigies are not particularly good at calcu-
lating. Their skill lies in the ability to assemble rapidly in their heads
a calculating plan which trivializes the arithmetic needed. Their
strategies are totally different from those of computers, which is

hardly surprising, considering that the human’s calculating device is
madeofjelly rather thansilicon. Let us take a look at some perform-
ance parameters of the brain, viewed as an information-processing
device. The calculating and memory capacities shown in Figure 17

are so low bypresent-day electronic standards as to be embarrassing.

 

1. Rate of information transmission along any input or 30 bits per second

output channel

2. Maximum amountofinformation explicitly storable by —_10?° bits
the age of 50

3. Numberof mental discriminations per second during 18
intellectual work

4. Numberof addresses which can be held in short-term 7

memory

5. Time to access an addressable ‘chunk’ in long-term 2 seconds
memory

6. Rate of transfer from long-term to short-term memory 3 elements per second
of successive elements of one ‘chunk’
 

Figure 17. Some information-processing parameters of the human brain.”
Estimationerrors can be taken to be around 50 percent.‘Bits’ refers to units
ofinformation measurement. Thus, thirty Yes—Nodecisionsaresufficient to

discriminate in a second one photographic portrait from an ensemble of
a billion alternatives. The number of black-and-white dots scanned in

the process1s typically very much higher

Bearing this in mind, it must be that the virtuoso performance,
whetherofcalculating prodigies, or chess masters, or any othergiants
of intellectual life, is built in another way, very different from the

electronic — a way which compensates for man’s tiny working

memory and lumbering processor.

Consider, in particular, the upper limit to the quantity of infor-
mation that can be acquired andstored in a lifetime. It could be
argued that holding in memory a few economically coded facts and   
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principles might suffice to generate much larger quantities of explicit

information, by high-speed deduction from the initial compact form.

But the fact that the brain’s calculating speed amounts to a mere

twenty binary discriminations per second eliminates that possibility.
The rate at which we can mobilize information bycalculation is of

the sameorderas the rate at which we cantakeit into store directly

from the outside world. It follows that our perceptionsof the objects

and events around us must be heavily eked out by reference to
information previously taken in and stored. The meagre flow of

sensory datais in itself insufficient for perceptual interpretation.

Squares in memory

The form in which people store visual informationis far from being
simply a copy of the image from the retina. A great deal of analysis
and codingis done. This has been shown by someinteresting studies

made of children’s drawings by Jean Piaget’s school. In the course of

a systematic follow-up,? Jean Hayes showed one 34-year-old girl a
square and asked her to copy it. What she produced is shown in
Figure 18. First she drew the picture onthe left, which is unsurprising.

(Child’s own commentary) ‘For going up

and down’
[verticals]  

 

Yo

‘There for
stiff things’
[corners]

‘These are the

side bits’
[horizontals]

Figure 18. Copies of a square, drawn by a 34-year-old girl

But then she drew the beetle-like object on the right, whichis totally
unlike anything that an adult would expect to represent a square.
When asked to explain it, she pointed out three elements of the
drawing:‘Stiff things’, things ‘going up and down’and‘side bits’. On
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further prompting she pointed these out on the original square, and

it becameclear that‘stiff things’ were the corners, things ‘going up

and down’ werethevertical sides, and ‘side bits’ were the horizontal

sides.
Whydid she drawit like this? She had already shown she could

makea ‘proper’ adult-type copy, as on the left. The Piagetian ex-

planation which Hayes’s work has confirmedis intriguing. Presume

for a momentthat when westore squares in our memory, weretain

not a two-dimensional image but a structural description. A seman-

tic network of a square mightbe such a structure, as in Figure 19. The

resemblance of this to the child’s second drawing is distant but

uncanny. It seemsas though,as it were without noticing, she has for

somereason on this occasion omitted the final reconstruction phase
of the remembering process and is symbolizing in a graphical langu-
age the descriptive structure with which she represents squares in

memory. What seems to emerge from this and other studies by

psychologists is that the brain stores information according to

pattern-based rules in a mannerstrikingly similar to the way expert

systems hold their knowledge.

Square  
     

‘9

  

 

  

    

   

  
   

corners
(‘stiff things’)

verticals
(‘up and down’)

horizontals

(‘side bits’)

incorporated In
+.

closure

'NCOrporateg in   
  

Figure 19. Semantic network of a square
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Boxes of the speaking brain

Certainly the brain has special ‘boxes’ for doing the different jobs
required of it. These appear to be individually tailored for whatever
function is involved, and even the most elementary formsof storage

and retrieval are handled in this way. Investigators some years ago
were confused by theclinical effects of brain injury on the ability to
speak. This ability is lost as a result of damage anywhere in quite
extensive regions of the cortex (outer layer) of the left half of the
brain. It seemed that the function somehow had to be diffusely
represented. Moredetailed analysis has refuted that conclusion. The

clue is that there are many different sub-functions of speech pro-

duction, from vocabulary management and sentence construction to
articulatory movements of tongue, lips and palate, control of vocal
cords and voice box, breathing control and so forth. It is now

established that injuries in different brain locations underminespeech

production differently. So the design principle of “special boxes’ is

saved.
A form ofBroca’s Aphasia results from highly localized injury. The

patient talks like an Aberdonian’s telegram, omitting all the gram-
matical signpostslike ‘the’, ‘a’, ‘up’, ‘down’, ‘by’, ‘to’, ‘in’, ‘this’, ‘of’,

‘when’, ‘is’, ‘are’, ‘will’ and so forth, and also the grammatical in-

flections which distinguish, say, ‘bite’, ‘bites’, ‘bit’ and ‘bitten’. Since

these people seem to understand the speech of others, the condition
wasat first thought to be a disorder of speech production, leaving
comprehension unaffected. This has now been disproved. These
aphasics have their ‘grammar box’ astotally inactivated or absent
when listening as when speaking. But by inferring likely meaning

from their knowledge of nouns,verbs, etc., they manage to perform
plausibly on comprehensiontests.
Normalbrains employ different retrieval mechanismsaccording to

whether they are handling wordsofthe ‘signpost’ or the substantive
type. This provides us with an instance of ‘special boxes for special

tricks’. Patients with this aphasia, as expected, have only one word-
retrieval mechanism and do not handle wordsofthefirst type at all

— except to recognize that the wordsexist and belongto the language.
Colour vision is another example of ‘special boxes for special

tricks’. While the colour spectrum is physically no more than a
continuousrange of different wavelengths,it is convenient to break

it down into segments for summarizing and classifying, and this is
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whatthe biological system does. Wegive colours names:red, yellow,

green, blue and so forth. From the point of view of a technologist
building a robot with colourvision this is arbitrary, especially con-
sidering the fact that different cultures draw different boundaries
between colours, and that some languages have numerous colour
namesandothers have hardly any. The technologist might go ahead
and design a system using colourfilters to break the spectrum down
in a way which optimizes some parameter of engineering cost or
convenience. Belatedly he would hearof the neurophysiological dis-
covery that the humanretina has three types ofcolour receptor, each

tuned to respondto a different segment of the spectrum, correspond-

ing broadly to ‘red’, ‘green’ and ‘purplish-blue’. Ignorance of such
‘special boxes’ may add to the technologist’s difficulties when he
wishes to provide for communication of colour concepts between
user and robot.

The memory men

Although the van Dusendelusion is at its most conspicuous in the

matter ofprocessing power, the onlooker tends to endowthe expert’s

brain with equally impossible properties of storage. Just as calcula-
ting prodigies do notcalculate any faster, and chess masters do not
analyse larger numbers of movesin the forwardtree of possibilities,
so the professional memory menimpresslarge audiences withoutin

fact having any better or worsememory than the next man. Some-

how the audience convinces itself that the performer is actually
storing and addressing each atomic item, just as though he had some
vast trillion-bit, random-accessstore inside his skull.

Harry Lorayne, in his How to Develop a Super-Power Memory,
claims that anyone can acquire the same gift just by learning his
mnemonic rules.* These centre round the systematic formation of

associationsfor pairwise linking of concepts, coupled with the use of
imagined sequencesofevents,thatis, stories. The latter was regularly
exploited by ancient Greek orators for learning speeches. Thetext-
books on rhetoric advised reading through the speech while per-
ambulating accustomed terrain, for example one’s house and

courtyard. Each time the speech was conned,the samejourney would

be made, until each sentence was tagged by association with a
familiar spot. Whenfinally launched on the speech, the orator needed
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only to imagine himself sauntering over the route. As 1n his mind’s

eye he passed each familiar sight, the corresponding passage of text

would be triggered from his memory.
Ridiculous, weird, obscene, violent and generally far-out images

make the best associations. Suppose that your private mnemonic

code for thefirst ten numbersis: ‘Noughtis for sport; one is a bun; two

is a shoe; three is a tree; four is a door; five is a hive; six is Weetabix;

seven is heaven; eight is a date; nine is for wine.’ Someonespeaksfairly
slowly the following number to you with the idea that you should
recall it later: ‘803,735,204,381,692.’ The memory man’s approach

is to put together a rapid mental scenario as the digits are spoken,

something like this: ‘I have a date with anall-in wrestler but she gets

up a tree thinking to makeit to heaven, butfalls out of the tree onto
a bee-hive getting bees into her shoe which sting so that she breaks
the high-jump record through the door of a passing plane which
crashes on the tree so I have my date again and start with a bun for
the two of us with Weetabix and wine which she poursinto her shoe

to drownthebees.’

The fact that the extemporizedstory 1s violent, childish, grotesque,
in bad taste and otherwise embarrassing will proveto be its strength
ifsome weeks from now a colleague should suddenly say, ‘What was
that fifteen-digit number?’

“Wouldit have been 803,735,204,381,692? you reply innocently, as

your inner eye follows the muscle-bound lady throughher appalling
antics.
Ed Seaman,the chief engineer of Newall Research Corporation in

Saratoga, California, is inclined to ask guests on the spur of the
momentto invite him to cube any numberbetween 0 and 100. ‘O.K.!
one will reply, ‘try 73.’

After a little knotting of his brows and silent mouthing Seaman
comesback with ‘389,017.’

‘Well,’ says the guest guardedly, ‘I suppose that might be 73 cubed
... A calculator is eventually fetched and up comes 389,017. ‘How
about 37 cubed?’

Morescrewingof the eyes and then ‘50,653. I’m out of practice, so

I’m pretty slow, and probably have a few gaps,’ Ed explains. ‘But you
knowthesecret? It’s really quite simple.I learnt it from some book of
magic tricks whenI wasin junior high school. It told about how you
could memorize actually anything at all with the right mnemonics.
This cube table was just one of the examples. Now I have one of
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God’s most lousy memories, just lousy. Really. What you do, though,
you have a code of sounds for each of the digits 1, 2, 3 and so on.
Here, like this —’ and he writes on a scrap of paper:

1...TorD 6...Chor Jor Sh

2...N 7...KorG

3...M 8... ForV

4...R 9...PorB

5...L 0...8

“You make up wordsusing any old vowels between these consonant
sounds. Then forget the vowels. They don’t matter: 37, see, can be
written SMOKE,andthat’s howit was donein that old table. Never
mindthe leadingzero, 037, right? Then we have “Lose a chilly home”
like this:’

03 7 -5 0 6 5 3

SMOKE-LOSEA CHILLY HOME

The guest remarks, ‘But youstill have to remember a hundred
items, except that instead of numbers you haveall this garbage.’

‘Yes, but you rememberthe garbage. You just do ... Here, I’ll
show you the whole thing.’ Ed produces two yellow sheets from an
old exercise book, written in pencil in a careful hand. Here is an
excerpt:

21 hand = punched 9261
22 nun = does share a vow 10648
23 name = a dandyjoke 12167
24 New Year = with myfine rye 13824
25 Nile = a dull channel 15625
26 wench = tookall cash 17576
27 nag = to buy each wife a home 19683
28 knave = naughty plan 21952
29 knob = no armyfop 24389

Entries like 30 and 40 are down simply as numbers, presumably
becausethey giveless trouble than finding phonetic equivalents.
To mention

a

few tricks of the trade is only to graze superficially
the deeply workedterritory of the memory men. But the principleis
not in doubt. Their achievements, like those of a grandmaster in
remembering chess gamesofhis ownorofothers,are notattributable
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to the Creator’s having allotted them somespecial hardware. Grand-

masters have an extraordinary powerto recall briefly glimpsed chess

positions, and this can seem to indicate the possession of special
mental equipment. But try randomly shuffling the pieces on the
board before the brief glimpse. As experiments on this have shown,

whenthe grandmasteris robbed of the meaningful associations with

which, for him, a chess position overflows,the gift deserts him. This

is what overthrew Berliner and Dayin their unsuccessful battle with
Thompson’s table. Their opponent’s bizarre style bore no trace of the

simplifying concepts which give shape to humanplay.
Studies by Binet and de Groot haverevealed that the skills ofchess

masterslie in their powers of conceptualization, together with a vast

accumulation of knowledge of past games and positions.* Nor do

they look ahead morethan ordinary players: according to de Groot,
six or seven half-moves tends to be the limit, with a total of perhaps
thirty positions considered on the look-ahead tree. According to
legend, the great Richard Reti dramatized the true pattern-based

nature of grandmasterly skill when he was asked how many moves
ahead he looked in tournamentplay. ‘One —’ he replied, ‘the right

one!’

Grandmasterofarithmetic

So too with mental-arithmetic prodigies, the most celebrated of

whom was AlexanderAitken, the Professor of Mathematics at Edin-

burgh University, who died in 1967. His extraordinary powers were

investigated by the psychologist Ian Hunter, who recalls Aitken’s

account ofhow hecarried out a problem givento him byhis children:
multiply 987,654,321 by 123,456,789.

‘I saw in a flash that 987,654,321 times 81 equals 80,000,000,001; and so

I multiplied 123,456,789 by this, a simple matter, and divided the answer by
81. Answer: 121,932,631,112,635,269. The whole thing can hardly have taken

more than half a minute.’®

Howonearth could he have seen these things ‘in a flash’? Hunter

explains that Aitken’s knowledge ofand familiarity with the number

system was simply very much larger than most people’s. While the

averagepersonifshown the number22 would be consciousofit being
2 times 11, Aitken on the other hand, when comingacross 1,961,
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immediately thought of it as 37 times 53, and 44 squared plus 5
squared, and 40 squared plus 19 squared. This power to apprehend
attributesin a flash, reminiscent ofa grandmaster’s glimpse ofa chess
position, was the basis of what Hunter called the ‘first phase’.
Aitken’s response to a problem wasdivided into two phases. During
the first he was occupied with rummagingaroundin his hugeinternal
library of facts and useful tricks concerning the numbersystem so as
to put together a ‘calculative plan’. During the second phase he
executed the plan, by doing the specified calculations in sequence.
But this he did no faster than anybodyelse would have done, as was

apparent from how fast he spoke the digits of the solution. So

calculation itself is not where the calculating prodigy’s geniuslies.

Rather,it is knowledge. Program synthesis, not the program,is at the
heart of the matter.

Believing the unlikely

The White Queen admonishedAlice to believe six impossible things
every day before breakfast. It soundsdifficult but actually is not. You
just have to be careful to choose things which many other people

already believe, such as that brand X washes whiter than white. The

hard thing to believe is not the impossible but the unfamiliar. This
is the meaning of the story about the old lady at the zoo seeing a
giraffe for the first time.

Whenshesaid,‘I don’t believeit!’ she was obviously not complain-
ing that the animalin front of her wasimpossible. Herdifficulty lay

in finding a wayoffitting the apparition into her existing knowledge

about the world. Even the addition ofnew information to memory is
conditioned by whatis already there. We all know of cases where
someoneis presented with an irrefutable fact, but he fails to grasp or
even to rememberit because it contradicts something he already
presumes to be true. People say of such a case, ‘There are none so

blind as those who will not see!’ but they miss the point. Unless a
compatible body of pre-existing belief is already present to provide
‘hooks’, so to speak, to which the new item can be attached, chances

of assimilation are slim. Even with ‘seeing’, unless large bodies of
visual knowledge have already been amassed, a manin possession of
healthy eyes will not ‘see’ whatis in front of him.

Partly, these problems of perception and belief are no more than
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the difficulty of filing things before you have established file cate-

gories for them. Partly, they may berelated to the fact that our species
evolved in slow-changing environments which put a low premium on
the ability to assimilate drastically new experience.It is not only belief
and memory whichare disabled ifmental models are not appropriate.
Comprehensionitself, which should be the tap-root of remembering
and believing, can utterly fail, however simple the basic facts seem to
be.

Liesfor simplicity

If the facts are not simple, however, a whole new game Is joined. To
make sense of a complex world, the mind needsto simplify. This is
not an example of the perversity of human beings — the simplifica-

tions are essential for the mortal mind to handle complexity. The
simplifying slogans produced are inevitably distortions of reality:
they can range from minordistortions to downrightlies, depending
on the case. ‘When defending with King and Rookagainst King and
Queen,’ says the chess master, ‘always keep King and Rooktogether,’

and he does not err. Although not always necessary,this rule cannot

do harm.Butthe assertion ‘With King and Knight against King and
Rook, keep King and Knight together’, although widely believed,is

sometimes wrong.
At no time are the mind’s simplifications more active than when

understress or emotion. Someyears ago at a crowded departmental

seminar at Oxford the audience sat thunderstruck as the Reader in

Cytology, John Baker, attacked the seminarspeaker, Dr J. B. Rhine.
The latter was founder and director of the Institute of Para-
psychology at Duke University, North Carolina,later to be tarnished
by the departureofits deputy director caughtin a flagrant scientific

fraud. But even at that early date Baker, a passionate scientific

rationalist, felt that there was a rat to be smelt somewhere.

Grey-suited and manicured, Rhine suavely parried each thrust,
scattering a largesse of cute remarks. So might one seek with parasol
and peanutsto deflect the rhinoceros. John Baker,his voice a clarion,

returned to the charge: ‘When Galileo dropped his balls from the
Leaning Tower of Pisa —’ It was enough. The audience had been
stretched on the rack too long. With a shout of laughter the hall
exploded. No one,least of all the normally meticulous Baker, noticed
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that he had it wrong anyway. Galileo did not drop his or anyoneelse’s
balls. He rolled cannon-balls down aninclined plane. Baker had
momentarily simplified by confusing this with a weight-dropping
demonstration madeearlier by the Dutch engineer Stevinus.

Whensimplifications reside in the phenomena themselves and can
without cheating be conjured forth — there lies the gifted experi-
menter’s greatness. Foucault’s coup de thédtre in 1851 with a pen-

dulum strung from the ceiling of the Paris Panthéon wasofthis kind.
The demonstration can now beseen in mostof the world’s science
museums. A brass ball, set swinging in a straight traverse, pro-

gressively knocks downa circle of sand on the floor. As the earth

rotates beneathit, the pendulum’s swingbyinsensible shifts changes

direction relative to the ground, andin the course of a day or more,

depending on latitude, moves through the complete 360°. ‘Aha!’ we
say. ‘Of course!’ and then ‘Beautiful!’ Such is the lure of simplicity.

Epistemicillusions

But in pursuit of this lure our minds are preparedto tell us the
most extraordinary lies. Some of the best known of these are the

optical illusions, among which Richard Gregoryhas characterized a

wealth of self-deception.” These are, however, merely a special case
of a broaderclass of ‘epistemic illusions’. These occur whenever we

unconsciously falsify in order to understand. Faced with complex
material, the history of science for example, we tend, whatever the

cost to accuracy,to file facts by stereotype. Thereis no betterillustra-

tion of this than certain aspects of the Galileo story.
Galileo is remembered as a rational and honest mind standing

courageously against church bigotry and the dark forces of the

Inquisition. This scenario acts as a summarizing anecdote, a soothing
mnemonic for overloaded minds.It is, after all, historical fact that

the new astronomical physics encountered theological opposition.
Rather than memorize such a dry abstraction, can wepegit to a good
story?

In his marvellous book The Sleepwalkers, Arthur Koestler mar-

shals the documentsin the case. Theytell quite a different tale, of an
abrasive prima donna bent on provoking a mild and sophisticated
Vatican intelligentsia into confrontations in which he could shine.
Howlittle these mature and cultivated men were concerned to muzzle
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the voice of reason may be judged from an excerpt from the cor-
respondence of the Pope’s leading theologian of the day. In a letter

written in 1615 Cardinal Bellarmine, whowastoissue against Galileo

the admonition of 1616, stated:

... for to say that the assumption that the Earth movesand the Sun stands

still saves all the celestial appearances better than do eccentrics and epicycles
[of the Ptolemaic system] is to speak with excellent good sense and to run no

risk whatever. Such a mannerof speaking suffices for a mathematician.®

Andagain:

... if there were a real proof that ... the Sun does not go roundthe Earth but

the Earth round the Sun, then we should have to proceed with great circum-

spection in explaining passages of Scripture which appear to teach the

contrary, and we should rather have to say that we did not understand them

than declare an opinion to be false which is proved to be true. But I do not
think there is any such proof since none has been shown to me...

As the Vatican astronomers were aware, Galileo had noproof.

In the short term he temporizedby pretendingthathis critics would

be too stupid anywayto understandhis proofs. In the longer term his
campaign culminated in the publication in 1632 of his Dialogue on
the Two Principal World Systems whichfinally precipitated histrial.

In this work he pressed into the service of proof a wholly fallacious —

theory of the tides, pouring scorn at the same time on Kepler’s view
that they were to do with the moon.It is hard not to reverse the labels
‘reason’ and ‘bigotry’ which tradition has assigned to the twosides.
Yet false tradition prevails because the truth so often has awkward
corners. Why not makethe jigsaw easier with a little sandpapering?

Atleast now there is no doubt aboutthe scientific content of the

Galileo story. Turning to a more recent and much more complicated
issue, namely, the Theory of Relativity, we find that distortion is
universal. Virtually every author whohastried to tackle the subject
has got it wrong — and notjust the history but the substanceas well.
They write that in 1887 Michelson and Morley in an attempt to
detect the ‘ether drift’ obtained a null result, and this led Einstein to

devise the Special Theory of Relativity. Michael Polanyi points out
that in fact Michelson and Morley did not get a null result, and in
any case Einstein had never heard of them whenhefirst formulated
his ideas.° Despite this, the legend continues.

It is ‘well known’ that Abraham Lincoln wasa dedicated crusader
against slavery, whose Emancipation Proclamationin 1863 freed the
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slaves. In fact, he was not, andit did not.!° Returning to ourtime,it

is widely thought that advancesin the technology of computers and
data-banks provide opportunities for the wholesale violation of the
privacy of individuals which ourexisting structure of laws is power-
less to combat, but which will succumbto a wholly new typeof‘data
protection’legislation. They don’t, it isn’t, and it won’t.!! Butstill,

this is a field that is so complicated as to present rather special

obstacles to the task of dealing with it rationally.

Machineswill have to lie, too

While it is easy to scoff at the efforts of mortals to cometo grips with
complexity, one must realize that many simplifications are an essen-

tial part ofdealing withlife, and that therefore cognitive science needs

to understand them. When machinesstart to deal with very complex

issues, they will have to lie for the same reason that humans do,
namely, to make problems manageable and explainable. This is
inevitable, but it also raises dangers, in that lies can be harmful.

Mechanismswill be needed to keep such ‘approximations’ within a

reasonable distance of reality and generally watch over their conse-

quences. Wewill need a mathematical theory oflying.

Suppose that we have a network ofintelligent machines which
have to cooperate with each other. Imagine a group of automation
robots in a factory which are to some degreespecialized — one does

the paint spraying, another welds, one rivets, and so forth. For each

knowledge-base that each robothas, there will be a part which for
reasons of economy is commontoall the robots. The commonpart

might include facts about the workbench.Notall the robots will need
exactly the samefacts or the same emphasis. Obviously,if one robot

workson top of the bench it maybeeasierforitif, like the ancients

who believed that there was nothing the other side of the world,
it does not believe that there is any world beyond the bench-top. That
is a kind ofmyth, andthere is no point whatsoeverin the robot having
in its knowledge-base the information thatit is a myth. The super-
visory robot might as well let it believe the myth and save memory.

The attempt to imagine control systems for cooperating intelligent

devices, even at the mundanelevel of the assemblyline, is brought up
against something which we knew already but have not hitherto
thought important, namely, the fact that if we want to influence
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inanimate matter in a highly predictable way, we have physicstotell

us how to do it. But suppose that the object we wantto influenceis
itself an information-processing system, a humanbeing. Theneither
we mayseek to influence the system’s actionslike a military general
by issuing imperatives, or we may make assertional statements,
having a good enough modelof the target system to know that these

will have the same effect as the imperatives, but in some circum-

stances will act more quickly and cheaply.
Consider as an example the economypractised by the British

road-sign authorities. A typical sign at a roundabout is shown in
Figure 20. Everybody instantly interprets the sign as saying: “When
you get onto the roundabout, go clockwise.’ But that is not actually

whatthe picture says. It presents its viewer with an assertion, namely

that there is a defect, a gap in the road, and this is a lie. Strictly
speakingit is a joke lie, since there is no intent to deceive. But those
whoinvented the sign have a good enough model of the motorist to
know:first, that if he believes it, he will go roundto theleft; second,

that if he does not believe it and knowsit to be false, he will be subtle

enough to perform an additional inference and realize that the inten-
tion is to give him an imperative.

 

tan.

Berwick upon Tweed

Figure 20. Schemeused in road signs to indicate required direction round

a roundabout.Strictly, the depicted defectin the road is lie, but the motorist
understands whatis required of him (photograph: John Wilkie)
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The same phenomenonis exemplified when parentstell children
absurd untruths,as politicians also do voters, on the hypothesis that
this is the easiest way to get them to do something, or not to do

something: ‘It will make you sick!’ meaning ‘Don’t eatit!’ in the
private knowledge that it will not make the child sick. Like the
motorist, the child usually knowsthis too. But because timeis too
short either to have a clash ofwills or alternatively to explain the real
reasons,this short cutis tried — andit is in assertional language.

Hence wewill be obliged to devise an economics of lying. Pre-

sumably lying has arisen following regular economic laws of costs

and benefits. Presumably we shall be bound by the same laws to

construct analoguesin intelligent machines.

Mythsfill the gaps

Myths perform a function in society related to lies. Wherever there
are complex systems, there will always be incomplete information.
Computer programmers knowthis well, and their systems include
default values for those items where informationis essential but has

not been specified by the user. So with society: religions offer mental

‘slot fillers’ but there are also gaps in thereligions’ explanatory or
predictive powers. Myths are made to plug these gaps. Cognition
always confronts a dilemma. Wefeel that explanations and pre-

dictions should be rationally grounded. Yet (presumably for good
evolutionary reasons) we cannot leave the matter alone. When we

lack rational groundsto explain or predict wefill in if necessary with

irrational grounds. For example, in an agricultural community we

ask: “When will it rain?’ We feel better if we plug vacant slots with
made-up explanations.It will rain if the god becomeswell disposed.
At least we can then try to do something aboutit (by performing a
rain dance perhaps). For some temperamentsthis is the important

consideration.

Much depends on the habitual mood of the given community —

whetherfor exampleits tradition is ofan effortful, goal-seeking type.
At one end of a spectrum is the American work-oriented paradigm,
anxious for achievement, anxious for explanation. At the opposite
end lies a society like the Tikopia, a community living in the Pacific
in idyllic circumstances.!? When anthropological study began there

was nosign thatthis little community of 2,000 people had changed
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in recorded time. Most of their interests centred around gossip,

makinglove, dancing, preparing their midday meal — on which they
spent hours — and sometimesa little exploration. Their life was
healthy, and by our standards we would say happy.It approximated
moreclosely than one would think possible to Rousseau’s idea of the
‘noble savage’.

But when members of such idyllic communities are asked why

things happen — things which to us, who weave our mentallives very
tightly out of causality, seem to require explanation — they tend to
give fanciful reasons which can becaricatured as follows:

‘Whydoesthe sun go downin the sea every day?’
‘It’s a big red bird and it wantsto go backtoits nest.’

‘Ah! Butif it is a big red bird seeking its nest, why doesn’tit stay

there? It comes out of the sea the next morning from the otherside!’
Having thus revealed an entirely wrong mental approach, the

questioner may now be requited with somethinglike, ‘The bird goes
where he goes and knows what he knows!’ or (ultra-sophisticated),

‘Well, maybe the sun isn’t a big red bird, then!’ These are reasonable
attitudes for happy men.
Robots will need mythsfor the same information-processing needs

that humans need them. Wetake a mythto be a belief which is
treated as certain knowledge, and felt desirable that it should be,

by some groupofinteracting information systems. It can sometimes
be better to run along with a set of false hypotheses as though they
were true, if they are quick and computationally cheap. The myth
designer will say, ‘Kindly specify what tasks this machine must do,
and howfaroutof its depth, in terms of computational complexity,
it has to operate.’ Empty belief-slots, in both robots and humans,
must be plugged with default values.

Certainly the need for machines to operate with mythsand lies
will present problems to technologists and society alike. But at the
same time, it may be that computer extensions of human powers of
thought and memory will lessen our own dependence on stereotypes
for the sake ofcomprehensibility. Being able to handle more complex
systemsof information, we maylearnto resist the lure of simplicity,
the sandpapering of awkward corners. Fewer epistemic illusions,
more commandofdetail: we may yet cometo cherish the multifold
cornersof thingsas theyare.



CHAPTER 5

Experience and Discovery

One of the strange sounds of the semiconductor ageis the elder’s

lament for the death of arithmetic. Schoolchildren no longer know

of the existence of certain sacred motions by which we, and our

fathers’ fathers, were taught to extract the square root. Instead we
see the touch of a button on a hand-held calculator. Just as passive
gazing on pornographyis believed by cautious souls to deprave and

corruptthe senses, so,it is feared, may access to instant sums pervert

the intelligence.

There is something that the elder may overlook. In his own world,

whether he works on the shop-floor, on the Queen’s Bench,in the

executive suite, in the computer room or down onthe farm, the

delegation ofdetail invariably goes hand in hand with the expansion

of powers. What prize-winning architect bothers to learn how to

cast a concrete beam,so long as he can recognize a badly cast one?
When dealing with complexity, the lazy way is the best way. In

trying to automate some complicated mechanicalorintellectual task,
the smartest thing ofall is to make the outside world dothe calcu-
lations for you.

An example comes from the Charles Stark Draper Laboratories
in Massachusetts, a leading centre for research into computer-
controlled assembly. Like everyone who haslookedat the problem,
the engineers there are muchexercised by close-fitting parts. The
human workerslaps these into place with speed and abandon. An
industrial robot attempting this runs into every kind of wedging
and jamming. We can, of course, compute lots of little feedback

loops. Instead, the project director Jim Nevins asked, ‘Is there any
mechanism which can substitute for these and which can besited
in the external world, not in the computer?’
The answer seemswith hindsight obvious. The human assembly

worker, in addition to feedback adjustments computedin his nervous

system, is also aided by mechanical compliance provided by the
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‘bunginess’ of fingertips and the ‘give’ ofjoints. Accordingly, Nevins

wondered whether such compliance could be so extended asto substi-
tute entirely for the need for feedback computations. He nowhasall
parts mountedso asto ‘give’ a little along two of the three spatial
axes. Behold,in fractions ofa second square pegsslide smoothly into
square holes, round into round,just as if millions of tiny feedback
adjustmentsto a rigid system were being continuously computed.

Top-down versus bottom-up

There have always been two waysof solving problems. One, which
we shall call ‘top-down’, is based on theory. It requires that we
understand the fundamentalprinciples by which somethingoperates,
so that we can workoutlogically the consequencesofany actions and

so predict the future. The other method, ‘bottom-up’, works without
any grand explanatory schemes, possibly without any understanding
at all, but rather with various compilations and catalogues of know-
how. The bottom-up practitioner maywell say, ‘I don’t know whyit
works — I just know thatit will work.’

Both these approaches have their uses. When launching a rocket

to the moon,it is no good hopingthat the astronauts will be able to

navigate by trial and error. They only get onetry.It is vital to know

beforehandthe orbital mechanicsofthe celestial bodies involved, and

plan accordingly. On the other hand,a child learnsto bicycle without
first studying Newtonian dynamics or modern control theory. How

does he do this? He uses empirical rules, albeit in this case un-

conscious ones but rules nevertheless, working in conjunction with

the outside world. The basic rule, held in his brain’s sense-of-balance

mechanism,is: ‘If the bicycle is tipping to one side or the other, turn
the handlebars in that direction.’ There is no mention of Newton —
no explanation of why it works, butit does.

In contrast, if a computer using Newtonian theory wereto ride a
bicycle, then in a sense two bicycles would be in play, the real-world
bicycle and a ghostly bicycle implicit in the detailed mathematical
model used by the control algorithm. The humancyclist’s philosophy
is that one bicycle is enough, and that sensory data can be used to
extract from moment to moment the few relevant state-features

needed for a simple and sufficient set of decision rules. Between
successive rule invocationsthe real bicycle computes the dynamics,
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and the rules, laid down in the form of reflex stimulus—response

bonds, do therest. Pity the computer, doingit the hard way.Indeed,

a project was started at the Aeronautics and Astrophysics Labora-
tory at Stanford University to program a computer to control a
bicycle by physical theory, and it was abandonedastoodifficult.

As technology comesto deal with more and more complex prob-

lems, problems which are less and less understood from first prin-

ciples, it is essential to be able to operate as the child does, without

an explanatory theory. Even when one doeshavea theory,usingit
can run foul of the combinatorial explosion in trying to work out

every possibility, as we have seen. Rule-based systems, on the other

hand, offer an alternative of great potential. Indeed, these have
already becomeestablished as fundamentalto expert systems, as has
been shown.

Building a robot cricketer

Anillustrative fancy: we wish to design a robot cricketer. The device
must stand in the deepfield until the batsmanskiesa ball in its general
direction. The robot’s task is then to plot and follow an appropriate
interception course.

Solution 1: Take successive sightings of the ball on the fixed retina.
Use geometry, trigonometry andstatistical curve-fitting to extract a

trajectory, eked out by optical range-finding. Extrapolate to the

expected point of descent. Moveat top speedthe calculated distance
to this point. Halt. Await impact. Verdict: Much computation,little
certainty of outcome owing to incomplete information and errors of
measurement.

Solution 2: As above, but move to the expected impact point in a

succession of springs, repeating the above computation from scratch
at each halt. Verdict: Improved outcome but even more work.

Solution 3: Take time off to watch a humanoutfielder.
According to the late Seville Chapman of Cornell Aeronautical

Laboratory, the human uses a simple rule. He moves towards the

ball, continuously adjusting speed and direction and movingthe head

at the sametime,sothathisline of sight to the ball is uniformlyrising.
For approximately parabolic trajectories this rule suffices. The
details ofthe trajectory, which in windy weather maybe quite compli-
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cated, are left to the external physical system to work out, assisted,

according to Peter Brancazio of Brooklyn College, by the brain’s
monitoring of the changingtilt of the head throughsignals from the
organsof the inner ear. Solution 3 achieves exquisite accuracy for
almost no computational work. The lucky robotis left with spare

thinking capacity for the higher theory ofcricket.
In the samevein, children whosensibly push the labours of school

arithmetic into the electronic box have their energies freed for better
things, like saving up for a hand-held programmable with which to
do moreinteresting work. Thisis not to say that children should not
learn their ‘times’ tables. They should, and will continue to learn them

regardless ofthe pocketcalculator,ifonly to be able tojudge whether
an answerts in the right ballpark as a guard against keyingerrors.
Although long multiplication and division will probably not drop
from the syllabus, it must be concededthatskill in these procedures

will decline. Children will spend more time on the new skill of

programming. So the education processhasto lose little to gain a
lot.

Learning by experience

There is another notable aspect to the child’s bicycle-riding apart
from the absence of theory, namely, the way he learnt the skill.
No one told him the rule ‘If the bike is tipping ...’ His learning
was entirely by experience. We have seen how the major problem
obstructing the growth of expert systems 1s the cumbersome workof

acquiring the expertise — encoding the rules. What weneedis for

computersto be able to learn from experience too.
An example of how this is possible is a program developed at

Edinburgh in the early days of machineintelligence which taught
itself how to balance a pole. This is a classic problem in the design

ofcontrol systems. A small electric cart running onrails carries a pole

hinged at the bottom (Figure 21). The cart has to move back and
forth to keep the pole balanced,like a Highlanderin thefirst stage of
tossing the caber. In addition, the cart mustnotrun off the end of the
track. First-year students of mechanical engineering build systems to
do this with complex analoguecircuitry. Computer programsusing
control theory can doit, but not very economically. In contrast, the
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Figure 21. The pole-and-cart apparatus
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Figure 22. The state space of the pole-and-cart program (for clarity omitting

the fourth dimension) divided up into boxes with a separate rule ((demon’)

in each box and a chairmansupervising
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Figure 23. Progress of the pole-and-cart system in trial-and-error learning.
‘Merit’ is the time-until-crash, plotted against total accumulated learning

time, for example 27 minutes of balancing after 70 hoursof learning

Edinburgh program,called Boxes, worked entirely bottom-up, using

225 rules which were adjusted by the program in the light of experi-
ence. Data on four parameters were collected from the mechanism:
position of cart, velocity of cart, angle of pole and rate of change of
angle. The ranges of these were divided up andlaid out in a four-
dimensional ‘state space’, with each local region watched over by a

separate rule (or ‘demon’, to use the now-fashionable term coined by

Oliver Selfridge in 1959) which accumulated its own private store of
knowledge of what to do in those particular circumstances. The
whole system worked on the ‘committee of experts’ principle, with a
chairman (central control routine) inspecting each input state and
calling on the appropriate rule (Figure 22).!
A situation might take a form such as,‘Cart near left-hand end of

track, cart moving to the right, pole moderately inclined to the right,
pole swinging to the left’. Once invoked, the rule would prescribe a
burst of power from the motoreither to the left or to the right, and
a new input state would be generated. Thecollective expertise ofall
the rules put together determined the quality of the system’s per-
formance. At the start of a learning series the ‘left’ and ‘right’
decisions were set at random overthe total of 225. As the program
wentalong, it modified the rules according to their success rates, and
with accumulating experience learned to perform as an expert pole
balancer (Figure 23).
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In problems of this general category some regions of the space
exhibit markedly counter-intuitive features, as when the cart wanders

dangerously near the ‘precipice’ at the end of the track. In a pro-
portion of cases, according to the values of pole angle and angular

velocity, the solution is to drive initially towards the precipice, so as

to impart a swing of the pole away from it. Only then canit be safe
to direct the motor awayfrom the dangerarea,‘chasing the pole’ with
propercontrol overits angle.

The rules could have been derived symbolically from a detailed

mathematical model, although that would have required an exact

and exhaustive specification of the system’s physical parameters. In
real life these might or might not be available. Instead they were

assembled piecemeal from the system’s own operational experience.
Similarly, the deep-field cricketer has extracted from experience

the simple rule that maintaining a constant upward change of the

direction in three-dimensionalspace linking him to the ball will cause

them both to arrive at the same place at the same time.

Learning by example

Boxes acquiredits rules in a slow and crude way. What ts neededis

a much more powerful, universally applicable system. We wantto be
able to show a computer examples of things, be they statements of
fact, pictures, sample actions or what have you, and have it by a
process of logic discover rules that connect them — finding patterns

amongst apparent chaos. Only in this way can the bottleneck of
encoding rules for expert systems be overcome. Apart from facili-
tating the construction of expert systems, other benefits would

accrue.
Working out rules from examplesis the classical process in logic

of induction, inferring from the particular to the general, as opposed

to deduction, which is reasoning from the general to the particular.
Traditionally computing has been based around deduction, working
through a process exactly specified beforehand,anditis a large step
to turn to the messier, less theoretically complete process of induc-
tion. Is it possible for computers to induce? Experimentsoverthelast
few years have shown that indeed it is — we will describe some

examples.

The rule-devising gameis nicely conveyed by the followingtest,
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from a tutorial devised by Ryszard Michalski and James Larson.?
Looking at Figure 24, find the best rule you can which accurately
distinguishes the trains going east from the trains going west. (Pre-
sumably they have notyet left the depot, so we cannot just use a
compass!) Thereis not necessarily a uniquebest solution, but highest _
marksgo to the rules which are in somesense simplest.

1. TRAINS GOING EAST
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Figure 24. Find the simplestrule to distinguish ‘trains going east’ from ‘trains
going west’ (Copyright © 1980 IEEE)
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Michalski and Larson’s Pascal program succeeded very well in

finding rules to solve this puzzle. To start with, the program had to
be given descriptions of all the trains in a language that it could
handle. This wasa simplified versionoffirst-order predicate calculus,
a symbolic representation oflogic. It works ratherlike algebra. The

calculus consists of variables, which stand for propositions which
maybetrue, false or sometimes unknown;connectives which link

these, such as ‘and’, ‘or’, ‘not’, ‘implies’, etc.; a bracketing conven-

tion; and the quantifiers ‘for all’ and ‘there exists’. Together these

comprise a tool of great powerand generality: virtually any interpre-

tation can be substituted for the variables.

The trains were described to the program in terms of eleven

descriptors for the cars andtheir freights, such as:

infront (this car is in front of what other car)

length (car is long or short)
car-shape (open rectangle, U-shaped,ellipse, jagged top,etc.)

cont-load (car contains what load)
load-shape (either: circle

triangle

rectangle ppolygon)

hexagon

nrpts-load (numberofparts in car’s load)
nrwheels (number of wheels on car)

From these the program wasable to work out moreselectors, such

as the numberofcars in a train and the position of each car. It then

proceeded to make upgeneralizations aboutthe trains, using ‘meta-
selectors’ built from the information given, some more promising
than others. It would form the generalizations into a sequence of
‘partial stars’ and work through these, weeding out inconsistencies

until it came up with a completerule. It could judge the simplicity of

a rule by counting the numberof elementsin it. (The preference for
simplicity is known in experimental science as ‘Occam’s razor’: the
principle that, given two theories of apparently equal merit, the
simpler is to be preferred.) Before seeing what rules the program
induced, the reader could try developing one or twofor himself.

Thefirst rule the program produced lookedlikethis:

4 car, [length(car,) = short] [car-shape(car,) = closed top]

::> [class = Eastbound]
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Translated out of the logical language this means:

(1) [fa train contains a car which is short and has a closed top, then
it is eastbound,else it is westbound.*

Two morerules produced by the program:

(2) If a train contains a car whoseload is a triangle, and the load of

the car behindis a polygon,thenit is eastbound,else it is westbound;
(3) Ifthere are two cars,orifthere is ajagged-top car, then westbound,
else eastbound.

It is interesting to note that Michalski constructed the test with

rules (2) and (3) in mind. The machine’s rule (1), simpler than either

of the others, cameas a surprise to him.
A trial of this puzzle was run with human subjects, and out of a

total ofseventy-two attempts, forty-fourhit on rule (3), and six others
offered a version ofthis rule based on countingaxles rather thancars.
Surprisingly, only three entries correspondedto rule (1), the simplest

of all. A fourth entry could be scored as (1), except that the various

kinds of short closed cars were separately listed instead of being
given as a single description! No entries coincided with (2), but some
were at least as terse, such as: If there are more than two kinds of
freight, then eastbound, else westbound, produced by twosubjects.

Machine versus man

How do we comparetheefficiency of the Pascal program running on
aCDC Cyber175 with the ponderings ofhumansubjects? Computa-

tion time was around ten seconds. The Cyber can be credited with

about ten million instructions per second, makinga total outlay of
one hundred million instruction executions. According to J. M.
Stroud, the numberof binary discriminations per second which the
humanbraincanmanageatasprintisabout twenty.? Although Edsger
Dikstra was once clockedatfifty per second for a three-minute burst
of program writing, for lesser mortals an average of ten per second
can probably be assumed. Let us hazard that one instruction-execu-

*A moreliteral translation would be: The truth ofthe statement, ‘There exists acar,

such that the length ofcar, equals short and the shape ofcar, equals closed top,’ implies
the truth ofthe statement, ‘The class oftrain is eastbound.’



104 The Creative Computer

tion of the Cyber 175 is worth at least ten binary discriminations.If
this is so, the Michalski-Larson program required a total of 10°
binary discriminations,the equivalent of thinking continuously for a

hundred million seconds — thatis, three years ofuninterrupted mental
effort. So readers whopolishedoff the problem in seconds or minutes
are well ahead of the computer in their algorithms (whatever they
may be) for inductive logic, although notin their ability to represent
the processesexplicitly.

Children have moredifficulty in inventing rules. Even at the age of

ten the transition from judging everything by its concrete circum-

stancesto an ability to cope with abstracts and hypotheticals has only

just begun. Readersmightlike to try their children on their ability to
understand the train problem.
An interesting feature of the first two rules is that a program

knowing nothing about counting could still have got them. At the

other extreme one subject who wasbitten by the counting bug found

that the numberofsides in the cargo (circle counts1, triangle 3, etc.)
is a divisor of 60 if and only if the train is going west!
We sometimesforget what an elaboratetrick countingis. ‘Atfirst

thought,’ writes Levi Conant,‘it seems quite inconceivable that any

humanbeing should be destitute of the power of counting beyond

two. But such is the case; and in a few instances languages have been
found to be absolutely destitute of pure numeral words.’* Counting
is entirely an invention ofrelatively advanced civilizations— it is not
intrinsic in manorbeast. Interestingly enough though, man and some
birds and insects have a ‘numbersense’ that enables them to appreci-
ate the size of a collection of up to four or five without counting.

Lichtenberg gave his nightingale three meal-wormsa day, one at a

time, and remarked that after the third it knew the meal was over.

Crows have exhibited the ability to distinguish between three and
four, but not between four and five, while wasps have an uncanny
way of sensing the numberofthe grubsthey are doling out to their
-young.* But Clever Hans, the counting horse, had no suchability,

despite his owner’s faith. The horse’s art consisted in reading his
master’s involuntary signs when the preset numberwasreached.
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Eleusis and the searchfor truth

The Australian aborigine system of ‘one, two, many’ works well for
a variety of purposes. It certainly suffices for all normal situationsin
Robert Abbott’s rule-guessing game of Eleusis. As a psychology

student at the University of Colorado, Abbott becameinterested in

the ‘Aha!’ reaction — that flash of insight in which we grasp the
underlying principle behind some messy-looking phenomenon.
Eleusis is a card game for four or more players, one of whom is
designated as God. Theotherplayers lay down cardsonthetable in
turn. God has thought up a secret rule to govern the sequence in
which cards should belaid, and as each cardis played he announces

whetheritis ‘right’ or ‘wrong’. The other players try to work out what

the rule is by trial-and-error guesswork through the cards they put
down.°

Correct cards are laid in a straight line across the table, and
incorrect ones on sidelines. When a player thinks he knowsthe rule

he can declare himself to be a ‘prophet’ and take over God’s func-

tions, judging the subsequent movesof other players. But woe betide
false prophets! Examples of reasonable rules could be:

(1) The number of a card must differ from the previous one by 1, 2
or 3;

(2) If the last legally played card was black, play a card of equal or
higher value. If the last card was red, play a card of equal or lower
value.

Rules must deal only with the sequence of cards, not with anything
external to them such as the sex of the last player or whether God
scratches his ear. The openingof a typical round is shown in Figure

25.*
Whatthe players are doing of course is induction. In 1977 Abbott

himself described attempts to get a computer to play Eleusis as
‘doomed to failure’. How wrong he was has been shown by James
Larson, who developed a program for his Master’s thesis at the
University of Illinois, and by Michael Berry of I. P. Sharp Associates,

whodid the same asan exercise in the mathematical programming
language APL. Berry’s program plays alongside humans,so their

* Rule for the depicted sample round:If the last legally played card wasodd, play a

black card. Otherwise play a red one.
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moves need to be conveyed to it by typing them in on the keyboard,
together with God’s judgements on them and on the machine’s
moves.” The program looks for sequences and alternations in the

attributes of the cards (suit, colour and number) andin sub-attributes

(parity, primeness,divisibility by three, etc.). The standard patterns
that all these fit makeit relatively easy for the program to construct
an English-language version of the rule when it has been found, a
paraphrase, but a readily recognizable one, of the way God would
put it. For instance, in the case of example (1) given above it would

say,

THERE IS ALWAYS A CHANGE OF NUMERIC VALUE. NO CARD

DIFFERS FROMITS PREDECESSORBY MORETHAN3.

Martin Gardnerhaspointed out that Eleusis is an excellent model
of ‘a search for truth’, and of induction, ‘the process at the very heart

of the scientific method’. So success by computers at playing it has

implications far broader than the world ofgames. To take an example
from a serious academic discipline, we look at discovery in pure
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Figure 25. A typical round of Eleusis at an early stage
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Euclid rediscovered

At the Stanford Heuristic Programming Project, Douglas Lenat was
looking for a subject domain in which a computer could discover

things in a very broadsense,notjust looking for one rule as in Eleusis

and most other problem solving, but working in an entirely open-

ended way. He chose the theory of numbers, as a well-contained and

well-understood mathematicalfield, and developed the programAM
(originally Automated Mathematician). This started with an
extremely basic set ofmathematical concepts and ‘wandered around’

the problem space looking for more. It constructed on its own a

number of well-known mathematical ideas and even rediscovered
important theorems, such as Euclid’s Unique Factorization
Theorem, whichstates that a composite numbercan be factorized
into primes in only one way. It formulated a curious geometric
interpretation of Goldbach’s Conjecture, to do with the sums of

primes, and made one discovery concerning ‘maximally divisible

numbers’ that wasentirely original.®
The program started with 100 elementary conceptsoffinite set

theory: objects like sets, lists, bags (sets allowing replication of
elements) and truth-values; relations like membership and equality;
operationslike inversion, composition andintersection.It also had a
numberof heuristics, i.e. rules ofthumb, providing advice on whatto
do. One of these was: ‘Coincidences are interesting.’ Thus when AM
discovered multiplication in four different ways,* it decided thatif
that many different proceduresled to the same thing,it wasinterest-
ing and probably important. Another heuristic was: ‘Ifan operation

is interesting, look at its inverse.’ Thus from multiplication, division

came to be explored. This led to the process of dividing up large
collections of numbersinto their factors. Yet another heuristic was:
‘Look at extreme cases of things.’ So AM examined the sets of
numbers that had only one or two divisors, and behold, it had

discovered the concept ofprime numbers.It then explored the oppo-
site extreme to that, namely, numbers with manydivisors, a topic

which Lenat thought had never been studied before. He then found

* Namely: as repeated addition; as an analogue to the Cartesian productofsets; as

the cardinality of the union of the powersets of two sets; and as the total numberof

symbols one gets by replacing (in parallel) each element of bag X by a complete copy

of bag Y.
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out that Srinivasa Ramanyjan,G. H. Hardy’s self-taught collabora-
tor, had worked on maximally divisible numbers, but even he had not
foundoneparticular regularity discovered by AM.

If number theory seems obscure and inconsequential, remember
that the Unique Factorization Theorem is the basis of the latest en-
cryption procedures being developed by the US governmentas a
universally applied standard for the protection of privacy of com-
puter data. AM wasalsothestarting point for Lenat’s current work,
which 1s concerned with applications to practical problems, as we

shall shortly describe.

New ways and means

Despite its successes AM had one fundamentaldeficiency — it could

develop new concepts but not new heuristics. As the concepts grew
further and further away from the primitives AM started with, the

heuristics turned out to be too general and too weakto guideeffec-
tively. To overcomethis problem Lenathas devised a new program,

Eurisko.? This modifies its heuristics in small ways from timeto time,

sometimes randomly, sometimes in an effort to ‘specialize’, as in

replacing ‘Or’ by ‘Mostof’. There are heuristics about heuristics, such

as: ‘Avoid replacing ‘‘And’’ with “‘Or’’ because that can lead to
explosions.’ New heuristics are judged for usefulness and retained or
put aside as the case may be. There were initial problems caused by
the heuristics being held in chunks of Lisp code that were too large

to be manipulated meaningfully; these were broken up into smaller
pieces. Lenat also relates how a heuristic that had made a discovery

would put its own name downin thelist of heuristics of high worth,
and then take that realization that it had made a discovery as a
discovery in itself. So the heuristic would award itself more points,

and then take that as yet another discovery worthstill more points,

and so on in aninfinite loop! Lenat had to stop the program changing
its own goals in an uncontrolled fashion. After that, useful new
heuristics were devised, mainly ones specific to particular subject
domains.

It turned out that the heuristics from mathematics were often

relevant to dealing with the real world. For example, if we take an

issue such as ‘employment’, wesee thatit consists of a large number
of relationships, of people being employed by other people. Looking  
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at the extremes ofthis set of relationships as recommended by our
third heuristic leads us to examine at one end people whoare not
employed at all (unemployment) and at the other end people who
haveseveral jobs (moonlighting), both important issues. Eurisko has
already made contributionsto real-world problems, most notably in

the design of three-dimensional electronic integrated circuits. As
originally conceived by humans, these were just ordinary flat
integrated circuits folded over in order to reduce the straight-line
distancethe electricity had to travel between elements — paring a few
picosecondsoff the circuit’s response time. Instead ofjust accepting

that, Eurisko asked, ‘How could the elements interact?’ It would take

a typicaljunction as shownschematically in Figure 26(a) and apply to
it the heuristic: ‘Ifyouhavea valuable structure, try tomake itmoresym-
metric.’The result was as shownin Figure 26(b). The extra bits added
on allowed the structure to perform more than onefunction at a time,

so that one unit could act as both a ‘Not—And’ circuit and an ‘Or’

circuit. It had not occurred to the human designers that this could
be done, partly because the complexities of VLSI had compelled
them to simplify the design space in their mindsandrule outthe pos-
sibility of an element acting as a gate and a channelsimultaneously.
Designers Jim Gibbons and Lynn Conwayare now using Eurisko,

and the potential ofVLSI could be greatly expanded as a result.

(a)  

  

   

   

       

 

 

  
Figure 26. (a) junction in an integrated circuit; (b) the same, with bits added
in all directions as suggested by Eurisko
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I see no ships

Eurisko hasalso been notably successful, some say too successful, in

taking part in an annual naval war game in the USAcalled the
Trillion Credit Squadron Competition. Participants have to design
a battle-fleet within given cost constraints and see how the fleet

performs in a simulated action againstall the others. Eurisko came

up with some extraordinary designs,all perfectly feasible, including
one consisting of a vast numberofvirtually impregnable ships, each
one hardly bigger than a lifeboat. On being presented at the game,

Eurisko’s bizarre fleets caused much laughter amongst the other

players, followed by consternation when they were seen to be win-
ning. Lenatis not surprised that for two years running the rules have
been changed with the effect of outlawing Eurisko’s successive con-
coctions.

Turning to pure science, Lenatis devising ways of getting Eurisko
to model biological mutations. Theideais that ifsomehow there were
a way that information aboutprevious states of a species could be
retained after mutations, it might be that evolution proceeds notin
an entirely random fashion as has been thought, but somehow by

heuristics, just as Eurisko evolves its own concepts. Buried in the
tortuous mechanisms of DNA there may be things that act as
heuristics, in effect telling nature, “Try mutation this way’ or, ‘That
sort of mutation has not turned out very well in the past.’ The
possibility here is that an explanation may be found for the extra-
ordinary effectiveness of evolution.

AMand Eurisko are fundamentally further along the road of
creativity than Michalski’s trains program, because instead of just
finding links between existing concepts, they explore and find new
ones. Thetrains program for instance could not invent the concept
of ‘jagged-topness’ by which somecarswere described — it could not

add to its vocabulary. AM and Eurisko can,and this is in many ways

the most important part of creativity — the top ‘notation’ layer of
Aaron Sloman’s model described in Chapter1.

Down on the soybeanfarm

An example of computer induction that is literally more down-to-
earth comes from the agriculturalstate ofIllinois, where the soybean
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crops can be smitten with any one of twenty or so commondiseases,
and correct diagnosis can makethe difference between a ruinous
harvest and riches. The state operates a network of Agricultural
Extension Offices which farmers can phone for advice. Queries which
cannotbe dealt with on the spotare sent to university plant patholo-
gists, who are greatly overburdened with requests. Large delays and
backlogs develop, so an expert system would be useful. Michalski and
his colleague Richard Chilausky proceeded to construct such a
system, and obtaineda set of rules by the usual laborious process over

forty-five hours of consultation with the plant pathologist Barry
Jacobsen. These rules covered nineteen diseases such as brown stem
rot, downy mildew,bacterial blight and diaporthe stem canker, and
the diagnoses were based on thirty-five descriptors of the condition
of the plants including leaf spots, holing, seed shrivelling and in-

formation on thetime of year, rainfall and the like. These descriptors

were deliberately chosen to be easily visible so that observations
could be accepted from non-expertsin thefield.

It was then decided to try an experiment with computer induction
of rules. Data on 307 diseased plants were collected on forms, speci-
fying a value for each of the thirty-five descriptors. Every example

was then given a diagnosis by a human expert (Figure 27). The data

were fed to Michalski and Larson’s inductive inference program,
essentially the sameas that used for the earlier trains example, which
produced a completely differentset ofrules from those obtained from
Jacobsen. Comparing the performance of the machine-generated
rules with the human-generated ones on a newtest set of 376 cases,

the machine’s rules got 374 right, while the rules obtained from
Jacobsen scored only 83 per cent right. The machine’s rules are now
the onesthatare in use.!°

Anotherexpert system that has been extended to generate its own
rules is Dendral at Stanford. A new program, Meta-dendral, was

written to take mass-spectrometry data from molecules of known

structure and infer rules connecting them. It has created rules for

sub-families of molecules for which noneexisted before.!!
Many computing tasks come downto classification. This is what

pattern recognition in computer vision and hearing is about, and
rule-based inductive inference systems have shown their worth in
tackling these problems. Michalski has been working on a program
for automatically discovering the categories themselves into which
objects are to be classified, going beyond the constructionofrules for
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Environmental descriptors

Time of occurrence = July

Plant stand = normal

Precipitation = above normal

Temperature = normal
Occurrence of hail = no
Numberyears crop repeated = 4

Damaged area = wholefields

Plant global descriptors

Severity = potentially severe
Seed treatment = none

Seed germination = less than 80%

Plant height = normal

Plant local descriptors

Condition of leaves = abnormal

Leafspots—halos = without yellow halos

Leafspots—margin = without watersoaked margin
Leafspot size = greater than }”

Leaf shredding or shot holding = present

Leaf malformation = absent

Leaf mildew growth = absent

Condition of stem = abnormal

Presence of lodging = no

Stem cankers = above the second node

Cankerlesion color = brown

Fruiting bodies on stem = present
External decay = absent

Mycelium on stem = absent
Internal discoloration of stem = none

Sclerotia—internal or external = absent

Conditions of fruits-pods = normal

Fruit spots = absent

Condition of seed = normal
Mould growth = absent
Seed discoloration = absent

Seed size = normal

Seed shrivelling = absent

Condition of roots = normal
 

Diagnosis:

Diaporthe stem canker( ) Charcoal rot( ) Rhizoctonia

root rot( ) Phytophthora root rot(_) Brown stem root rot( )

Powdery mildew( ) Downy mildew( ) Brown spot(x)

Bacterial blight(_) Bacterial pustule( ) Purpose seed stain( )

Anthracnose(_) Phyllosticta leaf spot( ) Alternaria leaf

spot( ) Frog eye leafspot( )
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sorting objects into pre-established categories. This new technique,
called conjunctive conceptual clustering, has been usedatIllinois in
a project to classify 100 Spanish songs.12 At Carnegie—Mellon
University, Hearsay-II is a speech recognition system that uses a
knowledge-base rather as an expert system does. Repositories of

knowledgeare held for different levels of analysis — syllables, words,

phrases and so on — and these communicate with each other through
a common workspacecalled a ‘blackboard’. Hypothesesare set up
about the probable meaning of the sounds being deciphered, and
these are tested as the analysis proceeds.

Bacon's impropriety

Despite its obvious successes, induction is still looked on with

suspicion. It lacks the one great attribute of deductive systems based
on theory, namely the ability to explain things, to give us that ‘Aha!’

flash of insight when we understand a principle. Induction is by its

very nature bottom-up,with all that that implies in termsof lack of
elegance and completeness. Top-down reasoning has the air of a
formal science. Speaking at a conference in London, Manny Leh-
man, Professor of Computing Science at Imperial College,

commented disapprovingly on the lack ofscientific theory in artificial

intelligence at the present moment. ‘We don’t wantto rely on a bridge

built only on experiment, not on science,’ he said. Of course, for

centuries bridges were built in just that way, of necessity.
Occasionally an empirically minded thinker like Francis Bacon

offers an explanatory annotation on the bottom-up world, arguing
that it too hasits unifying principles. Bacon conceived in bold outline.

the entire possibility and structure of technological R&D as a world-

transformingenterprise. But Baconian logic modelstoofaithfully for

public exhibition the actual cognitive style of Homo sapiens, just as
certain physical functions ofman, howeverlife-giving in theireffects,
are thought best not publicly performed.

 

Figure 27 (opposite). Completed questionnaire describing a diseased soy-
bean plant, used as input to the inductive learning program AQI11. Below
the line, ‘Brown spot’ has been singled out from the range of possible
diagnoses (International JournalofPolicy Analysis and Information Systems)



114 The Creative Computer

Top-downtheories will continue to be centrally important, prin-
cipally for the sake of understanding. But for mechanizing complex
tasks they are often not usable at all. In these cases, for every

computing device whetherelectronic or protoplasmic, skill must be
built as a bottom-up creation in which, as the philosopher Herbert
Spencerputit, “The vital actions are severally decomposed into their
componentparts, and each of these parts has an agenttoitself.’!¢



CHAPTER 6

The Creation
ofNew Knowledge

Computer people engaged in barking up the tree of knowledge were
more than a little dumbfounded by the view taken of computer-
stored information by three Appeal Court judges in January 1980 in
the case of the Crown versus Pettigrew, accused of stealing bank-
notes. Three fivers in his possession had serial numbers matching a
list printed by the Bank of England computer. To be admissible,

according to the Criminal Evidence Act 1965, a document must have
been prepared by someone with knowledgeof its contents. A com-
puter cannot be regarded, so the Appeal Court ruled, as having
‘knowledge’in this sense.

Somethingis clearly wrong here,either in the state of the law orin

received notions of what constitutes knowledge. Yet examining
boards downthe ages have made no bonesabout knowledge.If the
candidate can mentally retrieve the requested information, he is

credited with knowledge of it, and hence with knowledge of the
contents of any document he prepared in his attemptto satisfy the
examiners. Why the Bank of England computer’s final print-out
should be flunked in the analogous case seems mysterious.

Knowledgeis the capacity to give correct answers to questions. Of
course, there is sometimes disagreement over what constitutes a
correct answer. The outraged husband,finding a nude maninhis
wife’s bedroom wardrobe, barks at the intruder: ‘Whatthe hell are

you doingin there?’
‘Everyone’, comesthereply, ‘has got to be somewhere.’ Doesthis

answerrate ten out of ten, or noughtout of ten? Any intermediate
mark would seem to be wrong.

Still, there is no disputing that computers can answer questions,
and therefore can have knowledge. With all respect to their Lordships

of the Court of Appeal, this is well known. Whatis not well known

is that computerscan not only possess knowledge, they can createit.
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Information is not knowledge

Atthis point, readers with memories oflong-past physics lessons may
ask, ‘Surely the Second Law of Thermodynamics tells us that

information cannotbe created?’ Indeedit does, but information and

knowledge are not the same. Information on its own does not take
you very far. Consider the number4-38.It is useless unless you know
it is the time of the train to Birmingham. Not only that — you need to
know where Birmingham is in relation to where you are now and

where you wantto go.

Knowledgeis a special form in which information can be packaged

so that it can be stored, retrieved and understood by the humanbrain.
In a similar way, drinking-water can be said to be a special form of
H,0O.Creation ofa chunk ofknowledgefrom a mountainofinforma-
tion is thuslike the creation of a cupful of water from a mountain of
ice. In both cases hard work is required for a small but possibly

precious return.

Weshall have moreto say onthis distinction between information
and knowledge. But first let us look at the physicist’s quantified
definition of ‘information’, formalized by Claude Shannon while

working at the Bell Telephone Laboratories in the 1940s.! In some
waysthe definition may seem foreign to ourintuitive idea ofinforma-
tion.In its simplest form, information contentis just a measure of the
numberofbits needed to encode a message:

1001011010100011

is a Message containingsixteen bits. There are 2)° or 65,536 different
messages that can be encodedin sixteen bits, and this is just one of
them. But as a measure of true information content the bit countis
misleading, because in reality there is another factor to be considered.

Take a different sixteen-bit message:

0101010101010101

Thereis a clear pattern here which obviously allows the message to
be rephrased as

‘Ol’ eight timesover.

A long, regular message of this sort can naturally be condensed into
far fewer bits than it containsin its full form. Messages on the other
hand whichare effectively random cannot be condensed.
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Lack of randomnessis a very common phenomenon,for example

in natural language. In computers the crudest and commonest way
of encoding English text is to assign eight bits of memory to each
letter, but this entails a great deal of waste because there is so much

extra information, or ‘redundancy’, in the language. Try leaving all

the vowels out of a sentence:

W’R SRGNT PPPR’S LNLY HRTS CLB BND
W HP Y WLL NJY TH SHW.

This makesso little difference that ancient Hebrew inits early days

was actually written all the time without vowels. There is another
factor, which is that someletters in English (E,T) are much more
commonthan others (X, Z). So it makes sense to give the common
letters shorter codes than the rare ones — this is exactly what Samuel
Morsedid with his original telegraph code.All this results in the true

information content of English being closer to one bit per letter than
eightbits.

Essentially, the information value of a messageis its capacity to
surprise the recipient. Ifyou know what messageorpart ofa message
is coming,its arrival conveys no information to you. For example,in
normal English the letter Q is always followed by U, so the U has no
information contentatall. It might as well not be there; in a technical
sense it is redundant. Shannon constructed his measure of informa-
tion by considering the probabilities of each symbol occurring so
that the more likely symbols are credited with less information
content. Summing and averagingthe ‘surprise-values’ of the indivi-
dual symbols constituting a given message gives a measure of the

‘surprise-value’ of the whole message andhenceofits total informa-
tion content.
Of course, this has nothing to do with the meaning of a message,

or ofhow interesting it is. A message consisting ofan entirely random
jumble of characters contains plenty of information but is very
boring. At the other extreme a completely non-random message such

as

NNNNNNNNNNNNN...

is also boring. ‘Interestingness’ at the superficial level comes from
messages that are somewherein between. At a deeperlevel, interest-

ingnessis a property ofwhat the message denotes, thatis, its meaning.

This aspect is not covered in the classical treatment.
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Laying down the Second Law

Wenowreturn to thermodynamics, andthe law referred to by C.P.
Snowin his assertion that non-scientists should feel guilty about not
understanding it. The Second Law of Thermodynamicstells us that
as the energy ofthe stars is radiated out into the vastness of space,
the hot areas and cold areas of the universe gradually even out their
energy until eventually there will be a uniform,lifeless distribution of
bitter cold everywhere — the ‘Heat-Death of the Universe’. So the
whole contrivance is slowly running down,and everythingis getting

more and more disorganized. The physicist describes this as a con-

tinual increase of entropy (his measure of disorganization), while at
the same time information, the opposite of entropy, decreases. The
organization of the cosmosislost in the universal jumble.
A consequence ofthis is that information cannotpossibly increase,

except on a local scale, and then only when information is lost
somewhereelse. So information cannot be created — not by man,nor
by machine, nor by anything.
A qualification must be added to this account to take care of

possible interpretations at the cosmological and sub-atomiclevels of

analysis. Paul Davies ofNewcastle University explains that physicists
are beginning to wonder whether across the breadth of the entire
universe, continually expanding asit is, gravity might actually be
creating information at the expense ofits own entropy. At quite the
opposite extremeof scale, considering sub-atomic particles, it is true

that Heisenberg’s Uncertainty Principle tells us that, by the very
nature of atoms,it is impossible to predict how and whentheywill
split apart in radioactive decay. Therefore when an atom doessplit,
it comesin a certain sense asa ‘surprise’, so that information might
be said to have been created. Nevertheless, the laws of statistics

ensure that this can have noeffect on the quantity of information
affecting us on a humanscale. Further, we can detect the decay ofan
atom and the information contained therein only by amplifying the
effects with a particle counter, and this device, requiring power to
drive it, uses up more information thanit supplies to us.
So while information can in some theories be created on a cosmic

and ona sub-atomicscale, it cannot be created on the scale ofhumans

and their machines.

Still, intuitively it may seem strange to think that information
cannot be created. Take the sentence: ‘The height of the new sky-
scraperis 1,150 feet.’ This is definitely a piece of information, which
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seemsto have been recently created. It exists now — how couldit exist
before the building was there? Ah, butit did, from the point of view

ofthe information theoretician. It existed in the mind ofthe architect,

not consciously to start with, even before he decided to design the

building, and before that in the myriad things which influenced him.

Saying this is nothing more than affirming the principle ofcause and
effect: the information describing every effect is wholly contained in
the circumstances of the cause.It is there, but in a different form —

assuredly very difficult to obtain, but there. The issue of obtainability
is central to the notion of knowledge; the knowledgethat the height
of the new skyscraper is 1,150 feet is created at the instant that

the corresponding information comes to be structured in brain-
accessible form.

New knowledgefor old information

So computers cannotcreate information. This has long been clear.
Whathas only recently becomeclear is that there is no such barrier
to computers creating knowledge.It is this discovery, with the conse-
quencesthat it entails, that forms the central impetus of this book.
Whatis knowledge created from? Information. Through purely

internal operations a computer can add to its knowledge (and thence
to the knowledge of the world at large) using a fixed amount of
information. To explain this, we will start with a trivial example.
Suppose we write a prime-factorization program that will tell us
whether any numberwegiveit up to ten million is prime or compo-
site. Moreover we endow the program with the habit of keeping in
memory theresults of its own past computations. This is a slow home
computer, so when wetry it with 1,005,973 it takes such a long time
that we get bored andinterrupt it before it has found the answer.
Every exam has a timelimit, so no marks in this case. Then wetry
997 and after a while the program says, ‘Prime’, and storesthis result
in memory.Soits ‘knowledge’ extendsat least to 997. Whatelse does
it know?

Weinput 999,997 and go out, leaving the program running.Sofar,
no marks. But by the time we return, the program hasfinished and
stored its result as alwaysin a table, so we are not surprised when we
again ask it 999,997 that it knows the answerstraight away, replying
‘Composite’ instantly by look-up. Moreover it can now answer
the question it failed with utterly before — giving 1,005,973 as
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‘Composite’ in a few seconds. The seeming miracle can be traced to
its use, for speeding up the computation, of the new-found primeness
of 997. Knowledgehereis clearly being created and used. Yet infor-

mation remainsconstant, being fully contained in the original pro-
gram. What changes, then? Simplythesize ofthat fraction ofthe total
information which can: be mobilized fast enough to satisfy the
examiners.

Structures make concepts

This exampleis in no wayrealistic, because the knowledge generated
is hardly significant in human terms, but from this we can begin to
see what is needed to make information become knowledge. The
information must be in appropriate structures. When these infor-

 

NAM E(s): Set, Non-proper Class, Collection, Finite set

DEFINITIONS:

RECURSIVE:4(S)[S = { } or Set . Definition
(Remove(Any-member(S),S))]

RECURSIVE QUICK:4(S) [S = { } or Set . Definition (CD R(S))]
QUICK:4 (S) [Match S with {...}]

SPECIALIZATIONS: Nonempty-set, Set-of-sets, Set-of-numbers

BOUNDARY:Empty-set, Singleton, Doubleton, Tripleton

GENERALIZATIONS: Unordered-Structure, Collection,

Structure-with-no-multiple-elements-allowed
IS-A: Kind-of-structure
EXAMPLES:
TYPICAL:{{}}, {A}, {A,B}, {3}

BARELY:{}, {A, B, {C, {{{A,C,(3,3,9), < 4,{B},A > }}}}}

NOT-QUITE:{A,A}, (), {B,A}

FOIBLE: <4,1,A,1>

CONJECS:All unordered-structuresaresets.
INTUITIONS: Geometric: Venn diagram.

ANALOGIES:{set, set operations} = {list, list operations}
WORTH:600 [on a scale of 0—1000]

VIEW:

PREDICATE:4 (P) {xeDomain(P)|P(x)}

STRUCTURE:4 (S) Enclose-in-braces

(Sort(Remove-multiple-elements(S)))

IN-DOMAIN-OF:Union,Intersection, Set-difference, Subset,

Member, Cartesian-prod, Set-equality
IN-RANGE-OF:Union,Intersect, Set-difference, Satisfying

Figure 28. Aninformationstructure: howAM represents theconcept ofa‘set’?
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mation structures are recognizable to human beings wecall them
concepts. Useful knowledgeis information in conceptualizedform.
Harking back to the example of the train times, a very basic

information structure might be a timetable incorporating a map,
identifying where the stations are and howtheyare interconnected.

For an example of something moresubstantial, recall Doug Lenat’s
program AMintheprevious chapter. The whole idea ofthis is that
it handles concepts, each ofwhichis stored internally in the computer
in a special structure. Figure 28 shows one of these, namely the
concept of a set. Without worrying too much aboutthe details, one

can see from this how a computer program cantake the elements of
the structure and manipulate them,finding relationships with other
concepts andfilling in the emptyslots in the structure.
The concept of a set was one of those given to AM tostart with.

But look nowat Figure 29. This is the concept, ‘prime number’. You

will recall thatAM wasnot given this concept — it constructedit itself.

In the process, it created knowledge.

Discoveriesfrom Edinburgh

Of course, the knowledge in this case was notoriginal, as the idea of

 

NAM E(s): Prime Numbers, Primes, Numbers-with-2-Divisors
DEFINITIONS:
ORIGIN:Divisors-of(x) is-a Doubleton

PRED.-CALCULUS:Prime(x) = (Vz)(z|x ~z = 1 XOR z = x)

ITERATIVE:(for x > 1): Fori from 2 to x — 1, 71 (ilx)

EXAMPLES:2,3, 5, 7, 11, 13, 17

BOUNDARY:2,3

BOUNDARY-FAILURES:0, |
FAILURES:12

GENERALIZATIONS: Numbers, Numbers with an even no.

of divisors, Numbers with a prime no.of divisors

SPECIALIZATIONS:Prime pairs, Prime uniquely-addables

CONJECS:Uniquefactorization, Goldbach’s conjecture

ANALOGIES: Maximally-divisible numbersare converse
extremes of Divisors-of

INTEREST:Conjec’s tying Primes to Times, to Divisors-of, and

to other closely related operations
WORTH:800

Figure 29. AM’s conceptof a ‘prime number’
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a prime numberhas been aroundfora long time. (Notealso that the
name ‘Prime Number’that appearsin the structure wasnot generated
by the program — it wasfilled in later by Lenat.) A different story
though comes from Edinburgh, whereseveral researchers have been
constructing expert systems for playing chess end-games.Early on in
this work Ivan Bratko, himself a master-level player, developed
a set of rules for King and Rook against King and embedded them
in a structure called an ‘advice table’. The rules were fed into the
machineto be correlated, cross-checked,revised, refined and proved.

When the expert system was working, Bratko translated the rules

back into English, expecting to find somethinglike the original text-

book formulation. Instead, somethingstartlingly different appeared.
Bratko discovered that the six rules obtained were more complete,

concise and understandable by far than the chess-master formula-
tions to be found in the books. In place of pages of diffuse text and

diagramswasa set of rules so simple andclear-cut that anyone could

grasp and even memorize them (Figure 30). A child could learn the
rules and use them to play this end-gameasskilfully as a master.

Bratko had made the important discovery that a computer could
enable a humanto formulate new knowledgethat he could notother-
wise have formulated. The formulation was completely original,
never having been seen before by any chess master or writer of text-
books. Butstill the knowledge wasbasically created by a man, not

 

1. In obeying the rules which follow, make sure that stalemate is not created

or the Rookleft en prise.

2. Look for a way to mate opponent’s King in two moves.

3. If the above is not possible, then look for a way to constrain further the area
on the chess board to which the opponent’s Kingis confined by our Rook.

4. If the above is not possible, then look for a way to move our Kingcloser to
opponent’s King.

5. If none of the above pieces of advice 2, 3 or 4 works, then look for a way of
maintaining the present achievements in the sense of 3 and 4 (that is, make a
waiting move).

6. If none of2, 3, 4 or 5 is attainable, then look for a way of obtaining a position
in which our Rookdivides the two Kingseither vertically or horizontally.   
 

Figure 30. Ivan Bratko’s strategy for winning with King and Rookagainst
King — knowledgecreated with the assistance of a computer
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by a machine. This was the case until two other researchers at
Edinburgh, Tim Niblett and Alen Shapiro, tackled the end-game

King—Pawn-King. They took astheir starting point a giant table for
this end-game which had been mechanically compiled by Michael
Clarke for use in the samesort of ‘blind look-up’ we described in

Chapter 3. The table indicated for every position whether it was
‘drawn’or‘lost’ but provided no explanation of why, nor anystruc-
ture or comprehensible pattern that could make sense to a human.
Niblett and Shapiro ran selected parts of the table through an induc-
tion program called ID3, and following a semi-automatic iterative
process they developed a set of decision trees which a human could
use to evaluate any position.? The mastertree is shown in Figure 31.

Broad meaningof attribute
canrn '[———— canrn is a specific pattern which entails

false LOST that however Black moves, White can promote
the pawn without moving his King

v
mainp
pe mainpentails that the pattern mainpatt

false LOST either holds or is achievable

 

 

Vv
rookp

frue the pawnis a rook-pawn and canrn
false LOST is achievable

rank56
true the pawn is on rank 5 or 6 and the pattern

false LOST rank6patt holds or is achievable

rank7
pe the pawnis on rank 7 and the White King

false LOST canforceits way nexttoit

Vv

inter
pe mutual interference operates between

false LOST blockability of canrn and mainp

v
DRAWN

Figure 31. Knowledge created by computer in ID3’s mastertree for classi-
fying King—-Pawn-King positions with Black to move into ‘LOST’ or
‘DRAWN’. For each of the six attributes a similar tree was separately

synthesized from a set of moreprimitive attributes
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This together with its sub-trees makes excellent sense to a chess

expert. From totally indigestible information ID3 had actually
created new knowledge.

Niblett and Shapiro had notonly succeeded in getting a machine
to create original knowledge. They had also engineered the exact
opposite of the bafflement over Ken Thompson’s table (Chapter3).

The information drawn from a computerwaseasily comprehensible

and phrased entirely in human, not machine, concepts, so that it

could be interpreted by machines andbrainsalike.
As it happens, the chess content of the last two examples is

relatively simple in master terms. This was not the case, however,

with Shapiro’s next undertaking, which was the end-game King and
Pawn against King and Rook. Thisis of a level of complexity far
beyond the powerof the unaided chess masterto codify adequately.

Shapiro looked specifically at the situation where the Pawn is on the

next-to-last row, square a7. With the help of chess master Danny
Kopec he chosethirty-five primitive attributes describing the situa-
tion on the board, such as, “The White King is on an edge’ or ‘The

Black King can attack the White Pawn’. He then asked Kopec to give

examplesof all these, showing their consequences. These were fed

into the program Interactive ID3 and used to generate a set of nine
rules, arranged in a tree structure. Thefirst of these (with a human-
added description at the beginning)read:

PA7, Top-level rule. This rule is used to decide if a KPa7KR position with
White-to-moveis won-for-White or not.

KPa7 KRis won for White (PA7,1) IF AND ONLYIF
the BR can be captured safely (rimmx)

OR noneofthe following is true:

there is a simple delay to White’s queening the pawn (DQ,?.1)

OR oneor more Blackpieces control the queening square (bxqsq)

OR there is a good delayed skewer threat (DS,2.2).

Each of the codes refers to the outcome of one of the lowerrules.
Again, useful knowledge had been created, expressed in terms com-
prehensible to humans,andthis time from a highly complex domain.
Whatis also significant about these examples is that computers

have created knowledge notjust for their own use, but for the use of

humanbeings, in solving actual human problems. Of course, prob-
lems ofhow to classify chess end-gamepositionsare only of practical
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significance to end-game experts, but a further achievement by Ivan

Bratko has shownthat knowledge synthesized by computer can make
a contribution to the solution of important human problems,in this
case, the diagnosis of heart disease.

Lookinginto the heart

The principal meansdoctors use to diagnose heart disease is examin-

ing electrocardiograms, which are graphs of the electrical signals

produced in the heart, drawn by an automatic pen recorder. The

ECG of a normal heart looks something like Figure 32. Doctors

R

Qs

normal sinus rhythm

rhythm: regular,
frequency: between 60-100,
frequency P: between 60-100,
regular P: normal,
relation P-QRS: after P-QRS,
regular PR:normal,
regular QRS: normal

Figure 32. ECG diagram of a normalheart, with its qualitative description
(Ivan Bratko)

describe the trace by how the main features P, Q, R, S and T are
grouped. Defects in the heart cause the timing andstrengths of the
pulses to be disrupted, producing ECGtraces such as in Figure 33.

Conditionssuch as this are knownas ‘arrhythmia’. There are twenty-

six different arrhythmias, each with its distinctive ECG pattern, and

heart specialists learn to recognize these. Thedifficulty is that there
is often more than one defect presentat a time, leading on the face of
it to over 100,000 conceivable multiple arrhythmias. The patterns for

the separate arrhythmias combine in one ECGtrace in ways which

makeit extremely difficult to decipher. It has not so far been found
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Qrs

ventricular tachycardia

rhythm: regular,
frequency: between 100-250,
regularP: absent,
regular QRS: wide

Figure 33. ECGofadiseasedheart, with qualitative description (Ivan Bratko)

feasible even with the aid of a computerto identify multiple arrhyth-
mias in a complex trace; by handit is out of the question.

To deal with this problem Bratko and his colleagues at the Jozef

Stefan Institute in Ljubljana decided to employ the inverse-function
method, as we described in Chapter3, relying on the fact that while
it may be very difficult to work out a function in one direction,it may
be relatively easy in the other. Accordingly the Yugoslavs used a

computer to work outall the possible combinations of heart defects
and whattheir resultant ECG traces would be. This was produced
as a table in which a doctor could look up a particular trace to find
the appropriate corresponding diagnosis.

Bratko’s team did this by constructing, with the aid of cardio-
logists, a computer model of the workings of the heart’s electrical

system, involving four generators ofimpulses, two paths along which
these propagate and the rates of flow in the heart’s chambers. The
model consisted of sixty-two rules obtained with the help of the
cardiologists, for example:

IF there are ectopic impulses at the His bundle and in the supraventricles
originating at the AV focus

THENthis results in the following ECG features: either a short PR interval,
or no P wave, or P wave after the QRS complex.

The rules described not only the origins of the ECG signals but also

the fact that many combinations of arrhythmiasare not physiologi-

cally possible, if for instance one dependsona particularfactor in the
heart being too high, and anotheronit being too low. Other arrhyth-
mias cannot occur alone. The ECGs were described in qualitative
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terms, as to how the features P, Q and so on were grouped, rather

than in numerical terms using frequencies. The rules were imple-
mented in the computer language Prolog, and the system wasthen
run to producea list ofall possible combinationsof arrhythmias and
their corresponding ECGtraces. It turned out that there were 588 of

these. A doctor could easily look up an ECG patternin this table and

find the corresponding diagnosis. Because the system in effect con-
tains a complete qualitative description of the working of the heart’s
electrical system, an explanation of how a particular conclusion was
reached could readily be obtained and also understood.

The table that the Bratko system produced is mostdefinitely new

knowledge, and knowledgethat is of real human importance. The

doctors at Ljubljana University Medical Centre are already using the
system for teaching purposes. Forpractical diagnosis, specialists are

often able to get sufficient clues from other signs apart from the
ECG.However,if a patient has been taking drugs, for example heart

drugsprescribed as part of his medical regime, the situation becomes

much more complicated, and even the most experienced consultants

have great difficulty in diagnosing correctly. The expectation is that
an expanded version of Bratko’s system taking the action of drugs
into account could bring about a majorstep forward in the treatment
of heart disease.

Thereis an interesting difference between the heart disease system
and earlier examples we gave of the creation of new knowledge by
machine. While in the chess examples the new knowledge was con-
densed and compiled out of an expert’s skill, here it was generated
from the machine’s own causal understanding of the mechanism of
the heart. Thus in a way the machine’s contribution to new know-
ledge was greater in the secondcase.
Examples of the creation of new knowledge by computer have

already been brought out in this book, namely, the discoveries of
Doug Lenat’s Eurisko (Chapter 5). This works on a different prin-
ciple from the knowledge-based systems we have been discussing
here, but its creations have been asoriginal, and the technology of
heuristics promises to be a growing source of new knowledgefor the

future.
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Solutionsfrom machines

The discovery thatit is possible for computers to generate strategies

for use by humanbeingsis of incalculable significance. Let us look
back to the question raised at the start of Chapter 2: can computers
provide answers to such problems as ‘What is wrong with this
patient?’ ‘Would this be a good spot to drill a well?’ ... The tech- |

nology of expert systems enables machinesto deal with these prob-
lems using knowledge supplied by humans. Thedayis nowinsight,
however, when the knowledge required will originate not just from
humansbutalsofrom the machines themselves. The potential impact
of this is immense. The world is faced with a host of problems, great
and small; among the great ones are overpopulation, poverty,
disease, pollution, shortage of energy, international conflict and
economic stagnation. Can we see computersgenerating solutionsto

these? Most certainly. It is true that most of the problems that

creative computers can tackle at the momentfall far short of these
globalissues, butit is early days. One would not expect a full-grown
horseto be thefirst product of a laboratory seeking to synthesizelife.
Science always hasto start small: in life, perhaps a virus; in problem

solving, a plan for an imaginaryfleet, an analysis of a chess position,

a design for an integrated circuit or a scheme for diagnosing heart
disease. It is true that someone could just conceivably have produced

Bratko’s arrhythmia table without using his techniques ofknowledge
engineering, but it is noteworthy that no one has doneso. Certainly
no chess master could have produced Shapiro’s rule-base. The

borderline of whatisjust not feasible by hand has now beenreached.

These achievementspoint clearly to where the technology is headed.

Hardwareis getting cheaper and cheaper, and it will not be long

before it is worthwhile to set up computer-based ‘knowledge
factories’ dedicated to the accumulation and refinement by machine
of bodies of knowledgegeared to really significant solutions. People

will have to decide whetherthe solutions are significant, but to a large
extent so will the machines, in order not to bury their human con-
trollers in the task of sifting wheat from chaff.

Weenvisage machine-basedcraft shopsset up for the sole purpose
of generating new knowledge, using as their raw material both the
expertise of humansand the ruminations of huge computer models

and look-ahead systems. Some of these operations would be tackling
fairly narrow,self-contained problems, such as the diagnosis and  
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treatment of particular diseases, while others would work onissues
such as the world economy. A wide range of problems, large and
small, will surely be susceptible to solving in this way.

Measuresofcreativity

How much can weexpect from computers in the way ofcreativity?
This question bringsus back to the point thata great deal ofcreativity
in small ways goes onall the time — in peoplein their daily lives, for
instance, puzzling out what is happening around them. Really sub-
stantial creativity on the other handis rare. Bearing this in mind, we
may expect to haveto put a great deal ofcomputing resourcesinto a

task in order to obtain a relatively small amount of new knowledge,
but computing resources are becoming cheap,and the potential of
the new machine-induction methods remainslargely untried.

In assessing how much new knowledgeis being created, we need to
be able to measureit. Clearly, quantity and quality are inextricably

linked here. To get an idea ofhow this measuring might be done, we

look back at expert systems. Complex problems abound which are
beyond solution by knowledge-poor programsin feasible time. But
when humansadd advice to the programsin the form of heuristic
rules, suddenly the machines canreach solutionsafterall. In a chess

game, say, the machine with knowledge can make an immediate
intelligent move instead of slogging through a look-aheadtree of
millions of nodes. By measuring how much a program speeds up on
receiving the advice, we can begin to quantify the knowledge con-
tainedin it.

Refining knowledge

When expert systems were first devised, they were intended to act
simply as substitute human experts. There was no thoughtthat the
knowledge fed in would ever be read out again. Instead, they have
shown an unexpected bonus: they can actually help to codify and

improve expert human knowledge, taking what was fragmentary,
inconsistent and error-infested and turning it into knowledgethatis
moreprecise, reliable and comprehensive. This new process, with its
enormouspotential for the future, we call ‘knowledgerefining’.
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Domain

Previous

codification
 

Chess: spotting mates‘at a

glance’

Chess: how to mate with King
and Rookagainst King

Chess: how to classify King—
Pawn-Kingpositions

Diagnosis of acute abdominal

pain

Internal medicine diagnosis

and treatment

Chemicalsynthesis planning

Planning robotic assembly

sequences

Plant pathology

Massspectral information on
mono- and poly-

keto-androstanes

No non-trivial classifications

published

Chessprimers by Capablanca,

Fine,etc.

Chess primers by Averbakh and

others

Signs-and-symptomschecklist

cards for general practitioners
prepared by consulting

surgeon

Medical texts

Textbooks on synthesis

Toy-car assembly scheme for

Edinburghversatile assembly
program

Pathologist’s diagnostic

classification of soybean

diseases

Nosatisfactory pre-existing
explanation of spectroscopic
behaviour

 

Figure 34. Representative cases where knowledge-based programs have

been used to improve previous codifications of human knowledge, a
phenomenontermed ‘knowledgerefining’
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Refining

instrument

Desired

end-product
 

PL! tournament program

Master

AL 1 ‘Advice Taker’ program

Prolog and AL ‘Advice Taker’

basis for 1D 3-mediated
inductive learning

Bayes’s decision-rule program

for relating symptom pattern to

one of a dozen common

conditions

‘Internist’

knowledge-based program

SECSprogram with data-base

of chemical ‘transforms’

“Warplan’ predicate-calculus-
based program

‘Aqval’ program for inductive

inference

Meta-Dendral module of

Dendral program

Reference text of mating patterns

Six sufficient rules, formally

provedcorrect

Micro-manual of pattern-based
rules

Improved checklists including
numerical measures of
relevance andreliability

Improved medical texts

Improved source of synthesis-
relevant knowledgefor

chemists

Improved assembly sequence

Improvedset ofclassificatory

rules

Sub-structures defining main
cleavages, yielding predictive

theory for new keto-
androstanes
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Oneof the earliest examples of this was noted by Ed Feigenbaum,
following the work at Stanford on chemical-structure analysis by the
expert system Dendral. Chemists started writing to Stanford asking
for copies notof the program,butofthe rules it had assimilated. They
found these rules useful because they were a muchclearercodifica-

tion of the subject than had existed before. Following that, the

program’s rule generator Meta-Dendral induced newrules for mono-
and poly-keto-androstanes. The phenomenonof knowledgerefining
has been observed in several other areas of expert-systems work, as

welist in Figure 34.

Hitherto expert systems have operated in two modes:

(1) Feeding in the knowledge: user as teacher.

(2) Getting answers to problems:userasclient.

To these we now adda third mode:

(3) Harvesting the knowledge-base for use by humans:useras pupil.

Typically, the users in each ofthese modesare different people. For
example, in the case of SRI’s Prospector the teacher would be an

economic geologist hired or employed by a mining companyto build,
validate and tune the system’s base of useful knowledge. The user

seeking solutionsis likely to be a technical executive of the company.
The pupil could be the original specialist, or another geologist
interested in picking up someofthe first geologist’s special know-
ledge in machine-refined form. For both thefirst and the last cases
the dialogue between machine and human mustof necessity be con-
ducted at the conceptuallevel to which the humanspecialist is accus-
tomed. This means that for knowledgerefining and all creation of
new knowledge by computer,it is essential that the structures used to
represent knowledge in the machine fit the ‘human window’, de-
scribing the subject domain in the same waythe person does. Other-
wise both teacher and learner mode become impossible.

There are a great numberofspecialist fields, each with its lore and
texts and an ample degree of confusion and gappiness, which would
makeexcellent raw material for knowledgerefining. We can foresee

a whole industry arising to tackle the job, based around a novel type

of industrial plant, the ‘knowledgerefinery’, which would take in
specialist knowledgein its existing form and debugit, pull it together,
carry out creative gap-filling wherever the need becomesevident, and
turn out knowledge thatis precise, tested and certified correct.
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Looking further afield, there are large quantities of knowledge

about at many different intellectual levels, most of it notably un-
refined. Many man-centuries of mental work gather dust on library
shelves — contradictory, disparate and indigestible. Eventually it
should be possible to set to work on reformulating andrefiningall

this. The boon to mankind would besignificant if even a fraction of
the world’s accumulated practical wisdom could besifted, brought
together and turned into accurate usable knowledgein this way.

Turing’s vision

Makingall this happen will not be easy. There is much scepticism
about the assertion that computers can actually create something

new. People do not readily credit machines with creativity, partly

becausecreativity has always been a thing of mystery, of essentially
humanquality, and they are offended to see it apparently brought
downto the level of nuts and bolts. Thecry1s still heard that “You
only get out what you put in.” Manyserious academicsas well are
bothered by the central role played by induction in computer crea-

tivity. The distinguished philosopher of science Sir Karl Popper

denies that.induction can be the source of new knowledge. Now,the
evidence of concrete results is turning against the doubters. But we
can also cite the vision of the man whoin effect devised the whole
theory ofmodern computing,years before electronic computers were

technically feasible: the English mathematician Alan Turing, who

died in 1954.
Turing’s great achievement wasto show,by a thought experiment

in 1937, that a general-purpose computing machine waslogically
possible and would be capable of solving an unlimited variety of
problems. He did this by conceiving a hypothetical device, since
dubbed the ‘Universal Turing Machine’, that would wander up and
downa tape on whichwasinscribed the data and a program,peering
here, overwriting there, until an answer had been output onto the
tape. As befits a person of such originality, Turing had an extra-
ordinary turn of mind,anda carefree disregard ofhow therest of the
world behaved or thought. He used to cycle to work wearing a
gas-maskas a protection against pollen. While workingat the top-
secret code-breaking centre at Bletchley Park during the Second
World War, he buried somesilver in the woods nearby as a pre-
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caution against the liquidation of bank accounts in the event of a
successful German invasion, and later forgot where the hiding place
was. Herecruited a youthful Donald Michie after the war to help
find it, with the aid of a gimcrack metal detector he put together
himself, but to no avail.

Turing’s own attempts at building machinery were inept, but his

foresight about how others might do so was unsurpassed. He de-
scribed before any real computers were operational a great deal about
how these machines would be used, including many concepts which
are now commonplace in data processing: loops, subroutines, boot-

strapping, remote access. In a lecture to the London Mathematical

Society in February 1947 he uttered some prophecies that strike a
modern-day computertechnologist (or user) as uncanny:

Roughly speaking those who work in connection with the Automatic
Computing Engine will be divided into its masters and its servants. Its
masterswill plan out instruction tablesfor it, thinking up deeper and deeper
ways of usingit. Its servants will feed it with cardsas it calls for them. They
will put right any parts that go wrong. They will assemble data thatit
requires. In fact the servants will take the place of limbs. As time goes on the
calculatoritself will take over the functions both of masters and of servants.
The servants will be replaced by mechanical andelectrical limbs and sense
organs. One mightfor instance provide curve followers to enable data to be

taken direct from curves instead of having girls read off values and punch
them on cards. The mastersare liable to get replaced because as soon as any
technique becomesatall stereotyped it becomespossible to devise a system
of instruction tables which will enable the electronic computerto doit for
itself. It may happen howeverthat the masters will refuse to do this. They
may be unwilling to let their jobs be stolen from them in this way. In that

case they would surround the whole of their work with mystery and make
excuses, couched in well chosen gibberish, whenever any dangerous sug-
gestions were made.I think that a reaction ofthis kind is a very real danger.

This topic naturally leads to the question as to how far it is possible in
principle for a computing machine to simulate humanactivities. °

Evolving the tables

Turing describes in detail how the machineholdsin its memory both
data and ‘instruction tables’ (the program). These tables would be
workedoutin detail in advance by mathematicians, but this mode of
working would leave much to be desired. ‘What we want’, Turing
asserts, “is a machinethat can learn from experience.’ He explains:
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It has been said that computing machinescan only carry out the processes
that they are instructed to do. This is certainly true in the sense that if they

do something other than whatthey were instructed then they have just made
some mistake.It is also true that the intention in constructing these machines
in the first instance is to treat them as slaves, giving them only jobs which
have been thoughtoutin detail, jobs such that the user of the machinefully
understandsin principle what is going onall the time. Uptill the present,
machines haveonly been used in this way. Butis it necessary that they should
always be used in such a manner? Let us suppose we haveset up a machine
with certain initial instruction tables, so constructed that these tables might

on occasion,ifgood reason arose, modify those tables. One can imaginethat
after the machine had been operating for some time, the instructions would
have been altered out of all recognition, but nevertheless still be such that
one would have to admit that the machine wasstill doing very worthwhile
calculations. Possibly it mightstill be getting results of the type desired when
the machine wasfirst set up, but in a much moreefficient manner. In such a
case one would have to admit that the progress of the machine had not been

foreseen whenits original instructions were put in. It would belike a pupil

whohadlearnt much from his master, but had added much moreby his own

work. Whenthis happensI feel that one is obliged to regard the machineas

showingintelligence.

The technique of having a program changepartofitself is already
used to a certain extent with low-level languages. It is, however,

frowned upon asuntidy. Only one or two experimental AI languages
have facilities for operating on code as data, or executing data as
code. Turing himselfthough knew wherehe stood,and characteristic-
ally it was not on the side of convention ortidiness. The closing
passage of the 1947 lecture brings this home with eloquence and
force, and with a clear affirmation of the principle that machines
should learn by inductive modification of their instructions in re-
sponse to the behaviour of humans:

It might be argued that there is a fundamental contradiction in the idea of
a machine with intelligence. It is certainly true that ‘acting like a machine’

has become synonymouswithlack of adaptability. But the reason forthisis
obvious. Machinesin the past have hadverylittle storage, and there has been
no question of the machine having any discretion. The argument might

howeverbe put into a more aggressive form.It has for instance been shown
that with certain logical systems there can be no machine whichwill distin-
guish provable formulae of the system from unprovable,1.e., that there is no

test that the machine can apply which will divide propositions with certainty
into these two classes. Thus if a machineis madefor this purpose it must in
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some casesfail to give an answer. On the other hand if a mathematician is
confronted with such a problem he would search around [and] find new
methodsofproof, so that he ought eventually to be able to reach a decision
aboutany given formula. This would be the argument. Against it I would say
that fair play must be given to the machine. Instead of it sometimes giving
no answerwe could arrange thatit gives occasional wrong answers. But the
human mathematician would likewise make blunders when trying out new
techniques.It is easy for us to regard these blundersas not counting and give
him another chance, but the machine would probably be allowed no mercy.

In other words then,if a machine is expected to be infallible, it cannot also

be intelligent. There are several mathematical theorems which say almost
exactly that. But these theorems say nothing about how muchintelligence

maybe displayed if a machine makesnopretence atinfallibility.

Tocontinue mypleafor‘fair play for the machines’ whentestingtheir I.Q.:
a human mathematician has always undergonean extensive training. This
training may be regarded as not unlike putting instruction tables into a
machine. One must therefore not expect a machine to do a very great deal of

building up ofinstruction tables on its own. No man addsvery muchto the
body of knowledge; why should we expect more of a machine? Putting the

same point differently, the machine must be allowed to have contact with
humanbeingsin order that it may adaptitself to their standards. The game
of chess may perhapsbe rather suitable for this purpose, as the movesofthe

machine’s opponentwill automatically provide this contact.

Now,three decadeslater, it is clear that the amount machineswill

eventually be able to add to the body of human knowledge may
outreach even Turing’s imagination.



CHAPTER 7

A Metaphor Upside Down

In the public mind the notion of creativity is associated first and
foremost with the arts. So, when considering computercreativity it is

natural to ask,‘Is it possible for computers to produce new worksof
art?’ Of course in some waysart seemsantithetical to modern tech-
nology. Westill tend to think of the artist in his garret, too pre-
occupied with matters of the spirit to concern himself with nuts and
bolts. But in fact artists throughout history have embraced new

technology whenever it has offered them tangible benefits: new
colours, new alloys, new methods of print-making, new musical

instruments. On top of that, art 1s in its essence information, so
we would expect the new information-handling technology to be
relevant to it. Indeed since quite early in the history of computers,
scattered individuals have braved the mutual suspicion ofartists and
technologists to explore how these machines could be used in such
fields of aesthetic creativity as painting, sculpture, music and poetry.
The results have been uneven, and surrounded by controversy. In
what can only be a cursory review, we aim byciting some representa-
tive examples to give readers an idea of what is going on and of the
issues involved.

Painting

Probably the field in which most work has been done,and in which
the issues are mostclear-cut, is painting and drawing. Here there are
two distinct, indeed antagonistic, approaches to the use of com-

puters. In one, the computeris being used simply as a tool — a very
elaborate palette and canvas on whichtheartist ‘paints’ by a variety
of methods. In the other way of working, the artist supplies a
program for the machine to follow, without himself necessarily
having any idea whatthe end-result will be. It is in this latter tech-
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nique that we can beginto see the possibility of a computer actually
creatingart.

Onefollower of the ‘computer as tool’ approach is the American
David Em,whohasthe improbablejob of Artist-in-Residence at the
Jet Propulsion Laboratory in Pasadena, California. This is the
control centre for the US unmannedspace probesto Jupiter, Saturn
and beyond, and in the course of planning these probesthestaff at
JPL developed a very powerful computer graphics system for simu-

lating what would be seen as the Voyager spacecraft flew past the
giant planets in the outer reachesof the solar system.It was essential

to make sure Voyager would getits pictures right thefirst time — there

would be no chance of turning aroundandtrying again.

Not only does the graphics system provide much higher colour
definition than is normally available on computers, but James Blinn’s
software can generate solid figures and surfaces in perspective and

manipulate the image in sundry ways: enlarging, shrinking, moving

it around, copying, reflecting and so on. When he can find time on

the machine in between scientific projects, David Em uses it to
produce abstract ‘paintings’ of startling originality and vividness, of
a dreamlike, almost nightmarish quality (Plate 4).

He starts by drawing lines with a stylus on anelectronic tablet,

directing the computer to convert these into a range of thick or thin

lines or ‘sprays’ in a choice of 256 colours, in the same way that a
traditional artist chooses his paints and brushes. The results are
shown on a very high-resolution colour screen. He can then mani-
pulate the pictures by various geometrical operations — transforming

images, shifting them about, combining them with others, adding
surface patterns and ‘textures’ and experimentingwith different types
of ‘space’. The whole processis one oftrial and error. If the colour
or texture of one feature seems not quite right, it can be changedat
the touch of a few buttons. A painting can be stored away and
recalled later for further work.

Thefinished pictures are best viewed on the actual colourscreen,

whichgivesbrilliant, almostscintillating, images. Em describes him-
self as ‘fascinated by the nature ofelectronic light’. For exhibitions
where the computer equipmentis not available, Em photographsthe
images from the screen and makesthirty-inch by forty-inch colour
prints. He has also made someinto lithographs, and is aiming to
produceprints ten feet long.

Em’s visionsareliterally fantastic. Some havea flavour of science
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fiction, no doubt stimulated by his environment. Ashe says himself,

‘They are imagery that could notexist in reality.” People often tell

him that the pictures remind them of things they have seen in their

dreams, and this seems to stem from the curious mixture of purely
abstract and vaguely natural forms they contain. Architectural
features, valleys and rudimentary landscapes seem to bevisible in

many ofthe paintings, as Em himself points out. In some surprise he

tells us, ‘It is forms found in nature that the computerlikes to deal

with on its own mostofall.” Although the picture is entirely under
Em’s control, heis certain that the end-results are quite different from
what he would be producing in a conventional medium. “The com-
puter leads meinto trains of thought that would never have occurred
to me withoutit,’ he asserts. In a way, the medium doestell him what

to do, and it is possible for him not to know atthe beginning of a
painting whereit will end up. But that wastrue of classical painters
too, he reminds us. Thetrial-and-error process has turned painting
into a kind of exploration: Em can move aboutin the structures he
has created and find out whatis there, something painters have never

been able to do before.‘It’s a different mental process,’ he says.

One thing of whichheis certain is that he could never exhaustthe
possibilities of his new medium.‘I feel I have an infinite machine

here,’ he says. Heis carrying on working withit to find new visions,
newrelationships between colours, new spaces. “The medium is only
at the Neanderthal stage,’ he declares. It need not be confined to use

with abstractart, he points out — others have usedit to produce highly
naturalistic, almost photo-realistic, pictures.

It was at a California plastics factory that Em wasfirst lured away
from conventional art by the aesthetic potential of technology. The
firm’s owner wasinterested in art and had the idea that his moulding
machines could be used for creative ends. Em washired asartist-in-

residence and spent some time producing room-sized plastic sculp-
tures. This led him into an environment completely foreign to him as
a solitary artist — he had to learn to organize helpers to operate the
machines with him,and hehadto learn to deal with management.
These continue to be sizeable preoccupations at JPL.

Outside the studio, or rather computer room, Em has a passionate

interest in theatre. Scattered around Hollywoodare a host of ambi-
tious small playhouses which provide a creative outlet for talented
people in the film industry who have to spend their working days
producing pap. For these Em writes and directs extraordinary multi-
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media performances, using projections of his own paintings as
scenery, as well as lasers, synthetic music and bizarre insect-like
costumes likewise designed by him. As yet the computer cannot

control the projections directly, but this is the next logical step. An

on-line video projector would openupthe fascinating possibility of
varying the visual effects in accordance with the action on thestage,
as it happens.

For other events Em has generated huge moving displays, ten feet
high and eighty feet long, using more conventional analogue elec-
tronics and projectors. ‘Scale makes a lot of difference psycho-

logically,’ he says. ‘The effect of that display was overwhelming.’

Howdo people react to his work? ‘The public for this sort of thing

is still very small,’ Em says, ‘and people tend to spend a lot of time

wondering howit is donerather than lookingatthe pictures.’ He also
has few peers to share his ideas with. Otherartists he meets tend to
be suspicious of technology, finding it cold and hostile, and he often

finds more sympathy amongscientists. Paul Brown,late of the Slade

School, has had similar experiences. He once showed some drawings
to a supposedly learned critic, who was very excited by them and
praised them profusely. He asked Brown howthey were drawn and,
on hearing that a computer wasinvolved, immediately changedhis

mind aboutthe pictures. ‘I thought there was something cold and

calculated about them,’ he commented. Brown addsthat while tech-

nologists may not be prejudicedin that way,they are often disinclined
to regard art as a seriousactivity.

Drawing by expert system

Quite the opposite approach to Em’s is taken by Harold Cohen, an
English artist based at the University of California, San Diego. While
working as a conventionalpainterin the late 1960s, Cohen became
interested in seeing whether computers could be used to shed some

light on the nature of visual experience — whyit was that he could

make some marks on paper and someoneelse would say, “That’s a

face.’ Friends, notably Ed Feigenbaum, taught him programming,

and the outcomeof this was a system called Aaron, which produced
drawings under the control of a PDP-11/34 minicomputer. The
actual drawing was donebya little electric cart, about four inches

long and carrying a pen, which trundled around a large sheet ofpaper



Plate 1 Prospector’s gra-
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Plate 2. Sally Rosenthal:
‘Maria’. The headis a digit-

ized__ television picture,

manipulated using the
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images

Plate 3 Melvin Prueitt: ‘Conflict’. The artist uses a Cray 1 supercomputer at Los Alamos

National Laboratory

 

 

 



 
Plate 4 David Em: ‘Persepol’. Software by James Blinn at Jet Propulsion Laboratory

 

 
Plate 5 Hervé Huitric and Monique Nahas: ‘Dansles bois’. The artists work at the

Universities of Paris 7 and 8, using software developed at Rochester University, New

York



Plate 6 Ed Tannenbaum:
‘Digital Dancer’. A frame
from an animated video

recording, made using an
Apple microcomputer and

special image-processing

electronics (Raster Masters)

 
Plate 7 Thereis no use plan-

ning a holiday at Benoit

Mandelbrot’s picturesque

mountain retreat — it does

not exist. The hills are en-
tirely the creation of a
computer — a mathematical
construct by the technique

of fractals, in this case using
a Gaussian distribution of

random numbers (IBM) 
Plate 8 Jenniffer Julich: ‘Breezy Point’. The artist uses a ‘2'/2-dimensional’ paintbox

system at Sheridan College, Ontario

 



 
Plate 9 Roy Hall: ‘Gallery’. A highly realistic space that exists only in the memoryof the

computerat Cornell University

 
Plate 10 This still from The Works, the New York Institute of Technology’s animated

science fiction film in preparation, looks like a photograph of a model, but in fact the

pictures are ‘drawn’ entirely by computer, resulting in realism unknownin conventional
hand animation (Dick Lundin, N YIT)
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stretched out on the floor. The computerkept track ofwhere the cart
was by meansof sonar.!
The machine drew entirely on its own and Cohentooknopart in

the process. The program consisted of about 300 rules worked out in

advance by Cohen, which gave the system an understanding of such

conceptsas lines, closures and shading. As the drawing proceeded,
the program would make choices about whatto do at various points
by in effect ‘rolling a die’ — thatis, it would activate a special routine
that generated random (or almost random) numbersin a given range.

As the picture filled up, the program would be more and more

constrained in whatit could do, by what wasalready on the paper
interacting with the rules.

Rules would specify what kinds of features would be desirable,
such as, ‘If there is such-and-such a feature here, don’t put another

feature close to it’ or ‘If you are drawing a form and you run up

against another form,lift the pen to let the earlier form overlap the

new one.’ Objects the program handledfell into a strict hierarchy:

pictures
groups
figures

‘systems’ (parts offigures)

lines (curved)

straight-line segments

Particularly important concepts that the program wasgiven included
the difference between open and closed forms, and occlusion.

The results were pictures containing plenty of zigzag lines and

arbitrary shapes, but also what often appeared to be rocks, clouds,
birds, fish and sometimeslines of hills. Each picture wasdifferent,

and Cohen had nowayofknowing what wasgoing to come out each
time. In building his program outofrules Cohenhadin fact produced
an expert system, albeit an unusual one. The humanexpert and the
knowledge engineer in this case were the same person — himself.

Cohen had also made a deliberate attempt to model the process by

which a humanartist draws, not as one smooth movementbut by a

series of short strokes with continuous feedback. Hence the cart did
not movedirectly to point (x,y) like a computerplotter. Instead, the
computerwould sayto thecart in effect, “Turn the wheels by so much

andtell me by the sonar whereit has taken you,’ and this was repeated
over and over. There wasslippage of the wheels on the paper, and
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Figure 35.

Figure 36.

 

Harold Cohen: drawing by Aaron

Aaronin action (photograph: Becky Cohen)
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adjusting the length of the axle and the rate and sensitivity of the

feedback system would give considerable variation in the ‘style’ of

the drawings.
Out of Aaron, Cohen has now developed Aaron2, which apart

from having greater knowledgeis intended to be much further down
the road to genuineintelligence by being able to learn from experi-
ence.2 Cohen sees it as dealing with representations, rather than

images, which were what Aaron worked with. An image, Cohen
explains, is ‘a collection of marks implying ordering’, while a repre-
sentation is ‘a collection of marks implying intention with respect to
the outside world’. Again, the program’s conceptsare held in hier-
archies: for example, the set ‘representations of solid objects’ is
included in the set ‘closed forms’. Aaron2 is designed to give much
moreof an illusion of three dimensions than its predecessor. Cohen

has also dispensed with the drawing cart, because it was too difficult

to keep the sonar working properly, and because the drawings were
unmanageably large and slow to produce. He now uses a con-
ventional computerplotter in which a pen is moved around on paper
by a mechanical arm.

Even in its infancy Aaron2’s drawings show a distinct ‘maturity’

Figure 37. Harold Cohen: drawing by Aaron2
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comparedto thoseofits progenitor. It remembers previous drawings
so it can relate its current work to them, and eventually it is intended
to be self-modifying so that, like a humanartist, it can learn from its
experience. That will require, as Cohen says, some meansofgivingit

criteria by which to judge its own performance. Wewill then have the

first expert-system artcritic.
Looking further into the nature of representations, Cohen at one

a

Figure 38. Harold Cohen: drawings by Anims
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point devised another program called Anims, which producedfigures

with random variations aroundthebasic structure of body, head and
four legs. This was prompted by the work of David Marrinto the
question ofhow humans‘package’ information in their brains, much
the same concern as that behind the Piagetian work wedescribed in

Chapter4. It transpired that remarkablylittle information has to be

stored awayin orderforit to be possible to reconstruct images with

a very real appearance. The figures from the program turned outto
be surprisingly similar to prehistoric cave drawingsof animals. How-
ever, Cohen felt this work was too limited to be viewed as art-making
and so has nottakenit any further.

Throwing away the dice

Other computerartists tend to follow one or the other of the two
approaches we have described, usually producing their work on an
ordinary computer pen-plotter. Sometimesthey take the pen out and
substitute a paint brush. In contrast to the ‘dice-throwing’ technique

ofCohen,it is possible to construct a drawing program in which there

 

   
Figure 39. Chris Briscoe: untitled



146 The Creative Computer

 

 

 
 

070.45
10188

 

  
 

Figure 40. The creatures in Chris Crabtree’s ‘Story Pieces’ move about,eat,
grow,fight and reproduce in a manner reminiscent of John Conway’s cele-
brated simulation of biological growth and competition, the Life Game
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to are so complicated thatthe artist still has no way of knowing what

the finished picture will look like. Chris Briscoe while working at the
Slade did this by letting a series of points in arbitrary starting posi-
tions moveasif they were objects attracted to each other bygravity.
The computer worked out the tracks and plotted them to make the
picture. The Canadian Chris Crabtree in his ‘story pieces’ allows the

computerto produce a linear sequence ofimages that look very much
like people, flowers and thelike, giving the impression ofa narrative.*
Another Canadian, Theo Goldberg,is interested in the connection

between painting and music, and has devised a graphics system and

a music synthesizer which both work from initial sets of numeric
data. He feeds the samedata into both systems and from onegets
pictures with large areas of soft colours overlaid with geometrical
patternsoflines, and from the othergets electronic music in a modern

cacophonousstyle. The music is played from tape while slides of the
pictures are projected, and the vieweris invited by theartist to see
how the picture represents the music and vice versa, as different
manifestations of the samething.

Sharpening the palette knives

The two approaches to computerart haveled to a schism in thefield
every bit as vehementasthe rivalry between painters and sculptors
in Titian’s day. The ‘tool’ approach as exemplified by David Em
tends to be dismissed by those in the other campastrivial — as

‘painting by numbers’ — its products scorned as banal. Harold Cohen
waspresented some years ago with the idea for an ‘electronic paint-
box’ and responded thus:

[The] image ofthe artist of the future painting with a paintless brush on a
television tube with one hand — becauseit is after all an artist’s touch that

counts— while twiddling knobswith the other: dressed, presumably, in smock
and beret, and cracking walnuts with his left foot: this imageis assilly as
misguided.°

Cohen’s work in its turn is described by some of his opponentsas

‘chicken scratchings’. Analysing the principles at issue, the English

artist Dominic Boreham maintainsthat the way a computerenables
him to paint by an iterative process, trying out something, judging,
changing whatis not quite right,is entirely valid as art and produces
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pieces that could not possibly be made without a computer. The
judgements he makesin accepting or adjusting aspects of a picture
could not be embodied in rules, yet rules are what Cohen’s system

consists of in its entirety. “You can’t produceart with an algorithm,’

Boreham declares.

The schism in David Em’s caseis accentuated byhis determination
not to learn the engineering skills involved in his art, but rather to
rely on the experts around him. Otherwise, hefeels, it is all too easy
to dissipate all one’s energy in just getting the equipment to work.

Too manyartists he knowshave learnt programming and now spend

all their time writing software and never producing any art. Cohen

in contrastis heavily involved in the technology downto the smallest

detail. He even buildsall his circuit boards and plotting mechanisms
himself. Artists are ‘enabled’, he insists, by the technology theyuse:

Devices are what we seem to use: but the truth is that, unless we have a

clear view of what they are, unless we are sensitive to their functions within

the economichierarchy which generated them,they will almost certainly end

up using us. Technologies constrain their users. The more powerfully a
technology serves its designed-in purpose, the more the individual is con-
strained by its use: not simply in the sense that an etching will always look
like an etching and not like a watercolour: but that the individual is con-
strained intellectually from conceiving of any possibility other than whatis
given him bythe technology...

Just as the artist finds himself offered a whole toyshop full ofnew toys, he
finds that a century of preparation has goneinto ensuring that he asks no
questions about what they are and how they work. They do what they do,
and they are designed to require no participation of him moreintellectually
challenging than button-pushing.

It must surely be the case that technological resources which do not
challengethe artist’s intelligence will not enabie his intelligence, and through
it the production of powerful and original work ...

Weknowalreadythat no one makesart by finding some tame programmer

to write a few graphic subroutines.In the years that that game has been going
on, notonesingle art-work of major importance hasresulted from it. When
you considerthat the parallel case in printmaking would be thatof a printer
whohasno idea whatart is, working for an artist who knowsnothing about

printing technology and doesn’t wantto haveto find out, there is absolutely
no reason to assumethatonewill.°

Brian Reffin Smith of the Royal College of Art suggests there is a
third category of use ofcomputersin art, in which the machinehelps
the artist to develop his concepts and perceptions:
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It arises out of the observation that (certainly at the Computer Studio of

the Royal College of Art) one of the most frequent modesof interaction

between artists and computers is as follows. A person comes in, with a

problem that they might normally try to solve using pen and paper, paint,
film or any other medium. They then use the computerto ‘worry at’ their

problem,using graphics on the computerscreen, or other, more conceptual

representations of the problem. The personthen,as often as not, goes away

and carries on using the old materials — but their perception of the problem
has changed.It has been externalized between the person and the computer
screen a few inches away.’

Artists are constantly being influenced by the work of otherartists,
by the plays and films they see and so on, and experience with a

computer can be just as valid, in Smith’s view. This could be taken
even further, with highly elaborate computertechniquesofexploring
art and perception. For example, one of the most important things
computers can do for makers of animated films is ‘in-betweening’ —
taking two drawingsofa figure in different positions provided by the

artist and working outall the intermediate framesto give the illusion
of smooth motion in the finished film. “What would happen’, Smith
asks, ‘if you tried to “in-between” a Rembrandt and a Jackson
Pollock?’ Manyother fascinating insights into art are waiting to be
found throughthe use of computers, Smith is convinced.

Animation

In addition to taking over ‘in-betweening’ and manyof the other
tedious processes ofhand animation, computers open up substantial
new possibilities in this medium. They can generate surface textures,
shadows, reflections and shines all automatically, giving a realism

and anillusion of three dimensionsthat are quite impractical in hand
animation. Plate 10 looks like a photograph of a model, but in fact
it is a still from The Works, a forthcoming animatedsciencefiction
film being made at New York Institute of Technology. The principal
problem involved is the computing power needed: each frame of a

high-definition film can take up to oneor two hoursofprocessor time
to produce because it contains so muchdetail.

Asis the way with techniques ofthis sort, the first people in the
outside world to take up computer animation enthusiastically have
been television advertisers. Disney’s feature film Tron combines a
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plot of extreme banality with uninspired computer graphics. The

Works, with its articulated 3-D figures, promises to be much more
stimulating, although there is a worry that the project was really
too ambitious for NYIT’s resources.
Most of the objects depicted in films of this genre areartificial

— spaceshipsand the like — and so can be generated as an assemblage
of regular geometric shapes such as spheresand cylinders,as in Plate

10. The computer can handle these quite easily. On the other hand

if the film maker wants to include natural elements such as land-
scapes, he has a problem in that to seem realistic the scene has to

be irregular and contain large amountsofdetail. A picture of a lawn,

Figure 41. ‘... And the straight shall be made crooked ...’ Irregular
curve obtained from fourstraight-line segments through the technique of
fractals

for instance, must comprise many thousandsofblades of grass, but
they cannotall be the same. If one image of a blade were repeated
over and overin the usual computer technique, the lawn would look
utterly unreal. Each blade needsto be slightly different, but for an

artist to specify every one separately would be a colossal task. On

top of that, the vast amount of information thus compiled would
have to be held in a large data-base, unmanageable and costly. To
overcome this problem, Benoit Mandelbrot of IBM and others
following on from his work have devised the techniqueof‘fractals’,
wherebytheirregularity of natural objects is simulated by the com-

puter adding random variations to features supplied by theartist,
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Figure 42. ‘... and the plain places rough.’ Sculpture of a mountain range
produced by Benoit Mandelbrot using fractals and a computer-driven

machine-tool (photograph: IBM)

making smooth lines crooked and so on (Figure. 41). Using this
method, surprisingly realistic mountains, rock-strewn valleys, coast-
lines and star clusters can be generated, with the artist only having

to specify a few points.* Indeed, fractals are now being used to
producestill paintings and sculptures as well as animation (Figure 42
and Plate 7). This raises the interesting question of whetherfractal
landscapes should be judged on the samecriteria as the works of
conventional landscape painters. Paul Brown thinks that up to a
point they should, but otherartists disagree strongly.

Sculpture

Some work has been donein producing sculpture by computer, with
the processor connected to a machine-tool which carves a block of

metal or other material. However, the principal interest computers

have arousedin this field is to do with kinetic sculpture. An early
example of this was Seek, put together in 1970 by Nicholas Negro-
ponte and his colleagues at MIT. This consisted ofa model overhead
crane driven by a minicomputer, which would stack up 500 two-inch
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cubes in a random arrangementwith plenty of nooks and crannies,

remembering whereall the cubeswere. Into this ‘environment’ would

be released a colony of gerbils, who would run around knocking
the cubes every which way, and the computer would try to put them
back into some semblance of order.? What started as a demonstra-
tion of a computer observably dealing with unpredictable events
turned into a metaphorof interaction between an animate and an
inanimate world. Opportunities for misinterpretation by the public
(at the Jewish Museum in New York where Seek was on show) were

rife. Negroponte comments:

Reviews of the show failed to keep Seek intact, to see its animate and

inanimate aspects as equally purposeful. The New York Times (September

18, 1970) reported that ‘... a mechanical grappler rearranges them [the
blocks] to wall the furry creatures in’; Art News (December 1970, in a snide
editorial entitled ‘Gerbil ex Machina’) wrote, ‘The gerbils could use their

blocks to achieve positive, socially meaningful ends, but notjust mess around

with them’; and the Wall Street Journal simply found it and computerart
in general ideologically ‘kinky’.'°

 
Figure 43. Edward Ihnatowicz: ‘The Senster’, on show at the Evoluon
exhibition in the Netherlands. The computeris at the right rear
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Manyofthe gerbils died; legend hasit that this was from frustration.

Edward Ihnatowicz is a Polish-born sculptor living in England

whose interest in the kinetic stems from his conviction that the

behaviour ofsomethingtells us far more aboutit than its appearance.
This led him to build the Senster (Figure 43), one of the most

influential kinetic sculptures ever made.It consisted ofa fifteen-foot-

long steel frame articulated in six different places, with the jointsall
powered by hydraulics, the whole vaguely reminiscent of a giraffe

madeoftubularlattice. On the Senster’s ‘head’ were carried an array
of microphones and a Doppler radar system. The Honeywell mini-
computer controlling the mechanism was programmedto makeit

react to three things: moderate and low sounds, loud sounds,andfast

motion. Moderate sounds the head would move towards, loud

soundsit would pull back from, and fast motion it would track. The

result was an uncanny resemblanceto a living thing, and the crowds
at the Evoluon in Eindhoven, Holland, where it was on show reacted

with enormous excitement. Children would shout and waveatit,

call it names, and even throw things. Ihnatowicz explains that its
movements seemed to stem from situations that people recognized.

In the quiet of the early morning the machinewould be found
with its head down,listening to the faint noise of its own hydraulic
pumps. Then if a girl walked by the head would follow her, looking
at her legs. Ihnatowicz describes his own first stomach-turning
experience of the machine when he had just got it working: he
unconsciously cleared his throat, and the head cameright up to him
as if to ask, ‘Are you all right?’ He also noticed a curious aspect
of the effect the Senster had on people. When he wastesting it he
gave it various random patterns of motion to go through. Children
who saw it operating in this mode found it very frightening, but
no one waseverfrightened whenit was working in the museum with

its proper software, responding to sounds and movement.
Although the Senster was dismantled someyears ago, many people

whosawit still remembervividly what a strong impression it made
on them. Ihnatowicz has various ideas for further developments,

including an investigation of how motion and perception areinter-

dependent, an important topic for artificial intelligence. Un-
fortunately, the mechanisms are necessarily expensive, and the
resources to build them are noteasy to comeby.!!
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Music

There are some instances of computers being used astools in the
composing of music. Peter Zinovieff has spent much of his working
life building electronic synthesizers, but heis also interested in seeing
how quite different sounds, some for instance from the real world,

could be incorporated in music. An example could be the noise made
by rapping with the knuckles on a door. He uses a computer to
analyse these sounds and see how they could be captured and
included in music.

At the same time computers have been widely used actually to

compose music, typically employing conventional notes produced
by a synthesizer under program control. It is quite easy to connect
a loudspeaker to the output of a computer, and unlimited sounds
can be made according to a pattern specified by the programmer,

which may or may notinclude a random element.

Chancehasof course long been used in whatis knownasaleatory
music, in which the performers are given occasional choices as to

what to play. In the eighteenth century quite a numberofpieces
of ‘dice music’ were published, some attributed to Mozart and

Haydn.A sixteen-bar piece might, for instance, give eleven different

choices for each bar, written out in a rectangular array of sixteen

columns of eleven bars each, and the player would makea choice

at each bar byrolling dice. (Presumably he rolled the dice sixteen
times beforehand so that he did not have to stop playing between
each bar.) This was described on one score as ‘an easy method for

composing an infinite number of minuet-and-trios’. ‘Infinite’ of

course is a bit of an exaggeration — the actual numberis 11!° or

forty-six quadrillion but in any case it enlarges the musicologists’

corpus of Mozart’s music more than somewhat.!
Each bar wascarefully worked outto fit in musically with every

otherbar in adjoining columnssothat the effect would be reasonably

acceptable to eighteenth-century ears. Randomness in modern music

tends to be much more obviously random. One of the best-known
figures in British computer music is Alan Sutcliffe, whose early pieces
he describes as ‘based on randomness but in a controlled way’.
Choices were made according to pseudo-random numbersgenerated

by the program.Peter Zinovieff, working with Sutcliffe, had earlier

used a real-random numbergenerator in the form of a tiny radio-
active source with a Geiger counter attached. Sutcliffe relates: ‘The
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unrepeatability of this device could be a nuisance.Ifyou hadn’t made

a recording of the output, there was no question of “Play it again,

Sam”’ as it was a genuinecaseof the lost chord.’!3 The central routine
of the program would generate pseudo-random patterns, which were
fed back into the same routine to generate more patterns, and so

on several times round the loop until a final set of patterns was

punched out on paper tape and fed into a sound synthesizer.
Each movementofa work would have a numberofcontrol values,

specifying whether notes were to be mainly long, mainly short
or of mixed duration; mainly high or low or with few in the middle,

and so on. Theresult of this was that each movementhad a notice-

ably different character: some were melodic, some were mainly
chords, others had the flavour of counterpoint. There were plenty
of boring passages but also some memorable parts, Sutcliffe attests.

His work morerecently has been aimedatgetting rid ofthe random
element altogether, so that the music is produced entirely by

algorithm. The processis the key. There are two distinct approaches
to art, as Sutcliffe sees it — one in which theartist conceives of an

effect he wishes to achieve and then tries to devise a means of
achieving it, and the other in which he conceives of a process and
then stands back to see what comes out ofit. It is the latter that
interests Sutcliffe: the artist having to keep his distance andresist

the temptation to interfere and say, ‘I. think it’s going to be like
this.” The result is that the artist can be as pleasantly surprised as
anyone by what comesout.
Very simple programs can generate an amazingly rich diversity

of patterns, Sutcliffe asserts. In reply to the claim that you cannot
makeart by an algorithm, he remarks, ‘My hopeis to producethings
as interesting as trees, or pebbles, or old bits of wood. Those were
producedbyalgorithms,together with someeffects from the environ-

ment.’ Certainly the DNAin the seed of a tree can be seen as a
program — why, Sutcliffe reasons, could not a human-devised
program likewise yield something fascinating? On the lack of the
human element in the process he declares, ‘I abhor the view that

art is to do with self-expression — with expressing emotions. Com-

posers don’t only write fast movements when they are happy and
slow movements when they are sad.’ What is important, he says,
is not the emotion of the producerof the art but the emotion evoked
in the receiver.
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Poetry

Getting a computer to write poetry requires no elaborate output

devices other than the printer, with the result that this has long been
a popular form of machine art. The computeris normally given two
things: a vocabulary of words or phrases to choose from, and a
framework in whichto put these by some process, random or other-
wise. The framework can be a ‘closed form’ or an ‘open form’. Robin
Shirley explains:

A closed form is one in which the elements (variable words or phrases)

are slotted into predetermined holes in a fixed framework, whereas in an
open form thereis no fixed part and the poem is composed by assembling

the elements together in a chain of indeterminate length.
As Chomskyhaspointed out, it is open forms which characterize natural

languages, and despite their greater difficulty I think that the future develop-

ment of computer poetry lies mainly in this field. Closed forms are very

easy to devise and program, but seem to bearvery little repetition before

their artificial and limited character showsthrough. '*

It is quite easy, as Shirley points out, to provide formswith slots,
each labelled with the part of speech it is to contain. It is very much

harderto give a program a sense of the enormousvariety of sentence

structures that human writers can employ. Various constraints are
imposed on the poem-writing as it goes along, such as a control

over repetition of words or expressions. Repetition would not be
prevented altogether — it would simply be made moreorlesslikely

according to the whim of the programmer.

Robin Shirley is an English crystallographer who hasbeen writing
poetry both with and without computers for over twenty years. He
is especially interested in the effect that the medium hasonanartist’s
work.‘All art is shaped in part by the responseof the artist to the
character of his tools,’ he says. Computers have great potential for

exploring this issue, he feels; for example, a human sculptor produces

something quite different according to whetherhe1s carving marble,
or wood, or ice cream, but a computer-controlled machine-tool

would comeup with exactly the same shapein all those cases.
Shirley brings up the concept of the indirect medium, in which

something outside the control of the originatoris interposed between
him and the audience. In music it is the performers; in cinema, the
whole production crew. It is a totally new experience for poetry to
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find itself in the position of an indirect medium, but that is what
computers make possible. The poet can supply the computer with
various ideas, and then stand back andfeel either pleased or dis-

appointed with the results. ‘If you don’t have control over the way
things are arranged, you place yourself in the hands of fortune,’ he

explains. ‘Skill is the art of being lucky.’

Shirley is also interested in getting away from thetraditional

Western view of poetry as an entirely individual activity. He wants
to make the medium opento collaboration, so he performshis work
with a group of others, accompanied by (human-composed) music.

An early work was The Sunflower Suite, a collection of computer-

assisted poems on the themeof transience. They were written using
his program Bard, which he describes as ‘an elementselector and

arranger, to which a limited critical faculty has been added’. Here
is the opening poem,precededbyShirley’s introduction:

* I wantyou to imaginea timein the distant future

perhaps millennia from now, when(if it survives)

the humanrace will be scattered over the vast wastes of the galaxy,
where distances are measuredin lifetimes.

* I want you to imagine our descendants,

travelling from generation to generation,
seeking worlds that will give a foothold for existence.

* This poem is dedicated to children born on such a journey,
in the great voids betweenthestars,
to whom thecities and forests of Earth are only a legend.

PAVAN FOR THE CHILDREN OF DEEP SPACE

Ice worlds,

Haunted bythe legend of planets. Ice worlds —
Arcturus Andromeda Vega — orbiting,

Lost amongstardust through aeonsofcrystal.

Yourseed hasdispersed,lit by the jewels of infinity,

Lost in the empty ocean;
In time with the measured dance of the universe

orbiting ... orbiting...
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I am a child ofeternity:

downis a lifetime in every direction.

Through aeonsof crystal your seed has dispersed
on a journey to no destination.

sunburststarburst

Mars Venus Jupiter Saturn ...
Downis lifetime in every direction

Born outof darkness:
Lost in the palacesofeternity;

Lit by the jewels ofinfinity

of the land of nowhere,

Your seed hasdispersed in the dark light-years.
(Sunburst starburst)

Iam a child ofeternity;

I travel with comets...

born of someother, lost amongstardust.
Lit by the jewels of infinity

down1sa lifetime in every direction.

Mars VenusJupiter Saturn:lost

in the empty ocean.

Orbiting: on a journeyto no destination.

... Procyon EridanusRigel...

Lit by the jewels ofinfinity,

I travel with comets

I TRAVEL WITH COMETS, I TRAVEL WITH COMETS

... through aeonsofcrystal ...
... Of this island universe.

I am a child of eternity (Mars Venus Jupiter Saturn)
I am a child of eternity

on a journeyto no destination.
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Lost in the palaces of eternity (Procyon EridanusRigel)
I weep notears.

I prophesy the beginning.

Born out of darkness on a journey to no destination.
Born of some other, your seed has dispersed ...

between the galaxies (born out of darkness)

between the galaxies — of the land of nowhere.

Downis a lifetime in every direction; .

Orbiting ... dreaming of havens...

(sunburst starburst, lost among stardust)

Lost, in the empty ocean betweenthe galaxies.
I prophesy the beginning, dreaming of havens

(Mercury Earth UranusPluto), lost

amongstardust.

I travel with comets; I weep notears.
sunburststarburst...
... Spindrift stardrift ...

I prophesy:
the beginning.

The punctuation and underlining are added by Shirley afterwards
but otherwise if the computer produces a good poem heis reluctant
to changeit. ‘That would be spitting in the eye of the gods,’ he says.
The poems employ an open form on which ‘an overall shape and
design has been imposed’. Indeed, Shirley specifies rather more and

leaves rather less to chance than do many other computer poets.
None the less, he is convinced that his poems would be entirely
different without the collaboration of the machine. Heis notreally
interested in the usual questions of: ‘What is the place of the com-
puterin the process?’ ‘Is the program intelligent?’ He wants his poems
to be judged on the sametermsasanyothers.
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Fiction

Poetry writing by computeris considerably easier than prose, not
least because readers are usedto the idea of poetry seeming to some
extent incoherent and disjointed. A story-writing program needs a

mechanism for constructing sentences that make sense and are
elaborate enough to seem adult, and also a means ofdevising a plot
by manipulating themes such as conflict, revenge, atonement and
so on. G. E. Hughes and somecolleagues at the Jagiellonian
University of Cracow produced by computer a complete short novel

called Bagabone, Hem ’I Die Now(thetitle is pidgin English, from

the story’s Polynesian setting). It reads like an ordinary book, but

was constructed, as Hughes describes it, like a giant game of
Consequences. There was also some attemptto devise a literary style
through analysis of Joyce, D. H. Lawrence and various twentieth-

century women writers.!>

Iknow whatI like

All this can seem puzzling to the outsider. We think ofthe art that im-
presses us mostandrecall the enormousmental effortand anguish that
wentinto its creation. What can be the value of art that is produced
without a clear idea of a desired end-result on the part of the artist?
Intuitively we think of art as negative entropy, and as a general rule
the better the art, the more negative the entropy, with every single
detail contributing to the overall effect. The process of laboriously
selecting the attributes of each detail so that they will contribute to
the overall effect is the very reverse of entropy. Surely anything that
is random or unpredictable will almost never turn out to contribute

in this way, to have any value? Afterall, Stravinsky, no reactionary

himself, said: ‘I hold that music is given to us to create order.’!°
In reply some computerartists put forward the view that what

goes on in the humancreative process is no different in kind from
what happensin their machines. Anartist has an algorithm in his
headjust as much as a computerdoes. They go on to dismissfree will
as an illusion, no different from random choice, so the chance element

in their programs should complete the equivalence of human and
computerartistic creation.!”
The central question then is, what are the algorithms that humans
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use? It is the search for an answerto this question that is the main
preoccupation of many computerartists. Harold Cohen sets out
deliberately to model humancreative behaviour, to externalize the
process which would otherwise be going on inside him. Lawrence
Mazlack, at the University of Cincinnati, is trying ‘to develop an
aesthetic perception in a computer’ in order ‘to investigate the

codification and specification of aesthetic judgement’.!® This leads

inevitably to the question, whatis art? Someartists insist that artis
nothing more than the process of asking, ‘What is art?’ This has
prompted Marshall McLuhan to comment,‘Art is anything you can

get away with.’!° Otherartists are more positive. Edward Ihnatowicz

asserts that art is the process of ‘modifying the environmentso that
some aspect of nature, otherwise not discernible, can be revealed —
to attract people’s attention to an aspect of reality’. Robin Shirley
suggests that basically ‘art involves the human faculty ofdiscerning
order’, and that the essential interaction 1s with the perceiver, not the

creator. In its most general senseart is the process of making meta-
phors, Negroponte maintains 1n a passage wryly headed ‘A metaphor
cannot be hung upside down’.?°
Throughout all this we see continuing the argument between

classicism and romanticism that has been going on in art for
hundredsof years, with classicists trying to find order in nature while
romanticists prefer to take nature as it is. Earlier in this century
the dispute took the form ofDeterminism versus Indeterminism, with
obvious pertinence to the use of randomness in computerart.
Perhapsthis art is not as revolutionary asit seems.

This isjust like art

So how successful have these artists been in their metaphor-making
with machines? It is widely agreed that, taken as a whole, art with
computers hasnotlived upto its potential. Negroponteis blunt about
this: ‘Rarely have two disciplines joined forces seemingly to bring
out the worst in each other as have computers andart.’?! Those
whoentered the field early have been disappointed at the low level
of interest that has developed. Certainly this is due in part to the
bad reputation computer art has acquired, deterring people with
talent who might have contributed to raising the standard. Brian

Reffin Smith puts forward his explanation ofthis:
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Traditionally the computer has been used to produce what you might

call ‘pretty pictures’. In a senseit’s a kind of chocolate box art of informa-
tion technology, which in some ways has given computing in art a

bad name, because people have produced random numbersquiggles and

spirals and so on — maybe they have been mathematicians or computer
scientists. They’ve said, ‘Hey! This is just like art!’ and put it on their
walls and so on. This drives artists and designers mad because if you

had doneit with a pencil or with string on natls or whatever, people wouldn’t

look at it twice. Certainly they wouldn’t consider it worthy of having an
exhibition.?2

Harold Cohenseesthe failure of computerart thus:

For an artist proposing to make images with a computer, the body of

knowledge we should be considering is that which binds the nature of a
program to the nature of an image, not simply programmingskills, even
though he can’t do without them. ‘Computer art’ has never accomplished
that binding, because it has always accepted the characteristic 20th-century
definition of the computeras a transformation device. To get an image out

you have to put an imagein. The binding ofprogram to imageis impossible,
since a transformation processis indifferent to what is being transformed.
To use the computeras a transformation device is to use it on trivial

level. It is a completely general symbol-manipulating device, and allows the
writer of a program essentially to define what the machineis any wayhe or
she chooses. That generality gives the computer a very special significance

as the first modern device which allowsitself to be used as a sort of do-it-
yourself design kit, rather than asa single fixed-function tool.?3

The problem as far as the laymanis concerned is that most com-

puter art is highly abstract, and abstract art is hard enough for him
to appreciate and judge, superficially or deeply, even when thereis
no computer involved. Then the aspect of computer creativity is
introduced to complicate matters yet further. It is often pointed out
that the pictures produced by Harold Cohen’s program look very

muchlike the ones he used to paint himself. What then is the point

of going to all that trouble with the computer? Cohen remarksthat
‘The art-sceptic’s three-year-old daughter really can not do as well
as Picasso,’?+ and we agree, but can she do as well as Aaron? The

exercise may beinteresting intellectually but artistically ...? Many

people watch with fascination as Aaron drawsits pictures in the

museum, and happily buy the finished pieces, but it is hard to know
how muchofthis is aesthetic appreciation and how muchis novelty
value.
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Then thereis the issue of randomness. Presumably, the bemused

onlooker concludes, if Jackson Pollock could throw paint at his

canvases, the computer might as well too, but the rhyme or reason
can seem elusive. Then Cohen puts forwardhis view of randomness:
‘Primarily, I believe its function is to produceproliferation of the
decision space without requiring the artist to “invent’’ constantly.’25

But surely the whole business of an artist is to invent! He should

hardly regard this as a chore to be evaded!It is easy to reach the
conclusion, as Negroponte puts it, that the technology 1s the whole
point: like a burlesque of Marshall McLuhan’sideas, the medium is
the message.

Alan Sutcliffe enters the fray at this juncture and insists that

computer art has not yet been given a fair chance to proveitself.

All art involves the production of a great deal of mediocre work

before anything exceptional comes along, and computerart simply
needsa longertrial. The public also hasa lot of learning to do before
it can really appreciate these new media, because the ideas involved
are strange and new.

The Sunday painter

Negroponte sees computer art developing in two particular ways.

Oneis an extension of kinetic art of which the Senster was a notable

example:

Imagine more moodypieces. Simple extrapolations of interactive art can
embellish the behavioural modelto include inputs from the weather, time

of day, Dow-Jones Average, and the results of sports events, elections, or
film ratings. In some sense, this could be the art form of off-track betting.
Or, with more fantasy, we can imagine a future of the visual arts populated
with patronizing pieces of sculpture and caustic canvases that recognize the
viewer to be male or female, rich or poor, bewildered or blasé, you or me.
In this fiction, the artist runs a kennel for cuddly art formsthat get to know

their future owners, whoin turn get to know andlove them.?°

Even before Negroponte had written that, Edward Ihnatowicz had

built a sculpture with an arm that the viewer pulled as on a one-

armed bandit, while the machinetried to makeinferences about the

puller’s sex and temperament.?” He must beware who prophesies
in jest.
The other development Negroponte foresees is in the direction
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of personal, as opposed to public, art. He pointsto all the metaphors
we treasure as individuals, but which are of no interest to anyone
else: a drawing by one of our children, a stone brought back from

an idyllic holiday years ago. Computers provide a whole new set

of opportunities for self-expression:

Think of our Sunday painter reincarnated with an easel of electronics
and a palette of computer graphics. His work is as invigorating as a game
of tennis, his challenge is that of chess, his product is as ephemeral as a
child’s drawing. In this fantasy lies the potential for the major impact of

computers on the visual arts of the future.2®

Not everyone is happy with this vision. Harold Cohenrelatesa visit

to Xerox’s Palo Alto Research Center:

There wasalso a music program at Xerox, which,I was told, would enable

people to compose music even if they didn’t know anything about music.

Didn’t I think that was marvellous, I was asked? No, I said, I thoughtit

was appalling. Whywould anyone want to compose music without knowing

anything about music? And why- asif I didn’t have my suspicions already

— would Xerox’s well-meaning technologists want to encourage that
particular form of lunacy? Well, they said, it was a beginning: I would surely
have to admit it was a step in the right direction. No, I said, I was quite

sure it was a step in the wrongdirection.?°

In the last analysis, if computers produce works of art that are
original and interesting, by whatever process, then we have every
reason to rejoice and acceptthe exercise as worthwhile. The problem
must be fundamentally that art that says muchto usis nearly always
based on a great deal of knowledge about the world. Thesignificant

artist needs, aboveall, experience, both of his trade and oflife. Up

to now computerart programshave incorporatedlittle knowledge,
except perhaps for Harold Cohen’s Aarons. Cohen even refers to
the work of his Anims program as ‘Drawings of a know-nothing,
almost’, although it is surprising how much knowledge of animals
these pictures appear to contain. There is, as Robin Shirley puts

it, ‘an immense problem of putting a useful model of the world into
a computer, and the task has only just started’. As we havesaid,
Harold Cohen has embarkedonthe process of using the techniques
of knowledge-based systems to makepictures, and otherartists are
certain to follow suit.

A really serious contribution by computersto thearts isstill a

long way off. Whether computers will ever create great works of
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art autonomouslyis hard to say. Negroponte declares that, for that

to happen, the machine would have to want to create the work of
art — and that raises any numberof philosophical questions. But
even if computers only provide a useful augmentation of the human
artist’s mind they will have added in an important wayto creativity.
Thereis no doubtthat machineswill play an increasingly prominent
role in the arts.



CHAPTER 8

Coming to Model Heaven

Hereafter, when they come to model Heaven

Andcalculate the stars, how they will wield

The mighty frame, how build, unbuild, contrive

To save appearances, howgird the sphere

With centric and eccentric scribbled o’er,
Cycle and epicycle, orb in orb.

Paradise Lost, VIII, 79

The house of those who workwith their brains has always had two
levels. Upstairs live the patricians oftheory whoserole is to conserve,
propagate and improvesociety’s treasures of descriptive truth and
descriptive style. Here are tended the great explanatory theories that

proceed top-down from the highest level of abstraction and show
with great conciseness how particular consequencescan bederived.

Downstairs live the practitioners: lawyers, doctors, architects,

engineers, economic geologists. Not quite so far down we encounter
applied mathematicians of various kinds — statisticians, operations

analysts, software technologists, aero-designers and others. Humbler
representatives are mechanics, welders, boat-builders, dressmakers,

cooks. The lower levels are expected to keep themselves to them-

selves, except when called to serve some particular need — to make

or mend a chair, to cook a meal, to run a message. Very occasionally

some servant-scholar arises — an Aristotle, a Bacon or a Spencer

—andarguesthatthere are unifying principles in the bottom-uptrade.
Upstairs people usually smile indulgently at such quaintness, but
they are not averse to descending the backstairs whenit profits them.

Thus a biologist can draw pay from a medical school. A social

philosopher can earn a penny helping to school budding lawyers.
Behind the engineer standsthe physicist; behind the spacepilot, the
astronomer.
To Upstairs Man, true knowledge is constituted solely of the
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theorems and facts which define The Way Things Are, immutable.
The rest is for tradesmen, troglodytes and the B-stream. Practical

men on the other hand, especially in computing, tend to feel that
the technology is everything and the theory nothing, that theory is
an excuse for woolly minded academicsto stand onthe toes of the
real men whoare grappling with the real issues. Is a chess master,
they ask, strengthened by a course in gametheory,or a racing cyclist
by studying Newton’s dynamics? So it has always been,a deadlock.
But now the deadlock matters.
Computing is struggling to come to grips with problems for

which no explanatory theories exist as yet, or for which using
established theories entails impossibly large amounts of processing.
So knowledge engineers are developing rule-based systems that use
heuristics instead of theory. But in doing this the engineers mayfail
to see the brick wall ahead. What happens whena rule-based system

encountersa situation for which it has no rules? It has run out of
know-how. Whatit needsis the ability to work out a way ofpatching
the gap. But Mycin has no theoretical knowledge of meningitis with
which to do this. Prospector understands nothing of scientific
geology. It is becoming imperative that Upstairs and Downstairs
should begin to fraternize.

Upstairs models, Downstairs models ©

Thesocial divide looms largest when the time comesto build models
for our problem solving. A model is simply a description of the

structure of a complex world, a representation small enough to be
portable and manageable by a simple brain, yet large enough to
incorporateall the relevant features of the system being modelled.
We use models all the time, to help us predict the behaviour of
systems. They enable us to answer‘Whatif?’ questions. Forinstance,
a map is a model that helps us solve the problem of how to get
somewhere. It allows you to experiment quickly and painlessly — to

find a route bytrial and error. You say, ‘If I go that way and then
that way — no, I need to go that way ...” All our dealings with the
world involve mental models of one form or another that describe
how we think the world works. It can be shown in psychological
experiments that animals too use cognitive models, when a dog
realizes that the only way he can catch a rabbit is by an indirect
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approach, by going arounda screen which blocksthe straight path.

For computers to solve problems they also need models, but of what

kind? Therelies the difficulty. There is a choice, corresponding to the
twolevels in the house ofknowledge: heuristic models, based on rules
and accumulated know-how, and causal models, based on theories

of how the world actually works.
To illustrate the difference here is a toy example. Figure 44 is a

heuristic model, written out as a couple of decision tables, which

tells you when to open your umbrella. It also caricatures in miniature
the whole tribe of Mycins, Sacons, Prospectors, Puffs and Ritas.

Each and every one of theseis like a green-fingered gardener who

knowsnothing of botany.

 

 

 

UMBRELLA TABLE
Condition Action
user soaked do-not-open
user outdoors go-to WEATHER TABLE
else do-not-open

WEATHER TABLE
Condition Action
very windy do-not-open

raining open
hailing open
snowing open
sleeting open
else do-not-open    

Figure 44. Heuristic tables ofwhen to open an umbrella. Rules are processed
in strict order, until a match with the condition part fires somerule’s action

part

Quite apart from the problem ofwhat to doin situations not covered

by the rules (falling ash from a volcanic eruption?) this heuristic

model possesses only a glimmerofone ofthe most importantfeatures
of expert systems — thatis, the ability to provide explanationsofits
pronouncements when required. ‘Explanation’ here is only in the
superficial sense of Mycin’s explanations, via retrace of the contexts

and rules invoked in the course of arriving at a decision.
For something more helpful than simply a regurgitation of rules,

we need a causal model. What might it look like in this case? It
would have to captureall the workaday physics of three-space and
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water, and gravity, fabric and permeability, not to mention social
and biological truths about houses and humanlikes and dislikes.
These would need to be linked and structured in machine memory
in relational representations convenient for checking the validity of
heuristic theories, and convenientalso for explaining them and for
generating new modules for such theories. Aboveall, the causal

model would be very much biggerthan its heuristic counterpart, the
two tables. Of course in a nursery example such as this, ‘deep’

explanations of system decisions might not be altogether welcome.
Most of us have in our acquaintance some over-intellectual person
whose readiness to dive back in great detail into first principles is
viewed as a mixed blessing by his friends. To such a one you say
‘Why?’ at your peril. We can foresee ramifying sessions with the
ultra-intelligent umbrella-opener:

MACHINE: Please indicatestate of affairs.

USER: Outdoors, user soaked. Umbrella closed. Weather

raining.
MACHINE: Advice: ‘don’t open’.
USER: Why?

MACHINE: Rule 003: If user soaked then ‘don’t open’.

USER: Why?
MACHINE: Necessary pre-condition of ‘open’ is that user 1s not

soaked. If pre-condition of an action notsatisfied, then
advice is ‘don’t do it’.

USER: Why?

MACHINE: In this case pre-condition 1s related to goal. If some
condition implies non-achievability of a goal by an
action, then the negationof the condition 1s incorporated
in the pre-condition. The goal of the action ‘open’ is a
state in which the user is not soaked. If the user is

soaked then the goal is not achievable by the action

‘open’.

USER: Why?

MACHINE: Drying action categories are: blowing, vacuuming,
blotting, heating, freezing. ‘Open’ is not in any of these
these categories.

USER: Why?

And so on, with the machine plunging deeper into the physics of
evaporation, capillary action and the rest — endless, thorough
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patience for the endless repetition of ‘Why?’ What a splendid inter-

active companion such a system would make for certain small
children!
A graphic example of a heuristic model in action is Fischer or

Karpov playing lightning chess. They can only use heuristic rules
— there is no time for anything else — yet they canstill hold their
own against an ordinary master whois allowed all the time in the
world for search and reasoning. In contrast, an engineer whois fault-
finding a machinehe hasjust built is using an entirely causal model,

based on his design of how it is intended to work. There should ©

be nothing about the machine which he does not understand. The

equipment hasnot been in existence long enough for any heuristics

to have been collected aboutits behaviour.

Different ways ofbuilding

Quite separate from the type of model is the question of howit 1s
derived. An almanacfor instance is a modelof the solar system which
could be constructed either bottom-up, from observations of the
movements of the planets, or top-down using Newton’s laws of
motion and gravity. (Newton’s laws were of course derived in turn

from planetary observations.) Fischer’s heuristics for lightning chess
are built bottom-up from examples. In principle they could be
worked out top-down from the rules of chess but this would be
impracticable: cf. the van Dusen delusion. Primitive man has various
models of the physical world, for example to do with the weather.
‘Red sky at night, shepherd’s delight’ is an entirely heuristic rule,

incorporating no explanationatall, andit is derived bottom-up from
observation. But, ‘The reason whythere is no fair wind for Troy 1s
that the gods are angry’ is a causal explanation using a model which
with the aid ofanalogy wasalso derived bottom-up. So causal models

can be constructed from empirical generalizations, and indeedthis is
what most of mythology has consisted of since prehistory.

In manypractical domainsit is possible to get by, sometimes with

flying colours, on heuristic models alone. A cook ignorant of
chemistry, a politician ignorant of sociology, a cabinet-maker
ignorant of geometry, a weather forecaster ignorant of fluid
dynamics — all these are cases in point. Anothercase 1s the ability
to do arithmetic, which most readers probably brought to concert
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pitch for one or another school examination before their teens. But
how many of us have any deep knowledge of arithmetic, any
organized theory from which the reasons whythese tricks actually
work could be derived? How manycould write out Peano’s axioms,
or prove any major theoremsof arithmetic?

The discovery that a domain specialist’s top-of-the-head skill can

be mimicked by relatively simple and uniform computational

structures, based on pattern-derived situation—action heuristics, is

whathasled to the recent rapid development of expert systems. In
the present state of the art, constructing causal models tends to be

difficult and costly. We are reaching the stage, however, where

heuristic models are no longer enough. An expert system needs to

be able to follow heuristic rules most of the time, responding quickly

and using little in the way of computing resources. Then when a
situation arises to which noneof the rules applies, it should be able

to bring into play a causal model of the domain, which will be slow

and expensive but capable of reaching a solution. This way of com-

bining the two types of model in one system is shown in Figure 45.
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Figure 45. Respective roles of heuristic and causal models in a combined
system
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Asyet, few knowledge engineers have takenthis course, but there

have been two notable successes. A team at Case Western Reserve
University has constructed a system to control an electrical-power
distribution network. This includes both a heuristic model with 800
rules in an associative store and a causal model incorporating a
description ofthe distribution network together with the quantitative

physical laws governing the behaviour of electricity.! At the

University of Illinois, W. B. Rouse and R. M. Hunt produced a
fault diagnosis system for electromechanical equipment, based on
a mapping from symptomatic patternsto decisions, and also a logical

and physical description of the machinery.” As the technology moves
in this direction we shall be able to have more and more expert

systems that are insightful rather than merely skilful. Outlines of
this deeper kind of expertise can be glimpsed in the diagnosis system

for internal medicine under construction by Harry Pople and Jack

Myersat Pittsburgh Medical School.
There is a widespread notion that problem-solving representations

built from causal models are necessarily error-free, proved so by their
implementers, and thus in some important sense ‘sound’, while
heuristic models are by their nature tainted with unbounded and

unquantifiable error. In actuality, formal proofs of correctness are

no less obtainable for heuristic models than for those of other kinds,

provided that the domainis such asto sustain precise mathematical
reasoning at all. Someonesays: ‘I need to build an expert problem-
solver, but I don’t buy heuristic production-rule models. How do

I know theyare correct, or with proved error bounds?’

He could equally say: ‘I need to make an omelette, but I don’t buy
eggs. How do I knowthatthey are not addled?’

The answercan only be: ‘Get your eggscertificated; or at the very
least buy from reliable farm. If you don’t want to do that, then

you'll have to lay them yourself.’

Communicating with alien mentalities

All models are in some wayor other caricatures of the real world.
To what degree reality has to be squashed to makeit portable

dependscritically on what device the modelis held in: a humanbrain,

say, or a large computer. Different mentalities use different models
— the problem arises when they need to communicate. They may
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be quite unable to describe whatit is they are talking about in terms

the other can understand. Consider communication with dolphins.
Analysis of the high-bandwidth chat exchanged amongdolphinsis
being carried out with the aid of computer signal-processing tech-
niques. The sponsor is the US Navy, which is training these

intelligent sea mammals for salvage and retrieval work on the ocean

bed.
At San Diego’s Sea World, dolphins and their killer-whale

relations out-perform the trained seals, apes, dogs and horses of the
circus. Rewardsfor successful tricks include food, pats on the head
and sometimes just permission to show off, which takes the form

of prancing round the pool in an unbroken sequence of spectacular

high leaps. The dolphin’s brain is anatomically more impressive than
man’s both in size and surface convolution,so it is interesting to
note that Sea World’s chief trainer places the dolphin as not sub-
stantially smarter than the chimpanzee, with which he has had
extensive experience.

What then is the huge brain for? One remarkable trick of the
dolphinsis to be able to distinguish at a distance between two metal
spheres suspendedin the water, identical in all respects except that
one is hollow at the centre and the othersolid. Atfirst some people
thought this mysteriousability indicated that dolphins were blessed
with extra-sensory perception! Then it was realized that they use
very high-channel-capacity sonar, with time resolution of the order

of microseconds. They can detect the difference between the echoes

from the two spheres. Two dolphins can also, as it were, mutually
‘lock on’ their autopilots. As part of Sea World’s daily show two
dolphins swim at high speed in formation to transport to safety the
relatively fragile form of a girl who simulates an accidentalfall into

the pool. Carrying her between their flanks they are able to maintain

a pressure which neithercrushes hernorlets herslip.

Perhaps the capaciousbrain is for processing the sonar, so that
information about other dolphins and the surrounding world can
be cross-correlated with the simultaneous flow of visual data. The
Navy research workers broadly agree with this. Part, however, of
the high-speed traffic of weird noises seems interpretable as

expression of mood and general sociability. A dolphin can teach a

complicated new trick to another dolphin, but whatpartin this is
played by linguistic instruction, as opposed to demonstration and
imitation,is not yetclear.
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The main obstacle to man—dolphin communication maylie in the
disparity between the cognitive worlds of the two life forms. The
fact that dolphins live in a marine world, remarks Michael Arbib
of the University of Massachusetts, ‘must greatly condition what

intelligence they have. If indeed they do have a language, the words
they use will be different from ours. What may seem an obvious
concept to them may be a very complicated conceptto us.’* Much
of Arbib’s discussion concentrates on problems of communication
with inhabitants of other planetary systems. Whatsorts of messages

should we send? Will the intelligences we talk to be natural or

artificial? Should we send pictures, and if so how will the recipients

know which way up the pictures should be viewed? What are the

linguistic and cognitive constants which might be expected to
characterize all sufficiently intelligent beings, regardless of their
perceptual and cultural milieus? On a more immediatelevel the lack

of cognitive compatibility between humans and machines presents

a major obstacle to the builders of models in computers.

Beyond the bounds ofmind

The essential requirement of a modelis that it be graspable. It 1s
assumedby a good manyworkersin the knowledge-engineeringfield
thatall they need do to maketheir systems understandable to humans
is to base them on rules. This is very far from the case. It is easy
for rules to be based on a model whichis outside the user’s grasp,

whether for reasons of structure or of scale. Take a primitive man

living in tribal Africa, who hasnevertravelled more than a few miles
from his home. We could tell him about New York, and the fact

that it is many thousandsof miles away, and he might well set off
to walk there just the same. The idea that there are places that are
too far away to walk to may be beyond his comprehension. Today
we knowthat the speed of light is 186,000 miles per second, but
in Aristotle’s time the idea that something could move from horizon

to horizon toofast for the eye to perceive its motion was unthinkable.
He concluded from the apparent instantaneity with which the rays
of the rising sun illuminate prominenceson the western horizon that
light is not something propagated throughspaceat a definite speed.
Howwrong can scientist be? In Aristotle’s case by aboutfour orders
of magnitude. Apparent instantaneity would presumably disappear
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if the rising sun’s light streaked across the sky at only 18-6 miles

per second.
It is often thought that opposition to Copernicus’s heliocentric

model of the solar system was based solely on religious dogma. In

fact reasonable people, including the great astronomer Tycho Brahe,

pointed out that if the earth were circling the sun, ‘the stars would
appear to move back and forth across the sky over the period of
a year — ‘stellar parallax’, as it is called (Figure 46). No such move-
ment could be detected. They worked out how far awaythe stars

would haveto be in order for the parallax to be immeasurably small,

and decided nothing could be that far away! By Newton’s time other

arguments hadprevailed,butit was not until 1832 that astronomers’
instruments were accurate enough to show parallax. The neareststar,
Alpha Centauri, turned out to be 25,300,000,000,000 miles distant,

with a parallax of only three quarters of a second ofarc.

 
Figure 46. Stellar parallax, greatly exaggerated. The angles are so small that
no technology could measure them until the nineteenth century

The vastness of the universe which science hasrevealed to us has
widened enormously the scales on which weare prepared to think
about space and time. We no longer object to being told that the
speed oflight is 186,000 miles per second. When Einstein was young,

astronomers had not begun to conceive the idea that there could
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be other galaxies than our own. Yet so profusely do galaxies stretch
in every direction through spacethat the small sample easily visible
by telescope from the Northern Hemisphere amountsto one million.
A computer compilation of these has been published as a poster
image on a squareyard of glossy black.* The distance to the furthest
galaxies in this map is abouta billion light-years. That is not all. By
presentoptical telescopy the numberof galaxies which we cansee1s
about a thousand times the numberselected for the star map asthe
million brightest. From observatories in space wewill be able to see
a larger numberstill.

Be that as it may, no matter how much our minds have been
stretched, they will always be finite, and model-builders must

rememberthatifthe end-points oftheir description-graphsare strung
out so far as to be out of sight, no human user will be able to
comprehend them.

Language and thought

Researchers in AIare starting to make progress1n a series of areas

they have identified as crucial for the long-term goal of developing
really useful intelligent machines. The question of how to build
models is one of these. Another1s to do with the nature ofknowledge,
and the languagesin whichit 1s embodied.
The question of whether thought is the mother of language, or

whetherit is the other way round, has received attention over the

past 100 years from talents as diverse as Lewis Carroll, Ludwig
Wittgenstein, Jean Piaget and Josef Stalin. Benjamin Lee Whorf
underlined the role of vocabulary in simultaneously reflecting and
guiding perception, this in turn being conditioned by cultural and
economic experience. Even in Scotland there is only one word for
‘snow’, two if one counts ‘slush’. The Eskimo has a dozen,sovital

is it for him to distinguish between the various forms. The life of

the Hopi tribe is such that no needarises in their language for a
noun for ‘time’, or for a tense system of past, present and future
for the verbs. Whorf believed that language acts as a mould for

thought, forcing it into preformed linguistic categories. The machine
intelligence scientist must also adopt a position, for he has to decide
on his research strategy for building intelligent agents in software.
Is he to make the mechanization of knowledge-based reasoning the
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mainthrust, only secondarily clothing the system, where he can, with
linguistic trimmings? Or should he go bald-headed for computational
linguistics as the heart of the matter?

Teachers of logic frequently introduce the notion of rule-based
(and hence mechanizable) reasoning with the old chestnut:

Premise 1: All men are mortal.

Premise 2: Socrates is a man.

Conclusion: Socrates is mortal.

Christopher Longuet-Higgins has constructed the linguistic trap:

Premise 1: Men are numerous.

Premise 2: Socrates is a man.

Conclusion: Socrates is numerous.

Bertrand Russell gave as another trap the statements:

George IV wondered whether the author of the Waverley novels was
Walter Scott.

and

Walter Scott is the author of the Waverley novels.

from which we do not want a computerto deduce:

George IV wondered whether Walter Scott was Walter Scott.5

On such rocks as these has foundered much ofthe linguistic

philosophyofthe past. Todayit is accepted that reasoning by formal
manipulation requires prior reduction of the language text to some
more logic-oriented symbolism. For example, using predicate
calculus in the Socrates puzzle we have:

Case A

Premise 1: for all x, member (x, men) implies mortal (x);

Premise 2: member (Socrates, men);

Conclusion: mortal (Socrates).

Case B

Premise 1: numerous (men);

Premise 2: member (Socrates, men);

Conclusion: ?
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In Case A the conclusion follows by substituting ‘Socrates’ for x.
In Case B nothing can be concluded. So once the statements are
re-expressed in a suitable formal language, the conclusionsof logic
are reunited with those of commonsense.

In the poolofanxious discourse

Theissue of languagefirst versus reasoningfirst is assuming practical
importance now that expert systems and computer information

services are acquiring front-ends for dealing with users in something

approaching natural language. Some of the endless streams of
citizens’ queries to the offices of bureaucracy may one daybere-
directed to automated systemsable to advise with endless patience
on, say, pension entitlements. But more thanpatience,alas, and more

than linguistics, will be needed for a system which hasto fish in
the pool of anxious discourse for the inquirer’s true meaning and
desires. The following small sample is taken from letters reputedly
received someyears ago by the Ministry of Pensions.

I cannot get eternity benefit in spite of the fact that I saw the insistence

officer. I have eight children, what can I do aboutit.

I should have more pensionsince my sonis in charge of a spittoon.I get
a separate money whenhelistened. You want to know what part he is
woundedin.Ifit’s all the same to you he was woundedin the Dardy Nolls.

In accordance with your instructions I have given birth to twins in the
enclosed envelope.

I want money badly as quick as you can sendit. I have been in bed with
the doctor for a week and he doesn’t seem to be doing any good.

Onefalse step, one prolonged hesitation in interpreting, and Heaven
knows what mayensue:

I am gladto state that my husband died yesterday.I will be glad ifyou will
get a pension.Ifyou don’t hurry up withit I will have to get public resistance.

System responses might be quick enough,but on occasion they could
be embarrassingly misplaced.

Re your dental inquiry. The teeth at the top are alright but the ones in
my bottom are hurtingterribly.
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It is easy to mock present-day computerized natural-language
processing for failing to handle instances such as these, but crude
as existing systems are, they are already usable in commercial
applications, and computational linguistics has penetrated laws of
language obscureto theoreticians of the pre-machine era. But irre-

spective ofthe progress ofnatural-languageprocessing, programming

intelligent systems requires special logic languages, not only for
dealing with the Socrates problem and its kind (for which con-
ventional programming languagesare really not adequate), but also
for building systems that can reason about what other systems know.

Knowing about knowing

Whatsort of systems might have such a requirement? Consider a
program to assist a travel agent in planning routes and schedules.

So long as the program’s only source of knowledgeis the contents

of the airline timetables, there is no problem — except that it will
be caught out by new information (concerningair traffic control

work-to-rules, hurricanes, civil wars, compulsory groundings,

hiacks, revisions or even misprints in the timetables) which ‘every-
body knows about’ but which has not yet reached the agent’s desk

of its own accord. So we would like a program able actively to assist

in the search for knowledge, for example by calling somebody up.
Then it must know what knowledgeis, and howto reason aboutit.

Suppose a system called Travelaid is being run for the benefit of
a commercial travel agency. Pat is a travel agent who wantsdetails

on flights from Hong Kong to Ulan Batorfor a client. Mary is a

Thomas Cook agent whohasspecial information on these flights.
Mike is Mary’s immediate supervisor at Cook’s, whom Patrecently
telephoned about another matter. What Pat does not knowis that
Mary and Mikeshare the same phone.

Pat asks Travelaid to get Mary’s phone numberfor her and dial

it. The machine does not have Mary’s numberin its data-base but

it does have the following three facts:

Fact 1: Pat knows Mike’s telephone number.
Fact 2: Pat just dialled Mike’s telephone number.
Fact 3: Mary’s telephone number = Mike’s telephone number.

The program puts these facts together and infers (by substituting
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equals for equals) that Pat knows Mary’s telephone number, soit

asks her for the number, the very question which she hasjust asked
it! Moreover, when she protests, Travelaid types, “You just dialled
Mary’s telephone number!’ Although for once Travelaid is telling
the truth, Pat has no knowledge of having done any such thing and
endsa beautiful contract by ripping Travelaid’s cord out ofthe wail.
What happened? The program put 2 and 3 together to infer (cor-

rectly) that Pat dialled Mary’s telephone number. Ofcourse Pat could
not recognize the correctness of the inference, not knowingfact 3. So
whywasthe other inference wrong, proceeding as it seems according

to identically the same scheme?

The short answeris thatfirstly, as noted above, this is what tends

to happen if one tries to perform deductions directly on natural-
language statements; and secondly, even whentranslated into logic,
statements about ‘knowing’are slippery. We need to understand how

a machine can know that you knowthat it knows that she knows

what it knows. John McCarthy of Stanford University has shown
that this can be handled satisfactorily within first-order predicate
logic.° Using his method there would belittle trouble in equipping
Travelaid for deductions about knowing telephone numbers or

knowing anything else — including ‘knowing that’ and ‘knowing

whether’.

McCarthyleavesfirst-order logic unchanged andtreats concepts
simply as one kind of object, so that constants, variables and terms
can all have concepts as their values. By a notational convention he

distinguishes between ‘concept constants’, such as Pat and Mike,

and the corresponding ‘person constants’ pat and mike. Pat

represents the concept of pat. Likewise the concept-variable Horse
represents the thing-variable horse, and Telephone (Mike) evaluates
to the concept of mike’s telephone number. McCarthy’s key move1s
to introduce a function Know whose arguments must be concept-

valued and which produces a concept as a result. The clarifying

restriction is that only concepts can be known,just as only liquids can
be drunk.

Fundamentally what is needed is a sound and well-quantified
theory of knowledge, giving the field the same sort of scientific
foundation that Carnot provided for steam engineering and Shannon

did for communications. Weshall then have a calculusfor reasoning

about knowledge and other mental phenomena,andthis is indeed
what McCarthy has concerned himself with.
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The drill-sergeant’s withdrawal

Asa highpriority, artificial intelligence needs a languagethatwill
deal with logic directly, rather than through imperatives in the

manner of Cobol, Fortran, Basic and others of their breed. Do

computers ever get bored with the interminable streams of com-

mands? ‘Do this, do this, do this ...” The helpless indignity of their
situation recalls that of the recruits marching towards the edge of
a precipice-lined barrack square: ‘For God’s sake say something,
sergeant, even if it’s only goodbye!’ For such of the world’s teeming

machines as may beafflicted with ennui or despair, there is news.

They too may one day haveto think for themselves. Tomorrow’s

programmers will one day indolently disburden themselves of the
drill-sergeant chore. How relaxing to be able to bark out ‘... left,
right, left, right ... about turn ... left, right ... now get homeusing
your own bleeding commonsense!’ and then withdraw to the mess-

room.
This has to do with what Ed Feigenbaum calls the ‘What-to-How

spectrum’. Instead oftelling the computer how to do something, we
would like to be able to tell it what we want it to do, and leave

it to work out how. Feigenbaum seesthis as the ultimate aim of
all AI research.’ The idea behind what is known as ‘logic

programming’ 1s that you should equip the computer with a basic

reasoning engine, and thereafter tell it nothing but facts, on the
understanding that it will do its best with them. As you build its
stock ofknowledge with just the right set of relevant assertions about
whatis or is not the case in the world of sorting, merging, data

control, queuing, scheduling, game playing or other computingtask,

so the system builds its own capability to sort, merge, control data,

manipulate matrices, etc., simply through its own efforts to prove

that any goal statements fed to it really can be deducedlogically
from its accumulated store of facts.

Asearly as 1971 Robert Kowalski, then at Edinburgh,wasalready
in effect saying: ‘Whatever you want the system to know,tell it the

facts in first-order predicate logic. The result will have an obvious

declarative semantics — it is quite unambiguousin whatit says about

its problem world. If, moreover, the system is equipped with a
theorem prover behind the scenes, capable in principle of deducing
anything deducible from thestarting facts, then the logical statements

can be given a procedural semantics. So we can forget the years of
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drill-sergeant programming, and use as a programming language a

vehicle which has been there all the time, much studied and well

understood by mathematicians, namely,first-order predicate logic.’

Waitingfor a miracle

Kowalski showed in detail how a theorem prover based on J. A.

Robinson’s ‘resolution principle’ could be madeinto an interpreter

for such a language. Buthis hearers did not like this. Somefelt that

he wasright but mad, others that he was wrong if only they could

think exactly how. The majority took the pragmatic view,tried and
tested on prophetsin all times and ages, that you might as well ignore
the whole thing until you are shown a miracle or two.

Miracles take time and sweat and ingenuity and doggedness and

flair. Kowalski’s disciples in Edinburgh, Marseilles, Western Ontario

and Hungary have deployed these qualities in good measure over
the intervening years. The name of the result is Prolog, a
programming system faithful in its fashion to the sweep and
simplicity of the original concept, but running on commercial

machines including microcomputers with efficiencies fully com-

parable with, for example, Stanford’s highly optimized pure Lisp

system.®

Prolog workswith objects and their relationships, specified by the
programmerasrules. Relationships might be:

John likes Mary

Philip father-of Charles
Charles father-of William
Mary likes John

Newrelationships can be defined:

x friends-withy if x likes y and

y likes x

and questions can be asked, suchas, is John friends with Mary?

In Prolog: Does (John friends-with Mary)
Answer: YES

A system of relationships has to be quite large before the computer

can be seen to be providing real benefit, but at any serious level  
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of complexity, a computing problem normally involves sorting out

relationships between things — membership of sets and so on — and
thus solutions can be representedasseries of logical inferences.
Those in charge of the Japanese Fifth Generation Computer

programme are sufficiently convinced of the benefits of logic
programming to have placed it as a central plank in their plans.
Now that Prolog is becoming widely available it will be possible
to assess its effectiveness on a large scale, and to see what further

developments are necessary. Some observersare sceptical about the

usefulness for real-world tasks of the basic operators provided in
systems for mechanizing reasoning, wryly suggesting that in addition

to ‘Implies’ there should be ‘Sometimes implies’ and ‘Ought to imply’.
Certainly ‘fuzzy’ and ‘modal’ operators are being studied as a
possible extension of these techniques. Logic programming could
turn out to be as fundamental to AIas theinfinitesimal calculus
was to mechanics.

The shakyfoundations ofEuclid

It is not just our dealings with language that urgently need to be

formalized. Reasoning about the physical world can also lead us
into serious difficulties. In trying to build causal models, it would
be nice to be able to derive them from our established formalisms
of mathematics, logic and physics. But when weset out to do this

wefind that the existing formalismsare not adequate.
Take Euclidean geometry, which we haveall encountered in one

form or anotherat school. Someof us were charmedbyits elegance,

certainty and precision; others were frustrated by its insistence on
proving the obvious and its obsession with exactness in a world in
which all measurements are necessarily inexact. Certainly the tech-

niques of exact reasoning are acquiring new importance now with

the spread of digital processing and communications. There are,

however, serious holes in the foundations of Euclid’s geometry and
the assumptionsit makes. Toillustrate, let us draw a triangle, any
triangle at all (Figure 47). The dotted line dissects the angle BAC
into two components, BAD and DAC.If the line AD is produced

indefinitely as indicated by the dotted arrow, mustit necessarily inter-

sect the line BC?

Of course it must! But can you get out your geometry books and
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Figure 47. Must the dotted line intersect line BC? Could Euclid proveit?

prove it? No you cannot. Lewis Carroll used this fact to devise an
ingenious proofthatall triangles are isosceles.? The problem,as Peter
Hilton of Case Western Reserve University explains, is to do with

the idea of a ‘closure’ (a line round which a bug could run forever).
The notion that a closure partitions the plane into just twosets of

points — ‘inside’ and ‘outside’ — and that passage from onepartition
into the other cannot be achieved without crossing the boundary

is not embedded even implicitly in Euclid’s axioms, althoughit is
in elementary set theory. But set theory is a more remote branch

of mathematics than geometry, and many people have never
encounteredit atall.

At least with Euclid, when answerscan be derived from the axioms

and data they come quite quickly. Thereis no fear of having to drop
the whole project on finding the required chain of calculation and
inference to be too long to execute in practice. With physics, once
we leave cooked-up classroom problems for the real world, the
matter stands differently. If some physicist disagrees let him write
a program to control a robot unicyclist. He will find the physics
textbook model wholly inadequate for dealing with such a complex
real task. As with the problem wecited in Chapter 1 of how to get
a robot to go downthe street and buy a packet of cigarettes, the

central difficulty is our lack of any formal representation of the

nature of cause andeffect.
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Causation and the desert traveller

Most people think that they understand causation perfectly well.
Whenchallenged, some will say that causation can be handled just
like implication, which we certainly can mechanize. Actually it 1s

notlike thatatall.

First. A corollary of ‘A implies B’ is ‘IF not-B THEN not-A’, but
a corollary of ‘A causes B’ is ‘IF not-A THENnot-B’.

Second. In contrast to implication, the accepted basis of causation
is probabilistic.

Third. In the probabilistic model, transitivity does not hold. By

contrast, ifA implies B, and B implies C, then A implies C.

Fourth. No one objects if a chain of implication forms a loop:
looping of causation statements is frowned upon.
There is a conundrum in causality concerning a traveller who dis-

mounted from a trans-desert bus to complete his journey on foot.

This man had two enemies, each bent on causing his death. Thefirst

had surreptitiously put cyanide into the traveller’s water bottle while

still on the bus. The second, not knowing this, stalked the traveller

for hours before he found a chanceto pierce the bottle with a well-
aimed bullet. The bottle’s contents leaked away, and thetraveller
died a lingering death from thirst.

Both menwerein due course arraigned, and both were found guilty
of attempted murder. On the charge of murder, however, the court
founditself in perplexity. Enemy No. 1 pointed out thatall possible
consequences of his action had been nullified by the escape of the
bottle’s contents. Enemy No.2 pointed out that his action, far from
causing death, had prolonged his intended victim’s life. The court

eventually felt obliged in logic to accept both these arguments. But

at the request of the jury a rider was entered to the effect that there

seemed to be something wrong somewhere.
The Stanford logician Pat Suppes has been devising a technique

for analysing causation that might supply the juridical weapon the
court waslacking. Simplifying somewhat, we start with the idea that
A is a prima facie cause of B if and only if: (1) A precedes B in
time; (2) A has a non-zero probability of occurrence; (3) B’s

probability given that A has occurred is greater than B’s probability

otherwise.
Note that so far this is only prima facie causation, according to

which, for example, a fall in the barometer reading is a cause of
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rain (prima facie it is). We now get rid of such spurious causes by

finding some event C, earlier in time than A, such that (4) B’s

probability given C and A is equal to B’s probability given just C.
This shows that A is not the true cause of B. In the barometer

example, C could be lowered atmospheric pressure (as opposed to
barometric reading, whichis A).
Back to the desert courtroom, Suppes-style. Enemy No.1, it seems,

takes the rap. Enemy No.2 is acquitted of murder. Is this justice?
It is hard to say. Perhaps our received ideas of justice do not

correspondto strict logic of causation. No. 1’s deliberate action

certainly doomedhisvictim to die. To that extentat least, the Suppes

calculus seemsto give a fairer result than the court’s troubled verdict.

Physicsfails the Monkey

Returning to physics, we find that this science, that is so often sold

as a calculational cure-all for those who wantto predict things, was
in fact developed for another purpose: to help physicists clarify their
minds. While physics includes important concepts such as mass, force

and energy, there are many morejust as importantthat it does not:

for example the ideas of closure, containment, support, contact,

obstacles, ways through. Without these, and without an explicit
formulation of cause andeffect, physics is incapable of dealing with
the real world.

Thereis a classic problem in cognitive science to do with a monkey

in a room who wants to get hold of a bunch of bananas hanging

from the ceiling on a string, out of his reach. In the corner stands

a pair of garden shears with long handles, long enough for the
monkeyto be able to reach the string with the blades (Figure 48).
How does the monkey work out howto get the bananas? Imagine

the monkeyis instead a robot called Monkey, and the bananasare

a tool-kit it has been ordered to retrieve. How do wegiveit the

necessary knowledge? By feeding it the contents of a physics text-
book? While the robot will be able to derive from this all kinds of
information it does not need to know, such as the tension in the

string and the terminal velocity with which the tool-kit would hit

the floor were it to fall, Monkey will find nothing about how to

makethekit fall in the first place — nothing aboutsituations, actions
and causal laws. As a complete and workable description of how
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Figure 48. How does the monkey workout howto get the bananas?

the physical world behaves, the physics textbook reveals itself as

a fraud.
Among those AI researchers seeking to remedy this is Patrick

Hayes, whostudies a subject he calls ‘naive physics’. His aim is to
generate a representation of the world that includes the notions such
as containment, connection, adjacency and barriers that we men-
tioned.!° Just as some ancient Greek, aware of the gappiness and
small scope of Euclid, might have put out an exploratory probeinto
the then unknowncalculus of sets, so today the first approaches

are being tried to tomorrow’s calculus of causality. The ghosts of
the geometers waited more than 2,000 years. Industrial robot
technology,if nothingelse, is this time ensuring a faster pace.



CHAPTER 9

The Cat That Isn’t There

A theologian and a philosopher were having an argument. ‘You’re just like

all philosophers,’ the theologian scoffed, and quoted: ‘You’re a blind man
in a dark room,looking for a black cat that isn’t there.’

‘Ah? replied the philosopher, ‘but you wouldfind it!’

Attributed to William James

The scientist starting work on AI finds himself trying to deal with
matters such as knowledge,belief, reality, truth, perception, causality

and creativity. These are vaguer termsthan thoseheis used to dealing
with. He mightbeinclined to turn to philosophy for enlightenment.
Indeed, AI is sometimesdescribed as the application of philosophy

to technology, or alternatively of technology to philosophy.

At the sametimethe public at large, on seeing this kind of work
going on, tend to raise questionsalso of a philosophical nature. Can
computers think? Are they conscious? Do they havefeelings? Sadly,
the answers that come back from philosophers are usually far from

satisfactory. Still, the philosophicalissues will continueto arise, but,

interesting as they are, they may confuse our commitmentto exploit

these new technologies as quickly as possible for the benefit of
humanity.

It is no surprise that manyare worried by the notions ofcomputer
intelligence and creativity. They have not only philosophical but

emotionalassociations. People have always reacted with consterna-
tion whenever machines have acquired characteristics previously

thought to be the exclusive property ofhumanbeings.Iflife is sacred,
then ostensibly attributes that are essential parts ofthatlife acquire
sacredness: these mightincludethe ability to move about, to reason,

to act autonomously, to converse, to reproduce. Machines are

gaining these abilities, or apparent abilities, in turn. Reproduction

has not yet been achieved, butit is certainly in the minds of some
research workers, including Bernard de Neumann at GEC Marconi
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Laboratories, a distant cousin of the great John von Neumann.!

The biggest source of concern, though, is probably the apparent
encroachmentby machines on man’sfree intellectual powers.

Alienating mystifications

If it is impious to think that computers can be creative, further unease

can arise as, through developments in AI, humanproperties become
describable in terms of mechanisms. This can seriously affect the

way we think of ourselves, raising the old question of whether we

are nothing more than machines. As Margaret Bodenputsit:

In many humanists’ opinion, the literature of artificial intelligence
inevitably encourages the alienating mystification that there is no essential

difference between people and machines, and thus subtly supports those

social systems thateffectually treat people as though they were machines.?

Thusit is only to be expected that discussion of these issues can
become emotional and discourteous, just as did consideration of

Darwin’s ideas in the last century. Consternation can easily turn

to scorn, and in the same way as T. H. Huxley was madea figure

of fun, so can mention ofartificial intelligence provoke laughter.

Thomas Watson, the founder of IBM,used actively to discourage
talk about AI as bad for the company’s image.

Efforts to re-establish the self-esteem of man after the damage
it has supposedly received have led to much muddled thinking.
Several philosophers have seized upon Géddel’s Incompleteness

Theorem as proof of man’s superiority over machine. Kurt Godel,

an American mathematician born in Austria, showed conclusively

in 1931 that in any sufficiently powerful mathematical system (such
as arithmetic) there will always be propositions that cannot be proved
within the system — they simply have to be assumed. Therefore,it

is reasoned, science can never answerall the questions; therefore

what a wonderfulthing is man. Whatis overlooked in this argument
is the fact that Gddel’s Theorem applies just as much to humanbeings
as to machines, so there will always be things human beings do not
know for certain either. A deep understanding of what machines
can and cannotdois the best reassurance of the continuing value

of man.
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Plato's indignation

Those outside the scientific community needfeel no diffidence about
their instinctive aversion to machines acquiring human mental

properties. Such a reaction can comefrom theinside as well. Alarm
has been aroused by every historical advance in the supporting

technology of thought and knowledge, even, as we described in
Chapter3, in the case of the invention of writing! Of course, Plato’s

implied disdain did not inhibit him from writing himself, but then,
things are always different when we do them ourselves, for then we

can makesure they are done right. However, one development which

Plato could not accept at any price was the construction by two

mathematical colleagues of a device for machine-aided theorem
proving. Thestory is related to us by Plutarchin the Life ofMarcellus:

Eudoxus and Archytas had beenthefirst originators of this far-famed
and highly prized art of mechanics, which they employed as an elegant

illustration of geometrical truths, and as a means of sustaining experi-
mentally, to the satisfaction of the senses, conclusions toointricate for proof
by words and diagrams ... But what with Plato’s indignation at it, and
his invectives against it as the mere corruption and annihilation of the one

good of geometry, — which was thus shamefully turning its back upon the
unembodied objects of pure intelligence to recur to sensation, and to ask

help ... from matter; so it was that mechanics cameto be separated from
geometry, and, repudiated and neglected by philosophers, took its place
as a military art.

One might suppose that such snobbery had disappeared by the

twentieth century, certainly within the realms of technologyitself,

but far from it. Edsger Dijkstra, one of the greatest computer
scientists of our age and a spiritual descendantof Plato, has claimed
that the developmentof the microprocessor has put computing back

twenty-five years. His assertion is based on the view that the easy

availability ofcomputing power to people with no systematictraining
in good programming will lead to the wholesale abandonment of
the standards and techniques painstakingly developed overthe years
by him and his colleagues; all the old mistakes will be repeated.
Dijkstra expounds:

The most common argumentin favour of microcomputers that I hear
is their low price. Now let me give you a general advice for ‘deconfusing’
an otherwise confusing presentation. The advice is to remember that when
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anyoneis talking in terms of money,it is highly improbable that he knows
whathe is talking about, for ‘money’ is a vague and elusive notion when

you cometo think aboutit. For some people, their dollar or their pound,
their guilder or their yen, is not just their currency unit, but has become
their unit of thought. Love of perfection is then driven out by love of cheap-

ness, and eventually they find themselves surrounded by junk ...

The paradoxical fact is that we are back where we were twenty-five years
ago. Again the arithmetic is too slowor the store is too small; again we
have machines with chaotic, unsystematic order codes, the design of which

has been influenced more by consideration of hardware technology than
by the question whether a wise programmerwould care to use them. Recently
someone showed meanissue ofone of the monthly magazinesfor the micro-

processor hobbyist, and I tell you, it was a severe shock to see a revival
of all our old mistakes. It was frightening, it was depressing, it was sickening,

and I hope never to see such magazines again.*

Oneis left with the uneasy conclusion that the youngdiscipline
of computer science is already constructing a new conservatism to

rival that of its older-established academic cousins — the aversion

of Upstairs Man to whatever comesfrom the servants’ quarters.

_ The Four-Colour Problem succumbs

One can see how mathematicians might feel that to mechanize is

to bedaub the mathematical sub-culture’s precious tapestry with
squirtings from an engineer’s oil-can. After all, has computing ever
helped real mathematics? Had not Plato, perhaps, a point? Until
recently perhaps he had. But in 1976 Ken Appel and Wolfgang
Haken produced by computera proofof the celebrated Four-Colour

Theorem in topology that had resisted mathematicians for over a

century. A map-maker wants to colour his maps in such a way that

adjoining countries will always be of different colours, so that the
boundaries can be clearly seen. What is the minimum number of

colours that will be sufficient for all possible maps? No map had
ever been found that needed more than four colours, but all attempts
to prove that four would always be sufficient had failed.

By an exhaustive computing process Appel and Haken showed

that all possible maps would haveto contain at least one of around
1,800 sub-maps, which were individually listed by machine. They
then proved that every one of these sub-mapshad the property that
it could not possibly form part ofa map that required more than four
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colours. Hence no such map could exist.5 Such a technique ofex-

haustive enumeration is offensive to many mathematicians, just as

physicists tend to despise representations of the world that are not

concise. But in the case of the Four-Colour Problem it seems that
despite the simplicity of the initial question the proof maybeintrin-
sically ‘bitty’ and that no elegant Platonic solution is possible. More
and more mathematical problemsare nowfitting into this category.

In the end, mathematicians may haveto swallowtheir pride.

Considering consciousness

Proof of a ‘different kind becomes pertinent when considering
consciousneg$. Futurologists speculate about when computerswill

be built that have consciousness and self-awareness. To answerthis

wefirst need to be clear about terms. Freudin oneofhis later lectures

wrote: ‘What is meant by “conscious” we need not discuss; it is

beyond all doubt.’® All eminent men are wrong occasionally, but
seldom as spectacularly. Consciousness is one of the most elusive
concepts: weall know whatit is, but no one can say whatit is. More-

over it is the most precious possession that any individual has. If

he is permanently robbed of it, what is left to him? So it has for
us an aura ofsacredness. Weare not readily going to credit a machine
with this mysteriousgift. |
A dog is another matter. Dog-ownerswill tell you that their pet

is so empathicthat it is aware not only of its own thoughts but of

its master’s. But how do we decide whether a computeris conscious?

The question may acquire more than intellectual interest. Robots
will one day be built that can move about and converse much as

humansdo. Theywill be turned out on assembly lines as motorcars
are now, and will become as ubiquitous and as much ofa social

nuisance. There could even be a stray-robot problem. Their

humanoid characteristics will predispose people to take the same

attitude towards them as towards animals. To be able to operate
on their own, robots will have to be programmed with what would

be in effect a sense of pain, to warn of physical harm, and an instinct
for self-preservation, to tell them to withdraw from danger. Other-
wise they would notlast long through the mishaps of everydaylife.

The sight of a robot desperately trying to save itself when attacked
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could appeal to the kind of people who would haverelished bear-

baiting. Robot-baiting and Hunt-the-Robot could becomepastimes.

Would it then be cruelty to torture a robot? If it is not conscious,
presumably not. But how would a robot prove to us that it was
conscious? How,for that matter, would a human? Anobvious answer

might be, by telling us about himself. John Locke described

consciousness as ‘the perception of what passes in a Man’s own
mind’.”? However, we must not be misledinto the view that conscious-

ness and knowledgeofself are the same thing, despite the fact that
in humansthey go together. Conventional computer programs with
good diagnostic andtrace facilities can tell the user a great deal about

their own internal states and processes, yet they can hardly be

regarded as conscious. One might then take the view, ‘Ah, well, if

someone can not tell us about himself, then he is not conscious.’

But even that does not work. The drug curare can totally paralyse
a patient so that though fully awake he cannot so muchastwitch

an eyelid. A surgeon could operate on him without anaesthetic, and

the patient would suffer agonies and yet be unable to indicate the
fact by the slightest movement. Another drug could be used to
eradicate his subsequent recollection of the torment. So on the
question-answering test of consciousness, it might be thought
reasonable to operate, yet everyone would agree that to do so would

be monstrous. Moreover such proceduresare prohibited in the case

of laboratory animals.
Since it is not effectively possible to prove or disprove one’s own

consciousness, such proof cannot be required in order to determine

an organism’s rights. This has long been accepted in the case of
animals, and lawsagainst cruelty to them have been passed without
first solving the problem of whether animals are conscious or have
souls. Presumably these laws exist not just out of feelings of kind-
ness but because of the implications for humanity of inhumantreat-
ment of anything. After all, no one tortures rocks; it is simply the
human-like response of an animalin pain that gratifies the torturer.
For the same reason therefore laws will probably be enacted to

protect robots. This could be out of simple self-interest on man’s

part. The habit of brushing aside the rights of minorities can be two-
edged. Think what might happen if one day robotsstarted asking
themselves, ‘Are humansreally conscious?’
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Killing an expert system

Of course, animals often have to be ‘put down’ for practical reasons,
and so will robots, but an interesting question arises concerning
expert systems. One of these constructed with the cooperation of
a particular humanexpert can capturehis skills in such faithful detail
that colleagues and friends interacting with the system mayrecognize
his personal style of thought. Long after he is dead they could
respondto the foibles and fancies of the intellectual companion they

knew. This would be for him a kind of immortality, more vivid and

direct than authorship ofbooks,or passiverelics such as photographs
and tape recordings, since it would include fragments of responsive

behaviour. How should weregard the wiping-out of such a system
irretrievably? It would surely be reprehensible in the same wayas was
the burning of the great library of Alexandria.

The social accountability ofstored knowledge

The knowledge stored in computers can raise moral questions of

another kind. Take a statement from a bookto be foundin school-

rooms: ‘Theyare lazy individuals, apparently devoid of morals, and
always preparedto lie, cheat and steal.” Whose conversation are we

overhearing? Perhapsit is a data-processing manager commenting
on the maintenancestaff. Or is it a board member of Ford’s about
the workforce at Dagenham? Butit could just as plausibly be one

of the shop-stewardson the subject of the board! Maybe it was over-
heard in the Athenaeum, and the target was the new Ministers of
the Crown? Andyetit sounds notunlike the late Richard Crossman
writing about senior civil servants. Or in the groves of Academe:
‘Tell me, young person, what are the professors like round here?’
or ‘You were saying, Dean, aboutthe students...’

The statementis from a New South Wales textbook, referring to
the Aborigines.? Textbooks are purportedly sources of knowledge.
This fact starts a train of uneasy thought. The knowledge-base in,
for instance, Prospector contains information about the geology of
uranium. As it happens,considerable political tension has arisen over

the discovery of uranium deposits lying beneath the Aborigines’

traditional habitats. Son of Prospector or Grandson of Prospector
might include information about non-geological factors that could
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affect decisions to drill, such as legal data on Aborigines and land

rights. Beyond even that, the proprietors ofautomated systems might
wish to add to the knowledge-base morethan dry technical and legal
facts, and to include looser generalizations about relevant human

groups. Questions of the social accountability of stored ‘knowledge’

will certainly then arise.

The data used by robots will be sensitive in the same way. Ask

Super-Rob,a twenty-first-century robot foreman,the question ‘What
is lazy, apparently devoid ofmorals and alwayspreparedto lie, cheat
and steal?’ and you might get the answer: ‘Homosapiens.’

Whatis your robotfor?

The question ‘Whatis your robot for?’ is a particularly delicate one

now. The social problem of galloping unemployment makes many

people suspicious ofany technology that reduces the need for human
labour. We need to remind ourselves that there is no logical reason
why knowledge about how to do things moreefficiently should be

a bad thing. Fundamentally what robots must be for is the same

as any other technology: to raise the quality of life. They can do

this by increasing the sum total that society can produce, both goods
and services. Despite our current shortage ofjobs there is no shortage
of work waiting to be done: renovating our housing, rebuilding
our rapidly deteriorating heritage of Victorian engineering works,

looking after the sick, the aged and the infirm, providing continuing

education for everybody, to say nothing of feeding the starving
millions in the Third World. As Tom Stonier of the Bradford School

of Science and Society has putit, health and education are ‘aninfinite
sink for employment’.? The problem is getting it organized to

happen.
Naturally whenit does happenit will entail a great deal of change,

and manypeople will have to change whatthey do,like it or not.
If society no longer needs what you produce, you have to produce
something else. Expectations will have to change — but not expecta-

tions about material standards ofliving, rather, expectations about

what is a respectable way of spending one’s time. By that we do

not primarily mean leisure: the traditional aversion of the British

to providing services as opposed to making objects will have to be

overcome.
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The change can only be managedbya judicious mixture of public
and private enterprise, perhaps quite unlike anything we have had
before. Education and retraining will have to be on a massivescale.

Some people say this will have to be a job for government, others

that only small private enterprises can react quickly enough. How-

ever it happens, the main thing that will be required is imagination.

The life ofa harlot

Despite the continuing accumulation of work to be done, technical

developments have always been reducing working hours, and auto-

mation will certainly carry on this trend. It is only to be welcomed
if we can spend less time doing what we have to do and more time

doing what we want to do. Someyears ago a former Lord Provost

of Edinburgh was so moved bythis thought that in his retirement

speech he mis-spoke himself to immortaleffect. ‘I’ll be away now
to the far highlands,’ he informed the solemnly assembled company,
‘whereI plan to live thelife of a harlot!’

Historians of the occasion now believe that the intended word

was ‘hermit’. Yet, as Freud wasthe first to emphasize, these slips

can reveal hidden attitudes. Doubtless in a Scottish Lord Provost’s
secret mind, doing quietly what one wants to dois notfiled, as it

would be in the mind of a Roman Catholic or a Buddhist, under

‘RETREAT, SAINTLY’but rather under ‘IDLENESS’- with

all the depravities into which that devilish state may plunge even

the best Presbyterian! It is a particular obsession of our age and
few others that the only path tospiritual fulfilment is through work.

Weare in no danger of having everything done for us by robots

in any sort of future that can be foreseen, nor is the computer a

risk to the high flights of humancreativity. It is a mistake to take

up too muchtime asking ‘Can computers think?’ ‘Can theybereally
creative?’ Forall practical purposes they can. The best course for

us is to leave the philosophers in their dark room and get on with

using the creative computerto thefull.

 



CHAPTER 10

Inventing For All Mankind

There are thousandsof them at present in England as well as I believe else-
where; the offspring of the marchofintellect. Their object is money; which,
please God, they shall not get from the Publick Treasury.

The Duke of Wellington, on inventors(1830)!

The cosmetic application of codswallop is an art for which Britain’s

public men and women have long been renowned. In the hands of
a master, the material is spread thinly and evenly. Blemishes are
concealed beneath a uniform, healthy tan, and irrelevant or dis-

figuring detail is suppressed.
In practice our national countenanceis pocked and pimpled with

a myriad scars and inflammations, carbuncularpitfalls of monetary
policy, pustular escalations of class conflict and the like, not to

mention the quirky patches which add characterandattract tourists.
The trouble with codswallop is that if not expertly used it does not
plaster the disorderly expanse uniformly. Instead it seems to
aggregate around the very points whichit is intended to smooth
over. In place of sun-tan we see a piebald patchwork, with certain

features and themes densely codswalloped — the rest untouched.
Of all the eye-catching focuses surely pride of place goes to the

theme of technical innovation. The beautician’sstory 1s that innova-
tion is the big magic that could spirit our economy from the
doldrums, if only there were enoughofit around. In electronics and

computing, Britain needs midwives to deliver the inventor to the

investor, says the Department of Trade and Industry, adding that
despite an abundance of talent there is a shortage of innovative

projects.
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The ChiefScientist's tale

Clearly there is a shortage of something. Is it really a shortage of

innovation? According to Sir Alan Cottrell, this too is codswallop.
After retiring from the post of chief scientific adviser to the Cabinet,

Cottrell published a series of analyses indicating a relative surplus

of British inventions — relative, that is, to the capability of British
industry to adopt them and put them to work.? At an investment
rate of about 6 per cent per year, half that of our main European
competitors, there is no possibility that our firms would take up

more than a fraction of the good ideas already lying around, let

alone exploit thelatest.

British academic scientists are driven to the uncosy conclusion
that when they discover something useful, this is a most unpatriotic

act. The innovation in due course appears in the open technical

literature, and General Motors, or Olivetti, or Hitachi or some other

of Britain’s economicrivals exploits it against us. Rather than cause

this to happen, a scientist should either do nothing or stick to his
ivory tower. Exploitation of an immediately applicable discovery
needs new plant, new processes, new instrumentation, new working
methods. Either British companies are not willing to take these on,
or the investmentcashis not forthcoming, or other forms of enable-
mentare lacking.

Nooneis claiming that innovationis in itself an automatic boon.

The call is for midwives. If, however, neither the mother nor the

local foster-mothercan afford to take the baby on, what then?

Thefate ofthe Bulgar inventor

There is an almostreligious veneration for the new-born. Babies

are crooned over, tweaked, tickled, treated as holy. But let the

admirer be asked to act as nursemaid for the little creature, and

how his ardour cools! So with innovation. Reverential codswallop
about creative genius flows today from all responsible spokes-

persons. Whataretheir real feelings? In someearlier times, at least,

it was safer to be a baby than a clever inventor. The eighth-century

Arabian traveller Ibn Fadlan found an interesting custom among

the Volga Bulgars:
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When they observe a man whoexcels through quick-wittedness and
knowledge, they say: ‘for this one it is more befitting to serve our Lord.’

They seize him, put a rope round his neck and hang him ona tree where

he is left until he rots away ...°

Arthur Koestler quotes the Turkish commentator Zeki Validi Togan:

There is nothing mysterious about the cruel treatment meted out by the

Bulgars to people who are overly clever. It was based on the simple, sober

reasoning of the average citizens who wanted only to lead what they
considered to be a normallife, and to avoid any risk or adventure into
whichthe ‘genius’ might lead them.*

It is easy to suspect that this is the basic philosophyat the root

of government reluctance to stimulate investment. That the philo-

sophyis older than the Bulgarsis evident from this ancient Chinese

fragment:

Returning to one’s destiny is knownasthe constant:

Knowledge of the constant is known as discernment.

Woe to him whowilfully innovates |
While ignorantof the constant...

The author was doubtless head of a Civil Service department.
As long ago as 1887 T. H. Huxley was urging a radical change

in the relationship between British science and industry. In a

memorable letter to The Times in January of that year he wrote:

I do not think I am far wrong in assuming that we are entering, indeed

have already entered, upon the mostserious struggle for existence to which
this country has ever been committed. The latter years ofthe century promise
to see us embarked in an industrial war of far more serious import than
the military wars of its opening years. On the East, the most systematically
instructed and best informed people in Europe are our competitors; on the
West, an energetic offshoot of our own stock, grown bigger thanits parent,

enters upon the struggle possessed of natural resources to which we can
make no pretension and with every prospect of soon possessing that cheap
labour by which they maybe effectually utilized.°

The remedy Huxley pressed for was ‘a public and ceremonial
marriageofscience and industry’; industry hadto call to its aid ‘every

possible help which wasto be gathered from science’.°
Morerecently, in a series of reports, the Cabinet Office’s Advisory

Council for Applied Research and Developmenthasfired a remark-
able salvo of home truths concerning the UK’s ailing industrial
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technology. It has made extensive recommendations about boosting

investment, increasing awareness, relaxing restrictions, and re-

organizing governmentresponsibility to improve coordination. But
still, ingrained patterns of thought among those in government must
change if ACARD?’s proposals or any othersare to find fertile soil.
This applies not only to Britain. The Americansituation is also not
ideal. In the rolling state of Ohio a local dust storm involved an

obscure robot and a famouspolitician, leaving the robot onits six
legs, but Democratic Senator William Proxmire from Wisconsin
standing inelegantly on one.

The six-legged robotof the prairie

The Senator specializes in withering and hilarious assaults on

federally financed research projects. He regularly presents a ‘Golden

Fleece Award’ to the projects he feels have been the mostridiculous

waste of taxpayers’ money. Past winners have included a study on
why peoplefall in love, an experiment on how longit takes to cook

 
Figure 49. Design model of a new development of Robert McGhee’s walk-

ing machine, the AS V-84. Withsix legs there are always three on the ground
at any onetime, ensuring stability (Ohio State University)
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breakfast, a study of relationships in a Peruvian brothel and the

abortive developmentofa $2 million prototype police car, so gadget-

laden as to ‘make James Bond green with envy’. On this occasion
Proxmirelaid into Robert McGhee, Professorof Electrical Engineer-
ing at Ohio State University, whose development of a six-legged

walking robot had been funded in part by a $400,000 grant from the
US National Science Foundation.In presentingthe machine with the

Golden Fleece Award, Proxmire suggested that the ‘Bionic Bug’
would be ofmore use as an adjunct to the University’s football team.

In reply McGheepointed out that the Veterans’ Administration was

already launchingtests of an artificial knee-joint for humans, de-

veloped from his technology, and that NASAhadexpressedinterest

in connection with the Mars Rover project. The Senator had not
sought McGhee’s own comments beforereleasing his outburst. In the
end the chiefofficial of Proxmire’s committee accepted blame.

Ironically, thirteen years earlier Ivan Sutherland had been inquir-

ing in Britain whether any academic laboratories would be interested
in bidding for a contract to investigate automated walking. He was

then on secondmentto the US Defense Departmentandin charge of
its Advanced Research Projects Agency’s R&D spending on in-

formation processing. So much importance was seen in such a

developmentthat if no credible domestic bids were forthcoming,his
agency was prepared to consider the unusualstep of subsidizing the
workby foreign nationals. It should be obviousonreflection whythis
might be so. A quick survey of the world’s land masses promptsthe
questions: ‘Whatproportion of the total terrain is negotiable by jeep

or tractor? What proportion is negotiable by horse, mule, camel,

llama or elephant?’ Some people view automobile technology as
having reached a plateau, with nothing but small optimizations here
and there to be expected. Nothing could be more profoundly wrong.
It only looks that way because until supporting technologies for a

new leap forward have been developed no one can ever envisage the

leap. Wheeled transport did not require the microprocessor revolu-

tion as a pre-condition. Legged transport does. This is because the
control required to coordinate the legs is a highly complex task of
information processing.’

There is an interesting precedent. Readers may haveseenartists’
reconstructions of prehistoric birds in books on evolution. Onein

particular, the Archaeopteryx, had a magnificent flowing tail. A
contemporary observer (who would have had to be an extrater-
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Figure 50. Archaeopteryx

restrial, since our own ancestors were notyet up to ratiocinations of

this kind) might have remarkedthat this wonderful flying frame had

been highly optimized for aerodynamicstability. Indeed it had, but
it was not manoeuvrable. The development ofthe brain gave later
birds a different kind of stability through the newprinciple of feed-

back, and by degrees dispensed with the longtail. A stuffed Archaeo-

pteryx could have been used asa glider. A stuffed seagull cannot. Yet

whenits brain is engaged the seagull’s ability to glide is unsurpassed,
as iS its ability to manoeuvre. In the same way, microprocessors make
practicable a whole new generation of versatile land vehicles using
legs.

Such lessons had also been drawn and pondered by AI workers at

the USSR AcademyofSciences’ Institute of Applied Mathematics
and Information Transmission,in collaboration with Moscow State

University. They now have an impressive variety of six-legged robots
under test. This too was brought by McGheeto the attention of

Proxmire’s Senate committee. The saddest point of the story, how-

ever,is that the successful rebuffto ignorant persecution was achieved

by arguments which McGheeregards, as do many,as being entirely
beside the main point. The quick-fire rejoinders lay ready to hand and
they did the job, but McGhee’s instinctive reply, before his
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university’s public relations office came to his aid, was: ‘Basic

research is for producing knowledge, not new products.’ But how to

convey this thought to those who have charge of such matters?

Explaining to governments

Scientists are often faced with this dilemma: should they try to

explain their real technical concerns, knowing that their reward may
be fidgets, yawns and puzzled frowns, or should they use the knee-

jerk tactic and hit where they know they can get a response?

Referencesto scientific goals, and attempts to explain them,are often

wasted breath. Hitting the technology button, on the other hand,
seems to buy us something. The knee-jerk tactic is knownin the AI
businessas‘yellow perilling’. Everyone,afterall, can understand that
intelligent robots could be useful in the industrial struggle against

Japan. But to understand whythescientists themselves consider the

work important — that is not easy to convey to busy people. Butitis

often just not appropriate for scientists to justify their work in terms
of immediately visible benefits.
The Dutch government’s advisory group onthe social impact of

microtechnology has been afflicted with a similar worry. The group
noted that ‘the speed of innovation makesit increasingly difficult for

governments to follow developments’.® Except that the statement

covers only a small part ofwhat could besaid, scientists may well feel:
‘At last someonehassaidit.’
To those concernedto see that the potential of the synthesis ofnew

knowledge by computeris fully exploited, this situation presents a
major obstacle. Substantial investment of moneyandpolitical com-

mitmentis going to be needed to makethe creative computer happen.

Yet in Britain there is not even one national laboratory for long-
range computing research. Thefield ofartificial intelligence specific-
ally has had particular difficulty in gaining acceptance in the UK
political and scientific establishments. Its existence over the last
twenty-five years has been punctuated by influential cries that the

whole exercise is an infantile disorder. In 1972—3 the Science Research

Council received two reports on long-range policy for computing
science and machineintelligence. One, the careful work of experi-

enced computer professionals, said ‘Build it up!’ The other, which
said ‘Windit up!’ came from an outsider, Sir James Lighthill: dis-
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tinguished as a fluid dynamicist, a controversial government expert
and the departing occupant of Cambridge University’s Lucasian
Chair of Applied Mathematics.

Advice to government has traditionally emanated from past
holders of this chair, some of it of uneven quality. Professor Sir
George Biddell Airy once advised Queen Victoria that if the Royal
Salute were fired outside the Crystal Palace, the building would
collapse. More pertinently to us, Airy’s advice secured the with-

drawal of government support for Charles Babbage’s Difference

Engine.

In the case of AI, Lighthill’s recommendations emboldened the
SRC to dismantle the coherent structure of UK workin thefield,

with effects which were felt even across the Atlantic. The long-term
cultural and economic damage wreaked by this decision has been
very serious.

Bears andballs

We must believe that Lighthill’s advice did not spring from shallow

roots. Some of it was, however, a little strange. In considering the

question ‘Whybuild robots?’ he remarked:

We have to remember the long-standing captivation of the human

imagination by the very concept, as shown byits continual prominence in
literature, from medieval fantasies of the Homunculus through Mary

Shelley’s ‘Frankenstein’ to modern science fiction. To what extent may

scientists consider themselves in duty bound to minister to the public’s
general penchant for robots by building the best they can?

Incidentally, it has sometimes been argued that part of the stimulus to

laborious male activity in ‘creative’ fields of work, including pure science,1s
the urge to compensate for the lack of the female capability of giving birth
to children. If this were true, then Building Robots might indeed be seen as
the ideal compensation!Thereis one piece ofevidence supporting that highly
uncertain hypothesis: most robots are designed from the outset to operate in
a world aslike as possible to the conventionalchild’s world as seen by a man;
they play games, they do puzzles, they build towers of bricks, they recognize

pictures in drawing-books (‘bear on rug with ball’) ...°

The ‘bear on rug’ reference was to a paper on computer vision
published in 1972 by Harry Barrow, Pat Ambler and Rod Burstall.'°
One of the simple pictures used to test their program had ‘Bear on
rug with ball’ as its caption. Lighthill continued:
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Nevertheless, the view to which this author has tentatively but perhaps

quite wrongly comeis that a relationship which may be called pseudo-
maternal rather than Pygmalion-like comesinto play between a Robot and
its Builder.

Lighthill divided the field ofAI into: A — Advanced Automation;

C — Computer-based research into the workings of the central

nervous system; and B - Bridge activities intended to link A and C,

or alternatively, Building Robots. He asserted that while progress in
A and C had been disappointingly slow, they were nevertheless
legitimate areas for research. B on the other hand, he argued, was

getting nowhere and oughtto cease. It had ‘grandiose aims’ whichit
hadfailed to reach,he said, adding, ‘This raises doubts about whether

the whole concept of AI as an integrated field of research is a valid

one.’

The nature of Lighthill’s misunderstandingis at root the same as
that encountered by Robert McGhee.Aswaspointed outat the time,
B should really stand for ‘Basic’, the fundamental research that
constitutes the heart ofthe subject. It was as ifThomas Hunt Morgan
and his colleagues who pioneered modern genetics had been told:

“You have the mathematical theory of Mendel to play with. You

have breeding work to do for the community’s good in improving
crops and farm animals. You are also free, and wewill even fund this
modestly, to investigate the broader matrix of biological processes in
which the genetical phenomena are embedded. Butfrankly, we see

no need to be breedingfruit flies. Better switch to cows!’ Being able

men, Morganand his colleagues would doubtless have made more
than adequate cattle breeders, and could indeed have found one or
two shrewd applications for already formulated principles of
academic genetics. But the chromosometheory of heredity would
have had to wait, and everyone, including farmers, would have been

the losers.

The horizons ofDelphi

Lighthill also accused AI workers ofmakingwild predictions. Is that
charge justified? The best-known exercise in AI forecasting was a

‘Delphi’ survey published in 1973 by four scientists from Stanford
Research Institute and Lockheed. The Delphi technique of taking a
survey of a substantial number of people about their views of the
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future is widely used in industry to forecast new products and tech-
nologies. The 1973 predictions are summarizedin Figure 51. Nothing
has happened orfailed to happen in the intervening years which is
inconsistent with this set of forecasts. Considering individual items

whosedates have already passed:

P5. Convincing prototypes exist for computer identification of

personnelby signature, voice and photographs. A leading centre for
this work has been Case Western Reserve University, and commercial
systemsforall three identification media are on the market.

P8. Working systemsexist for meningitis, congenital heart disease,

lung disease, thyroid enlargements, acute abdominal pain andin-

ternal medicine more generally, urinary infections, and bacteraemia

and otherclinical areas.
 

 

 

    

Median Median
prototype commercial

Products date date

HIGH POTENTIAL SIGNIFICANCE

P5 — Automatic identification system 1976 1980
P8 —- Automatic diagnostician 1977 1982

P13 — Industrial robot 1977 1980

Pl — Automated inquiry system . 1978 1985
P9 - Personal biological model 1980 1985
P11 —Computer-controlled artificial organs 1980 1990

P18 — Robottutor 1983 1988
P16 — Insightful economic model 1984 1990

P2 — Automatedintelligence system 1985 1991

P20 — Generalfactotum 2000 2010

MEDIUM POTENTIALSIGNIFICANCE
P14 — Voice response order-taker 1978 1983

P15 — Insightful weather analysis system 1980 1985
P3 — Voice-actuated typewriter 1985 1992

P6 — Mobile robot 1985 1995

P4 — Automatic languagetranslator 1987 1995

P12 — Computerarbiter 1988 1995

P10 — Computer psychiatrist 1990 2000
P17 — Robot chauffeur 1992 2000
P21 — Creation and valuation system 1994 2003

LOW POTENTIAL SIGNIFICANCE

P19 — Universal game player 1980 1985

P7 —Animal/machine symbiont 2000 2010  
Figure 51. Dates forecast in 1973 for the appearance of various computer
technologies. So far the predictions have turned out remarkably accurate!!



 

Inventing For All Mankind 207

P13. ‘Industrial robot’ as used here implies optical and tactile

sensing in addition to programmable manipulation. Several such
devices have been demonstrated and commercial systems are now on
the market, notably from Unimation Corporation.

P1. Powerful prototypes have been tested which are capable of
inferential question-answering, in addition to ordinary data-base

retrieval.

P9 and P11. If the ‘median commercial dates’ of these two are
reversed, today’s laboratory evidence places both developments well
on course.

P14. Systems already in commercial use allow the customer to
place orders by interactive terminal or ordinary push-buttontele-
phone, with computer-generatedvoicereply.

P15. The current budget of the UK meteorological centre at
Bracknell includes such insightful aspects. Practical implementa-

tionis likely in this case to fall behind the Delphi projection.
P3. A typewriter which converts the user’s speech into printed

wordswasintroduced into the Japanese market by Nippon Electric
in 1981. The Japanese Kana alphabet, being entirely phonetic, makes
this considerably easier technically thanit is for Western languages.

Thereis one curious item on whichtheseers lose— not in estimating

its date but in underestimating its commercialsignificance. ‘Universal
gameplayer’is placed as a low-importance entry, but microprocessor-
driven game attachments to hometelevision sets and hobby com-
puters used mainly for gameshave constituted a whole boom industry
by themselves. The arcade game Pac-Mancollected $1 billion in the
USAin eighteen months, and computer games overall are now
making more profits than the entire film industry. The most note-
worthy feature of the forecast wasnot, as AI’scritics allege, predic-
tion of things which did not happen,butrather the failure to predict
things which did, such as the swing towards distributed processing
now arising from the microcomputerrevolution.
The farther into the future onetries to forecast, the riskier the

exercise becomes. Few people would be prepared to predict when the
computerin the office will really comeinto its own, as characterized
by a little scene stemming from an idea of Nicholas Negroponte’s.
You will walk into youroffice in the morning and ask yourgeneral

factotum computer, ‘Whereis it?’
The machinereplies, ‘Where’s what?’

‘You know,’ youretort.
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‘Ah,’ says the machine,andtells you.

On the other hand, Ed Fredkin of MIT hasstated that although
it will take at least fifteen years to create a machine equating human
intelligence, it will be no longer than forty. From that it should not

be too great a step to I. J. Good’s predicted ultra-intelligent machine,

which would be, to steal words from the calypso: ‘Smarter than the

man in every way’.

Bringing about the change

Not so far away, abundant benefits are waiting to be gained from

research in AIif the investment and commitment can be mobilized. .

Oneearly priority must be stopping the lunatic waste ofscarce human
resources in our universities now, where experienced AI scientists

spend much of their time teaching undergraduates other subjects

instead of doing urgent AI research. This is tantamount to using
waterin the desert to polish the bumpersofthe car.

But how to bring about the change? George Gallagher-Daggitt, an
engineer at Rutherford Laboratory, has called for ‘innovation
centres’. These would ‘allow university researchers to join multi-
disciplinary teams, involving industry and possibly private inventors
as well, without upsetting their promotional prospects. In this
environment they would be subject to the stimulus of commercial
competition and could devote their efforts to commercializing intel-
lectual concepts arising from fundamental research carried out in

universities.’ !2
Brave words: something along these lines could surely flip the

switch to the ‘on’ position. Work which presses against the margins
of the possible requires a special environment. Academic excellence
as well as technological know-how must be combinedin a fluent mix
ofsupport mechanisms — contracting out, contracting in, government
sponsors, industrial sponsors, research grants, graduate students,
visitorships senior and junior. At the same timethe attitudes and
knowledge of government administrators will have to improve
substantially. The British government’s practice of putting generalist

civil servants in charge of research directorates will no longer do. In
the USA the Defense Advanced Research Projects Agency hires
expert academics to head projects on fixed-term appointments, and
this is clearly a movein the right direction. Even within specialist
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bodies in Britain ignorance can bestartling. An official of the
National Computing Centreinsisted not long ago that,if there were
to be any mention of medical expert systems in an article he had
commissioned for the Microelectronics Application Project, it

‘should state clearly that the practical applications of the ideas are

far in the future’.

As far as investment cash from the private sector is concerned,

somethinglike the Investment Allowance Schemeastried in Australia
could makea start. This was introduced in the 1960s, followed by a
planned phase-out. Another dose to revive flagging investment was

administered in the 1970s. To take as an example the purchase of

computerterminals, the usual amortization ofcapital expenditure for
tax relief would be 30 per cent of the balance each year plus the
residual balance after five years. Under IAS an additional allowance
would be made during the first year of 40 per cent of the purchase

price. The total allowance thus adds up to 140 per cent, a not

insignificant incentive for the investor.

First and foremost the need is for specific projects to concentrate

minds. Sectors ready to yield to determined thrusts include the
following:

Parallelarrayprocessing, with special reference to computervision,

exemplified by ICL’s Distributed Array Processor and CLIP4 at

University College, London. These new architectures promise not
only breathtaking speed-ups but, more importantly, radical con-
ceptual simplifications of complex domains. Applications of cheap
reliable computer vision range from optical inspection of industrial
parts and structures to the input and interpretation ofdiagrams from

books and documents.

Automaticprogram synthesis, to help tacklethe crisis in the produc-
tion of software. An example of how industryis taking up the ideas
ofAI with enthusiasm is the substantial work in automatic program
synthesis going on at IBM’s Yorktown Heights Laboratory andat

Schlumberger. |
Expert systems. The country which first establishes an edge in

interactive knowledge-baseswill be in a fair position to call the shots.
Knowledge engineeringis like genetic engineering: the principles are
relatively simple, the range of applications unlimited. The UK is
currently in possession of the only cheap and portable general-

purpose software for such work. But without the needed follow-up,

the balance of opportunity could quickly change.
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Intelligent robots. Expert systemsto drive industrial robots confer

versatility, retrainability and autonomous resourcefulness beyond
anything yet seen in automation. The advantages for manufacturing
are obvious. There could not be a better moment. Not only in the
factory, mobile robots or ‘gofers’ would have manyuses, as outlined

in Chapter 1. A team ofintelligent gofers at Three Mile Island in
radio contact with the outside world would not have come amiss. As

it happens, the essential problems of robot plan-formation and of
automatic program synthesisare closely related.

Robots and expert systems get together

The connection between thesciences ofexpert systems and ofrobotics
is a contentious one. At the boardroom level it is often thoughtthat
there is no connection. Moreover the man whotaps carriage wheels
and the man whotests tyre alignmentswill join forces to put the same
view. Noris it the slightest use to talk of the Carnot Cycle or the
physics of frictional losses. Boardroom and workbench will be
unanimousthatclever talk does not butter the nation’s parsnips.

There is one kind of person whosees the connection instantly and
sees it as important. He is the R&D engineer. But whoeverlistened
to engineers, except in wartime? So with robotics. The expert-systems
approachto robotics tends to be viewed as diversionary. ‘Haven't we

got enoughto do getting reasonable performance out ofdumb robots
without complicating the issue with intelligence?’ The answeris to
conjure from the past the wild-eyed proposal which must at some
definite moment have comeforwardforthe first time: how about an
internal-combustion approachto railway transport? “Haven't we got
enoughto dogetting reasonable performance out of steam without
complicating the issue with diesel?’

In the robot context what is this precious ‘diesel’? It is called
‘formalized knowledge’. Standard programming methods do not
allow a robot or other computing system to do anyof the following:

(1) Explain whatit is doing.

(2) Be taughta better way.

(3) Explain how it does the new way.
(4) Think up a better way.
(5) Explain that too.
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Such capabilities will be highly valuable in an industrial robot of the
future, whether anchored to a workstation or free-roving. A needless
gap has opened up,or perhapsit always existed, between excellent
and devoted production engineers and those, on the other hand,
whose primary interests centre round the software design principles
of items(1) to (5). For once, the greater share of blamelies with the
practical men, although byvirtue of valiant and long, unrewarded
toil on the dirty end of the job they have the moral right of way. So
too the steam engineers hada rightto call out to the diesel experi-
mentalists: ‘Drop your playthings and get back into the real work!’
To have said so would havesignified courage, even little arrogance
— and also uninformed technical judgement.

Ifthere is room for a production-engineering approachto robotics,
then there is room for an expert-systems approach, along with con-
tributions from software technologists, hardware designers, micro-
electronics specialists and programmingtheorists. Interdisciplinary
teams may be unfashionable in the staid world of peacetime science,

but the technological struggle that lies ahead will not be easy to win
any other way.

Thefourfallacies

Notlong ago efforts to get knowledge-based robotics off the ground
used to encounter variations on a general theme: ‘Thesescientists
want to play God.’ The variations took the form of Four Fatal
Fallacies:

Fatal fallacy No. 1. ‘There are no conceivablesocially useful
applications.’

Fatal fallacy No. 2. ‘If there were, the research would be of
immediate benefit to Britain’s hard-pressed industries.’

Fatal fallacy No. 3. ‘Robotics is not an information engineer’s
problem. Handit to the mechanicals andelectricals.’

Fatal fallacy No. 4. ‘There is no need to mimic human ways of

doing and thinking. Machine waysarebest.’

While other nations streaked ahead, our science administration

was busy stamping home-produceinto the ground. Happily a more

informed awareness seemsastir. Number1 is now seen to be a fatal

fallacy. Let us look at the otherthree.
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Fallacy No. 2: Sir Alan Cottrell’s analysis has shownthat British
industry is not investing nearly enough to be able to take up new

developments. Instead, industrially relevant academic research goes
to fuel the engines ofour competitors. Edinburgh’s ‘Freddy’ robotics
work in 1973, drawn to the attention of Lord Stokes, then head of

the British Motor Corporation, was eventually used by General
Motorsin the USA.

Fallacy No. 3 seemsvisible in Britain’s university research. Most

of the cash is flowing to academic hopefuls ready to do battle in the

technology of industrial manipulators with the Goliaths of Unima-

tion, Mitsubishi and Hitachi. Butin this warthelethal sling-shots are

in software. It is early days and the balance mayyetcorrectitself.
Fallacy No. 4, the danger of which has been one of the central

themes of this book,is still maintained even by somefirst-rate pro-
fessionals. A corrective is the Japanese Fifth Generation Computer

Survey and Research Committee’s recommendationofclose study of

‘pattern recognition and imitation of the operation of the human

brain’.

Reseeding the scorched earth

Theneedfor positive actionis at last becoming apparentto the higher
reaches of the British government and, following recommenda-
tions of a committee chaired by John Alvey of British Telecom,
the Department of Trade and Industry has drawn up a major

national programme in advanced information technology, to cost

£200 million of government money and an equal amountofprivate

funding over five years. Expert systems are one of four key tech-
nologies identified by Alvey as central to the future of Britain’s
computer and electronics industries; the others are software

engineering, man/machineinterfaces and very large-scale integrated

circuits.13 As might be expected, the proposal to devote substantial

resources to expert-systems workhas attracted opposition from other
sectors of the computing community. The Alvey plan is much to be
welcomed, but it remains to be seen whetherit will at last reseed the

scorched earth ofAI in Britain.

Thereis also an international dimensionin all this. Ed Fredkin has

proposedthe establishmentof a world institute, perhaps in Geneva,

wherescientists could begin a majoreffort to develop this technology
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on a broadscale, free from political and overtly commercial pres-
sures. The equipment and working conditions would be adequate for
the job and securely established. The institute would be funded by
endowmentto avoid the need to show immediate practical results,
but it would have a specific long-term goal, namely, the creation of
an intelligent machine. Fredkin’s reasoning onthis is sound. Through
fear of inactivating thescientific mind by strapping it too tightly to
immediate application, it is sometimes believed that the best course
is to let it flap loose. This too can be counter-productive. In the
history of experimentalscience it is the developmentof well-chosen
and timely goals which has opened winning lines, rather than
wayward genius. Montaigne, himself a scholar of excellence, wrote
in 1580:

Just as we see that fallow land,if rich and fertile, teems with a hundred
thousand wild and useless weeds, and that to set it to work we must subject
it and sowit with certain seeds for our service ... so it is with minds. Unless
you keep them busy with somedefinite subject that will bridle and control
them, they will throw themselves in disorder hither and yon in the vague
fields of imagination. '4

Such aninstitute is not needed just for the sake of rapid progress,
Fredkin asserts. No complex computer program wasever produced
without bugs, he points out, adding that‘flaws in the creation of a
“‘super-intelligence” are frightening to consider’. Thus the project
would havea briefto set standards to guard against such possibilities.
Whateverthe institutional basis, ifproperly enabled, the result ofthis
generation’s workcanbe, in Fredkin’s words,‘the developmentofa
safe and beneficial AI for the benefit of mankind’.

Since the words of the foregoing paragraph were written, the

Turing Institute has been established in Glasgow in premises adjoin-

ing the University of Strathclyde, with whom the Institute has con-

cluded an Agreement of Association. Its work is dedicated to the
realization of the Fredkin concept.



 

Postscript

It is commonly thought that the aim ofartificial intelligence is to

develop a race ofsuper-clever Daleks, unfathomable to man,thatwill

eventually dominate the globe. In fact, what AI is aboutis exactly
the opposite: making machines more fathomable and more underthe
control of human beings, not less. Conventional technology has
indeed been making our environment more complex and more

incomprehensible, and if it continues as it is doing now the only

conceivable outcomeis disaster. AI seeks to reverse that process and

return technology to its proper place as the obedient yet perceptive
servant of humanity. Together man and machine maythen be able
to subdue many,perhapsin time most, of the world’safflictions.

Manypeople fear the developmentofintelligent machines as an

invasion by a race of conquering aliens. Instead, we should see

ourselves as a beleaguered garrison, whoat the eleventh hour can see
on the horizon the dust ofthe relieving column. This bookis a shout

from the battlements.



 

APPENDIX

Basic Principles of Computing

A widely accepted definition of the word ‘computer’ is ‘a general-
purpose, automatic, programmable information-processing

machine’. ‘General purpose’ here means that the machine can do a

widevariety of tasks, not just one; ‘automatic’, that it runs on its own

once started by the user; and ‘programmable’, that the user can
specify at any time and in detail what it is he wants done. The
information being processed can be numbers or words; pictures,

sounds and so on can be handled,but they always have to be reduced

to numbers by some mechanism orother,as for that matter do words.

With modern computing techniques, however, this can largely be
done automatically, so the user does not have to be conscious of any
numbers. In essence the machineis dealing with symbols, and for that
reason some people feel that a better definition of ‘computer’ is
‘symbol manipulator’.

Nearly all computers are surprisingly similar in the principles on
which they work and surprisingly different in their detail. Funda-
mentally they interact with the user by commands. These are English

words whichtell the machine whatto do; the user types them on a
keyboard like that of a typewriter. The response from the machine

appears on a television screen or something similar. Each computer

can only understand a few dozen words, and the wordsin use at any

one time constitute its ‘language’. There are many different lan-

guages, each suitable for different purposes: we shall use for our
examples the best knownofthese, whichis called ‘Basic’. A typical
commandin Basic is the word ‘PRINT’, whichtells the machineto

display something onthe screen (the wordis left over from the days
whenteleprinters were more commonthanscreens). Forinstance, the

command

PRINT 3+5

elicits the response from the machine:
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8

The computer worksout the arithmetical expression and‘prints’ the
result. A sum can be very complicated:

PRINT 21 «(287-35 + 89) — 44-9

The symbol« is used for ‘multiply’ to avoid confusion with the letter

x. The machinereplies:

7858-45

If we try saying something to the computerthatis notin its limited

vocabulary:

HELLO

we get the response:

ISYNTAX
ERROR

It assumes we have made a mistake. As simple as the wordis, the

machine cannot makehead ortailofit.

The computer remembers

A vital part of the computer is a memory in which information can
be held while it is being worked on. We cantell the machine to save

a numberin its memory, but to do that we must put a label on the

numberin order to be able to get it back again, just as in leaving a

suitcase in a left-luggage office. The label in this case can be letter,

any letter we choose:

LET A = 293

This means‘Store the number293 awayin the memory andcall it A.’

Thenif we say

PRINT A

we get the response

293

The informationwill stay in the memory indefinitely.
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The same memory canalso be usedto store instructions, and this

is where the computer really comes into its own. A procedure in
information processing maybe so long and complicated thatspecify-
ing each step asit arises would be impossibly slow.So, the instructions

can be saved in memory and then executed automatically in the

correct sequence. As a very simple example, take the formula with

which weare all familiar for working outthe area ofa circle: A = zr’.
Supposewe needto knowtheareasof a large numberofcircles. We
can load the appropriate instructions into the computer to makeit

do this automatically with no further thought on our part. The

procedureis to take the radiusof the circle (r), square it, multiply by

n (3:14) and print out the answer. The radius of course comes from
the world outside the computer,so as a first step the machinehasto
be told to accept the ‘data’ from the humanuser. Theinstruction for
this1s:

INPUT R

This tells the machine to wait for someone to type the number(the
radius of a circle) on the keyboard, and when that has happened to
store it away in the memory withlabel ‘R’.

Then the arithmetic 1s done:

LET A = Re«Re3-14

This works out the area andstoresit as ‘A’. The last step is to print
out the answer:

PRINTA

Whentypingin these instructions we precede every line with a number
that tells the machine the orderin which theyare to be executed and
helps us to refer to them later on. All together the instructions look
like this:

1INPUTR

2 LET A = ReR-#3-14

3 PRINTA

Having typed them in, we give the command RUN,whichtells the
machine to execute all the instructions in its memory. First it
encounters Instruction 1, which makesit wait for us to type in a

radius, say 2. Then taking no appreciable time the computer works
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out the arithmetic in Instruction 2 and (Instruction 3) prints out the

answer:

12:56

For anothercircle we type RUN again,and so onindefinitely.

Small stepsfor programs

The three instructions constitute a computer program (alwaysspelt

without an -me), albeit a trivial one. A program is simply a set of

instructions for a computer to do one particular job. To be really
useful a computer needs a more complextask than this. Whatever the
task, the programmer (a humanbeing) hasto break it down into a
series of steps, each of which is small enough for the machine to

handle. He then writes the steps out in the appropriate computer

language. This process can be quite difficult. The programmerhas to
be carefulto getall the steps clear andin the right order. Imagine,for
instance, writing out all the steps involved in changing the wheel of

a car. They mightbe:

Apply handbrake
Get jack and brace
Remove hubcap

Loosen wheelnuts

Jack up car

Removewheelnuts

Remove wheel
Get spare
Mountspare

Replace nuts

Lowercar

Tighten nuts
Replace hubcap
Replace jack, brace and punctured wheelin car

Wemust rememberthe importance ofloosening the wheelnuts before

jacking up the car. Readers might like to try the sameexercise with

‘Filling a fountain pen’ or ‘Makinga potof tea’. When doesthe pot
get warmed?

Noneof these sample procedures involves decisions or questions,
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HOW TO COOK A FRIED EGG

 

Fetch egg box

         

   
 

      

 

  
      

 

      

 

 

 

 

 

 
 

   
 

 

   

 

  
 

Pret are
| HARDLUCK omelette

instead

Buy new box
of eggs

x

Take an egg
and crackit Vv
into basin

Wait 10 secs

Throw A ‘
it away Lift edges

gently
with scraper

Light gas

Heatfrying pan

Transfer egg
| to plate

Melt bit

of butter t

t EXIT

CONTENT-
Tip egg EDLY (END)

into pan

L . J
Figure 52. An example of a flowchart
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Figure 53. A flowchart for finding averages
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but in real life these arise all the time. Any process that involves

decisions is best shownin the form of a flowchart, as in Figure 52.
The diamonds are decision points. Readers could try drawing a
flowchart for ‘How to cross the road’. (This is not as simple asit
might seem.)

An average task

Getting back to the computer, an example of a more substantial
program would be one to work out the average (mean) of a set of
numbers. This is done of course by addingall the numbers together

and dividing by however many numbersthere are. A program to do

this cannot simply say ‘Addthefirst two’, ‘Add the third’, ‘Add the

fourth’ ... because it is not known beforehand how many numbers
there are — it varies from one problem to another. Consequently the
program must go round in a Joop, adding each numberasit comesin
to an accumulatingtotal, until all the numbers have been received.

To dothis it must first find out from the user how many numbers

there are. Then it needs to count the numbersasthey are fed in, and

stop after the last one. Then it should do the division and print the

answer. This process is shownin Figure 53.
One location in the memory ts used to hold the running total, and

another to keep the count. Each time round the loop, | is added to
the count, and then the question is asked, ‘Has the count reached the

requiredtally yet?’ In other words, ‘Have wegotall the numbersyet?’

If ‘No’, the program loops back and gets another number.If ‘Yes’, it
doesthe division and displays the answer. The running total and the
count both haveto besetto zero at the beginning — this is a common-
place requirement in computingthatis called ‘initialization’. All these

functions can beseen in the flowchart. A complete, carefully worked-

out procedure such as this is known by mathematicians as an

‘algorithm’, specifying exactly what to do in a mechanical way.
Making the program loop back requires two further Basic com-

mands: one is the wordGOTO followed by the numberofan instruc-
tion. This makes the program jumpoutof its usual sequence of

instructions and carry on from whatever line is specified. For

example, one can make a program jumpbackto the beginning and

go round and round a loopforever by adding ‘GOTO1’ on the end.
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The decision in a flowchart diamond is implementedin Basic with
the commandIF. This can take the form for instance:

IF X = 3 GOTO 20

The program only‘goesto’line 20 ifX equals 3. IfX is anythingelse,

the program carries on with the next line in sequence as normal. In

the averaging program an IF instruction is used to test whether the
count has reached the required numberyet. Ifit is still less than the
required number, the program loops back. Otherwise it moves

forward to the closing part of the program.

The program in Basic lookslike this. We give an English explana-

tion of each line on the right. Note how closely the program

correspondsto the flowchart.

1 INPUTN Get how many numbersthereare.
2 LET T=0 Clear runningtotal.

3 LET C=0 Clear count.

4 INPUT X Get a number.

5 LET T=T+X Addit tototal.
6 LETC=C+1 Add 1 to count
7 IFC<N GOTO4 Is C less than N?
8 PRINT T/N No — do division to find average.

The command ‘LET C = C+ Ilooks little strange.It is simply
a neat way ofadding | to C,bytelling the machineto take the number
C, add | to it, and makethat the new value of C. ‘LET T = T + X’

does the same thing, adding each numberin turn to the accumulating
total T.

Making the computer explain itself

It would be nice if the user of this program (as opposed to the
programmer) did not have to understand howthe Basic instructions

actually worked. We would like the program to promptthe user,

telling him what hasto be doneat eachstage, that is, typing in the

various numbers. We can dothis by using the ability of the PRINT
command to handle words as well as numbers. The words are
enclosed in quotation marks. Thus the command

PRINT ‘“‘CHEERS”’
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elicits the response from the machine

CHEERS

We add before each input command in the averaging program a
PRINTinstruction that will tell the user as the program runs whatit

is the machineis asking for. The sample screen display in Figure 54
showsthis, together with a run of the program.

 

1 PRINT “AVERAGE FINDER"

2 PRINT "HOW MANY NUMBERS";

3 INPUT N

4 LET T=0

5 LET C=6

6 PRINT "NUMBER";

7 INPUT X

8 LET T=T+X

9 LET C=C+1

19 IF C<N GOTO 6

11 PRINT "THE AVERAGE IS ";

12 PRINT T/N

RUN

AVERAGE FINDER

HOW MANY NUMBERS? 4

NUMBER? 12

NUMBER? 37

NUMBER? 25.6

NUMBER? 2

THE AVERAGE IS 19.15    
Figure 54. Typing in and running the averaging program on a computer

Real-life computer programs tend to be much bigger and more

complicated. At the next level up from the averaging example could

be a perpetual calendar,that is, a program to work outthe day of the
week for any given date; or, a program to find the prime factors of
any given number. For averaging you do notreally need a computer;
for finding prime factors of a large numberyoucertainly do. Readers

interested in finding out more about programming should see
one of the bookslisted in the References.

Manypractical applications of computers involve no clever pro-
grammingatall — the computeris useful simply because so manydata
are handled. Examples mightbe invoicing, payrolls or stock control.
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On the other hand scientific number-crunching, weather forecasting
and the control ofairline reservations systems and large data-banks
can be very complex. These latter examples generally require very
large computers, while business applications use medium-sized
machines, and the control of factory equipment and assembly-line

robots can be done with minicomputers or microcomputers. Like-

" wise languagesvary accordingto the application. Thereis a bewilder-
ing array of languages, differing mainly in how much of the
programming donkey work they handle and how muchtheyleave to
the programmer.‘Low-level’ languagesare fast andversatile but they

require the programmerto specify the task in minute detail. ‘High-

level’ languages are more like English and easier to use, but are more
limited in what they can do because the programmerhasless control
over exactly how the machine handles the job. High-level languages
include Basic, Fortran, Algol, Pascal and many others.

Bugs and how tofind them

Programmers, being human, make mistakes. If these are simply

typing errors, such as PRIM instead ofPRINT,the computerwill
fail to recognize the commandandwill respond:

27 SYNTAX
ERROR

In other cases, however, an instruction given will be perfectly valid
but will still be the wrong one for achieving the desired result. For
instance, the instruction ‘PRINT A-—B’ could be written whenit

should be ‘PRINT B— A’. The computer has no wayof knowingit
is wrong and will carry out the instruction happily, giving the wrong

answer to whatever problemit is. The programmerwill need to notice

this and do some detective work to find the error or ‘bug’ in the
program.* In the same way, failure to remove the car hubcaporto
loosen the wheelnuts will make the operation of changing the car
wheel unsuccessful. When people say, “The computer made a

mistake,’ it was invariably not the computer but the programmeror

* According to Commodore Grace Hopper, USNR,the first bug was exactly that.

While troubleshooting the Mark I computer at Harvard in 1945 she found a two-inch

moth inside, playing havoc with the circuits. She has kept the mothin her laboratory

recordsas proofof her claim to this piece ofjargon.
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the operator who madethe mistake. Whentheelectronics themselves
fail (and this happens quite often) the machinevirtually never gives
the wrong answer — it simply gives no answeratall. This highlights
the fundamental distinction in all computing between the electronic

and mechanical equipment, knowncollectively as ‘hardware’, and

the programs,parts ofprogramsand collections ofprogramsthat are
called collectively ‘software’ because of the ease with which they can ©
be changed.
The absolute predictability of a computer can sometimes be a

nuisance. When the machineis playing a game, we wantit to be able

in effect to ‘throw dice’. Space invaders need to arrive unpredictably.
In planning, say, a timber plantation, the trees should be laid out
irregularly rather than in straight lines, to reduce soil erosion. For
such purposes as these, computers have special software routines to
generate random numbers on demand.Since everything the machine

does is deterministic the numbersare not really random — they are

worked out from a very long division calculation and so could be

predicted by someone whowentto a lot of trouble. They are called
‘pseudo-random’ and are good enough for most purposes.
When a permanentrecord of a computer’s ‘output’ is needed,it

can be produced on paper by various devices ranging from an
ordinary teleprinter to a massive‘line printer’ capable of generating

twenty or thirty pages per minute. The speed with which a computer
can disgorge information contrasts starkly with the slowness of
feeding it in. Every character(letter, figure or punctuation mark) has
to be entered on a keyboard by a humanbeing. This processis called
data entry, and companies have large roomsfull of people who do
nothingelse all day long, copying from handwritten forms or what
have you. This bottleneck of ‘input’ remains a major obstacle in the
development of computing.

Yet more storage

The internal memory of the computer (the workings of which we
explain below)is limited in capacity. Thus separate devices are needed
for storing information in bulk. These are commonly magnetic tape
or rotating magnetic disks, both working on the sameprinciple as

sound recording tape. It takes much longerto get information from

either of these than from the computer’s internal memory, and tape
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is Slowerstill than disk because ofthe time spent in winding tape back

and forth. Keeping track ofwhere informationis stored on disks and
tapes, retrieving it when required, and erasing and reusing storage
areas no longer needed is a very complicated task, and for this
purpose a special program called an ‘operating system’ is provided.

With this the user can takeall the information on oneparticular topic,

give ita name,and store it away andretrieve it without havingto think

about whatits actual physical location is on the tape or the disk.
On large computers, operating systems also perform functions

such as ‘timesharing’. For a long time computers were too expensive

to devote to just one application at a time, and a timesharing

operating system would enable several dozen users to be connected
to the machine simultaneously. These people can be some distance
away,using screen-and-keyboard units called terminals, connected to

the computerby wire. The machine spendsa few milliseconds dealing

with one user’s task, then a few milliseconds on the next, and so on

roundin a loop, so quickly that each user thinks he has the machine’s
undivided attention. The pressure on cost of the central processoris
no longer so great, but timesharingis still widely used, especially
where resourcessuch as large data-bases and expensiveprinters need

to be shared. Large operating systems are among the most complex

artefacts in existence. It is not surprising therefore that they can be
unreliable and prone to mysterious failures. Many large computers
cannot run for more than a few days without an operating system
‘crash’ in which everything grinds to a halt, requiring a complete

restart.

Lifting the lid on the computer

A typical computer in schematic layout looks like Figure 55. In-

ternally the computer works entirely with numbers. These numbers

are all held in electronic circuits called registers. The physical size of
a register determines the largest numberit can hold — typically this
might be 65,535. (The reason for this curious numberwill become
apparent later.) Usually all the registers in a particular model of

computerare the samesize, andit is this size that to a large extent

determines the architecture of the machine. Giant computers have
large registers, while microcomputers in general have small ones. We

will describe the workings ofan imaginary computer; real computers
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Figure 55. Schematic layout of a computer

nearly all work on these principles but are more complicated in detail.

Within the central processor are three special-purpose registers:

the program counter, the instruction register and the accumulator.
The program countercontrols the flow of the program, the instruc-
tion register deciphers the instructions, and the accumulatoris where

the data are actually processed. The computer’s memory consists of

several thousand identical registers or ‘cells’. These are numbered
sequentially so that the processor can refer to them — each cell’s
numberis called its ‘address’, this being a natural word for specifying
location. All this is shown in Figure 56. The memory holds both the
program andthe data on whichit is to work. These are indistinguish-

able, so the computerhas to keep track of where the program is and

where the data are. Each instruction in a program like everything
else is a number, and the program occupiesa series of consecutive

cells in memory.

The program counter contains the address ofthe instruction to be

executed next. The processor goesto that cell in the memory,reads
the number contained therein and loads it into the instruction
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Figure 56. How a computer worksinternally

register. The instruction is carried out, the address in the program

counteris increased by 1, and the processis repeated with the next
instruction of the program. The machinethus worksin cycles of two
parts: the first half called ‘Fetch’, in which the instruction is read out
ofmemory, and the secondhalfcalled ‘Execute’, in which the instruc-

tion is carried out. One cycle typically takes about one millionth of a

second.

Verb and object

Theinstruction asit sits in the instruction register has two parts: an

operation and an operand. Wecansee these as corresponding to the

verb and the object in an English sentence (all instructions are impera-
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tives so there is no subject stated). Suppose the operation is the

number 10 and the operand the number 0647. Operation 10 could
mean ‘Load’. Thusthe whole instruction means: ‘Read the number
stored in memory cell 0647 and putit in the accumulator.’ Operation
11 could mean ‘Add’. Then the instruction 11-0885 would mean:

‘Add the numberthatis in memory cell 0885 to the numberthatis

currently in the accumulator and put the result in the accumulator.’
Instruction 12 could signify ‘Store’, and 12-2936 would say:“Take the

numberthat is in the accumulator andstore it in memory location
2936.’ (Whatever waspreviously in that location gets thrown away.)
The processor would have a dozen or so majorinstructionslike these,

including ‘Subtract’ and ‘Clear the accumulatorto zero.’ Some simple

computers do not even have a ‘Multiply’ instruction — they require a

programmerto write a short routine to multiply by repeated addition.

It is important to see that these instructions are not the sameas
Basic commands, and that the memory addresses are not the sameas
Basic line numbers. Moreonthat pointlater. To move about in the

program in the mannerofa BasicGOTO, the computer has a ‘Jump’

instruction. If‘Jump’is instruction code 15, a whole instruction could

be 15-0073, meaning ‘Carry on executing the program from memory
cell 0073.’ The mechanism for this is very simple: the processorjust
takes the operandpart of the instruction (which is the address to be
jumped to) and forcesit into the program counter, thus

 

counter LO] 0} 0] 0] 7] 3] 
 

“eowterL's lo[o[ 7] 3] 
This causes the program to carry on from that point. If a jump is

made to an area ofmemory that contains data rather than program,
the processorwill try to execute the data as if they were instructions,
and will go completely haywire.
For making decisions there is a conditional ‘Jump’ instruction,

saying ‘Jumpto the addressindicated ifthe accumulatoris zero.’ This

way a question box on a flowchart can be implemented by having a

test on a particular piece of data:if it is zero, the program jumps;if
it is not, the program carries on in the normalsequence ofsteps. All
questions haveto be reducedto the form:‘Is something or other equal
to zero oris it not?’ Thus to ask, ‘Is number A equal to number B?’
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the program has to subtract one from the other and test to see
whetherthe result is zero.

There hasto be one otherset of instructions, and thatis for input
and output. One instruction would mean: ‘Accept a character that
has been typed on the keyboard and loadit (yet again encoded as a

number) into the accumulator.’ Another commandcould be: ‘Take
the character held in the accumulator andsendit to the screen.’ All
other input and output devices such as the disk store and the printer

have their own input/output commands.

Putting the instructions to work

The instructions we have described are really very crude, but by

putting together long sequences of them it is possible to make the

computer perform very complex tasks. Each step the computertakes

is a very small one, so a great manysteps are involved in any useful
operation. As a result, even though one millionth of a second may
seem a miraculously fast time for one processorcycle, it is none too
fast when it comesto tackling real-world tasks. The fact that every

step has to be carried out oneafter the otherin strict sequenceis also

a serious hindrance — this is knownas the ‘von Neumannbottleneck’,

after the pioneerof this design of computer.
The numerical instructions make up what is known as the

computer’s ‘machine code’. It is possible to program the machine
entirely in these numbers, but it is extremely tedious, as numbers

are hard to remember. This is why computer languages have been

devised. The English words of whatever language it is are

translated into the machinecode bya special program loaded into
the computer for this purpose. In the case of low-level languages
this program is known as an ‘assembler’, and for high-level lang-
uages it is a ‘compiler’ or ‘interpreter’. Obviously the person who
wrote the original assembler had to write it in machine code.

Each command in a low-level language corresponds to one

machine-codeinstruction, and for this reason low-level languages
tend to be specific to particular models of computer. In contrast one
command in a high-level language is translated by the compiler
into typically several dozen machine-codeinstructions. For example,
a Basic PRINT commandwill carry out a calculation and then

cause a whole series of characters to appear on the screen, while
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one machine-code output commandwill transfer only one character.

High-level languages are more orless standard across different
computers, and a choice of compiler programs will normally be
available for any one machine,so it can be used with Basic one day

and Pascal the next if desired. The user simply has to load the

appropriate compiler and feed in his program written in the cor-

responding language. Theprocessoftranslating a high-level language
is extremely complicated, and compilers are large and cumbersome
programsthatlike operating systems are seldom free from errors.

Making numbersout ofelectricity

Howthenare these functions of a computeractually implemented in
electronics? Since everything inside the machineis a number,thefirst
problem is how to represent numbers in some physical form. The
earliest electronic computers used varying voltages to do this: the
strongerthe voltage, the larger the number. This method ofworking,

called ‘analogue’, is awkward and unreliable and was soon super-

seded by ‘digital’ computers whichuse circuits that are either on or

off— there is nothing in between. Using these on-off circuits to hold
numbers requires counting in twos, rather than in tens as we do
normally. This is not as odd as it may seem.Instead ofthe digits being
labelled:
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This is called the ‘binary’ system, as opposedto the usual ‘decimal’
system. For example, 101 in binary is

1 four

0 twos

and | unit
 

making 5 in decimal

The figure below shows what the decimal numbers from oneto ten

look like in binary. |

 

9 ° o a c
0 2 ° 2
\%\3\3\%

1 = 1 decimal

1 0 = 2

1 1 = 3

1 0 0 = 4

1 0 1 = 5

1 1 0 = 6

1 1 1 = 7

1 0 0 O = 8

1 0 0 1 = @Q

1 0 1 0 =10       
One binary digit (0 or 1), also called a ‘bit’, is the smallest possible
unit of information. A commonsize of register for a computeris
sixteen bits, so the largest numberthat can beheld in oneoftheseis

1111111111111111 or 65,535.
The effect of counting in binary is that numbers are much longer

than in decimal, but only two different symbols are needed (0,1)

instead of ten (0,1,2,3,4,5,6,7,8,9). ‘0’ can easily be represented by

‘Off? and ‘1’ by ‘On’. A digital computer therefore is nothing but an
assemblage of on-off switches. The switches though cannot be
actuated by a human being’s finger like household switches — the
machine has to be automatic, so it must be possible for the switches

to be turned on andoff by other electric currents. Such devices have

existed for many years and are knownas‘relays’. These consist of
a switch with the coil of an electromagnet alongside, as shown

opposite.

Whencurrent flows throughthe coil it becomes magnetized, thearm
is pulled down,and the switch goeson.Atfirst digital computers were
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A.

3
built with relays, but they are slow and prone to mechanicalfailures

SO were soon replaced by electronic valves (vacuum tubes). These

have no moving parts butstill have the drawbacks that they are

expensive, take up a lot of room, and generate a great deal of heat.
The computerdid not really becomea practical proposition until the
invention in the late 1940s of the transistor, in which the electric

charges themselves act as a switch, using a microscopically small

junction in pieces of exotic materials called semiconductors. From

being built out of separate transistors soldered together, computers

have progressed to the stage where entire processors consisting of
thousandsof transistors are madeall in one piece on single sliver
or ‘chip’ of the elementsilicon. These ‘integrated circuits’ as they are

called can be mass-produced very cheaply, andit is this that has

brought aboutthe microelectronic revolution of recent years.

Until fairly recently computers had memories made out of
thousandsof tiny magnets — magnetization in one direction meant‘0’
and in the other meant ‘1’. Nowadaysit is cheaperto use transistor
circuits which are off for ‘0’ and on for ‘1’; a separate circuit is

required for each bit stored. These have the disadvantagethatall the

information in a memory is lost when the power is shut off, but

information that needs to be kept is usually held on magnetic disks

or tapes anyway.

v

a.
—

a.
~~

Gatesfor logic

Central to the workings of the switches in a computeris a system of
logic invented in the 1850s by George Boole. In this all statements
have one of two values, ‘True’ or ‘False’, and there are three con-

nectors, ‘And’, ‘Or’ and ‘Not’. These enable oneto construct descrip-



234 The Creative Computer

tions of the world suchas: ‘I will play football tonight IF there is
nothing good ontelevision AND the weatheris fine.’ The truth of the
statement ‘I will play football tonight’ can be established by finding
out the truth of the two following clauses and linking them with the

logical ‘And’ operation. ‘Or’ workslike this: “We will have a goal-

keeperIF Bill turns up OR Bob turnsup.’ It is of course possible for
both of them to turn up, and ‘Or’is taken to include that possibility.
Finally, ‘Not’: ‘We will play 1F the pitch is NOT taken by somebody

else.’
These can be easily implemented in electronic circuitry. “True’

corresponds to ‘On’ or ‘1’ and ‘False’ to ‘Off’ or ‘0’. ‘And’ is two

switchesin series:

+t.
A B

Thelight will go on only when both switch A and switch B are on. An
arrangementof switcheslike this is called an ‘And gate’.

‘Or’ is two switchesin parallel:

 

cS
Thelight will go on if either switch A or switch B 1s on, or both. This
is an ‘Or gate’.

‘Not’ is a switch with a contact on the ‘released’side:

B
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Whenthelever is pushed down,the light goes off.

Interestingly enough,all the functions required in a digital com-

puter can be implemented using combinationsofthese three types of
gate. As a single example consider the instruction, ‘Jumpif the
accumulatoris zero.” The accumulatorconsists ofone circuit for each

binary digit (say, sixteen of them). For the condition for a jump to

be fulfilled a// the digits have to be zero, so for this instructionall the

circuits are connected together in a series of ‘Nots’ and ‘And’gates.
Only if the digits are all zero will current pass through the ‘And’gates
and activate the ‘Jump’circuitry:

0 fo} fo} fo] 0 0
ay Nay Nay ay ey AY OY jump

Each of the other functions of the processor has its ownset of

circuits that are brought into play when the appropriate instruction

is in the instruction register: one set for loading, another set for

adding, andso on.It is easy to see from this why a practical computer
needs many thousandsofcircuits.

Rory Johnston



Further Reading and
References

For each chapter we havelisted suggestions for further reading relevant to

the general topic of that chapter, followed by specific references. Some ofthe
booksand articles here are popular, some moretechnical. The latter, which
are distinguishedin each case byanasterisk, require someprior acquaintance
with the sciences of computing and/or cognition.

Chapter 1: Brute Force and Ignorance

GENERAL
The best introduction to the field of artificial intelligence is still: Margaret
Boden, Artificial Intelligence and Natural Man, Harvester Press, Brighton,

and Basic Books, New York, 1977. Boden sees AI as a fundamentally

humanist study. She brings to bear the perspective of a professional philo-
sopher whospecializes in problemsof cognition, including the social aspect.

Also of note are: P. H. Winston, Artificial Intelligence, Addison-Wesley,
Reading, Mass., 1977; The Computer Age: A Twenty- Year View (ed. Michael
Dertouzos and Joel Moses), MIT Press, Cambridge, Mass., 1979, a stimulat-

ing and authoritative collection ofessays by manyofthe most eminentpeople
in computing and the philosophy touchingonit.
One of the most influential treatments there has been of the social

significance of computing is: Joseph Weizenbaum, Computer Power and
Human Reason, W. H. Freeman, San Francisco, 1976, and Penguin Books,

Harmondsworth, 1984. Weizenbaum, a professor of computer science at

MIT, is eloquent and moving in his condemnation of excessive faith in

technology but, as far as AI is concerned in our view, wrong.
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Chapter 2: Computers Join the Experts
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Chapter 3: Human Window on the World

GENERAL
Social dangers emerging from the extension of ‘brute force’ computing to

complex humanaffairs are analysed in: D. Kopec and D. Michie, Mismatch
between Machine Representations and Human Concepts, FASTseries No.9,

EUR 8426 EN, Commission of the European Communities FAST Pro-
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Chapter 4: Thinking About Thinking

GENERAL
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Chapter 6: The Creation ofNew Knowledge
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Chapter 10: Inventing For All Mankind

GENERAL
Handbook of Industrial Robotics (ed. Shimon Nof of Purdue University,
USA),is scheduled for publication by John Wiley in 1984. It contains several
contributions which evaluate the convergence of the two engineering
disciplines of robotics and machineintelligence.
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Appendix: Basic Principles ofComputing

GENERAL
Tofind out more about the broad sweepof present-day computing, see: Ray
Curnow and Susan Curran, The Penguin Computing Book, Penguin

Books, Harmondsworth, 1983.

For a good grasp of the techniques of programming, see: John Kemeny
and Thomas Kurtz, Basic Programming, 3rd edition, Wiley, New York,

1980.
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Termsdefined in full in the body of the text are not included here; readers

should refer to the Index.

address The numberwhich identifies the location of a cell in memory. See
Appendix,p. 227.

algorithm A clearly defined procedure in computation, e.g. Newton’s

Algorithm,for finding square roots. See Appendix, p. 221.

analogue (adj.) Using continuously variable rather than discrete quantities
(to represent numbers,etc.). See Appendix, p. 231.

And An operatorin logic that requires both of two elements to be true for
the combined expression to be true. See Appendix, p. 233.

anode The positive conductorofan electronic valve.

argument In mathematics, an independentvariable of afunction (q.v.).

associative store A computer storage device with special hardware attached

for searching for information in the store sequentially and very fast. This
avoids having to have the information indexed. Also called ‘content-

addressablefile’.

binary By twos; counting by twos. See Appendix,p. 232.
bit Binary digit. See Appendix, 232.

bootstrapping A program to be loaded into a computer needsto be read in

from somestorage device such as a disk. To carry out this reading process

the machine needs a program,called a ‘loader’, but how does the loader
itself get loaded? There has to be somespecial hardware, or a crude loader
that can beinserted by hand. This processis called ‘bootstrapping’, from
the proverbialdifficulty oflifting oneself up by one’s own bootstraps.

bug A mistake in a computer program. See Appendix, p. 224.

cards Because computers can accept information far faster than people can

type it, data always used to have to be entered onto punchedcards or
paper tape, away from the computer. These could then be fed into the

machinevery fast, making the best use of computertime.It is now much
more economically feasible to have terminals connected on-line to the

computer, eliminating the needfor cards.

Carnot Cycle The operating process of a heat engine, according to the

analysis of Nicolas Carnot (1796-1832).
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channel In communications, an information-carrying path. In microelec-

tronics, a part of an integrated circuit.

chip Anintegrated circuit. See Appendix,p. 233.
clock cycle One basic step of the operation of a computer. See Appendix,

p. 228.
code The commands making upa program,betheyin a high-level language,

a low-level language or numbers(see machine code).

compiler A program for translating programsin a computer language into

machine code (q.v.) for execution by a computer. See Appendix, p. 230.

composite number A numberwhichis not prime(q.v.).
computer A_ general-purpose, automatic, programmable information-

processing machine. See Appendix,p. 215.

curve-fitting The mathematical processoffinding a function that adequately

describes a curve or graph.
cytology The studyof the cells of organisms.
data The information used by a computer.
data-bank One or more data-bases (q.v.) available to manyusers, and often

to the general public.

data-baseA large collection ofinformation on one subject held in a computer

and usually organized in a hierarchical or tabularstructure.
data control The job of keeping track of the work being fed into a computer

and the output received fromit.
data entry The process of feeding large amounts ofdata into a computer. See

Appendix, p. 225.
declarative semantics The meaning of a computer program when this is

viewed purely as a collection of descriptive assertions, in isolation from

any imperative or prescriptive interpretation.

Difference Engine A pioneering mechanical computer, designed by Charles
Babbage (1791-1871). Construction wasstarted but never completed.

distributed processing The techniques of using many small interconnected

computersinstead of one large one.
Doppler radar system Radar designed to detect movement.

epistemic To do with understanding.
extrapolate To extend a series of numbers outside the range of the known

terms by assuming that the existing pattern should continue — a process

proneto error.

feedback A technique used in control systems in which a machine senses
the results of its actions and adjusts further action accordingly. In other
words, some outputis fed back in as input. A car driveris continually using
feedback, watching the road and turning the wheel by small amounts to

keep the car on course.

Fermat’s Last Theorem Oneof the most celebrated mysteries in mathematics.

The theorem, or more properly ‘conjecture’, is that the equation
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x" + y" = z" cannot be true for any integer valuesof x, y or z ifnis greater
than 2. Pierre de Fermat (1601-65) wrote in the margin ofa book,‘I have
discovered a truly wonderful proofof this, which, however, this margin
is too narrow to hold.’ Whetherhereally had found such a proofis in some
doubt, as no onehasbeenable to find it since.

floating-point arithmetic package Software for performing arithmetic on
mixed numbers(includingfractions), not just integers, and on very large
and very small numbers.

flowchartA graphicaldevice for analysing a procedure. See Appendix,p. 221.
Fortran A high-level computer language. The name stands for ‘formula

translation’. See Appendix, p. 224.
front end The part of a computer system with which the user deals

directly, namely the terminal and associated input/output software.
function In mathematics, any quantity the value of which depends upon

another, e.g. the speed ofa caris a function ofhow far downthe accelerator
is pressed (and of whatgearthecaris in, the slope of the road and various
other factors). The position of the accelerator is an independent variable
and the speed is the dependentvariable.

game theory The mathematical analysis of strategy and tactics in games, and
competition in general.

germanium A semiconducting metallic element usedin transistors.
graphics system Hardware and software by which a computer can be used

to produce pictures: line drawings, diagrams, colouredpatterns,etc., either
on a television-like screen or on paper.

hardware Theelectronic and mechanical equipmentin a computersystem,as
opposed to the programsor‘software’. See Appendix, p. 225.

high bandwidth Of an information channel with a high capacity, thatis,
capable of carrying a large number of bits per second. A term from
radio.

high-level language A computer languagerelatively closer to English and

further from machine code. See Appendix, p. 224.
high resolution Of a screen capable of showing fine detail in images.
IBM International Business Machines Corporation, by far the largest
computer manufacturer in the world.

infinite sink In physics, a sink is anything which draws something away,e.g.
a heat sink keeps an electronic component cool. An infinite sink is one
which neverfills up. The earth is effectively an infinite sink for electric
charge — hence its usein radio.

infinitesimal calculus Commonly knownas just ‘calculus’. The branch of
mathematics that deals with changing quantities by considering them as
divided up into very small pieces.

infra-red Invisible rays with wavelengths only slightly longer than red light.
input/output The passing of information into and out of a computer.
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integratedcircuitAn electronic circuit consisting ofmanytransistors madeall

in one piece on single sliverofsilicon, typically around one eighth of an
inch across, and encasedin a plastic housing with connection pinsleading

out, looking ratherlike a centipede.
interactive Of the mode ofworking with a computerin which the user gets an

immediate response via a terminal, instead of having to wait for output to

come,say, in the mail.

interface Where two things meet. Originally a term from physics: for
example, whereoil is floating on top of water,interesting things happenat
the interface. Computing uses the word to refer to the mechanismsfor
linking different machines, or to the way information passes between a

computer and the humanuser.

iterative Of a mathematical process that involves repetition.
keyboard A device for feeding information into a computer,with alphabetic

and numeric keyslike those of a typewriter.
language (computer) The commands a computer can understand. See

Appendix,p. 215.

light-year The distance light travels in oneyear, viz. 5-878 x 101? miles.

LispA high-level languageusedfor‘list processing’, the manipulation oftext

held in structurescalled‘lists’.
listing The text of a completed program,either printed out by the computer

or displayed on the screen.

loop A part of a program that jumps back and repeatsitself. See Appendix,

p. 221. |
low-level language A computer language close to machine code. See

Appendix, p. 224.
machine code The numerical commandsthat control a computerdirectly.

See Appendix, p. 230. :

mass spectrometry A technique for identifying molecules of chemical

compoundsbydirecting a beam of charged particles through electro-

magnetic fields and observing the varying deflections produced on

molecules of different weights.
matrices In mathematics, rectangular arrays of numbers, useful in various

parts of algebra.
merging Taking two or more orderedcollections ofdata and combining them

into one ordered collection — part of the process of sorting information

on a computer.

microcomputer A small computer incorporating a microprocessor and com-
plete with a built-in keyboard— generally not muchlarger than a typewriter.

microelectronics The technology of using miniature components in

electronics, leading to integrated circuits (q.v.).

microprocessor The processing unit of a computer made in one piece as a

single integratedcircuit (q.Vv.).
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microsecond One millionth of a second oftime (see numbers).

millisecond One thousandth of a second of time (see numbers).

minicomputer A type of small computer that emerged in the 1960s, with a
processing unit normally about the size of a record player. Some mini-
computers noware as powerfulas full-scale computers used to be.

MIT Massachusetts Institute of Technology.

mnemonic An aid to memory.

multiprocessor A computer consisting ofmany separate processingunits,all
working together.

network In communications, a system of computers and terminals linked
over long distances by telephonelines or other transmission systems.

node A place wherelines in a network meet, or where a tree branches.

Not An operatorin logic that requires an elementto be false in order for the

expression to be true. See Appendix, p. 233.

Not—And The logical operation ‘And’ followed by the operation ‘Not’. Also
called ‘Nand’.

numbers Exponents indicate the powerto which a numberis to be raised, for

example 12* = 12 x 12 x 12 x 12. We express some large numbers in

‘scientific notation’, that is, powers of ten: 10° means | followed by nine

zeros, or 1,000,000,000. We follow the convenient and now almost

universal practice of using:

‘billion’ to mean ‘thousand million’ (109)

‘trillion’ to mean ‘million million’ (10!2)

‘quadrillion’ to mean ‘thousand million million’ (10!5)

Fractions haveprefixes thus:

‘mill’ = 1 thousandth

‘micro’ = | millionth

‘nano’ = 1 billionth

‘pico’ = | trillionth

on-line Connected directly to a computerin ‘live’ operation.
optical storage Very high-capacity computerstoragethatuses rotating plastic

disks with a special film sandwiched in the middle. Microscopic holes are

punchedin this film by a laser beam to register binary digits, and are sensed

by anotherlaser.

Or Anoperatorin logic that requires either oftwo elementsto be true for the
combined expression to be true. See Appendix, p. 233.

order code The instructions that make up a particular computer’s machine

code (q.v.).

order of magnitude A factor of ten, for example 40,000 is three orders of

magnitude larger than 40.
paper tape See cards.

parallel Of components that are functionally side-by-side, or operations
going on simultaneously. Compareseries.
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parameter In mathematics, strictly, an intermediate variable in a calculation.

Nowtaken to meanvirtually any variable, especially the values a control
system is dealing with. An airline pilot is concerned with such parameters as
speed, course,altitude, wind speed, air temperature and fuel consumption.

partial differential equation A complex kind of equation that arises in the

infinitesimal calculus (q.Vv.).
Peano’s axioms A formulation of the number system devised by Giuseppe

Peanoin 1889. |
picosecond Onetrillionth of a second (see numbers).

prime number A whole numberwhichis notdivisible by any whole number

other thanitself and 1.

probability In mathematics,the likelihood ofsomething happening expressed

as a ratio similar to ‘odds’. For example, with a six-faced die the
probability of rolling a three is 1/6; the probability of rolling an even

numberis 3/6 or 1/2.

procedural semantics The meaning of a computer program whenit is

interpreted as a sequence oftests and imperatives, thatis, as a prescription

or procedure for performing a task.

processor The part of a computer which controls the functioning of the

machine andin which operationson data are carried out.
production rule An ‘IF <condition> THEN <conclusion>’ program

statement, reminiscent of the stimulus—response pair postulated in studies

of animal behaviour, which may be fired whenever the system’s control

procedure detects a match of the condition with some elementof a stored

description of the current state-of-the-task environment.

program The instructions that control the actions of a computer. See

Appendix,p. 218.
programmerA person who writes computer programs.
pseudo-random numbers Numbersthat are randomfor practical purposes but

whichare in theory predictable. See Appendix, p. 225.

query language The commandsusedto get information out of a data-base.

R & D Research and development.

random number A numberthe value of which is unknown beforehand and
which is equally likely to be any number within a specified range. A die
for instance produces random numbersin the range | to 6.

resolution principle A machine-oriented generalization of Aristotle’s modus

ponens rule of deductive inference. The originator of the resolution also
proved it to be adequatein principle for proving any theorem expressible in

first-orderlogic.
robot Originally this meant a hypothetical human-like walking, talking

machine. Nowadaysit is applied to fixed computer-controlled assembly
machinesin factories that do not lookatall like people, but as real robots

become more capable we can expect to see them acquire more human
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characteristics such as mobility and vision, leading to hearing and speech

and the ability to operate autonomously. The word ‘robot’ is Czech and
comes from the 1920 play R.U.R. by Karel Capek.

routine A part of a program.
screen See video terminal.

secondofarc A circle is divided into 360 degrees, each degree into 60 minutes,

and each minute into 60 seconds, so one secondis 1/1,000, of a circle.

semiconductor A material such as silicon that behaves neither as a pure
electrical conductor nor as a pure insulator, used in transistors. See
Appendix, p. 233.

series Ofcomponentsthat are functionally arranged,or operations that take

‘place, one after the other. Compareparallel.
set In mathematics, any clearly defined collection of objects or abstract

entities.

silicon A chemical element, the principal constituent of sand, which happens

to be a semiconductor and is widely used in making transistors and
integrated circuits.

software The programs used in a computer system, as opposed to the
‘hardware’. See Appendix,p. 225.

sonar A method of locating objects by analysis of sound waves emitted by

them orreflected from them.
Space Invaders An electronic arcade and homevideo game.
taxonomyClassification.

teleprinter An automatic typewriter driven by electrical signals down wires,
much used by newsagencies. Originally teleprinters were driven by a
person typing on a keyboard in some remote location, but they can just
as well be worked by computers sending the sameelectrical signals.

template A partially filled-in form in a program against which data can be
matched.

terminal A device, usually a screen and keyboard, that provides access to a
computervia wire, possibly from somedistance away. SeeAppendix, p. 226.

theorem prover A program for working outlogical deductions from complex
chainsof implications and axioms.

time resolution The accuracy with which a device can measure time — how

close together events can be andstill be distinguished.
topology The branch of geometry that concernsitself with how things are

connected, ignoring size and distance. A figure drawn on a rubbersheet

stays topologically constantas the sheetis stretched and twisted — hence
topology is sometimes known as‘rubber-sheet geometry’. An ordnance

survey map of London’s Undergroundrailway system and the schematic
diagram displayed in stations, which showsthe routes as a few straight-
line segments, are equivalent topologically but not according to conven-
tional geometry.
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trace facility A function of a computer used in finding program errors.

Eachinstruction is printed out as it is executed so that the programmer

can see what1s going on. |
transistor An electronic device for allowing one current to control another,

made out of semiconductors. See Appendix, p. 233.

Veterans’ Administration The US government agencythat looks after ex-

servicemen.
video projector A television set that produces muchlarger pictures than are

possible with a conventionalglass tube, by projecting them on to a cinema
screen.

video terminal A terminal on which the information from the computeris

displayed on a glass screenlike thatofa televisionset.

VLSI (very large-scale integration) Integrated circuits (q.v.) with many

thousands of elements.

von Neumann bottleneck The restriction to serial processing of the conven-
tional computer. See Appendix, p. 230.
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