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A two-level statistical classification
procedure has been applied to the problem of
detecting complex targets in aerial photography,
At the first level, a set of classification functions
designed on the basis of samples from the target
class and from other images is used to make sub-
decisions on local-area statistically-designed
features associated with the target class, At the
second level these subdecisions are combined
into a single decision as to the presence or ab-
sence of the target, The nature of the data does
not allow for the direct application of classical
methods of multivariate discriminant analysis;
rather, modifications of classical methods are
used, This procedure has been simulated on a
digital computer with the aid of a special input-
output device which converts imagery to com-
puter language, Excellent results were obtained
on independent text samples of actual imagery,

Introduction

Intuitive classification procedures based
on concepts of distances and directions, and em-
ploying transformations of the coordinate space
or projections of the samples along a particular
direction have been used from the very beginnings
of multivariate statistical analysis, Present
clagsgification procedures represent a synthesis
of such intuitive concepts with formal probabilis-
tic ideas such as minimizing the probability of
misclassification or minimizing the expected loss
of misclassification,

The basic assumption underlying proba-
bilistic classification is that there exists for each
pattern class a probability distribution
F (%, x ,..xN), where g =1, 2,..G, denotes the
péztern class or group and the variables X,
i=1, 2,.,N represent the observables which are
used to characterize the patterns, Members of a
group g are considered tobe samples from a pop-
ulation which is distributed in an N-dimensional
space according to Fg,

The simplest non-trivial situationoccurs

when there are only two groups whose proba-
bility density functions fj(x) and fz(x), where
X = (X, Xz, .., X,), are known and the
patterns to be classified must belong to one of
these two groups., For this situation it is well
known that optimal classification is obtained by
using the likelihood ratio L(x) = E), The value
f2(x)
of X for a new pattern is substituted in L(x) and
the result compared with a threshold, The
choice of the threshold depends upon the cri-
terion of optimality being used, the degree of
knowledge about the proportion of the two groups
in the universe from which patterns are drawn
and the costs of correct and incorrect classifi-
cation,

In practice, the probability distributions
are rarely, if ever, completely known, The
situation which prevails may be (a) the case of
parametric families of distributions, in which
functional forms of the distributions are assumed
to be known but parameters are estimated from
samples; or (b) the non-parametric case in which
the only knowledge about the distributions is that
which can be inferred from samples and no
assumptions are made about the functional forms
of the distributions, Expository discusgions of
the above classification situations with refer-
ences to the statistical literature and comments
a the relationship of this literature to some of
the recent work in pattern recognition have been
presented previously s “s

In the work described in this paper the tra-
ditional assumption, that the form of the proba-
bility densities f_(x) are known, has been used,
Specifically, muftiva.riate gaussian functions are
assumed, However the estimation and classifica-
tion procedures differ in two ways from those
traditionally used, First, the nature of the data
and the relationship of the number of variables
to the size of the design sample lead to singular
sample covariance matrices, The procedure
used for modifying the sample covariance
matrices to obtain non-singular estimates of the
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population covariance matrices appears more
suitable for this problem than the "pseudo-
inverse! method, Secondly, classification is
performed in two stages rather than in a single
stage,

In the following sections of this paper we
discuss some of the reasons which led to the pro-
cedures being used, the nature of the problem to
which they have been applied, and the results
which have been obtained on independent test
samples,

Multivariate Normal Classification

Estimators are said to be consistent if
the estimated value of a parameter approaches
the '"true' value of the parameter with probability
1 as the sample size is increased indefinitely,
The performance of a classification procedure
using estimated parameters should be consistent
with (i, e,, tend to) the optimal performance ob-
tained when true parameter values are used, For
classification into one of two groups it has been
shown by Fix and Hodges4 that if f;(x, 0) and
f5(x, 0) satisfy certain weak restrictions as to
continuity with respect to 6, where 6 denotes the
parameters collectively, then using consistent
estimates instead of true parameters values in
the likelihood ratio procedure will lead to a con-
sistent clagsification procedure, For the classi-
fication of a multivariate observation into one of
two groups whose density functions are known ex=-
cept for a number of parameters, if consistent
estimators are used for the a priori probabilities
and for the unknown parameters, it has been
shown by Hoel and Peterson® that the Bayes pro-
cedure with unknown parameters replaced by
estimates is a consistent classification procedure,
When sample sizes are finite, and expecially
when sample sizes are small, the use of such
estimates can only be justified on heuristic
grounds, However, it is usually done,

For the case of two normal density func-
tions with the population covariance matrix
assumed to be equal for the two groups

Log L{x) = x' 57! z1 - z(2),
Az @& 2l g G0 52))

where x' representes the transpose of the column
vector (x, X,,..%XN) x(8) is fhe vector of sample
means of the g* group and S™" is the inverse of
the sample covariance matric S obtained by
pooling samples from the two groups, The sur-
face of constant likelihood is thus a hyperplane of
the form: I%- a.x.® When the ‘covariance matrices
ity
i=1

for the two groups are not assumed to be equal,

»”
Log L{x) =log ‘sﬂw 12(x-%)' sl'l(x-a‘c(l))

BT
+1/2 (x - i(?‘))' sz'l(x -i(?‘)).

In this case the surface of constant likelihood
ratio is no longer a hyperplane but takes the
form

N N
2ai.xixj + Zbixi'
i=1 J i=1
j=1

Singular Sample Covariance Matrices

The use of the above classification func-
tions requires the computation of the inverse of
the estimated covariance matrix, Regardless of
the actual population distribution, if the number
of samples available to estimate the covariance
matrix is less than or equal to the dimension-
ality of the measurement space; i, e, if m€N,
the samples will be distributed on a hyperplane
of at most (m -1) dimensions and the estimated
covariance matrix will be singular,

If the sample covariance matrix were
singular (or near singular) as the sample size
m tended to infinity then it would appear reason-
able to assume that the population covariance
matrix is singular and consider transforming
the original set of N dbservables to a set of
r <N linearly independent variables, However
the singularity due to the small size of the de-
sign sample can hardly be construed as evidence
o the singularity of the population covariance
matrix,

The approach of restricting the number of
observables to a few was justified in the past by
citing the complexity and labour involved in com-
puting and inverting sample covariance matrices,
In addition to simplifying the computation of sta-
tistics dependent on elements of the inverse
matrix, this approach usually sufficed to ensure
the non-singularity of the sample covariance
matrices,

It seems to us that one of the original mo-
tivations:for the intrfoduction o multivariate sta-
tistical techniques was the desire to compensate
for the small sample sizes which were available
by measuring many characteristics of each mem-
ber of the sample, Present computational facil-
ities and techniques being considerably beyond
those available in the past, one would like to let
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the number of observables be determined by the
nature of the problem,

If the sample points are distributed on
an r dimensional hyperplane r <N, the estimate
of the probability density function off this hyper-
plane is zero, If the population covariance
matrices are not assumed to be equal, computa-
tional indeterminacy can arise due to the concen-
tration of the estimated probability densities on
different subspaces of the measurement space,
We then look for a reasonable way of spreading
the probability density off the hyperplane such
that the estimated multivariate normal density
function is non-zero throughout the measurement
space, We seek a non-singular estimate of the
covariance matrix which approaches the popula-
tion covariance matrix as the sample size tends
to infinity,

Associated with the computational in-
determinacy is the conceptual difficulty of
assigning class membership to a sample which
falls in neither of the subspaces on which the es-
timated densities are defined,

In some applications the Moore-Penrose
Generalized Inverse provides a solution to the
singularity problem, Harley6 has pointted out the
unsuitability of the Generalized Inverse solution
in the present application, He has also presen-
ted a solution which at least in an ad-hoc way re-
solves both the conceptual and computational dif-
ficulties mentioned above, The solution suggested
is to add a term proportional to the average var-
iance to each diagonal element of the sample es-
timate of the covariance matrix, This class of
pseudo estimates S, can be written as:

S, =flm, N)E_ +(1-f(m, N)) ( Trace E;,) U,
N

where E_ is the- usua.l sample estimate of the co-
variance matrix, oS f(m, N)<1 is a monoton-
ically increasing function of m, the number of
samples, with f{m, N)-»1 as m-»@ for N fixed,
N being the dimension of the vector of obser-
vables; U is the unit matrix, Further discus-
sion of this class of estimates and on the deter-
mination of f(m, N) is presented elsewhere’,

" Two~Layer" Classification

The optimal nature of the likelihood
ratio procedure holds as long as the functional
forms assumed for the probability densities are
valid and the parameters are known or estimated
from very large sample sizes, This optimality
is no longer assured when parameters are esti-
mated from sample sizes which are not large, or

when the underlying distributions deviate from
the forms assumed, In practice, both these
situations prevail,

Experience indicates that a classification
procedure based on dividing the observables

" into subsets, designing a classification function

for each subset and deriving a final classifica-
tion function which uses the outputs of the first
set of statistics, gives better results than a
single function based on all the observables,

If we use Q subsets and denote the first
set of classification functions by C.,
j=1, 2,.., Q, then the final classification func-
tion can be based either on the observables
(C1» C,s.., C) or on the binary fandom vari-
ables ozbtained by thresholding the Cj; i,e,, on
(YI,Y,.., ), w1thY =1if C, 2 't, and
Y: =0 {or ~1) 1 C <t.. Th1s latler pi’ocedure
which combines subd cisions made on subsets
of the observables into an overall decision, is
what we refer to as '"two-layer' classification,
Figure 1 shows an example of this procedure,
In contrast, the use of a single classification
function based on all the observables is referred
to as "template-matching."

In previous work o a more deterministic
nature, an approach which proved very fruitful
was that of making subdecisions on the presence
or absence of deterministically designed fea-
tures and combining these decisions into a final
decision as to the object present, The analogy
with the préesent approach leads us to refer to
the Cj’s, as "statistically designed features."

The concept of '"layered'" classification in
the sense described above has been alluded to in
some places in the statistical literature, How-
ever, its current emphasis in pattern recogni-
tion is a result of the work mentioned above and
also the ideas on layered networks introduced in
connection with perceptrons and other ''tranable"
networks, The differencebetween the C.’s pre-
sented here and the first layer functions used in
perceptrons is that the latter are restricted to
weighting coefficients +1, -1 and 0 and to being
linear in the observables, The C.’s, whether
linear or quadratic discriminant functmns use
coefficients obtained by applying the likelihood
ratio procedure to design samples from the al-
ternative classes of patterns,

The rationale for deriving the final classi-
fication junction is also different, In the train-
able network approach the coefficients of the
final linear function are obtained by a sequential
adjustment procedure which uses a sample of
size one per stage of adjustement, The samples
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are cycled through repeatedly and "convergence"
of the network is defined as achieving perfect
separation of all design samples, In the present
approach the rationale for the design of the final
classification function is the same as that for the
first layer functions, According to this rationale,
in theory, the distributions of the binary random
variables Y., j =1, 2,..,Q, under the alternative
classes, are estimated from design samples and
used to obtain the final classification function,

In practice rather rough approximations to this
theoretical approach are necessary when the
sizes of available design samples is limited and
also because it is necessary to approximate the
joint distributions of the binary random variables,

Restricting attention to finite design
samples leads to an underestimation of the prob-
ability of misclassification, In contrast to the
""convergence'' criterion used to assess per-
ceptrons, in the present approach performance
is assessed by the results obtained on indepen-
dent test samples,

Local-Area Statistically-Designed Features

The manner in which the observables
should be divided into subsets and the number of
such subsets which should be used for two-layer
classification are questions which cannot be
answered uniquely, For the image screening sit-
uation, the nature of the problem and the format
of the data have suggested the following scheme
of subset formation,

The size and quantization of the detec-
tion area are determined by the target being
sought and the resolution desired, The detection
area is divided into a number of subareas, These
subareas are chosen in a regular way and are
over- apping, The subareas are not designed to
encompass particular geometrical features of the
target, such as corners, etc,

The classification functions C, based on
these subareas are thus labelled "locall-area
statistically-designed features' Each subarea
is referred to as a ''feature block'

The process described above drastically
reduces the number of variables which have to be
considered at one time, Even with this reduction,
however, the available design sample sizes may
require, when the C,, s are quadratic discrim-
inant functions, that the covariance matrices of
the two populations be estimated from singular
sample covariance matrices,

We note that the two-layer classification
method pays a double divident, A single classi-
fication function based on all the variables would

generally be out of the question for practical
reasons; in addition, the two-layer method per-
forms better than a single function,

Preprocessing the Image

Before it is applied to the recognition net-
work, the image is converted into a spatially
quantized binary picture, The purpose of this
step is (a) to simplify the data for further pro-
cessing, and (b) to remove the nuisance vari-
ables of brightness and contrast, The pre-
processor should provide consistent detailed
binary pictures of the original image despite
wide variations of brightness and contrast level
and reversal of contrast, Thus, black objects
on a white background will be detected as
readily as white objects on a black background,

Several techniques were investigated to
determine the most suitable for processing
aerial photography, The technique chosen is
called Laplacian, The Laplacian function is
given by the equation

<2p - 3%B + %8
Ax” ayt

where B is the image brightness and x and y are
the two image dimensions, Since the function is
determined by brightness derivatives rather than
by brightness itself, it produces no output on
large uniform areas, In the presence of line
boundaries or corners, the output is high, Thus
the function tends to outline objects and empha-
size their contours, The Laplacian filtered
image is then thresholded near zero to produce

a binary output,

The total system thus consists of three
stages of logic: Preprocessing, first level fea-
ture detection and final decision, The pre-
processing stage uses linear threshold logic
whereas the feature detection and final decision
stages may use linear or higher order threshold
logic,

In practice, Laplacian filtering is obtained
by giving the element under consideration a large
positive weight, with the surrounding elements
having sufficient negative weights to balance the
positive weight, Thus, no output is obtained for
areas of the picture that have uniform brightness,

The Imagery Screening Problem

The goal of this program is to design a
machine that will screen large amounts of tacti-
cal aerial photography, enabling the photo-
interpreter to spend most of his time making
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sophisticated decisions and judgements that re-
quire all his skill, This machine must present

to the interpreter those photos which have the
highe st probability of having military significance,
While there are many aspects to the imagery
screening problem, the most difficult and impor-
tant is that of automatically detecting tactical
targets,

The types of targets that are to be de-
tected include tanks, trucks, aircraft, missiles,
artillery, etc, Of course, each photo must be
scanned to find these targets in any position or
rotation, The detection of these targets must be
very reliable, because of (a) the seriousness of
missing important targets, and (b) the large
number of possibilities of making false alarms,

Tank Detection Experiments

The experimental program had as its
goal the detection of M-48 tanks, Toward this
end, 100 samples of M-48 tank images were
taken from actual tactical photography, The 100
samples represent 18 distinct tanks, each tank
having been photographed from several different
angles and, in some cases, against different
backgrounds due to the tank's motion, In addition,
100 samples of other terrain selected at random
were obtained for use as the class from which the
tanks are to be separated, Figure 2 shows the
imagery that was used, Note that all the tanks
are aligned, Theability to detect the tanks in any
position and any rotation is discussed in the im-
plementation section,

The Computer Simulation

The imagery in Figure 2 was processed
in IMITAC (Image Input to Automatic Computer),
a specially constructed scanner which converts
ima ges to computer language, and can also con-
vert computer output to images, The Philco
IMITAC can scan a 3-by-3 inch image with a 1024
line raster, each line being sampled at 1024 points,
An analog-to-digital converter encodes the photo-
graphic density to 64 levels, This 6-bit code is
then transferred to the UBC (Universal Buffer
Controller) of the Philco 2000 computer system,
and then to magnetic computer tape,

A set of compatible programs was
written for the Philco 2000 computer to process
the data from IMITAC, These programs simu-
late the operations that would occur in an actual
screening machine, Some are simply book-
keeping routines, such as the one which separ-
ates the data into feature blocks; the MULTINORM
program, on the other hand, is based on the sta-

tistical classification procedures described earlier,

As generated by the IMITAC equipment,
each of the 200 samples, 100 tanks and 100 non-
tanks, was in the form of a 32 x 32-element
retina, These samples were converted to a
one-bit-per-element Laplacian representation,
Figure 3 shows a typical Laplacian representa~
tion of a tank sample, It is in this form that
the statistical procedure must detect tanks, The
32 x 32 retina is then divided into 24 over-
lapping "'feature blocks', each 8 x 8 elements,
The position or shape of the feature blocks does
not reflect in any way particular features of
the tank image, They are simply chosen to
cover the entire tank image, occupying a total
area of 20 x 38 elements, with 50% overlap be-
tween feature blocks, Each feature block is
then treated separately until final decisions are
arrived at, Each pattern in a feature block is
assumed to be a sample from a 64-bit dimen-
sional normal random variable, despite the
binary nature of the data,

In order to design a discriminant function
for a feature block, themean vector and co-
variance matrix of the population must be esti-
mated, To this end, the 100 samples of tanks
are divided into two equal groups., One group
of 50 samples is used to estimate the population
parameters and thereby arrive at a design for
the discriminant function, The remaining group
of 50 samples is an independent test sample,
used to evaluate the performance of the pro-
cedure, The same procedure holds for the non-
tank samples, In dividing the tank samples,
care is taken to insure that none of the 18 dis-
tinct tanks fall into both design and test groups,

The design samples are used to estimate
the mrean vectors and covariance matrices and
then the discriminant functions, Both linear
and quadratic functions were computed, as pre-
viously discussed, The linear discriminant
function consists of 64 coefficients or weights,
while the quadratic discriminant function has 64
linear weights and 2, 016 quadratic weights, In
addition, both the discriminant functions were
"'"truncated" by selecting a number of the co-
efficients which arelargest in magnitule and pre-
sumably most significant, Thirty-two linear co-
efficients and 100 quadratic coefficients were se-
lected in each case, This was to test the effect
of economizing on the number of weighting ele-
ments used,

Each discriminant function was then
applied to all of the samples, tank and non-tank,
design and test, the result in each case being a
number called a '"score! The threshold for the
feature block is then selected to be halfway be-
tween the means of the design scores for tanks
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and non-tanks, Each score is compared with the
threshold to make a feature decision, This de-
cision says, in effect, '""based m this small area
of the picture, it appears (or does not appear )
that a tank is present

This procedure is carried through for
all 24 feature blocks, In this experiment, the
second layer design condisted simply of assigning
equal weights to all feature blocks, Thus, the
final score is just the number of feature blocks
which have made a positive decision, or have
Mfiredd' A final decision threshold was not calcu-
lated because its value depends heavily on the
costs associated with the two types of errors,
the se costs being determined by the particular
application,

The Results

The experimental performance of the
statistical classification procedure exceeded all
expectations,

The results for a single feature block are
plotted in Figure 4 in terms of the cumulative
probability distributions of scores for each of the
4 groups of 50 samples, Note that the error rate
for the independent test group is only about 6%,
Note also that the performance on the design sam-
ples far exceeds that on the test samples; no
errors would be made using only one feature
block]! This graphically illustrates the necessity
for using independent test samples in evaluating
the performance of recognition networks, The
smooth curves are normal fits to the observed
data,

The final results are shown in Figure 5,
Each of the numbers in the blocks represents the
number of feature blocks that fired for each sam-
ple. Thus, 24 is perfect for tank samples and 0
is perfect for non-tank samples, These results
are for the simplest discriminant function tested:
the linear truncated, Almost half of the test
samples had perfect scores, The tank sample
with a score of 1l was examined to determine why
it had performed so poorly, It was discovered
that this sample was misregistered by a single
element, and that by correcting the registry the
score increases to 24, The same occurred for
the sample with a score of 17 (the reason why
misregistration is not a cause for concern is ex-
plained in a subsequent section), Therefore, a
final threshold could be set anywhere between 7
and 19 without making an error on the 100 test
samples, This indicates that good results will be
obtained with larger sample sizes,

A number of other experiments were per-

formed with the following general results:

(1) The performance using one-bit
Laplacian processed images was about
equal to that using the original 6 -bit
images, and was considerably better
than another preprocessing technique,

. (2) In terms of separation achieved between
scores on design samples, the linear
discriminant function is only slightly
inferior to the quadratic discriminant
function,

{(3) The amount of truncation which was used
did not greatly affect the performance,
particularly for linear discriminant
functions,

(4) The performance of the procedure using
equal second layer weights was actually
superior to a particular attempt to give
different weights for each feature block
as a function of separability of design
scores,

(5) None of the two-layer statistical classi-
fication procedures tested made any
errors in clagsifying the 100 independent
test samples, This was notthe case with
deterministic design approaches or ran-
dom-mask methods,

(6) The performance of the statistical classi-
fication procedures far exceeded that ob-
tained using procedures based on the
recognition of particular geometric and
other features suggested by intuition,

The Implementation

Thus far, we have discussed only the prob-
problem of detecting targets when they have pre-
viously been aligned within the retina, We shall
now discuss ways of bringing about this alignment,
both in translation and rotation,

First, it is clear that every element of
the picture must be searched for the target,
since it is impossible to separate potential tar-
gets from the background wntil the detection is
actually made, Therefore, an efficient method is
needed to scan the photo and apply the discrim-
inant function coefficients to the appropriate ele-
ments, This is most efficienfly dore in the
following manner: The photo is scanned by a
simple TV type raster, As the elements are
scanned, they are serially entered into a shift
register or tapped delay line, The discriminant
coefficients are realized by resistors attached to
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appropriate shift register elements, which are
then connected together to perform the summa-
tion operation, This is then followed by a thres-
hold circuit which makes the feature subdecision,
Imagine that the tank pattern is ''frozen' in the
fhift register and that the weighting resistors
are attached to corresponding elements of the
shift register to obtain the best detection of the
tank, On reflection, it should be clear that, as
the scanning process proceeds, a tank in any
translational position in the photo will eventually
come into registry with the weighting resistors
and be detected, Thus tanks in all translational
positions are detected with only a single scan of
the photo, Variations in rotation are accommo-
dated by searching at discrete orientations by
(a) rotating the TV raster, or (b) designing dis-
criminant functions for each orientation, or a
combination of both,

Thus the imagery screening system con-
sists of (2) a high-speed flying spot scanner, (b)
a Laplacian preprocessing stage that converts
the video to binary data, (c) a shift register cor-
relator with statistically designed coefficients,
and (d) the final decision logic, The resultis a
machine that can rapidly search large amounts
of photography and reliably detect a variety of
tactical targets in any position,

Concluding Remarks

The work described here and other re-
lated efforts lead to a (preliminary) conclusion
concerning the relative merit of some competing
design approaches, For the identification of
small targets in aerial survelliance photography,
the two-layer statistical classification method

based on local-area statistically designed features

and using Laplacian pre-processing is far supe-
rior to the "random-mask'" methods used (at
least in the past) in Perceptions and other
""trainable'" networks,

Although the design approach has been

tested using independent test samples we feel that

the sizes of the design sample and espcially the
independent non-tank test sample are consider-
ably smaller than we would like them to be,
Work being carried out now will make it possible
to test the approach with large sample sizes,

Because the result of the Laplacian pre-

processing is to change the grey-scale picture to a

a black-and-white picture, the random variables
for the first layer of classification junctions are
binary, Instead of using the multivariate normal
assumption it is possible to consider quadratic
and higher order discriminant functions which
approximate the likelihood ratio of joint distribu-

tions of binary random variables in a different.
manner, This latter method of approximation is
directly related to the binary nature of the var-
iables and in addition avoids the necessity of
considering covariance matrices, In the current
program such approximations are béing investi-
gated,

The sampling error which is obtained
when finite sample sizes are used to estimate
parameters results in an underestimation of the
""true' probability of misclassification, The
difference between the probability of misclassi-
fication estimated from design samples and that
which is actually obtained on independent test
samples is therefore of interest, Estimation of
these differences and their relationship to sam-
ple sizes is currently being investigated ,
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