
BRAINS, INTELLIGENCE, CREATIVITY, AND GENIUS 

INTRODUCTION 

In our increasingly complex and interconnected world one sometimes 
hears wistful expressions to the effect that what we need is some superin- 
telligent leader who can cope with it all on our behalf, since our own 
intelligence seems so inadequate. As Ashby points out in "Design for an 
Intelligence Amplifier,” this is a forlorn hope, since human intelligence 
is severely limited. [na fruitful analogy he points out that mankind's 
big advance in mechanical strength did not come from breeding burlier 
slaves but rather when Watt discovered a way to tap natural sources of 
power. The steam engine is a power-amplifier in the sense that a small 
amount of power (used to manipulate the controls, fuel the fire, etc.) is 
used to control a much larger amount (liberated from the fuel, ultimately). 
For intelligence-amplification, then, we need some way to use human intel- 
ligence, which Ashby argues is basically selection, to control much larger 
sources of selection. 

In the field of artificial intelligence, which was in its infancy when 
the article was written, the basic process outlined by Ashby is used very 
commonly. Always the goal of intelligent action, by human or machine, can 
be viewed abstractly as an appropriate selection from a set: a chess move 
from all moves legally possible; the answer to a test question from the set 
of all available answers; 4 sequence of actions which wil] accomplish an 
objective, taken from the set of possible actions, and so on. To generate 
@ set of moves, answers, or actions is rather easy and no Sign of great 
intelligence; to select the right one(s) from the set is the hard part. 
When we write (or abstractly, select) a computer program to do the selec- 
tion for us we are obtaining selection-amplification. To the extent that 
the essence of intelligence is selection, we are obtaining intel ligence- 
amplification, and there is no problem in devising a machine which exhibits 
more intelligence than its designer. 

In this farsighted and penetrating article Ashby also discusses solu- 
tions to some of the problematic combinatorial aspects of "selection by 
equilibrium." All of these are reflected in modern efforts in artificial 
intelligence. 

“Can a Mechanical Chess-Player Outplay its Designer?" From the argu- 
ments in the first article in the chapter one can conclude that the answer 
is ‘yes,’ and it is also an historical fact that computers do outplay their 
Programmers. (Ashby would have been delighted to hear that as this book 
was being edited, a computer program defeated the world's champion of back- 
gammon, a substantially difficult intellectual feat.) The question ad- 
dressed by the paper, however, is broader: can a machine exhibit more 
"design" than is put into it by its designer? The famous "Argument from 
Design" for the existence of God is based on the allegedly “self-evident 
truth” that it could not, so the question is of philosophical interest. 
Ashby casts the philosophical question in modern cybernetic terms and shows 
that if the designer contrives the machine in such a way that it can use 
information from its own experience, then it can eventually show "more 
design" than that put in by its designer. The true Designer of a machine 
is thus its explicit designer, together with the environment which by send- 
ing it information allows the machine to enhance the original design.



"What is an Intelligent Machine?" In this and other articles Ashby takes to task the notion that the brain is &@ magical device with superna- 
tural skills, arguing that the comparison between "smart" brains and “stu- 
pid" computers is Stacked against the machines when the intelligence 
demanded is matched to the everyday environment for which we have been 
highly preprogrammed (designed, in the language of the prior article) both 
genetically and through decades of learning. For intelligence is basically g0al-seeking activity and appropriate selection, and for this both brains and machines are Subject to the same limits, such as the Law of Requisite 
Variety. A high intelligence is shown by a device which utilizes informa- tion efficiently to achieve a high degree of appropriate selection. Even 
the so-called "genius" cannot escape the laws of information which govern the process. In this excellent article Ashby gives us an exceptionally 
Clear and crisp discussion of the subject of intelligence, as applied to 
brains and Synthetic machines. 

 



DESIGN FOR AN INTELLIGENCE-AMPLIF IER 

SECTION I 

1. Introduction 

For over a century man has been able to use, for his own advantage, physical power that far transcend those produced by his own muscles. Is it impossible that he should develop machines with “synthetic” intellectual powers that will equally surpass those of his own brain? I hope to show that recent developments have made such machines possible — possible in the sense that their building can start today. Let us then consider the question of building a mechanistic system for the solution of problems that are beyond the human intellect. | hope to show that such a construction is by no means impossible, even though the construc. tors are themselves quite averagely human. 
| There is certainly no lack of difficult problems awaiting solution. Mathema. tics provides plenty, and so does almost every branch of science. It is perhaps in the socail and economic world that such problems occur most noticeably, both in regard to their complexity and to the great issues that depend on them. Success in solving these problems is a matter of some urgency. We have built a civilization beyond our understanding and we are finding that it is getting out of hand. Faced with such problems, what are we do do? 

Our first instinctive action is to look for someone with corresponding intel- lectual powers: we think of a Napoleon or an Archimedes. But detailed study of the distribution of man’s intelligence shows that this method can give little. Figure 1, for instance, shows the distribution of the Intelligence Quotient in the 
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FIGURE 1. Distribution of the adult human Intelligence Quotient (after Wechsler, 1). 

normal adult population, as found by Wechsler’, Whas is important for us now



is not the shape on the left but the absolute emptiness on the right. A variety of tests by other workers have always yielded about the same result: a scarcity of people with I.Q.s over 150, and a total absence of 1.Q.s over 200. Let us admit frankly that man’s intellectual powers are as bounded as are those of his muscles. What then are we to do? 
We can see something of how to proceed by comparing our Position today in respect to intellectual problems with the Position of the Romans in respect to physical problems. The Romans were doubtless often confronted by engineer- ing and mechanical problems that demanded extreme physical strength. Doubt. less the exceptionally strong slave was most useful, and doubtless the Romans sometimes considered the possibility of breeding slaves of even greater strength, Nevertheless, such plans were misdirected: only when men turned from their own powers to the powers latent in nature was the revolution inaugurated by Watt possible. Today, a workman comes to his task with a thousand horse- power available, though his own muscles will provide only about one-tenth, He gets this extra power by using a “power-amplifier”. Had the Present day brain-worker an “intelligence-amplifier” of the same ratio, he would be able to bring to his problems an I.Q of a million. 

If intellectual power is to be so developed, we must, somehow, construct amplifiers for intelligence — devices that, supplied with a little intelligence, will emit a lot. To see how this is to be done, let us look more closely at what is implied. 

2. The Criterion of Intelligence 
Let us first be clear about what we want. There is no intention here to inquire into the “real” nature of intelligence (whatever that may mean). The Position is simple: we have problems and we want answers. We proceed then to ask, where are the answers to be found? 

It has often been remarked that any random sequence, if long enough, will contain a// the answers. Nothing prevents a child from doodling 

cos"x + sin2y = 4. 
or a dancing mote in the sunlight from emitting the same message in Morse or a similar code. Let us be more definite. If each of the above 13 symbols might have been any one of 50 letters and elementary signs, then as 5013 is approxi- mately 279 the equation can be given in coded form by 73 binary symbols. Now consider a cubic centimeter of air as a turmoil of colliding molecules. A Particular molecule’s turnings after collision, sometimes to the left and some- times to the right, will provide a series of binary symbols, each 73 of which, on some given code, either will or will not represent the equation. A simple



  

calculation from the known facts shows that the molecules in every cubic centi- meter of air are emitting this sequence correctly over a hundred thousand times a second. The objection that “such things don’t happen” cannot stand. Doodling, then, or any other random activity, is capable of Producing all that is required. What spoils the child’s claim to be a mathematician is that he will doodle, with equal readiness, such forms as 
2 2 e 

° « 
cos x + sin”x = 2 or cl)xsi = nx] 

or any other variation. After the child has had some mathematical experience he will stop producing these other variations. He becomes not more but less productive: he becomes selective. 

the second test, three model objects ~ motorcar, dog, show — are placed in a row and seen by the child; then all are hidden from him and a cover is placed over the dog; he is then shown motor-car, cover, shoe, and asked what is under the cover. Again his response is correct if, out of all possible words, he can select the appropriate one. Similarly the other tests, for all ages, evoke a re- sponse that is judged “correct” or “incorrect” simply by the subject’s power of appropriate selection. 
The same fact, that getting a solution implies selection, is shown with special clarity in the biological world. There the problems are all ultimately of how to achieve survival, and survival implies that the essential variables — the supply of food, water, etc. — are to be kept within physiological limits. The solutions to these problems are thus all selections from the totality of Possibilities. 

| 
The same is true of the most important social and economic problems. What is wanted is often simple enough in aim — a way of ensuring food for all with an increasing population, or a way of keeping international frictions small in spite of provocations. In most of these problems the aim is the keep- ing of certain variables within assigned limits; and the problem is to find, amid the possibilities, some set of dynamic linkages that will keep the system both stable, and stable within those limits. Thus, finding the answer is again equiva- lent to achieving an appropriate selection. 
The fact is that in admiring the productivity of genius our admiration has been misplaced. Nothing is easier than the generation of new ideas: with some suitable interpretation, a kaleidoscope, the entrails of a sheep, or a noisy



vacuum tube will generate them in profusion. What is remarkable in the genius 
is the discrimination with which the possibilities are winnowed. 

A possible method, then, is to use some random source for the generation 
of all the possibilities and to pass its output through some device that will select 
the answer. But before we proceed to make the device we must dispose of the 
critic who puts forward this well known argument: as the device will be made 
by some designer, it can select only what he has made it to select, so it can do 
no more than he can. Since this argument is clearly plausible, we must examine 
it with some care. 

To see it in perspective, let us remember that the engineers of the middle 
ages, familiar with the principles of the lever and cog and pulley, must often 
have said that as no machine, worked by a man, could pull out more work than 
he put in, therefore no machine could ever amplify a man’s power. Yet today 
we see one man keeping all the wheels in a factory turning by shovelling coal 
into a furnace. It is instructive to notice just how it is that today’s stoker de- 
feats the medieval engineer’s dictum, while being still subject to the law of the 
conservation of energy. A little thought shows that the process occurs in two 
stages. In Stage One the stoker lifts the coal into the furnace: and over this 
Stage energy is conserved strictly. The arrival of the coal in the furnace is 
then the beginning of Stage Two, in which again energy is conserved, as the 
burning of the coal leads to the generation of steam and ultimately to the 
turning of the factory’s wheels. By making the whole process, from stoker’s 
muscles to factory wheel, take place in two stages, involving two lots of energy 
whose sizes can vary with some independence, the modern engineer can obtain 
an overall amplification. Can we copy this method in principle so as to get an 
amplification in selection? 

3. The Selection-amplifier 

The essence of the stoker’s method is that he uses his (small) power to 
bring into action that which will provide the main power. The designer, there- 
fore, should use his (small) selectivity to bring into action that which is going 
to do the main selecting. Examples of this happening are common-place once 
one knows what to look for. Thus a garden sieve selects stones from soil; so 
if a gardener has sieves of different mesh, his act of selecting a sieve means that 
he is selecting, not the stones from the soil, but that which will do the selecting. 
The end result is that the stones are selected from the soil, and this has occurred 
as a consequence of his primary act; but he has achieved the selection mediately, 
in two stages. Again, when the directors of a large firm appoint a Manager of 
Personnel, who will attend to the selection of the staff generally, they are
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selecting that which will do the main selecting. When the whole process of selec- 
tion is thus broken into two stages the details need only a little care for there 
to occur an amplification in the degree of selection exerted. 

In this connection it must be appreciated that the degree of selection 
exerted is not defined by what is selected: it depends also on what the object 

is selected from. Thus, suppose I want to telephone for a plumber, and hesitate 

for a moment between calling Brown or Green, who are the only two I know. 
If I decide to ring up Green’s number I have made a one-bit selection. My 
secretary, who will get the number for me, is waiting with directory in hand; 
she also will select Green’s number, but she will select it from 50,000 other 

numbers, a 15.6-bit selection. (Since a 1-bit selection has directly determined a 
15.6-bit selection, some aplification has occurred.) Thus two different selectors 
can select the same thing and yet exert quite different degrees of selection. 

The same distinction will occur in the machine we are going to build. Thus 
suppose we are tackling a difficult social and economic problem; we first select 
what we want, which might be: 

An organization that will be stable at the conditions: 

Unemployed < 100,000 persons 

Crimes of violence < 10 per week 

Minimal income per family > £500 per annum 

This is our selection, and its degree depends of what other conditions we might 

have named but did not. The solving-machine now has to make its selection, 

finding this organization among the multitudinous other possibilities in the 

society. We and the solving-machine are selecting the same entity, but we are 

selecting it from quite different sets, or contexts, and the degrees of selection 

exerted can vary with some independence. (The similarity of this relation with 

those occurring in information theory is unmistakable; for in the latter the 

information-content of a message depends not only on what is in the message 

but on what population of message it came from***.) 

The building of a true selection-amplifier — one that selects over a greater 

range than that covered when it was designed — is thus possible. We can now 

proceed to build the system whose selectivity, and therefore whose intelligence, 

exceeds that of its designer. 

(From now on we shall have to distinguish carefully between two problems: 

our problem, which is to design and build the solving-machine, and the solving- 

machine’s problem — the one we want it to solve.) 

4. Basic Design 

Let us suppose for definiteness that the social and economic problem of the



previous article is to be the solver’s problem. How can we design a solver for 
it? The construction would in practice be a formidable task, but here we are 
concerned only with the principles. First, how is the selection to be achieved 
automatically? 

SELECTION BY EQUILIBRIUM. We can take advantage of the fact that if any 
two determinate dynamic systems (X and S in Figure 2) are coupled through 

channels G and U so that each affects the other, 

then any resting state of the whole (that is, any 
state at which it can stay permanently), must be a 
resting state in each of the two parts individually, 
each being in the conditions provided by the other. 
To put it more picturesquely, each part has a power 

FIGURE 2 of veto over resting states proposed by the other. 
(The formulation can be made perfectly precise in 
the terms used in Article 6.) 

It is only a change of words to say that each 

  

    
  

part acts selectively towards the resting states of the other. So if S has been 
specially built to have resting states only on the occurrence of some condition § 
in S, then S’s power of veto ensures that a resting state of the whole will always 
imply § in S. Suppose next that the linkage G is such that G will allow E to occur 
in S if and only if the condition 7 occurs in X. S's power of veto now ensures 
that any resting state of the whole must have condition 7 in X. So the selection 
of S and G to have these properties ensures that the only states in X that can 
be permanent are those that have the condition 7. 

It must be noticed that the selection of 7, in the sense of its retention in X, 
has been done in two stages. The first occurred when the designer specified S and 
G and & The second occurred when S, acting without further reference to the 
designer, rejected state after state of X, accepting finally one that gave the con- 
dition 7 in X. The designer has, in a sense, selected 7, as an ultimate consequence 
of his actions, but his actions have worked through two stages, so the selectivity 
achieved in the second stage may be larger, perhaps much larger, than that used in 
the first. 

The application of this method to the solving of the economic problem is, 
in principle, simple. We identify the real economic world with X and the condi- 
tions that we want to achieve in it with 9 The selection of 77 in X is beyond 
our power, so we build, and couple to it, a system S, so built that it has a rest- 
ing state if and only if its information through G is that 7 has occurred in a 
resting state in X. As time progresses, the limit of the whole system, X and S, 
is the permanent retention of 7 in X. The designer has to design and build S$
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and G, and to couple it to X; after that the process occurs, so far as he is con- 
cerned, automatically. 

5. The Homeostat 

To see the process actually at work, we can turn briefly to the Hemeostat. 

Though it has been described fully elsewhere’, a description of how its action 

appears in the terms used here may be helpful in illustration. (Figure 3 is in- 

tended to show its principle, not its actual appearance.) 

It consists of four boxes (F) 

of components, freely supplied with 

energy, that act on one another in N <p 6 cp a 

|| 
a complex pattern of feedbacks, pro- | [ G 

system, showing properties not un- A I éf. 

  

  

    
  

  viding initially a somewhat chaotic 

    
like those sometimes seen in our S lev         

  own society. In this machine, S has T | 

been built, and G arranged, so that U 

= | 

  

    A S has a resting state when and only F,       when four needles N are stable at 
  

the central positions. These are the 

conditions 7. N and the F’s corres- FIGURE 3 

pond to X in Figure 2. S affects 

the F’s through the channel U, whose activity causes changes in the conditions 

within the boxes. 

Suppose now that the conditions within the boxes, or in the connections 

between them, are set in some random way, say as a by-stander pleases; then if 

the conditions so set do not satisfy 7, S goes into activity and enforces changes 

until 7 is restored. Since 7 may refer to certain properties of the stability within 

F, the system has been called “ultrastable”, for it can regulate the conditions of 

its own stability within F. What is important in principle is that the combinations 

in F that restore 7) were not foreseen by the designer and programmer in detail; 
he provided only a random collection of about 300,000 combinations (from a 

table of random numbers), leaving it to S to make the detailed selection. 

One possible objection on a matter of principle is that all the variation going 

to the trials in X seems, in Figure 2, to be coming from S and therefore from the 

designer, who has provided S. The objection can easily be met, however, and 

the alteration introduces an important technical improvement. To make the ob- 

jection invalid, all the designer has to do is to couple S, «s shown in Figure 3, 

to some convenient source of random variation V — a noisy vacuum tube say — 

so that the SV combination



(i) sends disturbance of inexhaustible variety along U if € is not 
occurring in S, and 

(ii) keeps U constant, i.e., blocks the way from V to U, if £ is 
occurring. 

In the Hemeostat, V is represented by the table of random numbers which de- 
termined what entered F along U. In this way the whole system, X and S, 
has available the inexhaustible random variation that was suggested in Article 2 
as a suitable source for the solutions. 

6. Abstract Formulation 

It is now instructive to view the whole process from another point of view, 
sO as to bring out more clearly the deep analogy that exists between the amplifi- 
cation of power and that of intelligence. 

Consider the engineer who has, Say, some ore at the foot of a mine-shaft 
and who wants it brought to the surface. The power required is more than he 
can supply personally. What he does is to take some system that is going to 
change, by the laws of nature, from low entropy to high, and he couples this 
system to his ore, perhaps through pistons and ropes, so that “low entropy” is 
couple to “ore down” and “high entropy” to “ore up”. He then lets the whole 
system go, confident that as the entropy goes from low to high so will it change 
the ore’s position from down to up. 

Abstractly (Figure 4) he has a process that is going, by the laws of nature, 
to pass from state H, to state H,. He wants C, to change 

"2 toC,. So he couples H, to C, and H, to C,. Then the 
system, in changing from H, to H,, will change from C, to 

: C,, which is what he wants. The arrangmement is clearly both 
4 C, necessary and sufficient. 

The method of getting the problem-solver to solve the set FIGURE 4& | .; problem can now be seen to be of essentially the same form. 
The job to be done is the bring of X, in Figure 2, to a certain 

condition or “sollution” 7. What the intelligence engineer does first to build a 
system, X and S, that has the tendency, by the laws of Nature, to go to a state 
of equilibrium. He arranges the coupling between them so that “not at equili- 
brium” is coupled to not-n, and “at equilibrium” to 7. He then lets the system 
go, confident that as the passage of time takes the whole to an equilibrium, so 
will the conditions in X have to change from not 7 to 7. He does not make the 
conditions in X change by his own efforts, but allows the basic drive of nature to 
do the work. 

This is the fundamental principle of our intelligence-amplifier. Its driving
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power is the tendency for entropy to increase, where “entropy” is used, not 
as understood in heat engines but as understood in stochastic processes. 

AXIOMATIC STATEMENT. Since we are considering systems of extreme 
generality, the best representation of them is given in terms of the theory of sets. 
I use the concepts and terminology of Bourbaki®. 

From this point of view a machine, or any system that behaves in a de- 
terminate way, can be at any one of a set of states at a given moment. Let M 
be the set of states and #Z some one of them. Time is assumed to be discrete, 
changing by unit intervals. The internal nature of the machine, whose details are 
irrelevant in this context, causes a transformation to occur in each interval of 
time, the state HW passing over determinately to some state ft’ (not necessarily 
different from 2), thereby defining a mapping t of M in M: 

th ke m= t(j), 

If the machine has an input, there will be a set I of input states t, to each 
of which will correspond a mapping t,, The states ¢ may, of course, be those of 
some other machine, or may be determined by it; in this way machine may be 
coupled to machine. Thus if machine N with states ¥ has a set K of inputs x 
and transformations u,, then machines M and N can be coupled by defining a 
mapping { of M in K, K = $(i4), and a mapping of m of N in I, t= m(v), giving 
a system whose states are the couples (u, ¥) and whose changes with time are 
defined by the mapping, of Mx N inM x N: 

(u,v) > (Fm(v)'H)> Bey) (¥)), 
The abstract specification of the principle of ultrastability is as follows, 

Figure 5 corresponding to Figure 2: 
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GIVEN: 

(1) A set I’ consisting of two elements Y, and ¥,; 
(2) A set = of elements £; 

(3) A mapping g of Zin T;



(4) A set 2 of elements o; 
(5) <A family of mappings Xy of = in =; 
(6) A random variable v, with inexhaustible variety; 
(7) A double family of mappings Sap of J in Z, with the property 

that, for all o € Z and all values of vp, 

sy (0) FO and $y, (9) FO; 

(8) Time, advancing by discrete intervals, induces the operations Xx 0 
and S wy and the successive values of p simultaneously, once in each 
interval. 

THEOREM: If the series of states of =, induced by time, has a limit €* € g*(7,). 

PROOF. The state of the whole system, apart from P, is given by the couple 
(&, 0), an element in =x LD. The passage of one interval of time induces the 
mapping (&, 0) > ( X g(é), Sa(E), (9) ) . If the series is at a limit-state 
(€*, o*), then So(E*), y(O*) = O* for all values of v. Therefore g( é*) = Y>» _aand € € g1(y,), 

SECTION II 

With this theorem our problem is solved, at least in principle. Systems so 
built can find solutions, and are not bounded by the powers of their designers. 
Nevertheless, there is still a long way to go before a man-made intelligence- 
amplifier will be actually in operation. Space prohibits any discussion of the 
many subsidiary problems that arise, but there is one objection that will prob- 
ably be raised, suggesting that the method can never be of use, that can be 
dealt with here. It is of the greatest importance in the subject, so the remninder 
of the paper will be devoted to its consideration. 

7. Duration of Trials 

What we have discussed so far has related essentially to a process that, it is 
claimed, has “solution” as its limit. The question we are now coming to is, 
how fast is the convergence? how much time will elapse before the limit is 
reached? 

A first estimate is readily made. Many of -the problems require that the 
answer is an n-tuple, the solver being required to specify the value of each of 
n components. Thus the answer to an economic problem might require ans- 
weres to each of the questions: 

(1) What is the optimal production-ratio of coal to oil? 
(2) What amount should be invested annually in heavy industry?
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(3) What should be the differential between the wages of skilled and 
unskilled workers? 

except that in a real system n would be far larger than three. 

A first estimate of the number of states to be searched can be made by 
finding the number of states in each component, assuming independence, and then 

finding the product so as to give the number of combinations. The time, with 

a state by state search, will then be proportional to this product. Thus, suppose 

that there are on a chessboard ten White and ten Black men; each can move to 

one of six squares; how many possibilities will have to be searched if I am to 

find the best next two moves, taking White’s two moves and Black’s two into 

account? With each man having about six moves (when captures are allowed for), 

the possible moves at each step are approximately 619; and the total possibilities 

are about 6". To find the best of them, even if some machine ran through them 

at a million a second, would take nearly a billion billion years — a prohibitively 

long time. The reason is that the time taken increases, in this estimate, expon- 

tially with the number of components; and the exponential rate of increase is 

extremely fast. The calculation is not encouraging, but it is very crude; may 

it be seriously in error? 

It is certainly in error to some extent, for it is not strictly an estimate but 

an upper bound. It will therefore always err by over-estimation. This however 

is not the chief reason for thinking that our method may yet prove practical. 

The reason for thinking this will be given in the next three articles. 

8. The Method of Models 

The first factor that can be used to reduce the time of search is of interest 

because it is almost synonymous with the method of science itself. It is, to 

conduct the search, not in the real physical thing itself but in a model of it, the 

model being chosen so that the search can proceed in it very much more rapidly. 

Thus Leverrier and Adams, searcing for a planet to explain the aberrations of 

Uranus, used pencil, paper and mathematics rather than the more obvious tele- 

scope; in that way they found Neptune in a few months where a telescopic 

search might have taken a lifetime. 

The essence of the method is worth noticing explicitly. There is a set R, 

containing the solutions r, a subset of R; the task is to find a number of r. 

The method of models can be used if we can find some other set R' whose 

elements can be put into correspondence with those R in such a way that the 

elements'(a set r') in R’ that correspond to those in r can be recognized. The 

search is then conducted in R’ for one of rc’; when successful, the correspondence, 

used inversely, identifies a solution in R. For the method to be worth using, the



272 

search in R’ must be so much faster than that in R that the time taken in the 

three operations 

(i) change from R to R’, 

(ii) search in R’, 
(iii) change back from r’ to r 

is less than that taken in the single operation of searching in R. 

Such models are common and are used widely. Pilot plants are used for 

trials rather than a complete workshop. Trials are conducted in the drawing. 

office rather than at the bench. The analogue computer is, of course, a model 
in this sense, and so, in a more subtle way, is the digital computer. Mathematics 

itself provides a vast range of models which can be handled on paper, or made 

to “behave”, far faster than the systems to which they refer. 

The use of models with the word extended to mean any structure iso- 

morphic with that of the primary system, can thus often reduce the time taken 

to a fraction of what might at first seem necessary. 

9. Constraints 

A second reason why the time tends to fall below that of the exponential 

upper bound is that often the components are not independent, and the effect 

of this is always to reduce the range of possibilities. It will, therefore, other 

things being equal, reduce the time of search. 

CONSTRAINT BY RELATION. Suppose we are looking for a solution in the n- 

tuple (a,,---.,a,), where a, is an element in a set A,, etc. The solution is 

then one of a subset of the product set A, xA,x...xA_. A relation be- 

tween the a’s, $(a,,..., a,), always defines a subset of the product space [6], 

so if the relation holds over the a’s, the solution will be found in the subset of 

the product-space defined by. An obvious example occurs when there exist 

invariants over the a’s. k invariants can be used to eliminate k of the a’s, which - 

shows that the original range of variation was over n — k, not over n, dimen- 

sions. More generally, every law, whether parliamentary, or natural, or algebraic’ 

is a constraint, and acts to narrow the range of variation and, with it, the time of 

search. 

Similarly, every “entity” that can be recognized in the range of variation 

holds its individuality only if its parts do not vary over the full range conceivable. 

Thus, a ‘“‘chair” is recognizable as a thing partly because its four legs do not 

move in space with all the degrees of freedom possible to four independent 

objects. The fact that their actual degrees of freedom are 6 instead of 24 is a 

measure of their cohesion. Conversely, their cohesion implies that any reckoning 

of possibilities must count 6 dimensions in the product or phase space, not 24.
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It will be seen therefore that every relation that holds between the com. 

ponents of an n-tuple lessens the region of search. 

CONSTRAINT BY CONTINUITY. Another common constraint on the possibili- 

ties occurs where there are functional relations within the system such that the 

function is continuous. Continuity is a restriction, for if y = f(z) and f is con- 

tinuous and a series of arguments z, z’' and z’,... has the limit z*, then the 

corresponding series y, y., y... . must have the limit f(z*). Thus f is not free 

to relate y and z, y' and zy andz’,... arbitrarily, as it could do if it 

were unrestricted. This fact can also be expressed by saying that as adjacent 

values of z make the values of £(z) adjacent, these values of f(z) tend to be 

highly correlated, so that the values of f(z) can be adequately explored by a mere 

sampling of the possibilities in z: the values of y do not have to be tested 

individually. 

A rigorous discussion of the subject would lead into the technicalities of 

topology; here it is sufficient to notice that the continuity of £ puts restric- 

tions on the range of possibilities that will have to be searched for a solution. 

Continuity helps particularly to make the search easy when the problem 

is to find what values of a, b, c, . . . will make some function A(a,b,c, ...) a 

maximum. Wherever A is discontinuous and arbitrary there is no way of find- 

ing the maximum, or optimum, except by trying every combination of the 

arguments individually; but where A is continuous a maximum can often be 

proceded to directly. The thesis is well illustrated in the art of aircraft design, 

which involves knowing the conditions that will make the strength, lightness, etc., 

an optimum. In those aspects of design in which the behavior of the aircraft 

is a continuous function of the variables of design, the finding of an optimum 

is comparatively direct and rapid; where however the relations are discontinuous, 

as happens at the critical values of the Reynolds’ and Mach numbers, then the 

finding of an optimum is more laborious. 

Chess, in fact, is a difficult game largely because of the degree to which it 

is discontinuous, in the sense that the “value” of a position, to White say, is 

by no means a continuous function of the positions of the component pieces. 

If a rook, for instance, is moved square by square up a column, the successive 

values of the positions vary, sometimes more or less continuously, but often 

with marked discontinuity. The high degree of discontinuity occurring through- 

out a game of chess makes it very unlike the more “natural” systems, in which 

continuity is common. With this goes the corollary that the test so often pro-— 

posed for a mechanical brain — that it should play chess — may be misleading, 

in that it is by no means representative of the class of problem that a real 

mechanical brain will one day have to deal with. 

The commonness of continuity in the world around us has undoubtedly



played an important part in Darwinian evolution in that progress in evolution 

would have been far slower had not continuity been common. In this paper I 

have tended to stress the analogy of the solving process with that of the ampli- 

fication of physical power I could equally have stressed its deep analogy with 

the processes of evolution, for there is the closest formal similarity between 

the process by which adaptation is produced automatically by Darwinian selec- 

tion and the process by which a solution is produced automatically by mechani- 

cal selection of the type considered in Article 4. Be that as it may, every stock- 

breeder knows that selection for good strains can procede much more rapidly 

when the relation between genotype and phenotype is continuous’, The time 

taken for a given degree of improvement to be achieved is, of course, corres- 

pondingly reduced. 

To sum up: Continuity being common in the natural world, the time taken 

in the solution of problems coming from it may be substantially below that 

given by the exponential bound. 

CONSTRAINT BY PRIOR KNOWLEDGE. It is also only realistic to consider, 

in this connection, the effect on solving of knowledge accumulated in the past. 

Few problems are wholly new, and it is merely common sense that we, and the 

problem-solver, should make use of whatever knowledge has already been won. 

The effect of such knowledge is again to put a constraint on the possi- 

bilities, lessening the regions that have to be searched, for past experience will 

act essentially by warning us that a solution is unlikely to lie in certain regions. 

The constraint is most marked when the problem is one of a class, of which 

several have already been solved. Having such knowledge about other members 

of the same class is equivalent to starting the solving process at some point that 

is already partly advanced towards the goal. Such knowledge can naturally be 

used to shorten:the search. | | 

“Solving a problem” can in fact be giyen a perfectly general representation. 

The phase- or sample-space of possibilities contains many points, most of them 

corresponding to “‘no solution” but a few of them corresponding to an accept- 

able “‘solution’”’. Finding a solution then becomes a matter of starting some- 

where in this unknown distribution of states and trying to find one of the 
acceptable states. 

If the acceptable states are distributed wholly at random, i.e., with no 

recognizable pattern, then we are considering the case of the problem about which 

nothing, absolutely nothing, is known. After 200 years of scientific activity, 

such problems today are rare; usually some knowledge is available from past 

experience, and this knowledge can be used to constrain the region of search, 

making it smaller and the search more rapid. Thus suppose, as a simple example,
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that there are 114 states to be examined and that 40 of them are acceptable, 
i.e., correspond to solutions. If they are really scattered at random, as are the 
black squares in I of Figure 6, then the searcher has no better resource than to 
start somewhere and to wander at random. 

With this method, in this particular example 

he will usually require about 3.6 trials to 

find a black square. If, however, past ex- 

perience has shown that the black squares 
are distributed as in II, advantage can be 

taken to shorten this search; for wherever ] FIGURE 6 II 

the search may start, the occurrence of 

two white squares in succession shows the searcher that he is in an all-white 
quadrant. A move of four squares will take him to a checkered quadrant where 
he will find a dark square either at once or on the next move. In this case his 
average number of trials need not exceed about 2.4 (if we ignore the complica- 
tions at the boundaries). 

Information theory and the strategy of games are both clearly involved 
here, and an advanced knowledge of such theories will undoubtedly be part 

of the technical equipment of those who will have to handle the problem- 
solvers of the future. Meanwhile we can sum up this Article by saying that it 
has shown several factors that tend to make the time of search less than that 
given by the exponential bound. 

10. Selection by Components 

We now come to what is perhaps the most potent factor of all for reduc- 
ing the time taken. Let us assume, as before, that the solver is searching for an 
element in a set and that the elements are n-tuples. The solver searches, then, 
for the n values of the n components. 

In the most “awkward” problems there is no means of selection available 

other than the testing of every element. Thus, if each of the n components 
can take any one of k values, the number of states to be searched is k", and 
the time taken will be proportional, as we saw in Article 7, to the exponential 

bound. This case, however, is the worst possible. 

Next let us consider the other extreme. In this case the selection can be 

conducted component by component, each component being identified inde- 
pendently of the others. When this occurs, a very great reduction occurs in the 
time taken, for now the number of states to be searched is kn. 

This second number may be very much smaller than the first. To get some 

idea of the degree of change implied, let us take a simple example. Suppose 

there are a thousand components, each of which has a hundred possibilities. If



the search has to be over every combination separately, the number of states 
to be searched is the exponential bound, 100!°. If the states could be exam- 
ined at one a second it would take about 101999 years, a duration almost be- 
yond thinking. If we tried to get through the same selection by the method of 
models, using some device that could test, say, a million in each microsecond, 

the time would drop to 10'78! years, which is practically no change at all. If 
however the components could be selected individually and independently, then 
the number of selections would drop to 100,000; and at one per second the 
problem could be solved in a little over a day. 

This illustration will suffice to illustrate the general rule that selection by 
components is so much faster than selection by elements that a search that is 
utterly impractical by the one may be quite easy by the other. 

The next questions is to what extent problems are susceptible of this 
faster method. About a// problems one can say nothing, for the class is not 
defined, but about the problems of social and economic type, to which this paper 
is specially directed, it is possible to form some estimate of what is to be ex- 
pected. The social and economic system is highly dynamic, active by its own 
energies, and controllable only through a number of parameters. The solver 
thus looks for suitable values in the n-tuple of parameters. (Its number of com- 
ponents will not usually be the same as those of the variables mentioned in the 
next paragraph.) 

Now a dynamic system may be “reducible”; this happens when the system 
that seems to be single really consists of two or more adjacent, but functionally 
independent, parts. If the parts, P and Q say, are quite independent, the whole 

is “completely” reducible; if part P affects part Q, but Q has no effect on P, 

then the whole is simple “reducible”. In the equations of such a system, which 

can be given in the canonical form? 

dx, 
re = E(x wee x) 

dx,, 
— = E(x -++9X)) 

reducibility is shown by the Jacobian of the n functions f, with respect to the n 

variables x. having, when partitioned into the variables that belong to P and 
those that belong to Q, one or more all-zero quadrants, being like I when reduc- 

ible and like If when completely reducible:



Such reducibility corresponds, in a real dynamic system, with the possibility of 
searching to some extent by components, the components being the projections® 
of the abstract space on those variables, or “coordinates”, that occur together in 
one part (P, or Q) of the reducible system. The more a system is reducible, the 
more does it offer the possibility of the search being made by the quick method 
of finding the components separately. 

Though the question has not yet been adequately explored, there is reason 
to believe that part-functions, i.e., variables whose f (above) are zero for 
many values of their arguments, are common in social and economic systems. 
They are ubiquitous in the physical world, as I have described elsewhere”. 
Whenever they occur, they introduce zeros into the Jacobian of the system (for if 
x is constant, over some interval of time, f, must be zero and therefore so 
will be 5f,/ bx;); they therefore tend to introduce temporary reducibilities. 
This means that the problem may be broken up into a series of conditional and 
transient sub-problems, each of which has a solution that can be found more or 
less easily. The whole search thus has something of the method of search by 
components. 

In this connection it is instructive to consider an observation of Shannon’s? 
on the practicability of using relays as devices for switching, for it involves a 
property closely related to that of reducibility. One of the problems he solved 
was to find how many elements each relay would have to operate if the network 
was to be capable of realizing all possible functions on n variables. The calcula- 
tion gave a number that was, apparently, ridiculously high for, did one not know, 
it would suggest that relays were unsuitable for practical use in switching. The 
apparent discrepancy proved to be due to the fact that the functions commonly 
required in switching are not as complicated as the class that can be considered 
in theory. The more they /ook complicated the more they tend to have hidden 
simplicities. These simplicities are of the form in which the function is “‘separ- 
able”, , that is to say, the variables go in sets, much as the variables in a reduc- 
ible system go in sets. Separability thus makes what seems to be an impractical 
number of elements become practical. It is not unlikely that reducibility will act 
similarly towards the time of search. 

11. The Lower Bound 

It can now be seen that problem-solving, as a process of selection, is re- 
lated to the process of message-receiving as treated in information theory” 10 
The connection can be seen most readily by imagining that the selection of one 
object from N is to be made by an agent A who acts according to instructions 
received from B. As the successive elements appear, B will issue signals: “‘... ,



reject, reject, ..., accept” thereby giving information in calculable quantity 
to A. Usually the number of binary signals so given is likely to be greater than 
the number necessary, for the probabilities of the two signals, “reject” and 
“accept”, are by no means equal. The most efficient method of selection 
is that which makes the two signals equally likely. This will happen in the whole 
set of N can be dichotomized at each set of selection. In this way we can find a 
lower bound to the time taken by the process, which will be proportional to 
log N. This time is none other than the least time in which, using binary nota- 
tion, the solution can be written down, that is, identified from its alternatives. 

We see therefore that, though the upper (exponential) bould is forbiddingly 
high, the lower bound is reassuringly low. What time will actually be taken in 
some particular problem can only be estimated after a direct study of the particu- 
lar problem and of the resources available. I hope, however, that I have said 
enough to show that the mere mention of the exponential bound is not enough 
to discredit the method proposed here. The possibility that the method will 
work is still open. 

Summary 

The question is considered whether it is possible for human constructors 

to build a machine that can solve problem: of more than human difficulty. If 
physical power can be amplified, why not intellectual? 

Considerations show that: 

Getting an answer to a problem is essentially a matter of selection. 

Selection can be amplified. 

A system with a selection-amplifier can be more selective than the 
man who built ie. 

Such a system is, in principle, capable of solving problems, perhaps in 

the social and economic world, beyond the intellectual powers of its 
designer. 

A first estimate of the time it will take to solve a difficult problem 

suggests that the time will be excessively long: closer examination 

shows that the estimate is biased, being an upper bound. 

The lower bound, achievable in some cases, is the time necessary for 

the answer to be written down in binary notation. 

It is not impossible that the method may be successful in those social 

and economic problems to which the paper is specially addressed.
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