---
title: Calculating in R The Expected Maximum of a Gaussian Sample using Order Statistics
description: In generating a sample of _n_ datapoints drawn from a normal/Gaussian distribution, how big on average the biggest datapoint is will depend on how large n_ is. I implement in the R programming language & compare some of the approaches to estimate how big on average.
tags: statistics, computer science, R
created: 22 Jan 2016
status: finished
confidence: highly likely
importance: 5
...
> In generating a sample of _n_ datapoints drawn from a normal/Gaussian distribution with a particular mean/SD, how big on average the biggest datapoint is will depend on how large _n_ is.
> Knowing this average is useful in a number of areas like sports or breeding or manufacturing, as it defines how bad/good the worst/best datapoint will be (eg the score of the winner in a multi-player game).
>
> The [order statistic](!Wikipedia) of the mean/average/expectation of the maximum of a draw of _n_ samples from a normal distribution has no exact formula, unfortunately, and is generally not built into any programming language's libraries.
>
> I implement & compare some of the approaches to estimating this order statistic in the R programming language, for both the maximum and the general order statistic.
> The overall best approach is to calculate the exact order statistics for the _n_ range of interest using numerical integration via `lmomco` and cache them in a lookup table, rescaling the mean/SD as necessary for arbitrary normal distributions; next best is a polynomial regression approximation; finally, the Elfving correction to the Blom 1958 approximation is fast, easily implemented, and accurate for reasonably large _n_ such as _n_>100.
![Visualizing maxima/minima in order statistics with increasing _n_ in each sample (1-100).](/images/orderstatistics-maximums.png)
# Approximation
## Monte Carlo
Most simply and directly, we can estimate it using a [Monte Carlo](!Wikipedia "Monte Carlo method") simulation with hundreds of thousands of iterations:
~~~{.R}
scores <- function(n, sd) { rnorm(n, mean=0, sd=sd); }
gain <- function(n, sd) { scores <- scores(n, sd)
return(max(scores)); }
simGain <- function(n, sd=1, iters=500000) {
mean(replicate(iters, gain(n, sd))); }
~~~
But in R this can take seconds for small _n_ and gets worse as _n_ increases into the hundreds as we need to calculate over increasingly large samples of random normals (so one could consider this $\mathcal{O}(N)$); this makes use of the simulation difficult when nested in higher-level procedures such as anything involving resampling or simulation.
In R, calling functions many times is slower than being able to call a function once in a 'vectorized' way where all the values can be processed in a single batch.
We can try to vectorize this simulation by generating $n \cdot i$ random normals, group it into a large matrix with _n_ columns (each row being one _n_-sized batch of samples), then computing the maximum of the _i_ rows, and the mean of the maximums.
This is about twice as fast for small _n_; implementing using `rowMaxs` from the R package [`matrixStats`](https://cran.r-project.org/web/packages/matrixStats/index.html), it is anywhere from 25% to 500% faster (at the expense of likely much higher memory usage, as the R interpreter is unlikely to apply any optimizations such as Haskell's stream fusion):
~~~{.R}
simGain2 <- function(n, sd=1, iters=500000) {
mean(apply(matrix(ncol=n, data=rnorm(n*iters, mean=0, sd=sd)), 1, max)) }
library(matrixStats)
simGain3 <- function(n, sd=1, iters=500000) {
mean(rowMaxs(matrix(ncol=n, data=rnorm(n*iters, mean=0, sd=sd)))) }
~~~
Each simulate is too small to be worth parallelizing, but there are so many iterations that they can be split up usefully and run with a fraction in a different process; something like
~~~{.R}
library(parallel)
library(plyr)
simGainP <- function(n, sd=1, iters=500000, n.parallel=4) {
mean(unlist(mclapply(1:n.parallel, function(i) {
mean(replicate(iters/n.parallel, gain(n, sd))); })))
}
~~~
We can treat the simulation estimates as exact and use [memoization](!Wikipedia) such as provided by the R package [`memoise`](https://cran.r-project.org/web/packages/memoise/) to cache results & never recompute them, but it will still be slow on the first calculation.
So it would be good to have either an exact algorithm or an accurate approximation: for one of analyses, I want accuracy to ±0.0006 SDs, which requires large Monte Carlo samples.
## Upper bounds
To summarize the [Cross Validated discussion](https://stats.stackexchange.com/questions/9001/approximate-order-statistics-for-normal-random-variables): the simplest [upper bound](http://math.stackexchange.com/a/89147) is $E[Z] \leq \sigma \cdot \sqrt{2 \cdot log(n)}$, which makes the diminishing returns clear.
Implementation:
~~~{.R}
upperBoundMax <- function(n, sd=1) { sd * sqrt(2 * log(n)) }
~~~
Most of the approximations are sufficiently fast as they are effectively $\mathcal{O}(1)$ with small constant factors (if we ignore that functions like $\Phi^{-1}$/`qnorm` themselves may technically be $\mathcal{O}(log(n))$ or $\mathcal{O}(n)$ for large _n_).
However, accuracy becomes the problem: this upper bound is hopelessly inaccurate in small samples when we compare to the Monte Carlo simulation.
Others (also inaccurate) include $\frac{n-1}{\sqrt{2 \cdot n - 1}} \cdot \sigma$ and $-\Phi^{-1}(\frac{1}{n+1}) \cdot \sigma$:
~~~{.R}
upperBoundMax2 <- function(n, sd=1) { ((n-1) / sqrt(2*n - 1)) * sd }
upperBoundMax3 <- function(n, sd=1) { -qnorm(1/(n+1), sd=sd) }
~~~
## Formulas
[Blom 1958, _Statistical estimates and transformed beta-variables_](/docs/statistics/order/1958-blom-orderstatistics.pdf) provides a general approximation formula $E(r,n)$, which specializing to the max ($E(n,n)$) is $\Phi^{-1}(\frac{n-\alpha}{n - 2\cdot\alpha + 1 }) \cdot \sigma; \alpha=0.375$ and is better than the upper bounds:
~~~{.R}
blom1958 <- function(n, sd=1) { alpha <- 0.375; qnorm((n-alpha)/(n-2*alpha+1)) * sd }
~~~
[Elfving 1947](/docs/statistics/order/1947-elfving.pdf "The asymptotical distribution of range in samples from a normal population"), apparently, by way of _Mathematical Statistics_, Wilks 1962, demonstrates that Blom 1958's approximation is imperfect because actually $\alpha=\frac{pi}{8}$, so:
~~~{.R}
elfving1947 <- function(n, sd=1) { alpha <- pi/8; qnorm((n-alpha)/(n-2*alpha+1)) * sd }
~~~
(Blom 1958 appears to be more accurate for _n_<48 and then Elfving's correction dominates.)
[Harter 1961](/docs/statistics/order/1961-harter.pdf "Expected Values of Normal Order Statistics") elaborated this by giving different values for $\alpha$, and [Royston 1982](/docs/statistics/order/1982-royston.pdf "Algorithm AS 177: Expected Normal Order Statistics (Exact and Approximate)") provides computer algorithms; I have not attempted to provide an R implementation of these.
[probabilityislogic](https://stats.stackexchange.com/users/2392/probabilityislogic) offers a [2015 derivation via the beta-F compound distribution](http://stats.stackexchange.com/a/9010/16897) of: $E[x_{i}]\approx \mu+\sigma\Phi^{-1}\left(\frac{i}{N+1}\right)\left[1+\frac{\left(\frac{i}{N+1}\right)\left(1-\frac{i}{N+1}\right)}{2(N+2)\left[\phi\left[\Phi^{-1}\left(\frac{i}{N+1}\right)\right]\right]^{2}}\right]$ and an approximate (but highly accurate) numerical integration as well:
~~~{.R}
pil2015 <- function(n, sd=1) { sd * qnorm(n/(n+1)) * { 1 +
((n/(n+1)) * (1 - (n/(n+1)))) /
(2*(n+2) * (pnorm(qnorm(n/(n+1))))^2) }}
pil2015Integrate <- function(n) { mean(qnorm(qbeta(((1:10000) - 0.5 ) / 10000, n, 1))) + 1}
~~~
Another approximation comes from [Chen & Tyler 1999](/docs/statistics/order/1999-chen.pdf "Accurate Approximation to the Extreme Order Statistics of Gaussian Samples"): $\Phi^{-1}(0.5264^{\frac{1}{n}})$.
Unfortunately, while accurate enough for most purposes, it is still off by as much as 1 IQ point and has an average mean error of -0.32 IQ points compared to the simulation:
~~~{.R}
chen1999 <- function(n, sd=1){ qnorm(0.5264^(1/n), sd=sd) }
approximationError <- sapply(1:1000, function(n) { (chen1999(n) - simGain(n)) * 15 } )
summary(approximationError)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# -0.3801803 -0.3263603 -0.3126665 -0.2999775 -0.2923680 0.9445290
plot(1:1000, approximationError, xlab="Number of samples taking the max", ylab="Error in 15*SD (IQ points)")
~~~
![Error in using the Chen & Tyler 1999 approximation to estimate the expected value (gain) from taking the maximum of _n_ normal samples](/images/genetics/iq-selection-chen1999approximation-error.png)
## Polynomial regression
From a less mathematical perspective, any regression or machine learning model could be used to try to develop a cheap but highly accurate approximation by simply predicting the extreme from the relevant range of _n_=2-300 - the goal being less to make good predictions out of sample than to overfit as much as possible in-sample.
Plotting the extremes, they form a smooth *almost* logarithmic curve:
~~~{.R}
df <- data.frame(N=2:300, Max=sapply(2:300, exactMax))
l <- lm(Max ~ log(N), data=df); summary(l)
# Residuals:
# Min 1Q Median 3Q Max
# -0.36893483 -0.02058671 0.00244294 0.02747659 0.04238113
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 0.658802439 0.011885532 55.42894 < 2.22e-16
# log(N) 0.395762956 0.002464912 160.55866 < 2.22e-16
#
# Residual standard error: 0.03947098 on 297 degrees of freedom
# Multiple R-squared: 0.9886103, Adjusted R-squared: 0.9885719
# F-statistic: 25779.08 on 1 and 297 DF, p-value: < 2.2204e-16
plot(df); lines(predict(l))
~~~
This has the merit of utter simplicity (`function(n) {0.658802439 + 0.395762956*log(n)}`), but while the R^2^ is quite high by most standards, the residuals are too large to make a good approximation - the log curve overshoots initially, then undershoots, then overshoots.
We can try to find a better log curve by using polynomial or spline regression, which broaden the family of possible curves.
A 4th-order polynomial turns out to fit as beautifully as we could wish, R^2^=0.9999998:
~~~{.R}
lp <- lm(Max ~ log(N) + I(log(N)^2) + I(log(N)^3) + I(log(N)^4), data=df); summary(lp)
# Residuals:
# Min 1Q Median 3Q Max
# -1.220430e-03 -1.074138e-04 -1.655586e-05 1.125596e-04 9.690842e-04
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.586366e-02 4.550132e-04 34.86418 < 2.22e-16
# log(N) 8.652822e-01 6.627358e-04 1305.62159 < 2.22e-16
# I(log(N)^2) -1.122682e-01 3.256415e-04 -344.76027 < 2.22e-16
# I(log(N)^3) 1.153201e-02 6.540518e-05 176.31640 < 2.22e-16
# I(log(N)^4) -5.302189e-04 4.622731e-06 -114.69820 < 2.22e-16
#
# Residual standard error: 0.0001756982 on 294 degrees of freedom
# Multiple R-squared: 0.9999998, Adjusted R-squared: 0.9999998
# F-statistic: 3.290056e+08 on 4 and 294 DF, p-value: < 2.2204e-16
## If we want to call the fitted objects:
linearApprox <- function (n) { predict(l, data.frame(N=n)); }
polynomialApprox <- function (n) { predict(lp, data.frame(N=n)); }
## Or simply code it by hand:
la <- function(n, sd=1) { 0.395762956*log(n) * sd; }
pa <- function(n, sd=1) { N <- log(n);
(1.586366e-02 + 8.652822e-01*N^1 + -1.122682e-01*N^2 + 1.153201e-02*N^3 + -5.302189e-04*N^4) * sd; }
~~~
This has the virtue of speed & simplicity (a few arithmetic operations) and high accuracy, but is not intended to perform well past the largest datapoint of _n_=300 (although if one needed to, one could simply generate the additional datapoints, and refit, adding more polynomials if necessary), but turns out to be a good approximation up to _n_=800 (after which it consistently overestimates by ~0.01):
~~~{.R}
heldout <- sapply(301:1000, exactMax)
test <- sapply(301:1000, pa)
mean((heldout - test)^2)
# [1] 3.820988144e-05
plot(301:1000, heldout); lines(test)
~~~
So this method, while lacking any kind of mathematical pedigree or derivation, provides the best approximation so far.
# Exact
The R package [`lmomco`](https://cran.r-project.org/web/packages/lmomco/index.html) ([Asquith 2011](https://ttu-ir.tdl.org/ttu-ir/handle/2346/ETD-TTU-2011-05-1319 "Univariate Distributional Analysis with L-moment Statistics using R")) calculates a wide variety of order statistics using numerical integration & other methods.
It is fast, unbiased, and generally correct (for small values of _n_[^lmomco-bug]) - it is close to the Monte Carlo estimates even for the smallest _n_ where the approximations tend to do badly, so it does what it claims to and provides what we want (a fast exact estimate of the mean gain from selecting the maximum from _n_ samples from a normal distribution).
The results can be memoized for a further moderate speedup (eg calculated over _n_=1-1000, 0.45s vs 3.9s for a speedup of ~8.7x):
[^lmomco-bug]: `lmomco` is accurate for all values I checked with Monte Carlo _n_<1000, but appears to have some bugs _n_>2000: there are occasional deviations from the quasi-logarithmic curve, such as _n_=2225-2236 (which are off by 1.02SD compared to the Monte Carlo estimates and the surrounding lmomco estimates), another cluster of errors _n_~=40,000, and then after _n_>60,000, the estimates are totally incorrect. The maintainer has been notified & verified the bug.
~~~{.R}
library(lmomco)
exactMax_unmemoized <- function(n, mean=0, sd=1) {
expect.max.ostat(n, para=vec2par(c(mean, sd), type="nor"), cdf=cdfnor, pdf=pdfnor) }
## Comparison to MC:
# ... Min. 1st Qu. Median Mean 3rd Qu. Max.
# -0.0523499300 -0.0128622900 -0.0003641315 -0.0007935236 0.0108748800 0.0645207000
library(memoise)
exactMax_memoised <- memoise(exactMax_unmemoized)
~~~
![Error in using Asquith 2011's L-moment Statistics numerical integration package to estimate the expected value (gain) from taking the maximum of _n_ normal samples](/images/genetics/iq-selection-asquith2011approximation-error.png)
## Comparison
With `lmomco` providing exact values, we can visually compare the presented methods for accuracy; there are considerable differences but the best methods are in close agreement:
![Comparison of estimates of the maximum for _n_=2-300 for 12 methods, showing Chen 1999/polynomial/Monte Carlo/`lmomco` are the most accurate and Blom 1958 and the upper bounds highly inaccurate.](/images/orderstatistics-12comparisons.png)
And micro-benchmarking them quickly (excluding Monte Carlo) to get an idea of time consumption shows the expected results (aside from Pil 2015's numerical integration taking longer than expected, suggesting either memoising or changing the fineness):
~~~{.R}
library(microbenchmark)
f <- function() { sample(2:1000, 1); }
microbenchmark(times=10000, upperBoundMax(f()),upperBoundMax2(f()),upperBoundMax3(f()),
blom1958(f()),elfving1947(f()),pil2015(f()),pil2015Integrate(f()),chen1999(f()),
exactMax_memoised(f()),la(f()),pa(f()))
# Unit: microseconds
# expr min lq mean median uq max neval
# f() 2.437 2.9610 4.8928136 3.2530 3.8310 1324.276 10000
# upperBoundMax(f()) 3.029 4.0020 6.6270124 4.9920 6.3595 1218.010 10000
# upperBoundMax2(f()) 2.886 3.8970 6.5326593 4.7235 5.8420 1029.148 10000
# upperBoundMax3(f()) 3.678 4.8290 7.4714030 5.8660 7.2945 892.594 10000
# blom1958(f()) 3.734 4.7325 7.3521356 5.6200 7.0590 1050.915 10000
# elfving1947(f()) 3.757 4.8330 7.7927493 5.7850 7.2800 1045.616 10000
# pil2015(f()) 5.518 6.9330 10.8501286 9.2065 11.5280 867.332 10000
# pil2015Integrate(f()) 14088.659 20499.6835 21516.4141399 21032.5725 22151.4150 53977.498 10000
# chen1999(f()) 3.788 4.9260 7.7456654 6.0370 7.5600 1415.992 10000
# exactMax_memoised(f()) 106.222 126.1050 211.4051056 162.7605 221.2050 4009.048 10000
# la(f()) 2.882 3.8000 5.7257008 4.4980 5.6845 1287.379 10000
# pa(f()) 3.397 4.4860 7.0406035 5.4785 6.9090 1818.558 10000
~~~
## Rescaling for generality
The memoised function has three arguments, so memoising on the fly would seem to be the best one could do, since one cannot precompute all possible combinations of the _n_/mean/SD.
But actually, we only need to compute the results for various _n_!
We can default to assuming the standard normal distribution ($\mathcal{N}(0,1)$) without loss of generality because it's easy to rescale any normal to another normal: to scale to a different mean $\mu$, one simply adds $\mu$ to the expected extreme, so one can assume $\mu=0$; and to scale to a different standard deviation, we simply multiply appropriately.
So if we wanted the extreme for _n_=5 for $\mathcal{N}(10,2)$, we can calculate it simply by taking the estimate for _n_=5 for $\mathcal{N}(0,1)$ and multiplying by $\frac{2}{1}=2$ and then adding $10-0=10$:
~~~{.R}
(exactMax(5, mean=0, sd=1)*2 + 10) ; exactMax(5, mean=10, sd=2)
# [1] 12.32592895
# [1] 12.32592895
~~~
So in other words, it is unnecessary to memoize all possible combinations of _n_, mean, and SD - in reality, we only need to compute each _n_ and then rescale it as necessary for each caller.
And in practice, we only care about _n_=2-200, which is few enough that we can define a lookup table using the `lmomco` results and use that instead (with a fallback to `lmomco` for $n>200$, and a fallback to Chen et al 1999 for $n>2000$ to work around `lmomco`'s bug with large _n_):
~~~{.R}
exactMax <- function (n, mean=0, sd=1) {
if (n>2000) {
chen1999 <- function(n,mean=0,sd=1){ mean + qnorm(0.5264^(1/n), sd=sd) }
chen1999(n,mean=mean,sd=sd) } else {
if(n>200) { library(lmomco)
exactMax_unmemoized <- function(n, mean=0, sd=1) {
expect.max.ostat(n, para=vec2par(c(mean, sd), type="nor"), cdf=cdfnor, pdf=pdfnor) }
exactMax_unmemoized(n,mean=mean,sd=sd) } else {
lookup <- c(0,0,0.5641895835,0.8462843753,1.0293753730,1.1629644736,1.2672063606,1.3521783756,1.4236003060,
1.4850131622,1.5387527308,1.5864363519,1.6292276399,1.6679901770,1.7033815541,1.7359134449,1.7659913931,
1.7939419809,1.8200318790,1.8444815116,1.8674750598,1.8891679149,1.9096923217,1.9291617116,1.9476740742,
1.9653146098,1.9821578398,1.9982693020,2.0137069241,2.0285221460,2.0427608442,2.0564640976,2.0696688279,
2.0824083360,2.0947127558,2.1066094396,2.1181232867,2.1292770254,2.1400914552,2.1505856577,2.1607771781,
2.1706821847,2.1803156075,2.1896912604,2.1988219487,2.2077195639,2.2163951679,2.2248590675,2.2331208808,
2.2411895970,2.2490736293,2.2567808626,2.2643186963,2.2716940833,2.2789135645,2.2859833005,2.2929091006,
2.2996964480,2.3063505243,2.3128762306,2.3192782072,2.3255608518,2.3317283357,2.3377846191,2.3437334651,
2.3495784520,2.3553229856,2.3609703096,2.3665235160,2.3719855541,2.3773592389,2.3826472594,2.3878521858,
2.3929764763,2.3980224835,2.4029924601,2.4078885649,2.4127128675,2.4174673530,2.4221539270,2.4267744193,
2.4313305880,2.4358241231,2.4402566500,2.4446297329,2.4489448774,2.4532035335,2.4574070986,2.4615569196,
2.4656542955,2.4697004768,2.4736966781,2.4776440650,2.4815437655,2.4853968699,2.4892044318,2.4929674704,
2.4966869713,2.5003638885,2.5039991455,2.5075936364,2.5111482275,2.5146637581,2.5181410417,2.5215808672,
2.5249839996,2.5283511812,2.5316831323,2.5349805521,2.5382441196,2.5414744943,2.5446723168,2.5478382097,
2.5509727783,2.5540766110,2.5571502801,2.5601943423,2.5632093392,2.5661957981,2.5691542321,2.5720851410,
2.5749890115,2.5778663175,2.5807175211,2.5835430725,2.5863434103,2.5891189625,2.5918701463,2.5945973686,
2.5973010263,2.5999815069,2.6026391883,2.6052744395,2.6078876209,2.6104790841,2.6130491728,2.6155982225,
2.6181265612,2.6206345093,2.6231223799,2.6255904791,2.6280391062,2.6304685538,2.6328791081,2.6352710490,
2.6376446504,2.6400001801,2.6423379005,2.6446580681,2.6469609341,2.6492467445,2.6515157401,2.6537681566,
2.6560042252,2.6582241720,2.6604282187,2.6626165826,2.6647894763,2.6669471086,2.6690896839,2.6712174028,
2.6733304616,2.6754290533,2.6775133667,2.6795835873,2.6816398969,2.6836824739,2.6857114935,2.6877271274,
2.6897295441,2.6917189092,2.6936953850,2.6956591311,2.6976103040,2.6995490574,2.7014755424,2.7033899072,
2.7052922974,2.7071828562,2.7090617242,2.7109290393,2.7127849375,2.7146295520,2.7164630139,2.7182854522,
2.7200969934,2.7218977622,2.7236878809,2.7254674700,2.7272366478,2.7289955308,2.7307442335,2.7324828686,
2.7342115470,2.7359303775,2.7376394676,2.7393389228,2.7410288469,2.7427093423,2.7443805094,2.7460424475)
return(mean + sd*lookup[n+1]) }}}
~~~
This gives us exact computation at $\mathcal{O}(1)$ (with an amortized $\mathcal{O}(1)$ when $n>200$) with an extremely small constant factor (a conditional, vector index, multiplication, and addition, which is overall ~10x faster than a memoised lookup), giving us all our desiderata simultaneously & resolving the problem.
# General order statistics for the normal distribution
One might also be interested in computing the general order statistic.
Some available implementations in R:
- numerical integration:
- `lmomco`, with `j` of `n` (warning: remember lmomco's bug with _n_>2000):
~~~{.R}
j = 9; n=10
expect.max.ostat(n, j=j, para=vec2par(c(0, 1), type="nor"), cdf=cdfnor, pdf=pdfnor)
# [1] 1.001357045
~~~
- [`evNormOrdStats`](https://www.rdocumentation.org/packages/EnvStats/versions/2.1.0/topics/evNormOrdStats) in [`EnvStats`](https://cran.r-project.org/web/packages/EnvStats/index.html) (version >=2.3.0), using [Royston 1982](/docs/statistics/order/1982-royston.pdf "Algorithm AS 177: Expected Normal Order Statistics (Exact and Approximate)"):
~~~{.R}
library(EnvStats)
evNormOrdStatsScalar(10^10,10^10)
# [1] 6.446676405
## Warning message: In evNormOrdStatsScalar(10^10, 10^10) :
## The 'royston' method has not been validated for sample sizes greater than 2000 using
## the default value of inc = 0.025. You may want to make the value of 'inc' less than 0.025.
evNormOrdStatsScalar(10^10,10^10, inc=0.000001)
# [1] 6.446676817
~~~
- Monte Carlo: the simple approach of averaging over _i_ iterations of generating _n_ random normal deviates, sorting, and selecting the `j`th order statistic does not scale well due to being $\mathcal{O}(n)$ in both time & space for generation & $\mathcal{O}(n \cdot log(n))$ for a comparison sort or another $\mathcal{O}(n)$ if one is more careful to use a lazy sort or [selection algorithm](!Wikipedia), and coding up an online selection algorithm is not a one-liner. Better solutions typically use a beta transformation to efficiently generate a single sample from the expected order statistic:
- `order_rnorm` in [`orderstats`](https://cran.r-project.org/web/packages/orderstats/index.html), with `k` of `n`:
~~~{.R}
library(orderstats)
mean(replicate(100000, order_rnorm(k=10^10, n=10^10)))
# [1] 6.446370373
~~~
- `order` in [`evd`](https://cran.r-project.org/web/packages/evd/index.html), with `j` of `n`:
~~~{.R}
library(evd)
mean(rorder(100000, distn="norm", j=10^10, mlen=10^10, largest=FALSE))
# [1] 6.447222051
~~~
- Blom & other approximations:
- `evNormOrdStats` in `EnvStats`'s provides as an option the Blom approximation:[^EnvStats-earlier]
> When `method="blom"`, the following approximation to $E(r,n)$,
> proposed by Blom (1958, pp. 68-75), is used:
>
> $$E(r, n) \approx \Phi^{-1}(\frac{r - \alpha}{n - 2\alpha + 1}) \;\;\;\;\;\; (5)$$
>
> By default, alpha = $\frac{3}{8}$ = 0.375. This approximation is quite
> accurate. For example, for $n \gt 2$, the approximation is accurate
> to the first decimal place, and for $n \gt 9$ it is accurate to the
> second decimal place.
Blom's approximation is also [quoted as](https://stats.stackexchange.com/a/9007/16897):
$$E(r, n) \approx \mu + \Phi^{-1} (\frac{r - \alpha}{n - 2\alpha +1})\sigma; \alpha = 0.375$$
- Elfving's correction to Blom is the same, yielding:
~~~{.R}
elfving1947E <- function(r,n) { alpha=pi/8; qnorm( (r - alpha) / (n - 2*alpha + 1) ) }
elfving1947E(10^10, 10^10)
# [1] 6.437496713
~~~
[^EnvStats-earlier]: A previous version of `EnvStats` described the approximation thus:
> The function `evNormOrdStatsScalar` computes the value of $E(r,n)$ for user-specified values of _r_ and _n_. The function `evNormOrdStats` computes the values of $E(r,n)$ for all values of _r_ for a user-specified value of _n_. For large values of _n_, the function `evNormOrdStats` with `approximate=FALSE` may take a long time to execute. When `approximate=TRUE`, `evNormOrdStats` and `evNormOrdStatsScalar` use the following approximation to $E(r,n)$, which was proposed by Blom (1958, pp. 68-75, ["6.9 An approximate mean value formula" & formula 6.10.3-6.10.5]):
>
> $$E(r,n) \approx \Phi^{-1} (\frac{r - \frac{3}{8}}{n + \frac{1}{4}})$$
>
> ~~~{.R}
> ## General Blom 1958 approximation:
> blom1958E <- function(r,n) { qnorm((r - 3/8) / (n + 1/4)) }
> blom1958E(10^10, 10^10)
> # [1] 6.433133208
> ~~~
>
> This approximation is quite accurate. For example, for $n \ge 2$, the approximation is accurate to the first decimal place, and for $n \ge 9$ it is accurate to the second decimal place.
# See also
- [Optimal search of a sample of Gaussians with costs/benefits](/Embryo-selection#optimal-stoppingsearch)