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ABSTRACT 

Accelerometers are sensors for measuring acceleration forces. 
They can be found embedded in many types of mobile devices, 
including tablet PCs, smartphones, and smartwatches. Some 
common uses of built-in accelerometers are automatic image 
stabilization, device orientation detection, and shake detection. In 
contrast to sensors like microphones and cameras, accelerometers 
are widely regarded as not privacy-intrusive. This sentiment is 
reflected in protection policies of current mobile operating 
systems, where third-party apps can access accelerometer data 
without requiring security permission. It has been shown in 
experiments, however, that seemingly innocuous sensors can be 
used as a side channel to infer highly sensitive information about 
people in their vicinity. Drawing from existing literature, we 
found that accelerometer data alone may be sufficient to obtain 
information about a device holder’s location, activities, health 
condition, body features, gender, age, personality traits, and 
emotional state. Acceleration signals can even be used to uniquely 
identify a person based on biometric movement patterns and to 
reconstruct sequences of text entered into a device, including 
passwords. In the light of these possible inferences, we suggest 
that accelerometers should urgently be re-evaluated in terms of 
their privacy implications, along with corresponding adjustments 
to sensor protection mechanisms.  
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1. INTRODUCTION 
An accelerometer is an instrument for measuring acceleration 
forces caused by the movements and vibrations of an object, or by 
gravity. Today, all sorts of mobile devices, including smart-
phones, tablet PCs, smartwatches, digital cameras, wearable 
fitness trackers, game controllers, and virtual reality headsets, are 
equipped with built-in microelectromechanical accelerometers [1]. 
Studies even suggest that accelerometers are the most widely used 
sensor in wearable devices [2] and also the sensor that is most 
frequently accessed by mobile apps [3]. 

Among other common applications, acceleration signals are used 
for image stabilization in cameras, for measuring the orientation 
of a device relative to Earth’s gravitational pull (e.g. to enable 
automatic display rotation between landscape and portrait mode), 
and for detecting user actions, such as moving or shaking a 
device. 

While some sensors, such as microphones, cameras and GPS, are 
widely perceived as privacy-sensitive [4, 5] and require explicit 
user permission to be activated in current mobile operating 
systems [3], accelerometers are less well-understood in terms of 
their privacy implications, and also much less protected [6, 7]. 
Even scholarly literature has largely ignored potential issues in 
this field, with researchers describing accelerometer data as “not 
particularly sensitive” [8] or even “privacy preserving” [9]. 

Experimental studies have shown, however, that sensitive 
personal data can be inferred from accelerometer readings. This 
paper presents a non-exhaustive overview of possible inferences, 
drawing from multiple academic disciplines, including infor-
mation science, psychology, health science, and computer science. 
According to our findings, accelerometers in mobile devices may 
reveal information about a user’s activities (section 2.1), location 
(sect. 2.2), identity (sect. 2.3), device inputs (sect. 2.4), health 
condition and body features (sect. 2.5), age and gender (sect. 2.6), 
moods and emotions (sect. 2.7), and personality traits (sect. 2.8). 

2. POSSIBLE INFERENCES 
In this chapter, we present experimental studies from the scholarly 
literature in which sensitive information was successfully derived 
from accelerometer data. A visual overview is provided in Fig. 3, 
at the end of the chapter. 

2.1 Activity and Behavior Tracking 
A wide range of physical activity variables and behavior-related 
information can be derived from raw accelerometer data. 
Accelerometer-based pedometers (“step counters”), for instance, 
register the impacts produced by steps during motion and can 
estimate energy expenditure and distance walked [10]. In medical 
studies, wearable devices with embedded accelerometers are 
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widely used to assess the amount of sedentary time and physical 
activity among patients [11, 12]. 

Body-worn accelerometers have also been shown to enable real-
time body posture and activity classification. High recognition 
accuracy has been achieved for basic physical activities, including 
running, walking, cycling, lying, climbing stairs, falling, sitting 
and standing [13–16], as well as for more complex activities, such 
as writing, reading, typing, painting, sorting paperwork or 
searching the internet [17]. 

Not only the type but also the duration of activities and temporal 
behavior patterns can be derived from acceleration signals [18, 
19]. When worn during the night, mobile devices with built-in 
accelerometers may enable sleep-wake cycle monitoring, through 
variables such as sleep onset and offset, total sleep time and sleep 
intervals [20, 21], as well as the monitoring of sleep-related 
behaviors [11]. 

Accelerometers in handheld and wrist-worn devices can further be 
used to detect specific hand gestures [22], eating and drinking 
moments [23, 24], and smoking [25, 26]. Gait features of subjects, 
extracted from accelerometer data, can even reveal their level of 
intoxication. Researchers were able to distinguish “sober walk” 
from “intoxicated walk” [27] and to estimate blood alcohol 
content [28] as well as the number of drinks consumed [29] via 
accelerometry alone. 

In [17], signals from a single body-worn accelerometer were used 
to detect if a subject is carrying a load. Accelerometer-based gait 
dynamics have also been used to estimate the weight of carried 
objects with robustness to variations in walking speeds, body 
types and walking conditions [30]. 

  

Figure 1: Classification of driving patterns based on streams 
of accelerometer data, from [31]. 

When located inside a car, motion sensors can be used to measure 
an operator’s driving behavior. In [31], Singh, Juneja and Kapoor 
identified events such as sudden breaking, sudden acceleration, 
right and left turns and lane changes from patterns in 
accelerometer data, as is illustrated in Fig. 1. From such infor-
mation, researchers were able to detect aggressive or unsafe 
driving styles [32] and drunk driving patterns [33]. 

Based on indicative body movements and sound vibrations, both 
measured using accelerometers, researchers were able to derive 

speech activity and social interactions of subjects [9, 34]. Even 
ways of reconstructing speech solely from recorded vibrations 
have been explored. AccelWord, developed in [35], can detect 
hotwords spoken by a user, utilizing accelerometer data from 
commercially available mobile devices. Patents have already been 
filed for a “method of detecting a user's voice activity using an 
accelerometer” [36] and a “system that uses an accelerometer in a 
mobile device to detect hotwords” [37]. 

2.2 Location Tracking 
It has been shown that accelerometers in mobile devices can be 
exploited for user localization and reconstruction of travel 
trajectories, even when other localization systems, such as GPS, 
are disabled. In [38], Han et al. were able to geographically track 
a person who is driving a car based solely on accelerometer 
readings from the subject’s smartphone. In their approach, they 
first calculate the vehicle’s approximate motion trajectory using 
three-axis acceleration measurements from an iPhone located 
inside the vehicle, and then map the derived trajectory to the 
shape of existing routes on a map. An example application of the 
algorithm is displayed in Fig. 2. Han et al. describe their results as 
“comparable to the typical accuracy for handheld global 
positioning systems.” 

 

Figure 2: Map matching algorithm used in [38]. The green 
trail indicates the motion trajectory obtained from 
accelerometer data. The red trail indicates the inferred route. 
The blue trail indicates the actual route traveled (GPS data). 

Hua, Shen and Zhong found that accelerometers in smartphones 
can also reveal the device’s location while the holder is using a 
metropolitan train system [39]. To achieve this, the researchers 
compare and match acceleration patterns with labeled training 
data to recognize specific station intervals through which the user 
travels. Results from experiments on a real metro line show that 
the accuracy of their approach could reach up to 89% and 92% if 
the metro ride is longer than 3 or 5 stations, respectively [39]. 

2.3 User Identification 
Body movement patterns recorded by accelerometers in mobile 
devices have been demonstrated to be discriminative enough to 
differentiate between, or even uniquely identify, users. Various 
accelerometer-only approaches have been proposed to confirm the 
identity of a user based on biometric gait features [40, 41], hand 
gestures [42], or head movements [43]. Using accelerometer rea-
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dings from smartphones, Kwapisz, Weiss and Moore were able to 
recognize individuals from a pool of 36 test subjects with 100% 
accuracy [44]. 

It has also been shown that, through aerial vibrations, accelero-
meters can be sensitive enough to capture sound, including human 
speech, in sufficient quality to distinguish between different spea-
kers with high accuracy [35]. 

The location trajectory of a mobile device, which can be inferred 
from accelerometer data under certain conditions (as explained in 
section 2.2), may reveal a user’s work and home addresses [45], 
and – in conjunction with white pages, employment directories, 
tax records, or other auxiliary datasets – a user’s real identity [46]. 

Following an approach commonly referred to as device 
fingerprinting, users can further be told apart based on unique 
characteristics and features of their personal devices. Calibration 
errors in accelerometers, which are caused by imperfections in the 
manufacturing process, have been found sufficient to uniquely 
identify their encapsulating device [6, 47]. Such a “fingerprint” 
can be used, for instance, to track users across repeated website 
visits, even when private browsing is activated and other tracking 
technologies, such as canvas fingerprinting or cookies, are 
blocked [48]. 

2.4 Keystroke Logging 
The input that users type into to their devices through 
touchscreens and keyboards contains highly sensitive information 
such as text messages, personal notes, login credentials and 
transaction details.  

Based on the observation that swipes, taps and keystrokes often 
correlate with distinctive hand movements of the user, it has been 
shown that inputs can be reconstructed using motion sensor data 
from handheld and wrist-worn devices [49–51]. Some researchers 
have exclusively used accelerometer data for such keystroke 
inference attacks. Aviv et al. demonstrated that accelerometers in 
smartphones can be exploited to infer tap- and gesture-based 
input, including PINs and graphical password patterns [52]. Based 
on the same type of data, Owusu et al. were able to obtain entire 
sequences of text entered through a phone’s touchscreen [53]. 

Through examining the source code of other existing approaches, 
it has been found that even multi-sensor attacks solely use 
acceleration information for tap detection, leading to the 
conclusion that defense mechanisms against these kinds of side 
channel attacks should focus on accelerometers [54]. 

Not only does the above imply that accelerometer data could offer 
sensitive insights into a user’s communication and transactions: 
Beltramelli and Risi even warn that a user’s entire technological 
ecosystem could be compromised when passwords are leaked 
through embedded sensors in consumer electronics [55]. 

2.5 Inference of Health Parameters and Body 
Features 
Body-worn accelerometers can be used to gain insight into a 
person’s physical characteristics and health status. Using 
accelerometer data from smartphones, researchers were able to 
derive an approximation of the body weight and height of users 
[56, 57]. A strong correlation has been observed between 
accelerometer-determined physical activity and obesity [58]. 

Physical activity is generally recognized as a promoter and 
indicator of health [59]. A person’s amount of physical activity 
can reveal sensitive information about latent chronic diseases and 
the person’s degree of mobility [12] as well as about cognitive 
function and even risk of mortality [60]. As explained in section 

2.1, a wide range of activity-related variables can be derived from 
accelerometer data, including energy expenditure, type of activity 
and temporal activity patterns. This association is increasingly put 
to use in health studies, where accelerometers are used to 
remotely assess the physical activity level of participants [61]. 

Another important factor in population health is the amount of 
sleep that people get. Sleep loss has been associated with 
developing serious illnesses, such as cardiovascular disease and 
diabetes, and even with increased all-cause mortality [62]. 
Numerous studies have shown that accelerometers in wearable 
devices can be used for evaluating sleep patterns [20], sleep 
fragmentation [63] and sleep efficiency [64]. Actigraphy, an 
accelerometer-based assessment method, has been described as an 
“essential tool in sleep research and sleep medicine” [20]. 
Experimental results from Pesonen and Kuula suggest that 
accelerometers in consumer-targeted wearables can be as effective 
for sleep monitoring as research-targeted devices [21]. 

Specialized accelerometers have been used to measure various 
other health parameters, including voice health [65], postural 
stability [12] and physiological sound [66]. 

2.6 Inference of Demographics 
Estimates of demographic variables such as age and gender can be 
made based on data from body-worn accelerometers. It has long 
been demonstrated that adults and children differ in their 
smoothness of walking, which is reflected in accelerometer 
readings [67]. Menz, Lord and Fitzpatrick compared gait features 
between young and elder subjects using acceleration signals and 
discovered that younger subjects showed greater step length, 
higher velocity and smaller step timing variability [68]. Using 
data from accelerometers in smartphones, Davarci et al. were able 
to predict the age interval of test subjects with a success rate of 
92.5% [69]. Their work is based on the observation that children 
and adults differ in the way they hold and touch smartphones. 

Experimental results by Cho, Park and Kwon indicate that there 
are also gender-specific movement patterns [70]. In accordance, 
research has shown that it is possible to estimate the sex of 
individuals based on hip movements [56], gait features [71] and 
physical activity patterns [72], all derived from accelerometer 
data. An experiment also revealed that female gait patterns are 
significantly influenced by the heel height of their shoes [73]. 
Weiss and Lockhart emphasize that accelerometer-based gender 
recognition can work independently of a subject’s weight and 
height [56]. Even acoustic vibrations caused by a person’s voice 
and captured through a smartphone accelerometer can be used to 
classify speakers into male and female with high accuracy [35]. 

2.7 Mood and Emotion Recognition 
The level of physical activity, which can be measured using body-
worn accelerometers (see section 2.1), has been identified as a 
potential predictor of human emotions [74] and depressive  
moods [75]. Zhang et al. were able to recognize emotional states 
of test subjects (happy, neutral, and angry) with fair accuracy, 
relying only on accelerometer data from smart wristbands [76]. 
Accelerometers in smartphones have been used to detect stress 
levels [77] and arousal [78] in users. Also, Matic et al. found a 
positive association between accelerometer-derived speech activi-
ty and mood changes [9]. 

2.8 Inference of Personality Traits 
Methods have been proposed for inferring preferences and other 
personality traits solely from body gestures and motion patterns. 
Englebienne and Hung used wearable accelerometers to estimate 
the motivations, interests and group affiliations of study 
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participants in scenarios of social interaction, based on their 
movements, body postures and expansiveness of gesturing [34]. 

A person’s level of physical activity, which can also be measured 
using body-worn accelerometers (see section 2.1), has been shown 
to correlate with certain personality traits such as conscientious-
ness, neuroticism, openness, and extraversion [79]. Artese et al. 
evaluated the body movements of test subjects for seven days 
using accelerometer-based monitoring devices and found that 
agreeableness, conscientiousness and extraversion were positively 
and neuroticism negatively associated to more steps per day and 
other physical activity variables [80]. Examining correlates 
between the personality and physical activity of female college 
students, Wilson et al. discovered that neuroticism and  
the functioning of the behavioral inhibition system were both  
related to physical activity measures derived from accelerometer  
readings [81]. 

3. DISCUSSION AND IMPLICATIONS 
As shown in the previous section, accelerometers in mobile 
devices can allow serious invasions of user privacy. Even when 
other sensors, such as cameras, microphones and GPS are turned 
off, accelerometer data can be sufficient to obtain information 
about a device holder’s location, health condition, body features, 
age, gender, emotions and personality traits. Acceleration signals 
may even be used to uniquely identify a person based on 
biometric movement patterns and to reconstruct sequences of text 
entered into a device. 

 It has to be acknowledged that most experimental studies cited in 
this paper have substantial limitations. First, many approaches 
were only tested in controlled laboratory settings [14, 17, 24, 26, 
32, 33, 35, 40, 41, 43, 53, 57]. For methods applied under real-life 

conditions, considerable reductions in accuracy have been 
observed [9, 82]. Second, several of the presented methods require 
prior knowledge about the user or the user’s context in order to 
function [39–44, 52]. Third, subjects in some of the experiments 
wore accelerometers attached to certain body parts, such as chest 
[9, 15], hip [40], waist [14], or even multiple body parts [24, 25, 
64], whereas in reality, mobile devices are mostly worn around 
the wrist [23] or interchangeably in hands, bags, and pockets [83]. 
In light of these limitations, the real-world applicability of the 
presented methods can be questioned.  

On the other hand, it may reasonably be assumed that at least 
some of the parties who regularly access accelerometer data from 
consumer devices (e.g. device manufacturers, service providers, 
app developers) possess larger sets of training data, more 
technical expertise and more financial resources than the 
researchers cited in this paper. Furthermore, data from other 
sensors and auxiliary data may be available to potential 
adversaries, improving their capability to draw sensitive 
inferences, while the methods considered in this paper solely rely 
on accelerometer data. Thus, our work represents only an initial 
and non-exhaustive exploration of the topic.  

It would be enough if even one of the identified threats is realized, 
however, for user privacy to be seriously impacted. Also, it seems 
probable that the risk will continue to grow with further 
improvements of sensor technologies in terms of cost, size and 
accuracy, further advances in machine learning methods, and 
further proliferation of accelerometer-equipped mobile devices. 

Given the widespread perception of accelerometers as non-
intrusive, we call for an urgent reconsideration of their privacy 
implications, along with corresponding adjustments to technical 

Figure 3: Overview of sensitive inferences that can be drawn from accelerometer data (according to the referenced studies). 
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and legal protection measures. In our opinion, the sensitivity of 
sensor data should generally be assessed in consideration of all 
inferences that could plausibly be drawn from it, and not based on 
the sensor’s official purpose. Further research into the privacy-
intrusion potential of accelerometers and other seemingly benign 
sensors is needed, taking into account state-of-the-art data mining 
techniques. As it is extremely difficult, however, to meaningfully 
determine the limits of continuously advancing inference 
methods, most sensors in mobile devices should be regarded and 
treated as highly sensitive by default. 

4. CONCLUSION 
Accelerometers are among the most widely used sensors in 
mobile devices, where they have a large variety of possible 
applications. They are commonly regarded as not privacy-
intrusive and therefore often less access-restricted than other 
sensors, such as cameras and microphones. However, based on 
existing literature, we found that accelerometer data can enable 
serious privacy intrusions by allowing inferences about a device 
holder’s location, identity, demographics, personality, health 
status, emotions, activities and body features.  

Any trait or behavior of a user that results in characteristic 
movement patterns can potentially be detected through accelera-
tion signals. Accelerometers are cheap, low in power consumption 
and often invisibly embedded into consumer devices. Thus, they 
represent a perfect surveillance tool as long as their data streams 
are not properly monitored and protected from potentially 
untrusted parties such as device manufacturers, service providers 
and app developers. In current mobile operating systems, third-
party apps can access accelerometer data without requiring any 
permission or conscious participation from the user.  

Although this paper conveys only a first impression of the privacy 
violations that could be enabled through accelerometers, the 
findings already are significant enough to express a warning to 
consumers who could be affected, as well as a call for action to 
the public and private actors who are entrusted with protecting 
user privacy in mobile devices. 
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