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ABSTRACT
(Our classical paradigm ofstatistics considers parameters such as means, standarddeviations,

correlations, and standard errorsas discrete parameters. This paper shows we can expand the
“Discrete Parameter Estimation Model” (DPEM) to consider mostparameters as continuous,
both in the sense of (a) the parameter varying continuouslyas a function ofothervariables
and of (b)each case having a separate score on a continuum related to each parameter. The
“Continuous Parameter Estimation Model” (CPEM) is a broader paradigm which includes
DPEMandincludes analyzing parameters such as correlationsand standard errors as conditional,
thatis, to vary as a’function of othervariables, throughtheuse of standard statistics. (As a
paradigm paper, there are no unique derivations nor new statistical formulas, but there is an
expanded perspective for howvariables are conceptualized and how analyzes mayproceed.)

Keywords : CPEM, DPEM.

4. INTRODUCTION
Ourusual statistics model considers

statistical estimates as either a single discrete
value or as a set of discrete estimates. An
example of a single discrete valueis a standard
deviation given for a sample; an example of a
set of discrete estimates is when the sampleis
divided into males and females with the
standard deviation or other parameter
estimated separately for each group. The
purposeof this paper is to expand the
traditional “Discrete Parameter Estimation
Model” (DPEM) to a “Continuous Parameter
Estimation Model” (CPEM).

Thediscrete estimation of standard
deviations as a function of age can illustrate
thedifference between DPEM and CPEM.
With discrete estimation, a decision mustbe
made as to how the sample is to be divided.
In onestudy, it may be divided into 5-year
groups and in anotherit may be divided into

10-year groups. Once the groups have been
defined, the sample is split in the age groups
and standard deviations are computedin each
of the groups. Of course the results may vary
depending upon whether age is divided by 5
year or 10 year groups.

‘The discrete method has severalinherent
limitations for a parameter such as the
standard deviation and a variable such as age.
‘Theselimitationsinclude:

1) Thegroups are arbitrarily defined.
Hopefully the choices are wise, but that
depends upon prior knowledge.If the groups
are too broad, then detail is lost. If theyare
too fine, then the estimates contain sampling
errors as well as true differences

2) It is difficult to evaluatethe replication
of results across studies because the division
into categories, such as age, in one study may
notbe the sameasin another study. This may
be a problem for meta-analysis
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3) Any method of division usually is
theoreticallyinappropriate because one would
expecta continuousshift across, for example,
age; the parameter does not really shift
suddenly because onehas a birthday even
though suchshifts happens in discrete
estimation.

4) Few statistical packages give a ready
significance test ot confidence intervals for
whether a set of variance parameters ftom
multiple groups differ, whether anypair of
parameters differ (although several such tests
have been proposed), or whetherthestandard
deviationsare curvilineatlyrelated to age.

‘These problemsall occur because age is
continuous. Anyimpactof age is expected to
be continuous. But the traditional statistical
paradigm, DPEM,gives discrete estimatesof
standard deviations.

Although all the limitations of using
DPEM,when that parameter may be a
function of a continuous variable, can be
important, it is the theoretical limitation that
should give one pause. DPEMing denies ot
makes a rough approximation of the
underlying continuous function. Consider a
case where an ability is related across ages 6
to 14, with the standard deviation increasing
with age. The changesin the standard deviation
would not be a discrete shift from day d to
day d+ 1, Instead there is continual change,
the speed of which may-vary from year to
year. This represents a continuous parameter
estimation situation for which a discrete
estimation, such as computing the standard
deviation for ages 6 to 9 and 10to 12, would
be recommended if and only if continuous
method does not exist. The same problem
thatsillustrated for variances applies to other
statistics, such as skew, kurtosis, correlations,
and residual errors (as noted below).

Using the DPEMcould give a better ot
a poorer estimate depending on how the
groups were constructed. If the groups were
sumerous, then the estimation would be close
to the results from using the CPEM. Butif
broader age groups were made, theresults
would be 2 function of the luck of selecting
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the groups.
In addition to being more theoretically

appropriate, a method of continuous
parameter estimation for parameters such as
variances would be useful for several reasons.

1) CPEMing would eliminate the
theoretical problem: of treating a continuous
function as ifit werediscrete. Variances could
be analyzed for changesjust aseasily as means
are analyzed for change.

2) Theanalysis would have more power
because artificially creatinga discrete variable
from a continuous variable ignores informa-
tion.

3) Because there is no arbitrary division
of the continuous variable into artificial
groups, anystatistical differences in results
which are a function of howthe sample is
divided are eliminated; each study canidentify
the phenomena as well as another study of
the same population.

4) Research studies can be more readily
compared because there would be no
differences in how the continuous variable was
artificially changed into a discrete variable.

5) The procedure suggested below allows
standaedstatistical procedures to be used to
provide parameter estimates,significance tests
if desired, confidence intervals, and
conditional estimates, Since these are standard
procedures, it requires no new statistic
proceduresor programs and can be done with
current computer programs.

CPEMis a broader paradigm that
includes DPEM, the classical approach. Indeed
thestatisticsdiscussed here are so basic each
formula isin a thousandstatistics texts across,
multiple disciplines. It is the use of those
formulaethat changesin going from DPEM
to CPEM. (For references to the statistics
noted in this paper, see any standard statistics
text. The author has, despite using both
standard search engines and consultation with
associates, not found any direct prior work
orusage of the CPEM,)

Thepurpose of this paper is to present
a CPEM model. This allows for continuous
estimation of parameters, including variances
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and correlations. The paper shows how
standard statistic procedures can be applied
to these. Examplesof continuous parameter
estimation (which can be called CPEMing) are
given for several statistics. Hopefully this paper
will provide understanding of CPEM basics
and encourage applying the model to other
parameters as well

2. CONTINUOUS PARAMETERESTIMATION
MobEL(cPEM)

‘To explain the CPEM,an illustration will
be used with two variables, age (X) and math
(¥). Table 1 contains each case’s identification
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in column 1, Assumethe first score (column
2) is age and the second (column 3)is a scale
of mathematical ability whose standard
deviation increases with age. Thestandard
deviation is low with young children because
almost everyonefails all the problems. But as,
the children increase in age, the spread
becomeslarger. Somechildren arestill unable
to do two-digit addition whereas others are
doing more complex multiplication and
division. Then the standard deviationof the
scores for the older children will be higher
than for the younger children.

‘Table 1, CPEM Parameters for Math (¥): variance, skew, and kurtosis, and as a function of

 

    

age (X).
Scores by case

ObservedScores
moa Fa ty ayh ax Baty 2

foe ete re -0.89 0.86 -1.34 1.29 0.092.6 2 on 0.01 0100-1134 0126 0.22
a qs a 2 3-089 0.86 W213 1129lec te i 70.89 0186 0.45 0.435 7 2 0125 0 -0.01 0.00 0.45 0.096 7 3 075 0 0.19 0.11 ~0.45 -0126
ih ole raha cine 70.83 0.86 0.45 -0.43,@ 6 3 075 0 0.19 0.11 0.45 0.2698 4 15 3 2.44 3:29 0.45 0.601091 n4.28) 1.56 3-089 0.88 1.34 -1.29 2.62183078 alse 0:19 011 1134 0177 ola2 9 52s 7.56 8 9.49 20-08 1.34 2184 2113Descriptive statistics

Mean 7.50 2.25 0.00 1.68 0.03 1.00 0.67 2.33 0.00 0.49 0.76SD 1.118 1,299 1.289 1.943 1,000 1.154 2.809 5.419 1,00 0.969.0.886SE Mean 34.39.3939. .30. 38.85, 1.62.30 30” «26
Note. Calculations by Excel. E2 is the squared error of estimation (2y - rxy X axi2
 

Columns4 and5 are the deviations from

the thean ofthe mathematicsscale,y (ie. Y
~ Mean ¥), and the squares of the deviations
from the mean, y’ (ie, (Y-Mean ¥))) These
are presented in statistics texts as a step in
calculating the overall variance but j?is, in
CPEMing,of special interest. Note that? has
a score for eachcase.

‘The columns of Table 1 following y?
includethe second, thisd, and fourth powers
of the Z scores for Y given in column Z,
Note thatthese also have a separate score for
eachcase.

Table 1 contains the means and standard
deviationsof all the columns. The mean of
J7.¥/N,has the same definition as the variance
‘ofthe math scores. Because the square root
of the variance is by definition the standard
deviation, the mean of squared deviationsof
the columnofj? (1.69) equals the square of
the standard deviation of Y (the square of
the standard deviation of column Y, 1.299, is
1.69). The meansof Z* andZ* are the sample
skew and kurtosis. (Textbook formulas may
be mote complex because their equations are
for computing variance, skew, and kurtosis
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directly from the data instead of Z scores,
but Z scores are moreinstructive for this
paper. Formulas are also more complex when
corrected for small sample biasin estimating
the population skew and kurtosis.)

By definition, the mean ofthe column
ZZ, XZZ,/N,is the cortelation between X_
and Y. To compute the correlation for this
‘example, column Z, contains the Z scores for
X. Each case’s Z, score was multiplied by Z,
to give the column Z,Z, The mean of Z,Z, is
the correlation, and indicates that X and Y
correlate 49, Note that each case has a separate
score, ZZ,

Becaiise the correlation between X and
Y, .49, is known, we can estimate Z, from Z_
and compute the error (Z,—r,Z,) and square
that for the final column of Table 1 which
containsthe squared error for each case. (The
conclusions would bethe sameif these were
the squared residuals from estimating the raw
scores of Y from the raw scores of X.) The
mean of E*, DE*/N,is the variance of the
errors of estimation; its square root is the
standard deviationsof the Z score errors of
estimation, knownin the literature as the
“standard error of estimate.” The mean of
E® has a separate score for each case

From thedata in Table 1, two types of
analyses can be computed. Thefirst are tests
and confidenceintervals for the means of each
column. In addition to the raw score mean,
these include the mean variance, mean skew,
mean kurtosis, and the mean Z,Z, (which is
the correlation in the sample from which the
means and SDs were computed to calculate
the Zs). Confidence intervals for each mean
can be computed and examined; for example,
the standard deviation of the mean E? gives
confidence intervals for the squared standard
error. Because the mean of Z,Z, is by
definition the correlation between X’and Y,
it’s confidenceintervals can be examined to
determine if theyinclude zero (the classical
test of the mean forsignificance),

For example, does the confidence
interval for the mean for skew include zero?
If not, then the data are skewed. Does the
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confidence interval for the mean of kurtosis
include that of the normal curve, 3? If not,
then the data are either too flat or too peaked.
Ifthe answer to either question is “no”,then
the data depart from normality. (Of course
if there are no hypotheses as to expected skew
or kurtosis, then both skew and kurtosis
would betested simultaneously forsignificance
to protectthe family wide alphalevel for Type
Terrors (Hotelling’s 7”).

‘The means and confidenceintervals are
the standard statistical paradigm formulas.
‘Textbooks often include formulasthat do not
‘require calculatingall the columns of Table 1,
butthe logicis the same,

CPEMpointsoutthatthe variance,skew,
kurtosis, correlation, and the standard error
of estimate are all means andit allows for a
second, new set of analyzes from scores like
those in Table 1 in addition to the means,
Because we have separate scores for each case
for) (variance), Z(kew), Z; (kurtosis), ZZ,
(correlations), and E* (errors of estimation),
each set of scores can be analyzed just as any
othervariable. For example, to test if the
variances differ actoss groups comparedto
the grand mean, the meany*is computed for
each group in a simple ANOVA: Totest if
the variances differ from one groupto another
in addition to differences from meandifferen-
ces, newy's would be computedas deviations
from the mean of each group and then
compared (they?in thetable contains variation
from both the between group variance and
the within group variance). The skew and
kurtosis indices can likewise be dependent
variables to evaluateif the data may be non-
normal; for example, whether the data are
non-normalfor males but notfor females is
evaluated by using the skew and kurtosis
columns of Table 1 as dependent variables
with gender as the independent variable.

These examples used a nominal
independentvariable but, because CPEM has
separate scores for each case for these
variables, correlations can be also computed
with anyothervariables we choose. For
‘example, whatis the correlation of education



Chiang MaiJ Sei. 2005; 32(1)

or intelligence with the columns of Table 1?
Do more educated people have greater
variance, or a different skew or kurtosis?

Does thevariable correlate differently with
othervariables; if so,can it be estimated more
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or less accurately? CPEM providesfor ready
examination of questions such as these. The
correlations among the variables of Table 1
are in Table 2.

Table 2. Correlations among columnsof Table 1.
 

Variables 1. 2. 3. 4.
xX 1. 1.00
Y 2. .49 1.00
y 3. 49 1.00 1.00
Yo heh: 98 581.00
Zy 3. AT 239.99 155 1

2? 6. 43.58.58 1.00
3 7, 45.83.83 .90ag 45

zy 8. 42.66 166.96
2 «9. 1600.49 4943
2,Zy 10. -.05 .50 50.69

Bet Adel sibah 1620, 420 "62

5: 65m NBA S9ROe

-00

+55 1.00

+82 .90 1.00

+65 .96 .96 1.00
+47 43.450 42 1.00
+49 669° 70.72 ~.05 1.00

17.62.45 54.64 -.12 1.00   
Many ofthese statistics are best compu-

ted sequentially. For example, it may be that)?
differs significantly between males and
females. Then all estimates using Z scores
would calculate the Zs using each separate
gender’s estimatedy? to compute the standard
deviation.

Among CPEM’stests are those associa
ted with the column of ZZ,This allows
analysis of the conditions under which the
correlation shifts. If males differ from females

when Z,Z, is used as the dependent variable,
then theréis better prediction for onegender
than another. If is a possible item for a
scale and Y is a ctiterion, using ZZ, as the
dependentvariable and ethnicity as the
independentvariable tests whether the item is
equally predictive forall ethnic groups. (Note
that if each gender has the same mean and
SD,then this is analyzing the correlations
directly; otherwise it is analyzing an index
related to the correlation since YZ,Z,/N is
onlythe correlation in the total sample from
which the Zs were computed. A complete
analysis would also use appropriate x°s and

Js to evaluate whether the correlation was
shifting due to differences in the variances
which would be indicative of restriction of
range)

Correlatingthe errors from the rawscore
estimation of ¥ from X with itself is a
valuable analysis, Correlating X with E?
addresses the question ofthe degree to which
theprediction is equally accurate forall levels ~
of X. If Xis uncorrelated with the squared
residuals, E, then the prediction is the same
at all levels of X (@ condition known as
homoscedastic). But ifthereis a correlation,
then X is not equally predictive of Y at all
levels (a condition known as heteroscedastic).
A simple positive correlation means that the
error of estimationincreases as X increases,
and so Xis most predictive atthe low end. If
the correlation were negativeinstead of
positive, then X would predict poorly atthe
low end butbetter at the high end.

‘The errors may be a curvilinearfunction
of X. Oneexample is when there is an end
effect for the lowest scores restricting the varia-
tions in scores. Then a polynomial regression
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(computed byusing powers of X as predic-
tors in a multiple regression) of X to the E?
would be computed. If the correlation is
curvilinear (found when Z,? or Z,?is signifi-
cant), computing samples of the relationship
is usuallythe basis for interpretation.

In the example, Xcorrelates .64 with the
E}. This means thatthe errors of prediction
increase with increases in X (see Table 1,
comparing X with the squared residual
column). The sample does not have a homoge-
neous exror variance; instead the errors of
estimation are a function of age. The regres-
sion ofBis given by the following raw score
regression equation’

Raw Math Score E,? = .75 X Age - 3.937

This formula is used to compute the
estimated squared error for any age group.
Because the estimateis for an age group,it is
the mean for that group. Theestimated
standard deviation,thats, the Standard Error
of Estimate or SE ofestimate,is the square
root of the estimated squared error. For
example, the estimated squared errorat age 7
is.75 X 7 - 3.937 = 1.313; the SE ofestimate
is the square rootofthe variance, 1.15, which
is smaller than the standard deviation of the
entice sample. Note thattesting the older half
against the younger half may notbe significant
despite thefact thatthe correlation of age with
the math squared deviations is significant.This,
possible result is because CPEM uses all the
data fromall ages and henceis more sensitive
to predicted relationships than discretized
estimates based on nominalized continuous
variables

Because correlations can be analyzed as
a function of other variables, CPEM can be
useful in analysis oftests and theiritems. Items
are selected based on their means, standard
deviations, and correlationsin the classicaltest
theory and with variations of these in item
response theories, and CPEMing provides for
item and test statistics conditional upon other
variables. Reliabilities and validities use
correlations,and so conditional reliabilities and
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validities are useful parts of CPEM. For
example, an endeffect means a test is both
less valid and less reliable at the end of the
test wherethe effectis found. CPEMallows
for analysisofthe shiftin reliability and validity
as a function ofend effect. A test score for a
particular person can he interpreted taking into
accountthe conditional validities and reliabili-
ties specific to that person, including end
effects.

Because variables such asy? and Z,Z, are
just variables within our set of variables, any
analysis of theoretical interest that can be
processed bythe usual statistical methods can
be used. This includesregression analysis and
ANOVA.It also includespartialing out other
variables and multivariate analyzes.

3, THE QUESTION OF NORMALITY
But wait! How can it be appropriate to

compute correlations with variables raised to
the second,third, and fourth powers? These
variables cannot be distributed normally if the
raw scores are normally distributed.

‘The first point regarding normality is that
CPEMallows more powerful ways of
‘examining distributions to evaluate whether
theyare normal. Analyses of variance, skew,
and kurtosis conditional on other variables,
possible with CPEM,provide information
aboutthe distributions ofvariables and of

errorterms. Simulationstudies on the impact
of normality may be more informative by
CPEMing.

Ifa CPEMparameter such asy' ot Z,Z,
differs as a functionofanothervariable,as in
the example with age, the rawscore distribu-
tion and uncorrected residuals may be
disturbed accordingly. When,for example,»°
is regressed on age, the impact of age as a
disturbance in the distribution is eliminated
from the residuals ofy and these corrected
values are more likely to be normally distribu-
ted across samples. In this case, CPEM actually
increases the possibly ofmeeting the assump-
tion of normal distribution of error.

There are two reasons the phrase
“normally distributed variables”is used. One
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reason for desiring normal distributions is
because the maximumvalueofa correlation

ra difference between means--may be
reduced if there are variationsin distributions.

Two variables with different distributions
cannotcorrelate 1.0 with each other (although
they may be able to correlate -1.0 if one
variable’ distribution is the mirror image of
the other). Only if all variables have the same
symmetric distribution can the possible
correlations range from —1.0 to 1.0. However
thatis not an absolute requirementbecause
high correlations can occur despite some
varying distributions, and it may be
superseded by other concerns. For example,
polynomial regression uses powers of X to
predict Y5if X'is normal, the square and cube
of X cannotbe normal. Yet polynomial
regression is an accepted procedure for
examiningpossible curvilinear relationships.

Despite differencesin distributions that
preventcorrelationsfrom being 1.0, the use
of squares and cubes under conditions
preventing them from correlating 1.0 attests
to the fact that this is not a disqualifying
problem, Indeed as long as a correlation is
large enough to be judged useful, the attenua-
tingfactors have not wiped outthe relation-
ship. Itis primarily when a correlation is too
low to be useful that oneinvestigates possible
attenuating factors such as distributions.
CPEManalyses follow in this tradition.

‘The second reason for assuming normali-
ty is that using the standard procedures for
confidence intervals and significance tests does
include a normality assumption: the assump-
tion that thestandard deviations of the errors
ofthat parameter (a) are normally distributed
across samples and (b)can beestimatedfrom
the current sample. Note thatthe raw scores
can be distributed in any manner whatsoever
solongasthat does notaffect the distributions
of the errors upon which the standard errors
are based. As an example, consider the test
of amean ofYagainstzero. Its standard error
is SD,/(N-1)°. This standard erroris an
estimate of the standard deviation of means

across samples randomly drawn from the
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samepopulation, but the observed SD, is a
function of y*. The assumption is is-a
sufficiently accurate population estimate not
only for the standard deviation but also for
the standard deviation of means across
samples (called the standard error of the
mean),

‘The first requirement, thatthe distribution
of the statistic computed from many samples
is normally distributed,is the easily made.
Although the raw distribution of CPEM
parameters may include variables that are not
normallydistributed,the central limit theorem
indicates that estimates of means across
samples will be normally distributed regard-
less of the variable’: distribution. Theprinciple
is similar to those thatallow flipping of coins
to illustrate the normal curve even though
each flip gives a dichotomous result: if you
flip enough ofthem,thedistribution becomes
normal. It is alsoillustrated by the fact that
adding together six values from uncorrelated
rectangular distributions gives scores that are
normallydistributed. The central limie theorem
requires assuming thatthe samplesdiffer only
randomly, Then thestatistic will average to
the population mean with the meansacross
the samples forming a normal distribution,
This appears to be the case with CPEM
variables such as such as and E*.

‘Thesecond requirement, that the standard
error of our statistic across samples be
estimated from terms within our sample, may
be problematic because the estimate can be
affected by the observed variable disteibutions.
Thequestion then becomesthat of whether
the sample based estimate of standard errors
is affected sufficiently to give a misleading
estimate of the standard deviation across
samples. For example, some CPEM variables
are skewed. Then the meanis not equally
distant from the minimum andthe maximum
scores, which mayaffect the standard

deviation and so the standard error of the

mean. The more problematic ofthese is when
the skewed is caused by an endeffect.

Toillustrate endeffects, note that if one

sample has a proportion of .95 instead of
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the population value of 99, there is no way a
1.04 can occurin another sample to average
out the 95 to obtain the population value of
.99. So the errors are unlikely to be normally
distributed,

To examine the impact of an end effect
on estimation of standard errors, 500 samples
were run for Ns of 50, 100, and 1000 with a
known skewed variable: population
proportionsof 95, .98, and.99. The SEs were
computed within each sample by the standard
formula for the sample based SEs of the
mean, and averaged. To check whether the
distortion from the end effect produced
problemsforthe sample based SEs, SEs were
computed empirically by computing the
observed SEs across the 500 samples for each
of the three sample sizes for each of the three
levels ofpercentages.

Table 3 contains the average sample
based standard errors and the empirical
standard errors computed from the multiple
samples. Note that the sample based standard
errors are close to the ones computed across
samples even for the most skewed variable,
99. The sample based SEs are generally
conservative, so using the sample based
standard error of the mean would make
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slightly less Type I errors than by using the
actual standard error (from the empirical
simulations). Thesimilarity increases as the N
increases.

Another example is the SE of cotrela-
tions. If we wish, we could testthe significance
of the mean of Z.Z, by that mean’s SE based
on the observed standard deviation of the
ZZ, column (i €, (SD of Z,Z) / (N-1)°. We
also have an exact procedure, Fisher's Z
technique, which is independent of any
distribution in Table 1. It produces a SE that
can be compared to the SE of the mean based
on Z,Z, Using the correlation mentioned
above and testing the correlation against 0.0
gives a ¢ of 1.63 when the SE is computed
from the data and 1.59 by the Fisher Z test.
‘Once again the test using the standard error
of the mean is close to the traditional test.
‘The pointis not that the traditional tests be
abandoned bitthattreating the CPEMpara-
meters as we do other variables is reasonable
despite obvious skew.

Te appears that the standard error of the
mean of many CPEMvariables can be used
and these results may generalize by extension
to ANOVAand multiple regression standard
errors. The usual statistical tests appear to be

‘Table 3. Standard errors computed byformula and bysimulations (500)for end effect data.
 

Proportion

 

+95
+98
299

| +95
+98
99

N 1000
298
98
-93

Standard Error

By Formula Observed

-0308 0298
+0198 20192
20141 20132

|

-0218 0219
+0140 +0130
+0099 +0099

|
-0069 -0068 |
20044 20044 |
-0031 -0032 |
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usable with CPEM. However, until more
work is done,it is wise to have a large N if
CPEMingis planed.

4, AFURTHERILLUSTRATION

In addition to theillustration of the
variance differing as a function of age, another
simpleillustration ofCPEM can be given for
the testing of homogeneity of variances.
Assume that one has two experimental
conditions to reduce anxiety--standard
desensitization ofanxiety and a special Anti-
Anxiety Program--and two control groups,
one a non-treated control and the other a

discussion group as a type of placebo control.
To test for mean differences, one assumes the
within group variances, thatis, the withiny2
means, are equal. The question is: do these
groups differ in their variances on the
‘outcome measure of anxiety?

To test for homogeneity of variances,
each person's anxiety score would be subtrac-
ted from his or her own group mean, and
thatdifference would be squaredto give the
#8. Using group as theindependentvariable
in a simple ANOVA with the squared
differences from the individual group means
as the dependent variable provides a signifi-
cancetest as well as confidenceintervals. Tests

of differences between ° means overall or
between selected groupscan be computed
with standard post hoc procedures, such as
protected F tests or Scheffe tests. Thus CPEM.
provides a test of homogeneity of variances
jin ANOVAdesigns.

‘The regression version of testing for
homogeneity of varianceis to test for
homoscedasticity. When the relationship is
homoscedastic, the regression equation
predicts equally well at all levels of the
independentvariable. Whenthe relationship
is heteroscedastic, then the accuracy of
prediction varies. With DPEMheteroscedas-
ticity is seldom checked, and so itis assumed
that the prediction is equally good at all levels.
CPEM allowsthis issue to be explicitly tested,
and,if heteroscedasticityis found, allows for
thatinformation to be used as noted above.
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It also allows for other modeling ofthe
heteroscedastic effect.

Heteroscadisticity can occur for many
teasons, one of which is a curvilinear
relationship between Xand Y. And there may
still be heteroscadisticity in addition to
curvilinearity. A case can be made for
expecting curvilinear heteroscedasticrelation-
ships when predicting behaviors from abilities.
Abilities predictif a person can or cannotdo
the activityunder the assumptionthatthey are
motivated to do so; under the condition of
equal motivation the prediction would be
expected to be linear and homoscedastic.

But people may have an ability, as perhaps
shown by passing an algebra course, --as
pethaps shownbypassing an algebra course
~but vary in their interest in usingit; situations,
requiring algebra are avoided by some and
sought out by others among those who can
do algebra. With varying motivation low
ability still predicts that they will not do
algebra (both low and high motivation predict
the same low usage astheycan not do it even
if theywish to). But the prediction among
those who can do algebrais not from abilities
but from motivation (as theycan all do it if
they wish). The model states that algebra ability
would predict well among those with low
ability as no one can doit but would not
predict who amongthe algebra proficient
would actually use it. Thus there should be ¢
curvilinear relationship (a prediction for low
scores and none for moderate and high
scores) and the standard deviation of errors
of prediction should be higher among those
with ability than among those without.
CPEMing can readily provide SE of estimates
for all levels of even curvilinear predictors.

Using the example of the previous
paragraph, a set of data was made where an
algebra test predicts well those who will never
do algebra but the test predicts algebra
behavior less among those who can do algebra
(but maychoose not to). Theprediction from
algebra scoresis curvilinear becauseit
definitely predicts at the low endbutflattens
towards zero prediction at moderate high
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math scores (no curvilinear analysis was given
for Table 1 because of the small N). It is
expected to also be heteroscedastic because
the prediction is good for low scores but
poor for higher scores.

Analyzing the data by polynomial
regression found a curvilinear relationship as,
expected, indicating that both algebra test
scores and algebra scores squared were
necessary to predict algebra usage well (sce
Table 4. A). The relationship is reasonably
strong. The traditional discrete parameter
estimation model gives the SE estimate
presented in Table 3. B, following the curvi-
linear (polynomial) regression analysis.

CPEManalyzes for homogeneity of
estimation were conducted byanalyzing the
squared errors of prediction. These are found
byusing the formula from 4. A to estimate
cach observed score, computing the residual
bysubtracting the estimates from the observed
scores, and squaring the residuals. Analyzing
for the SE estimate from the CPEM model
(Table 3. ©) uses the squared residuals as the
dependent variable and algebra and algebra
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squared as the independent variables to
produce an equation for the mean squared
errors (which are converted to SE estimates
bytakingtheir square root). Because there was
a relationship between test scores and the
squared errors of prediction (R = .43), the
errors of estimation are not homogeneous
and the relationship is heteroscedastic.

Section D of Table 4 contains the
estimated algebra usage score for sample levels
of the algebra test scores. It includes the
CPEMSE estimatesfor confidence intervals.
Section D shows that the actual situation is
better described with CPEM than with
DPEM.Notethat the prediction is excellent
for the lowest algebra score,is almost the same
as the raw standard deviation for the middle
algebra scores but is greater for the highest
algebra scores. (Theslight drop in predicted
scores at the end is not significant.)

In Table 4. D the correlation at eachlevel
ofthe independent variable was estimated by
solving the equation of 4. B for r, using the
SE estimate for each level ofthe independent
variable and the same sample standard

‘Table 4. Discrete and CPEManalysis of error variancesin the presence of curvilinear prediction.
 

A, Curvilinear Regression
Algebra Usage ~ 1.452 X Algebra ~.0979 x Algebra? -.2184
Re 76

B. Discrete Parameter Estimation of Errors Of Estimation
Ske = Sy X (1 - ray2) 5
SEe = 1.756 X (1 - .762).5
SEe = 1.14

C. Continuous Parameter Estimation (CPE) of Errors of Estimation
(Regression of (Y-¥')2 on Algebra Test)

Mean Squared Residual = .268 X Arithmetic + 0.0
| 3

D. Sample Predicted Scores With Their Standard Deviations of Errors (SEs)

Algebra
Predicted SE estinate

scores usage taith 2)

La 245 (.92)
3.3 -88 (.86)
ae 11d (76)
5.2 isa (49)
a3 Asa (35)
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deviation (to counter restriction of range). The
correlation is what would occurif a sample
with the SD of the total sample showed the
same relationship across the range as found
within this sub-sample. As expected, the
prediction gives an excellent standardized
correlation for the lowestlevel of scores but
a low standardized correlation at the highest
level ofthe independent variable. This extra
dividend of estimating correlations, standard
ized forrestriction ofrange, for differentlevels
illustrates how the CPEMperspective can give
usefulinformation.

CPEMresults for the example are more
complicated thandiscrete results because the
situation is complicated; using the traditional
paradigm loses considerable information so
that a SE estimate of1.14 would be used for
all in Table 4. DPEMfailsto tell the complete

story: scoring low has a correlation of .9 with
notusing algebra with a low SE estimate, but
scoring high has much less predictive power
as seen in the high SE estimate. This is true
even thoughthe traditional analysis allowed
for curvilinear prediction. For applied
purposes, the equation for the prediction of
the dependentvariable and the equation for
the prediction of the SE estimate can be
computerized so that the appropriate mean
and SE canbe provided for any case as a
function of that case’s scoreson the predicted
(andother) variables,

a

Ofcourse, if noneof the additional
vatiables possible by CPEMing show effects,
then the analysis is the traditional one since
DPEMis a special case of CPEM.

5. CONCLUSION:
‘The Continuous Parameter Estimation

‘Model suggests a broader model of which
traditional statistics (Discrete Parameter
Estimation Model) is a special case. CPEM
can be used for improved understanding of
data, It provides tests of and estimation
procedures for heterogeneousvariances and
standard errors andis also useful for evaluating
the sourcesof the heterogeneity. Although «
new conceptualization,itis another application
of traditional statistics and so can be
computed with anystatistics package.

CPEMis recommendedfor every study
on a trial basis because we haveso little
experiencein asking the questionsthat can be
addressed with it. This couldinvolve a number
of analyzes in one study. For example,all
possible ZxZs for a dozen variables would
be examined, To protect the overall alphalevel
forthe study, a multivariate test ofan entire
set of CPEMparameters are recommended
to guide decisions on when the broader
CPEMparadigm is useful.
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* As a paradigm paper, readers often have an “ah ha” experience which then can be applied
without further consulting ofthis paper; when you use the new insight gained, please (1) cite
this paper and (2) send me a copyof your use ofit. Thank you.

* No references are given for the formulas used in this paper because they are in every
introductorystatistics book. No references ate given to previous discussions ofthis type
model becauseI (and the several psychologists and statisticians who have reviewed the paper
or attended lectures where it was presented) do notknowof any previous modellike this.


