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ABSTRACT

Is it possible to define a coefficient of correlation which is (a) as simple as the classical coefficients
like Pearson’s correlation or Spearman’s correlation, and yet (b) consistently estimates some simple and
interpretable measure of the degree of dependence between the variables, which is 0 if and only if the
variables are independent and 1 if and only if one is a measurable function of the other, and (c) has a
simple asymptotic theory under the hypothesis of independence, like the classical coefficients? This article
answers this question in the affirmative, by producing such a coefficient. No assumptions are needed on
the distributions of the variables. There are several coefficients in the literature that converge to 0 if and
only if the variables are independent, but none that satisfy any of the other properties mentioned above.
Supplementary materials for this article are available online.
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1. Introduction

The three most popular classical measures of statistical asso-
ciation are Pearson’s correlation coefficient, Spearman’s ρ, and
Kendall’s τ . These coefficients are very powerful for detecting
linear or monotone associations, and they have well-developed
asymptotic theories for calculating p-values. However, the big
problem is that they are not effective for detecting associations
that are not monotonic, even in the complete absence of noise.

There have been many proposals to address this deficiency
of the classical coefficients (Josse and Holmes 2016), such as
the maximal correlation coefficient (Hirschfeld 1935; Gebelein
1941; Rényi 1959; Breiman and Friedman 1985), various
coefficients based on joint cumulative distribution functions
and ranks (Hoeffding 1948; Blum, Kiefer, and Rosenblatt 1961;
Yanagimoto 1970; Puri and Sen 1971; Rosenblatt 1975; Csörgő
1985; Romano 1988; Bergsma and Dassios 2014; Nandy, Weihs,
and Drton 2016; Weihs, Drton, and Leung 2016; Han, Chen,
and Liu 2017; Wang, Jiang, and Liu 2017; Drton, Han, and Shi
2018; Gamboa, Klein, and Lagnoux 2018; Weihs, Drton, and
Meinshausen 2018; Deb and Sen 2019), kernel-based methods
(Gretton et al. 2005, 2008; Sen and Sen 2014; Pfister et al.
2018; Zhang et al. 2018), information theoretic coefficients
(Linfoot 1957; Kraskov, Stogbauer, and Grassberger 2004;
Reshef et al. 2011), coefficients based on copulas (Sklar 1959;
Schweizer and Wolff 1981; Dette, Siburg, and Stoimenov 2013;
Lopez-Paz, Hennig, and Schölkopf 2013; Zhang 2019), and
coefficients based on pairwise distances (Friedman and Rafsky
1983; Székely, Rizzo, and Bakirov 2007; Székely and Rizzo 2009;
Heller, Heller, and Gorfine 2013; Lyons 2013).

Some of these coefficients are popular among practitioners.
But there are two common problems. First, most of these co-
efficients are designed for testing independence, and not for
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measuring the strength of the relationship between the vari-
ables. Ideally, one would like a coefficient that approaches its
maximum value if and only if one variable looks more andmore
like a noiseless function of the other, just as Pearson correlation
is close to its maximum value if and only if one variable is close
to being a noiseless linear function of the other. It is sometimes
believed that the maximal information coefficient (Reshef et al.
2011) and the maximal correlation coefficient (Rényi 1959)
measure the strength of the relationship in the above sense, but
we will see later in Section 6 that that’s not necessarily correct.
Although they aremaximized when one variable is a function of
the other, the converse is not true. They may be equal to 1 even
if the relationship is very noisy.

Second, most of these coefficients do not have simple asymp-
totic theories under the hypothesis of independence that facili-
tate the quick computation of p-values for testing independence.
In the absence of such theories, the only recourse is to use
computationally expensive permutation tests or other kinds of
bootstrap.

In this situation, one may wonder if it is at all possible to de-
fine a coefficient that is (a) as simple as the classical coefficients,
and yet (b) is a consistent estimator of some measure of depen-
dence which is 0 if and only if the variables are independent
and 1 if and only if one is a measurable function of the other,
and (c) has a simple asymptotic theory under the hypothesis of
independence, like the classical coefficients.

Such a coefficient is presented below. The formula is so
simple that it is likely that there aremany such coefficients, some
of thempossibly having better properties than the one presented
below.

Let (X,Y) be a pair of random variables, where Y is not a
constant. Let (X1,Y1), . . . , (Xn,Yn) be iid pairs with the same
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law as (X,Y), where n ≥ 2. The new coefficient has a simpler
formula if theXi’s and theYi’s have no ties. This simpler formula
is presented first, and then the general case is given. Suppose
that the Xi’s and the Yi’s have no ties. Rearrange the data as
(X(1),Y(1)), . . . , (X(n),Y(n)) such that X(1) ≤ · · · ≤ X(n). Since
the Xi’s have no ties, there is a unique way of doing this. Let ri
be the rank of Y(i), that is, the number of j such that Y(j) ≤ Y(i).
The new correlation coefficient is defined as

ξn(X,Y) := 1 −
3
∑n−1

i=1 |ri+1 − ri|
n2 − 1

. (1)

In the presence of ties, ξn is defined as follows. If there are
ties among the Xi’s, then choose an increasing rearrangement
as above by breaking ties uniformly at random. Let ri be as
before, and additionally define li to be the number of j such that
Y(j) ≥ Y(i). Then define

ξn(X,Y) := 1 −
n

∑n−1
i=1 |ri+1 − ri|

2
∑n

i=1 li(n − li)
.

When there are no ties among the Yi’s, l1, . . . , ln is just a per-
mutation of 1, . . . , n, and so the denominator in the above
expression is just n(n2 − 1)/3, which reduces this definition to
the earlier expression (1).

The following theorem shows that ξn is a consistent estimator
of a certain measure of dependence between the random vari-
ables X and Y .

Theorem 1.1. If Y is not almost surely a constant, then as n →
∞, ξn(X,Y) converges almost surely to the deterministic limit

ξ(X,Y) :=
∫
var(E(1{Y≥t}|X))dµ(t)∫

var(1{Y≥t})dµ(t)
, (2)

whereµ is the law ofY . This limit belongs to the interval [0, 1]. It
is 0 if and only if X and Y are independent, and it is 1 if and only
if there is a measurable function f : R → R such that Y = f (X)

almost surely.

Remarks. 1. Unlike most coefficients, ξn is not symmetric in
X and Y . But that is intentional. We would like to keep
it that way because we may want to understand if Y is a
function X, and not just if one of the variables is a function
of the other. If we want to understand whether X is a
function of Y , we should use ξn(Y ,X) instead of ξn(X,Y). A
symmetricmeasure of dependence, if required, can be easily
obtained by taking the maximum of ξn(X,Y) and ξn(Y ,X).
By Theorem 1.1, this symmetrized coefficient converges in
probability to max{ξ(X,Y), ξ(Y ,X)}, which is 0 if and only
if X and Y are independent, and 1 if and only if at least one
of X and Y is a measurable function of the other.

2. It is clear that ξ(X,Y) ∈ [0, 1] since var(1{Y≥t}) ≥
var(E(1{Y≥t}|X)) for every t. If X and Y are independent,
then E(1{Y≥t}|X) is a constant, and therefore, ξ(X,Y) = 0.
If Y is a measurable function of X, then E(1{Y≥t}|X) =

1{Y≥t}, and so ξ(X,Y) = 1. The converse implications are
proved in the supplementary materials. The most nonob-
vious part of Theorem 1.1 is the convergence of ξn(X,Y)

to ξ(X,Y). The proof of this, given in the supplementary
materials, is quite lengthy. For the convenience of the reader
(and to facilitate possible future improvements), a brief
sketch of the proof is given in Section 8.

3. In Theorem 1.1, there are no restrictions on the law of
(X,Y) other than that Y is not a constant. In particular,
X and Y can be discrete, continuous, light-tailed or heavy-
tailed.

4. The coefficient ξn(X,Y) remains unchanged if we apply
strictly increasing transformations to X and Y , because it
is based on ranks. For the same reason, it can be computed
in time O(n log n). We will see later that the actual compu-
tation on a computer is also very fast. The cost that we have
to pay for fast computability, as we will see in Section 4.3, is
that the test of independence based on ξn is sometimes less
powerful than tests based on statistics whose computational
times are quadratic in the sample size.

5. The limiting value ξ(X,Y) has appeared earlier in the
literature (Dette, Siburg, and Stoimenov 2013; Gamboa,
Klein, and Lagnoux 2018). The paper (Dette, Siburg, and
Stoimenov 2013) gives a copula-based estimator for ξ(X,Y)

when X and Y are continuous, that is consistent under
smoothness assumptions on the copula and appears to be
computable in time n5/3 for an optimal choice of tuning
parameters.

6. The coefficient ξn looks similar to some coefficients de-
fined earlier (Friedman and Rafsky 1983; Sarkar and Ghosh
2018), but in spite of its simple form, it seems to be genuinely
new.

7. Multivariate measures of dependence and conditional de-
pendence inspired by ξn are now available in the preprint
(Azadkia and Chatterjee 2019).

8. If the Xi’s have ties, then ξn(X,Y) is a randomized estimate
of ξ(X,Y), because of the randomness coming from the
breaking of ties. This can be ignored if n is large, because ξn
is guaranteed to be close to ξ by Theorem 1.1. Alternatively,
one can consider taking the average of ξn over all possible
increasing rearrangements of the Xi’s.

9. If there are no ties among the Yi’s, the maximum possible
value of ξn(X,Y) is (n − 2)/(n + 1), which is attained if
Yi = Xi for all i. This can be noticeably less than 1 for small
n. For example, for n = 20, this value is approximately 0.86.
Users should be aware of this fact about ξn. On the other
hand, it is not very hard to prove that theminimumpossible
value of ξn(X,Y) is −1/2 + O(1/n), and the minimum is
attained when the top n/2 values of Yi are placed alternately
with the bottom n/2 values. This seems to be paradoxical,
since Theorem 1.1 says that the limiting value is in [0, 1].
The resolution is that Theorem 1.1 only applies to iid sam-
ples. Therefore, a large negative value of ξn has only one
possible interpretation: the data does not resemble an iid
sample.

10. An R package for calculating ξn and p-values for testing
independence (based on the theory presented in the next
section), named XICOR, is now available on CRAN (Chat-
terjee and Holmes 2020).



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2011

2. Testing Independence

The main purpose of ξn is to provide a measure of the strength
of the relationship between X and Y , and not to serve as a test
statistic for testing independence. However, one can use it for
testing independence if so desired. In fact, it has a nice and sim-
ple asymptotic theory under independence. The next theorem
gives the asymptotic distribution of

√
nξn under the hypothesis

of independence and the assumption that Y is continuous. The
more general asymptotic theory in the absence of continuity is
presented after that.

Theorem 2.1. Suppose that X and Y are independent and Y is
continuous. Then

√
nξn(X,Y) → N(0, 2/5) in distribution as

n → ∞.

The above result is essentially a restatement the main the-
orem of Chao, Bai, and Liang (1993), where a similar statistic
formeasuring the “presortedness” of a permutationwas studied.
We will see later in numerical examples that the convergence in
Theorem 2.1 happens quite fast. It is roughly valid even for n as
small as 20.

If X and Y are independent but Y is not continuous, then
also

√
nξn converges in distribution to a centered Gaussian law,

but the variance has a more complicated expression, and may
depend on the law of Y . For each t ∈ R, let F(t) := P(Y ≤ t)
and G(t) := P(Y ≥ t). Let φ(y, y′) := min{F(y), F(y′)}. Define

τ 2 =
Eφ(Y1,Y2)

2 − 2E(φ(Y1,Y2)φ(Y1,Y3)) + (Eφ(Y1,Y2))
2

(EG(Y)(1 − G(Y)))2
,

(3)

where Y1,Y2,Y3 are independent copies of Y . The following
theorem generalizes Theorem 2.1.

Theorem 2.2. Suppose that X and Y are independent. Then√
nξn(X,Y) converges to N(0, τ 2) in distribution as n → ∞,

where τ 2 is given by the formula (3) stated above. The number
τ 2 is strictly positive if Y is not a constant, and equals 2/5 if Y is
continuous.

The simple reason why τ 2 does not depend on the law of
Y if Y is continuous is that in this case F(Y) and G(Y) are
Uniform[0, 1] randomvariables, which implies that the expecta-
tions in (3) do not depend on the law ofY . IfY is not continuous,
then τ 2 may depend on the law of Y . For example, it is not
hard to show that if Y is a Bernoulli(1/2) random variable, then
τ 2 = 1. Fortunately, if Y is not continuous, there is a simple way
to estimate τ 2 from the data using the estimator

τ̂ 2n =
an − 2bn + c2n

d2n
,

where an, bn, cn, and dn are defined as follows. For each i, let

R(i) := #{j : Yj ≤ Yi}, L(i) := #{j : Yj ≥ Yi}. (4)

Let u1 ≤ u2 ≤ · · · ≤ un be an increasing rearrangement of

R(1), . . . ,R(n). Let vi :=
∑i

j=1 uj for i = 1, . . . , n. Define

an :=
1

n4

n∑

i=1

(2n − 2i + 1)u2i , bn :=
1

n5

n∑

i=1

(vi + (n − i)ui)
2,

cn :=
1

n3

n∑

i=1

(2n − 2i + 1)ui, dn :=
1

n3

n∑

i=1

L(i)(n − L(i)).

Then we have the following result.

Theorem 2.3. The estimator τ̂ 2n can be computed in time
O(n log n), and converges to τ 2 almost surely as n → ∞.

I do not have the asymptotic theory for ξn(X,Y)when X and
Y are dependent. Simulation results presented in Section 4.2 in-
dicate that even under dependence,

√
n(ξn−ξ) is asymptotically

normal.
One may also ask about the asymptotic null distribution of

the symmetrized statistic max{ξn(X,Y), ξn(Y ,X)}. It is likely
that under independence, this behaves like the maximum of
a pair of correlated normal random variables. At this time I
do not have a proof of this claim, nor a conjecture about the
parameters of this distribution. Of course, it is easy to carry
out a permutation test for independence using the symmetrized
statistic.

The rest of the article is organized as follows. We begin with
an amusing application of ξn to Galton’s peas data in Section 3.
Various simulation results are presented in Section 4. An appli-
cation to a famous gene expression dataset is given in Section 5.
The inadequacy of MIC andmaximal correlation for measuring
the strength of relationship between X and Y is proved in Sec-
tion 6. A summary of the advantages and disadvantages of using
ξn is given in Section 7. A sketch of the proof of Theorem 1.1 is
given in Section 8. Complete proofs of all the theorems of this
section and the previous one are available in the supplementary
materials, and also at https://arxiv.org/abs/1909.10140.

3. Example: Galton’s Peas Revisited

Sir Francis Galton’s peas data, collected in 1875, is one of the
earliest andmost famous datasets in the history of statistics. The
data consists of 700 observations of mean diameters of sweet
peas in mother plants and daughter plants. The exact process of
data collection was not properly recorded; all we know is that
Galton sent out packets of seeds to friends, who planted the
seeds, grew the plants, and sent the seeds from the new plants
back to Galton (see Stigler 1986, p. 296 for further details). The
dataset is freely available as the “peas” data frame in the psych
package in R.

Let X be the mean diameter of peas in a mother plant, and Y
be the mean diameter of peas in the daughter plant. As already
observed by Pearson long ago, the correlation between X and
Y is around 0.35. The Xi’s have many ties in this data, which
means that ξn(X,Y) is random due to the random breaking
of ties. Averaging over 10,000 simulations gave a value close
to 0.11 for ξn(X,Y). The p-value for the test of independence
using Theorems 2.2 and 2.3 came out to be less than 0.0001, so
ξn(X,Y) succeeded in the task of detecting dependence between
X and Y .

Thus far, there is nothing surprising. The real surprise, how-
ever, was that the value of ξn(Y ,X) (instead of ξn(X,Y)) turned
out to be approximately 0.92 (and it appeared to be independent
of the tie-breaking process). By Theorem 1.1, this means that X
is close to being a noiseless function ofY . From the scatterplot of
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Figure 1. Scatterplot of Galton’s peas data. Thickness of a dot represents the
number of data points at that location. (Figure courtesy of Susan Holmes.)

the data (Figure 1), it is not clear how this can be possible. The
mystery is resolved by looking at the contingency table of the
data (Table 1). Each row of the table corresponds to a value of
Y , and each column corresponds to a value of X. We notice that
each column has multiple cells with nonzero counts, meaning
that for each value of X there are many different values of Y
in the data. On the other hand, each row in the table contains
exactly one cell with a nonzero (and often quite large) count.

That is, for any value of Y , every value of X in the data is the
same.

For example, among all mother plants with mean diameter
15, there were 46 cases where the daughter plant had diameter
13.77, 14 had diameter 14.77, 11 had diameter 16.77, 14 had
diameter 17.77, and 4 had diameter 18.77. On the other hand,
for all 46 daughter plants in the data with diameter 13.77, the
mother plants had diameter 15. Similarly, for all 34 daughter
plants with diameter 14.28, the mother plants had diameter 16.

Common sense suggests that the reason behind this strange
phenomenon is surely some quirk of the data collection or
recording method, and not some profound biological fact. (It
is probably not a simple rounding effect, though; for instance,
in all 46 cases where Y = 13.77, we have X = 15, but for all
37 cases where Y = 13.92, which is only slightly different than
13.77, we have X = 17.) However, if we imagine that the values
recorded in the data are the exact values that weremeasured and
the observations were iid (neither of which is exactly true, as I
learned from Steve Stigler), then looking at Table 1 there is no
way to escape the conclusion that the mean diameter of peas
in the mother plant can be exactly predicted with considerable
certainty by the mean diameter of the peas in the daughter
plant (but not the other way around). The coefficient ξn(Y ,X)

discovers this fact numerically by attaining a value close to 1. It
is probable that this feature of Galton’s peas data has been noted
before, but if so, it is certainly hard to find. I could not find any
reference where this is mentioned, in spite of much effort.

4. Simulation Results

The goal of this section is to investigate the performance of ξn
using numerical simulations, and compare it to other methods.

Table 1. Contingency table for Galton’s peas data.

Parent

Child 15 16 17 18 19 20 21

13.77 46 0 0 0 0 0 0
13.92 0 0 37 0 0 0 0
14.07 0 0 0 0 35 0 0
14.28 0 34 0 0 0 0 0
14.35 0 0 0 34 0 0 0
14.66 0 0 0 0 0 23 0
14.67 0 0 0 0 0 0 22
14.77 14 0 0 0 0 0 0
14.92 0 0 16 0 0 0 0
15.07 0 0 0 0 16 0 0
15.28 0 15 0 0 0 0 0
15.35 0 0 0 12 0 0 0
15.66 0 0 0 0 0 10 0
15.67 0 0 0 0 0 0 8
15.77 9 0 0 0 0 0 0
15.92 0 0 13 0 0 0 0
16.07 0 0 0 0 12 0 0
16.28 0 18 0 0 0 0 0
16.35 0 0 0 13 0 0 0
16.66 0 0 0 0 0 12 0
16.67 0 0 0 0 0 0 10
16.77 11 0 0 0 0 0 0
16.92 0 0 16 0 0 0 0
17.07 0 0 0 0 13 0 0
17.28 0 16 0 0 0 0 0
17.35 0 0 0 17 0 0 0

Parent

Child 15 16 17 18 19 20 21

17.66 0 0 0 0 0 17 0
17.67 0 0 0 0 0 0 18
17.77 14 0 0 0 0 0 0
17.92 0 0 13 0 0 0 0
18.07 0 0 0 0 11 0 0
18.28 0 13 0 0 0 0 0
18.35 0 0 0 16 0 0 0
18.66 0 0 0 0 0 20 0
18.67 0 0 0 0 0 0 21
18.77 4 0 0 0 0 0 0
18.92 0 0 4 0 0 0 0
19.07 0 0 0 0 10 0 0
19.28 0 3 0 0 0 0 0
19.35 0 0 0 6 0 0 0
19.66 0 0 0 0 0 13 0
19.67 0 0 0 0 0 0 13
19.77 2 0 0 0 0 0 0
19.92 0 0 1 0 0 0 0
20.07 0 0 0 0 2 0 0
20.28 0 1 0 0 0 0 0
20.35 0 0 0 2 0 0 0
20.66 0 0 0 0 0 3 0
20.67 0 0 0 0 0 0 6
22.07 0 0 0 0 1 0 0
22.66 0 0 0 0 0 2 0
22.67 0 0 0 0 0 0 2
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Figure 2. Values of ξn(X , Y) for various kinds of scatterplots, with n = 100. Noise increases from left to right. The 95th percentile of ξn(X , Y) under the hypothesis of
independence is approximately 0.066.

We compare general performance, run times, and powers for
testing independence.

4.1. General Performance, Equitability, and Generality

Figure 2 gives a glimpse of the general performance of ξn as
a measure of association. The figure has three rows. Each row
starts with a scatterplot where Y is a noiseless function of X,
and X is generated from the uniform distribution on [−1, 1].
As we move to the right, more and more noise is added. The
sample size n is taken to be 100 in each case, to show that ξn per-
forms well in relatively small samples. In each row, we see that
ξn(X,Y) is very close 1 for the leftmost graph, and progressively

deteriorates as we add more noise. By Theorem 2.1, the 95th
percentile of ξn(X,Y) under the hypothesis of independence, for
n = 100, is approximately 0.066. The values in Figure 2 are all
much higher than that.

An interesting observation from Figure 2 is that ξn appears
to be an equitable coefficient, as defined in Reshef et al. (2011).
The definition of equitability is not mathematically precise but
intuitively clear. Roughly, an equitable measure of correlation
“gives similar scores to equally noisy relationships of different
types.” Figure 2 indicates that ξn has this property as long as the
relationship is “functional.” It is not equitable for relationships
that are not functional, although that is expected because ξn
measures how well Y can be predicted by X.
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Figure 3. Histogram of 10,000 simulations of
√
nξn , superimposed with the asymptotic density function.

The other criterion for a good measure of correlation, ac-
cording to Reshef et al. (2011), is that the coefficient should be
“general,” in that it should be able to detect any kind of pattern
in the scatterplot. In statistical terms, this means that the test
of independence based on the coefficient should be consistent
against all alternatives. This is clearly true by Theorem 1.1, in
fact more true than for any other coefficient in the literature.
Among available test statistics, onlymaximal correlation has this
property in full generality, but there is no estimator of maximal
correlation that is known to be consistent for all possible distri-
butions of (X,Y).

4.2. Validity of the Asymptotic Theory

Next, let us numerically investigate the distribution of ξn(X,Y)

when X and Y are independent. Taking Xi’s and Yi’s to be in-
dependent Uniform[0, 1] random variables, and n = 20, 10,000
values of ξn(X,Y)were generated. The histogramof

√
nξn(X,Y)

is displayed in Figure 3(a), superimposed with the asymptotic
density function predicted by Theorem 2.1. We see that already
for n = 20, the agreement is striking. A much better agreement
is obtainedwith n = 1000 in Figure 3(b). Next,Xi’s andYi’s were
drawn as independent Binomial(3, 0.5) random variables. The

value of τ 2 was estimated using Theorem 2.3, and was plugged
into Theorem 2.2 to obtain the asymptotic distribution of

√
nξn.

Again, the true distributions are shown to be in good agreement
with the asymptotic distributions, for n = 20 and n = 1000, in
Figures 3(c) and (d).

Some simulation analysis was also carried out to investigate
the convergence of ξn under dependence. For that, the following
simple model was chosen. Let X ∼ Bernoulli(p) and Z ∼
Bernoulli(p′) be independent random variables, and let Y :=
XZ. Then X and Y are dependent Bernoulli random variables.
An easy calculation shows that

ξ(X,Y) =
p′(1 − p)

1 − pp′ .

With p = 0.4 and p′ = 0.5, we get ξ(X,Y) = 0.375. To test
the convergence of ξn to ξ , 10,000 simulations were carried out
with n = 1000. In this sample, the mean value of ξn was approx-
imately 0.374 and the standard deviation was approximately
0.040 (which means that the standard deviation of

√
nξn was

approximately 1.254). The histogram given in Figure 4 shows
an excellent fit with a normal distribution with the above mean
and standard deviation.
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Figure 4. Histogramof 10,000 simulations of ξn(X , Y)when X and Y are dependent
Bernoulli randomvariables (see Section 4.2), superimposedwith thenormal density
function of suitable mean and variance. Here, ξ(X , Y) = 0.375 and n = 1000.

4.3. Power and Run Time Comparisons

In this section, we compare the power of the test of indepen-
dence based on ξn against a number of powerful tests proposed
in recent years, and we also compare the run times of these tests.
The main finding is that ξn is less powerful than some of the
other tests if the signal is relatively smooth, and more powerful
if the signal is wiggly. In terms of run time, ξn has a big advantage
since it is computable in timeO(n log n), whereas its competitors
require time n2. This is further validated through numerical
examples, which show that ξn is essentially the only statistic that
can be computed in reasonable time if the sample size is in the
order several thousands.

Comparisons are carried out with the following popular test
statistics for testing independence. I excluded statistics that are
either too new (because they are not time-tested, and software is
not available in many cases) or too old (because they are super-
seded by newer ones). In the following, (X1,Y1), . . . , (Xn,Yn) is
an iid sample of points from some distribution on R

2.

1. Maximal information coefficient (MIC) (Reshef et al. 2011):
Recall that the mutual information of a bivariate probability
distribution is the Kullback–Leibler divergence between that
distribution and the product of its marginals. Given any
scatterplot of n points, suppose we divide it into an x×y array
of rectangles. The proportions of points falling into these
rectangles define a bivariate probability distribution. Let I
be the mutual information of this probability distribution.
The maximum of I/ logmin{x, y} over all subdivisions into
rectangles, under the constraint xy < n0.6, is called the
maximal information coefficient of the scatterplot.

2. Distance correlation (Székely, Rizzo, and Bakirov 2007): Let
aij := |Xi −Xj| and bij := |Yi −Yj|. Center these numbers by
defining Aij := aij − ai· − a·j + a·· and Bij := bij − bi· − b·j +
b··, where ai· is the average of aij over all j, etc. The distance
correlation between the two samples is simply the Pearson
correlation between the Aij’s and the Bij’s.

3. The HHG test (Heller, Heller, and Gorfine 2013): Take any
i and j. Divide Xk’s into two groups depending on whether
|Xi − Xk| < |Xi − Xj| or not. Similarly classify the Yk’s into
two groups depending on whether |Yi − Yk| < |Yi − Yj| or
not. These classifications partition the scatterplot into four
compartments, and the numbers of points in these compart-
ments define a 2×2 contingency table. TheHHG test statistic
is a linear combination of the Pearson χ2 statistics for testing
independence in these contingency tables over all choices of
i and j.

4. The Hilbert–Schmidt independence criterion (HSIC) (Gret-
ton et al. 2005, 2008): Let k and l be symmetric positive def-
inite kernels on R

2. For example, we may take the Gaussian

kernel k(x, y) = l(x, y) = e−|x−y|2/2σ 2
for some σ > 0. Let

kij := k(Xi,Xj) and lij := l(Yi,Yj). Then the HSIC statistic is

1

n2

∑

i,j

kijlij +
1

n4

∑

i,j,q,r

kijlqr −
2

n3

∑

i,j,q

kijliq.

All of the above test statistics are consistent for testing indepen-
dence under mild conditions. Moreover, the HSIC test has been
proved to be minimax rate-optimal against uniformly smooth
alternatives (Li and Yuan 2019).

Power comparisons were carried out with sample size n =
100. In each case, 500 simulations were used to estimate the
power. The R packages energy, minerva, HHG, and dHSIC
were used for calculating the distance correlation, MIC, HHG,
and HSIC statistics, respectively. Since the HHG test is very
slow for large samples, a fast univariate version of the HHG
test (Heller et al. 2016) was used. Generating X from the uni-
form distribution on [−1, 1], the following six alternatives were
considered:

1. Linear:Y = 0.5X+3λε, where λ is a noise parameter ranging
from 0 to 1, and ε ∼ N(0, 1) is independent of X.

2. Step function: Y = f (X) + 10λε, where f takes values −3,
2, −4, and −3 in the intervals [−1,−0.5), [−0.5, 0), [0, 0.5),
and [0.5, 1].

3. W-shaped: Y = |X + 0.5|1{X<0} + |X − 0.5|1{X≥0} + 0.75λε.
4. Sinusoid: Y = cos 8πX + 3λε.
5. Circular: Y = Z

√
1 − X2 + 0.9λε, where Z is 1 or −1 with

equal probability, independent of X.
6. Heteroscedastic: Y = 3(σ (X)(1−λ)+λ)ε, where σ(X) = 1

if |X| ≤ 0.5 and 0 otherwise. As λ increases from 0 to 1, the
relationship becomes more and more homoscedastic.

The coefficients in all of the above were chosen to ensure that
a full range of powers were observed as λ was varied from 0 to
1. The results are presented in Figure 5. The main observation
from this figure is that ξn is more powerful than the other tests
when the signal has an oscillatory nature, such as for the W-
shaped scatterplot and the sinusoid. For the step function, too, it
performs reasonably well. However, ξn has inferior performance
for smoother alternatives, namely, the linear, circular, and het-
eroscedastic scatterplots.

Next, let us turn to the comparison of run times for tests of
independence based on the five competing test statistics. For
all except ξn, the only way to test for independence is to run a
permutation test. (There is a theoretical test for HSIC, but it is
only a crude approximation.) The number of permutations was
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Figure 5. Comparison of powers of several tests of independence. The titles describe the shapes of the scatterplots. The level of the noise increases from left to right. In
each case, the sample size is 100, and 500 simulations were used to estimate the power.

taken to be the smallest respectable number, 200. Usually 200
is too small for a permutation test, but I took it to be so small
so that the program terminates in a manageable amount of time
for the larger values of n. For ξn, the asymptotic test was used
because it performs as well as the permutation test even in very
small samples, as we saw in Section 4.2.

For distance correlation, HSIC, and HHG, the permutation
tests are directly available from the corresponding R packages.
For MIC, I had to write the code because the permutation tests
are not automatically available from the package, so the run time
can probably be somewhat improved with a better code. For the
HHG test, the function requires the distance matrices for X and
Y to be input as arguments. For the sake of fairness, the time
required for computing the distance matrices was included in
the total time for carrying out the permutation tests.

The results are presented in Table 2. Every test was hundreds
or even thousands of times slower than the test based on ξn for
all sample sizes 500 and above. For sample size 10,000, the HHG
test was terminated after not converging in 30 min.

Table 2. Run times (in sec) for permutation tests of independence, with 200 per-
mutations.

n dCor MIC HSIC HHG ξn

100 0.008 0.328 0.048 0.167 0.006
500 0.104 5.433 1.214 4.671 0.007
1000 0.532 17.459 5.028 20.515 0.009
2000 2.423 55.556 18.873 108.949 0.009
10,000 88.976 1097.483 860.605 >30 min 0.011

NOTE: For ξn , the asymptotic test was used because it is as reliable as the permuta-
tion test.

5. Example: Yeast Gene Expression Data

In a landmark paper in gene expression studies (Spellman et al.
1998), the authors studied the expressions of 6223 yeast genes
with the goal of identifying genes whose transcript levels os-
cillate during the cell cycle. In lay terms, this means that the
expressions were studied over a number of successive time
points (23, to be precise), and the goal was to identify the genes
for which the transcript levels follow an oscillatory pattern.
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Figure 6. Transcript levels of the top 6 among the 215 genes selected by ξn but by no other test. The dashed lines are fitted by k-nearest neighbor regression with k = 3.
The name of the gene is displayed below each plot.

This example illustrates the utility of correlation coefficients in
detecting patterns, because the number of genes is so large that
identifying patterns by visual inspection is out of the question.

This dataset was used in the paper (Reshef et al. 2011) to
demonstrate the efficacy of MIC for identifying patterns in
scatterplots. The authors of Reshef et al. (2011) used a curated
version of the dataset, where they excluded all genes for which
there were missing observations, and made several other modi-
fications. The revised dataset has 4381 genes. I used this curated
dataset (available through the R package minerva) to study the
power of ξn in discovering genes with oscillating transcript
levels, and compare its performance with the competing tests
from Section 4.3.

There are literally hundreds of papers analyzing this partic-
ular dataset. I will not attempt to go deep into this territory in
anyway, because that will take us too far afield. The sole purpose
of the analysis that follows is to compare the performance of ξn
with the competing tests.

For each test, p-values were obtained and a set of signifi-
cant genes were selected using the Benjamini–Hochberg FDR

procedure (Benjamini and Hochberg 1995), with the expected
proportion of false discoveries set at 0.05.

It turned out that there are 215 genes (out of 4381) that
are selected by ξn but by none of the other tests. This is sur-
prising in itself, but what is more surprising is the nature of
these genes. Figure 6 shows the transcript levels of the top 6 of
these genes (that is, those with the smallest p-values). There is
no question that these genes exhibit almost perfect oscillatory
behavior and yet they were not selected by any of the other
tests.

One may wonder if this is true for only the top 6 genes, or
typical of all 215. To investigate that, I took a random sample of
6 genes from the 215, and looked at their transcript levels. The
results are shown in Figure 7. Even for a random sample, we
see strong oscillatory behavior. This behavior was consistently
observed in other random samples.

How about the genes that were selected by at least one of the
other tests, but not by ξn? Figure 8 shows the transcript levels of
a random sample of 6 genes selected from this set. I think it is
reasonable to say that these plots show slight increasing or de-
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Figure 7. Transcript levels of a random sample of 6 genes from the 215 genes that were selected by ξn but by no other test.

creasing trends, or heteroscedasticity, but no definite oscillatory
patterns. Repeated samplings showed similar results.

Thus, we arrive at the following conclusion. The genes se-
lected by ξn are much more likely than the genes selected by the
other tests to be the ones that really exhibit oscillatory patterns
in their transcript levels during the cell cycle. This is because
the other tests prioritizemonotone trends over cyclical patterns.
Most of the 215 genes that were selected by ξn but not by any of
the other tests show pronounced oscillatory patterns. The fact
that ξn is particularly powerful for detecting oscillatory behavior
turns out to be very useful in this example. Of course, ξn also
selects genes that show other kinds of patterns (it selects a total
of 586 genes), but those are selected by at least one of the other
tests and therefore do not appear in this set of 215 genes that are
selected exclusively by ξn.

6. MIC andMaximal CorrelationMay Not Correctly

Measure the Strength of the Relationship

It is sometimes mistakenly believed that MIC and maximal
correlation measure the strength of relationship between X and

Y ; in particular, that they attain their maximum value, 1, if and
only if the relationship between X and Y is perfectly noiseless.
In this section we show that this is not true: MIC and maximal
correlation can detect noiseless relationships even if the actual
relationship between X and Y is very noisy.

In the example shown in Figure 9, 200 samples of (X,Y)

are generated from a mixture of bivariate normal distributions.
With probability 1/2, (X,Y) is drawn from the standard bi-
variate normal distribution, and with probability 1/2, (X,Y) is
drawn from the bivariate normal distribution with mean (5, 5)
and identity covariance matrix. The data forms two clusters of
roughly equal size that are close but nearly disjoint. Clearly, there
is a lot of noise in the relationship between X and Y . Given X,
we can only tell whether Y comes from N(0, 1) or N(5, 1), but
nothing else. Yet, rounded off to two decimal places, MIC is 1.00
and maximal correlation (as computed by the ACE algorithm,
Breiman and Friedman 1985) is 0.99 for this scatterplot. The
coefficient ξn, on the other hand, is well-behaved; it turns out
to be 0.48, indicating the presence of a significant relationship
between X and Y but not a noiseless one. Common sense sug-
gests that the value 0.48 is much better reflective of the strength
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Figure 8. Transcript levels of 6 randomly sampled genes from the set of genes that were not selected by ξn but were selected by at least one other test.

Figure 9. Scatterplot of a mixture of bivariate normals, with n = 200. For this plot,
maximal correlation= 0.99, MIC= 1.00, and ξn = 0.48.

of the relationship between X and Y in Figure 9 than 0.99
or 1.00.

In the supplementary materials of Reshef et al. (2011), it
is shown that MIC = 1 when Y = f (X) for a large class
of functions f . However, it is not shown that the converse is
true, that is MIC = 1 implies that X and Y have a noiseless
relationship. Figure 9 indicates that in fact the converse is prob-
ably not true. The phenomenon is not an artifact of the sample
size—it remains consistently true in larger sample sizes. More-
over, scatterplots such as Figure 9 are not uncommon in real
datasets.

The following mathematical result uses the intuition gained
from the above example to confirm that there indeed exist very
noisy relationships which are declared to be perfectly noiseless
by maximal correlation and MIC.

Proposition 6.1. Let I1, I2, J1, and J2 be bounded intervals such
that I1 and I2 are disjoint, and J1 and J2 are disjoint. Suppose that
the law of a random vector (X,Y) is supported on the union of
the two rectangles I1 × J1 and I2 × J2, giving equal masses to
both. Then the maximal correlation between X and Y is 1, and
the MIC between X and Y in an iid sample of size n tends to 1
in probability as n → ∞.
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Proof. Recall that themaximal correlation between two random
variables X and Y is defined as the maximum possible correla-
tion between f (X) and g(Y) over all f and g such that f (X) and
g(Y) are square-integrable. In the setting of this proposition, let
f be the indicator of the interval I1 and g be the indicator of the
interval J1. Then f (X) = 1 if and only if g(Y) = 1, because the
nature of (X,Y) implies that X ∈ I1 if and only if Y ∈ J1. Thus,
f (X) = g(Y), and so the maximal correlation between X and Y
is equal to 1.

Next, recall the definition of MIC from Section 4.3. The
support of (X,Y) can be partitioned into the 2 × 2 array of
rectangles I1 × J1, I1 × J2, I2 × J1, and I2 × J2. The first and
fourth rectangles carry mass 1/2 each, and the other two carry
mass 0. Therefore, when n is large, the first and fourth rectangles
receive approximately n/2 points each, and the other two receive
no points. A simple calculation shows that the mutual informa-
tion of the corresponding contingency table is approximately
log 2. Thus, the contribution of this array of rectangles to the
definition ofMIC is approximately 1, which shows that theMIC
itself is approximately 1 (since it cannot exceed 1 and is defined
to be the maximum of the contributions from all rectangular
partitions of size <n0.6).

7. Summary

Let us now briefly summarize what we learned. The new cor-
relation coefficient offers many advantages over its competitors.
The following is a partial list:

1. It has a very simple formula. The formula is as simple as
those for the classical coefficients, like Pearson’s correlation,
Spearman’s ρ, or Kendall’s τ .

2. Due to its simple formula, it is (a) easy to understand concep-
tually, and (b) computable very quickly, not only in theory but
also in practice.Most of its competitors are hundreds of times
slower to compute even in samples of moderately large size,
such as 500.

3. It is a function of ranks, whichmakes it robust to outliers and
invariant under monotone transformations of the data.

4. It converges to a limit which has an easy interpretation as a
measure of dependence. The limit ranges from 0 to 1. It is 1 if
and only if Y is a measurable function of X and 0 if and only
if X and Y are independent. Thus, ξn gives an actual measure
of the strength of the relationship.

5. It has a very simple asymptotic theory under the hypothesis of
independence, which is roughly valid even for samples of size
as small as 20. This allows theoretical tests of independence,
bypassing computationally expensive permutation tests that
are necessary for other tests.

6. The test of independence based on ξn is consistent against
all alternatives, with no exceptions. No other test has this
property.

7. None of the resultsmentioned above require any assumptions
about the law of (X,Y) except that Y is not a constant.
One can even apply ξn to categorical data, by converting
the categorical variables to integer-valued variables in any
arbitrary way.

8. In simulations and real data, ξn seems to be more powerful
than other tests for detecting oscillatory signals.

Against all of the above advantages, ξn has only one disadvan-
tage: It seems to have less power than several popular tests of
independencewhen the signal is smooth and nonoscillatory. Al-
though such signals comprise the majority of types observed in
practice, this is a matter of concern only when the sample size is
small. In large samples, all tests are powerful, and computational
time becomes a much bigger concern.

8. Proof Sketch

This section contains a brief sketch of the proof of convergence
of ξn to ξ . For simplicity, let us only consider the case of continu-
ous X and Y . First, note that by the Glivenko–Cantelli theorem,
ri/n ≈ F(Y(i)), where F is the cumulative distribution function
of Y . Thus,

ξn(X,Y) ≈ 1 −
3

n

n∑

i=1

|F(Yi) − F(YN(i))|, (5)

where N(i) is the unique index j such that Xj is immediately to
the right ofXi if we arrange theX’s in increasing order. IfXi is the
rightmost value, define N(i) arbitrarily; it does not matter since
the contribution of a single term in the above sum is O(1/n).

The first important observation is that for any x, y ∈ R,

|F(x) − F(y)| =
∫

(1{t≤x} − 1{t≤y})
2dµ(t), (6)

where µ is the law of Y . This is true because the integrand is 1
between x and y and 0 outside.

Now suppose that we condition on X1, . . . ,Xn. Since Xi is
likely to be very close toXN(i), the random variablesYi andYN(i)

are likely to be approximately iid after this conditioning. This is
the second key observation (which is tricky to make rigorous
in the absence of any assumptions on the law of (X,Y)), which
leads to the approximation

E[(1{t≤Yi} − 1{t≤YN(i)})
2|X1, . . . ,Xn] ≈ 2var(1{t≤Yi}|X1, . . . ,Xn)

= 2var(1{t≤Yi}|Xi).

This gives

E(1{t≤Yi} − 1{t≤YN(i)})
2 ≈ 2E[var(1{t≤Y}|X)]

= 2var(1{t≤Y}) − 2var(E(1{t≤Y}|X)).

Combining this with (6), we get

E|F(Yi) − F(YN(i))|

≈
∫

2[var(1{t≤Y}) − var(E(1{t≤Y}|X))]dµ(t).

But note that var(1{t≤Y}) = F(t)(1 − F(t)), and F(Y) ∼
Uniform[0, 1]. Thus,∫

var(1{t≤Y})dµ(t) =
∫

F(t)(1 − F(t))dµ(t)

=
∫ 1

0
x(1 − x)dx =

1

6
.

Therefore by (5),

E(ξn(X,Y)) ≈ 6

∫
var(E(1{t≤Y}|X))dµ(t) = ξ(X,Y),

where the last identity holds because
∫
var(1{t≤Y})dµ(t) = 1/6,

as shown above. This establishes the convergence ofE(ξn(X,Y))

to ξ(X,Y). Concentration inequalities are then used to show
that ξn(X,Y) − E(ξn(X,Y)) → 0 almost surely.
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Supplementary Materials

The supplementary material consists of a single pdf file containing the
proofs of Theorems 1.1, 2.2 and 2.3. (Theorem 2.1 is a special case of
Theorem 2.2, so it does not have a separate proof.)
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