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Supplementary material: Proofs

A. Proof of Theorem 1.1

Throughout this proof and the rest of the manuscript, we will abbreviate
ξn(X,Y ) as ξn and ξ(X,Y ) as ξ. For t ∈ R, let F (t) := P(Y ≤ t) and G(t) :=
P(Y ≥ t). Let µ be the law of Y . By the existence of regular conditional
probabilities on regular Borel spaces (see for example [2, Theorem 2.1.15
and Exercise 5.1.16]), for each Borel set A ⊆ R there is a measurable map
x 7→ µx(A) from R into [0, 1], such that

(1) for any A, µX(A) is a version of P(Y ∈ A|X), and
(2) with probability one, µX is a probability measure on R.

In the above sense, µx is the conditional law of Y given X = x. For each t,
let Gx(t) := µx([t,∞)), and define

Q :=

∫
Var(GX(t))dµ(t). (A.1)

(Since t 7→ E(GX(t)) and t 7→ E(GX(t)2) are both non-increasing maps,
they are measurable. Therefore t 7→ Var(GX(t)) is also measurable, and so
the above integral is well-defined.)

Lemma A.1. Let Q be as above. Then Q = 0 if and only if X and Y are

independent.

Proof. If X and Y are independent, then for any t, P(Y ≥ t|X) = P(Y ≥ t)
almost surely. Thus, GX(t) = G(t) almost surely, and so Var(GX(t)) = 0.
Consequently, Q = 0.

Conversely, suppose that Q = 0. Then there is a Borel set A ⊆ R such
that µ(A) = 1 and Var(GX(t)) = 0 for every t ∈ A. Since E(GX(t)) = G(t),
GX(t) = G(t) almost surely for each t ∈ A. We claim that A can be chosen
to be the whole of R.

To show this, take any t ∈ R. If µ({t}) > 0, then clearly t must be a
member of A and there is nothing more to prove. So assume that µ({t}) = 0.
This implies that G is right-continuous at t.

There are two possibilities. First, suppose that G(s) < G(t) for all s > t.
Then for each s > t, µ([t, s)) > 0, and hence A must intersect [t, s). This
shows that there is a sequence rn in A such that rn decreases to t. Since
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GX(rn) = G(rn) almost surely for each n, this implies that with probability
one,

GX(t) ≥ lim
n→∞

GX(rn) = lim
n→∞

G(rn) = G(t).

But E(GX(t)) = G(t). Thus, GX(t) = G(t) almost surely.
The second possibility is that there is some s > t such that G(s) = G(t).

Take the largest such s, which exists because G is left-continuous. If s =
∞, then G(t) = G(s) = 0, and hence GX(t) = 0 almost surely because
E(GX(t)) = G(t). Suppose that s < ∞. Then either µ({s}) > 0, which
implies that GX(s) = G(s) almost surely, or µ({s}) = 0 and G(r) < G(s)
for all r > s, which again implies that GX(s) = G(s) almost surely, by the
previous paragraph. Therefore in either case, with probability one,

GX(t) ≥ GX(s) = G(s) = G(t).

Since E(GX(t)) = G(t), this implies that GX(t) = G(t) almost surely.
This completes the proof of our claim that for each t ∈ R, GX(t) = G(t)

almost surely. Therefore, for any t ∈ R and any Borel set B ⊆ R,

P({Y ≥ t} ∩ {X ∈ B}) = E(P(Y ≥ t|X)1{X∈B})

= G(t)P(X ∈ B) = P(Y ≥ t)P(X ∈ B).

This proves that Y and X are independent. �

Corollary A.2. If Y is not a constant, then
∫
G(t)(1−G(t))dµ(t) > 0.

Proof. In Lemma A.1, take X = Y . Then GX(t) = 1{X≥t}, and hence
Var(GX(t)) = G(t)(1 − G(t)). But if Y is not a constant, then Y is not
independent of itself. Hence Lemma A.1 implies that Q > 0, which gives
what we want. �

Let X1, X2, . . . be an infinite sequence of i.i.d. copies of X. For each n ≥ 2
and each 1 ≤ i ≤ n, let Xn,i be the element of the set {Xj : 1 ≤ j ≤ n, j 6= i}
that is immediately to the right of Xi. If there is no such element, then let
Xn,i = Xi.

Lemma A.3. With probability one, Xn,1 → X1 as n→ ∞.

Proof. Let ν be the law of X. Let A be the set of all x ∈ R such that
ν([x, y)) > 0 for any y > x. First, we show that ν(Ac) = 0. Let K be the
support of ν and let B := Ac ∩K. Since ν(Kc) = 0, it suffices to show that
ν(B) = 0.

Take any x ∈ B. Since x ∈ Ac, there is some y > x such that ν([x, y)) = 0.
For each x ∈ B, choose such a point yx. We claim that the intervals [x, yx),
as x ranges over B, are disjoint. To see this, take any distinct x, x′ ∈ B,
x < x′. If [x, yx) and [x′, yx′) are not disjoint, then x′ ∈ (x, yx). But
ν((x, yx)) ≤ ν([x, yx)) = 0. This contradicts the fact that x′ ∈ K. Thus, we
have established that the intervals [x, yx) are disjoint. But this implies that
there can be at most countably many such intervals. Thus, B is at most
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countable. But for any x ∈ B, ν({x}) ≤ ν([x, yx)) = 0. This proves that
ν(B) = 0, and hence ν(Ac) = 0.

Take any ε > 0. Let I be the interval [X1, X1 + ε). Then

P(|X1 −Xn,1| ≥ ε|X1) ≤ (1− ν(I))n−1.

Since X1 ∈ A almost surely, it follows that ν(I) > 0 almost surely. Thus,

lim
n→∞

P(|X1 −Xn,1| ≥ ε|X1) = 0

almost surely, and hence

lim
n→∞

P(|X1 −Xn,1| ≥ ε) = 0.

This proves that |X1−Xn,1| → 0 in probability. But |X1−Xn,1| is decreasing
in n after the first time some Xj is drawn that is ≥ X1 (and there will always
be such a time, since ν(I) > 0). Therefore |X1−Xn,1| → 0 almost surely. �

Lemma A.4. For any measurable function f : R → [0,∞),

E(f(Xn,1)) ≤ 2E(f(X1)).

Proof. Consider a particular realization of X1, . . . , Xn. In this realization,
take any i and j such that Xn,i = Xj and Xj 6= Xi. We claim that for any j,
there can be at most one such i. Take any k /∈ {i, j}. Then Xk cannot lie in
the interval [Xi, Xj), because that would contradict the fact that Xn,i = Xj .
If Xk < Xi, then Xn,k 6= Xj because Xi is closer to Xk on the right than
Xj . On the other hand, if Xk > Xj , then obviously Xn,k 6= Xj . Thus, we
conclude that for any j, there can be at most one i such that Xn,i = Xj

and Xi 6= Xj .
Now observe that since f is nonnegative,

E(f(Xn,i)) ≤ E(f(Xi)) + E(f(Xn,i)1{Xn,i 6=Xi})

≤ E(f(Xi)) +

n∑

j=1

E(f(Xj)1{Xj=Xn,i, Xj 6=Xi}).

Combining the two observations and using symmetry, we get

E(f(Xn,1)) =
1

n

n∑

i=1

E(f(Xn,i))

≤ 1

n

n∑

i=1

E(f(Xi)) +
1

n

n∑

i=1

n∑

j=1

E(f(Xj)1{Xj=Xn,i, Xj 6=Xi})

= E(f(X1)) +
1

n

n∑

j=1

E

(
f(Xj)

n∑

i=1

1{Xj=Xn,i, Xj 6=Xi}

)

≤ E(f(X1)) +
1

n

n∑

j=1

E(f(Xj)) = 2E(f(X1)),

which completes the proof of the lemma. �
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For the next result, we will need the following version of Lusin’s theorem
(proved, for example, by combining [4, Theorem 2.18 and Theorem 2.24]).

Lemma A.5 (Special case of Lusin’s theorem). Let f : R → R be a measur-

able function and ν be a probability measure on R. Then, given any ε > 0,
there is a compactly supported continuous function g : R → R such that

ν({x : f(x) 6= g(x)}) < ε.

Lemma A.6. For any measurable f : R → R, f(X1) − f(Xn,1) tends to 0
in probability as n→ ∞.

Proof. Fix some ε > 0. Let g be a function as in Lemma A.5, for the given
f and ε, and ν = the law of X1. Then note that for any δ > 0,

P(|f(X1)− f(Xn,1)| > δ)

≤ P(|g(X1)− g(Xn,1)| > δ) + P(f(X1) 6= g(X1))

+ P(f(Xn,1) 6= g(Xn,1)).

By Lemma A.3 and the continuity of g,

lim
n→∞

P(|g(X1)− g(Xn,1)| > δ) = 0.

By the construction of g,

P(f(X1) 6= g(X1)) < ε.

Finally, by Lemma A.4,

P(f(Xn,1) 6= g(Xn,1)) ≤ 2P(f(X1) 6= g(X1)) ≤ 2ε.

Putting it all together, we get

lim sup
n→∞

P(|f(X1)− f(Xn,1)| > δ) ≤ 3ε.

Since ε and δ are arbitrary, this completes the proof of the lemma. �

Let π(i) be the rank of Xi, breaking ties at random so that π is a permu-
tation of {1, . . . , n}. Define

N(i) :=

{
π−1(π(i) + 1) if π(i) < n,

i if π(i) = n.

We will now show that P(Xn,1 = XN(1)) → 1 as n→ ∞. For that, we need
to recall the following formula.

Lemma A.7. If Z ∼ Binomial(m, p), then

E

(
1

Z + 1

)
=

1− (1− p)m+1

(m+ 1)p
.

Proof. Let x := p/(1− p). Then

E

(
1

Z + 1

)
=

m∑

k=0

1

k + 1

(
m

k

)
pk(1− p)m−k



A NEW COEFFICIENT OF CORRELATION 5

=
(1− p)m

x

m∑

k=0

(
m

k

)
xk+1

k + 1

=
(1− p)m

x

∫ x

0

m∑

k=0

(
m

k

)
ykdy

=
(1− p)m

x

∫ x

0
(1 + y)mdy =

(1− p)m

x

(1 + x)m+1 − 1

m+ 1
.

The result is obtained by substituting the value of x. �

Lemma A.8. P(Xn,1 = XN(1)) → 1 as n→ ∞.

Proof. Let x1, x2, . . . be the atoms of X, with masses p1, p2, . . .. Fix a real-
ization of X1, . . . , Xn. If Xj 6= X1 for all j 6= 1, then Xn,1 = XN(1). Suppose
that Xj = X1 for at least one j 6= 1. Let M be the number of such j. Then
with probability 1/(M + 1), π(1) is the highest among all such π(j). If this
does not happen, then again Xn,1 = XN(1). Therefore

P(Xn,1 6= XN(1)) ≤ E

(
1

M + 1
1{M≥1}

)
.

Now let us condition on X1. If X1 /∈ {x1, x2, . . .}, then M = 0. If X1 = xi,
then conditionally M ∼ Binomial(n − 1, pi). Therefore by Lemma A.7 and
the above inequality, we get

P(Xn,1 6= XN(1)) ≤
∞∑

i=1

1− (1− pi)
n

npi
pi.

Take any k. Then by the inequality (1 − x)n ≥ 1 − nx and the above
inequality,

P(Xn,1 6= XN(1)) ≤
k

n
+

∞∑

i=k+1

pi.

Fixing k, and sending n→ ∞, we get

lim sup
n→∞

P(Xn,1 6= XN(1)) ≤
∞∑

i=k+1

pi.

The proof is completed by sending k → ∞. �

Corollary A.9. For any measurable f : R → R, f(X1)− f(XN(1)) → 0 in

probability as n→ ∞.

Proof. By Lemma A.6, f(X1)−f(Xn,1) → 0 in probability. By Lemma A.8,
f(Xn,1) − f(XN(1)) → 0 in probability. The claim is proved by adding the
two. �

For each t ∈ R, let

Fn(t) :=
1

n

n∑

i=1

1{Yi≤t}, Gn(t) :=
1

n

n∑

i=1

1{Yi≥t}.
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Define

Qn :=
1

n

n∑

i=1

min{Fn(Yi), Fn(YN(i))} −
1

n

n∑

i=1

Gn(Yi)
2.

Lemma A.10. Let Qn be defined as above, and Q be the quantity defined

in equation (A.1). Then limn→∞ E(Qn) = Q.

Proof. Let

Q′
n :=

1

n

n∑

i=1

min{F (Yi), F (YN(i))} −
1

n

n∑

i=1

G(Yi)
2.

and let

∆n := sup
t∈R

|Fn(t)− F (t)|+ sup
t∈R

|Gn(t)−G(t)|.

Then by the triangle inequality,

|Q′
n −Qn| ≤ 3∆n.

On the other hand, by the Glivenko–Cantelli theorem, ∆n → 0 almost surely
as n→ ∞. Since ∆n is bounded by 2, this implies that

lim
n→∞

E|Q′
n −Qn| = 0.

Thus, it suffices to show that E(Q′
n) converges to Q. First, notice that

min{F (Y1), F (YN(1))} =

∫
1{Y1≥t}1{YN(1)≥t}dµ(t).

Let F be the σ-algebra generated by the Xi’s and the randomness used for
breaking ties in the selection of π. Then for any t,

E(1{Y1≥t}1{YN(1)≥t}|F) = GX1(t)GXN(1)
(t).

Now recall that by the properties of the regular conditional probability µx,
the map x 7→ Gx(t) is measurable. Therefore by the above identity and
Corollary A.9, and the boundedness of Gx, we have

lim
n→∞

E(1{Y1≥t}1{YN(1)≥t}) = lim
n→∞

E(GX1(t)GXN(1)
(t))

= E(GX(t)2).

Thus,

lim
n→∞

E(Q′
n) =

∫

R

(E(GX(t)2)−G(t)2)dµ(t).

Since E(GX(t)) = G(t), this completes the proof of the lemma. �

Lemma A.11. There is a positive universal constant C such that for any

n and any t ≥ 0,

P(|Qn − E(Qn)| ≥ t) ≤ 2e−Cnt2 .
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Proof. Throughout this proof, C will denote any universal constant. The
value of C may change from line to line. First, we will prove the claim
under the assumption that X has a continuous distribution, so that no
randomization is involved in the definitions of π and the N(i)’s.

Assume continuity, and suppose that for some i ≤ n, (Xi, Yi) is replaced
by a different value (X ′

i, Y
′
i ). Then there are at most three indices j such

that the value of N(j) changes after the replacement, and exactly one index,
j = i, where Yj changes. Moreover, there can be at most one index j such
that N(j) = i, both before and after the replacement. Lastly, for each t,
Gn(t) and Fn(t) change by at most 1/n. This shows that Qn changes by
at most C/n due to this replacement. The result now follows easily by the
bounded difference concentration inequality [3].

Now consider the general case. Let Z1, . . . , Zn be i.i.d. Uniform[0, 1] ran-
dom variables. For each ε > 0, define

Xε
i := Xi + εZi.

Define Qε
n using (Xε

1 , Y1), . . . , (X
ε
n, Yn), by the same formula that was used

for defining Qn using (X1, Y1), . . . , (Xn, Yn). Then by the first part we know
that

P(|Qε
n − E(Qε

n)| ≥ t) ≤ 2e−Cnt2 , (A.2)

where the important thing is that C has no dependence on ε. Now construct
a random permutation π as follows. Given a realization of X1, . . . , Xn, let

ε∗ :=
1

2
min{|Xi −Xj | : 1 ≤ i, j ≤ n,Xi 6= Xj}.

Having produced ε∗ as above, define π to be the rank vector of Xε∗
1 , . . . , X

ε∗
n .

Notice that if Xi < Xj for some i and j, then it is guaranteed that Xε∗
i <

Xε∗
j . From this, it is not hard to see that π is a rank vector for X1, . . . , Xn

where ties are broken uniformly at random. On the other hand, the con-
struction also guarantees that π is the rank vector Xε

1 , . . . , X
ε
n for all ε ≤ ε∗.

Thus, if Qn is defined using this π, then Qε
n = Qn for all ε ≤ ε∗. Conse-

quently, Qε
n → Qn almost surely as ε → 0. Using the uniform boundedness

of Qε
n, it is now easy to deduce the tail bound for Qn from the inequal-

ity (A.2). �

Combining Lemmas A.10 and A.11, we get the following corollary.

Corollary A.12. As n→ ∞, Qn → Q almost surely.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Define

Sn :=
1

n

n∑

i=1

Gn(Yi)(1−Gn(Yi)), S′
n :=

1

n

n∑

i=1

G(Yi)(1−G(Yi)), (A.3)

and ∆n := supt∈R |Gn(t)−G(t)|. Then by the triangle inequality, |Sn−S′
n| ≤

2∆n, and by the Glivenko–Cantelli theorem, ∆n → 0 almost surely. But by
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the strong law of large numbers, S′
n →

∫
G(t)(1−G(t))dµ(t) almost surely

as n → ∞, and therefore the same holds for Sn. By Corollary A.2, this
limit is nonzero. Therefore by this and Corollary A.12, we get that with
probability one,

lim
n→∞

Qn

Sn
= ξ,

where ξ = ξ(X,Y ) is the quantity appearing the statement of Theorem 1.1.
Now notice that if π is the permutation used for rearranging the data in the
definition of ξn, then nFn(Yi) = rπ(i) for all i, and nFn(YN(i)) = rπ(i)+1 for

i 6= π−1(n). If i = π(n), then nFn(Yi) = nFn(YN(i)) = rn. Therefore

1

n

n∑

i=1

min{Fn(Yi), Fn(YN(i))} =
1

n2

∑

i 6=π−1(n)

min{rπ(i), rπ(i)+1}+
rn
n2
.

By the identity min{a, b} = 1
2(a+ b− |a− b|), this gives

1

n

n∑

i=1

min{Fn(Yi), Fn(YN(i))}

=
1

2n2

∑

i 6=π−1(n)

(rπ(i) + rπ(i)+1 − |rπ(i) − rπ(i)+1|) +
rn
n2

=
1

n2

n∑

i=1

ri −
1

2n2

n−1∑

i=1

|ri+1 − ri|+
rn − r1
2n2

.

On the other hand,

Sn =
1

n3

n∑

i=1

li(n− li),
1

n

n∑

i=1

Gn(Yi)
2 =

1

n3

n∑

i=1

l2i ,

and
n∑

i=1

ri =
n∑

i=1

n∑

j=1

1{Y(j)≤Y(i)} =

n∑

j=1

n∑

i=1

1{Y(j)≤Y(i)} =
n∑

j=1

lj . (A.4)

Combining the above observations, we get

Qn

Sn
= ξn +

rn − r1
2n2Sn

.

In particular,
∣∣∣∣
Qn

Sn
− ξn

∣∣∣∣ ≤
1

2nSn
.

Since Sn converges to a nonzero limit, this proves that ξn → ξ almost surely.
Since for each t,

G(t)(1−G(t)) = Var(1{Y≥t}) ≥ Var(P(Y ≥ t|X)),

we conclude that 0 ≤ ξ ≤ 1.
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Lemma A.1 shows that ξ = 0 if and only if X and Y are independent. On
the other hand, if Y is a function of X, say Y = f(X) almost surely, then

∫
Var(P(Y ≥ t|X))dµ(t) =

∫
Var(1{f(X)≥t})dµ(t)

=

∫

R

P(f(X) ≥ t)(1− P(f(X) ≥ t))dµ(t)

=

∫
G(t)(1−G(t))dµ(t),

which shows that ξ = 1. Conversely, suppose that ξ = 1. Then by the law
of total variance,

0 = 1− ξ =

∫
[Var(1{Y≥t})−Var(P(Y ≥ t|X))]dµ(t)

=

∫
E(Var(1{Y≥t}|X))dµ(t)

=

∫
E(GX(t)(1−GX(t)))dµ(t).

This implies that P(E) = 1, where E is the event
∫
GX(t)(1−GX(t))dµ(t) = 0. (A.5)

Let A be the support of µ. Define

ax := sup{t : Gx(t) = 1}, bx := inf{t : Gx(t) = 0},

so that ax ≤ bx. By the measurability of x 7→ Gx(t) and the fact that
ax ≥ t if and only if Gx(t) = 1, it follows that x 7→ ax is a measurable map.
Similarly, x 7→ bx is also measurable.

Now suppose that the event {aX < bX} ∩ E takes place. Since GX(t) ∈
(0, 1) for all t ∈ (aX , bX), the condition (A.5) implies that µ((aX , bX)) =
0. Since (aX , bX) is an open interval, this implies that (aX , bX) ⊆ Ac.
On the other hand, under the given circumstance, we also have P(Y ∈
(aX , bX)|X) > 0. Thus P(Y ∈ Ac|X) > 0.

The above argument shows that if P({aX < bX} ∩ E) > 0, then P(Y ∈
Ac) > 0. But this is impossible, since A is the support of µ. Therefore
P({aX < bX} ∩ E) = 0. But P(E) = 1. Therefore P(aX = bX) = 1. Thus,
Y = aX almost surely. This completes the proof of Theorem 1.1. �

B. Preparation for the proof of Theorem 2.2

In this section we prove some preparatory lemmas for the proof of The-
orem 2.2. Let R(i) be the number of j such that Yj ≤ Yi and L(i) be the
number of j such that Yj ≥ Yi. Let π be a rank vector for the Xi’s, chosen
uniformly at random from all available choices if there are ties. First, note
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that since X and Y are independent, π−1 is a uniform random permutation
that is independent of Y1, . . . , Yn. Let τ := π−1, and let

Dn :=
n−1∑

i=1

ai,

where

ai := min{R(τ(i)), R(τ(i+ 1))}.
Also, for convenience, let

bi,j := min{R(i), R(j)}.
In the following, O(n−α) will denote any quantity whose absolute value is
bounded above by Cn−α for some universal constant C. Let E

′, Var′ and
Cov′ denote conditional expectation, conditional variance and conditional
covariance given Y1, . . . , Yn.

Lemma B.1.

E
′(Dn) =

1

n

n∑

i=1

L(i)(L(i)− 1).

Proof. Take any 1 ≤ i ≤ n−1. Since (τ(i), τ(i+1)) is uniformly distributed
over all pairs (j, k) where j and k are distinct, we have

E
′(ai) =

1

n(n− 1)

∑

1≤j 6=k≤n

bj,k (B.1)

Since R(i) =
∑n

j=1 1{Yj≤Yi}, this gives

E
′(ai) =

1

n(n− 1)

∑

1≤j 6=k≤n

n∑

l=1

1{Yl≤Yj , Yl≤Yk}

=
1

n(n− 1)

( ∑

1≤j,k≤n

n∑

l=1

1{Yl≤Yj , Yl≤Yk} −
n∑

j=1

n∑

l=1

1{Yl≤Yj}

)

=
1

n(n− 1)

( n∑

l=1

∑

1≤j,k≤n

1{Yl≤Yj , Yl≤Yk} −
n∑

l=1

n∑

j=1

1{Yl≤Yj}

)

=
1

n(n− 1)

( n∑

l=1

L(l)2 −
n∑

l=1

L(l)

)
.

The proof is now completed by adding over i. �

Lemma B.2. Var′(Dn) = Vn +O(n2), where

Vn :=
1

n

n∑

p,q=1

b2p,q −
2

n2

n∑

p,q,r=1

bp,qbp,r +
1

n3

n∑

p,q,r,s=1

bp,qbr,s.
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Proof. Take any 1 ≤ i < j ≤ n − 1. First, suppose that i + 1 < j. Then
(τ(i), τ(i+ 1), τ(j), τ(j + 1)) is uniformly distributed over all quadruples of
distinct (p, q, r, s). Thus,

E
′(aiaj) =

1

(n)4

∑′

p,q,r,s

bp,qbr,s,

where (n)4 := n(n − 1)(n − 2)(n − 3), and
∑′ denotes sum over distinct

p, q, r, s. Therefore by (B.1),

Cov′(ai, aj) =
1

(n)4

∑′

p,q,r,s

bp,qbr,s −
(

1

(n)2

∑′

p,q

bp,q

)2

=

(
1

(n)4
− 1

(n)22

)∑′

p,q,r,s

bp,qbr,s −
1

(n)22

((∑′

p,q

bp,q

)2

−
∑′

p,q,r,s

bp,qbr,s

)

=
4n

(n)2(n)4

∑′

p,q,r,s

bp,qbr,s −
4

(n)22

∑′

p,q,r

bp,qbp,r +O(1)

=
4

n5

∑

p,q,r,s

bp,qbr,s −
4

n4

∑

p,q,r

bp,qbp,r +O(1).

Next, suppose that i+ 1 = j. Then

Cov′(ai, aj) =
1

(n)3

∑′

p,q,r

bp,qbp,r −
(

1

(n)2

∑′

p,q

bp,q

)2

=
1

n3

∑

p,q,r

bp,qbp,r −
1

n4

∑

p,q,r,s

bp,qbr,s +O(n).

Similarly, if i = j, then

Cov′(ai, aj) =
1

(n)2

∑′

p,q

b2p,q −
(

1

(n)2

∑′

p,q

bp,q

)2

=
1

n2

∑

p,q

b2p,q −
1

n4

∑

p,q,r,s

bp,qbr,s +O(n).

The proof is completed by adding up Cov′(ai, aj) over all 1 ≤ i, j ≤ n−1. �

Lemma B.3. As n → ∞, Var′(Dn)/n
3 converges almost surely to the de-

terministic limit

E(φ(Y1, Y2)
2 − 2φ(Y1, Y2)φ(Y1, Y3) + φ(Y1, Y2)φ(Y3, Y4)),

where φ(y, y′) := min{F (y), F (y′)} and Y1, Y2, Y3, Y4 are i.i.d. copies of Y .

Proof. Throughout this proof, C will be used to denote any universal con-
stant. Let Vn be as in Lemma B.2. It is a function of the Yi’s only. Notice
that if one Yi is replaced by some other value Y ′

i , then each R(j) changes by
at most 1 for j 6= i, and R(i) changes by at most n. Therefore bp,q changes
by at most 1 if p 6= i and q 6= i, and by at most n if one or both of the indices



12 SOURAV CHATTERJEE

are equal to i. Moreover, the bpq’s are all bounded by n. Thus, changing one
Yi to Y

′
i changes Vn by at most Cn2. Therefore by the bounded difference

inequality,

P(|Vn − E(Vn)| ≥ t) ≤ 2e−Ct2/n5

for every t. Consequently, (Vn − E(Vn))/n
3 → 0 almost surely as n→ ∞.

On the other hand, note that bp,q/n = min{Fn(Yp), Fn(Yq)}, where Fn

is the empirical distribution function of the Yi’s. By the Glivenko–Cantelli
theorem, Fn → F uniformly with probability one, where F is the cumula-
tive distribution function of Y . From this, it is easy to see that E(Vn)/n

3

converges to the displayed limit. �

Lemma B.4. If Y is not a constant, the limit in Lemma B.3 is strictly

positive.

Proof. Let us denote the limit by v. Let Y ′ be an independent copy of Y ,
and define

ψ(y) := E(φ(y, Y ′)) = E(φ(Y, Y ′)|Y = y).

Also, let m := E(φ(Y, Y ′)) = E(ψ(Y )). Then v can be expressed as

v = E(φ(Y, Y ′)2)− 2E(ψ(Y )2) +m2. (B.2)

Now,

E(φ(Y, Y ′)− ψ(Y )− ψ(Y ′) +m)2

= E(φ(Y, Y ′)2 + ψ(Y )2 + ψ(Y ′)2 +m2 − 2φ(Y, Y ′)ψ(Y )

− 2φ(Y, Y ′)ψ(Y ′) + 2φ(Y, Y ′)m+ 2ψ(Y )ψ(Y ′)

− 2ψ(Y )m− 2ψ(Y ′)m).

Note that E(φ(Y, Y ′)ψ(Y )) = E(ψ(Y )2), and recall that E(φ(Y, Y ′)) =
E(ψ(Y )) = m. The same identities hold if we exchange Y and Y ′. Us-
ing these facts, it is now easy to verify that the above expression is actually
equal to the right side of (B.2). Thus,

v = E(φ(Y, Y ′)− ψ(Y )− ψ(Y ′) +m)2.

Hence v ≥ 0, and v = 0 if and only if φ(Y, Y ′) = ψ(Y ) + ψ(Y ′)−m almost
surely. Suppose that this is true. Then almost surely for each i ≥ 2,

φ(Y1, Yi) = ψ(Y1) + ψ(Yi)−m, (B.3)

where Y1, Y2, . . . are i.i.d. copies of Y . Taking the minimum over 2 ≤ i ≤ n
on both sides, we get

min{F (Y1), . . . , F (Yn)} = ψ(Y1) + min{ψ(Y2), . . . , ψ(Yn)} −m.

Now, the minimum of a sequence of i.i.d. bounded random variables con-
verges almost surely to the infimum of the support. Also, F and ψ are
bounded functions. Therefore taking n → ∞ on both sides of the above,
it follows that ψ(Y1) equals a constant almost surely. Therefore ψ(Y2)
equals the same constant almost surely, and hence by (B.3), φ(Y1, Y2) is
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also equal to a constant almost surely. Now, if L(t) := P(F (Y ) ≥ t), then
P(φ(Y1, Y2) ≥ t) = L(t)2. Since φ(Y1, Y2) is a constant, this shows that L(t)2

is 0 or 1 for every t, and hence L(t) is also 0 or 1 for every t. Consequently,
F (Y ) is a constant almost surely.

We claim that 1 is in the support of F (Y ) and hence F (Y ) = 1 almost
surely. To see this, take any ε ∈ (0, 1). We will show that P(F (Y ) >
1− ε) > 0. Let x := inf{y : F (y) ≥ 1− ε/2}. Then x is a finite real number
since F tends to 1 at ∞ and to 0 at −∞. By the right-continuity of F ,
F (x) ≥ 1 − ε/2. If F is discontinuous at x, this immediately shows that
P(F (Y ) > 1 − ε) ≥ P(Y = x) > 0. If F is continuous at x, there is some
y < x such that F (y) > 1 − ε. By the definition of x, F (y) < F (x). Thus,
P(F (Y ) > 1 − ε) ≥ P(Y ∈ (y, x)) > 0. This shows that 1 is in the support
of F (Y ), and hence F (Y ) = 1 almost surely.

Since Y is not a constant, there are at least two points in its support.
Therefore there exist two disjoint nonempty open intervals I and J such
that P(Y ∈ I) and P(Y ∈ J) are both positive. Suppose that I is to the
left of J . Then for any y ∈ I, F (y) ≤ 1 − P(Y ∈ J) < 1, and hence
P(F (Y ) < 1) ≥ P(Y ∈ I) > 0, which contradicts the conclusion of the
previous paragraph. This shows that v > 0. �

C. Proof of Theorem 2.2

We will continue with the notations from Section B. Let σ2 denote the
limit of Var′(Dn)/n

3, which by Lemmas B.3 and B.4, is a deterministic
positive quantity (it was called v in the proof of Lemma B.4). Define

D̃n :=
Dn − E

′(Dn)

n3/2σ
.

Notice that ri = R(τ(i)). Therefore by Lemma B.1, the identity (A.4), and
the identity min{a, b} = 1

2(a+ b− |a− b|), we get

Dn − E
′(Dn) =

n−1∑

i=1

min{ri, ri+1} −
1

n

n∑

i=1

L(i)(L(i)− 1)

=
1

2

n−1∑

i=1

(ri + ri+1 − |ri+1 − ri|)−
1

n

n∑

i=1

li(li − 1)

=
n∑

i=1

ri −
r1 + rn

2
− 1

2

n−1∑

i=1

|ri+1 − ri| −
1

n

n∑

i=1

li(li − 1)

=
1

n

n∑

i=1

li(n− li)−
1

2

n−1∑

i=1

|ri+1 − ri|+O(n).

This shows that

ξn =
Dn − E

′(Dn)

n2Sn
+O

(
1

nSn

)
=

σ√
nSn

D̃n +O

(
1

nSn

)
,
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where Sn is the quantity defined in (A.3). In the proof of Theorem 1.1, we
showed that Sn →

∫
G(t)(1−G(t)dµ(t) almost surely, and the latter quantity

is positive by Corollary A.2. Thus, to prove the central limit theorem for√
nξn, it suffices to prove the central limit theorem for D̃n. The formula for

the limiting variance τ2 can be read off from the limit of Sn and the formula
for σ. The limiting variance is strictly positive by Lemma B.4. When Y
is continuous, F (Y ) ∼ Uniform[0, 1]. Using this fact, an easy calculation
shows that τ2 = 2/5.

The central limit theorem for D̃n can be proved by mimicking the proof
of the main theorem of the paper [1]. First, replace Dn by

D′
n :=

n∑

i=1

min{R(τ(i)), R(τ(i+ 1))},

where τ(n + 1) := τ(1). Since |D′
n − Dn| ≤ n, it suffices to prove that

D̃′
n → N(0, 1) in distribution, where

D̃′
n :=

D′
n − E

′(D′
n)

n3/2σ
.

Mimicking the main idea of [1], we define

f(τ(i+ 1)) := E
′(min{R(τ(i)), R(τ(i+ 1))}|τ(i+ 1)),

and observe that

E
′(D′

n) = nE[f(τ(1))] =
n∑

i=1

f(i) =
n∑

i=1

f(τ(i)).

Thus,

D̃′
n =

∑n
i=1 βi

n3/2σ
,

where βi := min{R(τ(i)), R(τ(i + 1))} − f(τ(i)). Since |Dn − D′
n| ≤ n,

Var′(D′
n)/n

3 converges almost surely to σ2. Using these observations, we
can proceed exactly as in the proof of the main theorem of [1] to show that
for every integer k ≥ 1,

E
′[(D̃′

n)
k] → E(Zk) almost surely as n→ ∞, (C.1)

where Z ∼ N(0, 1). On the other hand, a simple argument using the
bounded difference inequality (viewing τ as the rank vector of i.i.d. ran-
dom variables from any continuous distribution) shows that for any k,

sup
n≥1

E|D̃′
n|k <∞.

Therefore by (C.1) and uniform integrability, we conclude that for every
integer k ≥ 1,

lim
n→∞

E[(D̃′
n)

k] = E(Zk).

This completes the proof of Theorem 2.2.
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D. Proof of Theorem 2.3

The quantity Sn define in (A.3) is the same as dn, and in the proof of
Theorem 1.1 we showed that Sn converges to the square-root of the denom-
inator in the definition of τ2. Recall the quantity Vn from Lemma B.2. By
Lemma B.3, we know Vn/n

3 converges almost surely to the numerator in
the definition of τ2. We will now show that an − 2bn + c2n is the same as
Vn/n

3.
From the definition of Vn, it is easy to see that the result will remain

unchanged if we permute the R(i)’s and recompute Vn. So we can replace
the R(i)’s by an increasing rearrangement u1, . . . , un. Redefine

bij := min{ui, uj} = umin{i,j}.

Then it is clear that

∑

i,j

bij =

n∑

i=1

ui + 2
∑

1≤i<j≤n

bij

=

n∑

i=1

ui + 2

n∑

i=1

(n− i)ui =

n∑

i=1

(2n− 2i+ 1)ui.

Similarly,
∑

i,j

b2ij =

n∑

i=1

(2n− 2i+ 1)u2i .

Finally,

∑

i,j,k

bijbik =

n∑

i=1

( n∑

j=1

bij

)2

=

n∑

i=1

( i∑

j=1

uj + (n− i)ui

)2

=

n∑

i=1

(vi + (n− i)ui)
2.

These expressions make it clear that an− 2bn+ c
2
n = Vn/n

3. This completes
the proof of convergence. Finally, to see that τ̂2n can be computed in time
O(n log n), simply observe that the computation involves only sorting and
calculating cumulative sums, both of which can be done in time O(n log n).

References

[1] Chao, C.-C., Bai, Z. and Liang, W.-Q. (1993). Asymptotic normal-
ity for oscillation of permutation. Probab. Eng. Inf. Sci., 7, 227–235.

[2] Durrett, R. (2010). Probability: theory and examples. Fourth edition.
Cambridge University Press, Cambridge.

[3] McDiarmid, C. (1989). On the method of bounded differences. In
Surveys in combinatorics, 148–188, London Math. Soc. Lecture Note
Ser., 141, Cambridge Univ. Press, Cambridge.



16 SOURAV CHATTERJEE

[4] Rudin, W. (1987). Real and complex analysis. Third edition. McGraw-
Hill Book Co., New York.

Department of Statistics, Stanford University, Sequoia Hall, 390 Jane

Stanford Way, Stanford, CA 94305

Email address: souravc@stanford.edu


	A. Proof of Theorem 1.1
	B. Preparation for the proof of Theorem 2.2
	C. Proof of Theorem 2.2
	D. Proof of Theorem 2.3
	References

