A NEW COEFFICIENT OF CORRELATION

SOURAV CHATTERJEE

Supplementary material: Proofs

A. Proof of Theorem 1.1

Throughout this proof and the rest of the manuscript, we will abbreviate $\xi_{n}(X, Y)$ as ξ_{n} and $\xi(X, Y)$ as ξ. For $t \in \mathbb{R}$, let $F(t):=\mathbb{P}(Y \leq t)$ and $G(t):=$ $\mathbb{P}(Y \geq t)$. Let μ be the law of Y. By the existence of regular conditional probabilities on regular Borel spaces (see for example [2, Theorem 2.1.15 and Exercise 5.1.16]), for each Borel set $A \subseteq \mathbb{R}$ there is a measurable map $x \mapsto \mu_{x}(A)$ from \mathbb{R} into $[0,1]$, such that
(1) for any $A, \mu_{X}(A)$ is a version of $\mathbb{P}(Y \in A \mid X)$, and
(2) with probability one, μ_{X} is a probability measure on \mathbb{R}.

In the above sense, μ_{x} is the conditional law of Y given $X=x$. For each t, let $G_{x}(t):=\mu_{x}([t, \infty))$, and define

$$
\begin{equation*}
Q:=\int \operatorname{Var}\left(G_{X}(t)\right) d \mu(t) \tag{A.1}
\end{equation*}
$$

(Since $t \mapsto \mathbb{E}\left(G_{X}(t)\right)$ and $t \mapsto \mathbb{E}\left(G_{X}(t)^{2}\right)$ are both non-increasing maps, they are measurable. Therefore $t \mapsto \operatorname{Var}\left(G_{X}(t)\right)$ is also measurable, and so the above integral is well-defined.)
Lemma A.1. Let Q be as above. Then $Q=0$ if and only if X and Y are independent.
Proof. If X and Y are independent, then for any $t, \mathbb{P}(Y \geq t \mid X)=\mathbb{P}(Y \geq t)$ almost surely. Thus, $G_{X}(t)=G(t)$ almost surely, and so $\operatorname{Var}\left(G_{X}(t)\right)=0$. Consequently, $Q=0$.

Conversely, suppose that $Q=0$. Then there is a Borel set $A \subseteq \mathbb{R}$ such that $\mu(A)=1$ and $\operatorname{Var}\left(G_{X}(t)\right)=0$ for every $t \in A$. Since $\mathbb{E}\left(G_{X}(t)\right)=G(t)$, $G_{X}(t)=G(t)$ almost surely for each $t \in A$. We claim that A can be chosen to be the whole of \mathbb{R}.

To show this, take any $t \in \mathbb{R}$. If $\mu(\{t\})>0$, then clearly t must be a member of A and there is nothing more to prove. So assume that $\mu(\{t\})=0$. This implies that G is right-continuous at t.

There are two possibilities. First, suppose that $G(s)<G(t)$ for all $s>t$. Then for each $s>t, \mu([t, s))>0$, and hence A must intersect $[t, s)$. This shows that there is a sequence r_{n} in A such that r_{n} decreases to t. Since
$G_{X}\left(r_{n}\right)=G\left(r_{n}\right)$ almost surely for each n, this implies that with probability one,

$$
G_{X}(t) \geq \lim _{n \rightarrow \infty} G_{X}\left(r_{n}\right)=\lim _{n \rightarrow \infty} G\left(r_{n}\right)=G(t)
$$

But $\mathbb{E}\left(G_{X}(t)\right)=G(t)$. Thus, $G_{X}(t)=G(t)$ almost surely.
The second possibility is that there is some $s>t$ such that $G(s)=G(t)$. Take the largest such s, which exists because G is left-continuous. If $s=$ ∞, then $G(t)=G(s)=0$, and hence $G_{X}(t)=0$ almost surely because $\mathbb{E}\left(G_{X}(t)\right)=G(t)$. Suppose that $s<\infty$. Then either $\mu(\{s\})>0$, which implies that $G_{X}(s)=G(s)$ almost surely, or $\mu(\{s\})=0$ and $G(r)<G(s)$ for all $r>s$, which again implies that $G_{X}(s)=G(s)$ almost surely, by the previous paragraph. Therefore in either case, with probability one,

$$
G_{X}(t) \geq G_{X}(s)=G(s)=G(t) .
$$

Since $\mathbb{E}\left(G_{X}(t)\right)=G(t)$, this implies that $G_{X}(t)=G(t)$ almost surely.
This completes the proof of our claim that for each $t \in \mathbb{R}, G_{X}(t)=G(t)$ almost surely. Therefore, for any $t \in \mathbb{R}$ and any Borel set $B \subseteq \mathbb{R}$,

$$
\begin{aligned}
\mathbb{P}(\{Y \geq t\} \cap\{X \in B\}) & =\mathbb{E}\left(\mathbb{P}(Y \geq t \mid X) 1_{\{X \in B\}}\right) \\
& =G(t) \mathbb{P}(X \in B)=\mathbb{P}(Y \geq t) \mathbb{P}(X \in B) .
\end{aligned}
$$

This proves that Y and X are independent.
Corollary A.2. If Y is not a constant, then $\int G(t)(1-G(t)) d \mu(t)>0$.
Proof. In Lemma A.1, take $X=Y$. Then $G_{X}(t)=1_{\{X \geq t\}}$, and hence $\operatorname{Var}\left(G_{X}(t)\right)=G(t)(1-G(t))$. But if Y is not a constant, then Y is not independent of itself. Hence Lemma A. 1 implies that $Q>0$, which gives what we want.

Let X_{1}, X_{2}, \ldots be an infinite sequence of i.i.d. copies of X. For each $n \geq 2$ and each $1 \leq i \leq n$, let $X_{n, i}$ be the element of the set $\left\{X_{j}: 1 \leq j \leq n, j \neq i\right\}$ that is immediately to the right of X_{i}. If there is no such element, then let $X_{n, i}=X_{i}$.

Lemma A.3. With probability one, $X_{n, 1} \rightarrow X_{1}$ as $n \rightarrow \infty$.
Proof. Let ν be the law of X. Let A be the set of all $x \in \mathbb{R}$ such that $\nu([x, y))>0$ for any $y>x$. First, we show that $\nu\left(A^{c}\right)=0$. Let K be the support of ν and let $B:=A^{c} \cap K$. Since $\nu\left(K^{c}\right)=0$, it suffices to show that $\nu(B)=0$.

Take any $x \in B$. Since $x \in A^{c}$, there is some $y>x$ such that $\nu([x, y))=0$. For each $x \in B$, choose such a point y_{x}. We claim that the intervals $\left[x, y_{x}\right)$, as x ranges over B, are disjoint. To see this, take any distinct $x, x^{\prime} \in B$, $x<x^{\prime}$. If $\left[x, y_{x}\right)$ and $\left[x^{\prime}, y_{x^{\prime}}\right)$ are not disjoint, then $x^{\prime} \in\left(x, y_{x}\right)$. But $\nu\left(\left(x, y_{x}\right)\right) \leq \nu\left(\left[x, y_{x}\right)\right)=0$. This contradicts the fact that $x^{\prime} \in K$. Thus, we have established that the intervals $\left[x, y_{x}\right)$ are disjoint. But this implies that there can be at most countably many such intervals. Thus, B is at most
countable. But for any $x \in B, \nu(\{x\}) \leq \nu\left(\left[x, y_{x}\right)\right)=0$. This proves that $\nu(B)=0$, and hence $\nu\left(A^{c}\right)=0$.

Take any $\varepsilon>0$. Let I be the interval $\left[X_{1}, X_{1}+\varepsilon\right)$. Then

$$
\mathbb{P}\left(\left|X_{1}-X_{n, 1}\right| \geq \varepsilon \mid X_{1}\right) \leq(1-\nu(I))^{n-1} .
$$

Since $X_{1} \in A$ almost surely, it follows that $\nu(I)>0$ almost surely. Thus,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{1}-X_{n, 1}\right| \geq \varepsilon \mid X_{1}\right)=0
$$

almost surely, and hence

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{1}-X_{n, 1}\right| \geq \varepsilon\right)=0
$$

This proves that $\left|X_{1}-X_{n, 1}\right| \rightarrow 0$ in probability. But $\left|X_{1}-X_{n, 1}\right|$ is decreasing in n after the first time some X_{j} is drawn that is $\geq X_{1}$ (and there will always be such a time, since $\nu(I)>0$). Therefore $\left|X_{1}-X_{n, 1}\right| \rightarrow 0$ almost surely.

Lemma A.4. For any measurable function $f: \mathbb{R} \rightarrow[0, \infty)$,

$$
\mathbb{E}\left(f\left(X_{n, 1}\right)\right) \leq 2 \mathbb{E}\left(f\left(X_{1}\right)\right)
$$

Proof. Consider a particular realization of X_{1}, \ldots, X_{n}. In this realization, take any i and j such that $X_{n, i}=X_{j}$ and $X_{j} \neq X_{i}$. We claim that for any j, there can be at most one such i. Take any $k \notin\{i, j\}$. Then X_{k} cannot lie in the interval $\left[X_{i}, X_{j}\right)$, because that would contradict the fact that $X_{n, i}=X_{j}$. If $X_{k}<X_{i}$, then $X_{n, k} \neq X_{j}$ because X_{i} is closer to X_{k} on the right than X_{j}. On the other hand, if $X_{k}>X_{j}$, then obviously $X_{n, k} \neq X_{j}$. Thus, we conclude that for any j, there can be at most one i such that $X_{n, i}=X_{j}$ and $X_{i} \neq X_{j}$.

Now observe that since f is nonnegative,

$$
\begin{aligned}
\mathbb{E}\left(f\left(X_{n, i}\right)\right) & \leq \mathbb{E}\left(f\left(X_{i}\right)\right)+\mathbb{E}\left(f\left(X_{n, i}\right) 1_{\left\{X_{n, i} \neq X_{i}\right\}}\right) \\
& \leq \mathbb{E}\left(f\left(X_{i}\right)\right)+\sum_{j=1}^{n} \mathbb{E}\left(f\left(X_{j}\right) 1_{\left\{X_{j}=X_{n, i}, X_{j} \neq X_{i}\right\}}\right) .
\end{aligned}
$$

Combining the two observations and using symmetry, we get

$$
\begin{aligned}
\mathbb{E}\left(f\left(X_{n, 1}\right)\right) & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(f\left(X_{n, i}\right)\right) \\
& \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(f\left(X_{i}\right)\right)+\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}\left(f\left(X_{j}\right) 1_{\left\{X_{j}=X_{n, i}, X_{j} \neq X_{i}\right\}}\right) \\
& =\mathbb{E}\left(f\left(X_{1}\right)\right)+\frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left(f\left(X_{j}\right) \sum_{i=1}^{n} 1_{\left\{X_{j}=X_{n, i}, X_{j} \neq X_{i}\right\}}\right) \\
& \leq \mathbb{E}\left(f\left(X_{1}\right)\right)+\frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left(f\left(X_{j}\right)\right)=2 \mathbb{E}\left(f\left(X_{1}\right)\right),
\end{aligned}
$$

which completes the proof of the lemma.

For the next result, we will need the following version of Lusin's theorem (proved, for example, by combining [4, Theorem 2.18 and Theorem 2.24]).

Lemma A. 5 (Special case of Lusin's theorem). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function and ν be a probability measure on \mathbb{R}. Then, given any $\varepsilon>0$, there is a compactly supported continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $\nu(\{x: f(x) \neq g(x)\})<\varepsilon$.
Lemma A.6. For any measurable $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(X_{1}\right)-f\left(X_{n, 1}\right)$ tends to 0 in probability as $n \rightarrow \infty$.

Proof. Fix some $\varepsilon>0$. Let g be a function as in Lemma A.5, for the given f and ε, and $\nu=$ the law of X_{1}. Then note that for any $\delta>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\left|f\left(X_{1}\right)-f\left(X_{n, 1}\right)\right|>\delta\right) \\
& \leq \mathbb{P}\left(\left|g\left(X_{1}\right)-g\left(X_{n, 1}\right)\right|>\delta\right)+\mathbb{P}\left(f\left(X_{1}\right) \neq g\left(X_{1}\right)\right) \\
& \quad+\mathbb{P}\left(f\left(X_{n, 1}\right) \neq g\left(X_{n, 1}\right)\right) .
\end{aligned}
$$

By Lemma A. 3 and the continuity of g,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|g\left(X_{1}\right)-g\left(X_{n, 1}\right)\right|>\delta\right)=0 .
$$

By the construction of g,

$$
\mathbb{P}\left(f\left(X_{1}\right) \neq g\left(X_{1}\right)\right)<\varepsilon .
$$

Finally, by Lemma A.4,

$$
\mathbb{P}\left(f\left(X_{n, 1}\right) \neq g\left(X_{n, 1}\right)\right) \leq 2 \mathbb{P}\left(f\left(X_{1}\right) \neq g\left(X_{1}\right)\right) \leq 2 \varepsilon .
$$

Putting it all together, we get

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(\left|f\left(X_{1}\right)-f\left(X_{n, 1}\right)\right|>\delta\right) \leq 3 \varepsilon
$$

Since ε and δ are arbitrary, this completes the proof of the lemma.
Let $\pi(i)$ be the rank of X_{i}, breaking ties at random so that π is a permutation of $\{1, \ldots, n\}$. Define

$$
N(i):= \begin{cases}\pi^{-1}(\pi(i)+1) & \text { if } \pi(i)<n \\ i & \text { if } \pi(i)=n\end{cases}
$$

We will now show that $\mathbb{P}\left(X_{n, 1}=X_{N(1)}\right) \rightarrow 1$ as $n \rightarrow \infty$. For that, we need to recall the following formula.

Lemma A.7. If $Z \sim \operatorname{Binomial}(m, p)$, then

$$
\mathbb{E}\left(\frac{1}{Z+1}\right)=\frac{1-(1-p)^{m+1}}{(m+1) p} .
$$

Proof. Let $x:=p /(1-p)$. Then

$$
\mathbb{E}\left(\frac{1}{Z+1}\right)=\sum_{k=0}^{m} \frac{1}{k+1}\binom{m}{k} p^{k}(1-p)^{m-k}
$$

$$
\begin{aligned}
& =\frac{(1-p)^{m}}{x} \sum_{k=0}^{m}\binom{m}{k} \frac{x^{k+1}}{k+1} \\
& =\frac{(1-p)^{m}}{x} \int_{0}^{x} \sum_{k=0}^{m}\binom{m}{k} y^{k} d y \\
& =\frac{(1-p)^{m}}{x} \int_{0}^{x}(1+y)^{m} d y=\frac{(1-p)^{m}}{x} \frac{(1+x)^{m+1}-1}{m+1} .
\end{aligned}
$$

The result is obtained by substituting the value of x.
Lemma A.8. $\mathbb{P}\left(X_{n, 1}=X_{N(1)}\right) \rightarrow 1$ as $n \rightarrow \infty$.
Proof. Let x_{1}, x_{2}, \ldots be the atoms of X, with masses p_{1}, p_{2}, \ldots. Fix a realization of X_{1}, \ldots, X_{n}. If $X_{j} \neq X_{1}$ for all $j \neq 1$, then $X_{n, 1}=X_{N(1)}$. Suppose that $X_{j}=X_{1}$ for at least one $j \neq 1$. Let M be the number of such j. Then with probability $1 /(M+1), \pi(1)$ is the highest among all such $\pi(j)$. If this does not happen, then again $X_{n, 1}=X_{N(1)}$. Therefore

$$
\mathbb{P}\left(X_{n, 1} \neq X_{N(1)}\right) \leq \mathbb{E}\left(\frac{1}{M+1} 1_{\{M \geq 1\}}\right) .
$$

Now let us condition on X_{1}. If $X_{1} \notin\left\{x_{1}, x_{2}, \ldots\right\}$, then $M=0$. If $X_{1}=x_{i}$, then conditionally $M \sim \operatorname{Binomial}\left(n-1, p_{i}\right)$. Therefore by Lemma A. 7 and the above inequality, we get

$$
\mathbb{P}\left(X_{n, 1} \neq X_{N(1)}\right) \leq \sum_{i=1}^{\infty} \frac{1-\left(1-p_{i}\right)^{n}}{n p_{i}} p_{i} .
$$

Take any k. Then by the inequality $(1-x)^{n} \geq 1-n x$ and the above inequality,

$$
\mathbb{P}\left(X_{n, 1} \neq X_{N(1)}\right) \leq \frac{k}{n}+\sum_{i=k+1}^{\infty} p_{i} .
$$

Fixing k, and sending $n \rightarrow \infty$, we get

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(X_{n, 1} \neq X_{N(1)}\right) \leq \sum_{i=k+1}^{\infty} p_{i} .
$$

The proof is completed by sending $k \rightarrow \infty$.
Corollary A.9. For any measurable $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(X_{1}\right)-f\left(X_{N(1)}\right) \rightarrow 0$ in probability as $n \rightarrow \infty$.
Proof. By Lemma A.6, $f\left(X_{1}\right)-f\left(X_{n, 1}\right) \rightarrow 0$ in probability. By Lemma A.8, $f\left(X_{n, 1}\right)-f\left(X_{N(1)}\right) \rightarrow 0$ in probability. The claim is proved by adding the two.

For each $t \in \mathbb{R}$, let

$$
F_{n}(t):=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{Y_{i} \leq t\right\}}, \quad G_{n}(t):=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{Y_{i} \geq t\right\}} .
$$

Define

$$
Q_{n}:=\frac{1}{n} \sum_{i=1}^{n} \min \left\{F_{n}\left(Y_{i}\right), F_{n}\left(Y_{N(i)}\right)\right\}-\frac{1}{n} \sum_{i=1}^{n} G_{n}\left(Y_{i}\right)^{2} .
$$

Lemma A.10. Let Q_{n} be defined as above, and Q be the quantity defined in equation (A.1). Then $\lim _{n \rightarrow \infty} \mathbb{E}\left(Q_{n}\right)=Q$.

Proof. Let

$$
Q_{n}^{\prime}:=\frac{1}{n} \sum_{i=1}^{n} \min \left\{F\left(Y_{i}\right), F\left(Y_{N(i)}\right)\right\}-\frac{1}{n} \sum_{i=1}^{n} G\left(Y_{i}\right)^{2}
$$

and let

$$
\Delta_{n}:=\sup _{t \in \mathbb{R}}\left|F_{n}(t)-F(t)\right|+\sup _{t \in \mathbb{R}}\left|G_{n}(t)-G(t)\right|
$$

Then by the triangle inequality,

$$
\left|Q_{n}^{\prime}-Q_{n}\right| \leq 3 \Delta_{n}
$$

On the other hand, by the Glivenko-Cantelli theorem, $\Delta_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$. Since Δ_{n} is bounded by 2 , this implies that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left|Q_{n}^{\prime}-Q_{n}\right|=0
$$

Thus, it suffices to show that $\mathbb{E}\left(Q_{n}^{\prime}\right)$ converges to Q. First, notice that

$$
\min \left\{F\left(Y_{1}\right), F\left(Y_{N(1)}\right)\right\}=\int 1_{\left\{Y_{1} \geq t\right\}} 1_{\left\{Y_{N(1)} \geq t\right\}} d \mu(t)
$$

Let \mathcal{F} be the σ-algebra generated by the X_{i} 's and the randomness used for breaking ties in the selection of π. Then for any t,

$$
\mathbb{E}\left(1_{\left\{Y_{1} \geq t\right\}} 1_{\left\{Y_{N(1)} \geq t\right\}} \mid \mathcal{F}\right)=G_{X_{1}}(t) G_{X_{N(1)}}(t)
$$

Now recall that by the properties of the regular conditional probability μ_{x}, the $\operatorname{map} x \mapsto G_{x}(t)$ is measurable. Therefore by the above identity and Corollary A.9, and the boundedness of G_{x}, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{E}\left(1_{\left\{Y_{1} \geq t\right\}} 1_{\left\{Y_{N(1)} \geq t\right\}}\right) & =\lim _{n \rightarrow \infty} \mathbb{E}\left(G_{X_{1}}(t) G_{X_{N(1)}}(t)\right) \\
& =\mathbb{E}\left(G_{X}(t)^{2}\right)
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(Q_{n}^{\prime}\right)=\int_{\mathbb{R}}\left(\mathbb{E}\left(G_{X}(t)^{2}\right)-G(t)^{2}\right) d \mu(t)
$$

Since $\mathbb{E}\left(G_{X}(t)\right)=G(t)$, this completes the proof of the lemma.
Lemma A.11. There is a positive universal constant C such that for any n and any $t \geq 0$,

$$
\mathbb{P}\left(\left|Q_{n}-\mathbb{E}\left(Q_{n}\right)\right| \geq t\right) \leq 2 e^{-C n t^{2}}
$$

Proof. Throughout this proof, C will denote any universal constant. The value of C may change from line to line. First, we will prove the claim under the assumption that X has a continuous distribution, so that no randomization is involved in the definitions of π and the $N(i)$'s.

Assume continuity, and suppose that for some $i \leq n,\left(X_{i}, Y_{i}\right)$ is replaced by a different value $\left(X_{i}^{\prime}, Y_{i}^{\prime}\right)$. Then there are at most three indices j such that the value of $N(j)$ changes after the replacement, and exactly one index, $j=i$, where Y_{j} changes. Moreover, there can be at most one index j such that $N(j)=i$, both before and after the replacement. Lastly, for each t, $G_{n}(t)$ and $F_{n}(t)$ change by at most $1 / n$. This shows that Q_{n} changes by at most C / n due to this replacement. The result now follows easily by the bounded difference concentration inequality [3].

Now consider the general case. Let Z_{1}, \ldots, Z_{n} be i.i.d. Uniform[0, 1] random variables. For each $\varepsilon>0$, define

$$
X_{i}^{\varepsilon}:=X_{i}+\varepsilon Z_{i} .
$$

Define Q_{n}^{ε} using $\left(X_{1}^{\varepsilon}, Y_{1}\right), \ldots,\left(X_{n}^{\varepsilon}, Y_{n}\right)$, by the same formula that was used for defining Q_{n} using $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$. Then by the first part we know that

$$
\begin{equation*}
\mathbb{P}\left(\left|Q_{n}^{\varepsilon}-\mathbb{E}\left(Q_{n}^{\varepsilon}\right)\right| \geq t\right) \leq 2 e^{-C n t^{2}}, \tag{A.2}
\end{equation*}
$$

where the important thing is that C has no dependence on ε. Now construct a random permutation π as follows. Given a realization of X_{1}, \ldots, X_{n}, let

$$
\varepsilon^{*}:=\frac{1}{2} \min \left\{\left|X_{i}-X_{j}\right|: 1 \leq i, j \leq n, X_{i} \neq X_{j}\right\}
$$

Having produced ε^{*} as above, define π to be the rank vector of $X_{1}^{\varepsilon^{*}}, \ldots, X_{n}^{\varepsilon^{*}}$. Notice that if $X_{i}<X_{j}$ for some i and j, then it is guaranteed that $X_{i}^{\varepsilon^{*}}<$ $X_{j}^{\varepsilon^{*}}$. From this, it is not hard to see that π is a rank vector for X_{1}, \ldots, X_{n} where ties are broken uniformly at random. On the other hand, the construction also guarantees that π is the rank vector $X_{1}^{\varepsilon}, \ldots, X_{n}^{\varepsilon}$ for all $\varepsilon \leq \varepsilon^{*}$. Thus, if Q_{n} is defined using this π, then $Q_{n}^{\varepsilon}=Q_{n}$ for all $\varepsilon \leq \varepsilon^{*}$. Consequently, $Q_{n}^{\varepsilon} \rightarrow Q_{n}$ almost surely as $\varepsilon \rightarrow 0$. Using the uniform boundedness of Q_{n}^{ε}, it is now easy to deduce the tail bound for Q_{n} from the inequality (A.2).

Combining Lemmas A. 10 and A.11, we get the following corollary.
Corollary A.12. As $n \rightarrow \infty, Q_{n} \rightarrow Q$ almost surely.
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Define

$$
\begin{equation*}
S_{n}:=\frac{1}{n} \sum_{i=1}^{n} G_{n}\left(Y_{i}\right)\left(1-G_{n}\left(Y_{i}\right)\right), \quad S_{n}^{\prime}:=\frac{1}{n} \sum_{i=1}^{n} G\left(Y_{i}\right)\left(1-G\left(Y_{i}\right)\right), \tag{A.3}
\end{equation*}
$$

and $\Delta_{n}:=\sup _{t \in \mathbb{R}}\left|G_{n}(t)-G(t)\right|$. Then by the triangle inequality, $\left|S_{n}-S_{n}^{\prime}\right| \leq$ $2 \Delta_{n}$, and by the Glivenko-Cantelli theorem, $\Delta_{n} \rightarrow 0$ almost surely. But by
the strong law of large numbers, $S_{n}^{\prime} \rightarrow \int G(t)(1-G(t)) d \mu(t)$ almost surely as $n \rightarrow \infty$, and therefore the same holds for S_{n}. By Corollary A.2, this limit is nonzero. Therefore by this and Corollary A.12, we get that with probability one,

$$
\lim _{n \rightarrow \infty} \frac{Q_{n}}{S_{n}}=\xi
$$

where $\xi=\xi(X, Y)$ is the quantity appearing the statement of Theorem 1.1. Now notice that if π is the permutation used for rearranging the data in the definition of ξ_{n}, then $n F_{n}\left(Y_{i}\right)=r_{\pi(i)}$ for all i, and $n F_{n}\left(Y_{N(i)}\right)=r_{\pi(i)+1}$ for $i \neq \pi^{-1}(n)$. If $i=\pi(n)$, then $n F_{n}\left(Y_{i}\right)=n F_{n}\left(Y_{N(i)}\right)=r_{n}$. Therefore

$$
\frac{1}{n} \sum_{i=1}^{n} \min \left\{F_{n}\left(Y_{i}\right), F_{n}\left(Y_{N(i)}\right)\right\}=\frac{1}{n^{2}} \sum_{i \neq \pi^{-1}(n)} \min \left\{r_{\pi(i)}, r_{\pi(i)+1}\right\}+\frac{r_{n}}{n^{2}}
$$

By the identity $\min \{a, b\}=\frac{1}{2}(a+b-|a-b|)$, this gives

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \min \left\{F_{n}\left(Y_{i}\right), F_{n}\left(Y_{N(i)}\right)\right\} \\
& =\frac{1}{2 n^{2}} \sum_{i \neq \pi^{-1}(n)}\left(r_{\pi(i)}+r_{\pi(i)+1}-\left|r_{\pi(i)}-r_{\pi(i)+1}\right|\right)+\frac{r_{n}}{n^{2}} \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} r_{i}-\frac{1}{2 n^{2}} \sum_{i=1}^{n-1}\left|r_{i+1}-r_{i}\right|+\frac{r_{n}-r_{1}}{2 n^{2}}
\end{aligned}
$$

On the other hand,

$$
S_{n}=\frac{1}{n^{3}} \sum_{i=1}^{n} l_{i}\left(n-l_{i}\right), \quad \frac{1}{n} \sum_{i=1}^{n} G_{n}\left(Y_{i}\right)^{2}=\frac{1}{n^{3}} \sum_{i=1}^{n} l_{i}^{2}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} \sum_{j=1}^{n} 1_{\left\{Y_{(j)} \leq Y_{(i)}\right\}}=\sum_{j=1}^{n} \sum_{i=1}^{n} 1_{\left\{Y_{(j)} \leq Y_{(i)}\right\}}=\sum_{j=1}^{n} l_{j} \tag{A.4}
\end{equation*}
$$

Combining the above observations, we get

$$
\frac{Q_{n}}{S_{n}}=\xi_{n}+\frac{r_{n}-r_{1}}{2 n^{2} S_{n}}
$$

In particular,

$$
\left|\frac{Q_{n}}{S_{n}}-\xi_{n}\right| \leq \frac{1}{2 n S_{n}}
$$

Since S_{n} converges to a nonzero limit, this proves that $\xi_{n} \rightarrow \xi$ almost surely. Since for each t,

$$
G(t)(1-G(t))=\operatorname{Var}\left(1_{\{Y \geq t\}}\right) \geq \operatorname{Var}(\mathbb{P}(Y \geq t \mid X))
$$

we conclude that $0 \leq \xi \leq 1$.

Lemma A. 1 shows that $\xi=0$ if and only if X and Y are independent. On the other hand, if Y is a function of X, say $Y=f(X)$ almost surely, then

$$
\begin{aligned}
\int \operatorname{Var}(\mathbb{P}(Y \geq t \mid X)) d \mu(t) & =\int \operatorname{Var}\left(1_{\{f(X) \geq t\}}\right) d \mu(t) \\
& =\int_{\mathbb{R}} \mathbb{P}(f(X) \geq t)(1-\mathbb{P}(f(X) \geq t)) d \mu(t) \\
& =\int G(t)(1-G(t)) d \mu(t)
\end{aligned}
$$

which shows that $\xi=1$. Conversely, suppose that $\xi=1$. Then by the law of total variance,

$$
\begin{aligned}
0 & =1-\xi=\int\left[\operatorname{Var}\left(1_{\{Y \geq t\}}\right)-\operatorname{Var}(\mathbb{P}(Y \geq t \mid X))\right] d \mu(t) \\
& =\int \mathbb{E}\left(\operatorname{Var}\left(1_{\{Y \geq t\}} \mid X\right)\right) d \mu(t) \\
& =\int \mathbb{E}\left(G_{X}(t)\left(1-G_{X}(t)\right)\right) d \mu(t)
\end{aligned}
$$

This implies that $\mathbb{P}(E)=1$, where E is the event

$$
\begin{equation*}
\int G_{X}(t)\left(1-G_{X}(t)\right) d \mu(t)=0 \tag{A.5}
\end{equation*}
$$

Let A be the support of μ. Define

$$
a_{x}:=\sup \left\{t: G_{x}(t)=1\right\}, \quad b_{x}:=\inf \left\{t: G_{x}(t)=0\right\},
$$

so that $a_{x} \leq b_{x}$. By the measurability of $x \mapsto G_{x}(t)$ and the fact that $a_{x} \geq t$ if and only if $G_{x}(t)=1$, it follows that $x \mapsto a_{x}$ is a measurable map. Similarly, $x \mapsto b_{x}$ is also measurable.

Now suppose that the event $\left\{a_{X}<b_{X}\right\} \cap E$ takes place. Since $G_{X}(t) \in$ $(0,1)$ for all $t \in\left(a_{X}, b_{X}\right)$, the condition (A.5) implies that $\mu\left(\left(a_{X}, b_{X}\right)\right)=$ 0 . Since $\left(a_{X}, b_{X}\right)$ is an open interval, this implies that $\left(a_{X}, b_{X}\right) \subseteq A^{c}$. On the other hand, under the given circumstance, we also have $\mathbb{P}(Y \in$ $\left.\left(a_{X}, b_{X}\right) \mid X\right)>0$. Thus $\mathbb{P}\left(Y \in A^{c} \mid X\right)>0$.

The above argument shows that if $\mathbb{P}\left(\left\{a_{X}<b_{X}\right\} \cap E\right)>0$, then $\mathbb{P}(Y \in$ $\left.A^{c}\right)>0$. But this is impossible, since A is the support of μ. Therefore $\mathbb{P}\left(\left\{a_{X}<b_{X}\right\} \cap E\right)=0$. But $\mathbb{P}(E)=1$. Therefore $\mathbb{P}\left(a_{X}=b_{X}\right)=1$. Thus, $Y=a_{X}$ almost surely. This completes the proof of Theorem 1.1.

B. Preparation for the proof of Theorem 2.2

In this section we prove some preparatory lemmas for the proof of Theorem 2.2. Let $R(i)$ be the number of j such that $Y_{j} \leq Y_{i}$ and $L(i)$ be the number of j such that $Y_{j} \geq Y_{i}$. Let π be a rank vector for the X_{i} 's, chosen uniformly at random from all available choices if there are ties. First, note
that since X and Y are independent, π^{-1} is a uniform random permutation that is independent of Y_{1}, \ldots, Y_{n}. Let $\tau:=\pi^{-1}$, and let

$$
D_{n}:=\sum_{i=1}^{n-1} a_{i},
$$

where

$$
a_{i}:=\min \{R(\tau(i)), R(\tau(i+1))\} .
$$

Also, for convenience, let

$$
b_{i, j}:=\min \{R(i), R(j)\} .
$$

In the following, $O\left(n^{-\alpha}\right)$ will denote any quantity whose absolute value is bounded above by $C n^{-\alpha}$ for some universal constant C. Let \mathbb{E}^{\prime}, $\operatorname{Var}^{\prime}$ and Cov^{\prime} denote conditional expectation, conditional variance and conditional covariance given Y_{1}, \ldots, Y_{n}.

Lemma B.1.

$$
\mathbb{E}^{\prime}\left(D_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} L(i)(L(i)-1) .
$$

Proof. Take any $1 \leq i \leq n-1$. Since $(\tau(i), \tau(i+1))$ is uniformly distributed over all pairs (j, k) where j and k are distinct, we have

$$
\begin{equation*}
\mathbb{E}^{\prime}\left(a_{i}\right)=\frac{1}{n(n-1)} \sum_{1 \leq j \neq k \leq n} b_{j, k} \tag{B.1}
\end{equation*}
$$

Since $R(i)=\sum_{j=1}^{n} 1_{\left\{Y_{j} \leq Y_{i}\right\}}$, this gives

$$
\begin{aligned}
\mathbb{E}^{\prime}\left(a_{i}\right) & =\frac{1}{n(n-1)} \sum_{1 \leq j \neq k \leq n} \sum_{l=1}^{n} 1_{\left\{Y_{l} \leq Y_{j}, Y_{l} \leq Y_{k}\right\}} \\
& =\frac{1}{n(n-1)}\left(\sum_{1 \leq j, k \leq n} \sum_{l=1}^{n} 1_{\left\{Y_{l} \leq Y_{j}, Y_{l} \leq Y_{k}\right\}}-\sum_{j=1}^{n} \sum_{l=1}^{n} 1_{\left\{Y_{l} \leq Y_{j}\right\}}\right) \\
& =\frac{1}{n(n-1)}\left(\sum_{l=1}^{n} \sum_{1 \leq j, k \leq n} 1_{\left\{Y_{l} \leq Y_{j}, Y_{l} \leq Y_{k}\right\}}-\sum_{l=1}^{n} \sum_{j=1}^{n} 1_{\left\{Y_{l} \leq Y_{j}\right\}}\right) \\
& =\frac{1}{n(n-1)}\left(\sum_{l=1}^{n} L(l)^{2}-\sum_{l=1}^{n} L(l)\right) .
\end{aligned}
$$

The proof is now completed by adding over i.
Lemma B.2. $\operatorname{Var}^{\prime}\left(D_{n}\right)=V_{n}+O\left(n^{2}\right)$, where

$$
V_{n}:=\frac{1}{n} \sum_{p, q=1}^{n} b_{p, q}^{2}-\frac{2}{n^{2}} \sum_{p, q, r=1}^{n} b_{p, q} b_{p, r}+\frac{1}{n^{3}} \sum_{p, q, r, s=1}^{n} b_{p, q} b_{r, s} .
$$

Proof. Take any $1 \leq i<j \leq n-1$. First, suppose that $i+1<j$. Then $(\tau(i), \tau(i+1), \tau(j), \tau(j+1))$ is uniformly distributed over all quadruples of distinct (p, q, r, s). Thus,

$$
\mathbb{E}^{\prime}\left(a_{i} a_{j}\right)=\frac{1}{(n)_{4}} \sum_{p, q, r, s}^{\prime} b_{p, q} b_{r, s}
$$

where $(n)_{4}:=n(n-1)(n-2)(n-3)$, and \sum^{\prime} denotes sum over distinct p, q, r, s. Therefore by (B.1),

$$
\begin{aligned}
& \operatorname{Cov}^{\prime}\left(a_{i}, a_{j}\right)=\frac{1}{(n)_{4}} \sum_{p, q, r, s}^{\prime} b_{p, q} b_{r, s}-\left(\frac{1}{(n)_{2}} \sum_{p, q}^{\prime} b_{p, q}\right)^{2} \\
& =\left(\frac{1}{(n)_{4}}-\frac{1}{(n)_{2}^{2}}\right) \sum_{p, q, r, s}^{\prime} b_{p, q} b_{r, s}-\frac{1}{(n)_{2}^{2}}\left(\left(\sum_{p, q}^{\prime} b_{p, q}\right)^{2}-\sum_{p, q, r, s}^{\prime} b_{p, q} b_{r, s}\right) \\
& =\frac{4 n}{(n)_{2}(n)_{4}} \sum_{p, q, r, s}^{\prime} b_{p, q} b_{r, s}-\frac{4}{(n)_{2}^{2}} \sum_{p, q, r}^{\prime} b_{p, q} b_{p, r}+O(1) \\
& =\frac{4}{n^{5}} \sum_{p, q, r, s} b_{p, q} b_{r, s}-\frac{4}{n^{4}} \sum_{p, q, r} b_{p, q} b_{p, r}+O(1) .
\end{aligned}
$$

Next, suppose that $i+1=j$. Then

$$
\begin{aligned}
\operatorname{Cov}^{\prime}\left(a_{i}, a_{j}\right) & =\frac{1}{(n)_{3}} \sum_{p, q, r}^{\prime} b_{p, q} b_{p, r}-\left(\frac{1}{(n)_{2}} \sum_{p, q}^{\prime} b_{p, q}\right)^{2} \\
& =\frac{1}{n^{3}} \sum_{p, q, r} b_{p, q} b_{p, r}-\frac{1}{n^{4}} \sum_{p, q, r, s} b_{p, q} b_{r, s}+O(n) .
\end{aligned}
$$

Similarly, if $i=j$, then

$$
\begin{aligned}
\operatorname{Cov}^{\prime}\left(a_{i}, a_{j}\right) & =\frac{1}{(n)_{2}} \sum_{p, q}^{\prime} b_{p, q}^{2}-\left(\frac{1}{(n)_{2}} \sum_{p, q}^{\prime} b_{p, q}\right)^{2} \\
& =\frac{1}{n^{2}} \sum_{p, q} b_{p, q}^{2}-\frac{1}{n^{4}} \sum_{p, q, r, s} b_{p, q} b_{r, s}+O(n) .
\end{aligned}
$$

The proof is completed by adding up $\operatorname{Cov}^{\prime}\left(a_{i}, a_{j}\right)$ over all $1 \leq i, j \leq n-1$.
Lemma B.3. As $n \rightarrow \infty, \operatorname{Var}^{\prime}\left(D_{n}\right) / n^{3}$ converges almost surely to the deterministic limit

$$
\mathbb{E}\left(\phi\left(Y_{1}, Y_{2}\right)^{2}-2 \phi\left(Y_{1}, Y_{2}\right) \phi\left(Y_{1}, Y_{3}\right)+\phi\left(Y_{1}, Y_{2}\right) \phi\left(Y_{3}, Y_{4}\right)\right)
$$

where $\phi\left(y, y^{\prime}\right):=\min \left\{F(y), F\left(y^{\prime}\right)\right\}$ and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ are i.i.d. copies of Y.
Proof. Throughout this proof, C will be used to denote any universal constant. Let V_{n} be as in Lemma B.2. It is a function of the Y_{i} 's only. Notice that if one Y_{i} is replaced by some other value Y_{i}^{\prime}, then each $R(j)$ changes by at most 1 for $j \neq i$, and $R(i)$ changes by at most n. Therefore $b_{p, q}$ changes by at most 1 if $p \neq i$ and $q \neq i$, and by at most n if one or both of the indices
are equal to i. Moreover, the $b_{p q}$'s are all bounded by n. Thus, changing one Y_{i} to Y_{i}^{\prime} changes V_{n} by at most $C n^{2}$. Therefore by the bounded difference inequality,

$$
\mathbb{P}\left(\left|V_{n}-\mathbb{E}\left(V_{n}\right)\right| \geq t\right) \leq 2 e^{-C t^{2} / n^{5}}
$$

for every t. Consequently, $\left(V_{n}-\mathbb{E}\left(V_{n}\right)\right) / n^{3} \rightarrow 0$ almost surely as $n \rightarrow \infty$.
On the other hand, note that $b_{p, q} / n=\min \left\{F_{n}\left(Y_{p}\right), F_{n}\left(Y_{q}\right)\right\}$, where F_{n} is the empirical distribution function of the Y_{i} 's. By the Glivenko-Cantelli theorem, $F_{n} \rightarrow F$ uniformly with probability one, where F is the cumulative distribution function of Y. From this, it is easy to see that $\mathbb{E}\left(V_{n}\right) / n^{3}$ converges to the displayed limit.

Lemma B.4. If Y is not a constant, the limit in Lemma B. 3 is strictly positive.

Proof. Let us denote the limit by v. Let Y^{\prime} be an independent copy of Y, and define

$$
\psi(y):=\mathbb{E}\left(\phi\left(y, Y^{\prime}\right)\right)=\mathbb{E}\left(\phi\left(Y, Y^{\prime}\right) \mid Y=y\right) .
$$

Also, let $m:=\mathbb{E}\left(\phi\left(Y, Y^{\prime}\right)\right)=\mathbb{E}(\psi(Y))$. Then v can be expressed as

$$
\begin{equation*}
v=\mathbb{E}\left(\phi\left(Y, Y^{\prime}\right)^{2}\right)-2 \mathbb{E}\left(\psi(Y)^{2}\right)+m^{2} . \tag{B.2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \mathbb{E}\left(\phi\left(Y, Y^{\prime}\right)-\psi(Y)-\psi\left(Y^{\prime}\right)+m\right)^{2} \\
& =\mathbb{E}\left(\phi\left(Y, Y^{\prime}\right)^{2}+\psi(Y)^{2}+\psi\left(Y^{\prime}\right)^{2}+m^{2}-2 \phi\left(Y, Y^{\prime}\right) \psi(Y)\right. \\
& \quad-2 \phi\left(Y, Y^{\prime}\right) \psi\left(Y^{\prime}\right)+2 \phi\left(Y, Y^{\prime}\right) m+2 \psi(Y) \psi\left(Y^{\prime}\right) \\
& \left.\quad-2 \psi(Y) m-2 \psi\left(Y^{\prime}\right) m\right) .
\end{aligned}
$$

Note that $\mathbb{E}\left(\phi\left(Y, Y^{\prime}\right) \psi(Y)\right)=\mathbb{E}\left(\psi(Y)^{2}\right)$, and recall that $\mathbb{E}\left(\phi\left(Y, Y^{\prime}\right)\right)=$ $\mathbb{E}(\psi(Y))=m$. The same identities hold if we exchange Y and Y^{\prime}. Using these facts, it is now easy to verify that the above expression is actually equal to the right side of (B.2). Thus,

$$
v=\mathbb{E}\left(\phi\left(Y, Y^{\prime}\right)-\psi(Y)-\psi\left(Y^{\prime}\right)+m\right)^{2} .
$$

Hence $v \geq 0$, and $v=0$ if and only if $\phi\left(Y, Y^{\prime}\right)=\psi(Y)+\psi\left(Y^{\prime}\right)-m$ almost surely. Suppose that this is true. Then almost surely for each $i \geq 2$,

$$
\begin{equation*}
\phi\left(Y_{1}, Y_{i}\right)=\psi\left(Y_{1}\right)+\psi\left(Y_{i}\right)-m, \tag{B.3}
\end{equation*}
$$

where Y_{1}, Y_{2}, \ldots are i.i.d. copies of Y. Taking the minimum over $2 \leq i \leq n$ on both sides, we get

$$
\min \left\{F\left(Y_{1}\right), \ldots, F\left(Y_{n}\right)\right\}=\psi\left(Y_{1}\right)+\min \left\{\psi\left(Y_{2}\right), \ldots, \psi\left(Y_{n}\right)\right\}-m .
$$

Now, the minimum of a sequence of i.i.d. bounded random variables converges almost surely to the infimum of the support. Also, F and ψ are bounded functions. Therefore taking $n \rightarrow \infty$ on both sides of the above, it follows that $\psi\left(Y_{1}\right)$ equals a constant almost surely. Therefore $\psi\left(Y_{2}\right)$ equals the same constant almost surely, and hence by (B.3), $\phi\left(Y_{1}, Y_{2}\right)$ is
also equal to a constant almost surely. Now, if $L(t):=\mathbb{P}(F(Y) \geq t)$, then $\mathbb{P}\left(\phi\left(Y_{1}, Y_{2}\right) \geq t\right)=L(t)^{2}$. Since $\phi\left(Y_{1}, Y_{2}\right)$ is a constant, this shows that $L(t)^{2}$ is 0 or 1 for every t, and hence $L(t)$ is also 0 or 1 for every t. Consequently, $F(Y)$ is a constant almost surely.

We claim that 1 is in the support of $F(Y)$ and hence $F(Y)=1$ almost surely. To see this, take any $\varepsilon \in(0,1)$. We will show that $\mathbb{P}(F(Y)>$ $1-\varepsilon)>0$. Let $x:=\inf \{y: F(y) \geq 1-\varepsilon / 2\}$. Then x is a finite real number since F tends to 1 at ∞ and to 0 at $-\infty$. By the right-continuity of F, $F(x) \geq 1-\varepsilon / 2$. If F is discontinuous at x, this immediately shows that $\mathbb{P}(F(Y)>1-\varepsilon) \geq \mathbb{P}(Y=x)>0$. If F is continuous at x, there is some $y<x$ such that $F(y)>1-\varepsilon$. By the definition of $x, F(y)<F(x)$. Thus, $\mathbb{P}(F(Y)>1-\varepsilon) \geq \mathbb{P}(Y \in(y, x))>0$. This shows that 1 is in the support of $F(Y)$, and hence $F(Y)=1$ almost surely.

Since Y is not a constant, there are at least two points in its support. Therefore there exist two disjoint nonempty open intervals I and J such that $\mathbb{P}(Y \in I)$ and $\mathbb{P}(Y \in J)$ are both positive. Suppose that I is to the left of J. Then for any $y \in I, F(y) \leq 1-\mathbb{P}(Y \in J)<1$, and hence $\mathbb{P}(F(Y)<1) \geq \mathbb{P}(Y \in I)>0$, which contradicts the conclusion of the previous paragraph. This shows that $v>0$.

C. Proof of Theorem 2.2

We will continue with the notations from Section B. Let σ^{2} denote the limit of $\operatorname{Var}^{\prime}\left(D_{n}\right) / n^{3}$, which by Lemmas B. 3 and B.4, is a deterministic positive quantity (it was called v in the proof of Lemma B.4). Define

$$
\widetilde{D}_{n}:=\frac{D_{n}-\mathbb{E}^{\prime}\left(D_{n}\right)}{n^{3 / 2} \sigma} .
$$

Notice that $r_{i}=R(\tau(i))$. Therefore by Lemma B.1, the identity (A.4), and the identity $\min \{a, b\}=\frac{1}{2}(a+b-|a-b|)$, we get

$$
\begin{aligned}
D_{n}-\mathbb{E}^{\prime}\left(D_{n}\right) & =\sum_{i=1}^{n-1} \min \left\{r_{i}, r_{i+1}\right\}-\frac{1}{n} \sum_{i=1}^{n} L(i)(L(i)-1) \\
& =\frac{1}{2} \sum_{i=1}^{n-1}\left(r_{i}+r_{i+1}-\left|r_{i+1}-r_{i}\right|\right)-\frac{1}{n} \sum_{i=1}^{n} l_{i}\left(l_{i}-1\right) \\
& =\sum_{i=1}^{n} r_{i}-\frac{r_{1}+r_{n}}{2}-\frac{1}{2} \sum_{i=1}^{n-1}\left|r_{i+1}-r_{i}\right|-\frac{1}{n} \sum_{i=1}^{n} l_{i}\left(l_{i}-1\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} l_{i}\left(n-l_{i}\right)-\frac{1}{2} \sum_{i=1}^{n-1}\left|r_{i+1}-r_{i}\right|+O(n) .
\end{aligned}
$$

This shows that

$$
\xi_{n}=\frac{D_{n}-\mathbb{E}^{\prime}\left(D_{n}\right)}{n^{2} S_{n}}+O\left(\frac{1}{n S_{n}}\right)=\frac{\sigma}{\sqrt{n} S_{n}} \widetilde{D}_{n}+O\left(\frac{1}{n S_{n}}\right)
$$

where S_{n} is the quantity defined in (A.3). In the proof of Theorem 1.1, we showed that $S_{n} \rightarrow \int G(t)(1-G(t) d \mu(t)$ almost surely, and the latter quantity is positive by Corollary A.2. Thus, to prove the central limit theorem for $\sqrt{n} \xi_{n}$, it suffices to prove the central limit theorem for \widetilde{D}_{n}. The formula for the limiting variance τ^{2} can be read off from the limit of S_{n} and the formula for σ. The limiting variance is strictly positive by Lemma B.4. When Y is continuous, $F(Y) \sim$ Uniform $[0,1]$. Using this fact, an easy calculation shows that $\tau^{2}=2 / 5$.

The central limit theorem for \widetilde{D}_{n} can be proved by mimicking the proof of the main theorem of the paper [1]. First, replace D_{n} by

$$
D_{n}^{\prime}:=\sum_{i=1}^{n} \min \{R(\tau(i)), R(\tau(i+1))\},
$$

where $\tau(n+1):=\tau(1)$. Since $\left|D_{n}^{\prime}-D_{n}\right| \leq n$, it suffices to prove that $\widetilde{D}_{n}^{\prime} \rightarrow N(0,1)$ in distribution, where

$$
\widetilde{D}_{n}^{\prime}:=\frac{D_{n}^{\prime}-\mathbb{E}^{\prime}\left(D_{n}^{\prime}\right)}{n^{3 / 2} \sigma} .
$$

Mimicking the main idea of [1], we define

$$
f(\tau(i+1)):=\mathbb{E}^{\prime}(\min \{R(\tau(i)), R(\tau(i+1))\} \mid \tau(i+1)),
$$

and observe that

$$
\mathbb{E}^{\prime}\left(D_{n}^{\prime}\right)=n \mathbb{E}[f(\tau(1))]=\sum_{i=1}^{n} f(i)=\sum_{i=1}^{n} f(\tau(i)) .
$$

Thus,

$$
\widetilde{D}_{n}^{\prime}=\frac{\sum_{i=1}^{n} \beta_{i}}{n^{3 / 2} \sigma}
$$

where $\beta_{i}:=\min \{R(\tau(i)), R(\tau(i+1))\}-f(\tau(i))$. Since $\left|D_{n}-D_{n}^{\prime}\right| \leq n$, $\operatorname{Var}^{\prime}\left(D_{n}^{\prime}\right) / n^{3}$ converges almost surely to σ^{2}. Using these observations, we can proceed exactly as in the proof of the main theorem of [1] to show that for every integer $k \geq 1$,

$$
\begin{equation*}
\mathbb{E}^{\prime}\left[\left(\widetilde{D}_{n}^{\prime}\right)^{k}\right] \rightarrow \mathbb{E}\left(Z^{k}\right) \text { almost surely as } n \rightarrow \infty \tag{C.1}
\end{equation*}
$$

where $Z \sim N(0,1)$. On the other hand, a simple argument using the bounded difference inequality (viewing τ as the rank vector of i.i.d. random variables from any continuous distribution) shows that for any k,

$$
\sup _{n \geq 1} \mathbb{E}\left|\widetilde{D}_{n}^{\prime}\right|^{k}<\infty
$$

Therefore by (C.1) and uniform integrability, we conclude that for every integer $k \geq 1$,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(\widetilde{D}_{n}^{\prime}\right)^{k}\right]=\mathbb{E}\left(Z^{k}\right)
$$

This completes the proof of Theorem 2.2.

D. Proof of Theorem 2.3

The quantity S_{n} define in (A.3) is the same as d_{n}, and in the proof of Theorem 1.1 we showed that S_{n} converges to the square-root of the denominator in the definition of τ^{2}. Recall the quantity V_{n} from Lemma B.2. By Lemma B.3, we know V_{n} / n^{3} converges almost surely to the numerator in the definition of τ^{2}. We will now show that $a_{n}-2 b_{n}+c_{n}^{2}$ is the same as V_{n} / n^{3}.

From the definition of V_{n}, it is easy to see that the result will remain unchanged if we permute the $R(i)$'s and recompute V_{n}. So we can replace the $R(i)$'s by an increasing rearrangement u_{1}, \ldots, u_{n}. Redefine

$$
b_{i j}:=\min \left\{u_{i}, u_{j}\right\}=u_{\min \{i, j\}} .
$$

Then it is clear that

$$
\begin{aligned}
\sum_{i, j} b_{i j} & =\sum_{i=1}^{n} u_{i}+2 \sum_{1 \leq i<j \leq n} b_{i j} \\
& =\sum_{i=1}^{n} u_{i}+2 \sum_{i=1}^{n}(n-i) u_{i}=\sum_{i=1}^{n}(2 n-2 i+1) u_{i}
\end{aligned}
$$

Similarly,

$$
\sum_{i, j} b_{i j}^{2}=\sum_{i=1}^{n}(2 n-2 i+1) u_{i}^{2} .
$$

Finally,

$$
\begin{aligned}
\sum_{i, j, k} b_{i j} b_{i k} & =\sum_{i=1}^{n}\left(\sum_{j=1}^{n} b_{i j}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{i} u_{j}+(n-i) u_{i}\right)^{2}=\sum_{i=1}^{n}\left(v_{i}+(n-i) u_{i}\right)^{2} .
\end{aligned}
$$

These expressions make it clear that $a_{n}-2 b_{n}+c_{n}^{2}=V_{n} / n^{3}$. This completes the proof of convergence. Finally, to see that $\widehat{\tau}_{n}^{2}$ can be computed in time $O(n \log n)$, simply observe that the computation involves only sorting and calculating cumulative sums, both of which can be done in time $O(n \log n)$.

References

[1] Chao, C.-C., Bai, Z. and Liang, W.-Q. (1993). Asymptotic normality for oscillation of permutation. Probab. Eng. Inf. Sci., 7, 227-235.
[2] Durrett, R. (2010). Probability: theory and examples. Fourth edition. Cambridge University Press, Cambridge.
[3] McDiarmid, C. (1989). On the method of bounded differences. In Surveys in combinatorics, 148-188, London Math. Soc. Lecture Note Ser., 141, Cambridge Univ. Press, Cambridge.
[4] Rudin, W. (1987). Real and complex analysis. Third edition. McGrawHill Book Co., New York.

Department of Statistics, Stanford University, Sequoia Hall, 390 Jane Stanford Way, Stanford, CA 94305

Email address: souravc@stanford.edu

