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Modeling time headways between vehicles has attracted increasing interest in the traffic flow research field recently,

because the corresponding statistics help to reveal the intrinsic interactions governing the vehicle dynamics. However,

most previous micro-simulation models cannot yield the observed log-normal distributed headways. This paper designs

a new car-following model inspired by the Galton board to reproduce the observed time-headway distributions as well

as the complex traffic phenomena. The consistency between the empirical data and the simulation results indicates that

this new car-following model provides a reasonable description of the car-following behaviours.
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1. Introduction

To explain and reproduce the complex phenom-

ena of road traffic, the dynamics of traffic flows are

often described on N strongly-coupled particles (ve-

hicles) under fluctuations.[1] Since the governing in-

teraction forces or potentials between these particles

cannot be directly measured, the statistical features

of particles are often investigated instead.[2]

Among different statistical features, the distri-

butions of space-gaps/time-headways between these

particles (vehicles) received consistent interest. In

some recent studies,[3−6] some theoretical models were

presented from different physical perspectives (e.g.

scatter theory and random matrix theory (RMT))

to explain why the observed time-headway distribu-

tions have similar shapes even for different phases

(i.e. Kerner’s three divisions: free flows, synchro-

nized flows, and moving jams[2]). For example, in

Ref. [5], the following probability density function f(s)

is chosen to model the practical distributions based on

random-matrix theory
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where α and D are two shape controlling coefficients

determined by the sampling data. D0 is then cho-

sen as D0 = K1(2α)/K2(2α) and Km(x) is a modified

Bessel function of the second kind.

In some recent reports, the practical headways are

assumed to follow certain log-normal distributions.[7,8]

f(s) =
1

σ
√
2πh

e(ln s−µ)2/2σ2

, (2)

where µ and σ denote the mean and variance of the

sampling data.

Figure 1 shows the comparison results for the

empirical, super-statistical[5] and log-normal distribu-

tions P (τ), where τ = th/⟨th⟩, th denotes the sampled

time-headways and ⟨th⟩ is its mean value. It is clear

that log-normal distribution model has smaller fitting

errors.

However, how these log-normal distributions are

generated remained to be studied previously. In this

paper, we propose a new car-following model inspired

by the Galton board to explain this interesting phe-

nomena.
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Fig. 1. Probability density P (τ) for normalized empirical

time-headways τ between successive cars in traffic flow.

For comparison, the empirical data and super-statistical

distributions on RMT are excerpted from Ref. [5].

2. The car-following model in-

spired by Galton board

2.1.The idea behind

Before we present the main model, let us inter-

pret the stochastic process yielding log-normal type

distributions using the generative model method. As

pointed out by Galton 1889 in Ref. [9], the dynamics

of such stochastic processes can be modeled as a par-

ticle falling down a board (such a board is called Gal-

ton board) and being deviated at decision points (the

tips of the triangular obstacles) either left or right, see

Fig. 2. If the deviation of the particle from one row

to the next is a random additive process with possible

values +c and −c, the normal distribution will be cre-

ated by the board, which reflects the cumulative ad-

ditive effects of the sequence of decision points. But if

the deviation of the particle from one row to the next

is a random multiplicative process with possible values

·c′ and /c′, the log-normal distribution will be gener-

ated. Here c and c′ are certain constants.[10] (A recent

good recapitulation of the theory of Galton board and

log-normal distribution can be found in Ref. [11] and

thus no details are given in this paper)

The Galton board model inspires us to view the

driver’s velocity adjusting process as a similar genera-

tive model. It is obvious that drivers tend to take very

careful acceleration when the spacing between the two

vehicles is small and does not want to speed up at once

after braking. The deviation of the particle to the left

is equivalent to the following vehicle’s accelerating ac-

tion, since the relative speed decreases slowly at this

period; while the deviation to the right is equivalent

to the following vehicle’s braking action, since the rel-

ative speed increases quickly at this period. Thus, the

tracking errors deviating from the ideal time headways

will be accumulated gradually and finally formulate

the log-normal type distributions.

Fig. 2. Diagram of two Galton boards yielding normal (a)

and log-normal (b) distributions respectively. If the tip of

a triangle is at distance x from the left edge of the board,

triangle tips to the right and to the left below it are placed

at x + c and x − c for the normal distribution, and x · c′

and x/c′ for the log-normal, where c and c′ are constants.

According to this idea, the variation dynamics of

time-headway th(t) should be depicted by the follow-

ing equation without losing any generality, if it follows

log-normal distribution

th(t) =

 βth(t− 1), with probability (1− p),
1

β
th(t− 1), with probability p,

(3)

where β is a positive coefficient, 0 < p < 1.

If β = 1, the system will enter the steady state

immediately, since every follower will exactly track its

leader. However, this contradicts the practices. Here

we assume that 0 < β . 1 together with 0 < p < 0.5,

since drivers tend to keep a close spacing.

More precisely, they can be described as follows.

Suppose vi(t) and xi(t) are the velocity and head po-

sition of the i-th vehicle (follower) at time t, respec-

tively. Similarly, vi−1(t) and xi−1(t) are the velocity

and head position of the (i− 1)-th vehicle (leader) at
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time t respectively. The gi(t) = xi−1(t)− xi(t)− l de-

notes the space-gap between the two vehicles at time

t, where l denotes the uniform length of the vehicles.

The simulation time span is 1 s.

Noticing th(t) ≈ gs(t)/v(t+ 1), we have

ṽi(t+ 1) =


βvi(t)

gi(t)

gi(t− 1)
, with p,

1

β
vi(t)

gi(t)

gi(t− 1)
, with (1− p),

(4)

which has a similar velocity updating formula as the

famous GHR type car-following model[12,13]

ṽi(t+ 1) = vi(t) + cvpi (t)
vi−1(t)− vi(t)

gqi (t)
, (5)

where c, p and q are three non-negative exponent co-

efficients calibrated from practical data.

Obviously, the proposed model and the GHR

model propose different formulas to interpret the fol-

lowing intuitive hypothesis: a driver’s acceleration was

proportional to the vehicle different vi−1(t)−vi(t) and

the deviation from a set following distance gi(t). How-

ever, simulation results show that the GHR model

cannot yield log-normal distributions, no matter what

parameter set (c, p and q) is chosen.

The above equation determines the key model

characterizing the major car-following dynamics of ve-

hicles. However, in order to accurately describe the

driving behaviors on highway, we still need to make

some modifications.

2.2.The complete model

In this paper, the complete simulation model is

assumed to consist of five modes: 1) stopped; 2)

starting-up; 3) free-driving; 4) slowing-down and 5)

car-following states, see Fig. 3.

At the beginning of each round of simulation, the

simulation system will judge the current mode accord-

ing to the updating rules below. Then, a desired speed

ṽi(t + 1) would be roughly determined according to

the current mode. At the end of each round, the

acc/deceleration limits and collision-free constraints

would be checked to modify the ṽi(t+1). For simplic-

ity, a symbol flag is introduced here, where flag == 1

means the vehicle is in the starting-up mode, and flag

== 0 indicates otherwise.

Fig. 3. Flowchart illustrating how to determine the cur-

rent mode.

(i) Stopped mode

Entering condition: if vi(t) = 0, then the i-th ve-

hicle would enter stopped mode at time (t + 1), i.e,

vi(t+ 1) = 0.

Leaving condition: as suggested in Ref. [14], the

vehicle will leave the stopped mode and enter the

starting-up mode if the two conditions below are both

satisfied: a) the space-gap ahead becomes larger than

a pre-selected threshold at time t (gi(t) > gstart); b)

γ > pslow, where γ is a random number uniformly gen-

erated from [0, 1] every round, pslow denotes the pre-

selected slow-to-start probability. In this case, flag

will be set as flag = 1 and the vehicle will transfer to

starting-up mode for further modification. Otherwise,

the vehicle will stay in the stopped mode at (t+ 1).

Similar to the slow-to-start features proposed in

Refs. [15] and [16], we assume that pslow increases with

the stopping time here as

pslow =

 p1 + (p2 − p1)

(
tstop
tslow

)4

, tstop ≤ tslow,

p2, tstop > tslow,

(6)

where tslow is a pre-selected constant. The tstop de-

notes how many seconds pass once the vehicle enters

the stopped condition and will be refreshed to 0 after

starting-up.

(ii) Starting-up mode

Entering condition: if flag == 1 , the vehicle will

enter the starting-up mode.
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Leaving condition: if the velocity becomes larger

than a pre-selected threshold, vi(t) ≥ vstart, the vehi-

cle will leave this mode, and flag will be set as flag =

0.

In this mode, the vehicle would accelerate until

vstart is reached. The limit of ac/deceleartion will be

guaranteed in the following Eq. (12) and thus omitted

here.

ṽi(t+ 1) = vstart. (7)

(iii) Free-driving mode

Entering/leaving condition: Else if and only if the

space-gap ahead becomes larger than a pre-selected

threshold (the maximum coupling distance) at time t,

gi(t) > gfree, the vehicle will enter free-driving mode.

The maximum coupling distance gfree is assumed to

be velocity-dependent as

gfree = λvi(t) + θ, (8)

where λ and θ are two positive coefficients.

In this mode, the vehicle tends to accelerate to the

maximum velocity vmax. The limit of ac/deceleartion

will be guaranteed in the following Eq. (12) and thus

omitted here.

ṽi(t+ 1) = vmax. (9)

(iv) Slowing-down mode

Entering/leaving condition: Else if and only if

vi−1(t) = 0, the i-th vehicle would enter the slowing-

down mode.

In this mode, the vehicle tries to approach the

leading vehicle until a pre-selected stopped gap gstop

is reached. The limit of ac/deceleration will be guar-

anteed in the following Eq. (12) and thus omitted here.

ṽi(t+ 1) = gi(t)− gstop. (10)

(v) Car-following mode

The car-following mode contains two sub-modes

here: a) braking sub-mode and b) normal following

sub-mode.

a) Braking sub-mode

Entering/leaving condition: if and only if vi(t)−
vi−1(t) > [gi(t) − gstop]/H and vi−1(t) > W , the i-th

vehicle will enter the speed-adaptation braking sub-

mode. Here, H and W are two positive coefficients.

In this mode, the driver considers that the veloc-

ity is high in comparison with the leading one. He/she

tends to keep the same velocity as the leading vehi-

cle and would decelerate (noticing that vi(t) > vi−1(t)

have been guaranteed in this sub-mode)

ṽi(t+ 1) = vi−1(t). (11)

b) Normal-following sub-mode

Otherwise, the vehicle is running in the normal

following sub-mode depicted by Eq. (4).

Finally, the ṽi(t + 1) are checked by considering

the acc/deceleration limits as

vi(t+ 1) =

min{vi(t) + a+max, ṽi(t+ 1), vmax, gi(t)− gstop}, if ṽi(t+ 1) ≥ vi(t),

min{max{vi(t)− a−max, ṽi(t+ 1), 0}, gi(t)− gstop}, if ṽi(t+ 1) < vi(t),
(12)

and the position of vehicle is updated as

xi(t+ 1) = xi(t) + vi(t+ 1). (13)

3. Simulations of the proposed

model

3.1.Parameter selection

The parameters in this model are divided into

two groups: the parameters associating with car-

starting/stopping process and the parameters associ-

ating with car-following process.

For the first group, we have

i) vmax, gstart and gstop are chosen according to

practical observations and usual settings as vmax =

27 m/s, gstart = 2.2 m, gstop = 1.5 m;

ii) tslow, p1 and p2 are chosen similar to Ref. [16]

as tslow = 10 s, p1 = 0.33, p2 = 0.45;

iii) λ and θ are chosen similar to Ref. [2] as λ = 2,

θ = 3 m;

iv) The parameter vstart is a critical parameter

determining when to enter the starting mode from

the car-following mode. Its value should be chosen

to guarantee that the key model Eq. (4) will not be

applied when the speed is low. Based on simulation

tests, this parameter is set as vstart = 3 m/s.

For the second group, we found the following cou-

pling relations among the parameters, see Fig. 4.
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Fig. 4. The coupling relation diagram of the parameters

with respect to car-following.

(I) First, a+max and a−max are determined according

to usual settings as a+max = 3 m/s, a−max = 5 m/s;

(II) Second, we need to roughly guarantee a+max >

(1 − β)vmax, if we want the key model Eq. (4) to be-

come the dominant mechanism that shapes the car-

following process. Here, we set β = 0.9 and corre-

spondingly p = 0.45;

(III) Third, drivers are less sensitive when the

speed is low and thus the parameter W is introduced

to simulate this phenomenon. If W is too small, the

perturbation in the low velocity section would be too

small, leading to the extinction of wide moving jams

in simulation. If W is too large, the driving behaviour

would be very unstable, which contradicts with ob-

servation. Since vmax is set as vmax = 27 m/s above,

the acceptable value range of W is between 8 and 10.

Particularly, we set W = 9 m/s;

(IV) Fourth, a larger H would make the decelera-

tion easier to occur, but a too large H would threaten

the dominance of the key model Eq. (4). On the other

hand, a too small H requires a very large a−max, which

leads to a very severe deceleration of vehicles. Thus,

we select H as H = 5 s based on simulation tests.

Besides, all the vehicles have the same length as

l = 4 m.

3.2. Simulation results

Figure 5 shows the corresponding distributions

of the simulated time-headways within three differ-

ent velocity ranges. All the simulated time-headways

pass the 95% Kolmogorov–Smirnov (K–S) hypothesis

test for log-normal distribution with P -value 0.06, 0.16

and 0.17 respectively. This proves that the new model

exactly yields the log-normal type time-headway dis-

tribution as observed (comparatively, many previous

models yield symmetric distributions, i.e. Fig. 7 of

Ref. [17]). As the velocity of the vehicle increases, the

mean time-headways of such log-normal type distri-

butions will approach the saturation headway. This

fits the observations,[18,19] too.

Fig. 5. Estimated log-normal type probability density

function for simulated time-headways th (in seconds).

The macroscopic traffic stream characteristics on

a circular single-lane road are also measured according

to Ref. [20], where the length of road is 27000 m. Fig-

ure 6 shows that the proposed model can correctly

reproduce the synchronized flow state. Similar to

Ref. [16], hysteresis effect can be clearly found in the

diagram given in Fig. 7. This indicates that the pro-

posed model can reproduce the complex behaviour ob-

served in highway systems.

Fig. 6. (a) The (k, q) diagrams for the model during synchronized flow state, obtained by local measurements.

(b) The spatial-temporal diagram of the transition from synchronized flow to jams.
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Fig.7. The fundamental diagram of the model, obtained

by starting from two initial states: jammed states (low

branch) and homogeneous states (upper branch).

4. Conclusion

A new car-following model is designed in this pa-

per to reproduce the observed time-headway distribu-

tions as well as the complex traffic phenomena. The

research purposes are twofold here:

I) Log-normal distribution is suggested as a use-

ful distribution model to model the vehicle time-

headways;

II) Previous physical interpretations focus on the

steady-state macroscopic-level statistics of the vehi-

cle time-headways. Differently, this method provides

a microscopic-level dynamic explanation, which can

also be used to simulate the transient-state statistics

of inter-arrival and inter-departure vehicle queuing in-

teractions.

References

[1] Helbing D 2001 Rev. Mod. Phys. 73 1067

[2] Kerner B S 2004 The Physics of Traffic (Heidelberg:

Springer)

[3] Krbalek M, Seba P and Wagner P 2001 Phys. Rev. E 64

066119

[4] Krbalek M and Helbing D 2004 Physica A 333 370

[5] Abul-Magd A Y 2007 Phys. Rev. E 76 057101

[6] Thiemann C, Treiber M and Kesting A 2008 Traffic Flow

Theory and Characteristics 2008 90

[7] Piao J and McDonald M 2003 Proceedings of IEEE Intel-

ligent Vehicles Symposium 462

[8] Zhang G, Wang Y, Wei H and Chen Y 2007 Traffic Flow

Theory 2007 141

[9] Galton F 1889 Natural Inheritance (London: Mac Millan)

[10] Crow E L and Shimizu K 1988 Log-normal Distributions:

Theory and Applications (New York: Markel Dekker, Inc.)

[11] Limpert E, Stahel W A and Abbt M 2001 Bioscience 51

341

[12] Gazis D C, Herman R and Potts R B 1959 Operations

Research 7 499

[13] Brackstone M and McDonald M 1999 Transportation Re-

search, Part F, Traffic Psychology and Behaviour 2 181

[14] Lee H K, Barlovic R, Schreckenberg M and Kim D 2003

Traffic and Granular Flow 03 253

[15] Jiang R and Wu Q 2005 Eur. Phys. J. B 46 581

[16] Gao K, Jiang R, Hu S, Wang B and Wu Q 2007 Phys.

Rev. E 76 026105

[17] Bando M, Hasebe K, Nakayama A, Shibata A and

Sugiyama Y 1995 Phys. Rev. E 51 1035

[18] Kerner B S, Klenov S L, Hiller A and Rehborn H 2006

Phys. Rev. E 73 046107

[19] Schonhof M and Helbing D 2007 Transp. Sci. 41 135

[20] Maerivoet S and De Moor B 2005 Phys. Rep. 419 1

020513-6


