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ABSTRACT

This work gives a new representation of the distribution and expected
value of the concomitant rank of order statistics. An advantage of this
representation is its ability to extend without any complexity to the
multivariate case. Moreover, it gives a new direct approach to com-
pute an approximate formula for the distribution and expected value
of the concomitant rank of order statistics. Finally, an upper bound is
derived for the confidence level of the tolerance region of the original
bivariate (resp., multivariate) d.f., from which the sample is drawn.
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1. INTRODUCTION

Let (X;,Y;),j=1,2,...,n, beindependent and identically distributed
random vectors. We cons1der the order statistics Xi., < X5, < -+- < X,n
of the first component, and we denote the corresponding Y;s by
Yitn)s Yjzun)s - - 5 Yun)- That is, if X; = X,.,, then Yj,.,) = ¥;. The sequence
Y, 1 < 7 < nis called the concomitants of order statistics. These conco-
mitants are of interest in selection and prediction problems based on the
ranks of the Xs. The foundations of the concomitants of order statistics,
which is applications oriented, were laid down in the works of David
(1973), David and Galambos (1974), and Bhattacharya (1974). Further
works are by O’Connell and David (1976), Sen (1976), David et al.
(1977) and Yang (1977). The book by David (1970) has extensive material
on the subject. An excellent review of work on concomitants of order
statistics is available in David and Nagaraja (1998).

Galambos (1978, Chapter 5), pointed out that in many cases (such as
normal distributions), the concomitants of the extremes among the Xs are
not extremes among the ¥s (with high probability). It is, therefore, an
interesting question to investigate the rank R, of ¥|.,, which can be
defined by R, := 3" I(¥j.s — ¥;), where

I(x) = 1, ifx>0,
~ 10, if otherwise.

The distribution of R,., is obtained by David et al. (1977). Namely, let
(X, Y) denote a generic (X;,¥;) and F(x,y) be the distribution function
(d.f.) of (X,Y) Furthermore, let G(x,y):=P(X >x,Y >y) be the
survival function of (X,Y). Finally, let F|(x) and F>(y) be the marginals
of F(x,y), while G;(x) and G,(y) be the marginals of G(x,y). Then
Apn(8) := P(R,,, = s) may be written in the form

r—1As—1 n!

Am(s): Gty P =k =D —k = Dl(n —r— s+ k+ 1)
/ / (5, 9)) ™ (x, )
x (Fa(y) = Fx, ) 16" () f(x, y)dxdy, (1)
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where f(x,y) = 025; g)’;") is the probability density function (p.d.f.) of
F(x,y), aVb=:max(a,b) and a Ab=:min(a,b). From the exact
distribution A,.,(s), the expected value of the rank p,(r) := E(R,.,) can
evidently be computed. However, the evaluation of A,.,(s) and u,(r) is
often tedious or even impossible without using some suitable numerical
procedures and the aid of a computer.

Paez Borrallo and Zazo (1999) developed a formula to compute the
bivariate factorized expected value from the knowledge of the joint
cumulative d.f. of any random variables (r.v.s). In the present paper, by
using a slight generalization of this formula, a general new representation
of A,.,(s), and, consequently, p,(r), is given. This representation enables
us to derive some new properties for the rank concomitants order

statistics R,.,, and its expected value p,(r). Moreover, it gives us a new

direct approach to compute approximately A,.,(s) and w,(r) for any
given bivariate d.f. which has an explicit dependence function. One of
the advantages of this representation is its ability to extend without
any complexity to the multivariate case. This extension to the multivari-
ate case will be discussed in Sec. 2.2. Finally, as a noteworthy conse-
quence of this new expression for A,.,(s), we conclude an upper bound
(depends on the d.f.s of the ranks of the concomitants) for the confidence
level of the tolerance region (constructing by the order statistics) of the
d.f. of the random vector (X, Y), with a given tolerance proportion. This
consequence is extended to the multivariate case in Theorem 6 and is
supplemented with an illustrative example on the bivariate normal distri-
butions with different correlation coefficients. In the rest of this section,
we present the results of Paez Borrallo and Zazo (1999), but in a slightly
general form, which is needed in what follows.

Let (Z,W) be a random vector distributed as H(z,w). Let (a,c)
and (b,d) be the vectors of the left end points and the right end points
of H(z,w), respectively. Then for continuous nonconstant and differenti-
able bivariate function g(z, w), E(g(Z, W)) is classically defined as Stieltjes
integral:

b pd
E(g(Z,W)) ::/ / g(z,w)d.wH(z,w), (2)

where, if tzhe p.df. of the vector (Z,W) exists, then
doH(z,w) = 2 gw”) = h(z,w)dzdw, and therefore (2) represents the
expected value as a Riemann integral. Pdez Borrallo and Zazo (1999) pre-
sented a closed formula to compute any multivariate factorized expected
value from the knowledge of the joint cumulative d.f. of any r.v. The next
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theorem gives a slight generalization of the result of Pdaez Borrallo and
Zazo to compute the expected value in (2).

Theorem 1. Let g(z,w) be a bivariate function as defined above.

Furthermore, let g.(z,w) := %, 2w(z,w) == %, and g.,(z,w) :=

azf(i(gf). Finally, let H,(z) := H(z,d) and Hy(w) := H(b,w). Then

b d
E(g(Z,W)) = g(b,d) - / ¢.(2, d)H (2)d= — / (b, w) Ha(w)dw

b pd
+// sw(z, W) H (z, w)dzdw. (3)

Moreover, if g(b,d) =1, gla,w) =g(z,c) =g(a,c) =0Vz,w, then

b pd
E(g(Z, W)):/ / g-w(z,w)G(z, w)dzdw, (4)

where G(z,w) :=P(Z > z,W >w) =1— H|(z) — Hy(w) + H(z,w).

Proof. The proof is exactly the same as formulas (9) and (12), in Pdez
Borrallo and Zazo (1999), only with the obvious modification. O

2. MAIN RESULTS
2.1. Two Variates Case

If in (1) one makes the substitutions u = F(x) and v = F>(y), i.e., if
one employs the probability transform, then one obtains
F(x,y) = F(F{'(u), F; ' (v)) := C(u,v), where C = C(u,v) is the depen-
dence function of F. The term “dependence function’ is used by
Galambos (1978, Chapter 5). Sklar (1959) introduced the general notion
of this function and used the term “copula’’, which seems to be more cur-
rent in the literature than the first term. This is a function that links the
two-dimensional d.f. to its one-dimensional margins and is a continuous
d.f. (whenever, each margin of F is continuous) on the unit square [0, 1]%,
with uniform margins. For example, the dependence function of the
Morgenstern and Mardia’s dependence functions (see Galambos,
1978) are, respectively, C =uv(l+o(l —u)(1—v)), || <1, and
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C=u+v— 1+ (1+u)""+1+v)""=1)"". Now, it is easy to verif
that fi(u)f2(v)e(u.) = F(Fy (1), F (v)). where ¢ = c(u,v) i= o]

Therefore, we get

r—1ns—1 al
Apn(s) - oy (r = k= DK —k = Dl(n —r — s+ k+1)!
/ / u— C(u, ) C*u,v) (v — Clu,v)) !
X (1 —u—v+ Clu,v))"" " e(u, v)dudv. (5)
Now, if we envision(U;, V;), j =1,2,...,n, as being identically indepen-

dent distributed r.v.s with common Jomt d f C(u v), and write “L> 10 be
read as has the same d.f. as >’ then X;., 7F1 YUip), Yin 4F1’1(V,gn), and
(Xion, YM) (F1 (Uin), Fy (VJ_”)) where U,., and V,, are the ith order
statistics of Uy, Us,...,U, and V|, Vs,...,V,, respectively. The tools are
now available to prove the following theorem.

Theorem 2. For any bivariate d.f. F(x,y) with dependence function C
and forany2 <r<n-—1,2<s<n-—1, we have

Ar:n(s) - n(E(C(Ur:nfla Vs:nfl)) - E(C(Urfltnfla Vs:nfl))
—E(C(Ur:n—h V.y—l:n—])) + E(C(Ur—l:n—l y Vs—l:n—l)))' (6)

(6) can be written in the form

OArn(S):nE(P(Ur 1:n— 1<U<Urn l; s—1l:n— 1<V<Vsn 1))

—nE(/ / uvdudv) (7)

Vitm—1 U1t

Moreover, forall 2 <r <n,
Ar:n(l) = n(E(C(Ur:nfla Vl:nfl)) - E(C(Urfl:nfly Vl:nfl)))

= nE(P(Ur—lzn—l <U< Ur:n—la V< Vl:n—l))

Vi1 -1
(/ / c(u,v dudv) (8)
U/ lin—1
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and forall2<r<n-1

Ar:n(n) =1 _Ar:n(l) - n(E(C(Ur:n—l 5 Vn—l:n—l)) _E(C(Ur—lzn—] ) Vn—l:n—l ))
_E(C(Ur:n—lavlzn—l))+E(C(Ur—l:n—lavl:n—l)))
=1 *Ar:n(l) *nE(P(Urflznfl <U< Ur:nflavl:nfl <V< anl:nfl))

Victn—t  Urn-1
:1—Ar:n(1)_nE(/ / c(u,v)dudv). (9)
Vim-1 1

r—lin—1

Proof. Let us consider the expectation E(C(U,.,,Vs,)). In view of
Theorem 1 and (5), we get

1 1
E(C(Up, Vi) = / / (1 9)G (1, v)dud, (10)
o Jo
where (see, Barakat, 1990, 1998)
Grsn(u7 U) = P(Ur:n > u, Vs:n > U)
r—1 s—1 iNj n!
4 Z — (i — k) —k)(n—i—j+ k)

0
x(u—C)*ckv -y 1 —u—v+ ) (1)

Therefore, (n+ 1)E(C(U,,,, Ven)) = Soimg 31— Aivtms1(j+ 1), which
implies

r—1 s—1 r K
nE(C(Ur:nfh Vs:nfl)) == ZAiJrl:n(j + 1) = Z ZAi:11(j>' (12)
i=0 j=0 i=1 j=1

s s—1
Arn(s) = ZAr:n(j) - ZArn(J)
=1 =1
r s r—1 s
—ZZAM(])_ Ain(J)
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By combining (12) with (13), (6) follows immediately. Now, from (10) and
(11), we get

E(C(Upns Vin)) // u, V)G, 1.0 (1, v)dudv,

where
rfl '
n: i n—i
Gnl:n(”a U) = ;m(u -O)(l—u—v+ C)
Therefore,

r

nE(C(U,:n,l, Vin- 1 Z At+l n = Z Aiiﬂ(l)'

i=1
Moreover, A,.,(1) =Y 1, Ain(1) = >iC 11 A, (1), which implies that
Ar:n(l) == n(E(C(Ur:n—l 5 Vl:n—l)) - E(C(Ur—lzn—h Vl:n—l)))v

for all 2 < r < n. This completes the proof of (8). To prove (9), we notice
that, for any ﬁxed value of r, >0 | A,..(s) = 1. Therefore, A,.,(n) =
1— A, (1) =0 2A,,,(s). Furthermore, on account of (6) and (8),
we get

Ur:n—l n—1 Vx:n—l
Apn(n) =1 = A, (1) —nE</ Z/ c(u, v)dudv)
U1 §s=2

Vietm-1

n—lin—1 rin—1
=1—-A..( nE(/ / uvdudv)
Vim-1

U1t

The theorem is established. O

Theorem 3. For any bivariate d.f. F(x, y) with dependence function C
and forany 2 <r<n-—1, we have

:un(r) =1+ n(n - 2)(E(C(Urn 15 Va1l l))
_E(C(Urfl:nfla n—1:n— 1 +nz U1 17V371:n71))
_E(C(Urn 15 Vsot—1 )+(n_1) (I’l)

n—- n—lin—1 rin-1
_1+nz (/] ) /] ) uvdudv) + (n—=1)A..(n).

(14)
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Proof. We first observe that

L n—1
1) =3 5Ann(s) = Apn(1) + nArn(n) + > sAra(s).
s=1 o

By using (9), we conclude

n—ln—1 rin—1
W, (r) _1—nE(/ / uvdudv)
Vin-1

+ ZSAN,(S) + (n—1)Apn(n). (15)
s=2

In addition, from (7), we get

n—1 " in—1 Urin—1
ZSA,;H(S n s (/ / c(u,v dudv)
s=2 5= Victn—1 < Up—1in—1
rn—1 Vot Vit Vi—lin—1
[ G )
U1 Vi1 Va1 V21
Van-1 Va1 Vsin-1
+/ +2 +3 +"'+(l’l—3)
V.

2n—1 Va1 Va1

Vi1
X / )c(u7 v)dudv)
Vie2—1in—1
Urin— VZn—] Vi lin—1
U
Ur—tin-1 Vi1 Vi—2in—1
Vzu 1 Va-tm-1
()
Va1 Vi—2in-1
Vi-tm-1
+/ ) c(u, v)dudv>
V21
rin—1 Vi—tin—1 Va—tin—1
—e( ], ( g
U1 V1 -1 Va1
n—lin—1 Va—tin—1
+/ / ) (u, v)dudv)
Va1 Vi-2:n-1
n—1 Vit rin1
=n E( / c(u,v) dudv)
o Viotm-1 Ur—1n-1
n—lin—1 rin—1
+nE(/ / c(u,v dudv) (16)
Vi1 Ur_tin1

_|_
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Combining (15) with (16), we get the desired result. The proof is
completed. 0

Example 1. Let X and Y be two bivariate standard normal r.v.s with
correlation p. Then, in view of Theorem 2, we get

(Dil(vwl*l) (Dil(Ur:n—l)
Ar:n(s) =nk / / fp(u, v)dudv y
O (Vicie1) SO (Uorinen)

2<r, s<n-—1, (17)
O (Vigt) O N Unit)
Apn(l) = nE / / folu,v)dudv |, 2<r<n
—o0 ®71(Ur—l:n—1>
(18)
and
(I)il(vnfl'n—l) lDiI(Ur:n—”
Arn(n) =1—-A,,,(1) —nE / / folu,v)dudv |,
O (Vi) O N (Up—tn-1)
2<r<n-—1,
(19)

where @(-) refers to the standard normal d.f., and f,(u,v) denotes
the bivariate normal density function with correlation p. By using the
well-known method of series approximation (see, for instance, Arnold
et al., 1992), (17), (18) and (19) provide us an approximate formula for
A,n(s), 1 <s<mn, to any desired accuracy For example, by using the

fact that E(Up,) = 55, E(Viw) = 74, V1 <i, j <n, we get from (17),
(18) and (19)
o' (3)
Arn(s) = A, ( —n</ uvdudv) 2<r<n-—1,
) rnl>

1
n

» ol ol
A,;,,(l)zAm(l)::n( / fp(u,v)dudv), 2<r<n,
- @

00 =

—1(r

o Ag O (nl
Arp(n)=A,,(n):=1- (/ / (u,v dudv)

2<r<n-—1,
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which are considered primary approximate values of A,.,(s),1 <s < n.
Clearly, more accurate values can be obtained by expanding the function

o l(v) ()
Clu,v) = / / £, (x, y)dxdy

in (7), (8) and (9) in a Taylor series around the point (E(Us,) = T
E(Vip) = #), where (i,7) = (r,s), (r = 1,9),(r,s—1),(r— 1,5 — 1),
m=n—1 i (7); (i,j)=(r,1),(r—1,1),m=mn, in (8) and (i,j) =
(r,n=1),(r=1,n—=1),(r,1),(r—=1,1), m =n—1, in (9). On the other

hand, a primary approximate value of y,(r) is given by

il (ot ot )
)=ty ([ [ odudv) + (0= DA )
= \Joe Josy

The Table 1 gives a comparison between some primary approximate
values of A,.,(s) (A%, (s)) and the corresponding actual values of A,.,(s)
(denoted by =,;) computed in David et al. (1977). Although we use a pri-
mary approximate, this table shows that the suggested approximations

Table 1. Comparison between some values of A‘,’:n(s) and the corresponding
values of n,, for n = 9.

p=0.1 p=02 p=03 p=0.7 p=09

ros ALG) M AL() me AL() ms AL() m AL

rn

0.1305 0.1285 0.1494 0.1459 0.1674 0.1631 0.2295 0.2185 0.2250 0.2033
0.1098 0.1100 0.1061 0.1069 0.0999 0.1015 0.0441 0.0546 0.0027 0.0149
0.1044 0.1051 0.0954 0.0975 0.0846 0.0877 0.0234 0.0345 0.0000 0.0059
0.0801 0.0856 0.0549 0.0635 0.0351 0.0451 0.0000 0.0041 0.0000 0.0001

0.1242  0.1220 0.1350 0.1334 0.1474 0.1458 0.2313 0.2355 0.3825 0.3992
0.1125 0.1109 0.1125 0.1108 0.1125 0.1102 0.0999 0.0941 0.0396 0.0511
0.1089 0.1078 0.1053 0.1042 0.1017 0.0999 0.0657 0.0656 0.0099 0.0233
0.0945 0.0946 0.0756 0.0773 0.0576 0.0612 0.0045 0.0107 0.0000 0.0006

0.1125 0.1154 0.1170 0.1205 0.1179 0.1266 0.1737 0.1824 0.2835 0.3104
0.1098 0.1114 0.1116 0.1124 0.1134 0.1141 0.1296 0.1253 0.1224 0.1112
0.1080 0.1094 0.1071 0.1082 0.1062 0.1071 0.0990 0.0955 0.0495 0.0573
0.0981 0.1000 0.0846 0.0877 0.0702 0.0747 0.0108 0.0205 0.0000 0.0021

0.1116 0.1126 0.1134 0.1150 0.1170 0.1188 0.1584 0.1625 0.2547 0.2742
0.1089 0.1107 0.1098 0.1110 0.1107 0.1122 0.1269 0.1234 0.1242 0.1127
0.1080 0.1095 0.1071 0.1081 0.1062 0.1071 0.0990 0.0955 0.0495 0.0573
0.1044 0.1048 0.0954 0.0973 0.0846 0.0877 0.0234 0.0345 0.0000 0.0059

5 5 01116 0.1117 0.1134 0.1134 0.1161 0.1165 0.1548 0.1570 0.2484 0.2640

it S RN | — B WL oo — B L oo

[l I e
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are close to the actual values given by David et al. (1977), especially
for small values of p. In calculating a double integral of type
fab fcd f»(u, v)dudv, required in the evaluation of A’ (s), we have used
the program Bivarlc.exe of the National Institute of Occupational
Health, Denmark (home page: http://www.amidk).

Corollary 1. Using the fact that X and Y are independent if and only
if C(u,v) =uv (see Nelsen, 1999), one can see that if X and Y are
independent, then A,.,(1)= m, Apn(s) = %, 2<r, s<n-—1, and

Au(n)=1- (nll)z — 1 Moreover, u,(r) =3n—3+o(}).

Corollary 2 (Universal Bounds for A,.,(s) and w,(r)). Using the well-
known Fréchet bounds x+y—1Vv0 < C(x,y) <xAy, valid for all
dependent functions and arbitrary 0 < x, y <1, one can derive lower
bounds A, (s) and p (r) as well as upper bounds A, (s) and p,(r) for

Arn e
Apn(s), 1 <s<mnand u,(r), 2<r<n-—1, respectively. For example,
(1) < () < By1), 2 F < n— 1, where

—n

Hn(r) =1 + n(n - 2)E(Ur:n71 + anlznfl —-1v 0)
- I’l(l’l - 2)E(Ur71:n71 A anlznfl)

n—1

+n Z(E(Urfl:nfl + stlznfl —1vVv O)
s=2

- E(Ur:nfl A fol:nfl)) + (I’l - 1)Ar:n(”)7

ﬁn(r) =1 + n(n - 2)E(Ur:nfl A vnfl:n—l)
- n(n - 2)E(Ur—1:n—1 + Vn—l:n—l - l \% 0)

n—1
+n Z(E(Ur—l:n—l A Vs—l:n—l)
s=2

- E(Ur:n—l + Vs—l:n—l —-1v 0)) + (n - 1)Zr;n(l’l)7

Ar;n(n) =1- Kr:n(l) - n(E(Ur:n—l A Vn—l:n—l)
_E(Ur—lzn—l + Vn—l:n—l -1 \/0)
_E(Ur:nfl + Vl:nfl —-1v 0) + E(Urfl:nfl A Vl:nfl))y

Apn(n) =1=A,,(1) = n(E(Urn—1 + Vo101 — 1 V0)
—E(Ur—101 A Va-tin-1) = E(Upn—1 A Vi)
A+ E(Us 11 + Vi — 1V0)),

A (1) =EUrp+Vig =1V O0) = E(Ur—1:0 A Vi)

Copyright © Marcel Dekker, Inc. All rights reserved.
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and
Zr:n(l) - E(Ur:n A Vl:n) - E(Urfl:n + vl:n -1V 0)

In the above-stated relations, given the possibility that A,., (1) <0 and
A,n(t) > 1,6t = 1,n; in this case, we must take A,.,(t) =0 and A,.,(t) =
1, respectively.

Many facts and useful properties of A,.,(s) [and, consequently, u,,(7)]
can be directly derived by using the representation given by (6) through
(9). In the sequel, we assume that X and Y are r.v.s with continuous joint
d.f. F(x,y), p.d.f. f(x), and (unique) dependence function C(u,v). More-
over, we will use the symbols A(,;)fl’y)(s) and ,u,(lx’y)(r) instead of A,.,(s)
and p,(r), if we need to emphasize the role of the random vector (X, Y).

Remark 1 (See Relations 1 and 2 of David, 1977). On account of the
known properties of the dependence function, and by using Theorems
2.2 and 2.4, we deduce the following

(1) If X and Y are exchangeable, i.e., F(x,y) = F(y, x), Vx, y, then
Arn(s) = Agn(r) and p,(r) = p,(s).
(2) If f(x,y) = f(=x,—y), then A,.,(s) = Apri1a(n — s+ 1).

Remark 2. By using Theorem 2 and Theorem 2 of Schweizer and Wolff
(1981), we deduce that, if ¥ = ¢(X) a.s., where ¢ is strictly increasing
(resp., decreasing) a.s. on the range of X, then A,,(s),1 <s<n, and
w,(r) are given by (6) through (8) and (14), respectively, by replacing
the function C(u,v) by u A v (resp. u +v— 1V 0).

Theorem 4. Let X and Y be as in the above-mentioned remarks. Then

(1) If ¢, and ¢, are strictly increasing a.s. on Range X and Range
Y, respectively, then Aﬁf/i,‘(x)‘%(y))(s) = A(,;)i,’y)(s), 1 <s<n, and
H£l¢1(x)a¢z(y))(r) _ ,u,(lx’y)(r).

(2) If ¢, and ¢, are strictly decreasing a.s. on Range X and
Range Y, respectively, then, forall 2 <s<n—1, A(rfi;‘(x)"y) (s),
Ag?,(l’%(y))(s), and A(,fiil‘ (X>"¢2(Y))(s) are given by (6) by replacing
the function C(u,v) by —C(1 — u,v), —C(u,1 — v), and C(1 — u,
1 — v), respectively. Moreover,

ALY (1) = —E(C(1 = Upp, Vin)) + E(C(1 = Uy 1.0, Vin)),

rn

1
AS'XYL¢2<Y))(1) :n——H_ E(C(Ur:n, 1-— Vl:n)) -I-E(C(Ur,];n, 1— V];n))
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and

1
AG06:00) (1) =
rn n 4 1

+ E(C(l - Urfl:na 1 - Vln))

- E(C<1 - Ur:m 1- Vl:n))

Finally, A%‘(X)‘Y)(n), Ag;{,’%(y))(n), and Ag;d;,‘m’%(y))(n) are given
by (9) at first by replacing A%"Y)(l), in (9) by Aﬁf‘ig(")*”(l),
A£?2’4’2(Y>>(1) and A%}<X)"¢Z(Y))(l), respectively, and then by
replacing the function C(u,v) by —C(1 —u,v),u — C(u,1 —v),
and u+ C(1 —u,1 —v), respectively.

(3) If Ly and L, are any given continuous distributions,
then AS-:L,EI(FI (X))’LEI(FZ(Y»)(S) = A%{y)(s), 1<s<n and

luglLl—l(FI(X)),L;(FZ(Y)))(V) _ ,uS,X'Y)(r).

Proof. Using Theorems 2 and 3, the proofs of (1), (2), and (3)
are followed from (i), (ii), and (iii)) of Theorem 3 of Schweizer
and Wolff (1981), respectively, and a series of straightforward
verifications. O

2.2. Multivariate Extension

Suppose that associated with each X there are m variates
Y;(j=1,2,...,m), ie, we have n independent sets of variates
(X, Y, ..., Yim), with common joint d.f. F(x,y;,...,y,) and dependence
function C(u, v, va,...,v,). Triggered by a problem in hydrology, this
situation has recently been intensively studied, especially when the
m+ 1 variates have a multivariate normal distribution (see David
and Nagaraja, 1998). Let Yj., denote Yj, which is paired with X,.,.
Our aim in this subsection is to investigate the joint d.f.
A,-;n(sl,SQ7 e ,Sm) = P(er;n = slaRZr:n = 85,..., Rmr:n = Sm). In pI'iIlCi-
pal, A,.,(s1,s2,...,s,) may be derived by using the same method of
David et al. (1977) by which they derived A,.,(s). However, in this case,
the situation becomes tedious and complicated, for example, let A(X;)
denote the rank of X; among the nXs, with a similar meaning for
A(Yj), j=1,2, we have for r,s=1,2,...,n,

App(si,82) = ZP(;L(Xi) =r,AY1;) = s1,A(Ya;) = 52)

= nP(/l(X,,) = r,;b(Y111) = slv/l(an) = Sz),
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2588 Barakat and El-Shandidy

where the subscript is taken to be n for definiteness. Let F(x,y;,y,) :=
P(X <x, Y1 <y, Y2 <y) and f(x,y;,y2) be the p.d.f. of F(x,yi,y).
Let Fi(x), F>(y1), and F3(y2) be the marginals of F(x,y;, y). For conve-
nience, let x := (x1,x2,x3) := (x,y1,y2). Then, F(x):= F(x,y1,y2) and
f(x) :== f(x,y1,y2). Finally, for 1 <ij # i # i3 <3, let F;;,(x;,x;,) =
lim,, .o F(x). It can now be shown that after some routine calculations,

si—1Ass—1 r—=1Ass—1 r—1As;—1 ¢

Apn(s1,82) Z Z Z Z

/ / / et (8 F () dads,

where L:=max(0; o+ js —r+ 1 j1 +jzs — st + L j1 + jo — 2+ 1),
C:=min(ji; jo; j3; i +j2 +j3 —r—s1 —s2+n+2), and

Kjlﬁjz-,]é;liﬂ(l)
n!F'(x) (1 — Z; Fi(x;)
+ Z Zl§i<jS3Fij(xi’ %)) — F)

Mn—r—si—ss+ji+j+j—1+2)!

) n—r—si—sa+ji+j+jz—1+2

(Fus (i 50) = F ()"

X f[ X (Fy(x1) = Fuy (X1, %1, ) — Fttz(xrvxtl)‘f'F(l))iﬁjlrj'ﬁ]il
=1 (jt_l)!(it_jtl _jtz+l_1)! ’
1<t <1,<3
), #t

where in the above formula we adopt (iy,i2,i3) := (7, s1,52). Obviously,
the complexity of the preceding formula retards any expected benefit
resulting from it. However, by using the same argument applied in
Theorem 2 we can represent it in usable form. Namely, we have

Urm v1 SRy VZsz n))

/// c(u,v1,02)Gr s, 5y (U, V1, V2)dudvidvs,

where c(u,vi,v2) = %, C(u, v, v,) is the dependence function of

F(X7y1J2), Xr:n gF] I(Ul n) Yt 1,s,1:n dF (thl,s,,l:n)> = 273, Yt,s,:n is
the s;th order statistic of (Y, Yz,,...,Yn),t: 1,2, respectively; and
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finally (see Barakat et al., 2004),

Gr,xl,sz:n(uy Ui, v2) - P(Ur:n Z u, Vl,slzn > U17V2,x2:n > UZ)

r—1 s1—1s—1

= E z :Iilai2¢i31n(u7v17v2)7
i1=0 i,=0 i3=0

where
ihAi3 i3Ai] i1 Ay Z,
PR *
L iy iin (t1, 01, 02) 1= Z Z Z Z K i issjiojo joiton (V15 02),
H1=0 j2=0 j3=0 i=¢'
and
*
Ki1$i2$i3;j1 J2azilin (u’ U1, Uz)
3
n!Fr(E)(l - E - Filxi)
+ ZZl§i<j§3 Fij(xi, x;) — F(x)

Nn—iy—i—is+j1+j+j3—1)!

) n—iy—ir—iz+ji+jt+j—1

3 (Ffllz(xtl7xf2>_F(£))jl_l

X H X (Ft(x,) - Fttl (Xt, Xt]) - F[tz (Xt, X1 )"‘F(l))iﬁjtl iyt ,
=1 . . . .
1§t1t<12§3 (e = DVir = jiy = oy + 1!
11,

where in the above-mentioned formula we adopt (x1, x2, x3) := (u, v1, v2).
Therefore,

(n + I)E(C(Ur:n—la Vl,slzn—la V2,s2:n—l))

r—1 s1—1s—1

= Z Z ZAi1+1:n+l(i2 +1,i3+1),

i1=0 i,=0 i3=0

which, after some routine calculations, implies that

Vasym—1 Visyim—1 Urin-i
App(s1,8) = nE / / c(u, vy, v2)dudvidv, |,
\% U,

2sy—tn—1 4 Vis 11 Y Ur—tini

(20)

forall 2 <r,s;,50 <n—1.
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The representation (20) can be extended to m + 1 variates, as follows;

Vinsmin—1 Vin-1,5,_qm—1 Vispm-1
Apn(s1,82, ..., 8m) = nE / /
Virsm—1n-1 Y Vi 1%

S O f Lsp—1m—1

Ur‘:n—l
X / c(u,vl,vz,...,vm)dudvldvz---dvm>, (21)
U

r—1:n—1

for all 2<vr si,8,...,sm <n—1, where c(u,v,v2,...,0,)=

0" C(u1,v,.,0m) —1 . —1 . _
m’ Xr:n g F1 (Ur:n)7 thl,s,,l:n ‘:1Ft (thl,x/,lzn)a t= 27 ey

m+1 and Y., is the sith order statistic of (Yi;, Yo, ..., Vo),

t=1,2,..., m, respectively.
By using the method of series approximation, (21) provides us an
approximate formula for A,,(s1,8,. . ,5m),2 < F S1,...,8Sm <n—1,

to any desired accuracy. For example,

Arn(S1,82, .0 8m) = AL (51,52, Sm)
::n/”h1 L7171-~-/‘171 /71 c(u, vy, V2, , Uy )dudvidvy - - - dvy,
is a primary approximate value of A,,(s1,8,...,5,), 2 <
TSI, 82, ey Sy < M.

2.3. Upper Bound of the Confidence Level of the
Tolerance Region

A tolerance region for the continuous d.f. F(x,y) with tolerance
coefficient y is a random region such that the probability is y that this
random region covers or includes at least a specified percentage (100p)
of the distribution. If this region is a rectangle for which its vertices
are order statistics of a random sample of size n, the tolerance region
(rectangle) Ry, s:msm = {(Xryns Xsyn), Yoy, Yopn) Fo 11 < 51 and r < s,
symbolically satisfies the condition

Trl,sl;rz,szzn = P(P(Xrlzn <X < XS]IVH erzn <r< Ysz:n) 2 ﬁ) =7
The following theorem gives an upper bound for T} 5. .5m;

1<r <s <n,1<r<s <n,in terms of the d.f.s of the concomitant
ranks order statistics.
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Theorem 5. Forany 1 <rj <s; <nand 1 <r, <s; <n, we have

1 S1 52
Trl,xl;rz,xzzn < — Ai:n-H (])
(n + l)ﬁi;lj:%;l

Proof. Clearly, we have
Xom Yo
Tr] S1ir,Sn — P</ f(xv y)dXdy > ﬁ) (22)
Xeyn Yoy
If in (22) we make the substitutions u = F)(x) and v = F»(y), we obtain

Fr (Xop)  pFr (Yigm)
Ty sismsyn = P(/ / c(u,v)dudv > ﬁ)
' F ) ()

1
1 S Yy
Ugn  [Viyn
= P( / c(u,v)dudv > /3)
UV,

i
Therefore, we get

S1 52
Tr; S1i1,82:n — § § Tifl,i:,jfl,j:na

i=ri+1 j=r+l
where

Tifl,i;jfl,j:n = P(C([Ji:n; Vj:n) - C(Uiflzna Vj:n) - C(Uvi:m ijlzn)
+ C(Uifl:nv ijlzn) 2 ﬁ)

On the other hand, because the rv. W :=C(Uy,,Vjn)—
C(l]iflzna Vj:n) - C(Ui:na ijl:n) + C((]ifl:nz Vj*ltn) is nonnegative, an
appeal to the well-known Markov’s inequality yields

E(W) (n+1DEW) _ Apn(j)
PW 2 ) < B (n+1)p (1B’

which was to be proved. Ul

Example 2. Table 2 gives the upper bound of T, .5, for g = 0.70,
0.80, 0.85, 0.90, 0.98, 099, ry=rn =1 and s; =s, =n =238, where
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Table 2. The upper bound of T, g5, fOr ri = =1and sy =5, =n =238

p =099 p=098 p=090 p=085 =080 p=0.70

0.1 0.6117 0.6179 0.6729 0.7124 0.7570 0.8651
0.2 0.6146 0.6209 0.6761 0.7159 0.7606 0.8693
0.3 0.6192 0.6255 0.6811 0.7212 0.7662 0.8757
0.4 0.6257 0.6321 0.6883 0.7288 0.7743 0.8849
0.5 0.6346 0.6411 0.6980 0.7391 0.7853 0.8975
0.6 0.6460 0.6526 0.7106 0.7524 0.7995 0.9137
0.7 0.6587 0.6654 0.7246 0.7672 0.8152 0.9316
0.8 0.6806 0.6875 0.7486 0.7926 0.8422 0.9625
0.9 0.7155 0.7228 0.7870 0.8333 0.8854 1

0.95 0.7297 0.7372 0.8027 0.8500 0.9030 1

F(x,y) is a standard bivariate normal distribution with correlation coeffi-
cients p = 0.1,0.2,0.3, 0.4,0.5,0.6,0.7, 0.8,0.9,0.95. The different values
of Aig9(j),1 <i,j <8 are extracted from a table in David et al. (1977).

Table 2 reveals an interesting and, at the same time, expectant fact that
the percentage of the standard bivariate normal distribution, which is cov-
ered by a random sample, will increase as the coefficient of correlation
increases. This fact clearly implies that the size of the random sample
required to cover at least a specified percentage of the standard bivariate nor-
mal distribution will decrease with an increasing coefficient of correlation.

Clearly, in view of the results of Sec. 2.2, one can easily derive the
following extension of Theorem 5.

Theorem 6. Forany 1 <r;<s;<n,i=1,2,3,--- m+ 1, we have

Trl S5 ] S+ 107
Sm+1
n+1 ﬁ § § E Ai:n+l(]laJ27"'7]m)7
i=n+l ji=n+l  jp=rna+l
where
T”l 13 m 1 Sm 1110

= P<P(Xr1:n <X< XS]IIH erzn < Yl < Ysz:na ey
Y, g < Y, < YsmH:n) > ﬁ)

m

and er,sl;---;rmﬂ,smﬂzn = {(XrI:n;Xsl:n)y (er:n < Yl < Ysg:n)a ) (Yr n <

me

Y < Yy,m)} is the 1008% tolerance region [(m+ 1)-dimensional
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rectangle] for the d.f. F(x,y1,-,ym), with tolerance coefficient
T”l W15 A1 S mp 12100
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