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1. Introduction 

Let X = ( X  I . . . . .  Xd) be a r andom vector with 

values in the Euclidean d-space R d. Let X, = 

(X,, 1 . . . . .  X,,d) be independent  copies of  X for 

t = 1 . . . . .  n. Define the multivariate sample maxi- 

m u m  M .  by  

Mn = ( M. , ,  . . . . .  M. ,d  ) 

where M.. j  = max( X1. J . . . . .  X. . j )  is the j th margj- 

nal maximum. The  theory of  multivariate max- 

ima has found an increasing interest in literature 

since the articles by  J. Tiago de Oliveira (1958), J. 

Geff roy  (1958/59)  and M. Sibuya (1950). For  

consol idated representations of  the present state 

of  the art we refer to the books by J. Ga lambos  

(1987) ( ls t  edition in 1978) and S.I. Resnick (1987). 

It has been known f rom the beginning that  in 

prominent  cases the marginal maxima M., 1 . . . . .  

M., d are asymptotical ly independent.  In  the par-  

ticular case of  a normal  r andom vector, having all 

correlation coefficients smaller than one, this was 

proved by Slbuya (1950). 

We believe that  f rom the applied and theoreti- 

cal point  of  view the asymptot ic  theory of  multi- 

variate maxima has to be supplemented by that  

type of results which are presented here in the 

part icular  case of  normal  r a n d o m  vectors. We 

choose the multivariate normal  case because it is 

historically the classical one. This case is also 

mathematical ly  very attractive and, as we shall 

see, helps to clarify the problem. 

From asymptot ic  theory  we know that for most  

of  the s tandard  d.f. 's (like the bivariate normal  d.f. 

with correlat ion coefficient smaller than 1) the 

marginal maxima are asymptot ical ly  independent.  

But consider the si tuation where measurements  of  

a certain p h e n o m e n o n  are taken at two separate 

places that, however, are close together. The  

asymptot ic  result should in this case also reflect 

the possible dependence of  the marginal  maxima. 

Thus, the problem arises whether there is another  

asymptot ic  formulat ion which provides a suitable 

discussion for such cases. Speaking in mathemat i -  

cal terms, it means that  we are looking for an 

asymptot ic  approach  leading to a limit distil- 
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bution which is a more accurate approximation to 

the above sxtuation. In Section 2 we suggest an 

asymptotm formulation where the underlying bi- 

variate normal distribution has a correlation coef- 

ficient p -  p, that varies as the sample size in- 

creases. It will be shown that the marginal max- 

ima are neither asymptotically independent nor 

completely dependent if ( 1 -  p(n)) log n con- 

verges to a positive constant as n --, ~ .  The exten- 

sion to the dimension d >/2 will be carried out in 

SecUon 3. 

Our treatment of multivariate maxima is com- 

parable to that of binomial r.v.'s where according 

to the condition that the parameter  p is fixed or 

p - p,  satisfies np, ~ X > 0 as n ---, ~0 the normal 

or Poisson approximation is appropriate. 

It  is obvious that our results will stimulate 

further research work. One can e.g. combine the 

present work with that in Htisler and Schiipbach 

(1988) in connection with limit distributions of 

multivariate maxima for dependent Gaussmn se- 

quences. 

2. The bivariate case 

Because of notational simphcity we first consider 

a bivariate normal vector X = ( X  1, X2) where 

w.l.g. X 1 and X 2 are standard normal r.v.'s. De- 

note by O the correlation and by F 0 the d.f. of X. 

It is well known that Fo" is the d.f. of the maxi- 

mum M,.  

Let b, be defined by the equatmn 

b n = ndi,(b,) (2.1) 

where q, is the standard normal density. Denote 

by • the standard normal d.f. It is well known 

that the normalized marginal maxima are asymp- 

totically distributed according to the Gumbel  d.f. 

G 3 defined by 

G3(x ) = e x p ( -  e - * ) .  

More precisely, we have 

• "(b, + x /b , )  --* G3(x)  

for every real x. 

as n ~  oe 

(2.2) 

(2.3) 

Thus it ~s apparent that in order to obtain a 

limiting distribution in the blvariate case one has 

to study the normalized d.f. 

(x ,  y) ~ F f (b .  + x /b . ,  b. + y /b . ) .  (2.4) 

If  X 1 and X 2 are independent (that is, p = 0) then 

it is obvious that the limiting d.f., say, H~  is given 

by 

Ho~(x, y) = G3(x)G3(y ). (2.5) 

If  X 1 = X 2 (that is, O = 1) then the limiting d.f. H o 

is given by 

Ho(X , y )  = exp( -e -mm(x 'Y) ) .  (2.6) 

We remark that H~ is always the limiting d.f. if 

p < 1. For ~ ~ [0,oo] define 

Hx(x ,  y )  = e x p [ - ~ ( X  + - ' ~ )  e -y 

_ ~ ( X  + y _ ~ ) e  x] (2.7) 

where it ~s understood that 

H 0 = l i m  Hx and H ~ =  l i m H a .  
h,L0 h ~  

Notice that for h = ~ and h = 0 we get again the 

d.f.'s m (2.5) and (2.5). 

Theorem 1. I f  

( 1 - p ( n ) ) l o g n - - , X  2 ~ [ 0 , o o ]  asn- - - , oo  (2.8) 

then for every x, y, 

Fo~n)(b, + x / b  . ,  b, + y / b , ) - *  Hx(x, y)  

as n --* ~ .  (2.9) 

Proof. Put u , (x)  = b, + x /b , .  Check that 

ro~,)(u,(x ), u , ( y ) )  

= e x p [ - n [ 1  - * ( u . ( x ) ]  - n [ 1  - ¢ ( u . ( y ) ) l  

+nP( Xl > U,(X), X2> u , ( y ) }  ] + o ( 1 )  

= e x p [ - e  - ~ -  e -y 

+ n e (  X 1 > u , ( x ) ,  X 2 > u , ( y ) } ]  

+o (1 ) .  (2.10) 

Let p - p ( n ) .  W.l.g. assume that p ( n ) ~  

( - 1 ,  1); otherwise use in (2.10) the represen- 
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tations P (  X 1 > u . (x ) ,  X 2 > u . ( y ) }  = P(  )(1 > 

max(u . (x) ,  u . (y) )}  if o ( n ) = l ,  and P { X  1 > 

u . (x ) ,  X 2 > u . ( y ) }  = P{ u . ( x )  < X 1 < - u . ( y ) }  if 

o(n)  = - 1 .  

The conditional distribution of X 1 given X 2 = z 

is the normal distribution N(pz,a_ob with mean 

value pz and variance 1 - 0 2. Thus, we get 

nP(  X 1 > u , ( x ) ,  X 2 > u , ( y ) }  

= n f  °° ( 1 -  N(oz,l_o2)(-oo, Un(X)])dO(Z ) dz  
"u n(Y) 

x e x p [ - ( z  + z2/b2)] dz.  (2.11) 

Notice that the integrand is dominated by e -z. 

Check that 

u.(x)-p(,,)u.(z) 
( 1 - p ( n ) 2 )  1/2 

x - z (1  - p(n))l/2z 
= X ( . ) +  + 

(1  + p(n))X(n) (1  + p(n))a/2b,, 

and X(n) 2 = b2(1 - p(n) ) / (1  + p(n))  - h2 as n 

---) oo since b 2 - 2 log n. Thus, the dominated con- 

vergence theorem implies that the right-hand sxde 

of (2.11) converges to 

L[ 
oo 1 - ~ ( ) k +  e -z dz (2.12) 

with the convention that this term is equal to 0 if 
X(n) ~ oo and is equal to e -max(x'y) if X(n) + 0 

as n + o0. Obviously 

o o  

L e - Z d z = e  -v. 

Moreover, by partial integration we get 

x - ~  

(2.13) 

[] 

- e-XL°° 2-~'~(X + 5 ~ )  dz 

- [ (   -y)e-V = - e  ~ +  • X +  

+@()k + - ~ )  e-X].  (2.14) 

Combining (2.10)-(2.14) the proof is complete. 

The marginals of the limiting d.f. H a are the 

Gumbel d.f. G 3. Remember that G 3 is max-stable 

since G~(x + log n) = G 3 ( x  ). This is also true for 

Hx; we have 

H ~ ( x +  log n, y + l o g  n ) = H x ( x ,  y ) .  (2.15) 

In general it is not true that the limit d.f. of 

multivariate maxima is max-stable if the underly- 

ing d.f. vanes with the sample size. However, it is 

known (compare with Resnick (1987, Proposition 

5.1)) that the limit d.f. is always max-infinitely 

divasible. 

3. The  case  d > / 2  

T h r o u g h o u t  X 1 . . . . .  X d are standard normal r.v.'s 

with correlation matrix ~ = (O,.s),,s ~ d. Denote by 

F z the joint d.f. It is apparent that many different 

limit situations can occur depending on the be- 

haviour of the correlations 0 ,4- -P ,4 (n)  • In anal- 

ogy to (2.8) assume that for 1 ~< t , j  <~ d: 

(1 - p , 4 (n ) )  log n --* )kELj as n --* oo. (3.1) 

To avoid technical difficulties and to con- 

centrate our attention to the most interesting case 

we assume that 

~,,j ~ (0, oo) for 1 ~< i , j  <~ d with i ~ j .  (3.2) 

Put 

A = ( h l , j ) l , j < ~ d .  (3.3) 

Moreover, for 2 ~ k ~ < d  and m ' = ( m  1 . . . . .  mk) 

w i t h l ~ < m  l < m  2< ---  < m  k~<ddeflne 

, m , . m , ~  m j . m ~  ] • 

(3.4) 

Furthermore, let S(.  IF) denote the survivor 

function of a normal random vector with mean 

285 



Volume 7, Number  4 STATISTICS & PROBABILITY LETTERS February 1989 

vector 0 and covariance matrix F. For  A as in 

(3.3) define 

H a ( x  ) = exp ( - 1 )kz (k )hk . , , , (Xm,  . . . .  

with 

'Xmk)) 
(3.5) 

h k , m ( Y )  

last componen t  of  the normal  vectors in analogy 

to (2.11) and by  taking into account  weak conver- 

gence of  multivariate normal  distributions. [] 

Again  one can check that  H A is max-stable. 

Moreover  notice that h2,(,,j ) can be written as 

[ ( y )]ex 
(3.6) (3.8) 

for 2 ~< k ~< d where Z (k) means summat ion  over 

all k-vectors m = (m 1 . . . . .  ink)  with 1 ~< m 1 < " • • 

< m k <~ d .  Morover,  ha,m(y ) = e - y  for m = 

1 . . . . .  d. 
R e f e r e n c e s  

Theorem 2. I f  ~,, are non-singular matrtces such 

that (3.1) and  (3.2) hoM then 

F ~ . ( b  n + X l / h  n . . . . .  b n + x J b . )  ~ H a ( x  ) 

as n ~ oo (3.7) 

for  every x = (x  1 . . . . .  Xd) ~ R a. 

Proof.  Runs ,a long the lines of  the proof  to Theo-  

rem 1 by using Theorem 5.3.1 in Galambos  (1987) 

in place of  (2.10), by  condit ioning according to the 
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