
[ III ] 

THE ASYMPTOTICAL DISTRIBUTION OF RANGE 
IN SAMPLES FROM A NORMAL POPULATION 

BY G. ELFVING, Helsinyfors 

1. Introductory. Consider a sample of n observations, taken from an infinite normal 
population with the mean 0 and the standard deviation 1. Let a be the smallest and b the 
greatest of the observed values. Then w = b - a is the range of the sample. 

For certain statistical purposes knowledge of the sampling distribution of range is needed. 
The distribution function, however, involves a rather complicated integral, whose exact 
calculation is, for n > 2, impossible. Tippett (1925), E. S. Pearson (1926, 1932) and McKay 
& Pearson (1933) have studied and calculated the mean, the standard deviation and the 
Pearson constants ,81, 82 of the range. Fitting appropriate Pearson curves to the distribution 
by means of these parameters, Pearson (1932) has computed approximate percentage points 
for it. Later on, Hartley (1942) and Hartley & Pearson (1942) have, by numerical integration, 
tabulated the distribution function for n = 2, ..., 20. 

As pointed out by Pearson, the distribution of range is very sensitive to departures from 
normality in the tails of the parental distribution. The effect of such departures becoming 
more perceptible for increasing n, the practical importance of the range distribution is, 
perhaps, small for large samples. Nevertheless, it seems to be at least of theoretical interest 
to investigate the asiymptotical distribution of range for n -? na). This is the purpose of the 
present paper.* The results are summarized in a theorem at the end of the inquiry. 

2. The exact distribution. Transformations. The joint-frequency function of the extremes 
a, b reads, as well known, 

fab(a, b) = n(n - 1) 0(a) 0(b) [0(b) - il(a)]n-2 t (21) 
(cf. e.g. Cramer, 1945, p. 370). Let u = 2 (a + b) denote the arithmetical mean of the extreme 
values of the sample. Making in (2.1) the transformation a = u - 1w, b = u + 1w and 
integrating with respect to u, we find for the frequency function of the range the expression 

fw(w) = n(n -i4) S(u - w) S(u + 1W) [?P(U + 1w) - iP(u - 1w)]n-2 du. (2.2) 

The object of our inquiry is the limiting form of the distribution (2.2). It proves, however, 
more advantageous to pass to the limit in the joint distribution of a, b or u, w, before inte- 
grating with respect to u. 

The asymptotical distribution of a and b has been investigated by Fisher & Tippett (1928), 
and Gimbel (1936) (cf. also Cramer, 1945, p. 376). According to these authors, we have 

I,(u) = 0, D(u) = O(log-I n), 

E(w) = 2 1(2 log n) + ?(iog 1), D(w) = O(log- n). (2.3) 

From the formulae quoted it is seen that u --0, w --oo in probability as n -t oo. Our first 
task must, consequently, be a transformation of the variables a, b-or u, w-depending on 
n and intended to stabilize the probability mass, in order to provide a limiting distribution. 

* Prof. H. Wold has kindly directed my attention to this problem. 
t 0(x) denotes the distribution function and 0 (x) = 0'(x) the frequency function of the normal 

distribution with mean at x= 0 and unit standard deviation. 
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112 Asymptotical distribution of range in samples from a normal population 

Following the example of the authors mentioned above, we should have to introduce the 
new variables a' = nP(a), b' = ni(- b). 

For our purpose it proves, however, advantageous to subject a' and b' to a new transforma- 
tion, independent of n, taking 

xey = 2nO(a) = 2n0(-w+u), (2 4) 
xe-Y = 2nP(-b) = 2ni(- 1w-u). ( 

Conversely, 
x = 2n 7[i(a) 0(-b)] = 2n V[O(- w + u) 0(--1w-u)], 

- = qiog (g(a) =1 - w + U) (2.5) 
'log log. 2g () 

As a ? b and thus 0(a) + 0(- b) < 1, it follows from (2.4), that x, y are subjected to the 
restrictions x>0 xcoshy'n. (2.6) 

Performing the transformation, we find 
a (a, b) _ x 27 
a(X, y) 2nq20(a) 0(b)' (2.7) 

and thus, letting f.(x, y) denote the joint-frequency function of x, y, 
n-i1 x cosh y n2 

fn(X, Y) = 2n x - n) (2.8) 
This formula is valid in the region (2.6); outside of it, we have to put fn(x, y) = 0. 

The new variables x, y depend, of course, on u as well as w. It will, however, be shown later, 
that x, for large n, tends to coincide with the variable 

x* = 2nO(- 1w), 

which depends exclusively on w. For testing purposes, the former variable may thus, in 
large samples, be used as a substitute for the range. These considerations justify the trans- 
formation (2.4) as well as a closer study of the distribution of x and its limiting form. 

3. Limit passage and remainder term. The limiting form of the joint-frequency function 
(2 8) is immediately seen to be 

f(x, y) = lxe-xcoshY (X > 0). (3.1) 
The integral of this function, taken over the whole half-plane x > 0, is easily seen to equal 1; 
(3- 1) is, consequently, the frequency function of a well-determined two-dimensional dis- 
tribution. 

Let the marginal distribution functions in x, corresponding to (2 8) and (3@ 1), be denoted 
by F,,(x) and F(x) respectively. Our next task will be to estimate the remainder 
I Fi(x) - F(x) 1, which is, obviously, at most equal to the integral 

/it f = 21 f,(1 , #)-f(6, q) I dgdq. (3.2) 

To begin with, we estimate the quotient fAlf upwards. By differentiation with respect 
to the variable z = x cosh y, this quotient is found to attain the maximum value 

(1-- (1a) 2 2 1 1f+(2 

for z = 2. We thus find, for example, 

f <lI2-3 (n>5) (3) 
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G. ELFVING 113 

For the further estimations, it proves necessary to divide the domain of integration in (3 2) 
into an interior and an exterior part by means of a convenient abscissa y = y. In order to 

secure the Maclaurin expansion of log (I - 6 cosh y) within the interior region, we have to 

x coshy choose y so as to satisfy the inequality ? < k with an appropriate k < 1. Taking, for 

simplicity, k = 1- - and observing that cosh y < ey, we see that the condition mentioned 
is fulfilled if n 

e8y < -(1-A-D. (3-4) x 2 

Now we may estimate f,/f downwards in the interior domain of integration. Expanding 

log (1 -- 6 cosh I), we find 

log/j = log (-) + 6 cosh 22 2cosh2 ( 1 _ ch) (o< < 1) (3.5) 

According to the determination of y, the remainder factor is seen to be < 2 for < < x, 'q < y. 

For n> 3, we have log (Il--) 2n 
. Omitting, further, the positive term in (3.5) and 

replacing n -2 by n, we find 

ffn(g6')-1> lgff $' ) >_ 
3 +- 62 cosh2 

fM( q) 
1 >log Pj1j) > + 

nshY 

hence, combining with (3 3), 

f < 2 cosh i/ (6?x,yy;n>5). (3.6) 

In the exterior domain of integration, (3.3) directly yields 

f'(6, ) -f(q, y) I <f((6q ) (6 < x, y _ y). (3.7) 
We proceed to the estimation of the integral (3.2), denoting its interior and exterior part 

by I1 and 12 respectively. For the former we have, according to (3.6), the inequality 

-1 = f x f 2fdYd<- (36+163cosh2q)e-g csh71d6dq (3.8) 

for the latter, according to (3.7), 

12 = ff 2 Ifd1-f I < e-9cosh ddv. (3 9) 

The integration with respect to 6 may be explicitly performed. We have, in fact, putting 
for brevity cosh y -a, 

ox 1 
f6e-b= d =- {1-e-ax[I + ax]}, (3.10) a2 

fXe 
6 

axl?x (ax)2 (ax)3]J(.1 6 3e-4d6 = - I-e-11x 1+ax+( 2)+(6] (3.11) 

In order to deduce remainder formulas for (a) moderate, (b) small x, we omit in (3- 10) and 
(3 11), (a) all the negative terms, (b) the terms with x2 and X3. According to the Maclaurin 

expansion eax = I+ax+eax 2a (0<9< 1), 

Biometrika 34 8 
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114 Asymptotical distribution of range in samples from a normal population 

the expression in curled brackets in (3 10) is at most equal to 1a2x2. Inserting these 
estimations in (3.8), we obtain for the interior integral the inequalities 

< 15 d = 1d 5 tgh y < 15 (3. 12a) 

15 2fYd 4x2 
1 <4 X2 dq< y. (3.12 b) 4n ~n 

For the exterior integral, (310) yields 

'2<" dy -s = 1-tgh y < 2e-2y. (3.13) 
j2 

< cosh2 (y3 

Finally, we have to join the results (3.12) and (3.13). Combining, first, (3 12a) with (3.13) 
and determining e-8 from (3.4) (taken with the equality sign), we obtain, after some slight 
simplifications in the numerical coefficients, 

Idn< (1 I+ n (n >5). (3-14a) 

Combining, on the other hand, (3412b) with (3.13), we find 

4x2 

T e <-y+2e-2'. 

This expression attains, for fixed x and n, its minimum when y = log . For n 12, this 

value of y also satisfies (3.4), and we obtain, as a parallel estimate to (3 14a), 

Id <- (log-z+I) (n > 12). (3-14b) 

The formulas (3 14a, b) are both valid for all positive x and all n ? 12. 

4. The asymptotical distribution. Having established the limiting distribution of the 
variable x defined in (2.5), we are going to examine its properties. 

The frequency function of the distribution considered reads, according to (3. 1), 
co co e,-xt f(x) = x excoshdy = x f (t2 1)dt. (4.1) 

Changing the order of integration, we easily find the distribution function, the mean and 
the variance of (4. 1) to be 

c~~~xcosh 
-x cosh yd - 1x eXtd 

F(x)= 1 coshyy 1 t2 v(t2 - dt (4) 

E (x) = Ino, D2(x) = 4 - T2 (4.2) 

The numerical evaluation of the distribution is much simplified by the fact that f(x) as 
well as F(x) is closely connected with certain Bes8el functions. Denote 

P(z) = J e-xcosh?/dy = _ dt. (4.3) 

By differentiation and partial integration, this function is found to satisfy the differential 
equation 1 

equa5"(x) + -I0'(x) - 9) = 0. (4.4) x 
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G. ELFVING 115 

Changing x into - ix, we obtain for the function if(x) = -ix) the equation 

3f it (X) +1 '(x) + 3b = 0; (4.4') x 

hence, ~fr(x) is a Bessel function of order zero. 
In order to specify this function, we will deduce an asymptotical expression for the 

function (4 3), valid for large x. For this purpose, we make in the latter integral (4 3) the 
substitution t = 1 + u/x and write 

(1+ I ) = _9 u (0 < i9 < 1) . ( 4x 
Performing the integration, we obtain 

0b(x) ( (4.5) 

which shows that the Bessel function fi (x) = -ix) tends to zero for x -- + i cx. This function 
is, consequently, proportional to the Hankel function Hf1)(x) (cf. Jahnke-Emde, 1909, p. 94). 
Comparing the asymptotical expressions of 0(x) and iH~1)(ix), we find the proportional 
factor to be In whence f H( 2 

~~f(x) = x 2i HOM(ix). (4.6) 

We proceed to the calculation of F(x). Every integral of xH>1)(x) is (cf. Jahnke-Emde, 
p. 165) of the form xH (1)(x) + Const., where H(1)(x) is the first order Hankel function corre- 
sponding to H>')(x); consequently, 

F1(x) = 2- H,1)(ix) + C. 

Now X H(1)(ix) tends to zero as - (1rzx) e-x for x -oo (cf. Jahnke-Emde, 1909, p. 101); 

hence C= 
l and _ _ 

F(x) = l-x L - H ()(ix). (4.7) 

YFor small x, F(x) has the expansion 

F(x) = (log + 2) + (log - + 4) 1 + ' (4-8) 

where log- = 0411593.... (49) 

The factors of x in (4.6) and (4-7) are tabulated in Jahnke-Emde (1909, pp. 135-6). 
Below, we give a short table of f(x) and F(x). The corresponding curves are seen in Fig. 1. 

5. Connexion between the variable x and the range. We now turn back to the original 
object of our inquiry: the asymptotical distribution of the range. 

Consider the variable x = 2n7,[P(--w + u) 0(- w-u)] (5.1) 

introduced in (2.4). As mentioned earlier, 

w -oo, u -0 in probability (n - oo). (5.2) 

Under such circumstances, for large n, x may be expected to behave substantially as the 
variable x* = 2n(- -w), (5'3) 

which depends exclusively on the range. 
8-2 
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116 Asymptotical distribution of range in samples from a normal population 

We shall now prove that x*/x I in probability as n -- oo. According to the well-known 
asymptotic formula 

0(-X) = /(2 )e-i$2(1-a2) (X>O); 0(<f< 1), 

we may, for I u J < sw, write 

= f{+O[(2W-IUI) 

x Xf() F(x) x fX() F(x) 

0.0 0.0000 0.0000 1.5 0.3207 0*5839 
0.1 0.2427 0*0146 2-0 0-2278 0.7202 
0.2 0*3505 0*0448 2-5 01559 0-8153 
0.3 0*4118 0*0832 3-0 0*1042 0-8795 
0-4 0*4458 0*1262 4 0 0*0446 0*9501 
0*5 0*4622 0*1718 5*0 0*0185 0-9798 
06 0*4665 0*2183 6*0 0*0075 0.9919 
07 0*4624 0*2648 7*0 0.0030 0.9968 
0*8 0*4522 0*3106 8*0 0*0012 0*9988 
0*9 0*4380 0*3552 9*0 0*0005 0.9995 
1.0 0*4210 0*3981 10.0 0*0002 0-9998 

o 2 3 4 5 

Fig. 1 

Given an arbitrary e> 0, we obviously may find two positive numbers u, and w, (> u6) 
such that x* 

--1 <6 if w>w, IuLIu6. (5.4) 

On account of (5.2), we may, on the other hand, choose n6 so that the probability of the 
simultaneous validity of the latter inequalities in (5.4) exceeds 1 - eif n > n.. Consequently, 

Pc p-r<e)>o-e (n>no)s (5t5) 

which proves our statement. 
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G. ELFVING 117 
As shown in section 3, the distribution function 1.(x) of x converges to F(x) as n -t ao. 

Since F(0) = 0, it follows from (5.5), by a well-known method of argument, that the dis- 
tribution function F*(x) of x* converges to the same limiting function. The asymptotical 
distribution of the range, suitably transformed, is hereby established. 

For practical purposes, it would, of course, be desirable to possess a reasonably accurate 
estimate of the remainder F*(x) - F(x), or at least an estimate of the difference F*(x) -Fn(x), 
to be combined with the results (3.14). 

For n = 20, the accuracy of F(x) as substitute for F*(x) may be checked by means of 
Hartley's (1942) tables. The discrepancy amounts to about 0 004 for x = 0 1, 0-025 for x = 1 
and 0.010 for x = 4. 

The theoretical evaluation of F*(x) - F(x) seems to be somewhat complicated and, besides, 
of little use since x*, for most purposes, may be replaced by x. A few remarks concerning 
the relations between x, x* and their distribution functions will, however, be added below. 

To begin with, we note that always x < x*, the equality sign being valid only if u = 0. 
Consider, in fact, the function x(u), defined by (5.1) for a fixed w. Inserting for 0 its analytical 
expression, we easily find that D(2) log x(u) < 0 for all u. Hence, x(u) has no minimum and 
at most one maximum, and the latter is, by symmetry, seen to be attained for u = 0, being 
thus equal to x*. 

From x5 ?x*, it follows that F*(x) < Fn(x) for all x. We will show that the difference 
Fn(x) - F*(x) may be expressed as a double integral. 

The variables u and w are, according to (2.4), well-determined B 
functions of x and y in the region (2.6); and so is the variable x*, 
on account of (5.3). 

On the level curve x* = x0, w has a constant value w0, determined 
by 2nO(-4w0) = x0, (5.6) 

and this curve is, consequently, given in parametric form by the 
equations 

= 2n V[O(-'WO + U) WO - )], Y= log0(2wO- +u) (5.7) 

where u runs through all values from - o to + x. The latter 
function (5 7) being, obviously, monotonously increasing, we may 
imagine u eliminated, writing (5.7) in the form 

x = 6n(xo, Y) (- 0 < Y < 0)- (5 7') / 

From the proof of the inequality x < x* given above, it follows | / t)| 
that the function (5.7') has a single maximum for y = 0. When 
ye- + oo, the function obviously tends to zero. Fig. 2 

The inequality x* ? x0 is fulfilled on the left side of the curve (5.7'), the inequality x5 x0 
on the left side of the straight line x = x0. Let us for brevity denote the regions (cf. fig. 2) 

0?x< 6(x0oy), 6n(X0oy),<x x0 (5.8) 

by A,,(xo) and Bn(xo) respectively. The difference Fn(xo) - Fn*(xo) is, then, the probability 
of the points x, y falling within the region Bn(xo). Dropping the indices 0, we thus obtain 
the expression sought for - (5.9) 

n 
, *"_ II Sz da d/-A 
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118 Asymptotical distribution of range in samples from a normal population 

Comparing, finally, the transformed range distribution function F*(x) directly with its 
limiting form F(x), we find 

F*(x) - F(x) = [F.(X) -F(x)] - [Fn(x) - F*(x)] 

= JJ (fn-f ) dgdy r- fd f djdy 

= .fJf () -f) d d6dq - fJdJd( . (5.10) 
At(X) Bn(X) 

rIThe former integral is, obviously, at most equal to the remainder expression a n in (3-2), 
estimated in (3.14). 

6. Conclusion. Our main results may be summarized in the following theorem: 

THEOREM. Consider a sample of n observations from an infinite normal population with 
mean 0 and standard deviation 1. Let a be the smallest, b the greatest of the observed values, 
and put Ib-a\ 

x = 2n V[P(a)10(-b)] x* - _2n - I) 

the latter variable being evidently a simple transformation of the range of the sample. Then 
(1) x _ x*; x*/x -1 in probability (n- so). 
(2) The distribution functions F(x) and F*(x) of x and x* tend, for n-too, to the 

common limit co 1 xt e-xtdt = 1+ H l( 
12(x) 2 .1 

tV(t2 e X1) =I 2x H11ix), 

where H~1)(z) is the first order Bessel function, which vanishes as - (i -) eiz for z + i oo. 

(3) For n > 12, F.(x) satisfies the inequalities 

Ien(x)-F(x) l<b l+ n I> F,(x) -F(x) I'< 4x(log8/ n+2) 

7. Generalization. A great part of our conclusions does not presuppose the normality 
of the parental population. Thus, the distribution (2 8) of the variables x, y defined by (2 5) 
is the same for any continuous probability law and so, consequently, is its limiting form; 
however, if the parental distribution is non-symmetrical, with distribution function G(x), 
say, the factor P(- b) in (2.5) must, of course, be replaced by 1- G(b) instead of G(-b), 
and the variable x* is to be defined by 

x* = 2n1{Gt(-2w) [1-G(2w)]}. 

The proof of the statement x*/x --l1 requires, however, convenient assumptions con- 
cerning the parental distribution. It can be proved that the assertion mentioned-and, 
consequently, the theorem stated above are valid if the frequency function of this dis- 
tribution is of the form I 

g(x) = Cexp[-- xIP], 

where l <p _ 2. 
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