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Yu, Downes, Carter, and O’Boyle (2016) identified inconsis-
tency in the current practice of meta-analytic structural equation
modeling (MASEM). Specifically, MASEM assumes effect size
heterogeneity at the stage of meta-analysis but then treats the
parameters as homogenous or fixed at the stage of structural
equation modeling (SEM). Put differently, in the meta-analysis
portion of MASEM, researchers assume that no one true correla-
tion generalizes across the full population. Rather, the true corre-
lation varies depending on the specific subpopulation under exam-
ination. However, at the SEM stage of MASEM, those same
correlations are assumed to not vary and not be moderated by
substantive and/or methodological variables. Regardless of
whether researchers used Viswesvaran and Ones’s (1995) tech-

nique or Cheung and Chan’s (2009) two-stage structural equation
modeling (TSSEM) technique, most published MASEM studies
have made these inconsistent assumptions.

Yu et al. (2016) developed a procedure called full information
MASEM (FIMASEM) that attempted to reconcile the inconsistent
assumptions of whether an effect size varies across the population.
Through a simulation study and a reanalysis of existing MASEM
data sets, Yu et al. demonstrated that when effect size heteroge-
neity is incorporated into both the meta-analysis step as well as the
SEM step, results and interpretations of robustness can be substan-
tially different than when the heterogeneity is ignored.

Cheung’s (2018) commentary on Yu et al. (2016) is a critical
evaluation of the FIMASEM approach. He introduces issues re-
garding (a) the stability of SD�, (b) the handling of non-positive-
definite (NPD) matrices, (c) the performance of a generalizability
index based on fit indices, (d) the interpretation of misspecified
models, and (e) technical coding errors. Of these five issues,
Cheung concludes through his independent simulation that three of
them (i.e., Issues 1, 2, and 4) are “quite mild” (p. 28) and have little
effect on parameter estimates, variance estimates, and overall
conclusions. Nevertheless, his commentary brings up the need to
further conceptually clarify how heterogeneity can be incorporated
into MASEM research and how FIMASEM procedures might be
used to improve rigor and answer new research questions.
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The purpose of this reply is not to rebut each of Cheung’s (2018)
criticisms. Some of his criticisms are valid and helpful to correct
the published record (e.g., there were errors in the code). Other
criticisms are entirely accurate but general to common practices in
MASEM (e.g., reliance on cutoff values to interpret model fit). We
do diverge on a few points that we briefly clarify/contest below,
but there is far more alignment in the perspectives of both articles
than misalignment—the most crucial point of alignment being that
effect size heterogeneity has the potential to be very problematic in
MASEM when it is present but ignored. Thus, the purpose of this
reply is to outline how to move the field forward when it comes to
MASEM. After the aforementioned clarifications, we lay out a
research agenda concerning the future and viability of FIMASEM
and, more broadly, MASEM. In particular, we specify different
scenarios for current MASEM practice with an updated review and
highlight when ignoring heterogeneity can lead to inaccurate in-
ferences. In addition, we elaborate on the types of research ques-
tions that FIMASEM is best suited to address.

Clarifying the Conceptual Nature of the FIMASEM
Approach

Cheung (2018) summarizes the current statistical assump-
tions underlying MASEM into two categories: correlation-
based MASEM and parameter-based MASEM. He argues that
FIMASEM falls into the parameter-based MASEM approach
(p. 788). However, this description is not accurate, and before
moving forward, we need to clarify the exact nature of FI-
MASEM. FIMASEM and Two-Stage FIMASEM (TS-
FIMASEM) are extensions of correlation-based approaches
such as Viswesvaran and Ones (1995) and TSSEM (Cheung &
Chan, 2009). This means that FIMASEM and TS-FIMASEM
first meta-analyze the correlations in primary studies, then build
a correlation matrix of meta-analyzed effects, and finally spec-
ify a structural model. This is fundamentally different from
parameter-based MASEM, which fits a structural equation
model for each primary study then meta-analyzes the parame-
ters (i.e., path coefficients and factor loadings).

Whereas parameter-based approaches conceptualize heteroge-
neity solely on the parameters, correlation-based approaches con-
ceptualize heterogeneity solely on the correlations. FIMASEM
treats effect size heterogeneity consistently throughout all phases
of analysis. The central argument of Yu et al. (2016) was that
assumptions about heterogeneity should be consistent across both
stages of MASEM. FIMASEM maintains this consistency by
conceptualizing heterogeneity on both the correlations and the path
coefficients. Essentially, FIMASEM (or TS-FIMASEM, for that
matter) intends only to address the inconsistency of heterogeneity
assumptions between the two steps by adding an intermediate
bootstrapping procedure.

In Step 1, FIMASEM is identical to a standard Schmidt and
Hunter (2015) psychometric meta-analysis. It generates estimates
of population correlations from primary studies and partitions
observed variance into that which can be explained by sampling
error and statistical artifacts and that which can be attributed to
true-score variance (e.g., moderators). A correlation matrix and a
true-score variance matrix are then built based on these estimates.

Next is an intermediate step and it is here where FIMASEM
diverges from Viswesvaran and Ones’s (1995) procedures. Rather

than solely using information about the correlations at the mean
(�), FIMASEM also uses information about how much that cor-
relation varies across the population (specifically, SD�). Using
both � and SD�, FIMASEM resamples or bootstraps multiple
correlation matrices. The amount that the correlations in these
bootstrapped matrices vary is directly proportional to their true-
score variation identified in Step 1. For example, if a correlation
(e.g., � � .30) had a small amount of true score variance (e.g.,
SD� � .01), then across the hundreds or thousands of bootstrapped
matrices, that particular correlation would be relatively constant
(e.g., .28 � �s � .32). The larger the true score variance, the larger
the range of values � could take in any given matrix.

In Step 2, the SEM step, FIMASEM fits the theoretical model to
those bootstrapped matrices following Viswesvaran and Ones’s
(1995) procedure. The difference is that rather than fitting one
model based exclusively on the mean estimate of each correlation,
FIMASEM fits the model to all the correlation matrices generated
in the intermediate step. The result is that instead of getting one set
of results based on one model of mean estimates (e.g., RMSEA �
.07), FIMASEM provides a distribution of results (e.g., across 500
iterations, the RMSEA ranged from .00 to .18, with a mean of .07).
The central logic of FIMASEM is that one model specification
may not fit well across all subpopulations, but it is important to
know the extent or percentage of subpopulations that do and do not
fit a particular model specification.

Brief Reply to Issues Raised in Cheung (2018)

We now turn to the five specific criticisms Cheung (2018)
raised. We present our responses not in the original order but in
three categories: (a) whether they can be improved and affect
the conclusions of Yu et al. (2016), (b) whether they apply to
the general practice of meta-analysis/MASEM but do not jeop-
ardize the proposed FIMASEM procedure, and (c) whether they
are related to operational decisions of FIMASEM that may
require future simulation work.

Issues Related to Yu et al.’s (2016) Conclusions

Syntax errors. Cheung (2018) points out two technical errors
in Yu et al. (2016) regarding (a) the Reticular Action Modeling
(RAM) specification of paths, and (b) the error variance specifi-
cations. He is entirely correct. Our syntax in part of the Study 1
simulation incorrectly specified error variances and the direction
of paths.1 For the model in Figure 1 (Yu et al., 2016, p. 1461), this
error has no impact on results because the model is symmetric: The
results are as if X and Y were exchanged in the Figure. However,
for Figure 2 (Yu et al., 2016, p. 1461), the error resulted in us
effectively testing a different model with two predictors and three
outcomes (instead of three predictors and two outcomes). New
results after correction for both errors are presented in Table SM1
of Supplementary Material 1 in the online supplemental materials.

1 The elements of Study 1 and Study 2 using lavaan specification are
correct. The technical errors are only present in the Study 1 simulation
syntax using OpenMx specifications. Results from Study 2 are from the
FIMASEM website, where the syntax correctly specified sigma, the direc-
tion of paths, error variances, and so on. Users can continue to use the
FIMASEM website to generate results.
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Different results, same conclusion—effect size heterogeneity is
present and not currently incorporated in MASEM. Nevertheless,
it is important to correct the record, and we thank Cheung for
identifying the errors.

Model-implied matrices. Cheung (2018) points out that the
models presented in Figure 1 and 2 in Yu et al. (2016) are not the
models actually tested. Cheung’s criticism reflects the earlier as-
sumption about FIMASEM being a parameter-based technique as
opposed to its correct classification as a correlation-based tech-
nique. Focusing on the path coefficient, Cheung assumes that the
parameter (i.e., the � coefficient) from X¡Y in Figure 1 is zero.
If accurate, this would mean that the model-implied correlation
between X and Y is not zero due to the indirect paths between X
and Y. From a parameter-based standpoint, this interpretation is
reasonable, but this is not how the model was conceptualized and
it is inconsistent with FIMASEM’s correlation-based nature. Yu et
al. fixed the bivariate correlation between X and Y to zero, not the
multivariate path between X and Y (p. 1460). As such, there are no
errors in the model-implied matrices for Figure 1 or Figure 2 (in
Yu et al., 2016), but we understand where the confusion is derived
from and we hope this reply solidifies FIMASEM as an extension
of the correlation-based technique.

Issues Related to General Meta-Analytic/MASEM
Practice

The stability of the population estimates of SD�. Cheung
(2018) rightly points out that when the number of included studies
for any correlation in the MASEM is low, then the stability of SD�
is reduced. This is a critical consideration and one that is often
overlooked, as much of the focus in applied psychology has been
on the stability of the mean estimate of the correlation, not the
stability of the variance estimate. Steel and Kammeyer-Mueller
(2008) made a similar argument to Cheung’s that SD� is affected
by second-order sampling error. This criticism that variance esti-
mates lose stability as the number of studies and/or overall sample
size goes down (ceteris paribus) is not new to meta-analysis and
not specific to the FIMASEM approach. Ultimately, Cheung’s
criticism is valid, but it is a criticism relevant to all meta-analysis
practices that attempt to empirically partition true score variance
from observed variance with a small k (including TSSEM). Our
recommendation, and one likely shared by Cheung, is that when
some cells, or even one cell, of the MASEM matrix is based on a
small number of studies, great care should be taken in interpreting
the variance estimates or perhaps even avoiding any form of
MASEM including FIMASEM or TSSEM.

Impact of NPD matrices. Cheung’s (2018) simulation tests
two ways of handling the NPD problem (i.e., nearPD and replace-
ment), and he concludes that they both provide similar results and
that the conclusions are largely unaffected, but the nearPD tech-
nique performs slightly better. FIMASEM is agnostic when it
comes to which technique to use (any NPD handling method of the
researchers’ choosing can be built into the code), but we support
Cheung’s conclusion.

However, we are hesitant to recommend that researchers simply
ignore the frequency of NPD matrices during the bootstrapping
procedure. A high frequency of NPD matrices could indicate
problems with the point and variance estimates in the overall
matrix. Just as in standard SEM, NPD could indicate multicol-

linearity, out of bounds correlations, excessive missing data, or
other problems (see Worthke, 1993, for a detailed discussion).
Recognizing these NPD matrices is a strength of FIMASEM. In
bivariate meta-analysis, multivariate relationships are ignored
when effect size heterogeneity is estimated. This is problematic
because independent meta-analyses of related constructs across a
literature could produce credibility intervals that are logically
incompatible. For example, assume three constructs (e.g., A, B,
and C), where A-B and A-C have true score correlations of .60. In
order for the 3 � 3 matrix to be positive definite, the B-C
correlation logically must be between �.28 and .99. This is ig-
nored in bivariate meta-analysis and traditional MASEM, such that
the credibility interval from an independent meta-analysis of the
B-C correlation could be below �.28. In FIMASEM, a boot-
strapped B-C correlation below �.28 is logically impossible and
would contribute to an NPD matrix.

Our perspective is that NPD issues have theoretical value and
should be explored, not statistically masked. After researchers
investigate the causes of NPD issues, they can decide whether it
would be prudent to (a) switch to other estimators such as asymp-
totically distribution-free or weighted least squares (ADF/WLS),
(b) exclude a variable causing linear dependency, or (c) examine
the correlation matrix for strong correlations combined with large
SD� and constrain distributions that exceed a certain value (e.g.,
.80) and justify a course of action. At the very least, we encourage
researchers to report the percentage of matrices found to be NPD.

Issues Related to Operational Decisions of FIMASEM

Choice of bootstrap iterations. We chose 500 bootstrap it-
erations in the Yu et al. (2016) article because 500 iterations
reduced bootstrap error to an acceptable level (see Supplementary
Material 2 of the online supplemental materials). FIMASEM de-
mands significant computer processing power as the model be-
comes more complex. Each bootstrap involves an iterative SEM
estimation, and fitting hundreds of models can be quite time-
consuming. Five hundred iterations appears to reasonably balance
bootstrap error with technical feasibility. However, we are in
complete agreement with Cheung (2018) that more iterations are
better.

Choice of sample size. Cheung (2018) highlights that the
issue of sample size is critical and will have an impact on the
performance of fit indices. In Yu et al. (2016), we used the mean
sample size in Study 1 simulations. In Study 2, we used the same
sample sizes that were used in the original published MASEM
studies—usually the harmonic mean. Because in both studies we
used the same sample size for comparison, the fit indices from the
traditional MASEM and FIMASEM will be equally impacted. In
the current literature, there is scant definitive evidence for choos-
ing the sample size in MASEM. Whether the total sample size,
harmonic mean, or some alternative measures of central tendency
should be used in MASEM require far more simulation and in-
vestigation before any definitive recommendation can be made
(see Bergh et al., 2016, for a review).

Use of fit index cutoffs. Artificial dichotomization of any
continuous statistic into “good” and “bad” leads to a host of
problems (Lance & Vandenberg, 2009; O’Boyle, 2017; Williams
& O’Boyle, 2011; Williams, O’Boyle, & Yu, 2017). Despite the
fact that fit index cutoffs are logically and computationally prob-
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lematic, their use has become standard practice in SEM and
MASEM and are typically how models are evaluated. If a model
fits well based on some threshold values, it is interpreted as
showing theoretical support. Even those of us that recognize the
problems of cutoffs often still use them for illustrative purposes
(e.g., Cheung, Leung, & Au, 2006; O’Boyle & Williams, 2011).
Ultimately, this is not a point of contention, as few in the research
methods community, including Cheung and ourselves, advocate
for cutoffs to be the sole means to evaluate model quality.

Moving Forward With FIMASEM Fit Indices

Cheung’s (2018) simulation reveals that commonly used fit
indices in SEM (e.g., chi square, comparative fit index [CFI], root
mean square error of approximation [RMSEA], standardized root
mean square residual [SRMR]) and their commonly used cutoff
values have poor performance in FIMASEM represented by the
low coverage of what is considered as “good fit.” It is worth noting
that these investigated fit indices are primarily proposed for mul-
tiple indicator models in which a large component of error exists
within the measurement model. It is less reasonable for them to
perform in models that are farther away from the confirmatory
factor models upon which they were initially validated (West,
Taylor, & Wu, 2012). A typical MASEM, in fact, is a path model,
or a single indicator model at best. With the absence of the
measurement component, commonly used fit indices may not be
appropriate. Indices also vary in how they treat various aspects of
the model (e.g., model complexity) and data (e.g., sample size) in
estimating error. The current cutoff values have been derived from
either simulation work based on simpler, multiple indicator SEMs
or the general experiences of the developers of the indices (Hu &
Bentler, 1998; Lai & Green, 2016; Marsh, Balla, & McDonald,
1988). Taken together, the current fit indices and their cutoff
values might be inappropriate for the MASEM context.

Perhaps now is the time to take a new approach to evaluating
model fit in MASEM. The key conceptual shift we sought to make
was to advocate for a more logically consistent treatment of effect
size heterogeneity. In this vein, if an effect is particularly strong
for some subpopulations (and particularly weak for other subpopu-
lations), then it follows that a theoretical model might fit some
subpopulations particularly well (and others particularly poorly).
This represents a meaningful conceptual divergence from how fit
indices are used in practice. Rather than asking, “Is the mispeci-
fication small enough that I can conclude my model fits?” we
encourage researchers to ask, “Based on the patterns of correla-
tions I estimate to exist in the population [i.e., the bootstrapped
correlation matrices based on meta-analytic results], does this
model fit a small or large portion of the population?”

Yu et al. (2016) initially proposed answering this question by
codifying the fit index cutoff and assessing the percent of boot-
strapped correlation matrices that cleared that cutoff. We agree
with Cheung’s (2018) arguments that this approach suffers from
the same limitations as the use of fit index cutoffs in practice. In
Supplementary Material 3 of the online supplemental materials, we
expand on our original recommendations and propose that re-
searchers holistically consider the results from three procedures.
First, researchers should produce the summary statistics of the
distributions of relevant fit indices across the bootstrapped corre-
lations. Second, researchers should produce a density plot of these

fit indices. These first two steps allow researchers to gauge
whether the model fit is widespread in the population or isolated to
only certain subpopulations. Third, we recommend researchers
assess the correlations across fit indices to see if multiple fit
indices converge on the same conclusion regarding model fit
evaluation.

It should be noted that these recommendations follow the best of
our present understanding of MASEM and effect size heterogene-
ity. Research on this issue is sorely needed. To begin with, we need
to understand differences in fit index computations when assessing
bootstrapped correlation matrices in order to understand which fit
indices are best suited for comparison when using FIMASEM.
This would involve searching for alternative ways of evaluating
overall fit (i.e., different types of fit indices) customized to FI-
MASEM. First, FIMASEM fit indices need to account for using
correlation matrices instead of covariance matrices. For example,
Cheung (2015) introduced a modified version of SRMR to remove
the diagonals of the matrices from the formula as they were fixed
to 1 in MASEM. Second, FIMASEM fit indices need to consider
the role of sample size and model complexity if they are to be
used to compare a model across different contexts or to compare
different models within a context. In addition, fit indices adjusting
for parsimony need to be evaluated to ensure that the alternative
model is not better simply because it is more or less complex.
Finally, additional simulation work is necessary to set the realistic
bounds of fit indices’ values by introducing different complexities
frequently encountered in MASEM practice.

Future methodological research is also needed on how to handle
poorly fitting models in MASEM. We disagree with Cheung’s
(2018) statement that poorly fitting models indicate a problem with
the FIMASEM technique. It seems plausible that most theoretical
models have little predictive value for certain subpopulations
under very specific conditions. In this sense, we should expect to
find samples in which the model fits very poorly with extreme—
perhaps even nonsensical—fit index values. It is exactly what one
should expect to see in FIMASEM results: that some models fit
well in some subpopulations but fit very poorly in other subpopu-
lations. If we were to exclude poor-fitting models, then FIMASEM
results would no longer represent heterogeneity but only a sum-
mary of good fitting models, which would not be the goal that
FIMASEM is serving. However, this is an area for future research
to develop more robust statistical theory and computational ap-
proaches to address poorly fitting models.

When Is Ignoring Heterogeneity Problematic in
MASEM Research?

Because MASEM is a hybrid procedure, researchers make in-
dependent assumptions and draw conclusions based on both the
Step 1 meta-analysis and the Step 2 SEM. For example, in Step 1,
a typical MASEM study first assumes whether the relationship
between X-Y in the population is homogenous (e.g., one true
score) or heterogeneous (e.g., a distribution), deciding to either
conduct a fixed- or a random-effect meta-analysis (Schmidt, Oh, &
Hayes, 2009). As a part of the meta-analytical procedure, the
actual homogeneity/heterogeneity in a bivariate relationship is
tested through Q-statistics (Hedges & Olkin, 1985), credibility
interval (CV; Whitener, 1990) width, or the percentage of variance
attributable to artifact (Schmidt & Hunter, 2015). In Step 2, the
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stage of SEM, researchers also need to make (and test) the as-
sumption of homogeneity before conclusions about SEM results
can be drawn. Theoretically, assumptions and conclusions made in
both steps are expected to remain logically consistent in order to
avoid making inferential mistakes. That is, findings in Step 1
should inform assumptions in Step 2.

When the assumptions about variance across the two steps are
inconsistent, two inferential mistakes can result: Type II errors
(false negatives) and Simpson’s paradox. In the context of
MASEM, researchers typically find population heterogeneity at
the meta-analysis stage. If heterogeneity is found in the meta-
analysis but not assumed or detected in the SEM, a Type II error
is made—the path estimates and model fit values are concluded to
be invariant when in fact they do differ across the population. The
other inferential mistake, Simpson’s paradox, describes a situation
when erroneous conclusions occur because data drawn from het-
erogeneous populations are pooled and analyzed as if they were
from a single homogenous population (Simpson, 1951). That is,
depending on how data are divided up, the true effect can be
nullified or even reversed. This paradox arises when a moderator
is a confounding factor but is not accounted for in the model (see
Lindley & Novick, 1981, for a detailed treatment).

In Table 1, we specify eight scenarios of different assumptions
and conclusions about population heterogeneity when conducting
MASEM. In two of the eight scenarios (Scenarios 1 and 7),
assumptions are consistent at both stages (e.g., fixed effects meta-
analysis followed by Viswesvaran & Ones’s [1995] MASEM) and
the correct inference is made (e.g., nonsignificant Q-statistic for
correlation and the SEM parameter generalizes). Of 35 MASEM
studies published in management journals from 1992 to February
2018,2 none fit Scenario 1 and 13 fit Scenario 7. Among those in
Scenario 7, 10 studies did not quantify the heterogeneity at the
output of SEM but either conducted multigroup SEM analysis with
a known moderator or controlled for heterogeneity using TSSEM.
The remaining three studies used the FIMASEM procedure pro-
posed in Yu et al. (2016).

We now turn to those scenarios in which the assumptions are
consistent at both stages but the inferences are incorrect. We
observed two MASEMs that initially assumed a fixed effect meta-
analytic model but then found several bivariate relationships to be
heterogeneous. Nevertheless, they still assumed homogeneity at
the stage of SEM (i.e., Scenario 2). Although the assumptions were
consistent across the meta-analysis and SEM, these two MASEMs
might have failed to detect heterogeneity when it is actually
present in the population (Type II error and possible Simpson’s
paradox). A corresponding case for a random-effect model is
Scenario 8, in which researchers incorrectly assume heterogeneity
in both the meta-analysis and SEM portions of MASEM. Here,
researchers assume heterogeneity and correspondingly run a
random-effects model in the meta-analysis step but instead find
homogeneity. Despite evidence for a fixed-effects model in the
meta-analysis, they continue to assume heterogeneity in the SEM.
Worth mentioning is that despite being incorrect inferences in both
steps of the MASEM, this error is unlikely to affect overall
conclusions. This is because running a random effect meta-
analysis does not prevent the detection of a fixed effect in the
population (Schmidt et al., 2009), nor does running a FIMASEM
prevent the detection of parameters that do not vary in the popu-
lation. No study in our review fit Scenario 8.

The remaining scenarios are those in which the homogeneity/
heterogeneity assumptions are inconsistent. In Scenarios 3 and 4,
homogeneity is assumed in the meta-analysis but heterogeneity is
assumed in SEM. We did not identify any studies that fit either
Scenarios 3 or 4. In Scenarios 5 and 6, heterogeneity is assumed in
the meta-analysis but homogeneity is assumed in the SEM. Twenty
published MASEM studies fit Scenario 5, in which researchers
first conduct a random effect meta-analysis, detect heterogeneity in
the correlations, but then assume those same correlations are
homogenous at the stage of SEM. Studies of this kind are likely to
make Type II errors and may be vulnerable to Simpson’s paradox.
Scenario 6 is a variant of Scenario 5 in that studies of this kind
begin with a random effect meta-analysis but discover evidence for
assuming homogeneity in SEM. In Scenario 6, researchers are
inconsistent in assumptions between Stage 1 and Stage 2 but make
correct inference when homogeneity is detected in the result of
Stage 1 and assumed at Stage 2.

Overall, out of eight possible scenarios of conducting MASEM
research, only in two scenarios (Scenarios 2 and 5) can researchers
potentially make inferential mistakes. However, it is unfortunate
that the majority of published MASEMs (n � 22; 63%) have fallen
into these two categories. The danger of making such inferential
errors is either the true scores or distributions in the population are
undetected or erroneous conclusions about model robustness are
made.

When Is Quantifying Effect Size Heterogeneity in
MASEM Useful?

FIMASEM provides a framework to make correct inferences in
MASEM research, as it is one of only a few approaches to
statistically incorporate effect size heterogeneity in MASEM. Al-
ternative techniques seeking to account for the heterogeneity in the
stage of SEM involve conducting multigroup SEM analysis for a
certain moderator and using WLS estimation in TSSEM. However,
only FIMASEM quantifies effect size heterogeneity. This feature
of FIMASEM highlights a different perspective of conducting
MASEM research and one that presents a significant departure
from traditional MASEM approaches—especially in terms of how
hypotheses could be formulated and how results of MASEM
should be interpreted. When the relationships are indeed homoge-
neous, FIMASEM can be used as the supplementary analysis to the
traditional MASEM model as a validation that accurate inferences
are made. For example, Greer, de Jong, Schouten, and Dannals
(2018) used FIMASEM to supplement their fixed effect model to
demonstrate that their assumption of homogeneity in running a
fixed effect model was warranted. Nevertheless, the primary in-
tention of using FIMASEM is not to evaluate if the relationship is
significant from zero but to examine the distribution of true effect
size estimates in the population. This moves applying FIMASEM
beyond testing the null hypothesis of a relationship or a mediating
effect. If a MASEM researcher’s goal is only to reject a null
hypothesis (i.e., if the X-Y relationship differs from zero holding
all other relationships constant), FIMASEM is of a limited utility
and this could be just as easily accomplished with TSSEM.

2 See Supplementary Material 4 of the online supplemental materials for
our search and coding methodology.
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The true utility of FIMASEM can be extended to examine and
interpret heterogeneity in three ways. First, FIMASEM provides
quantitative measures for assessing the overall generalizability of
a theoretical model to the population and sheds light on where in
the model (i.e., which particular structural path) a moderator(s)
may potentially exist. In other words, FIMASEM can address
such research questions as (a) To what degree (what percentage
of the population) does this theoretical mechanism/model ap-
ply? and (b) Which of the structural paths from the model may
meaningfully fluctuate in the population? For example, Lapi-
erre et al. (2017) used FIMASEM to evaluate the generalizabil-
ity of the proposed model as well as individual structural paths
through the distributions of SEM fit indices and the credibility
intervals of path coefficients. They concluded that “the hypothe-
sized model . . . is largely generalizable across populations” (p. 11)
with 83.4% or 85% TLI above .90 and 80.7% or 80% RMSEA
smaller than or equal to .08. Despite the overall generalizability of
their proposed model, they identified substantial variation that
exists in some structural paths of the model. For example, the 80%
CV from social support at work to family work enrichment is
[�.30, .24], with a mean of �.03. If the CV were not present, one
could have concluded that there was no direct path from social
support at work to family work enrichment. Instead, this CV
suggests that the relationship can range from moderately negative
to moderately positive across subpopulations. Another study by
Goering, Shimazu, Zhou, Wada, and Sakai (2017) comprehen-
sively interpreted the FIMASEM distribution of effect sizes. In
doing so, they detected variability in the paths of the conventional
job demand-resource model, with some holding relatively constant
in the population, whereas others demonstrated significant varia-
tion.

Second, researchers can use FIMASEM to quantify the robust-
ness of a theoretical model across different contexts or given a
particular theoretical/methodological moderator. In other words,
FIMASEM can answer the research question “To what extent is
the proposed theoretical model more robust in Context A than in
Context B?” This can be accomplished if the � and SD� matrices
of a MASEM study are separately constructed by a moderator of
interest (e.g., male vs. female groups). Our review of published
MASEM studies revealed that it is not uncommon (nine
MASEMs; 25.7%) to find sufficient data broken down by at least
one moderator. Researchers can compare the different FIMASEM
models in terms of whether there is a substantial change in the
percentage of model fit or substantial differences in path estimates.
Interested readers can refer to Supplementary Material 5 of the
online supplemental materials for an example of a reanalysis of
Hom, Caranikas-Walker, Prussia, and Griffeth (1992). Overall,
FIMASEM not only concludes if a theoretical model works dif-
ferently across contexts but also informs the degree of generaliz-
ability of the theoretical model within these contexts.

Third, FIMASEM can be used to evaluate different theoretical
explanations of the same phenomenon or context (e.g., “To what
extent is Model A more robust/generalizable than Model B in the
same research context?”). To answer this type of research question,
researchers can specify two different models based on competing
theories and perform independent FIMASEM analysis on each model
based on sample matrices generated from the same population (i.e.,
same set of � and SD� matrices). FIMASEM researchers can quan-
titatively present the degree of generalizability of each model and

conclude which model has a higher or lower generalizability/robust-
ness in the same research context by comparing the percentages of
model fit across different model specifications.
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