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Abstract

One of the main advantages of Bayesian analyses of clinical trials is their ability to formally incorporate

skepticism about large treatment effects through the use of informative priors. We conducted a simulation

study to assess the performance of informative normal, Student-t, and beta distributions in estimating relative

risk (RR) or odds ratio (OR) for binary outcomes. Simulation scenarios varied the prior standard deviation

(SD; level of skepticism of large treatment effects), outcome rate in the control group, true treatment effect,

and sample size. We compared the priors with regards to bias, mean squared error (MSE), and coverage of

95% credible intervals. Simulation results show that the prior SD influenced the posterior to a greater degree

than the particular distributional form of the prior. For RR, priors with a 95% interval of 0.50–2.0 performed

well in terms of bias, MSE, and coverage under most scenarios. For OR, priors with a wider 95% interval of

0.23–4.35 had good performance. We recommend the use of informative priors that exclude implausibly large

treatment effects in analyses of clinical trials, particularly for major outcomes such as mortality.
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1 Introduction

Most clinical interventions have no more than small to moderate treatment benefits, particularly for
major outcomes such as mortality or impairment.1–3 Recent studies4–6 show that clinical trials with
smaller sample sizes report a much larger proportion of large effect sizes, i.e. relative risk (RR) less
than 0.5 or greater than 2.0, than trials with larger sample sizes. When subsequent larger trials are
carried out for the same intervention, disease, and outcome, observed treatment effect sizes will
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typically diminish.4 Investigators need to consider this empirical evidence in the reporting and
interpretation of results from randomized controlled trials (RCT). However, the classical
frequentist approach to analyzing and reporting individual clinical trials does not formally
incorporate any external evidence.7

A Bayesian approach formally incorporates prior evidence through the use of a prior distribution.
However, it is important that investigators move away from default ‘‘flat’’ or noninformative prior
distributions that include extreme effects that there would be no credible reason to expect and
instead use the evidence from previous trials to inform these distributions. Choices for
informative prior distributions have been suggested for binary outcomes.8,9 However, their
operating characteristics have not been investigated. Of particular interest is the robustness of the
priors when the prior information and the trial data are in conflict. In this paper, we present a
simulation study of a two arm RCT design with a binary outcome. We investigate normal prior
distributions and compare them to beta and Student-t distributions, which have been suggested as
robust alternatives.8–10 We motivate the choice of the informative priors from evidence from
Cochrane reviews and guidelines for rating the quality of clinical evidence.

1.1 Bayesian methods

While standard frequentist methods have been the conventional paradigm to conduct analysis in
clinical trials, Bayesian methods are becoming more prominent in both design and analysis of RCTs.
Briefly, under a Bayesian framework, all unknown quantities are treated as random and are assigned
probabilities in the form of a prior distribution.11 This prior distribution is then combined with the
observed data, in the form of a likelihood. The result, referred to as the posterior distribution, is
updated evidence of the likelihood of benefit or harm from the treatment being studied. From this
posterior distribution, we can provide point estimates of treatment effect, such as posterior median
of the relative risk (RR), as well as 95% credible intervals (CI) that indicate the most probable
value(s) of the RR. Probabilities of specific effect size can also be calculated, such as the probability
that the RR exceeds a clinically important effect, e.g. Pr(RR< 0.8). These probabilities of treatment
effect cannot be calculated with frequentist analyses since parameters of interest, e.g. RR, are treated
as fixed. Another advantage of a Bayesian approach is that uncertainty from all parameter estimates
is accounted for in summaries reported, which is particularly important when data is sparse.12,13

1.2 Vague reference priors

One of the main criticisms of a Bayesian approach has been the specification of the prior distribution
and in particular its subjective nature. One way Bayesians have approached this criticism is by using
vague priors that result in posterior estimates which are very close to those obtained from a
frequentist analysis. Such priors are often used when the investigators want the data to dominate
when no prior data for a particular intervention exists.12 This approach is quite appealing since it
avoids the criticism of the prior but retains the desirable properties of a Bayesian approach, mainly
interpretability and coherence while maintaining good frequentist properties, i.e. unbiased
parameter estimates and CIs with coverage close to the nominal level.

However, as Greenland and others have observed these flat or vague priors are ‘‘contextually
absurd’’ in a clinical or epidemiological setting.14–17 These vague priors ignore knowledge about the
magnitude of plausible effects and will inevitably put too much weight in implausibly large values.17

We agree with these criticisms and argue that even if no prior information exists for a particular
intervention and/or population, informative priors can be specified that incorporate evidence from
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other medical interventions about the magnitude of treatment effects typically reported. In
particular, the informative 95% prior interval should exclude implausibly large effects almost
never observed with clinical interventions.

1.3 Evidence of the magnitude of treatment effects from Cochrane reviews

and GRADE criteria

One of the gold standards in evidence-based medicine is a Cochrane review, which seeks to evaluate
all best available evidence for an intervention.18 Sinclair et al.19 report on a survey of 113 systematic
reviews of neonatal therapies conducted from 1997 to 2001, which included 559 eligible RCTs. The
authors report the median relative risk for the 90 reviews with a binary primary outcome to be 0.84
with interquartile range of 0.59–1.02. Only the most promising, potent, or widely used interventions
are likely to be studied in sufficiently large trials to assess effects on mortality. For the 42 reviews
reporting mortality outcome, the median RR is 0.86 with interquartile range of 0.77–1.05. These
findings are consistent with the Grading of Recommendations Assessment, Development, and
Evaluation (GRADE) group’s definition of large treatment effects as RR> 2 (<0.50), and very
large effects as those RR> 5 ð5 0:20Þ.20 They suggest a higher threshold for ORs since they can
be larger in magnitude than RR for high outcome rates. Pereira et al.4 define large effects as OR> 5
ð5 0:20Þ. Using this empirical evidence of the size of treatment effects, we can specify priors that put
very little weight on unrealistic effects even for interventions with little or no prior data.

We have previously utilized informative priors in analyses of an RCT in the National Institute of
Child Health and Human Development (NICHD) Neonatal Research Network (NRN) comparing
the outcomes of extremely low birth weight infants (<1000 g) randomized to aggressive or
conservative phototherapy.21,22 We specified a neutral prior distribution (not favoring either
intervention a priori of the observed trial data) for the RR centered at 1.0 with a 95% interval of
0.5–2.0 to provide conservative (since the estimates would be shrunk towards RR of 1.0)
probabilities of reduced or increased mortality with aggressive phototherapy.

2 Methods

We assume a two-arm RCT with binary outcome y where the metric of interest is either the relative
risk or odds ratio. We investigate the three most widely used models.

2.1 Log binomial regression model

Letting yi be the observed outcome for subject i, the model is specified as

yi � Bernoullið piÞ

logð piÞ ¼ �0 þ �1xi ð1Þ

where xi¼ 1 for the treatment group and 0 for the control group. This model gives a direct estimate
of the RR, exp(�1), and it easily allows the inclusion of additional covariates such as any stratifying
variables. Prior distributions need to be specified for the �’s and a uniform distribution over the
range of plausible log risk (�0) and log RR (�1) values (e.g. �1 � Uniform [�1,1]) could be used to
serve as a flat prior.7 However, normal prior distributions are usually specified for the �’s with a very
large variance, i.e. Normal ð0, 106Þ, to make the prior vague.23,24 To specify informative priors that
give little weight to large effects, we need to specify a small prior variance or standard
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deviation (SD). For example a normal prior for the log RR (�1) with mean of 0 and SD of 0.35
implies a prior 95% interval of 0.5–2.0 for the RR. If we instead use a prior SD of 0.75, the 95%
interval for the RR is 0.23–4.32. Hence, we can think of the prior SD as the level of skepticism of
large effects, with smaller SDs indicative of more skepticism.

2.2 Logistic regression model

We can use the model

yi � Bernoullið piÞ

logitð piÞ ¼ �0 þ �1xi ð2Þ

to estimate OR with expð�1Þ, where x is again the indicator for treatment group. To complete the
model, we specify prior distributions for the �’s. As for the log binomial model, normal priors with a
large variance (e.g. 106) serve as vague priors in logistic regression.25

2.3 Beta-binomial model

We can alternatively specify a model for summary data

ytreat � Binomialðntreat, ptreatÞ

ycontrol � Binomialðncontrol, pcontrolÞ ð3Þ

where ytreat, ntreat, and ptreat are respectively the observed number of outcomes, sample size, and the
outcome probability in the treatment group, and ycontrol, ncontrol, and pcontrol are the corresponding
quantities in the control group. Here, prior distributions would be specified for the probability
parameters, ptreat and pcontrol. Beta(a, b) distributions are typically used due to their conjugacy with
the binomial distribution. A Uniform(0,1) (beta with a¼ 1 and b¼ 1) has been used as the default flat
prior for ptreat and pcontrol.

7 The posterior distribution for the relative risk (or odds ratio) can be easily
computed from the draws of the posterior distributions of ptreat and pcontrol (see section 3).

2.4 Informative normal prior distributions

For the two regression models (1) and (2), we assess Normalð0, �2Þ prior distributions for the
treatment effect �1 or �1 centered at 0, corresponding to a RR or OR of 1.0, and we use two
values for the prior variance �2 to express the uncertainty about the treatment effect. The prior
we have previously used for the analyses of the NRN trials is centered at RR of 1.0 with 95%
interval of 0.5–2.0 and gives a small probability (5%) to large treatment effects. This corresponds to
a Normal(0, �2 ¼ 0:352) prior distribution for �1 (log RR) with a 95% interval of –0.69 to 0.69. We
also investigate a normal prior with � ¼ 0:75 (RR 95% interval of 0.23–4.35) to compare to the
prior distribution that Gelman et al.8 found to perform the best (Cauchy with scale of 0.75 and 95%
interval of 0.01–85 for RR). For the intercept terms, �0 or �0, we use Normalð0, 102Þ prior
distributions. For the log-Binomial model, we also used normal vague priors ð�2 ¼ 106Þ for both
the intercept and covariate coefficient to compare to the informative priors.

As noted by a reviewer, specification of these normal informative priors can be thought of in the
context of sceptical priors introduced by Spiegelhalter et al.,26 which are specified to be sceptical of
an alternative hypothesis. Assuming the alternative hypothesis treatment effect is �1,A then the
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sceptical prior distribution �1 � Normalð0, �2=n0Þ is specified such that pð�1 4�1,AÞ is a small value
�. Our normal prior with SD of 0.35 ð�2=n0 ¼ 0:352Þ would match the sceptical prior where the
alternative hypothesis is j�1j4 logð2Þ and pðj�1j4 logð2ÞÞ is � ¼ 0:05. The normal prior with SD of
0.75 can be thought of as being sceptical of an alternative hypothesis of j�1j4 logð4:35Þ.

2.5 Informative robust prior distributions

We investigated Student-t distributions as robust priors for the �’s and �’s as suggested by Gelman
et al.8 and Fúquene et al.10 Gelman et al. recommend a weakly informative default prior of a Cauchy
distribution (or t1 distribution) which has heavier tails than a normal distribution and thus assigns
greater probability to larger values of the log RR compared to a normal prior. Although the authors
report that the Cauchy prior centered at 0 with scale of 0.75 performs the best in their study, they
suggest a Cauchy with center 0 and scale 2.5 as a default prior for logistic regression models and other
general linear models (i.e. log binomial or Poisson). This default weakly informative prior gives an
implausibly large 95% interval (Table 1) for the RR that is unrealistic when compared to reported
RRs in published RCTs. In fact, Gelman27 has recently stated that a scale of 2.5 is too weak.

Here, we assess a Cauchy with scale of 0.75, a Cauchy with scale of 0.35 (to compare to the
normal prior we have used in previous RCT analyses), and a t7 with scale of 0.75 to serve as an
intermediate choice between the normal and Cauchy priors. We compare these priors to the default
Cauchy prior with scale of 2.5. For the intercept terms, �0 or �0, we use the same distribution as for
�1 or �1 (Cauchy or t7) with a scale of 10 as suggested by Gelman et al.8

2.6 Informative beta prior distributions

For the beta-binomial model, we can specify an informative prior distribution in different ways. If
prior information exists on the most likely values for pcontrol and ptreat, then beta distributions could

Table 1. Prior distributions investigated in the simulation study. All priors are centered at RR or OR of

1.0 (0 in the log scale). Parameters for the beta prior depend on assumed pcontrol:

Prior distribution Corresponding 95% interval for RR or OR

Log binomial model

1) �1 � Normalð0, 106Þ ð0, 1Þ

2) �1 � Cauchyð0, 2:52Þ ð1:6� 10�14, 6:25� 1013Þ

3) �1 � Cauchyð0, 0:752Þ ð7:3� 10�5, 1:38� 104Þ

4) �1 � t7ð0, 0:752Þ ð0:17, 5:89Þ

5) �1 � Normalð0, 0:752Þ ð0:23, 4:35Þ

6) �1 � Cauchyð0, 0:352Þ ð0:01, 85Þ

7) �1 � Normalð0, 0:352Þ ð0:50, 2:0Þ
Beta-binomial model

8) pcontrol, ptreat � Beta(1, 1) ð0:05, 20Þ

9) pcontrol, ptreat � Beta(a, b) ð0:23, 4:35Þ

Logistic model

10) �1 � Cauchyð0, 0:752Þ ð7:3� 10�5, 1:38� 104Þ

11) �1 � t7ð0, 0:752Þ ð0:17, 5:89Þ

12) �1 � Normal(0, 0.752) ð0:23, 4:35Þ

13) �1 � Cauchyð0, 0:352Þ ð0:01, 85Þ

14) �1 � Normalð0, 0:352Þ ð0:50, 2:0Þ
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be used where the parameters a and b are selected based on the method of moments to represent the
prior evidence. If no information is available for the treatment arm or if we want to use neutral but
informative priors (i.e. centered at RR of 1.0 but with very small probability of large values for the
RR), a beta distribution similar to the one for pcontrol could be used for the treatment arm (i.e.
centered around the same rate but perhaps with a wider interval). For example, suppose we know
that pcontrol is expected to be 0.40 with a plausible range (� 1 SD) of 0.25 to 0.55, then a beta
distribution with a¼ 3.87 and b¼ 5.8 could be used for both pcontrol and ptreat to form a neutral
prior. The implied prior for the RR is centered at 1.0 with 95% interval of 0.3–3.4.

Alternatively, we can specify a neutral prior for the relative risk centered at 1.0 with a range of
plausible treatment effects, 95% interval of 0.5–2.0 and a best guess for pcontrol. We then numerically
search for parameters of the beta distributions for pcontrol and ptreat that most closely match these
constrains. For example, if the best guess for pcontrol is 40%, then a Betað10:075, 15:112Þ distribution
for both pcontrol and ptreat implies the wanted prior for RR. Here we evaluate this approach where we
assume a reasonable estimate of pcontrol exists, and we set the 95% interval to 0.23–4.35 to
correspond with the informative normal prior with � ¼ 0:75.

3 Simulation study

We assessed the performance of 14 prior distributions for binary outcome data (Table 1; Figure 1).
All these priors are centered at RR or OR of 1.0 indicating no a priori difference between the two
interventions. These priors can be divided into 3 sets: (1) Priors 1, 2 and 8 are default vague or
weakly informative priors; (2) priors 3–5 and 9–12 use a scale or standard deviation of 0.75 to mirror
the best performing prior (prior 3) reported by Gelman et al.; (3) priors 6–7 and 13–14 use a
standard deviation of 0.35 which corresponds to a 95% interval of 0.5–2.0 for the RR or OR
under a normal distribution in the log scale. For priors 2–7 and 10–14, the prior for the intercept
had the same distributional form as for the log RR or log OR (since in a real-word data analysis it is
likely that the same distribution would be used for all parameters in the model) centered at 0 and
with scale of 10. For prior 1 the intercept prior was Normal(0,106).

We used a two group RCT design and simulated data from

yi � Binomialðn, piÞ

pi ¼ pcontrolð1� xiÞ þ ptreat xi ð4Þ

where ptreat ¼ pcontrol RRtrue, and the indicator variable xi was sampled from a Bernoulli distribution
with probability of 0.50. We varied the true control rate, pcontrol ¼ 0:10, 0:25, 0:50.

To assess how the priors perform when there is true and plausible intervention effect (of either
benefit or harm), we used values of RRtrue ¼ 0:70, 1:5, 1:0. A RR of 0.70 (or 30% reduction in the
outcome) corresponds to the 25th percentile of treatment effects reported by Sinclair et al.19 for
reviews of neonatal interventions with mortality outcomes. A RR of 1.5 corresponds to the
maximum effect from the same reviews. The implied true OR are 0.68, 0.64, and 0.54 for
RRtrue ¼ 0:70, and 1.59, 1.8, and 3.0 for RRtrue ¼ 1:5. These effect sizes represent a range of
plausible treatment effects from medical interventions.

The total number of subjects were n¼ 50, 250, 1000 reflecting sample sizes typically used in small
pilot studies, small trials, and relatively large trials in pediatric patients. We ran a total of 24
scenarios from the combination of each pcontrol, RRtrue, and sample size with the exception of
pcontrol ¼ 0:10 and n¼ 50 since we deemed this scenario too unrealistic. We generated 500 data
sets for each scenario.
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We analyzed each data set using the 14 priors shown in Table 1. To obtain a 95% prior interval of
0.23–4.35 for the RR with prior 9, the implied (a, b) parameters of the beta distribution for
pcontrol ¼ 0:10, 0:25, 0:50 are ð3:779, 34:013Þ, ð3:316, 9:947Þ, and ð2:58, 2:58Þ, respectively.

We fitted all regression models using Markov chain Monte Carlo methods (MCMC). All
simulations and analyses were conducted in R28 and OpenBUGS.29 For each dataset we ran one
MCMC chain with starting values set to the estimated parameters from a frequentist logistic model.
A burn-in of 1000 iterations was used, with sampling from a further 10,000 iterations. To monitor
for convergence, we visually inspected the trace plots of the parameters for the first 50 data sets in
each scenario for each of the prior distributions. In practice, when using MCMC methods for a
single model, multiple chains and more iterations should be used along with convergence
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Figure 1. Density of the priors for the log RR investigated in the simulation study. Priors 3–7 correspond to priors

10–14 used for the log OR. *The beta prior shown corresponds to a pcontrol ¼ 0:25.
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diagnostics.30,31 However, for the large number of models fitted in this simulation study this was not
practical.

For all models, we calculated the posterior median and 95% CI of the relative risk ðe�1 Þ or odds
ratio ðe�1 Þ. For the beta-binomial models, the posterior distribution of the RR was calculated as

RRðiÞ ¼
p
ðiÞ
treat

p
ðiÞ
control

ð5Þ

where p
ðiÞ
treat, and p

ðiÞ
control indicate the ith posterior draws of the parameters.

Performance of the 14 different priors was evaluated using the bias (posterior median RR [OR]
�RRtrue ½ORtrue�) and root mean squared error (RMSE) of the posterior median of the RR and OR,
and the width and coverage of the 95% credible intervals. These 95% intervals were calculated using
the 2.5th and 97.5th percentiles of the posterior distribution.

We conducted a sensitivity analysis to assess the effect of the weakly informative intercept
prior (scale of 10) on the posterior distribution of the treatment effect. We used a Normal(0,106)
prior for the intercept in conjunction with priors 2–7 and 10–14 for the log RR or log OR.
Since the prior will have the most influence in datasets with small sample size, we limited the
scenarios to those with RRtrue ¼ 1:5, n¼ 50, pcontrol ¼ 0:25, 0:50 and RRtrue ¼ 1:5, n¼ 250,
pcontrol ¼ 0:10, 0:25, 0:50.

4 Simulation results

We excluded results with posterior median of the RR or OR that were unrealistically large ð4 150Þ
or small ð5 1=150Þ. This resulted in exclusion of 5 1:5% of data sets for the Normalð0, 106Þ prior
for scenarios with n¼ 50 and pcontrol ¼ 0:25, 0:50 (for RR of 1.5), and 5 1% for Cauchy priors 2, 10,
13 and beta prior 8 for n¼ 50, pcontrol ¼ 0:25, and RRtrue ¼ 0:70. No data sets were excluded for
scenarios with n¼ 250 or n¼ 1000.

The scenario with RR ¼ 1:5, pcontrol ¼ 0:50, and n¼ 50 was the only one with convergence
problems. For priors 1, 2, 3, 4, and 6 the MCMC chain appeared to not have converged for a
small number of the datasets (10%) in this scenario. We show examples of trace plots exhibiting
nonconvergence for these priors in Figure 2. No other scenarios or priors exhibited poor
convergence for the inspected datasets.

4.1 Results for RR

Figures 3 to 5 (Supplementary Material; Tables S.1 and S.2) show the bias and RMSE of the
posterior median and coverage of the 95% CI for RR for priors 1–9 for RRtrue of 0.70 and 1.50.
In general, as the sample size n and pcontrol increase, both the bias and RMSE decreases for all priors.
As the magnitude of the true effect size increases the RMSE also increases. For a given scenario,
priors with similar scales (or spread) have similar bias and RMSE. The three vague or weakly
informative priors (1, 2, and 8) give larger RMSEs compared to the other 6 priors. Compared to
the normal or t7 priors with the same scale, the Cauchy priors tend to have larger RMSEs for n¼ 50,
250 and even for n¼ 1000 for small pcontrol of 0.10 (Table S.1). However, under the Cauchy priors
the point estimates for the relative risk are less biased than under a normal prior with the same scale.
For example, for true RR¼ 0.70, pcontrol ¼ 0:10, and n¼ 250, the Cauchy prior with scale of 0.35 has
bias of 0.15 and RMSE of 0.25 whereas the normal prior with the same scale of 0.35 has bias of 0.18
and RMSE of 0.23.
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Figure 2. Example of trace plots of log RR for one simulated dataset where the MCMC chain exhibited

nonconvergence for priors: Normal(0,106) (1), Cauchy(0,2.52) (2), Cauchy(0,0.752) (3), t7ð0,0:752Þ (4), and

Cauchy(0,0.352) (6).
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The weakly informative Cauchy prior of Gelman et al. with scale of 2.5 tends to give very similar
results to the default vague Normal(0,106), but under some scenarios the RMSE is two times larger
than the RMSE from the default normal prior (Figure 4 and Table S.2, RR ¼ 1:5 and
pcontrol ¼ 0:50). For the largest sample size, n¼ 1000 and pcontrol of 0.25 and 0.50, all 9 priors give
very similar results.

Priors with the largest scale (1, 2, and 8) and with the smallest scale of 0.35 (priors 6 and 7) have
coverage slightly below the nominal 95% level for n¼ 50 and for some scenarios with n¼ 250
(Figure 5 and Tables S.1 and S.2). For n¼ 1000, the coverage was very close to 95% for all
priors in all corresponding scenarios. As expected, the average widths of the 95% CI were larger
for priors with larger scales (data not shown). For the smallest sample size the Cauchy priors gave
extreme average widths. For example, the average width was 2:4� 108 for the scenario with
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Figure 3. Bias of the posterior median of the RR using priors 1–9 (based on 500 simulated datasets).
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RR ¼ 1:5 and pcontrol ¼ 0:25 (for comparison, the Normalð0, 106Þ prior had an average width of
1.79). Hence, we also computed the median widths which were comparable across priors with the
same scale (1.54 and 1.50 for the Cauchy and normal priors in the previous example). For n¼ 1000,
the average and median width were virtually identical for a given prior, and there was little difference
across the 9 priors.

Results for scenarios with true RR of 1.0 follow the same patterns described above
(Supplementary Material; Table S.3). As expected the estimates of the RR have little bias for all
9 priors, even for n¼ 50.

For scenarios with n � 250, priors with scale of 0.35 or 0.75 have good coverage with small bias
and RMSE and can be seen as good default priors. For the smallest sample size of 50, priors with
scale of 0.75 have good operating characteristics and may be good starting points.
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Figure 4. RMSE of the posterior median of the RR using priors 1–9 (based on 500 simulated datasets).
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4.2 Results for OR

For the logistic models estimating ORs, we see the same pattern as for RRs where the prior scale has
a greater impact on the posterior than the distributional form of the prior (Figures 6 to 8 and
Tables S.4 to S.6). Priors with the same scale or SD have very similar bias, RMSE and coverage,
except for the larger true OR of 1.8 and 3.0. For these scenarios with n¼ 50, we note some
differences for priors with scale of 0.75 where the Cauchy prior has the largest RMSE followed
by the t7 and normal prior (Figure 7). Differences among these 3 priors diminish as the sample size
increases and the size of the treatment effect decreases.
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Figure 5. Coverage of the 95% CI of the RR using priors 1–9 (based on 500 simulated datasets).

12 Statistical Methods in Medical Research 0(0)

 at CAMBRIDGE UNIV LIBRARY on December 24, 2015smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


Priors with a scale of 0.35 (priors 13–14) give point estimates with large bias and poor coverage
(Figures 6 and 8). The worst performance is for the true OR ¼ 3:0 (Table S.5). For this value of OR
and n¼ 50, the Normalð0, 0:352Þ prior has bias of –1.65 for the OR and coverage of 6.0%. The
Cauchy with scale of 0.35 has smaller bias ð�0:65Þ but its coverage (85.8%) is still well below the
nominal level. The performance of these 2 priors improves as the sample size increases but even for
n¼ 1000 the coverage for the normal prior is below the 95% level. Hence for estimating ORs a scale
of 0.35 appears to be too small.

The t7 prior distribution with scale of 0.75 seems like a good compromise. It has smaller RMSE
than the Cauchy(0,0.752) and has better coverage than the normal with the same scale.
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Figure 6. Bias of the posterior median of the OR using priors 10–14 (based on 500 simulated datasets).
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4.3 Sensitivity analysis results

For the analyses with priors 2–7 and 10–14 under a Normal(0,106) prior for the intercept, we observe
the same patterns as with the informative intercept priors. Priors with the same scale had similar
performance in terms of bias, RMSE, and coverage (Tables S.7 and S.8). The main difference
observed was for n¼ 50 and pcontrol ¼ 0:25 where the RMSE of the RR with Cauchy priors 3 and
6 (scale of 0.75 and 0.35) was more than 3-fold with the vague normal prior than with the priors with
scale of 10 (values shown in bold in Table S.7). Similarly, the RMSE also increased by more than
3-fold for Cauchy priors 10 and 13 (scale of 0.75 and 0.35) when estimating true OR of 1.8 and 3.0
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Figure 7. RMSE of the posterior median of the OR using priors 10–14 (based on 500 simulated datasets).
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with a sample size of 50 (Table S.8). Except for these two Cauchy priors, we see little difference
between the results with informative intercept priors and the vague priors for both sample sizes of 50
and 250.

5 Examples

5.1 NICHD hypothermia trial

In this highly influential trial, Shankaran et al.32 investigated the effect of hypothermia on death or
disability among term infants with hypoxic ischemic encephalopathy (HIE). Within the NRN, they
randomized 102 infants to whole-body cooling at 33.5�C for 72 h and 106 infants to the control
group. The predefined primary outcome, death or moderate or severe disability occurred in 44% in
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Figure 8. Coverage of the 95% CI of the OR using priors 10–14 (based on 500 simulated datasets).
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the hypothermia group and 62% in the control group (RR, 0.72; 95% CI, 0.54–0.95). An important
issue was the effect on mortality as the most accurately measured and easily interpreted outcome.
Death occurred in 24 (24%) infants in the hypothermia group and 38 (37%) in the control group.
For the sake of illustration, we use the unadjusted RR which was 0.66, 95% CI 0.43–1.01. Although
this trial was the largest feasible in the 16-center Network, this trial is not large, and a one-third
reduction in mortality among infants with HIE can be viewed as implausibly high. Hence without
confirmation in other trials, skepticism about these results would not have been unexpected when the
trial was first reported. Nevertheless, even a 10% reduction in the RR would be considered clinically
important.

Here, we conducted a Bayesian analysis of the mortality outcome using a log binomial model and
3 informative priors, Normal(0,0.352), Cauchyð0, 0:352Þ, and Cauchy(0,0.752), to calculate posterior
distributions of the effect of hypothermia. Under the normal prior, the posterior median of the RR is
0.74 (95% CI: 0.51–1.04), 0.74 (95% CI: 0.48–1.05) with the Cauchyð0, 0:352Þ, and 0.68 (95% CI:
0.44–1.02) with Cauchy(0,0.752) prior. These estimates are in agreement with the RR estimate from
the last updated Cochrane review (RR, 0.73; 95% CI: 0.61–0.89).33 The posterior probability of a
clinically important effect of a relative risk reduction of 10%, PrðRR5 0:90Þ, based on the NICHD
trial and either the normal, Cauchyð0, 0:352Þ, or Cauchy(0,0.752) is 87%, 85%, or 91% respectively
(area to the left of the dashed line in each panel in Figure 9). Here we see that although the prior
distributions differ in the range of plausible treatment effects, the resulting posterior distributions are
very similar, and the conclusions drawn from the trial data would not differ.

5.2 Trials of magnesium sulfate in acute myocardial infarction

The example of magnesium sulfate after myocardial infarction is one of the well-known cases where
early trials with small sample sizes showed large benefit (55% reduction in odds of death),34 but were
later contradicted by the mega-trial ISIS-4 which found no evidence of benefit.35 A previous
Bayesian analysis incorporated a skeptical prior distribution in the meta-analysis of these trials.23

Here, we performed a Bayesian analysis of the trials reported by Sterne et al.36 that had large
treatment effects of RR< 0.50 (> 2.0). For each of these 10 trials, we used a log binomial model
with a vague normal prior and 3 informative priors for the log RR: (1) Normal(0,106); (2)
Normal(0,0.352); (3) Cauchyð0, 0:352Þ; and (4) Cauchyð0, 0:752Þ. The informative priors express
the belief that large treatment effects as reported by the 10 magnesium trials are unlikely, with
the informative normal prior expressing the strongest skepticism. Figure 10 (and Table S.9)
shows the posterior median of the RR and 95% CI under these four priors. We note that there is
complete separation8 for the smallest trial (Bertschat 1989) where there were 0 deaths in the
treatment group and 1 death in the control group. For this study the model with the vague
normal prior fails to give a valid solution, which is a problem that has been noted before.8 As
expected, the Bayesian analysis under the Normal(0,0.352) prior tempers the treatment effects the
most, and all 10 posterior medians are larger than 0.50. For 3 of the 10 trials, the 95% posterior
interval from this prior includes 1.0 and may have resulted in different conclusions than with the
other 3 priors.

6 Discussion

Most clinical interventions have no more than small to moderate treatment benefits, particularly for
major outcomes such as mortality or impairment.1–4 Results from clinical trials need to be
interpreted in the context of typically small to moderate effects, and clinicians, investigators, and
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patients need to be skeptical of implausibly large treatment effects that are ‘‘too good to be true’’.3

Bayesian analyses provide a natural way to formally incorporate empirical evidence on the
magnitude of treatment effects and have been proposed as a way to temper large effects.14,17,26,37,38

Some informative priors have been suggested but their operating characteristics have not been
studied. In particular, we are interested in whether priors with small scales reflective of empirical
treatment effects perform well in terms of bias, RMSE, and coverage of the 95% CI. Our simulation
study investigated these properties for 14 priors, 2 of them default vague priors and 12 informative
ones. In general, we note that priors with same scale or SD perform similarly regardless of the
underlying distributional form (i.e. Cauchy compared to normal). As expected, as the sample size
increases, the prior distributions have less weight and all 14 priors give very similar results. For the
smaller sample sizes, the more vague priors exhibit larger RMSEs and poorer coverage. Hence we
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Figure 9. Posterior densities of the RR for the NICHD hypothermia trial using 3 informative priors for the RR.

Area to the left of the dashed line corresponds to the posterior probability of RR< 0.90.
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Figure 10. Bayesian estimates of RR for 10 trials from Sterne et al.36 reporting large treatment effects (RR< 0.50)

of intravenous magnesium sulfate on mortality after myocardial infarction. *There is complete separation in the

Bertschat 1989 trial, and the model with the Normal(0,106) prior fails to give a valid solution.
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would recommend that they not be used in these settings. The main concerns with using informative
priors like the ones we investigated are the possibilities of obtaining biased estimates or missing a
true effect. Here, we have shown that for plausible treatment effects in clinical trials the proposed
informative priors provide estimates with little bias for n � 250. For small n of 50, both the
noninformative and informative priors give biased estimates, but all of the informative priors
have better coverage than the noninformative ones.

If we wish to exclude large treatment effects, defined by GRADE as RRs of magnitude greater
than 2.0 or less than 0.50, which are very unlikely given the empirical evidence, then a Bayesian
analysis with a prior such as the Normal(0,0.352) distribution should be used, particularly for major
outcomes such as mortality where reported effects outside of this range have rarely been confirmed
in well-conducted large RCTs. We have used this prior in the design of two ongoing NRN trials
investigating hypothermia to treat HIE in term infants. A third NRN trial of hypothermia for HIE
in preterm infants (ClinicalTrials.gov identifier: NCT01793129) will use a similar prior distribution
but with a wider 95% interval (0.33–3.0) reflecting greater uncertainty of the treatment effect in this
population. Incorporation of informative priors is straightforward using the bayesglm function in
the arm R package39 or OpenBUGS (sample code is given in the Supplementary Material).

We note that for the estimation of ORs a prior distribution with scale of 0.35 may be too
restrictive. The priors with scale of 0.75 performed reasonably well in most scenarios which
agrees with the results reported by Gelman et al.8 for logistic models. The coverage for the priors
for the logistic model remained somewhat low even for large n. This may be due to model
misspecification since the data were simulated under the log binomial model.

We also investigated informative g-priors as proposed by Hanson et al.9 for the logistic model. An
advantage of these informative multivariate normal priors is that they preserve the correlation
among the predictors in the model. However, for our simulation settings the performance of the
g-priors was almost identical to that of the independent normal priors with the same SD and did not
appear to offer any advantages over these priors (data not shown).

The sensitivity analysis showed that for most priors on the log RR or log OR, the effect of the
prior on the intercept had little impact on the posterior distribution of RR and OR. In fact, the
weakly informative intercept priors resulted in overall smaller RMSEs for the RR and OR than with
the vague normal intercept prior.

We chose to focus on the estimation of relative risks and odds ratios since these are the measures
most commonly reported in clinical trials and observational studies.40 More recently, some
investigators have argued that the absolute risk difference (ARD) is a more clinically meaningful
treatment measure and should be reported along with RR.40–45 Thus, it would also be important to
identify plausible treatment effects in terms of the ARD to derive informative priors that exclude
implausible ARDs.

All priors we investigated can be considered as neutral or equivalent meaning that a priori they
favor neither intervention. However, if prior evidence or even strong beliefs from investigators exist
for a particular intervention then enthusiastic or optimistic priors can also be formed where the
range of possible treatment effects is still part of the prior. It is important to realize that investigators
with different a priori beliefs of an intervention’s potential benefits and hazards may use different
prior distributions.7 The resulting posterior distributions may also differ, particularly for small
sample sizes, and the investigators may reach different conclusions for a particular study. While
this subjectivity of the prior is often offered as a main drawback of a Bayesian approach, we see it as
an advantage since it formalizes how experts with differing pre-existing opinions will view the results.

In conclusion, we strongly recommend the use of Bayesian analyses with informative priors that
incorporate evidence on the magnitude of treatment effects of medical intervention in the analyses
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and interpretation of RCTs. Informative priors such as a Normal(0,0.352) for RR or
Normal(0,0.752) for OR should be used for analyses of major outcomes. The robust alternatives
such as the Cauchy or t7 priors with the same scale can also be used or considered in sensitivity
analyses.
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