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Abstract

We investigate to what extent online A/B experimenters “p-hack” by stopping their

experiments based on the p-value of the treatment effect, and how such behavior impacts

the value of the experimental results. Our data contains 2,101 commercial experiments

in which experimenters can track the magnitude and significance level of the effect every

day of the experiment. We use a regression discontinuity design to detect the causal

effect of reaching a particular p-value on stopping behavior. Experimenters indeed p-

hack, at times. Specifically, about 73% of experimenters stop the experiment just when

a positive effect reaches 90% confidence. Also, approximately 75% of the effects are truly

null. Improper optional stopping increases the false discovery rate (FDR) from 33% to

40% among experiments p-hacked at 90% confidence. Assuming that false discoveries

cause experimenters to stop exploring for more effective treatments, we estimate the

expected cost of a false discovery to be a loss of 1.95% in lift, which corresponds to the

76th percentile of observed lifts.
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1 Introduction

Marketers increasingly use online experiments to inform their decisions. This shift is facilitated by

various testing platforms like Conductrics, Google Optimize, Mixpanel, Monetate and Optimizely.

These A/B testing platforms, as they are often called, make it easy to randomly allocate consumers

to treatment conditions and to measure their responses.

To help marketers avoid rolling out non-effective marketing treatments, platforms typically

report standard null hypothesis significance tests. However, industry observers have pointed to the

need to use these tests properly. Platforms calculate and display both effect sizes and significance

levels on an ongoing basis. Users do not have to pre-commit to ending the experiment at a particular

time or sample size, but can stop the experiment at any time. This ability to both (1) peek at the

test results obtained while the experiment is still running (repeated testing) and (2) terminate the

experiment at any time (optional stopping), may lead users to end the experiment based on the

significance level achieved.

Such stopping behavior would be problematic, since repeated traditional null hypothesis signif-

icance testing over the course of the experiment inflates the false-positive rate. This has long been

known (e.g., Wald 1947, Fiske and Jones 1954, Armitage et al. 1969, Bartroff et al. 2012), but was

until recently ignored by most providers and users of A/B testing platforms (Miller 2010, Goodson

2014, Johari et al. 2017). In short, the combination of optional stopping and uncorrected repeated

testing raises the specter that users might stop their experiment and declare their findings once the

experiment reaches a desired statistical significance level. Stopping A/B tests in such a way would

result in rejecting the null hypotheses more often than the nominal rate, inflate the number of false

positives, and be a form of p-hacking.

p-Hacking is typically defined as “try[ing] out several statistical analyses and/or data eligibility

specifications and then selectively report[ing] those that produce significant results” (Head et al.

2015, p. 1) or “the misuse of data analysis to find patterns in data that can be presented as

statistically significant when in fact there is no real underlying effect”.1 Conducting statistical tests

midway through experiments and using the test results to decide whether to continue collecting data

without acknowledging, or correcting for, having tested the same hypothesis repeatedly is a specific

form of p-hacking. Put more succinctly, improper optional stopping is a form of p-hacking, as

1https://en.wikipedia.org/wiki/Data_dredging, Accessed Nov 19, 2018.
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many have stated explicitly (Rouder 2014, Head et al. 2015, Bruns and Ioannidis 2016, Szucs 2016,

Brodeur et al. 2018). Importantly, p-hacking in general and through improper optional stopping

specifically need not result from malicious intent to deceive, and more likely stems from an honest

misunderstanding of statistical testing (Simmons et al. 2011, John et al. 2012, Yu et al. 2014). We

use the term p-hacking without attributing or implying specific intentions to either platforms or

users.

In response to these concerns about repeatedly checking for significance, A/B testing platforms

have made substantial efforts to educate marketers about the importance of proper statistical

inference. Some have also been offering new tools to help marketers reap greater benefits from

experimentation. Examples include proper sequential testing (e.g., Pekelis et al. 2015) and multi-

armed bandit designs (e.g., Scott 2015, Schwartz et al. 2017).

These concerns and developments in A/B testing mirror developments in academic research

(Ioannidis 2005, Head et al. 2015, Open Science Collaboration 2015, Camerer et al. 2018), where

difficulties in reproducing research findings have been attributed to two main sources. The first is

the preference among many journal editors and research sponsors for novel and statistically signif-

icant results. The second is the tendency of authors to engage in behaviors generating significant

effects where none exist.

Why would marketers and other business people engage in improper optional stopping or other

forms of p-hacking? Unlike academics, they do not face editors biased against publishing null

results, nor do they operate under “publish or perish”. Hence, they may appear to have little

benefit from generating false-positive findings. If anything, rolling out marketing treatments based

on false-positive experimental findings would likely hurt rather than boost profits.

Business experimenters may engage in improper optional stopping for the same three reasons

as academic researchers do. First, experimenters may simply not have the training or experience

to validly interpret statistical test results. Even when experiments are properly conducted, trained

practitioners often draw incorrect conclusions from the results. For example, McShane and Gal

(2015; 2017) show that not only medical doctors but even highly trained statisticians often make

mistakes in interpreting the results of statistical tests. Experimenters may even believe that it

is not only defensible but actually best practice to avoid wasting time or subjects and to test

for significance repeatedly throughout the experiment without correcting for repeated hypothesis
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testing (Miller 2010, John et al. 2012, Johari et al. 2017). Or, they may be aware that optional

stopping increases the chances of finding false positives, but deem the procedure a legitimate way

to achieve sufficient power without wasting time or subjects because they do not believe that the

increase in the false positive rate is disconcertingly large (Simmons et al. 2011, Szucs 2016).

A second possible reason for engaging in improper optional stopping, and the one emphasized

by Simmons et al. (2011), is motivated self-deception resulting from the combination of favoring

statistical significance and of being uncertain about proper data analysis procedures. As Kareev

and Trope (2011) and Yu et al. (2014) note, researchers are often intrinsically motivated to find

effects rather than finding none. Sometimes, this preference is in reaction to facing an audience

that favors statistical significance. Outside contractors tasked with assessing the effectiveness of

a campaign they designed may convince themselves that they are justified to report significant

positive results if that helps generate more business. Employees running A/B experiments may be

concerned about their perceived competence and prefer to report significant results as well.

A third possible reason why experimenters may engage in improper optional stopping is delib-

erate deception. Few authors put much weight on this alternative, and several even state explicitly

that they deem this factor much less prominent than the other two (Simmons et al. 2011, Yu et al.

2014).

Our study focuses solely on documenting the existence, extent and consequences of p-hacking

through improper optional stopping. It does not shed light on whether honest mistakes, self-

deception or deliberate deception underlie the behavior.

We investigate to what extent p-hacking occurs in commercial A/B testing, and how it harms

the diagnosticity of these tests. Specifically, we investigate to what extent (1) online A/B exper-

imenters stop their experiments based on the p-value of the treatment effect, (2) such improper

optional stopping affects the tendency for A/B tests to produce falsely significant results, and (3)

consequently depresses the ability of these A/B tests to improve marketing effectiveness.

Our data consists of 2,101 experiments run on the Optimizely A/B testing platform in 2014.

The data is unique in that it has daily observations about the performance and termination of

each experiment, rather than only the published effect sizes and p-values achieved at termination.

Unlike previous analyses using a p-curve (Simonsohn et al. 2014) or a funnel plot of effect sizes

vs. standard errors at the time of termination, “looking over the shoulder” of the experimenters in
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real-time allows us to directly infer the causal effect of the achieved p-value on stopping behavior

through discontinuities within very narrow intervals around critical p-values. Also, our data reflects

experimenters’ behavior free of selection bias by editors, and focuses solely on improper optional

stopping unconfounded by other forms of p-hacking.

Applying a regression discontinuity design (RDD) to the panel data, we estimate that 73% of

the experimenters with observations around the 90% confidence level engage in p-hacking. We do

not find compelling evidence for p-hacking at 95% or 99% confidence, even though the platform

declared “winners” using 95% rather than 90% confidence.

Having documented the existence of improper optional stopping, we proceed to quantifying its

consequences on the value of the experimental results. Improper optional stopping is problematic

in principle, but how grave the consequences are in practice is an empirical question (Anscombe

1954). For example, the gravity of the problem will depend on the noisiness of the response and

the arrival rate of observations between two “peeks” at the data. Our longitudinal data allows us

to quantify the consequences of improper optional stopping on the diagnosticity of the tests and

their value for improving marketing effectiveness.

Applying the method developed by Storey (2002) and Storey and Tibshirani (2003), we estimate

the proportion of all experiments that truly have no effect, regardless of whether the result was

declared significant, to be about 73%-77%. This means that the large majority of A/B tests in

our sample do not involve treatments of differential effectiveness and hence will not identify more

effective business practices. Such a large proportion of true null effects is consistent with the

small average treatment effects detected in online advertising experiments (e.g., Lewis and Rao

2015, G. Johnson et al. 2017), but is somewhat lower than the 90% true null rate documented

in academic psychological research (V. Johnson et al. 2017). Our estimate that 73%–77% of the

effects are truly null supports the suspicion that the high prevalence of non-significant results in

A/B tests stems from the interventions being tested rather than the method of A/B testing (Fung

2014).

We estimate that the false discovery rate (FDR) at 90% confidence averages 38% among all

experiments, and that p-hacking increases the FDR among p-hackers in our data from 33% to 40%.

In other words, p-hacking boosts the probability that an effect declared significant is actually a

null effect from 33% to 40%, and by doing so harms the diagnosticity of commercial A/B tests
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that use standard null-hypothesis testing. The platform—suspecting that p-hacking was indeed

pervasive—deployed advanced sequential testing tools in 2015 to safeguard their users from making

such false discoveries even in the presence of p-hacking (Pekelis et al. 2015, Johari et al. 2017).

Since p-hacking increases the average FDR among p-hacked experiments from 33% to 40%, we

also quantify the expected cost of a false discovery. Assuming that experimenters stop exploring

for more effective treatments after making a false discovery, we estimate the expected cost of a false

discovery to be a loss of 1.95% in lift. This corresponds to the 76th percentile of observed lifts.

Finally, our data indicate that several additional experiment characteristics besides statistical

significance are associated with stopping behavior. Notably, experimenters facing large negative or

large positive effects are more likely to let the experiment continue compared to when observing

small effects.

Our study contributes five new insights into how business users stop commercial experiments

and how this affects the value of these experiments. (1) We document the existence and quantify

the prevalence of optional stopping in commercial A/B testing using data that tracks stopping

behavior over time. (2) We estimate the proportion of experiments that truly have no effect. (3)

We quantify the impact of stopping behavior on the false discovery rate. (4) We quantify the

expected cost of false discovery in terms of forgoing improved lift. (5) We document contingencies

in stopping behavior beyond the achieved level of significance.

Our study also makes four contributions to the understanding of p-hacking through optional

stopping. (1) It documents the phenomenon among business experimenters rather than academics.

(2) It investigates p-hacking through optional stopping specifically whereas other studies cannot

distinguish optional stopping from other forms of p-hacking such as adding covariates, adding

moderators, analyzing only specific strata of the data, transforming variables, and changing the

specific test being used. (3) Using data that “look over the shoulder” of the experimenter throughout

the experiment and applying RDD, our work provides stronger causal identification than other work

analyzing p-values and effects sizes observed only at the end of the experiment. (4) Our work moves

beyond merely documenting the existence and extent of p-hacking, by quantifying its effect on the

false discovery rate and providing a method to asses its expected cost in terms of forgoing policy

improvements.
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2 Data

2.1 Research setting

Our data comes from Optimizely, an online A/B testing platform. It helps experimenters with de-

signing, delivering, monitoring and analyzing different versions of webpages. This section describes

the platform as it operated during the data window. An A/B test is a randomized controlled ex-

periment where there are two (A and B) or more versions of a webpage, called webpage variations.

When an online user visits the experimenter’s website, the platform assigns this visitor to one of the

variations, which is then displayed to the visitor. The assignment is usually implemented by saving

a cookie file on the visitor’s device indicating their assigned variation. Each visitor is assigned to

a single variation for the duration of the experiment.

The platform monitors actions that the visitor takes on the website after viewing the assigned

variation, and records them in the log of the experiment. The actions being monitored by the

platform are chosen by the experimenter and are called “goals”. They can include the following:

1. Engagement – How many visitors clicked anywhere on the webpage variation (such as clicking

a link or submitting a form)? This is the default goal available on the platform.

2. Click – How many visitors clicked on a specific link or button on the webpage variation?

3. Pageview – How many pageviews or impressions were made on this variation?

4. Revenue – How much sales revenue was generated from this variation?

5. Custom – Other actions defined by the experimenter.

The platform monitors and logs the number of visitors, as well the number of occurrences of the

selected actions. The number of occurrences are called the conversion level for each goal. In each

experiment, the experimenter designates one variation as the baseline. The baseline may, but need

not, be in use before the experiment started. The performance of all other variations is compared

to the baseline and statistics are computed relative to the baseline.

The experimenter can access the platform’s dashboard and view statistics about the experiment

at any time during and after the experiment.2 The experimenter may terminate the experiment

2Throughout the paper, the term experimenter refers to a unique platform account ID, which may be used by
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at any time. The platform does not require a pre-set termination time. When the experiment

concludes, the experimenter usually picks the variation with the highest performance on the goal of

key interest and directs all future visitor traffic to that variation. However, experimenters may also

keep the other variations viewable to a small sample of visitors to have a continuously monitored

control group.

2.2 Metrics reported to experimenters

The platform displays a dashboard that contains the following metrics for each variation and goal

combination in an experiment:

1. Unique visitor and conversion counts. When revenue is the goal, the total revenue rather

than the count of conversions is displayed.

2. Conversion rate – the conversion count divided by the unique visitor count.

3. Improvement (in percent) – the relative percent difference in conversion rates between the

variation and the baseline. This is also known as the Lift of the variation.

4. Confidence (in percent) – the measure of statistical significance, described below.

Figure 1 presents such a dashboard. The confidence variable is titled “Chance to beat the

baseline” and is calculated as one minus the one-sided p-value of the t-test for the null hypothesis

that the conversion rate of the baseline is equal to or greater than that of the variation:

H0 : CRbase ≥ CRvar vs. H1 : CRbase < CRvar

The confidence value is presented to the experimenter in percentages rounded to two digits (46%

in Figure 1). The chart above the statistical metrics in Figure 1 displays how the confidence evolves

from the beginning of the experiment until the present. Using two 1-sided tests with an upper and

lower threshold, respectively, is equivalent to using one 2-sided test with a single threshold. In

the case just described, the two 1-sided tests using 95%/5% confidence are equivalent to a single

2-sided test with 10% significance or 90% confidence.

multiple individuals. Hence we use the term experimenter to denote either a unique individual or a set of individuals
running A/B tests using the same account ID.
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Figure 1: Experimenter Dashboard: Overview

When the confidence value of a variation reaches a pre-determined upper threshold (95% is the

default), that variation is displayed as a “winner”. When its confidence reaches a lower threshold

(5% is the default), the variation is displayed as a “loser”. When the confidence value is between

the two thresholds, the result is displayed as inconclusive. See Figures 2a, 2b and 2c for examples.

Note, since the default notification is set at 5% and 95% confidence, any p-hacking at other levels

cannot be attributed to the default notification by the platform.

2.3 Set of experiments studied

Our raw data contains the entire set of 9,214 experiments that were started on the platform during

the month of April 2014. All but one ended by November 30 2014, the end of our observation

window. The data contains daily values of visitor and conversion counts for each variation in each

experiment, from which we calculate the metrics and statistics used in the analysis.

Since we seek to cleanly identify p-hacking in termination behavior, we exclude experiments

that have one or more of the following characteristics precluding or harming clean identification:

1. Having exactly the same number of visitors and converters in all variations at all times.

2. Having all traffic occur on only a single variation for six or more consecutive days.

3. Having no traffic to any variation for six consecutive days.

Experiments with the first characteristic are most likely pre-tests where exactly the same web-

page appears in all variations. Such pre-tests are recommended by platforms. Experiments with
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Figure 2: Experimenter Dashboard: Winning, Losing and Inconclusive Variations

(a) Winning Variation

(b) Losing Variation

(c) Inconclusive Variation

the second or third characteristics very likely were terminated de facto by reconfiguring the website

before the experimenter notified the platform about the experiment’s termination.

We further purify the data by including only experiments for which the industry of the experi-

menter is reported and for which Engagement is listed as a goal. The latter allows us to compare

performance metrics on the same goal across experiments. Because Engagement is the default goal

and the most popular goal, focusing on Engagement also results in the largest set of experiments

for us to study. Only 12% of the experiments list Engagement as the only goal, and it is possible

that some experimenters pursued a primary goal other than Engagement. We do not have that

information.

Finally, 34% of the experiments had two or more non-baseline variations. For such cases, we

select the variation with the highest conversion rate on the last day of the experiment as the
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primary variation. This allows us to compare experiments with different numbers of non-baseline

variations. We choose the variation with the highest conversion rate under the assumption that

the experimenter intends to deploy the best performing treatment.

Our final dataset consists of 2,101 experiments from 916 experimenter accounts. The day

of termination is observed for all these experiments. The data contains 76,215 experiment-day

observations. For each experiment-day we observe the number of visitors (sample size) to each

variation, the number of clicks (Engagement) in each variation, and whether the experiment was

terminated on that day.

The experiments come from various industries (Table 1). Retailers and E-tailers (26.5%), High-

tech companies (17.7%), Media companies (15.8%) and Professional Services providers (7.8%),

account for the majority of experiments. Table 2 reports additional characteristics of the experi-

ments. The median number of variations including the baseline was 2, and the median number of

goals was 3. Experimenters varied quite a bit in the number of prior experiments they had run

on the platform, with the median being 184. On the last day, the typical (median) experiment

included more than 10,000 visitors and had run for 19 days.

Table 1: Distribution of Experiments by Industry

Industry Vertical Percentage

Financial Services 2.09
Gaming 0.14
High Tech 17.71
Insurance 0.33
Media 15.75
Mobile Only 0.05
Non-Profit 1.14
Other 17.99
Professional Services 7.81
Retail 26.56
Schools & Education 3.00
Telecommunications 1.14
Travel & Entertainment 6.28

Industry assigned by the platform. N=2,101.

Table 2 also reports two performance metrics on the day the experiment ended. The Effect

Size of a non-baseline variation is the difference in conversion rates between that variation and the

baseline, whereas the Lift is the percentage difference in conversion rates from the baseline. Lift

is reported as “Improvement” on the dashboard (Figure 1). As noted earlier, we select the non-

baseline variation with the highest conversion rate on the last day to characterize the time-varying
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Table 2: Summary Statistics of Experiments

Mean Median SD Min Max

Total Variations 2.78 2.00 2.66 2.00 80.00
Total Goals 4.67 3.00 5.47 1.00 70.00
Past # Experiments 364.3 184.0 455.7 1.0 2, 917.0
Sample Size 141,309 10,129 915,721 201 34,724,196
Length (in Days) 36.28 19.00 49.19 1.00 537.00
Effect Size 0.005 0.001 0.047 −0.328 0.571
Lift 0.112 0.0015 2.256 −0.653 82.78

N = 2, 101. Values are computed on the last day of the experiment.

Effect Size, Lift and Confidence values of the experiment. When the lift is undefined on a particular

experiment-day because of a zero baseline conversion rate, we set it to zero if the effect size was

zero, and to the highest 99% percentile if the effect size was positive. This affects 0.13% and 0.19%

of experiment-days, respectively. As reported in Table 2, the average Effect Size was 0.5% and

the average Lift was 11.2%, meaning that the Engagement in the best-performing variation was on

average half a percentage point or 11.2% higher than in the baseline.

3 When do experiments end?

3.1 Model Free Evidence

The propensity to start or end experiments varies across the days of the week. As one might

expect, few experiments start or end during the weekend (Table 3). However, the propensity to

start experiments is also markedly lower on Mondays and Fridays compared to the rest of the week,

as is the propensity to end on Fridays.

Table 3: Days of the Week when Experiments Start and End (%)

Start End

Monday 11.14 21.89
Tuesday 20.32 19.70
Wednesday 22.13 17.85
Thursday 17.71 20.18
Friday 14.85 15.42
Saturday 7.33 2.52
Sunday 6.52 2.43

Total 100.00 100.00

N = 2, 101.
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Figure 3a shows the histogram of how long experiments run. Half the experiments end in less

than three weeks. Specifically, 25% end in 8 days or less, 50% in 19 days or less, 75% in 43 days or

less, and only 5% last longer than 132 days. A small spike in the number of endings between 161

and 168 days is notable, reflecting a tendency not to run experiments beyond 24 weeks. Figure 3b

shows the histogram of durations up to 60 days, which covers 82.7% of all experiments. Clearly,

there is a downward trend and a 7-day cycle. The cycle may stem from the tendency to start

and end the experiment on particular weekdays (Table 3), but may also reflect a tendency to run

experiments in multiples of weeks.3

Figure 3: Histograms of Experiments’ Length
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Ending an experiment is also associated with the level of confidence achieved. Figure 4 presents

histograms of confidence values on any day during the experiment (4a) and on the day they end

(4b). There is slightly more mass at confidence levels of values .85 and higher in Figure 4b than

Figure 4a. This slight skew might, but need not, stem from p-hacking, since statistical power

increases over time as the sample size grows. The distribution of lift shows a similar slight skew

towards high values on the last day (Figures 5a and 5b). However, the dominant feature of both

histograms is their peakedness around zero.

Figure 6 plots the empirical hazard of stopping the experiment on a particular day against

the confidence level achieved on that day, binned in 10% increments. The slope of the grey line

indicates that when the confidence level is below 0.5 and hence the lift is negative, there is a very

3The empirical hazard rate—the number of experiments ending on a day divided by the number of experiments
that did not end earlier—exhibits the same patterns: a downward trend for about 270 days (by which time 99.2% of
the experiments have ended), a 7-day cycle in the first 60 days, and a spike in week 24.
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Figure 4: Histograms of Experiments’ Confidence

(a) All days
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(b) Last day of experiments
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slight negative relation between confidence level and the hazard of stopping. In contrast, when the

confidence level is above 0.5 and hence the lift is positive, there is a slight tendency to end the

experiment when the confidence level is higher.

The orange and blue line segments in Figure 6 indicate that the hazard of stopping on a

particular day is also associated with lift, and that this association depends on whether the lift is

positive or negative. When the confidence level is below 0.5 and hence the lift is negative, higher

(less negative) lifts are associated with stopping sooner. In contrast, when the confidence level is

above 0.5 and hence the lift is positive, higher (more positive) lifts are associated with stopping

later. In short, experimenters observing very negative or very positive effect sizes are more likely

to let the experiment continue to run compared to when observing small effects.

3.2 Hazard Model Analysis

The model free analysis shows that stopping experiments on a particular day is associated with

how many days they have been running, the day of the week, the effect size, and the confidence

level or p-value achieved. The association between stopping and the p-value may stem from exper-

imenters being exceedingly good at setting the pre-determined sample size or run-time to detect

the experimental effect, but might also reflect p-hacking. Hazard modeling allows us to incorporate

all these predictors in a single analysis of stopping behavior.

Since the data are observed daily and predictors vary over time, we use a discrete time hazard

modeling approach. We include experimenter specific random intercepts to account for possible
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Figure 5: Histograms of Experiments’ Lift
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Lift values between -0.02 and 0.02 constitute 47.0% (left) and 71.5% (right) of experiment-days.
Lift values between -0.60 and 0.60 constitute 97.3% (left) and 99.3% (right) of experiment-days.

Figure 6: Empirical Hazard of Stopping the Experiment by Confidence and Lift
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correlation in stopping behavior of experiments managed by the same experimenter.

Let yijt equal 1 when experimenter i terminates experiment j after t days, and equal 0 otherwise.

We model the hazard hijt = Pr(yijt = 1|yijt−1 = 0) = F (αi + xijtβ), where F (·) is the logistic cdf,

αi ∼ N (0, σ2), and xijt are observed covariates.

The two variables of main substantive interest are confidence and lift. Mirroring Figure 6, we

bin confidence levels in 10% increments, and effects-code lift as +1/−1 reflecting whether the value

is above or below the bin-specific median.

In addition, we include the following controls:

1. Cumulative number of days the experiment has been running so far (duration dependency).

We use a piece-wise constant baseline hazard specification. The hazard varies freely from day

to day between days 1 and day 35, after which it changes freely in 5 day intervals up to day

100, and 50 day intervals up to day 250.

2. Day of the week. We use a separate dummy for each day of the week.

3. Cumulative number of visitors, i.e., the time-varying sample size of the experiment.

4. Industry. We use a dummy for each industry reported in Table 1.

5. Past # Experiments. This controls for experimenters’ experience in using the platform.

Table 4 presents the estimates of two models. The first model quantifies, for each confidence bin,

the propensity (log-odds) of stopping and the extent to which it varies between experiment-days

above or below the median lift in that bin. The second does so as well, but includes the entire set

of control variables.

The coefficients in the first ten rows capture the relation between confidence and stopping at

the median lift. Though the coefficients exhibit a weak U-shape in both models, consistent with

Figure 6, omnibus Wald tests indicate that the coefficients are not significantly different from each

other in either model (p > 0.10). The coefficients in the next five rows of Model (1) indicate that

when confidence < 50%, a higher (less negative) lift is associated with stopping earlier. The pattern

in Model (2) including the control variables is similar but less pronounced. The next five rows of

coefficients in Models (1) and (2) indicate that when confidence ≥ 50%, a higher (more positive)

lift is associated with stopping later rather than earlier. This reversal in how lift moderates the
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association of confidence with stopping reflects the pattern observed in Figure 6. Table A1 in the

Online Appendix reports the full set of coefficients, including those of the control variables. It is

worth noting that the 7-day cycle and the day of the week association found in the model-free

analysis are also present after controlling for confidence, lift and sample size.

Table A1 also presents estimates of models where lift is not coded as +1/− 1 to indicate being

above/below the bin-specific median, but where lift is coded as the actual or normalized lift centered

around the bin-specific mean. The sign reversal of the interaction between confidence and lift is

robust.

4 Do experimenters p-hack?

The model-free and model-based results reported so far do not establish causality. Consequently,

they do not document p-hacking through optional stopping. To what extent do people stop the

experiment because they have reached a critical confidence level?

Even though our data are not experimental, we can achieve causal identification by exploiting

the panel structure and the fine granularity of our data within a regression discontinuity design.

Specifically, we assess whether people p-hack by investigating whether their propensity to stop their

experiments “jumps” at critical confidence levels.

We test six hypotheses. Each asks whether experimenters p-hack at one specific level. These

are 90%, 95% and 99% for positive effects, and 1%, 5% and 10%, which are the equivalent levels

for negative effects. We focus on these levels because they correspond to the levels of significance

commonly used for hypothesis testing (Leahey 2005, Brodeur et al. 2018).

Because we have access to the actual confidence values, but users of the platforms only see

values rounded to two digits, the actual critical levels we use are: .015, .055, .105, .895, .945 and

.985. For example, to assess whether people p-hack when the dashboard reports 90% confidence,

we use the .895 threshold.

In small windows around these thresholds, the confidence achieved by the experiment is prac-

tically random. The reason is that confidence, i.e., a t-statistic converted to a probability, is a

function of effect size and sample size, both of which are driven by the random process of visitor

arrival to the site.
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Table 4: Hazard Regression Results for Confidence and Lift

(1) (2)

Conf. 0.0–0.1 −3.3453∗∗∗ −4.3611∗∗∗

(0.0000) (0.0000)

Conf. 0.1–0.2 −3.4056∗∗∗ −4.3498∗∗∗

(0.0000) (0.0000)

Conf. 0.2–0.3 −3.3292∗∗∗ −4.2563∗∗∗

(0.0000) (0.0000)

Conf. 0.3–0.4 −3.4927∗∗∗ −4.4421∗∗∗

(0.0000) (0.0000)

Conf. 0.4–0.5 −3.4212∗∗∗ −4.3922∗∗∗

(0.0000) (0.0000)

Conf. 0.5–0.6 −3.5222∗∗∗ −4.4606∗∗∗

(0.0000) (0.0000)

Conf. 0.6–0.7 −3.4880∗∗∗ −4.4327∗∗∗

(0.0000) (0.0000)

Conf. 0.7–0.8 −3.3768∗∗∗ −4.3384∗∗∗

(0.0000) (0.0000)

Conf. 0.8–0.9 −3.3572∗∗∗ −4.3303∗∗∗

(0.0000) (0.0000)

Conf. 0.9–1.0 −3.3230∗∗∗ −4.3195∗∗∗

(0.0000) (0.0000)

Conf. 0.0–0.1× lift 0.1168∗ 0.0304
(0.0638) (0.6630)

Conf. 0.1–0.2× lift 0.2562∗∗∗ 0.1730∗

(0.0041) (0.0658)

Conf. 0.2–0.3× lift 0.1928∗∗ 0.1035
(0.0274) (0.2586)

Conf. 0.3–0.4× lift 0.1966∗∗ 0.1074
(0.0359) (0.2733)

Conf. 0.4–0.5× lift 0.2285∗∗∗ 0.1845∗∗

(0.0095) (0.0449)

Conf. 0.5–0.6× lift −0.1584∗ −0.1113
(0.0645) (0.2128)

Conf. 0.6–0.7× lift −0.2322∗∗∗ −0.1652∗

(0.0081) (0.0720)

Conf. 0.7–0.8× lift −0.2860∗∗∗ −0.2137∗∗

(0.0004) (0.0125)

Conf. 0.8–0.9× lift −0.2148∗∗∗ −0.1559∗∗

(0.0043) (0.0497)

Conf. 0.9–1.0× lift −0.1924∗∗∗ −0.1304∗∗

(0.0004) (0.0298)

Sample Size −0.0000
(0.2141)

Past # Experiments −0.0001
(0.2121)

Industry FE No Yes

Day of Week FE No Yes

Day FE No Yes

LL −9257.273 −8696.030

σ 0.752 1.151

N = 76,215. # of Experimenters = 916.

p-values in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.1 RDD Analysis

We follow the continuity approach in regression discontinuity designs (Imbens and Lemieux 2008).

Our approach is somewhat different from the typical RDD application because of the panel-data

and hazard setting (Bor et al. 2014).4 Consequently, we can observe the same experiment both

below and above the cutoff.

We consider each of the six critical confidence levels as a suspected discontinuity point, set the

bandwidth of the window around each critical level, and then estimate the size and significance of

the discontinuity within the window. Each data window is symmetric and its width is twice its

bandwidth. Choosing between wide and narrow windows involves a trade-off. Wider windows con-

tain more observations and hence typically yield higher power, whereas narrower windows typically

offer lower bias. One popular method to trade off bias against precision is to use the bandwidth

that minimizes the mean square error (MSE) of the discontinuity estimate (Imbens and Kalyanara-

man 2012, Calonico et al. 2014). We use this bandwidth selection method and combine it with a

triangular kernel, which results in a point estimator with optimal properties in terms of MSE.

Next we estimate two local linear regressions, one on each side of the critical level. Each includes

a linear and a quadratic term for confidence level. Following Calonico et al. (2014), Gelman and

Zelizer (2015), and Gelman and Imbens (2018), we do not consider higher order polynomials.

We estimate the discontinuity from the local linear regressions, using both conventional and bias-

corrected estimators (Calonico et al. 2014) and cluster-robust standard errors for inference. Optimal

bandwidth selection, local linear regression and inference are conducted using the rdrobust package

(Calonico et al. 2017).

Table 5 describes the inputs and outputs of the bandwidth selection procedure. The first row

reports the data ranges (expressed in confidence levels) used as raw data for each critical threshold.

They are specified such that they are non-overlapping and symmetric. The second row reports the

number of observations in the data range. The third row reports the MSE-optimal bandwidth.

Rows four and five report the number of observations to the left and the right of the critical

threshold within the MSE-optimal window.

The local linear regressions estimated using the MSE-optimal bandwidths are linear probability

4The RDD hazard analysis exploits the “looking over the shoulder” panel structure of the data and the oper-
ationalization of p-hacking in terms of stopping time. This is unlike funnel plots and p-curves used in analyses of
p-hacking in academic settings, that analyze only terminal effect sizes, standard errors and p-values.
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Table 5: Regression discontinuity windows

Cutoff .015 .055 .105 .895 .945 .985

Data Range (0, 0.03) (0.03, 0.08) (0.08, 0.13) (0.87, 0.92) (0.92, 0.97) (0.97, 1)

N 6,704 3,390 2,936 4,093 4,669 6,222

Optimal Bandwidth 0.0040 0.0109 0.0081 0.0113 0.0075 0.0057

Eff. N Left 346 732 482 970 648 618

Eff. N Right 300 775 471 924 658 751

models, which may produce biased estimates for rare events (Horrace and Oaxaca 2006). We

therefore complement these analyses with a logit hazard model, using the same bandwidths and a

uniform kernel. The logit specification for the hazard that i stops experiment j on day t is:

hijt = F (αi + βD ·Dijt + βX ·Xijt + βDX ·Dijt ·Xijt + βX2
ijt
·X2

ijt + βDX2 ·Dijt ·X2
ijt)

where F (·) is the logistic cdf, αi ∼ N (0, σ2), X is confidence minus the critical level, and D indicates

whether the confidence is above or below the critical level.5

In this model βD captures the size of the discontinuity in the log-odds of stopping at the critical

threshold. As such, a significant value of βD represents the causal effect of reaching a p-value on

stopping. For p-hacking to exist, the effect has to be positive for positive treatment effects (90%,

95%, 99%) and negative for negative treatment effects (10%, 5%, 1%). To facilitate comparison

with the linear model estimates, we report the estimated marginal effects rather than βD.

4.2 RDD Results

We test six hypotheses, each asking whether experimenters p-hack at a specific critical threshold.

Table 6 presents the results. For each threshold it reports three estimates of the jump in probability

of terminating the experiment at the threshold. First, the estimate of the local liner regression;

Second, that of the local linear regression with bias correction; Third, that of the logistic regression.

We find compelling evidence of a discontinuity only at the 90% confidence threshold (.895

cutoff). All three estimates of the discontinuity are significant (p < 0.05). The probability of

stopping jumps up by roughly 7 percentage points, from 1% to 8%.

5The RDD analysis excludes observations for experiments terminated before reaching the confidence window on
any day. Consequently, effect sizes are computed only for the population of experiments falling in the windows, but
the estimates do not suffer from truncation bias (Van den Bulte and Iyengar 2011).
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There is some weak evidence of a discontinuity at the 95% confidence threshold (.945 cutoff),

but with only one of the three estimates being significant (p < 0.05), it is far from compelling.

There is no evidence of discontinuities at any of the four other levels. Hence we reject the null

hypothesis of no regression discontinuity only for the 90% confidence threshold.

In summary, people p-hack only for positive effects and only at the most liberal level of 90%

confidence. Assuming that the baseline is the status quo, such that a positive lift is a success

and a negative lift is a failure, experimenters “pull the p-hacking trigger” when facing good news

rather than bad news. Importantly, the 90% confidence level at which they p-hack is not the level

highlighted by the platform which calls a variation a winner when the confidence level reaches 95%,

and a loser when the confidence level reaches 5%. Consequently the evidence of p-hacking cannot

be attributed to visual salience or to the declaration of a winner or loser by the platform.6

Table 6: Regression discontinuity estimates

Cutoff .105 Cutoff .895
Effect p-value 95% C.I. Effect p-value 95% C.I.

Linear −0.0129 0.6160 [−0.0635, 0.0376] 0.0615∗∗ 0.0415 [0.0024, 0.1205]

Linear, Bias Corr. −0.0193 0.4810 [−0.0731, 0.0345] 0.0714∗∗ 0.0297 [0.0070, 0.1357]

Logistic, R.E. −0.0116 0.9988 [−15.7545, 15.7313] 0.0777∗∗ 0.0300 [0.0075, 0.1478]

Cutoff .055 Cutoff .945
Effect p-value 95% C.I. Effect p-value 95% C.I.

Linear 0.0109 0.6395 [−0.0347, 0.0565] 0.0643∗ 0.0538 [−0.0010, 0.1297]

Linear, Bias Corr. 0.0073 0.7779 [−0.0432, 0.0578] 0.0750∗∗ 0.0431 [0.0023, 0.1476]

Logistic, R.E. 0.0118 0.6418 [−0.0378, 0.0613] 0.0488 0.1783 [−0.0222, 0.1198]

Cutoff .015 Cutoff .985
Effect p-value 95% C.I. Effect p-value 95% C.I.

Linear 0.0027 0.8487 [−0.0247, 0.0301] −0.0407 0.1985 [−0.1028, 0.0214]

Linear, Bias Corr. 0.0035 0.8209 [−0.0266, 0.0336] −0.0503 0.1612 [−0.1207, 0.0201]

Logistic, R.E. −0.0072 0.5477 [−0.0306, 0.0162] −0.0246 0.9918 [−4.7209, 4.6717]

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.3 RDD Validation Checks

Several checks validate the presence of a discontinuity at the 90% threshold.

First, we conduct placebo tests investigating the presence of a discontinuity at the 89% and

6Users were able to instruct the platform to declare winners and losers at 90%/10%, but this override of the
default paired with a jump in the probability of stopping at 90% would constitute another indication of p-hacking.
Moreover, we do not find evidence of p-hacking at 10% which makes it even less credible that mere visual salience in
experiments with this override is the mechanism driving the discontinuity at 90%.
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91% confidence levels. We repeat the bandwidth selection and discontinuity estimation procedures

outlined above, but now for cutoffs at .885 and .905. We find no evidence of any discontinuities at

either level (Table 7).

Table 7: Placebo tests of regression discontinuities at .885 and .905 compared to .895
(reported to the user as 89%, 91% and 90%)

Cutoff .885

Effect p-value 95% C.I.

Linear −0.0169 0.5467 [−0.0720, 0.0381]

Linear, Bias Corr. −0.0252 0.4263 [−0.0874, 0.0369]

Logistic, R.E. 0.0000 0.9982 [−0.0375, 0.0376]

Cutoff .905

Effect p-value 95% C.I.

Linear −0.0150 0.5881 [−0.0692, 0.0392]

Linear, Bias Corr. −0.0199 0.5255 [−0.0813, 0.0415]

Logistic, R.E. −0.0129 0.6691 [−0.0723, 0.0464]

Cutoff .895

Effect p-value 95% C.I.

Linear 0.0615∗∗ 0.0415 [0.0024, 0.1205]

Linear, Bias Corr. 0.0714∗∗ 0.0297 [0.0070, 0.1357]

Logistic, R.E. 0.0777∗∗ 0.0300 [0.0075, 0.1478]

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Next, as recommended by Gelman and Zelizer (2015), we present a discontinuity plot showing

both the data and the fitted model (Figure 7). We organize the data in 20 bins of confidence and

then compute the empirical hazard rate within each bin, i.e., the fraction of experiment-days on

which an experiment is stopped. Circles indicate the empirical hazard. A circle with zero value

indicates no stops within that bin. Lines indicate the predicted value of the local linear regression

models. The presence of the discontinuity is not an artefact of the quadratic local linear regression,

but is supported by the raw data as indicated by the circles just to the left and just to the right of

.895.

Third, we check for the absence of discontinuities of four other variables associated with stopping

behavior (Section 3): number of days the experiment has been running, number of visitors (sample

size), whether it was a weekend or not, and the lift. Figure A1 presents histograms of these

covariates binned by the level of confidence. There are no pronounced jumps at the .895 critical
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Figure 7: Regression discontinuity plot of stopping at .895 (Shown to user as 90%)
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level or any trends throughout the window. This is consistent with the key assumption for causal

identification that the continuous confidence variable behaves randomly within the narrow window

around the critical level. Table A2 reports RDD analyses for those four variables, and shows no

evidence of discontinuity for any of these four variables at the .895 confidence threshold.

4.4 What fraction of experimenters p-hack at 90% confidence?

The discontinuity documented so far pertains to the average experiment-day within the specified

windows. Another question of interest is what fraction of experimenters p-hack once their experi-

ments have reached the window. We address this question for the 90% critical level because that

is the only level where we find compelling evidence of p-hacking (Table 6).

We estimate a latent class logit hazard model where experimenters either p-hack or not. A

p-hacker is someone whose stopping behavior is affected by reaching 90% confidence, whereas a

non p-hacker’s stopping behavior is not. We allow the stopping behavior of p-hackers to exhibit

discontinuities and specify the logit-hazard of a p-hacker vPijt as:

vPijt = β0 + βX ·Xijt + βX2 ·X2
ijt + βD ·Dijt + βDX ·Dijt ·Xijt + βDX2 ·Dijt ·X2

ijt
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For non p-hackers, we do not allow discontinuities and impose βD = 0, βDX = 0 and βDX2 = 0:

vNPijt = βNP0 + βNPX ·Xijt + βNPX2 ·X2
ijt

We use the same bandwidth as in the RDD analysis. This results in 1, 894 experiment-days

from 379 of the original 916 experimenters.

The likelihood of the data, maximized using expectation-maximization (EM), is:

n∏
i=1

Ji∏
j=1

Tij∏
t=1

(
wF (vPijt)

yijt(1− F (vPijt))
(1−yijt) + (1− w)F (vNPijt )yijt(1− F (vNPijt ))(1−yijt)

)
(1)

where i indicates the experimenter, j indicates the experiment, t indicates the experiment-day, n

is the number of experimenters, yijt indicates whether the experiment was stopped, and w is the

proportion of p-hackers.

We estimate the discontinuity βD to be 1.85 [95% CI: 0.19, 3.51], and the fraction of p-hackers w

to be 72.65% [95% CI: 53.21%, 86.13%].7 Hence, when experiments are within the 89.5%± 1.13%

confidence window, roughly three quarters of the experimenters p-hack. The estimates of the

intercept and βD correspond to a jump in the probability of stopping from 0.0222 to 0.1259 which

amounts to a marginal effect of 0.1038 for p-hackers. Multiplying this by the fraction of p-hackers

(72.65%) reproduces the logit model average marginal effect from Table 6, 0.0777.

We also estimate a variant of the model where we asses whether the experience or the industry of

the experimenter are associated with being a p-hacker. We find no statistically significant patterns

(Table A3 in the Online Appendix).

5 What fraction of significant results are false positives?

p-Hackers reject the null hypothesis too often. Specifically, when people p-hack at 90%, they reject

true null effects more than 10% of the time. In terms of Table 8, given m0 cases with a true null

effect, p-hackers inflate the number of cases that is called significant, F , and deflate the number

called not-significant, m0 − F . By inflating F , p-hackers also end up inflating the fraction of

significant results that are truly null. Inflating the false positive rate FPR = F
m0

also inflates the

7Table A3 reports the values for all coefficients.
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false discovery rate FDR = F
S . Consequently, experimenters and their audience end up believing

that a greater number of treatments or interventions are effective than is warranted.

Table 8: False Positives and False Discoveries

Called Significant (Discovery) Called not Significant Total

Null is True F m0 − F m0

Alternative is True T m1 − T m1

Total S m− S m

In this Section we quantify by how much p-hacking inflates the FDR in the experiments we

study. We start by estimating the fraction of true nulls π0 = m0
m . Although the treatment effect on

continuous conversion rates is unlikely to be exactly zero, allowing for the existence of true nulls

(π0 > 0) is consistent with the notion that null effects include negligibly small effects, centered at 0,

that require extremely large samples to detect (Hodges and Lehmann 1954, Berger and Delampady

1987, Masson 2011).

We estimate π0 and the expected FDR, E
(
F
S

)
, using the method developed by Storey (2002)

and Storey and Tibshirani (2003) who show that when the number of hypotheses m is large,

E
(
F
S

)
≈ E(F )

E(S) . E(S) is the expected number of rejected hypotheses, which is estimated simply as

the number of significant p-values on the last day of the experiment. E(F ) is estimated as m · p ·π0

where m is the number of experiments in the data, p is the 2-sided nominal significance level, and

π0 is estimated using the Storey and Tibshirani (2003) method.8 We perform this analysis on

2,053 experiments with at least two days per experiment, because a subsequent analysis requires

observations on both the last and the preceding day, and hence precludes using experiments lasting

only one day. We use bootstrapping with 3,000 samples to compute bias-corrected and accelerated

(BCa) confidence intervals for the estimated FDRs.

Table 9 presents the estimates of π0 and the implied FDRs for the 90%/10%, 95%/5% and

99%/1% discovery thresholds. There are two main insights. First, about 73% of the experiments

are estimated to have true null effects. In other words, when performing A/B tests about 3/4 of

experiments should not have been expected to yield an improvement over the baseline. Second,

38% of the results significant at 90%/10% are true nulls, as are 27% of those significant at 95%/5%,

and 11% of those significant at 99%/1%.

8When applying the method of Storey and Tibshirani (2003), we account for the fact that their formulas assume
2-sided tests, whereas the p-values computed in our experiments are for 1-sided tests.
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Table 9: Fraction of True Null Effects and FDRs

Estimate 95% C.I.

π0 72.67% [62.83%, 84.12%]

FDR 90% / 10% 38.07% [32.27%, 45.00%]

FDR 95% / 5% 26.89% [22.46%, 31.60%]

FDR 99% / 1% 10.52% [8.86%, 12.91%]

Having estimated the FDRs in the experiments, we now proceed with quantifying the magnitude

by which p-hacking inflates those FDRs. To perform this analysis, we compare the actual FDR,

i.e., based on p-values on the last day, to what the FDR would have been if the experiment had

ended the day before. That day before termination serves as the counterfactual, since it is the

nearest-neighbor of the day of termination, but for which we know there was no p-value based

termination. We compute that counterfactual FDR in two ways: (1) based on the p-values the day

before the experiment was stopped (FDRCF1 ), and (2) using the effect size from the day before

the experiment was stopped, but the sample size from the last day (FDRCF2 ). Because p-values

are random around the stopping threshold, both counterfactual FDRs reflect the FDR without

p-hacking. However, comparing the actual FDR to FDRCF1 does not control for the larger sample

size observed on the last day which expectedly will result in a greater test statistic and hence

deflate the estimated effect of p-hacking. Using the second countefactual FDRCF2 corrects for this

difference in sample size.

To estimate the causal impact of p-hacking at 90%/10% confidence on the FDR, we exploit

the fact that false discoveries come from a mixture of p-hackers (P) and non p-hackers (NP). The

actual FDR on the last day equals:

FDR = wFDRP + (1− w)FDRNP (2)

where w is the fraction of p-hackers which we estimated to be 72.65% (Section 4.4).9 The FDR if

9When using w = 72.65%, we assume that the fraction of p-hackers at 90%/10% in the full sample of 916
experimenters is the same as the fraction of p-hackers among the 379 experimenters with experiments in the 89.5%±
1.13% confidence window. Since we did not find evidence of p-hacking at 10%, this assumption likely leads to
underestimating the quantity in Equation (4) and the impact of p-hacking on the FDR of p-hackers.
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none of the experimenters had p-hacked, FDRNPi , is measured using the counterfactuals:

FDRNPi = FDRCFi where i = 1, 2 (3)

Consequently, the estimated impact of p-hacking on the FDR of p-hackers, similar to an estimate

of the average treatment effect on the treated (ATT), equals:

∆FDRi = FDRP − FDRNPi =
FDR− FDRCFi

w
(4)

Table 10 presents the actual and counterfactual FDR estimates, and the increase in FDR due to

p-hacking using the estimate ŵ = 72.65%. Comparing the FDR and FDRCF2 values, we conclude

that p-hacking increased the average FDR among all experiments from 33% to 38% at the 90%/10%

discovery threshold. Comparing FDRCF2 before and after adding ∆FDR2, we conclude that p-

hacking increased the average FDR among p-hacked experiments from 33% to 40%.

Table 10: The Impact of p-Hacking on the False Discovery Rate

Discovery Threshold FDR FDRCF
1 FDRCF

2 ∆FDR1 ∆FDR2

90%/10% 38.07% 35.92% 32.77% 2.96% 7.30%

6 What is the cost of inflating the FDR?

Improper optional stopping increased the average FDR among p-hacked experiments from 33% to

40%. This generates two possible costs for a company. The first is a cost of commission. Facing a

false discovery, the company will needlessly switch to a new treatment and incur a switching cost.

For many experiments this cost may be low, like changing the background color of a webpage. But

for some it may be quite substantial, like building and rolling out the infrastructure to enable a

new shipping policy.

The second cost of a false discovery is a cost of omission. Erroneously believing to have found

an improvement, the company stops further exploring for better treatments. Consequently the

company will delay (or completely forego) finding and rolling out a more effective policy. Our data

allow us to quantify this cost of omission. Specifically, we quantify the expected improvement in

effectiveness if one more experiment were run.
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Let θ be the true effect size of an experiment, i.e., the difference in conversion rates between

the baseline and the variation, and let θ̂ be its observed estimate. Assuming that the company

switches away from the baseline only if the observed estimate is positive, the expected improvement

in effectiveness if one more experiment were run is:

Pr(θ̂ > 0) · E[θ|θ̂ > 0] + [1− Pr(θ̂ > 0)] · 0 (5)

The assumptions that the company forgoes only a single experiment and that it would implement

any treatment with a positive observed estimate regardless of its statistical significance, make

Equation 5 a conservative estimate.

Next, we assume that the true effect size θ is zero with probability π0 and that θ ∼ N (µ, σ2)

otherwise. Consistent with the central limit theorem, θ̂|θ ∼ N (θ, s2). As shown in Online Appendix

B:

E[θ|θ̂ > 0] = (1− π0)
µΦ
(

µ√
s2+σ2

)
+ σ2
√
s2+σ2

φ
(

µ√
s2+σ2

)
π0
2 + (1− π0)Φ

(
µ√

s2+σ2

) (6)

When π0 = 0, Equation 6 reduces to the conditional expected value in the standard Heckman

selection model (Online Appendix B).

The parameters entering Equation 6 can be estimated conveniently using a latent class model

of the observed estimates where θ̂ ∼ N (0, s2) with probability π0 and θ̂ ∼ N (µ, s2 + σ2) with

probability 1 − π0. We estimate this model using the effect sizes observed on the day before

termination as they are unaffected by p-hacking. As noted earlier we have 2,053 experiments

meeting that condition.

The estimates are reported in Table 11. Even though this analysis uses effect sizes rather than

p-values as data, the estimate of π0 is strikingly close to that obtained from the FDR analysis using

p-values (76.7% vs. 72.7%). This similarity alleviates a possible concern that the FDR procedure

used in Section 5 over-estimates the true null rate because the original experiments are under-

powered and ineffective at detecting moderately small non-null effects. Also, the estimate of the

measurement error s2, which is very small, compared to both the mean and the variance of non-null

effects (Table 11), suggests sufficient power. The fact that µ̂(1− π̂0) is close to the observed sample

mean of θ̂ (0.0036 vs. 0.0043) adds further credibility to the estimates.
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Entering the values from Table 11 into Equation (6) provides an estimate of E[θ|θ̂ > 0] = 0.0232.

Since 55.9% of the experiments have θ̂ > 0, Equation 5 implies that the expected cost of omission

is an effect size of 0.0130. This corresponds to the 58th percentile of the positive observed effect

sizes and the 77th percentile of all observed effect sizes (θ̂).

Table 11: Parameters of the Distribution of Estimated Effect Sizes

Paramater Estimate 95% C.I.

π0 0.7665∗∗∗ [0.7384, 0.7925]
µ 0.0155∗∗∗ [0.0057, 0.0253]
s2 0.0001∗∗∗ [0.0001, 0.0002]
s2 + σ2 0.0117∗∗∗ [0.0099, 0.0134]

N=2,053. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

To express this cost of omission in terms of lift, which is a more commonly used outcome metric

in A/B testing, we denote the conversion rate of the baseline as η and express the expected increase

in lift as:

Pr(θ̂ > 0) · E
[
lift|θ̂ > 0

]
= Pr(θ̂ > 0) · E

[
θ

η
|θ̂ > 0

]
≈ Pr(θ̂ > 0) · E[θ|θ̂ > 0]

E[η|θ̂ > 0]
(7)

Using the previously calculated value for Pr(θ̂ > 0) · E[θ|θ̂ > 0], and estimating E[η|θ̂ > 0] as the

mean of the conditional empirical distribution (0.665), we estimate the expected cost of omission

in terms of lift at 1.95%. This corresponds to the 58th percentile of the positive observed lifts and

the 76th percentile of all observed lifts. Hence the expected opportunity cost of omission following

a false discovery is a fairly large forgone gain in lift.

7 Conclusion

We investigate to what extent online A/B experimenters p-hack by stopping their experiments

based on the p-value of the treatment effect, and how much this behavior negatively affects the

diagnosticity and business value of the experiments. We use data on 2,101 experiments and a

regression discontinuity design to detect improper optional stopping. Though our setting is a

specific A/B testing platform, similar behaviors to those we document likely exist in other types of

business experiments allowing for optional stopping. Examples include in-house email experiments,

in-house pricing experiments by retailers, and online advertising experiments.
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We find evidence of p-hacking, but only for positive effects and only at the 90% confidence

threshold. About 73% of experimenters p-hack when their experiments are within the 89.5%±1.13%

confidence window. Notably, these findings come from a platform that declared winners at 95%,

but not 90% confidence. Hence, our evidence of p-hacking cannot be attributed to the visually

salient declaration of the platform.

We also investigate the consequences of p-hacking on the false discovery rate (FDR), and forgone

improvements in effectiveness. We find that in roughly 73% – 77% of the experiments the effect is

truly null, and that the FDR is 38% at the 90%/10% critical levels, 27% at the 95%/5% critical

levels, and 11% at the 99%/1% critical levels. As points of reference, the true null rate in academic

psychology is estimated to be about 90% (V. Johnson et al. 2017), and FDRs in medical research are

believed to range between 20% and 50% (Benjamini and Hechtlinger 2013). Most importantly, we

find that p-hacking increased the average 90%/10% FDR among all experiments from 33% to 38%,

and the average FDR among p-hacked experiments from 33% to 40%. Assuming that following

such a false discovery experimenters stop searching for more effective treatments, we estimate the

expected cost of a false discovery as a forgone gain of 1.95% in lift. This corresponds to the 76th

percentile of observed lifts.

Experimenters in our data seem to deviate from profit maximization. If the experiments are

run to maximize learning about effect sizes while ignoring short term profits, we should not observe

p-hacking that inflates FDRs. In contrast, if experiments are run to maximize short-term profits,

we should not observe experiments with larger effect sizes being terminated later, as this prevents

the most effective intervention from being rolled out quickly (Azevedo et al. 2018, Feit and Berman

2018).

Our study adds to a small body of previous research documenting that the average effect of

online interventions is small. Beyond documenting that effects are typically small (a difference of

0.5% in conversion or a lift of 11.2%), we estimate that 73% of the effects in our sample are truly

null. The latter supports earlier suspicions that some of the frustrations with A/B testing may

stem from the ineffectiveness of the interventions being tested rather than from inadequacies of the

method itself (Fung 2014).

A unique characteristic of our data is its panel structure tracking effect sizes and p-values every

day throughout the experiment. This offers three benefits. First, when combined with a regression
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discontinuity design, this data structure provides stronger causal identification than using only

terminal p-values. Second, the panel structure allows us to estimate a mixture model and quantify

the fraction of experimenters engaging in p-hacking. Third, our data allows us to use the statistics

on the day before the experiment was terminated to compute the counterfactual false discovery rate

(FDR) without p-hacking and to compare it to the FDR on the day of termination. The latter, in

turn, allows us to quantify the cost in forgone learning for the business.

An important limitation of the data is that experimenters may assess effects on multiple di-

mensions of which we track only engagement. To the extent that experimenters’ stopping behavior

is based on the p-value on dimensions other than engagement, our findings likely under-estimate

the prevalence and magnitude of p-hacking. This may account in part for the lack of evidence of

p-hacking at confidence levels other than 90%, but cannot explain the evidence of p-hacking at 90%

as being an artefact.

Our findings add urgency to earlier calls for research on experimenters’ intentions and decision

rules when running and analyzing experiments (e.g., Greenland 2017, Leek et al. 2017). As many

have pointed out, the solution to p-hacking is very unlikely to lie in more and better statistical

training. Rather, we need to have a better understanding of how and why people actually behave

before we try to develop effective solutions to the problem. For instance, one notable but unexpected

finding is that experimenters stop their experiments earlier if they find small positive rather than

large positive effects. This might stem from a desire to safeguard small but fortuitous positive

results by pulling the plug on the experiment before the effect regresses to the mean. Alternatively,

it may stem from the desire to move to the next experiment rather than wasting more time testing

a small effect. As a third possibility, the pattern may stem from the concern that large positive

effects are too big to be true and the expectation that more credible estimates will follow if the

experiment is run longer.

Agency considerations in commercial A/B testing are another facet of p-hacking that has re-

ceived little attention in previous discussions. A/B testers often act as agents, either as employees

or as third-party service providers. Consequently they may prefer to show significant results, es-

pecially if positive. Future studies in which the agency relationship of the experimenter is known

would be able to provide empirical insights on this issue.

There are at least four strategies to address improper optional stopping, and the resulting
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high-FDR problem in A/B testing. The first is to tighten the significance threshold, e.g., from

0.05 to 0.005 (Benjamin et al. 2018). Our finding that experimenters did not adhere to the p-

value recommended by the platform suggests that this strategy need not be effective. By making

significance harder to achieve, “moving the significance goal posts” may even increase the propensity

to p-hack. The second strategy, implemented by Optimizely several months after the end of our

data window, is to use proper sequential testing and FDR-control procedures, resulting in corrected

p-values (Johari et al. 2017). This strategy is not meant to deter peeking at p-values repeatedly or

terminating experiments based on the p-value, but is meant to neutralize the harmful effect of such

behavior on the FDR. The third strategy is to use Bayesian hypothesis testing robust to optional

stopping (Wagenmakers 2007, Deng et al. 2016). The fourth strategy is to forego null hypothesis

testing altogether and to approach the business decision that A/B testing is meant to inform as a

decision theoretic problem (Feit and Berman 2018), e.g., using multi-armed bandits (Schwartz et al.

2017). We hope that our findings will provide further impetus to develop strategies accommodating

problematic experimenter behaviors, asses the effectiveness of these strategies, and help businesses

extract greater value from their experiments.
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Online Appendix

A Supplemental Analyses

Table A1: Hazard Regression Results for Different Codings of Lift

(1) (2) (3) (4) (5) (6)

+1/− 1 Actual

Centered

Actual

Normalized

+1/− 1

+ Controls

Actual

Centered

+ Controls

Actual

Normalized

+ Controls

Confidence

0–0.1 −3.3453∗∗∗ −3.4014∗∗∗ −3.4014∗∗∗ −4.3611∗∗∗ −4.1970∗∗∗ −4.1970∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.1–0.2 −3.4056∗∗∗ −3.5057∗∗∗ −3.5057∗∗∗ −4.3498∗∗∗ −4.2338∗∗∗ −4.2338∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.2–0.3 −3.3292∗∗∗ −3.4324∗∗∗ −3.4324∗∗∗ −4.2563∗∗∗ −4.1437∗∗∗ −4.1437∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.3–0.4 −3.4927∗∗∗ −3.6199∗∗∗ −3.6199∗∗∗ −4.4421∗∗∗ −4.3541∗∗∗ −4.3541∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.4–0.5 −3.4212∗∗∗ −3.4867∗∗∗ −3.4867∗∗∗ −4.3922∗∗∗ −4.2364∗∗∗ −4.2364∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.5–0.6 −3.5222∗∗∗ −3.6726∗∗∗ −3.6726∗∗∗ −4.4606∗∗∗ −4.3916∗∗∗ −4.3916∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.6–0.7 −3.4880∗∗∗ −3.6597∗∗∗ −3.6597∗∗∗ −4.4327∗∗∗ −4.3815∗∗∗ −4.3815∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.7–0.8 −3.3768∗∗∗ −3.5780∗∗∗ −3.5780∗∗∗ −4.3384∗∗∗ −4.3204∗∗∗ −4.3204∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.8–0.9 −3.3572∗∗∗ −3.6506∗∗∗ −3.6506∗∗∗ −4.3303∗∗∗ −4.3947∗∗∗ −4.3947∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0.9–1 −3.3230∗∗∗ −3.3365∗∗∗ −3.3365∗∗∗ −4.3195∗∗∗ −4.0964∗∗∗ −4.0964∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0–0.1 × lift 0.1168∗ 2.7366∗∗∗ 0.4454∗∗∗ 0.0304 2.1386∗∗∗ 0.3481∗∗∗

(0.0638) (0.0000) (0.0000) (0.6630) (0.0016) (0.0016)

0.1–0.2 × lift 0.2562∗∗∗ 9.1486∗∗∗ 0.6601∗∗∗ 0.1730∗ 7.7388∗∗∗ 0.5583∗∗∗

(0.0041) (0.0001) (0.0001) (0.0658) (0.0013) (0.0013)

0.2–0.3 × lift 0.1928∗∗ 13.1852∗∗∗ 0.6855∗∗∗ 0.1035 10.6047∗∗∗ 0.5514∗∗∗

(0.0274) (0.0001) (0.0001) (0.2586) (0.0017) (0.0017)

0.3–0.4 × lift 0.1966∗∗ 22.5850∗∗∗ 0.7297∗∗∗ 0.1074 19.2008∗∗∗ 0.6203∗∗∗

(0.0359) (0.0002) (0.0002) (0.2733) (0.0020) (0.0020)

0.4–0.5 × lift 0.2285∗∗∗ 37.6489∗∗∗ 0.5397∗∗∗ 0.1845∗∗ 31.8015∗∗ 0.4559∗∗

(0.0095) (0.0031) (0.0031) (0.0449) (0.0126) (0.0126)

0.5–0.6 × lift −0.1584∗ −66.7175∗∗∗ −0.8723∗∗∗ −0.1113 −62.8951∗∗∗ −0.8223∗∗∗

(0.0645) (0.0002) (0.0002) (0.2128) (0.0007) (0.0007)

0.6–0.7 × lift −0.2322∗∗∗ −25.1922∗∗∗ −1.0487∗∗∗ −0.1652∗ −22.2407∗∗∗ −0.9258∗∗∗

(0.0081) (0.0000) (0.0000) (0.0720) (0.0003) (0.0003)

0.7–0.8 × lift −0.2860∗∗∗ −16.0022∗∗∗ −1.0622∗∗∗ −0.2137∗∗ −14.5900∗∗∗ −0.9685∗∗∗
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(0.0004) (0.0000) (0.0000) (0.0125) (0.0000) (0.0000)

0.8–0.9 × lift −0.2148∗∗∗ −9.1140∗∗∗ −3.3826∗∗∗ −0.1559∗∗ −8.2438∗∗∗ −3.0596∗∗∗

(0.0043) (0.0000) (0.0000) (0.0497) (0.0000) (0.0000)

0.9–1 × lift −0.1924∗∗∗ −0.0206 −0.1770 −0.1304∗∗ −0.0056 −0.0477
(0.0004) (0.1927) (0.1927) (0.0298) (0.7273) (0.7273)

Sample Size −0.0000 −0.0000 −0.0000
(0.2141) (0.2731) (0.2731)

Past # Experiments −0.0001 −0.0002 −0.0002
(0.2121) (0.1729) (0.1729)

Industry

Financial Services 0.0541 0.0220 0.0220
(0.8595) (0.9412) (0.9412)

Gaming −2.5114∗ −2.4928∗ −2.4928∗

(0.0555) (0.0504) (0.0504)

High Tech 0.0755 0.0834 0.0834
(0.6440) (0.6013) (0.6013)

Insurance −0.5015 −0.5500 −0.5500
(0.4155) (0.3622) (0.3622)

Media 0.5616∗∗∗ 0.5282∗∗∗ 0.5282∗∗∗

(0.0014) (0.0020) (0.0020)

Mobile Only −0.4200 −0.5082 −0.5082
(0.7922) (0.7448) (0.7448)

Non-Profit 0.7611∗ 0.6847 0.6847
(0.0926) (0.1203) (0.1203)

Other 0.0000 0.0000 0.0000
(.) (.) (.)

Professional Services −0.3707∗ −0.3071∗ −0.3071∗

(0.0512) (0.0985) (0.0985)

Retail 0.0941 0.0684 0.0684
(0.5382) (0.6459) (0.6459)

Schools & Education −0.1492 −0.1441 −0.1441
(0.6036) (0.6082) (0.6082)

Telecommunications 0.9143∗∗ 0.8583∗∗ 0.8583∗∗

(0.0296) (0.0366) (0.0366)

Travel & Entertainment 0.1159 0.0920 0.0920
(0.5914) (0.6622) (0.6622)

Day of the Week

Sunday −2.2420∗∗∗ −2.2414∗∗∗ −2.2414∗∗∗

(0.0000) (0.0000) (0.0000)

Monday 0.0000 0.0000 0.0000
(.) (.) (.)

Tuesday −0.0875 −0.0927 −0.0927
(0.2230) (0.1967) (0.1967)

Wednesday −0.1755∗∗ −0.1779∗∗ −0.1779∗∗

(0.0184) (0.0169) (0.0169)

Thursday −0.0254 −0.0303 −0.0303
(0.7282) (0.6787) (0.6787)
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Friday −0.3014∗∗∗ −0.3059∗∗∗ −0.3059∗∗∗

(0.0001) (0.0001) (0.0001)

Saturday −2.1629∗∗∗ −2.1700∗∗∗ −2.1700∗∗∗

(0.0000) (0.0000) (0.0000)

Day in Experiment

1 0.0000 0.0000 0.0000
(.) (.) (.)

2 0.6136∗∗∗ 0.5079∗∗ 0.5079∗∗

(0.0020) (0.0109) (0.0109)

3 0.9246∗∗∗ 0.8019∗∗∗ 0.8019∗∗∗

(0.0000) (0.0001) (0.0001)

4 0.4707∗∗ 0.3357 0.3357
(0.0374) (0.1380) (0.1380)

5 0.7077∗∗∗ 0.5561∗∗ 0.5561∗∗

(0.0012) (0.0110) (0.0110)

6 1.0084∗∗∗ 0.8491∗∗∗ 0.8491∗∗∗

(0.0000) (0.0000) (0.0000)

7 1.1306∗∗∗ 0.9590∗∗∗ 0.9590∗∗∗

(0.0000) (0.0000) (0.0000)

8 1.3717∗∗∗ 1.1909∗∗∗ 1.1909∗∗∗

(0.0000) (0.0000) (0.0000)

9 1.2931∗∗∗ 1.1106∗∗∗ 1.1106∗∗∗

(0.0000) (0.0000) (0.0000)

10 1.3157∗∗∗ 1.1279∗∗∗ 1.1279∗∗∗

(0.0000) (0.0000) (0.0000)

11 1.0637∗∗∗ 0.8688∗∗∗ 0.8688∗∗∗

(0.0000) (0.0002) (0.0002)

12 1.4004∗∗∗ 1.1998∗∗∗ 1.1998∗∗∗

(0.0000) (0.0000) (0.0000)

13 1.2878∗∗∗ 1.0860∗∗∗ 1.0860∗∗∗

(0.0000) (0.0000) (0.0000)

14 1.6624∗∗∗ 1.4685∗∗∗ 1.4685∗∗∗

(0.0000) (0.0000) (0.0000)

15 1.6283∗∗∗ 1.4265∗∗∗ 1.4265∗∗∗

(0.0000) (0.0000) (0.0000)

16 1.1583∗∗∗ 0.9614∗∗∗ 0.9614∗∗∗

(0.0000) (0.0001) (0.0001)

17 1.2919∗∗∗ 1.0937∗∗∗ 1.0937∗∗∗

(0.0000) (0.0000) (0.0000)

18 1.3933∗∗∗ 1.1772∗∗∗ 1.1772∗∗∗

(0.0000) (0.0000) (0.0000)

19 1.5351∗∗∗ 1.3162∗∗∗ 1.3162∗∗∗

(0.0000) (0.0000) (0.0000)

20 1.7254∗∗∗ 1.5099∗∗∗ 1.5099∗∗∗

(0.0000) (0.0000) (0.0000)

21 1.5189∗∗∗ 1.2934∗∗∗ 1.2934∗∗∗

(0.0000) (0.0000) (0.0000)

22 1.7661∗∗∗ 1.5324∗∗∗ 1.5324∗∗∗
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(0.0000) (0.0000) (0.0000)

23 0.9285∗∗∗ 0.6927∗∗ 0.6927∗∗

(0.0020) (0.0210) (0.0210)

24 1.0638∗∗∗ 0.8330∗∗∗ 0.8330∗∗∗

(0.0004) (0.0057) (0.0057)

25 2.1345∗∗∗ 1.9100∗∗∗ 1.9100∗∗∗

(0.0000) (0.0000) (0.0000)

26 1.9545∗∗∗ 1.7190∗∗∗ 1.7190∗∗∗

(0.0000) (0.0000) (0.0000)

27 1.5070∗∗∗ 1.2753∗∗∗ 1.2753∗∗∗

(0.0000) (0.0000) (0.0000)

28 1.7804∗∗∗ 1.5480∗∗∗ 1.5480∗∗∗

(0.0000) (0.0000) (0.0000)

29 1.0640∗∗∗ 0.8276∗∗∗ 0.8276∗∗∗

(0.0007) (0.0085) (0.0085)

30 1.2986∗∗∗ 1.0671∗∗∗ 1.0671∗∗∗

(0.0000) (0.0004) (0.0004)

31 1.4782∗∗∗ 1.2501∗∗∗ 1.2501∗∗∗

(0.0000) (0.0000) (0.0000)

32 1.8248∗∗∗ 1.5948∗∗∗ 1.5948∗∗∗

(0.0000) (0.0000) (0.0000)

33 0.9272∗∗ 0.6887∗ 0.6887∗

(0.0205) (0.0851) (0.0851)

34 1.7255∗∗∗ 1.4774∗∗∗ 1.4774∗∗∗

(0.0000) (0.0000) (0.0000)

35 1.6361∗∗∗ 1.3912∗∗∗ 1.3912∗∗∗

(0.0000) (0.0000) (0.0000)

36–40 1.6210∗∗∗ 1.3717∗∗∗ 1.3717∗∗∗

(0.0000) (0.0000) (0.0000)

41–45 1.5336∗∗∗ 1.2805∗∗∗ 1.2805∗∗∗

(0.0000) (0.0000) (0.0000)

46–50 1.5804∗∗∗ 1.3239∗∗∗ 1.3239∗∗∗

(0.0000) (0.0000) (0.0000)

51–55 1.8873∗∗∗ 1.6214∗∗∗ 1.6214∗∗∗

(0.0000) (0.0000) (0.0000)

56–60 1.6472∗∗∗ 1.3755∗∗∗ 1.3755∗∗∗

(0.0000) (0.0000) (0.0000)

61–65 1.6289∗∗∗ 1.3557∗∗∗ 1.3557∗∗∗

(0.0000) (0.0000) (0.0000)

66–70 1.6408∗∗∗ 1.3684∗∗∗ 1.3684∗∗∗

(0.0000) (0.0000) (0.0000)

71–75 2.2798∗∗∗ 1.9953∗∗∗ 1.9953∗∗∗

(0.0000) (0.0000) (0.0000)

76–80 1.2333∗∗∗ 0.9592∗∗∗ 0.9592∗∗∗

(0.0003) (0.0048) (0.0048)

81–85 2.3425∗∗∗ 2.0512∗∗∗ 2.0512∗∗∗

(0.0000) (0.0000) (0.0000)

86–90 1.0673∗∗∗ 0.7806∗ 0.7806∗

(0.0088) (0.0553) (0.0553)
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91–95 2.2794∗∗∗ 1.9934∗∗∗ 1.9934∗∗∗

(0.0000) (0.0000) (0.0000)

96–100 1.9053∗∗∗ 1.6047∗∗∗ 1.6047∗∗∗

(0.0000) (0.0000) (0.0000)

101–150 2.3760∗∗∗ 2.0508∗∗∗ 2.0508∗∗∗

(0.0000) (0.0000) (0.0000)

151–200 3.0743∗∗∗ 2.7238∗∗∗ 2.7238∗∗∗

(0.0000) (0.0000) (0.0000)

201–250 2.5230∗∗∗ 2.1538∗∗∗ 2.1538∗∗∗

(0.0000) (0.0000) (0.0000)

251+ 2.6809∗∗∗ 2.3316∗∗∗ 2.3316∗∗∗

(0.0000) (0.0000) (0.0000)

LL −9257.273 −9192.734 −9192.734 −8696.030 −8653.377 −8653.377
σ 0.752 0.765 0.765 1.151 1.110 1.110

# Experiment-Days = 76,215; # Experiments = 2,101; # Experimenters = 916; p-values in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Figure A1: Histograms of average values of covariates inside 0.001 confidence-wide bins around
different critical values of confidence. Left column: critical value=.895, Right column: critical
value=.945. Covariates (from top to bottom): Day in the experiment, Lift, Number of Visitors,
Weekend Indicator
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Table A2: Regression discontinuity tests for covariates

Day in Experiment

Effect p-value 95% C.I.

Linear 12.2191 0.3199 [−11.8598, 36.2981]

Linear, Bias Corr. 14.5629 0.2587 [−10.7061, 39.8319]

Lift

Effect p-value 95% C.I.

Linear 0.0165 0.5503 [−0.0377, 0.0708]

Linear, Bias Corr. 0.0163 0.5879 [−0.0426, 0.0751]

Total Visitors

Effect p-value 95% C.I.

Linear 15777.23 0.8003 [−106478.62, 138033.08]

Linear, Bias Corr. 7245.71 0.9171 [−129211.59, 143703.00]

Weekend Indicator

Effect p-value 95% C.I.

Linear 0.0561 0.3967 [−0.0736, 0.1857]

Linear, Bias Corr. 0.0675 0.3671 [−0.0792, 0.2142]

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

42

 Electronic copy available at: https://ssrn.com/abstract=3204791 



Table A3: Latent class model estimates

Model (1) Model (2)

Response equations non p-hacking p-hacking non p-hacking p-hacking

Intercept −67238.24∗∗∗ −3.786∗∗∗ −64385.13∗∗∗ −3.779∗∗∗

(617.00) (0.707) (583.36) (0.709)
X −265396.15∗∗∗ −4.203 −254135.12∗∗∗ −4.250

(1005.49) (2.707) (2529.98) (2.715)
X2 −261698.13∗∗∗ −3.968∗ −250595.18∗∗∗ −4.015∗

(809.66) (2.341) (5308.35) (2.351)
D 1.848∗∗ 1.840∗∗

(0.848) (0.850)
D ·X −1.333 1.246

(3.504) (3.510)
D ·X2 8.669∗∗∗ 8.698∗∗∗

(3.022) (3.035)

Class membership equation

Intercept −0.977∗∗ −1.006∗

(0.433) (0.573)
High-Tech 1.020

(0.813)
Media −0.872

(1.271)
Retail −0.535

(2.028)
log(Past # Experiments) −0.013

(0.228)

LL -257.331 -255.776

Standard Errors in Parentheses. N = 1894. * p < 0.1 ** p < 0.05 *** p < 0.01.
To facilitate presentation, confidence levels were converted to percentage points.
Past # of experiments is log-transformed to achieve model convergence.
Note: the class membership equation models the probability of not being a p-hacker.
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B Derivations for Section 6

B.1 Derivation of Equation 6

Assume that:

θ = 0 with probability π0

θ ∼ N(µ, σ2) with probability 1− π0

θ̂ = θ + ε where ε ∼ N(0, s2)

The PDF of θ̂ conditional on θ is:

f(θ̂|θ) =
1

s
φ

(
θ̂ − θ
s

)
(B1)

and the unconditional PDF is:

f(θ̂) =

∫
θ
f(θ̂|θ)Pr(θ)dθ = π0

1

s
φ

(
θ̂

s

)
+ (1− π0)

1√
s2 + σ2

φ

(
θ̂ − µ√
s2 + σ2

)
(B2)

We now derive E[θ|θ̂ > 0]:

E[θ|θ̂ > 0] =

∫
θ̂>0

E[θ|θ̂]f(θ̂)dθ̂∫
θ̂>0

f(θ̂)dθ̂
(B3)

=

∫
θ̂>0

∫
θ θf(θ|θ̂)dθf(θ̂)dθ̂∫
θ̂>0

f(θ̂)dθ̂
(B4)

=

∫
θ
θf(θ)

∫
θ̂>0

f(θ̂|θ)dθ̂∫
θ̂>0

f(θ̂)dθ̂
dθ (B5)

=

∫
θ
θf(θ)

Φ
(
θ
s

)∫
θ̂>0

f(θ̂)dθ̂
dθ (B6)

= (1− π0)

∫
θ θ

1
σφ
(
θ−µ
σ

)
Φ
(
θ
s

)
dθ∫

θ̂>0
f(θ̂)dθ̂

(B7)
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Letting y = θ−µ
σ :

∫
θ
θ

1

σ
φ

(
θ − µ
σ

)
Φ

(
θ

s

)
dθ =

∫
y
(σy + µ)φ(y)Φ

(
y + µ

σ
s
σ

)
dy (B8)

and using:

∫
y
yφ(y)Φ

(
y + b

a

)
dy =

1√
a2 + 1

φ

(
b√

a2 + 1

)
(B9)∫

y
φ(y)Φ

(
y + b

a

)
dy = Φ

(
b√

a2 + 1

)
(B10)

we have:

∫
θ
θ

1

σ
φ

(
θ − µ
σ

)
Φ

(
θ

s

)
dθ =

σ2√
s2 + σ2

φ

(
µ√

s2 + σ2

)
+ µΦ

(
µ√

s2 + σ2

)
(B11)

and hence we can rewrite Equation B7 as:

E[θ|θ̂ > 0] = (1− π0)
σ2

√
s2+σ2

φ
(

µ√
s2+σ2

)
+ µΦ

(
µ√

s2+σ2

)
∫
θ̂>0

f(θ̂)dθ̂
(B12)

Finally:

∫
θ̂>0

f(θ̂)dθ̂ =
π0
2

+ (1− π0)Φ
(

µ√
s2 + σ2

)
(B13)

Combining Equations B12 and B13 results in Equation 6:

E[θ|θ̂ > 0] = (1− π0)
µΦ
(

µ√
s2+σ2

)
+ σ2
√
s2+σ2

φ
(

µ√
s2+σ2

)
π0
2 + (1− π0)Φ

(
µ√

s2+σ2

) (B14)

B.2 Similarity of Equation 6 to the Heckman correction

When π0 = 0, our model can be expressed as:

θ = µ+ u1 (B15)

θ̂ = µ+ u2 > 0 (B16)
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where u1 ∼ N (0, σ2), u2 ∼ N (0, s2 + σ2), ρ = corr(u1, u2) = σ√
s2+σ2

.

If one considers θ only if θ̂ > 0, then the selection corrected expected value of θ equals:

E[θ|θ̂ > 0] = µ+ σ · ρ ·
φ
(

µ√
s2+σ2

)
Φ
(

µ√
s2+σ2

) (B17)

Substituting ρ = σ√
s2+σ2

into this standard Heckman correction, we obtain Equation 6 with π0 = 0:

E[θ|θ̂ > 0] = µ+
σ2√
s2 + σ2

φ
(

µ√
s2+σ2

)
Φ
(

µ√
s2+σ2

) (B18)
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