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FOREWORD

Since the term "Decision Analysis" was coined in 1963 (see paper #4),
both its theory and practice have developed profusely. Stanford University
has been a center for the intellectual development of decision analysis and
the catalyst for its extensive application. Consultants associated with
Stanford, many of them graduates of the Engineering-Economic Systems
Department, have accumulated hundreds of man-years of experience.

This collection is intended to portray the "Stanford School of Decision
Analysis," as viewed by the editors. Because the Stanford decision analysis
community has the broadest base of practical experience, we believe these
papers represent the most successful methods of dealing with decision
problems. We have not attempted to represent alternative approaches or to
enter into any debate of their relative merits. We have, however, included
a few papers from other fields, notably psychology, that have had, and are
having, a significant impact on the practice of decision analysis.

In these two volumes, we have collected papers on both the theory and
application of decision analysis. Although most of these readings have been
published elsewhere, we have added a few unpublished papers to represent
recent developments.*

The first volume is designed to be accessible to a general readership
and contains introductory papers and descriptions of actual applications.
Applications to corporate strategic decisions are necessarily disguised and
underrepresented because of their proprietary nature.

The second volume is designed for the professional student of decision
analysis. In addition to containing professional and technical papers, it
contains some papers discussing recent developments in methodology for
approaching health and safety problems. While papers in this volume use
technical terminology, many of their ideas will be understandable to anyone.

* Where possible, we have indicated authors' current affiliations on the
title page of each paper. Affiliation references appearing within the text
are taken from the original publication and, therefore, may vary from those
on the title pages.
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WHAT IS DECISION ANALYSIS?

When this nationally syndicated
cartoon appeared in 1982, decision
analysis had clearly become a common
term. In common usage, however,

l the term has lost precision. By
' I decision analysis, we mean a
discipline comprising the
philosophy, theory, methodology,
and professional practice necessary
L to formalize the analysis of
important decisions. Decision
analysis includes procedures and
methodology for assessing the real
nature of a situation in which a
decision might be made, for
capturing the essence of that

8 41 g i situation in a formal but
G e e & = transparent manner, for formally
ommrenn (o “solving" the decision problem, and

for providing insight and motivation
“Today, I'm going to tell you all you'll need to 1.20 the dec1s ! on-makers and
know about ‘decision analysis.""”’ 1 mp] ementers,

Confusing the tools of decision
Reprinted by permission. © 1982 NEA, Inc. ana]ysis w*ith decision ana]ys‘is

itself has contributed to the loss
of precision. Because uncertainty is at the heart of most perplexing
decision problems, decision analysts frequently use specialized tools,
such as decision tree techniques, to evaluate uncertain situations.
Unfortunately, many people, some of them educators, have confused
decision analysis with decision trees. This is like confusing surgery
with the scalpel. Although decision tree techniques are extremely
useful in solving problems where uncertainty is critical, in a real
decision analysis, most of the effort and creativity is focused on
finding and formulating the correct problem and on interpreting the
results rather than on performing computations.
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Preface

Important decisions are being made every day about our health and
safety. These papers show the advantage of making these decisions
consistently and present some recent theory that provides a sound basis for
doing so.

"On Making Life and Death Decisions" develops a conceptual framework by
considering nhow a person should value his own life. This paper snows that
althougn life may be infinitely valuable in a moral sense, a person can
rationally take on additional risks to his life or pay to remove them. The
paper reveals that a monetary "value of life" is appropriate for an
individual makirg choices involving a small probability of death. A
numerical example is developed for a typical individual.

"The Value of Life and Nuclear Design" addresses the question of
whether different "values of life" should be used in different safety
decisions. It shows that using the same monetary value in all aspects of
design produces tne hignhest level of safety.

"The Design of Hazardous Products" addresses the design problem in a
general setting, revealing that the designer of a hazardous product needs to
know the small-risk value of life that has been assigned by the individual
at risk. It also shows there is no rationale for situations where the
individual is exposed involuntarily and does not bear the product cost.

“On Being Environmentally Decisive" demonstrates the insight
gained from applying decision analysis to environmental issues within
the corporate setting. Based on a real case, it describes a
hypothetical example involving a company's decision to make a capital
investment to reduce the exposure of workers to asbestos fibers. The
paper shows how environmental issues can be incorporated in an
economically-oriented investment decision analysis.

"On Fates Comparable to Death" extends the ideas for treating life risk

to the risk of handicap or serious injury. The paper shows how small-risk
values can be developed for each consequence for use in decision analysis.
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ON MAKING LIFE AND DEATH DECISIONS

Ronald A. Howard
Department of Engineering-Economic Systems
Stanford University

Reprinted from Societal Risk Assessment: by R. C. Schwing and
W. A. Albers, Jr., General Motors Research Laboratories, 1980.
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ON MAKING LIFE AND DEATH DECISIONS

Ronald A. Howard

Stanford University, Stanford, California

ABSTRACT

Recent research has provided us with methods by which an individual
can make decisions that involve risk to his life in a way that is consistent
with his total preferences and with his current risk environment. These
methods may ethically be used only by the individual himself or by an
agent designated by the individual. In the absence of such delegation,
anyone who imposes a risk on another is guilty of assault if the risk is
large enough. Just as society has found ways to distinguish a **pat on the
back’’ from physical battery, so must it now determine what risk may be
placed upon another without his consent.

The research on hazardous decision making creates a framework for
this exploration. The basic concept of this approach is that no one may
impose on another a risk-of-death loss greater than a specified criterion
value established by the experience of society. If anyone attempted to do
so, he could be forbidden by injunction. The only way that an injunction
could be avoided would be by showing evidence of insurance that would
cover the damages to be paid by the imposer of the risk if the unfortunate
outcome should occur. The methodological framework is used both to
estimate the risk-of-death loss and the amount to be paid if death occurs,
an amount that is likely to be much larger than present *‘economic™
values of life. Evidence would be required both on the preferences of the
individual-at-risk as revealed and corroborated by his behavior and on
the magnitude of the risk as assessed by experts.

Such a system is likely to require revisions in the present legal codes. It
is to be expected that when a logically and ethically based risk system is
functioning, there will be an increased interest in purchasing the consent
of people to imposed risk. Problems of securing the consent of con-
tiguous property owners, for example, could be handled by interlocking
options. People will also be more likely to be informed of the risk implied
by using products or services. Thus risk would become an explicit part of
purchasing decisions. The joining of logic and ethics in these new pro-
cedures offers hope for a more effective and humane treatment of risk
issues in society.

References p. 106.
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HOWARD

NOTATION

probability of death

required payment to undertake specified death risk
present level of wealth

constant annual consumption

remaining length of life

expected remaining length of life

worth numeraire

consumption-lifetime trade-off

risk preference function on worth

risk aversion coefficient

risk tolerance; I/y

annuital factor; amount of annuity that $1 will buy
interest rate

Pmax. Maximum acceptable probability of death

THYT R N3 g0 £x T

v(p): life value in expected value sense when facing death with probability p
vy small-risk life value

Ve! economic life value: ¢/

Pp: probability of death in year n of life

dn: probability of death in year n of life given that individual was alive at

beginning of yecar n.

INTRODUCTION

What risk may one impose on another? This question has achieved increasing
importance as the sources of harm in our environment have increased. The
spectrum of risk that one person imposes on another ranges from the relatively
minor risks posed simply by existence up to the very serious risks represented by
assault or attempted murder. Some of these risks society has chosen to ignore,
while others have been treated as very serious matters requiring extensive social
action. We shall examine both the ethical and practical questions of risk in society,
propose measures for risk, suggest procedures for evaluating risk, and indicate
how these procedures could be used in practice.

EFFICACY AND ETHICS

Social arrangements for any purpose may be judged in terms of both efficacy and
ethics. Efficacy refers to what works in pursuing specific human goals; ethics refers
to what actions are morally desirable in achieving those goals. For example, killing
babies with genetic defects might be a very efficacious way of achieving the human
goal of physical perfection, but it would be ethically unacceptable to most people.
When we wish to judge any action or arrangement, we can think of examining it
against standards of physical knowledge, ethics, and efficacy. For example, if
someone threatened to bring the wrath of God against another, that threat would
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LIFE AND DEATH DECISIONS

not be actionable in a court of law today because it is the present belief of a majority
of our society that no one has such power. However, in the 12th century in Europe,
such a threat may have been taken very seriously: the one who threatened might
be condemned as a witch. Actions that seem physically feasible can then be sub-
jected to the further tests of ethical acceptability and practical efficacy. Since there
is much more discussion of efficacy than of ethics, our primary concern here will
be the ethical one.

The ethical basis we shall use in our discussion is that every individual has a right
to his own person. Or to put it in negative form, no one may initiate force against
another without his consent. Of course, this allows for the use of force against the
initiator of force in the sense of self-defense. Imposing a large risk of the use of
force upon another is enjoined by the same principle. If the imposition is intended
to be coercive, then the imposition is a threat. The robber who says ‘‘your money
or your life”’ is thus violating the ethical principle even though you may avoid the
use of force by surrendering your money.

Even when there is no intention to harm, the principle prohibits the imposition
of a large risk on another. Thus, someone who is firing a gun in random directions
may be restrained even though he has no intention of hurting anyone simply
because he poses too great a threat to others.

While there might seem to be a wide variety of ethical principles from which to
choose, the choice is not so large as one might think. In fact, the only other system
with a claim to consistency (although a faulty claim, in my opinion) is that the
king, czar, party, government, or church can do to any person whatever it likes. In
such a system, of course, we don’t have to worry about risk management; we simp-
ly ask the king-equivalent what to do.

Therefore, the ethic that shall guide us in this paper is that no one may impose a
large risk on another without his consent. The remaining question, then, is how to
measure risk and how to determine how large a risk may be imposed involuntarily.

It is important to distinguish this discussion of ethics from the usual discussion
in terms of political and economic systems. The political system in many countries
does incorporate ethical elements, such as the U.S. Constitution’s Bill of Rights.
However, it may also allow actions that many individuals consider unethical. Thus
the political system technically contains both ethical judgments and other features
based on the power possessed by various groups. As long as there exist two
systems, political and economic, in the same society, then there exists the
possibility of arbitrage, of people using political power to achieve what they cannot
achieve economically or using economic power to achieve what they cannot
achieve politically. For example, rent control is an action to transfer property
ownership at least partially from owners to tenants. Environmentalists’ objections
against development can be attempts by some to raise their standards of living by
political means at the expense of the standard of living of those not so well
economically situated.

The main point is that unless political and economic systems have a common
ethical basis, ethical conflict is bound to arise. The approach we take here is to
follow ethical principles that preclude political and economic contradictions.

References p. 106.
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MEASURING RISK: AN INDIVIDUAL DECISION MODEL

Recent research has shown one way life and death decisions can be made consis-
tent with the non-coercive ethical principle [1], [2]. Naturally, then, this is a way
for people to make their own risky decisions, nora way for other people to impose
risky situations upon them. However, by seeing how an individual would view
such an imposition by his own lights, we obtain a starting point for constructing a
legal position regarding the imposition of risk.

The Black Pill — As a useful thought experiment, we imagine an individual
faced with what we call the black pill question. He is offered the chance to take a
pill that will kill him instantly and painlessly with a probability he assigns as p. If he
takes the pill, he will receive x dollars. Should he accept? For example, should he
accept a p = 1/10,000 incremental chance of death for a payment of x = $1000?
The choice is diagrammed in Fig. 1.

If the individual rejects the offer, he will continue his life with wealth W and face
whatever future life lottery he presently faces. His future life lottery is the uncer-
tain, dynamic set of prospects he foresees beginning with today. If, on the other
hand, he accepts the proposition, his wealth will increase to W + x. If he lives after

Future
Life
Lottery

Reject

/ (Wealth W)

(Wealth W)'/
Future

\ Live L
, ife
(Wealth W + x) Lottery

(Wealth W + x)

P Die
(Wealth W + x)

Fig. 1. The black pill decision tree.

taking the pill, he will begin his future life lottery with wealth W + x, presumably a
more desirable situation. If he dies, he will leave W + x in his estate, and, of
course, have no opportunity to enjoy it. Clearly the value of this benefit might be
different for different people, and could be included. But let us say, for the
moment, that it has no value to him. Naturally, there would also be tax effects, but
these too we shall ignore.

We have analyzed this question in quite general form [2], but here we present
the simplest model we have used to answer it. We assume that everyone has a fun-
damental preference on both level of consumption and length of life. We begin by
asking the individual how much consumption (measured in today’s dollars) he
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LIFE AND DEATH DECISIONS

expects to have at each year in the future. We then ask what constant level of con-
sumption beyond bare survival over his lifetime would make him indifferent bet-
ween this level and his present prospects. We call this the constant annual con-
sumption for that individual. Now we give him choices between the different
futures described by different constant annual consumptions ¢ and different
lifetimes Y, and find to what combinations he is indifferent. For the simple exam-
ple, we shall assume that the indifference curves have the form

wie, ) = c(%)") n>0. )

where w(c,{) is the worth numeraire associated with each indifference curve. The
numeraire equals ¢ when { equals /, the expected lifetime remaining.

Now we measure the risk preference on worth of the individual. For the exam-
ple, we shall use the exponential form

u(w) = -e"yw = -e'W/p s (2)

where vy is the risk tolerance. With this structure and the assessment of the
individual’s joint probability distribution of ¢ and f, we can compute the utility of
the individual for the case when he does not accept the black pill.

When he does take the pill, the probability p of dying immediately will transform
his probability distribution on remaining life. The payment he receives, x , will
increase his wealth. We assume that the individual will use the amount x to
purchase an annuity over his remaining life at the prevailing interest rate i. In the
calculation of annuity cost, we assume further that the seller of the annuity assigns
the same probabilities on remaining life as those assigned by the individual. If we
let { be the amount of annuity that one dollar will buy, then

i 1

T T+ ‘<(ﬁ)f> ,

where < > denotes expectation.
When we set the utility of taking the pill equal to the utility of not taking it, we
determine that at the point of indifference p and x must satisfy the equation.

<e'7c(—-§-)> - <3-y(c + gx)(%)>
<1 Ceylc + ;x)(%)>

By inverting this relationship computationally, we find for a given value of p what
value of x will make the individual indifferent between taking the pill and not tak-
ing it.

(3)

References p. 106.
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If we let x grow without limit in this equation, we find that p approaches a value

Pmax given by e 14 7>
Pm: ' -'yc<~_) 5)
max € i (

Thus no amount of money could induce the individual to accept a death probability
as large as pyyx-

To derive a measure of “‘life value', suppose that a risk-neutral observer
examines the relationship between x and p. He could interpret x = x(p) as the
expected loss that the individual would incur from the risk if the individual valued
his life at a number v(p),

x(p) = pv(p) . (6)

and he could then determine this number from
x(p) .
p

Thus v(p) is the value that the person is placing on his life in an expected value
sense when he confronts a risk of magnitude p.

Of special interest in a safety context is the magnitude of this life value when the
death risk is small. From a limiting analysis of the equation relating p and x, we
find that as p approaches zero (and, of course, x also approaches zero), the ratio
v(p) approaches a value vg given by

e
RO

We call this value the small-risk life value. It is the one number that an individual
would need to keep in mind to make his safety decisions.

We shall be interested in comparing this small-risk value of life with an
economic value of life comparable to that produced by other analyses. We shall
define the economic life value, ve, as the amount of money required to purchase
an annuity paying the constant annual consumption c. Thus v, is given by

vip) = (7)

Ve = §£ 9)

Illustrative Results — To illustrate the calculations implied by the model, let us
consider a base case individual who is a 25-year-old male with a constant annual
consumption of $20,000 per year and a lifetime probability distribution given by a
standard mortality table, Table 1. He choosesn = 2, which means that if he is sure
to live his expected life (46.2 years), then a 1% decrease in his life would require a
2% increase in consumption for him to remain indifferent. From further question-
ing, we find that his risk tolerance is p = $6000, which means roughly that he is
indifferent between his present situation and equal chances of constant annual
consumption of $17,000 or $26,000 for the remainder of his life. We also find that
he faces a prevailing interest rate of 5% per year.
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LIFE AND DEATH DECISIONS

The results of the calculation appear in the upper part of Fig. 2 where we show
the amount x that he would have to be paid corresponding to each probability of
death p. We observe that this amount increases proportionally to p until about

TABLE 1

Life Table for White Males, U.S.
of 100.000 Born Alive, Number Dying During Age Interval

Number Dying Number Dying Number Dying
During Age During Age During Age
Age Interval Age Interval Age Interval
0 2592 37 229 73 2778
1 149 38 251 74 2815
2 99 39 278 75 2841
3 78 40 306 76 2853
4 67 41 339 77 285§
S 60 42 376 78 2844
6 hh 43 415 79 2821
7 52 44 458 80 2789
8 47 45 505 81 2738
9 43 46 556 82 2639
10 40 47 613 83 2482
11 40 48 681 84 2280
12 46 49 754 8S 2096
13 56 S0 835 86 1898
14 73 S1 916 87 1693
15 90 52 995 88 1490
16 107 3 1071 89 1288
17 121 54 1144 90 1086
18 134 hh 1216 91 888
19 143 S6 1295 92 709
20 153 57 1383 93 548
21 162 S8 1486 94 413
22 167 59 1598 95 300
23 163 60 1714 96 216
24 157 61 1827 97 152
25 149 62 1935 98 103
26 141 63 2039 99 70
27 137 64 2136 100 45
28 137 65 2231 101 29
29 141 66 2323 102 17
30 147 67 2409 103 11
31 154 68 2487 104 6
32 161 69 2559 10S 3
13 170 70 2621 106 2
34 180 71 2678 107 1
3s 194 72 2729 108 1
36 210

Reterences p. 106.
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p = 102, when it increases more rapidly and finally becomes infinite at
Pmax = 0.103. No amount of money could induce this individual to play Russian
roulette (p = 1/6).

The lower portion of Fig. 2 shows how the life value v = v(p) depends on p. We
observe that for small values of x, v is approximately equal to vg = $2.43 million,
the small-risk life value of the individual. This means that for small probabilities of
death (here less than 10-2) the individual is acting as if his life were worth $2.43
million in an expected value sense. Thus, if the individual faced the black pill
problem with p = 1/10,000, the required compensation would be vgp = $243. He
would accept any payment x greater than $243 as an inducement to take the pill.

1 | | 1 Ll ,

108

107

106

10°

x (Dollars)  10°
103

102

10

1

T
'
[
'
'
1
[
'
'
'
'
1
!
'
'
1
'
[
'
'
1
'
'
'
1
1
'
'
1

A

0.1 1 1 1 ! ! |
107 106 105 104 103 102 107 100
Probability of Death
! 1 T T T T ]

10 x 106

T

-

v (Dollars)

T

5x 106

vg = 2.43 x 108

o 1 | | 1 1 1 ;
107 10% 105 1074 103 102 10" 10°
Probability of Death

Fig. 2. Black pill results.
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The economic life value v, for this individual is $363,000. Such a number has
sometimes been used for decision purposes. We observe that the small-risk value
is about 6.7 times the economic value. If this model and the numbers used in it are
representative, the economic values that have been used in the past considerably
underestimate the individual’s own value. This discrepancy has implications for
both the efficacy and the ethics of risk decision-making in our society.

The White Pill — Our analysis up to this point has emphasized the question of
what we must pay an individual to undertake an additional risk. However, more
often we face the problem of spending resources to avoid risk or in other words
increase safety. The same theoretical model serves to illuminate this problem with
only a few small twists.

Suppose that an individual faces a hazard that will kill him with probability p; for
example, an operation. If he survives, he will live his normal life with whatever
wealth he possesses. However, now someone arrives with a white pill that if taken
will surely eliminate the death risk from this hazard. How much, x, would the

individual be willing to pay for the white pill? Fig. 3 shows the relevant decision
tree.

The unusual feature of the white pill question is that, of course, the amount x
that he is willing to pay cannot exceed his wealth, no matter what death risk he
faces. We assume that the individual can sell an annuity based on his lifetime dis-
tribution to pay the amount x for the purchase of the white pill. Since the most he
can give up is his consumption beyond survival c, this means that in the white pill
case the x versus p curve terminates on the economic life value of the individual

Buy White Pill Future
Life
(Wealth W - x) Lottery

Future
Life
Lottery

Refuse
White Pill

(Wealith W)

(Wealth W)
1-p
p

Die

(Wealth W)
Fig. 3. The white pill decision tree.
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Fig. 4 show the results for the base case individual. When p = I, x = $363,000,
the economic value of his life. However, as p decreases, the x versus p curve
becomes coincident with that of Fig. 2, and in particular implies the same small-
risk value of $2.43 million derived for the black pill case.

Table 2 shows how the small-risk value depends on the model variables. The
first row shows the effect of changing annual consumption level from $10,000 to
$30,000 while fixing the risk tolerance at 30% of consumption. We observe that
the small-risk value is then proportional to consumption level. The second row
shows that the effect of varying the interest rate i from 10% to 2.5% is to change the
small-risk value from $1.421 million to $3.622 million, because the individual
needs a higher cash payment to obtain the same increase in consumption. The
third row shows the relative insensitivity to the consumption-lifetime trade-off
ratio n, whereas the last row illustrates how the small-risk life value falls with age.

confirms this observation. since at x = = = vo, p = 1.
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Fig. 4. White pill results.
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TABLE 2

Sensitivity Analysis

Small-Risk Value. v _

Variable ($ million)
c: 10,000 20,000 30,000
,
o 3.000 6,000 9.000 1.215 2430 3.645
N 0.10 0.05 0.025 1.421 2.430 3.622
n: 3 2 1 2.418 2.430 2.541
Age: 35 25 15 2.157 2.430 2.671

Buying and Selling Hazards — Now that we have both the black pill and white
pill results before us, we are in a position to make a few general observations. First,
we see that the disparate results of the black and white pill cases for p = 1 show
that we have answered a continual objection to analyses that place a finite value on
life without regard to the distinction between accepting an additional risk and
removing an existing risk. Since few people, if any, will sell their lives for any finite
sum, all such analyses are doomed to failure. However, the present model shows that
it is perfectly consistent to refuse any finite offer for your life and yet be limited in what
you can spend to save it.

Of greater practical importance, however, is the result that for the wide range of
hazardous decisions where we are buying and selling small hazards in our lives, the
small-risk life value offers a simple and practical procedure to assure consistency.

To simplify the use of the small-risk life value and to emphasize the necessity
that it be used only when the risk to life is small, we find it useful to define a unit
for small risks to life. We shall use the term ‘‘micromort’’ to mean a one in one
million chance of death, with symbol umt. Then the small-risk life value can be
conveniently expressed in dollars per micromort, or $2.43 for the base case
individual. With this terminology, it is easy to explain why an individual can set a
value for a micromort that is valid up to, say, 1000 micromorts, but also why that
price is inappropriate for larger risks.

The Value of Reducing Risk - We can use the base case individual’s value of
$2.43/umt to see what he would be willing to pay annually to remove various
hazards in his life. The first column of Table 3 shows U.S. accident statistics for
1966. The second column shows the number of micromorts/year each risk poses to
the base-case individual if, as we now assume, he uses these statistics as his
probability assignment to death from each risk. The final column shows what the
base case individual would be willing to pay each year to eliminate each hazard, an
amount obtained by multiplying the number of micromorts by the individual’s
value of a micromort. Note that he would be willing to pay $900 just to eliminate
the dangers of motor vehicles and falls. All other sources of accidents contribute
collectively to an expected loss of less than $500. This calculation is an important
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U.S. Accident Death Statistics for 1966

Total Probability of Death  Payment of Base
Annual in Micromorts/ Year Case Individual
Type of Accident Deaths* (1 Micromort [umt] to Avoid Hazard
=106 @$2.43/umt
Motor vehicle...................... 53.041 270 $ 656.00
Falls ... ... ... ... ... ... 20.066 100 243.00
Fire and explosion 8.084 40 97.20
Drowning ......................... 5.687 28 68.00
Firearms ........................ .. 2.558 13 31.60
Poisoning (solids and liquids) ........ 2,283 11 26.70
Machinery ......................... 2,070 10 24.30
Poisoning (gases and vapors) ........ 1.648 8.2 19.90
Water transport .................... 1.630 8.1 19.70
Aircraft .......... ... ... ... ... ... 1,510 7.5 18.30
Inhalation and ingestion of food ... .. 1,464 7.3 17.70
-Blow from falling or projected
objectormissle ................ 1.459 7.3 17.70
Mechanical suffocation ............. 1,263 6.3 15.30
Foreign body entering orifice
other than mouth .......... .. .. 1.131 5.7 13.90
Accident in therapeutic procedures .. .. 1,087 5.5 13.40
Railway accident
(except motor vehicles) ......... 1,027 5.1 12.40
Electriccurrent .................... 1,026 5.1 12.40
Other and unspecified .............. 6,163 31.0 76.50
Total ................. 113,563 580. $1,384.00

*U.S. Accident Statistics for 1966

starting point for determining whether feasible safety expenditures to modify these
hazards would be worthwhile. It is clear that spending $1000 to be free of motor
vehicle accidents would not be a wise choice for the base case individual. There is a

limit to the value of safety.

Continuing Risks - Hazard Modification — Many of the risks to life occur not
at a single instant, as does the black pill, but rather over several years or even a
lifetime. The risks of living with automobiles, of smoking, or of living near a power
plant are of this type. We can use the previous formulation to analyze this situation
after we deal with the concept of hazard as follows.

The lifetime mass function is defined by Ppy N =
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probability that an individual will die in the n'h year of his life. Let qp be the
probability that the individual will die in the nth year of his life given that he was
alive at the beginning of that year. Then q, for n = 1,2,3, . . . is the hazard dis-
tribution or force of mortality. The lifetime mass function and the hazard distribu-
tion are related by the equations:

P] = Q1

n-1
Pn = dp I-Zp_i n=2234,. .. ()
j=1

and either may be constructed from the other.

We can now ask what present payment x would be required to induce an
individual to accept a given modification of his hazard distribution, with the pre-
vious assumption that the payment will be converted into an annuity.

Consider first increasing the hazard in every remaining year of a person’s life by
adding 250 micromorts, a risk about equal to that posed by automobiles in
American society. To induce the base case individual to accept such a hazard
modification, which would decrease his life expectancy by 0.3 years, we would
have to give him a lump sum of $13,000, or an annuity paying $700 per year.

If we doubled his hazard in every year, a risk considered by some the equivalent
of heavy smoking, life expectancy would fall by 7.8 years and he would require a
present payment of $212,000 or an annuity of $12,400.

If all benefits and costs associated with a general pattern of hazard modification
are reduced to dollar terms, then the model can be used to determine the addi-
tional payment that the individual would demand or offer to be just indifferent to
the modification.

Summary — We can use this model to evaluate how much an individual would
have to be paid in money or its benefit equivalent in order to accept any given level
of risk. Of special interest are those situations where the additional risk is small, for
in this case the payment that the individual would require is equal to the pro-
bability of his death multiplied by a small-risk life value in dollars. This small-risk
life value is likely to be constant over the range of risks involved in safety situa-
tions, for example, 1000 or less micromorts per year. The small-risk life value is
typically several times larger than the economic value of life and is of the order of a
few million dollars.

RISK ISSUES IN SOCIETY

Now that we have discussed both the ethical basis of imposing risk and a pro-
cedure by which an individual can make or delegate decisions that affect his
chances of dying, we can proceed to an examination of the implications of those
observations for various situations involving risk in our society. These situations
include the treatment of risk in the marketplace and on the job, the imposition of
excessive risk, and the creation of risky projects. We shall also discuss how these
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observations bear on the question of corporate lability.

Risk in the Marketplace and on the Job — Risks involved with the purchase
and use of products or with holding a job are likely to represent 1000 or less
micromorts per year, and hence, for practically all individuals, they will fall in the
region of life value characterized by the small-risk value of life. This means that the
individual who has assessed his chance of death can quickly calculate the expected
death loss from the situation and balance it against other benefits and costs associ-
ated with the situation to make his decision.

However, we should also note that the designer of the product or the safety
engineer of the job has already been making decisions that balance death against
other considerations. In fact, if he is to be consistent, he should be using some
small-risk life value in his design [3]. A logical next step would be to reveal this
value to the purchaser of the product or the job applicant in a statement like, ‘“We
used a $3 million small-risk value of life in designing this car (or coal mine).”
Naturally, the individual will hope that the value used is at least his small-risk life
value. Otherwise, he would be rightly concerned that the situation will not be safe
enough for him. The small-risk value of life used in design could then become one
of the features of the product or job that is advertised to the public. Companies that
used too low a value would experience competitive pressure, based on safety con-
cerns, to raise it; whereas, those who used too high a value would find their pro-
ducts overpriced relative to competition. A similar result would apply to jobs. Thus
companies would be encouraged by the marketplace to balance safety and
economics. As the standard of living increased, so would the level of safety.

A further step in this development would be for the companies to buy insurance
that would pay the small-risk life value used in design to anyone killed as a result of
the design. Since this amount would be listed on the product or in the job descrip-
tion, the product liability or safety liability of the company would be specified in
advance. The estate of the person who bought a cheap hammer designed with a
small-risk life value of $10,000 would be able to collect only $10,000 if the head
came off and killed him. Of course, someone who wanted the hammer for use as a
paperweight might still buy it.

The idea of describing products (or jobs) by the small-risk life value used in their
design is only useful if the number can be believed. It would be fraud to post a
number higher than was actually used, or, of course, to say that insurance paying
this value in the event of death through product design is in force when it is not. To
be fair, the insurance would pay off only if the product failed while being reasonab-
ly employed in its intended use. (If the purchaser of the cheap hammer commits
suicide by hitting himself over the head, his estate has no claim.)

Recently one of America’s largest automobile companies lost a multi-million
dollar suit involving product design. Evidence presented at the trial showed that
the value of life used in the design was an order of magnitude below those we have
discussed. How many of the purchasers of the car would have bought it if they had
known the design basis? Placing this number in view may be the most important
single step that can be taken to insure the proper balance of safety with other con-
siderations.
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Risk Imposition — The question of risk imposition can be addressed in terms of
the legal procedures used when one person claims that another is imposing an
unacceptable risk on him. Since nearly everyone is a potential danger to everyone
else at some level, no absolute standard is possible. The question is at what level of
risk different legal remedies may be imposed. We propose to measure the risk to an
individual using the model described above. This model provides a monetary value
of the risk in terms of the probability of death imposed and the preferences of the
individual. To make the model operational, we must specify the source of the pro-
babilities and the preferences.

Since there may be differences of opinion as to the probabilities of death
imposed on one person by the actions of another, one function of the legal process
would be to assign this probability in as objective and impartial a manner as possi-
ble. This may mean reviewing historical evidence, examining experimental find-
ings, and ultimately considering the statements of experts. This procedure will not
be easy, but it is necessary if serious concerns are to be separated from paranoia.

The individual’s preferences, of course, are his alone. But to establish them in
court, the individual will have to show that he acts consistently with his stated
preferences. For example, it would be difficult for a circus performer who took
large risks for money as part of his profession to then claim that no amount of
money could compensaste him for much smaller risks. The past practices and deci-
sions of the individual would in most cases provide good evidence of his
preferences.

In the majority of situations where this procedure will be implemented, the risk
faced by the individual will be small enough that his preferences can be sum-
marized by his small-risk value of life. In these cases, the procedure will reduce to
the court’s determining the probability of death and the small-risk life value. The
product would then measure the extent of the risk imposed on the individual, a
number we shall call his risk evaluation.

The risk evaluation would in turn indicate the kind of relief to which the
individual is entitled. If the risk evaluation were very small, say less than 10¢ or
perhaps 10-3 times the average annual income, then no relief would be provided
under the principle that the law does not concern itself with trifles.

On the other hand, if the risk evaluation were greater than a serious level, say,
$10 or 10-3 times the average income, then the individual might be entitled to
injunctive relief. That would mean that the imposer of the risk would be prohibited
from imposing it. At this point, the risk imposer would either have to cease his
activity, buy the right to impose the risk from the individual (for whatever he
demands), or reduce the level of the risk evaluation below the serious level by
making his activity considerably safer.

For risk evaluations in the intermediate region between trifling and serious, the
medium range, a different remedy could be applied. This could be allowing the
activity to continue only if the risk imposer buys insurance sufficient to pay
damages if the activity actually kills the individual at risk. Moreover, the damages
would not be the economic loss to the dead person’s estate but rather his small-risk
value of life, typically many times higher. This would mean that the risk imposer
would always find it at least as desirable to pay the individual the risk evaluation in
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exchange for the right to impose the risk as he would to buy insurance. However,
the insurance option does allow people to impose relatively small risks on others
who may have unreasonable fears of certain kinds of activity.

Regardless of the level of risk involved, if the imposer buys the right to impose
that risk on another individual from that individual, there would be no cause for
litigation. This would include even cases of high risk, such as paying someone to
play Russian roulette. However, in cases of high risk. the principle that every per-
son has an inalienable right to his body would mean that the court would not allow
the risk to be imposed in a situation where the seller of the right to impose risk
changed his mind. The seller would, of course, remain liable for any damages he
had promised to pay in the contract should he change his mind. Contracts involv-
ing the selling of rights to impose risk in the domain of safety, say, 10-3 chance of
death or less, would not be subject to the alienability criterion, but would be con-
sidered as transfers of property.

On Creating Risky Projects — Much of the modern concern with risk arises
from the building of what we might call risk-creating installations. These are
installations that cause increased risks to the public, that is, to people who have not
made any agreement to accept the increased risk. Such installations might be oil
storage facilities, airports, or nuclear power plants. According to our preceding dis-
cussion, those creating such risks could proceed unencumbered only if the risk
evaluations they created for those affected fell in the trifling range. If the risk
evaluations fell into the medium range, then insurance would have to be bought
that would pay the estate of anyone killed his smali-risk life value. Of course, if no
insurance company were willing to sell such a policy, the project could not proceed.
Finally, if the risk evaluations fell in the serious level, the project could be
prohibited regardless of insurance.

The entrepreneurs wishing to build risk-creating installations would be strongly
encouraged by such a system to purchase in advance the risk rights from all
individuals involved. But one immediately thinks of the problem of the holdout —
someone who refuses to sell. When the risk evaluation is at the serious level, no
one, including the government, could compel him to do so. For it is a violation of
our basic principle regarding the initiation of force to use ideas like eminent
domain to justify the initiation of force. How, then, can the practical entrepreneur
proceed?

The basic idea that can solve this problem is the idea of risk options. The
entrepreneur can buy from an individual an option to purchase his risk rights
under certain conditions and at a specified price. For example, the entrepreneur
might pay $10 for the option to buy at some time in the next year the right to
impose 100 micromorts per year at a price of $100 per year. Then if the
entrepreneur decides to build a 100 micromorts per year installation in the
individual’s area, he pays him $100 per year. If he decides to build some place else,
then the individual has received only the $10 for the option. The entrepreneur can
then buy options in several different areas knowing that he will in fact build in only
one area. If the entrepreneur encounters holdouts in one area, he can move on to
another.
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The option and the rights could both be negotiable to create a market in risk.
Communities of people who were relatively more willing to accept risk for money
would then be more likely to be those places where the risk-creating installation
was built. Since risk-rights could be bought more cheaply in remote locations, such
locations would also be favored for the building of the installations. Thus the risk
market, like any market, would encourage the more efficient use of resources.
However, we should remember that the efficiency in this case is not being
achieved at the expense of ethical principle.

Liability — We must still consider the case where someone imposes a risk in the
medium or serious range without having at least purchased insurance. Logically in
this case if someone is killed as a result, the liability of the risk imposer should be
at least the victim’s small-risk life value, and more if the risk extended beyond the
safety range. There would be an additional heavy penalty if the insurance was not
bought after a finding that the risk was in the medium range. Deaths resulting from
serious range risky activities would incur criminal penalties.

The lower portion of Fig. 2 shows how the minimum liability might depend on
the prior death probability. The region where the value becomes infinite we might
call the “*‘murder’’ region.

However, to put this principle into operation when the risk imposer is a corpora-
tion will apparently require changes in corporate law. The reason is that today cor-
porations have the same limited liability to third parties (like the victim of the risk)
that they have to second parties, their knowing creditors. This means that if a cor-
poration is so structured that its assets are insufficient to satisfy a claim, the vic-
tim’s estate cannot reach beyond those assets to the stockholders for the settle-
ment of the claim. While I have no objections to the limited liability to creditors
because they entered into the credit arrangement with knowledge of the limited
liability, I see no reason why this limit should extend to third parties. For example,
if a group of individuals organized themselves into a corporation and then the
actions of the corporation resulted in someone’s death, the personal assets of those
individuals would ordinarily not come into play, whereas if the individuals had
organized as a partnership, their personal assets would be available to satisfy the
judgment.

The limited liability to third parties is not a recent feature of corporate law. The
corporate form is, after all, a human invention. At the time corporations were first
allowed legal status, there was debate on this issue of third party liability. Unfor-
tunately. from my point of view, limited hability to third partics was instituted as a
feature of corporations. But therc is no rcason why this decision could not be
reversed.

Suppose that corporations were treated like partnerships in matiers of third party
liability. This would mean that every stockholder would be liable for damages done
by the corporation to third parties. The result would be increased care among cor-
porations in controlling their effects on third parties, effects on their property as
well as on their lives. A corporation that was careless in this regard would soon find
that it had lost the favor of investors.

Consider a company that is in the business of constructing or operating nuclear
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reactors. At thc moment its stockholders are protected not only by the Price-
Anderson Act, but by the limitation of liability to third parties. If both of these
limitations were removed, anyone investing in such a company would have to be
quite sure that he was protected from a calamitous loss. This would mean, most
probably, that such companies would have to buy insurance against all such losses.

If such insurance were unobtainable or prohibitively expensive, there would be
good reason to question the eonomic viability of the industry. Furthermore, even
if the insurance were available, it is likely that the insurance companies in their
own self-interest would require that independent agencies certify the safety of pro-
duction and operation. Thus, the ultimate effect of unlimited liability to third par-
ties would be ecither prohibition of unsafe industries or considerable improvement
in their safety.

CONCLUSION

Our present apparent impasse on many safety issues stems mainly from a reluc-
tance to re-examine the ethical basis for risk management in our society. As long
as these issucs are stuck between the economic and the political system, we can
expect little progress. Only by returning to more fundamental ethical considera-
tions can the issues be clarified and ultimately resolved.
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DISCUSSION

F. E. Burke (University of Waterloo)

I have one question of clarification. You had a slide in which you had computa-
tions where you compared various fairly modest risks. In one case an 8 year life
expectancy change would require a present payment of $212,000 or an annuity of
$12,400. That I could understand because my mental arithmetic was fast enough.
But then you have a life expectancy change of 0.3 years which corresponds to a
lump sum payment of $13,000 or an annuity paying $700/year. My mental
arithmetic left me there and I wonder if you could help me out?

R. A. Howard

The payment is not proportional to the change in life expectancy because the
effect is nonlinear. The changes in life expectancy and payments are computed
from the same data but they are not obviously related to each other by any cons-
tants.

F. E. Burke

One is instant and the other is at the end of the expected life.

R. A. Howard

Unfortunately, there is a common belief that if I lose some expected life, the
decrease always comes off the end. If 1 believed this, 1 could think there’s no
problem with smoking because it’s going to hurt me after I'm too old to enjoy any-
thing else. Of course, that’s not true. The increased hazard is a change in the whole
probability distribution of life.

E. V. Anderson (Johnson and Higgins)

One possible error is the use of the **fall’’ statistic to apply to a 20-year-old.
About 90% of your fall deaths are of people aged 65 and over and you probably
should take the deaths between 20 and 50 and use that as a basis.

R. A. Howard

Right, I think that’s a very good observation. Everything in here should be
interpreted from the individual's point of view. A 20-year-old should use a pro-
bability of falls that he believes describes his own risk. | am sure he would like your
information in assigning his probability. 1 believe such modifications of general
experience are proper. But the individual should realize that he may be biased. As
we know. everybody thinks he’s a better driver than everybody else.
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J. H. Wiggins (J. H. Wiggins and Company)

Have you done anything that says, I'm not talking about gambling on me, but
say on my wife, my children, my next door neighbor, the fellow down the street, or
finally some person in Miami, Florida who I don’t even know? In other words,
how would this same kind of a thing deal with the case when it is a person other
than myself?

R. A. Howard

That’s what we call the value of a friend; it is discussed in the report referenced
in the paper. The model shows that when you value your friend as yourself, you are
willing to pay for him as yourself. As the degree of friendship goes down and down,
of course, you will logically spend less for him than you will for yourself. But, only
in the white pill case do I find this an ethically acceptable idea. You may not impose
serious risks on others, but you can save people’s lives so long as you don’t affect
them in any way in terms of coercing them. If you want to contribute to someone’s
medical plan, that’s terrific.

J. H. Wiggins

We’re doing Black Pill things all the time. All society is imposing serious risks on
others.

R. A. Howard

Many people are, but I am not intentionally going to do anything like that, or to
encourage it.
J. H. Wiggins

If you vote for a man who votes for certain legislation, then you are responsible?

R. A. Howard

I vote not because I support government coercion, but because I think it’s o0.k.
for a slave to use any means at his disposal to secure his freedom. I am not respon-
sible for the government any more than a slave is responsible for slavery.

M. E. Pate (Massachusetts Institute of Technology)

I have a practical question about the evaluation of public policy. I would like to
know what kind of figure you would recommend for a group of people, with
different ages, incomes, and risks. How would you aggregate their individual
figures?
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R. A. Howard

That’s precisely what I would not do. If we start a flying club of three or four peo-
ple and we want to decide what kind of airplane to buy, then I can provide a small-
risk life value to be used in a decision process I have agreed to. But I think it’s very
dangerous for people to say what other people’s lives are worth. Because once you
allow them that possibility, of course, you are open to their making the value as
small as they like. So I don’t like the idea of people setting a value on other peo-
ple’s lives. Ethically I think that each person may want to set a value for his own
life; that’s up to him. It’s all right for him to make such decisions, but not for other
people.

W. D. Rowe (The American University)

My question, Ron, is how many times a day do you have to make a calculation?
For example, I get into my car and I’'m driving along having made one calculation,
and suddenly I see an accident and I decide I want to remake my calculations
because of the imminence or the reminder of the reality factor. So there’s a
dynamic aspect here, isn’t there?

R. A. Howard

Life value should change with age and changing circumstances, as we have seen.
However, sudden changes would be unusual. You could spend your whole life
making life and death decisions, but that’s not what I am recommending. What 1
am saying is if you feel these issues are important this is a way to make such deci-
sions.

A. S. Curran (Dept. of Health, Westchester County)

Getting back to the last question about putting a value on others’ lives. In my
position as Commissioner of Health, I frequently have to do that in a flip-flop way
in that I am asking the taxpayer to pay a certain number of dollars so that he won’t
have trichloroethylene in his well or something. I am faced constantly with this
type of analysis that has to be done, and then peoples’ perceptions of what the risk
really is. I think what you’re talking about today can be very beneficial, but I think
we do have to sometimes assume that responsibility.

R. A. Howard

I don't like the imposition of that responsibility on people who don’t want it.
There was a discussion earlier today about the freedom of the individual. It seems
to me the ultimate freedom of the individual is to own and control his own life. So,
1 don’t like the idea of health commissions making decisions about my life, but |
guess a lot of other people must because we have a lot of such activity in our
society.
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B. Bruce-Briggs Slave. (Laughter) (New Class Study)

How would you handle a Typhoid Mary problem?

R. A. Howard

Typhoid Mary problem? I wouldn’t eat in a restaurant that didn’t inspect its
workers and require that they be healthy. Typhoid Mary worked in a restaurant.
Right? Look at the companies that have had problems with botulism in their can-
ned goods. What has happened to them? Well, they have been in real business
trouble. You can ruin your reputation when you take risks with what you put in the
can. No restaurant is going to risk ils repuiation by not having health examinations
for its employees. If you’re in the restaurant business, you don’t need a govern-
ment regulator to tell you that having such examinations is a pretty smart idea, par-
ticularly when there is no corporate limited liability to third parties.

A. Curran

But then you’re doing what you said you didn’t want to do because if I'm taking
the responsibility of saying I'm going to protect your health by sending in
sanitarians to inspect that restaurant, I'm making some kind of decision for you.
I’m assuming you want to be protected.

R. A. Howard

You heard me wrong. I don’t want you to protect me. I want the owner to do it in
his own self-interest. For one thing, he won’t ask the taxpayers for money to do it.

M. G. Morgan (Carnegie-Mellon University)

What sort of plans do you have to use the technique to examine a significant
sample of people so that we have some notions of how it would apply to different
individuals in different walks of life?

R. A. Howard

That’s a very good question. We have done, not what I would call experimenta-
tion, but rather class exercises with people of different ages and situations. There is
quite a bit of divergence; some people have $50,000,000 small-risk values and
others have $1,000,000 values. I have not done, nor am I likely to do, a sort of
demographic study based on this model. Some other people, I understand, are
interested in doing that. I wish them luck. I just hope that it won’t be used for pub-
lic policy decisions.
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LIFE AND DEATH DECISIONS

E. A. C. Crouch (Harvard University)

Then how do you evaluate the small-risk life value to apply to products if each
individual has his own?
R. A. Howard

Good point. You just display it on the product. In other words, if General
Motors is going to use a $1,000,000 value on life (I could have used other com-
panies, of course), they just stamp it on the bumper of the car. A Mercedes Benz
could have another number. As I said earlier, it becomes a product characteristic,
Just like color or how soft the seats are or anything else. Stating that a particular life
value was used when it was not would be fraud. I would like the small-risk life
value stamped on the product to be the indemnity paid by the manufacturer if
someone is killed using it as a result of its design.

E. A. C. Crouch

Then you leave it up to the individual whether he should get that car or not?

R. A. Howard
Who else?

J. Huntsman (Applied Decision Analysis)

Ron, how can we be sure that the information that companies state is truthful?
A sufficiently large company can lie about their information and there’s no other
information to go on.

R. A. Howard

Well, that would be fraud. Presumably at the time of trial all this would come
out. The papers would be subpoenaed and so forth and so on.

J. H. Wiggins
We have found that when you ask people what they would do and then see what
they really do. it's different. Can you use this method for real decisions?

R. A. Howard

1 use this method but I can’t tell you whether you ought to use it. | know I make
my safety decisions this way.
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D. McLean (University of Maryland)

I'm pursuing this small-risk life value number that’s been put on cars. Do you
propose that your analysis is limited to such personal product choices like cars or
that you put the same sort of number on a highway?

R. A. Howard

Yes, highways, too. Of course the small-risk life value applies only to small risks.

I didn’t have a chance to go into it, but where do you find death probabilities
outside the safety range, that is, probabilities of death from one in one thousand up
to one? They do exist in our society, mainly in medical problems. When you go to
the doctor and he recommends an operation, you're often dealing with pro-
babilities in that range and then you might use the more detailed model rather than
simply the small-risk life value. But in the safety region, with death probabilities
less than one in one thousand, then I'm quite content to use the small-risk life
value.
A. Kneese (Resources for the Future)

I'm sorry to cut off this very interesting discussion. If somebody has a question
that is just burning, 1*ll let him take one more question. Yes, sir.

M. Thompson (Insitute for Policy & Management Research)

You say you use this method yourself.

R. A. Howard

That’s correct.

M. Thompson

Well, honestly, I could not understand a word of it, so I can’t use it for myself.

R. A. Howard

From this short presentation, I wouldn’t expect anybody who hadn’t heard it
before to understand it. The paper will be clearer, and the report that is referenced
in the paper even more explicit. But perhaps you're saying not that you didn’t
understand it, but that you disagreed with it.

M. Thompson
Yes, I did disagree . . .
R. A. Howard

There is hope on that issue, too.
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Abstract

Using the decision analysis framework, an implicit value of life
can be determined for design decisions that have death as a possible
outcome. Our survey of the literature and our own calculations suggest
a great inconsistency in the implied value of life. We show that by
using a consistent, explicit value of life, the total expected number of
deaths from all projects can be reduced without increasing total
expenditures or reducing benefits. The explicit value of life directly
affects design decisions. Some recent research indicates that the value
that an individual places on his own life can be characterized by a few
assessments of the individual's circumstances and his preferences.

I BACKGROUND FOR DECISION MAKING

The decision analysis methodology shows that assessing and
combining three elements is essential to making a good decision. These
elements are the decision maker's uncertainty about the outcomes, his
values for the outcomes, and his attitude toward risk taking.(1)
Consider a utility's hypothetical decision of whether or not to
construct a new power plant. For simplicity, assume that the decision
depends only on whether future customer demand for electricity is 'high'
or 'low,' as shown in Figure 1. Four outcomes are possible: new
plant/high demand, new plant/low demand, no new plant/high demand, no
nevw plant/low demand.

Regardless of which decision the utility makes, the outcome is
uncertain because customer demand is uncertain. Uncertainty is an
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important part of a decision, and probability is the language that the
decision maker can use to describe uncertainty.(2) For example, the

utility might believe there is a 75% chance of 'high' demand and a 25%
chance of 'low' demand, independent of its construction decision.

A second element of the utility's decision is the values of the
four outcomes. Value means the worth that the decision maker attaches
to one outcome relative to another. A convenient measure of this worth
is dollars. The utility could base the value of the new plant/low
demand and no plant/high demand outcomes on the price at which it can
buy or sell energy to neighboring utilities and could also include the
subjective value of public or PUC reaction to these outcomes.

Finally, the utility's decision should depend on the company policy

toward taking risks. 1Including the decision maker's risk attitude in
the decision analysis is recognition that decision makers do not

generally make decisions on an expected value basis, but evaluate each
alternative at less than its expected value because the proposition is
uncertain.(3) Since the purpose of this paper is illustrative, we shall
ignore risk attitude for simplicity in our examples. In that case,
Figure 1 shows the expected value of the 'construct new plant' decision
to be 245, compared to 230 for the 'do not construct' decision,
Consequently, building the plant is the utility's best decision.

As this example shows, decision analysis analytically combines the
three elements provided by the decision maker to determine which
decision is logically consistent with the decision maker's information
and preferences. The determination of a 'design level of risk' for any
part of the nuclear fuel cycle or for the entire fuel cycle is a

decision. Thus, the design should depend on the three essential
elements: the values of the outcomes, the uncertainty, and the risk
attitude.

II NUCLEAR RISK ASSESSMENT AND THE VALUE OF LIFE

Government and industry have been engaged in quantifying the
uncertainties in the safe operation of reactors, transportation of fuel,

and storage of waste. However, deciding what risks are acceptable also
requires specifying the values of the consequences.

There is, perhaps, a natural reluctance to place a value on the
possible undesirable consequences. Some speakers at the 1977 Inter-
national Conference on Reliability and Risk Assessment in Gatlinbggg(u)
tried to avoid the problem by suggesting that a probability of 10~ of
one reactor accident per year for 100 operating reactors is low enough
to be acceptable without explicitly valuing the consequences of the
accident. Unfortunately, this approach implies a value of the
consequence and hides it from public view.
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We will use the example of Figure 2 to demonstrate how specifying
an 'acceptable' probability level implies a value of life. Suppose two
reactor designs, A and B, are available to produce a fixed amount of
power. A major accident produces the same consequences in both designs:
1,000 people killed and $10 billion in property damage. If there are
100 operating reactggs, the ggobability of occurrence of a major
accident will be 10 and 10 for a year of operation for Designs A and
B, respectively. However, 100 reactors of Design A cost $100 million

more than those of Design B (an additional $8.39 million for forty
years, amortized at 8%). The benefits D are assumed to be the same for

both designs and to be obtained in both outcomes. The expected value on
an annual basis from using Design A and Design B is:

Design A Design B
Deaths/year 1x 1073 10 x 1073
Damage/year $1 x 10” $10 x 10“
Cost/year C+ $8.39 x 106 C
Benefits/year D D

If Design A is accepted in preference to Design B, then the logical
implication is that the expected value of Design A must be more than
that of Design B. Since the benefits are the same for both designs, the
expected cost of Design A must be less than the expected cost of Design
B, Letting V be the value of life,

6 L

1x 1073V +8.39 x 0% + 1x 10 4

+C<10x103v+10x10"+cC

or
$922 million < V.

For Design A to be preferred to Design B, the implied value of a life
must exceed $922 million.

The only difference between the two reactor designs in this example
is the probability of a major accident. Making costly reactor design

changes that reduce an already very low probability of a major accident
implies a very high value of life. Of course, many design changes that

reduce the probability of a major accident will also reduce the
probability of minor accidents. Including this effect and others in a
more realistic example could reduce the implied value of life. However,
the point of this example is that every decision between alternative

designs that affects the probability of death also implies a value of
life.
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III INCONSISTENCY IN THE VALUE OF LIFE

Because 'acceptable' probability levels for accidents in different
industries have been defined without explicit consideration of the value
of life, there is great inconsistency in the implied value of life due
to different sources of risk. For example, D. Usher lists the implied
value of life as $34,000 to $159,000 from the hazard pay to miners
working underground, as $161,000 from the hazard pay to test pilots, and
as $140,000 from the instructions to military pilots on when to crash
land.(5) Linnerooth lists $140,000 as the value of life explicitly used
in the cost-benefit analysis of highways.(6) By comparison, our own
calculations show that the proposed interim criteria for LWR Radwaste
systems(7) imply a value of life of $5 million, and the EPA's proposed
Interim Primary Drinking Water Regulations(8) imply a value of life of
$2.5 million,

While we may disagree about the particular number that should be
used for the value of life, we should agree that a consistent
methodology for establishing the value is important. There is economic
inefficiency in treating life as if it is worth $5 million when setting
radiation doses and $.14 million when designing roads. By using a
consistent value of life, the number of deaths could be reduced without
reducing total benefits or spending more money.

As an illustration of the advantage of using a consistent value of
life in design, consider two projects, both at the design stage (Figure
3). For Project I, a decision must be made regarding the total project
cost C1, which can vary continuously over some range. There are only
two possible outcomes for the project. With probability P .(C.), the

project results in benefits B1 at cost C,. With probability 1-?1(0 ’
the benefits B, and cost C, still occur, but in addition N1 lives a}e

lost. The value of life associated with Project I is assumed to be V1.

As the cost of the project increases, the project is designed to
include additional safety features, and the chance that no deaths result
from the project increases. However, incremental safety is assumed to

be increasingly expensive, so
a® p,(c,)
<0.

2
dc,

The second project, Project II, is similar to Project I. However,
it has a chance of killing N, individuals, and the value of life for
this project is taken as V2.

The expected value of Project I, given that the project budget is
set to Cy» is
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(1) <vlc1> = P,(C)[By-C,] + [1-P (C))] [B,-C,-N,V,]

where the symbol <V|C1> denotes expectation of the project value V
conditioned on C1. The first order optimality condition for maximizing
equation (1) is,

(2) dP1(C1) 1

dcC N,V

1 11
Similarly, for Project II,

(3) ar,(C,) 1

dc, 2

Notice that the value of life explictly appears in these two equations.
Furthermore, since the second derivatives are negative, the cost of the

projects increases as the value of life increases and as the number of
possible deaths increases.

Let C.* and C,* satisfy equations (2) and (3) respectively. They
are the optimum costs for each project.

Now, suppose we maintain the same total cost for the two projects,
C.* + C %, and ask how to distribute that cost between the two projects
in order to minimize the total expected loss of life. The constrained

minimization is:
Min N.[1 - 91(01)] + N2[1 - PZ(CZ)]

+C,=C*+C*

Subject to C1 > 1 2

As a solution, we find

(4) e apy(cy)
1 ac, 2 ac,

Substituting (2) and (3) into (4) gives

(5) 1 1

By assigning a consistent value of life for all projects, one minimizes
the expected loss of life from all projects. If the value of life is
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inconsistent among projects, then it is always possible to redistribute
funds between the projects and reduce the number of expected deaths.

Unfortunately, most explicit life value calculations seem to be
based on the individual's value to others rather than on his own values.
One way to avoid this difficulty is to establish an individual's life
value based on the individual's preferences between the length of his
life and his level of consumption during it.(9) When this basic
preference is augmented by his attitude toward risk, his ability to turn
income into future consumption, and his remaining lifetime distribution,
we can derive an asymptotic life value that the individual would use in
an expected value sense. This value is asymtotic in the sense that it
applies to situations that involve a small probability of death.
Typically, this value turns out to be several times the economic value
of life based on the present value of future earnings,

An example from Reference (9) is that of a 25-year old white male
with an annual consumption of $20,000 per year facing a 5% interest
rate. Suppose he feels that a 1% decrease in his lifetime would require
a 2% increase in consumption to make him indifferent. Suppose further
that his risk attitude is described by a marginal willingness to accept
a lottery that is equally likely to increase his annual consumption to
$26,000 or decrease it to $17,000. Then we can calculate that his
asymptotic life value is about $2.4 million, while his economic life
value is only about $360,000, less than 1/6 as great. The $2.4 million
value would apply for life pisks less than, for example, 1/1000. 1If

this individual fagsd a 10° egance of dying, he should require
compensation of 10° ' (2.4 x 10°) = $240 to undertake the risk.

IV WHERE IS AN EXPLICIT AND CONSISTENT VALUE OF LIFE NEEDED?

We have focused on one consequence of a major reactor accident,
death. A complete value model for the consequences of a major accident
must also include the value of non-fatal somatic health effects and a
variety of genetic effects.(10)

A major reactor accident, itself, is only one of the outcomes of
the many that may result from the operation of a nuclear plant. Other
outcomes are energy, waste, and plutonium production without incident;
sabotage of the reactor; and diversion of the reactor-produced

plutonium. If the government faced the policy decision of whether to
support development of nuclear energy generation in preference to coal,

all of these nuclear plant operation outcomes and a similar set for coal
plant operation would have to be evaluated.

For this high level decision, the value of life, or indeed the
value of all external social costs (the cost of death, genetic damage,
etc.) may not be particularly important to the decision. For example,

using the illustrative data from "The Economic and Social Costs of
Nuclear Power," Reference (11), the total external social cost from
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nuclear power is .08 mills/kwh compared with the economic (internalized)
cost of 24.9 mills/kwh. Since social cost is so small, the total cost
of nuclear energy is not very sensitive to the value of life.

Where consistency in the value of life and other social values 1is
very important is at the engineering and operating decision levels.
Tradeoffs between improved emergency core cooling system design and
increased cost depend directly on the value of life, as suggested by our

last example. Designing against sabotage may increase plant personnel
radiation exposure, and both the consequences of sabotage and the

consequences of increased personnel exposure depend on the value of
life. In addition, an explicit statement of the value of life is
crucial since the different design criteria are set by different
government agencies and implemented by different companies.

V SUMMARY

We have discussed the decision analysis approach to risk assessment
and used it to show that specifying an 'acceptably low' probability for
an outcome involving death implies a value of life. Our brief survey of
the implicit values of life used in several instances shows a large
inconsistency. The probability of death could be lowered without
reducing benefits or increasing costs if a single value were used in all
cases, as we demonstrated with a simple example. Finally, we suggested
a value of life computation that could be used to determine the value of
life to an individual affected by governmental decision making. The
designers of a project must recognize the value of life, either
explicitly or implicitly, when the project budget is specified.
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The Design of Hazardous Products
DANIEL L. OWEN

Abstract—The kind of information required by the designers of hazardous
products in order to provide individual consumers with their desired level of
safety is considered. Normative consumer behavior with respect to multiple
hazards, involuntary hazards, and public hazards is examined. Finally, a
free market for safety is shown to be possible if corporate liability is
properly arranged.

INTRODUCTION

Most research in the general area of safety has addressed the
problem of how someone acting in the public interest should
make safety decisions [1], [2]. Consequently, researchers have
focused on two major components of that problem: the assess-
ment of public attitude and the appropriate procedure for balanc-
ing costs and benefits of various actions affecting the public.
Public attitude is important because from it comes the values,
uncertainties, and attitudes toward risk-taking that are included
in the cost-benefit equation.

At a recent General Motors conference on safety [2], Slovic et
al. discussed psychological biases in public perception, including
the disagreement between the statistical frequency of death and
publicly perceived frequency of death for low-probability events
[3]. Stan [4] and Schwing [S5] have felt that by analyzing dangers
that people currently face, one might gain insight into the public
attitude toward safety.

With regard to the proper method of combining societal costs
and benefits, there is an entire economic literature of welfare
theory. The history of the application of welfare theory to safety
issues is documented by Linnerooth [6]. In addition, Linnerooth
discusses what she calls the “policy dilemma” resulting from a
conflict between the economist’s desire to reduce the total num-
ber of lives lost and the willingness-to-pay principle [7]. Her
paper provides recommendations to the analyst or policymaker as
to the appropriateness of the two formulations under various
circumstances.

In this correspondence, we address a different problem from
that addressed by most research in the safety area. Our concern is
how an individual should make safety decisions about his own
life and how he can communicate his desires to the product
designers. Given an individual’'s information and preferences,
there are certain normative implications for decisions affecting
his own life that result from the theory of decision analysis [8]. A
descriptive assessment of public attitude is irrelevant to this
analysis because of our normative approach. Since our focus is
individual decisionmaking, we also do not have the theoretical
and practical difficulties of social cost-benefit analysis.

DESIGNING FOR SAFETY IN HAZARDOUS PRODUCTS

In general, design problems involve trade-offs between a large
number of product attributes, such as size, output, efficiency,
safety, and cost. We are concerned exclusively with the trade-off

Manuscript received March 15, 1980; revised January 26,
1981 and July 7, 1981,

The author was with the Decision Analysis Group, SRI
International, and the Decisions and Ethics Center, Stanford
University, CA. He is now with Strategic Decisions Group,
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0018-9472/81/1000-0714,

of cost against safety. In order to address this issue, we use a
simple design problem featuring only these two attributes. Though
the results are developed by focusing on engineering design, the
results are applicable to toxicity levels of various chemicals as
well as other hazardous products.

Suppose we are approached by a client who wants us to design
a hang glider for his use during the next year. Since he is very
concerned about the possibility of death or serious injury from its
use, he is not sure that the commercially available models are safe
enough. After considerable effort, we are able to determine the
feasible set of hang glider designs. Let P(c) be our client’s
subjective probability assessment that he is not killed as a result
of a hang glider accident, where ¢ is the safety cost of the hang
glider. Let the boundary of the feasible set of hang glider designs
have the following properties over some range of c:

dP(c)
dc

and

d*P(c)
dc

These properties imply that increasing safety is increasingly more
expensive, as shown in Fig. 1.

The design problem is to select a safety cost ¢ for the product
design, when the user will face death with probability 1 — P(c).
This problem is presented in decision tree form in Fig. 2. The box
and branches on the left represent the design decision about the
safety cost of the product. Following the design decision, the user
will use the product and live with probability P(c) or die with
probability 1 — P(c). The benefits B of this design are assumed
to be received whether or not the user is killed and nonfatal
injuries, pain, and suffering are not considered. Of course, these
simplifications could be relaxed at the expense of some additional
complexity in the model.

This figure shows that any selection of safety cost implies a
particular balance between the client’s resources and his chance
of death. For example, a wealthy man could easily afford to
reduce the risk of death to a very low level while a poor man
could not, and for a given level of wealth we might expect Evel
Knievel to accept a higher value of 1 — P(c) than you or I.

This author thinks most people would agree that this balancing
of risk and cost is best done by the individual who is exposed to
the risk. Professor Ronald A. Howard’s work on life and death
decision analysis shows how an individual can characterize his
own balancing of cost against the risk of death by a single
number— the small-risk value of life [9], [10]. Howard begins with
the premise that in selecting a level of safety an individual is
trading off consumption against lifetime. The individual could
choose to live in relative safety without much consumption,
having spent it all on reducing hazards, or have relatively more to
consume by living dangerously. Howard shows how quantifying
an individuals’s preferences for this trade-off leads to the compu-
tation of the small-risk value of life.

For example, Howard considers the case of a 25-year old male
with a constant annual income of $20 000, who is indifferent to a
one percent decrease in lifetime coupled with a two percent
increase in consumption. With a risk tolerance of $6000 and a
real interest rate of five percent, this individual’s small-risk value
of life is computed to be about $2.4 million. The small-risk value

<0
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Fig. 1. Properties of feasible set of designs.
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Fig. 2. Designer must select safety cost ¢ for design. O: safety outcome.

of life is the number of dollars an individual should attach to his
life when he or a designated agent makes a decision that involves
a very small possibility of the individual’s death.

Returning to the design problem, as designers we could send
our client to Professor Howard to have his small-risk value of life
computed. When the client returns with his small-risk value of
life V, then our design decision is described by Fig. 3. Since
the value of life, as computed by Howard’s method, incorporates
the effects of the client’s risk attitude, the value of the design
to the client is its expected value:

P()[B=c]+[1—=P(c)][B—c— V]
The condition for maximizing this expected value is

dP(c) 1
vV )

If the probability of proper operation of this product P(c) is
interpreted as its safety, then (1) states that the safety cost of the
product should be adjusted until the marginal safety is equal to
the reciprocal of the client’s value of life. Using a higher value of
life increases safety, represented by P(c), and since the second
derivative is negative, also increases the cost. The properties that
we have discussed above for the boundary of the feasible set of
designs assure an optimum at some cost.

A particularly popular notion is that the whole question of
value of life can be avoided by setting the chance of death from a
product at some low level, say 10 ~©. For example, this view was
presented by some speakers at the Symposium on Nuclear and
Non-Nuclear Energy Systems, Risk Assessment, and Governmen-
tal Decision Making held in Washington, DC, on February 5-7,
1979 [1]. However, for any particular value P(c) there is a
corresponding level of marginal safety dP(c)/dc and a value of
life implied by (1). This equation clearly shows that a safety
decision made on the basis of cost or probability implies a value
of life [11]). Studies have identified a large inconsistency in the
implied value of life in past safety decisions [12], probably
because they were made on the basis of cost or probability.
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Fig. 3. Designer’s problem with client-supplied value of life V. O: design

decision.

THE IMPORTANCE OF CONSISTENCY

Impressed by our understanding of the trade-off between cost
and safety, the client asks us to design a parachute for skydiving
to be used during the same period as the hang glider. The safety
decision for the simultaneous design of the two products is
displayed in Fig. 4. The cost of product 1, c,, and the cost of
product 2, ¢,, are specified during the design, and then the client
faces the possibility of death from each of these products. Notice
that each product has its own functional relationship between
safety and cost. Initially we assume that the client may provide
different value of life assignments for the two products. If death
results from product 1, then it cannot also result from product 2.
Hence the expected value of the two products is

Bi—c,+B,—c,— (1= P)V,— P(1 — P)V,,

and the first-order condition for the optimum design is, for
product 1,

dPI(C)__ 1 1
dc|l —VI_VZ(I_P2)~7I )

and for product 2,

dh(c) _ 1 _ 1 3)
dc, PV, ¥,

The approximation results for small risks where P) =~ P, =~ 1.

Let C} and C3 satisfy (2) and (3), respectively. Now suppose
we maintain the same total cost for the two products C} + C5
and ask how we can minimize the aggregate probability of death.
The constrained minimization is

min 1 — P,(¢,)Py(c,)
subject to
cte,=CF+Ch.

As a solution we find

ap, _ , dP,
P2 dC| -4 dCZ ’ (4)
Substituting (2) and (3) into (4) gives
Vi=",. )

By using a consistent value of life for all products, one mini-
mizes the total chance of death from all products. If the value of
life is inconsistent among products, then it is always possible to
redistribute funds to reduce the chance of death without addi-
tional expenditure [11].

INVOLUNTARY RiISK OF DEATH

Suppose an individual is forced to accept and pay for a
product, which we call product 1, that he does not want. For
example, some people would have preferred not to have paid for
the seat-belt system that was mandatory on 1974 automobiles.
Presumably, the individual does not want that product because
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Fig. 4. Simultancous design of two hazardous products.

TABLE
Risk DESIGN CONDITIONS
Voluntary Involuntary
Risk Risk

Exposed individual dp _ 1 P _ 1
bears product cost dc vV de — vV
Exposed individual dP 1
does not bear prod T
uct cost ¢

he believes it has a negative expected value. We will refer to
products with a negative expected value that must be undertaken
as involuntary. (Of course, the expected value should be taken
considering all attributes of the product including fear, injury,
death, etc. Those attributes could easily be added to our model.)
Suppose there is also another product, product 2, that the indi-
vidual voluntarily accepts.

If we are requested by this individual to design the two
products for him, we find that the representation of Fig, 4 is still
appropriate, (5) still applies, and the same value of life should be
used for both products. Consequently, the involuntary nature of a
product does not alter the normative design conditions. In ob-
taining this result we assumed that the individual who is exposed
to the product pays its cost and determines its design.

A much preferable situation is for those who want an individ-
ual to use the product to compensate him so that he is indifferent
between not having the product and having the product with
compensation. Voluntary acceptance by the compensated individ-
ual requires that his expectation for the product be nonnegative,
or a minimum compensation payment D given by

D= —-B+c+[l—-P(c)]V.

The compensation D must equal the expected loss from the
product. Those who pay the compensation want to design the
product to minimize compensation. Hence their problem is

min{ —B + ¢ + [1 = P(c)]V}
which has the familiar solution,
dP(c) 1

dc V'
Notice that V, the small-risk value of life, is provided by the
exposed individual.
A summary of these results in Table I shows that the design
condition is the same in several very different situations. The first

Belief of Individuals

A and B
S S—
! -
P(c) -~
Belief of Individual
Probability of C
Safe Operation | (
| ’/
i e
‘ -
| ~
«
—— —_— e

Total Cost c
-of Proect

Fig. 5. Group of individuals disagree about absolute level of safety, but agree

about marginal cost of safety.

row corresponds roughly to democratic action. For example,
three individuals may have the different beliefs shown in Fig. 5
about P(c). Because individuals 4 and B believe a proposed
product to be relatively safe, they vote to implement it. Individ-
ual C may see the expected value of it as negative because he
believes it is relatively unsafe. The product gains a majority vote,
and the product is forced upon C. Though he disagrees about the
advisability of the product, individual C should agree with the
others about its design according to (1) if he has the same value
for his own life as 4 and B assign to theirs, agrees with the others
about the marginal cost of safety dP/dc, and pays for his own
product.

The first column of the matrix corresponds to a system in
which the group accepts only those products to which no member
objects. This unanimity is achieved through side payments. Un-
der the assumptions above, those who require compensation and
those who do not require it would still agree on the product
design.

The lower right box of the matrix occurs when an individual is
exposed to a risk but has no say in the design level of safety. In
this situation, the exposed individual must rely on the altruism of
those who make the safety decision. Hence, our conditions for
agreement on the safety design can be summarized with the
following.

Theorem: Given individuals who assign identical values to
their own lives, V for use in the design of hazardous products,
and who agree about the marginal safety per dollar on the
boundary of the set of feasible designs dP(c)/dc, then there
should be broad agreement on how to design the hazardous
product among

1) those who think the product has a positive expectation and
have to pay its cost,
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2) those who think the product has a negative expectation and
have to pay its cost,

3) those who have been compensated to be indifferent between
not having the product and having the product with com-
pensation,

4) those who pay compensation to get the product accepted.

An important point is that this result is derived by considering
the value to the individual facing the risk. It is the exposed
individual’s subjective evaluation of probability (not necessarily
official estimates) and his own value of life assessment that must
be used in determining that expectation.

While there may be strong disagreement among individuals
about the absolute level of safety P(c) afforded by some particu-
lar design, agreement about the marginal safety dP(c)/dc seems
much more likely.' Agreement about the level of safety—that is,
the probability of safe operation—is not required for agreement
about the design of the product.

A MARKET FOR SAFETY

So far, our development has depended on perfect communica-
tion between the individual exposed to a hazardous product and
the designer of the product. In large projects affecting many
individuals or where a single product is designed for consumption
by many individuals, direct communication with the product
designer is impractical. Therefore we want to consider the design
of hazardous products from the producer’s side to determine
under what conditions a market for safety might exist.

The design problem for the corporate designer is shown in Fig.
6. Following a decision about the safety cost ¢ of the product, it
will operate as intended with probability P(c) and will kill the
user with probability 1 — P(c). The company makes profit 7(c)
in either event, but incurs a liability loss L if the user dies
because the product fails. Selecting the product cost ¢ on the
basis of net profit maximization and assuming risk-neutral de-
cisionmaking by the corporation gives as the design condition

P _ 1 dn(c) ©
dc L dc
Two conditions that would cause the product designer to select

the same level of safety as in our previous examples, where he
works directly with the client are

L=V (6a)
and
dn(c) _
A -1 (6b)

Hence if the level of the liability award is equal to the customer’s
value of life and if each dollar of added safety decreases profits
by one dollar, the company will design according to the level of
safety desired by the client.

A ‘possible way to implement the first condition is for the
manufacturer to label his products with the value of life used in
making his design safety decisions. For exdmple, a power lawn-
mower manufacturer could have an “Evel Knievel” model selling
at $39.95 with a ¥ = $100 000 and a “Howard Hughes” model
selling at $229.95 with a ¥ = $2 000 000. Along with the purchase
of either one comes a guarantee to pay V in the event the
lawnmower kills its user due to design failure. Consequently, a
market for safety is created that allows the consumer the freedom
to choose his own level of safety.

This market for safety would also eliminate the need for the
consumer to explicitly compute his own small-risk value of life.
Successive purchases of hazardous products would lead the con-

'For example, the probability of a core meltdown in a nuclear power plant is
difficult to assess and apparently subject to a great disparity of opinion.
However, the reduction in meltdown probability resulting from the addition of
an auxiliary feedwater pump is easier to assess and less controversial.

. 10, oCTOBER 1981

m(¢) - L

P(c)

m(c)

Fig. 6. Corporate designer selects design cost that balances profits against
possible liability losses. Corporate designer’s problem: Max, m(c) — [l —
P(o)L.

sumer to a level of safety consistent with his own resources, just
as he settles on a level of shoe quality consistent with his own
resources.

Since profits are revenue less cost, condition (6b) requires that
the corporate revenue be independent of the safety cost of the
product. Furthermore condition (6b) will not be satisfied if
revenues depend on the probability that the product operates as
intended, since that probability depends on the cost. Given the
postulated liability payment, consumers should purchase
hazardous goods on the basis of the value of life used in design,
ignoring the probability of death and the safety cost of the
product. The value of life incorporates and balances both of these
concerns. Thus if consumers make decisions consistent with their
own value of life, condition (6b) is satisfied.

SAFETY AS A “PuBLIC” GOOD

In the above discussion on involuntary risk, we considered only
products intended for individual use and did not address the
design of products that may be hazardous to large numbers of
people simultaneously. In the latter case, safety or P(c) takes on
the characteristics of a “public” good, because use of the safety
by one individual does not detract from the use of it by another.
Suppose a particular product has benefits B and can be purchased
from the company at a price ¢, the safety cost. Then a designer
authorized to act on behalf of a group of three individuals faces
the decision shown in Fig. 7. Notice that we are not trying to
solve the problem of how a group should make a decision.
Furthermore this authorized decisionmaker is not a government
administrator. Rather, the authorized decisionmaker is a designer
for the group with perfect information about the beliefs of the
individuals in the group. This section is included primarily to
show that the previously obtained liability results hold for a
group of individuals, each with a different value of life.

Solving as before, the resulting desigr ndition is

dP(c) _ 1
de Vit WtV

(™

The appropriate design condition for a hazardous product affect-
ing many people is obtained by summing the values of life that
each individual assigns to his own life.

Fortunately under the liability conditions discussed in the
previous section, the company has an incentive to make decisions
as if they were the decisionmaker acting on behalf of the individ-
uals affected by the product. A company undertaking this
hazardous product sees revenue less the safety cost ¢ as profit.
However if the company faces a liability L equal to the cumula-
tive life value of the exposed individuals in the event of malfunc-
tion, then its expected profit is

7(c) = [1 = P(c)]L (®)
or
7(c) = [1 = P()](V, + Vo, + 13).
Maximization of expected profit leads to
dP dc 1
-~ ®

dcdm ™ V,+V,+ V'
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B-c-V, -V, -V3
1 - P(c)

P(c)
B - c

Fig. 7. Designer's problem for a product hazardous to three people. Design-

er’s problem: max, B — ¢ — [1 — P(c)((V, + Vy + V3).

Under our earlier assumption that dw/dc = —1, (9) and (7) are
identical.

One important observation about this result is that each of the
group members may assign a different value to his own life. The
company designing the product would then agree to pay different
liability payments for the death of these individuals.

SUMMARY

The information required by a designer of a hazardous product
is the small-risk value of life, which is assigned by the individual
exposed to the possibility of death. With this information the
designer can equate marginal safety to the small-risk value of life
to obtain the optimum design for that individual. An individual
should strive to maintain a constant value of life or marginal
safety for all hazardous products in order to minimize his total
chance of death from all sources. Maintaining equal probabilities
of death among hazardous products is not desirable because the
individual could reduce his total chance of death without addi-
tional cost by redistribution of the expenditures for the products.

Even though an individual may dislike involuntary exposure to
hazardous products, if he must bear the product cost, the design
condition should be the same whether or not the risk is voluntary
and whether or not compensation is paid.

Under certain liability and consumer behavioral assumptions, a
market for safety appears possible. By tying the corporate liabil-
ity to the consumer’s value of life, the corporation has an
incentive to design the product consistently with the consumer’s
preferences. Even products exposing large numbers of individuals
to a chance of death would be designed as if the corporation were
acting on behalf of the individuals exposed to the risk.
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INTRODUCT ION

An environmental health decision is one that changes the health and safety
of workers or the public. Installing safety or emission-control
equipment, changing production processes or work practices, putting
warning labels on products, and setting priorities for health-related
research are examples of environmental health decisions. In the past,
many companies focused on complying with current government regulations.
Companies relied on government standards because the hazardous nature of
many substances had not been established, because technology was not
available to detect low levels of hazardous substances, and because
companies did not have an effective methodology for deciding whether they
should adopt stricter standards.

However, the situation is rapidly changing. Awareness of the health
impacts of many substances has increased greatly. Also, instrumentation
for detecting hazardous substances and techniques for toxicologic and
epidemiologic research have improved greatly. Moreover, concerns about
potential liability have also led companies to direct greater attention
towards environmental health problems. Finally, court awards and
settlements amounting to millions of dollars are increasingly common.

Although environmental health decisions are more commonplace, industry is
still limited in its ability to adequately handle these decisions. Health
experts may not communicate their recommendations in terms that
businessmen understand, and business managers may not understand
complicated medical information generated by health scientists. In
addition, because environmental health risks may be imposed involuntarily,
management time is spent on value issues that are difficult to resolve.

Environmental health decisions are also uniquely difficult to analyze.
The probabilities of detrimental health outcomes are often so small that
it is difficult to have any confidence in whether there is justification
for concern. There may be the potential for catastrophic outcomes or
irreversible effects. In addition, there is often a long latent period
between the exposure and the onset of the health problem, making it
difficult to draw cause-and-effect conclusions.

Some companies have tried a new approach to increase confidence in their
health and safety decisions: decision analysis. In the past, decision
analysis has been routinely applied to forecast the range and likelihood
of financial outcomes resulting from important decisions. Today, the same
techniques are being used to forecast health and safety outcomes.

To demonstrate the insights that can be gained by applying decision
analysis to environmental issues, we will describe an example of a
company's decision to make a capital investment to reduce its workers'
exposure to asbestos fibers. Although the example is hypothetical, it
draws heavily from several actual analyses and is similar enough to them
to provide general insights. We have constructed a hypothetical case
because potential liability implications make the actual environmental
health decisions we have analyzed too sensitive to discuss.
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THE ASBESTOS RISK

In 1953, a major manufacturing company, Loftus Inc., installed sprayed-on
asbestos insulation in the ceiling of its Odessa plant. Between 1953 and
1967, accumulated evidence showed that exposure to asbestos fibers caused
serious side effects such as asbestosis and lung cancer. Loftus had taken
a strong stance on safety. It was unclear whether vibration of the plant
equipment and deterioration of the asbestos insulation were releasing
asbestos fibers into the work environment. Also, since the Occupational
Safety and Health Administration (OSHA) had not yet been established, no
regulatory standards existed for asbestos exposure. However, the company
voluntarily followed work practices to comply with the standard of

12 fibers per cubic centimeter (f/cc) recommended by the American
Conference of Government Industrial Hygienists (ACGIH).

However, in 1967, increasing concern that workers might be exposed to
asbestos fibers led the company to consider three options for handling the
insulation. One possibility was to maintain the "status quo" and do
nothing. However, this option might not achieve a satisfactory level of
compliance if the proposed OSHA later promulgated regulations about
exposure to asbestos. In addition, the potential 1iability under the
status quo could be tremendous.

A second choice was to repair the insulation, which involved removing and
replacing any insulation containing crocidolite asbestos fibers (thought
to cause the most serious problem) and sealing any insulation containing
chrysotile asbestos. The capital cost of such repairs was $500,000 on a
plant with an annual profit of $10 million. In addition, inspection and
resealing would add an annual cost of $100,000. Repairing the insulation
would be more likely to comply with OSHA regulations and would reduce (but
not eliminate) potential liability.

The most expensive option was to remove and replace all asbestos
insulation with other materials at a cost of $5 million. This decision
would allow Loftus to comply completely with any air quality standard or
with a standard requiring the use of the best available material.

The medical department and the operating division of the company were
divided about the asbestos decision. The medical staff was concerned
about the risks to workers and wanted to replace all asbestos insulation.
The staff was unhappy that its recommendations were being questioned
because of a cost-conscious mentality prevailing in the company. The
staff felt an ethical compulsion to replace the insulation, because a
clear risk had been demonstrated.

The operating division, on the other hand, did not want to change the
status quo. It argued that any money spent before the regulations were
set might be wasted. In addition, it did not know how to evaluate the
quality of the health department's recommendation. The operating division

kept asking "How serious a problem is this?", without getting an answer it
could understand.
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Finally, Loftus tentatively decided to repair the asbestos insulation.
This seemed a good compromise between the recommendations of the medical
department and those of the operating division. Although it was a
satisfactory decision, management was not confident that it was the best
decision.

THE DECISION ANALYSIS APPROACH

Because she was uncomfortable about the decision, the president, Ann
Loftus, decided to undertake a decision analysis. She assigned Bill
Rowan, her staff assistant, to lead the analysis. Bill's first step was
to structure the analysis by defining the decisions and the uncertainties
facing the company. He reasoned that the decision about the asbestos
insulation could be made immediately or postponed into the future. In
addition, a decision to stick with the status quo now could be changed by
a decision to repair or replace later. A "redesign" decision would be
made if OSHA set a standard lower than the current ACGIH standard of

12 f/cc, or if the company accumulated operating experience that exposures
were larger than expected. Bill decided to include in his analysis an
option to redesign after five years.

Bi1l consulted the government relations department about whether QSHA
standards would be set lower than those currently recommended by ACGIH.
The department thought the OSHA standards would depend on the results of
the research currently under way at an independent laboratory. The
research was designed to investigate whether there is a threshold level
(at 2 f/cc) below which there is no health effect. If a threshold was
indicated, the department expected OSHA to promulgate a standard at

2 f/cc. On the other hand, if the threshold was disproven or if the
research was inconclusive, OSHA would revise the standard, but probably
less drastically. The government relations staff assessed only a 20
percent chance that the standard would be set at 2 f/cc in this
situation. There remained an 80 percent chance that a standard of 5 f/cc
would be set if the threshold effect was not confirmed.

The next step in Bill's analysis was to quantify the range and 1likelihood
of possible worker exposures. Initially, the medical personnel were very
skeptical about whether the exposures could be quantified, because there
was so little information. Although no significant exposures had been
detected thus far in the tests of personnel samplers worn by workers, some
high, short-term exposures could have been missed, since exposures could
fluctuate greatly from time to time and place to place. In addition, the
scientists realized that the existence of other fibrous particulates in
the air made the asbestos analysis difficult.

Continuous monitoring and complete analysis by electron microscope would
have eliminated much of the uncertainty in exposures. To date, however,

these more complete tests had not been undertaken because expected
exposure levels did not warrant the added expense.
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Bi1ll consulted the industrial hygienist most familiar with the plant. The
hygienist, who was not used to quantifying his judgment about exposures,
was initially reluctant to give any estimates. Eventually, he estimated
that if the status quo were followed, there would be about a 10 percent
chance that workers would experience significant exposures to asbestos
fibers within five years. By "significant," he meant a level of 5 or

10 f/cc. He also thought that exposures would be lower with repair than
under the status quo. In addition, he estimated that if repairs were
done, there would be a 5 percent chance that a significant release of
asbestos would occur within five years.

Because the estimates of exposure were critical to the analysis, Bill
attempted to verify them. First, ne consulted a materials scientist about
the chance that asbestos fibers would be released from the insulation.
Then, he asked the hygienist to estimate the concentration of fibers that
would be present in various plant locations if fibers were released.
Finally, he consulted plant operating personnel about work practices and
the time that workers spent in each location. The resulting exposure
levels that were calculated confirmed the hygienist's original direct
estimates of exposures. Seeeing this result, the hygienist was willing to
sign of f on the exposure estimates.

Initially, Bill decided to focus on only one serious health effect: Tung
cancer. The health experts were uncertain about the appropriate
dose-response relationship for predicting the fraction of the worker
population that, given a particular exposure to asbestos, would develop
lung cancer. The best data on the dose-response relationship was from
laboratory experiments on animals at doses above the current standard.
Because of limitations in these studies, a number of questions remained
unanswered. For example, the latent period between the exposure and the
onset of cancer, the existence of a threshold, and the rate at which the
number of cases increases with exposure were not known.

To model this uncertainty, Bill asked the medical staff to estimate the
number of responses that would result from a purely hypothetical situation
involving ideal laboratory or field conditions. For example, suppose that
10,000 workers received a specified constant dose for 5 years, and that a
cellular examination for cancer was performed after a latent period of

20 years. With this specification of the dose and the methods for
measuring the response, the medical staff felt confident in quantifying
its judgments about response. Of course, where hard statistical data were
available, he let the staff review the data before giving its estimates,
or he incorporated the data explicitly in the analysis. In this way, the
estimates were consistent with all the available hard and soft data.

Bi11 was surprised to find that experts with differing information and
experience did not necessarily disagree about the number of workers that
would respond to a given dose. In particular, the toxicologists who
conducted experiments on laboratory animals and the epidemiologists who
gathered data on human populations estimated the same dose-response
relationship when questioned individually. However, a leadin

toxicologist hired by the company as a consultant disagreed with the head
of the company's toxicology laboratory. Bill got them together to discuss
their differences and eventually discovered that they disagreed because
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they had different recollections of a particular piece of research
relating to the body's defense mechanism. After reviewing the literature,
they discovered that their estimates of the dose-response relationship
were the same.

After careful consideration, the experts agreed that there was still
uncertainty about the appropriate dose-response relationship. Thus, they
decided to use two curves, shown in Figure 1, to represent the range of
possible relationships. Curve A is a linear relationship between dose and
response with a threshold at zero. This curve corresponds to the
conservative assumption of most regulatory agencies that any exposure to a
hamful substance results in some health effect. Curve B has a threshold
of 2 f/cc; below this dose, there is no effect.

FIGURE 1: TWO CURVES WERE CHOSEN TO REPRESENT THE
RANGE OF DOSE-RESPONSE RELATIONSHIPS.

01 1

Response (Incremental Fraction of Workers
Developing Lung Cancer After 20 Years)

.001

1 10 100

Asbestos Exposure Over 5-Year Period
(8-Hour Time Weighted Average) in f/cc over 5 pM in Length

The medical staff believed that the estimate about which curve is
appropriate would be influenced by the outcome of the research currently
under way to investigate the existence of a threshold at 2 f/cc. If there
was a threshold effect, then Curve B would certainly be appropriate.
However, if the threshold effect was not confirmed or the research was
inconclusive, they estimated a 90 percent chance for Curve A to be
appropriate and a 10 percent chance for Curve B to be appropriate.
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The Decision Tree

A decision tree (see Figure 2) shows all the possible scenarios that could
occur, given the design and redesign decisions, and the uncertainties that
make these decisions difficult. Located at the far left is the 1967
design decision. The options to maintain the status quo, to repair, or to
replace the asbestos insulation are shown as branches at the square
decision node. Then, within five years after this decision is made, the
current research to investigate the threshold effect will be completed.
The branches marked "yes" and "no" at the round node show the two possible
outcomes of the research. Also, by this time, the newly proposed OSHA
will have promulgated regulations about asbestos exposure, and the company
will have accumulated some operating experience with exposures. In 1972,
the company will have the option of redesigning if warranted by OSHA
regulations or the company's operating experience. After the redesign
decision, additional operating experience will accumulate. Finally, as
shown on the far right, one of the two dose-response curves will be
appropriate. Which curve will be judged most appropriate depends on the
results of the current research.

FIGURE 2: THE DECISION TREE SHOWS ALL THE POSSIBLE
SCENARIOS THAT COULD OCCUR.

2 t/cc 1972 OSHA EXPOSURE IN EXPOSURE IN DOSE-
1967 DESIGN THRESHOLD STANDARD 1967-1972 1972 1972-1987 RESPONSE
DECISION CONFIRMED f/cc f/cc REDESIGN f/cc CURVE
ZERO
STATUS QUO YES 10 THRESHOLD

NO
REPAIR 5 CHANGE 5
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Each scenario, or path through the decision tree, results in financial and
health outcomes. For example, suppose that the company spends no money to
repair or replace the insulation, but no exposures result from equipment
vibration and deterioration of the insulation. This scenario might be
called a "best case," because it results in a low capital cost and no
health effects. In a different scenario, one at the other extreme,
suppose that the company initially does not make any change in design, but
high exposures accidentally occur and the conservative dose-response curve
with a zero threshold turns out to be appropriate. At the same time,
stringent OSHA standards are set, forcing the company to replace all of
the insulation after five years. In this "worst case," there are both
high capital costs and substantial health effects. Of course, these
scenarios are only two of the many that could occur. Al]l the possible
scenarios are represented in the complete decision tree.

Results

The expected net present values and health effects for each design option
are snown in Figure 3. The net present values are calculated from the
discounted cash flows of the differences between the profits from sales of
the product produced by the plant and the capital and operating costs of
thne immediate design option and any downstream redesign. The health
effects are the expected number of cases of premature death due to lung
cancer in the population of 2,000 workers. These expected values are
averages of all the outcomes from the scenarios displayed in the decision
tree, weighted by the probabilities of the scenarios occurring.

FIGURE 3: EXPECTED VALUES SHOW THE TRADE-OFFS MADE IN THE
1967 DESIGN DECISION.

EXPECTED VALUES

NUMBER OF DEATHS

1967 DESIGN NET PRESENT VALUE PER 2,000 WORKERS
DECISION ($ MILLIONS) PER YEAR OF EXPOSURE

STATUS QuoO 104 .143

REPAIR 102.5 .078

REPLACE a9 0

On the basis of expected values, Loftus had to admit it faced a
"problem." The number of incremental premature deaths that could result
from exposure to asbestos fibers was significant. Also, the probability

of death under the status quo or repair alternatives was nearly as large
as many other risks to which individuals are exposed. For example, under
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the status quo, .14 additional deaths from lung cancer would be expected
per year of exposure among the 2,000 workers. By comparison, a general
population of 2,000 people would experience .6 deaths from motor vehicle
accidents and .2 deaths from falls over the same period.

However, Bil1l knew that management would be reluctant to approve the
capital expenditure for replacing all the asbestos on the basis of a table
of expected values. Expected values do not show the complete range of
health effects that can occur. Also, there would undoubtedly be questions
about the "value of 1ife" that was being implied by a replace decision.
Was the company being more conservative about asbestos than about other
health and safety issues?

The company lawyers cautioned Bill about how to present the results to
management. Because of liability implications, they felt that the company
could not afford to put explicit dollar values on the health effects to
compare them with the financial outcomes. In addition, they cautioned
that small changes in the wording of the final report could make a big
difference concerning liability.

Bill decided to present the case for replacement in two ways. First, he
used the decision tree to calculate a probability distribution on the
number of cases of premature death that could occur under the status quo
or repair alternatives (Figure 4). The probability distribution shows the
range and likelihood of cases due to uncertainty about the exposures and
the dose-response relationship. The results imply that although there is
an 80 percent chance of no health effect, there could be as many as 100
cases of lung cancer under the status quo option. There is a 95 percent
chance that there will be fewer than 20 cases under either the status quo
or repair options. Of course, this also means there is a 5 percent chance
of more than 20 cases.

FIGURE 4: ALTHOUGH THERE IS AN 85% CHANCE OF MINIMAL HEALTH
EFFECT, THERE COULD BE AS MANY AS 100 CASES UNDER THE
STATUS QUO OPTION.
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Bill also calculated how much the company would be spending to reduce risks
if it made either a repair or a replace decision. Having reviewed the
literature on environmental health decisions, Bill was aware that many
companies are willing to spend amounts in the range of $1 to $10 to
eliminate a one-in-a-million chance of death to a worker. Figure 5 shows
that Loftus could justify a replace decision if it was willing to spend at
least $5 to eliminate such a risk. On the other hand, if it was willing

to spend less than $1 to remove this risk, the status quo option would be
preferred.

FIGURE 5: A REPLACE DECISION IMPLIES A WILLINGNESS TO SPEND
MORE THAN $5 TO ELIMINATE ONE CHANCE IN A MILLION OF PRE -
MATURE DEATH TO A WORKER.
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Given these results, management felt confident about deciding to replace

all the asbestos insulation. This decision was generally consistent with
the amount that other companies were spending on safety. In addition, a

decision either to repair or stay with the status quo could put Loftus in
a difficult ethical or legal position.

The results in Figure 5 shows that the decision is very sensitive to the
willingness of the company to spend money to reduce risks. Management did
not want to find itself being accused of undervaluing life and death
outcomes. In addition, the possibility that as many as 100 cases of lung
cancer could occur at some later date under the status quo or repair
options was unacceptable. The corporate aversion to this catastrophe made
replacement look even better.
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OTHER EXAMPLES OF ENVIRONMENTAL HEALTH DECISIONS

The asbestos example is typical of the type of environmental health
decisions that companies have been making with the aid of decision
analysis. Some other examples are the following.

e A petrochemical company established priorities for further
research relating to a newly discovered toxic effect. Limited
research from an independent toxicology laboratory indicated that
a broad class of the company's products had possible side effects
on workers and customers. The company considered what further
research should be undertaken. Possible programs included
long-term toxicology studies, clinical studies of exposed
workers, and surveys of customers to determine exposure levels.
The trade-offs between the accuracy of the information produced
by each study and the cost of conducting each study were
evaluated.

e A consumer products company determined the level of risk
associated with the use of one of its products. The only data
available were preliminary results from a short-term toxicology
program. The analysis showed how the opinions of toxicologists
could be quantified and combined with the limited data to
determine the level of risk. One result was a table showing the
expected number of cases and the maximum number of cases of
various health effects that could be occurring among customers.
The probabilities of death and injury from using the product were
compared with risks resulting from using other substitutes.

e A major chemical company decided whether to install new equipment
that would reduce worker exposures to a toxic substance. The
options included upgrading the current technology or changing to
an entirely new process. This decision was difficult because of
uncertainty about future changes in regulatory requirements and
because of the effectiveness of the new process. The analysis
showed that doing nothing or installing the new process were the
only viable options. Upgrading the technology, which had been
originally recommended to management, cost nearly as much as
replacement, but accomplished little in terms of risk reduction.

IMPL ICATIONS FOR MANAGEMENT

Our experience in applying decision analysis to situations 1like those
described above has led us to some general conclusions. We have found
that applying decision analysis can improve the evaluation of
environmental health decisions. One of the most important benefits is the
integration of the wide variety of information and data relevant to these
problems. In addition to health and safety personnel, financial,
marketing, and operating officers can be consulted to generate the inputs
for this type of analysis. Where differences of opinion arise, examining
them explicitly allows them to be resolved more quickly. This process can
be very important in achieving consensus in the organization and in
increasing management's comfort with the decision.
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However, applying any methodology to environmental health decisions is
subject to a number of problems. These include technical difficulties in
doing quantitative analyses, ethical questions, and liability implications.

Technical Difficulties

A typical criticism of quantitative analysis is that the uncertainty about
the health effects is too great to be guantified. Sometimes, the only
data available are the results of laboratory experiments on animals at
very high doses. The extrapolation of impacts resulting from high doses
to those resulting from low doses and the translation of effects in
animals to those in humans are very questionable approaches.

The lack of information, however, is precisely the reason that decision
analysis is necessary. Decision analysis is most useful when there is a
great deal of uncertainty. In such a situation, the best information
available is probably the experience of the company's most trusted staff
and consultants. Decision analysis provides techniques for capturing the
Jjudgment of these experts and combining it with any available hard
statistical data.

A second difficulty results from the complexity of environmental health
problems. First, there may be dependencies between the risks associated
with company actions and those to which the workers expose themselves.

For example, workers who smoke cigarettes heavily are more likely to
develop lung cancer from exposure to asbestos than workers who do not
smoke. Second, tnere also may be latent effects that occur long after the
exposure. Finally, when the exposure ends, some effects are reversible
wnile others are not. With effort, an experienced analyst can include
these factors in the evaluation.

Including the possibility of a wide range of health effects in the
analysis reduces the chance of making an incorrect decision. In many
studies we have done, the range of health effects from a particular
product or process is not certain. Limited data indicating one possible
effect leave unanswered the question of whether there are other effects.
For example, evidence of carcinogenicity may or may not influence the
likelihood that there are reproductive or neurological effects.
Management should be aware that other impacts are possible and should
carefully consider whether those impacts should be included in the
analysis.

Another difficulty surfaces because management often wants to know how the
risks associated with its product or process compare with risks in other
industries or with those to which workers or the public are exposed. This
comparative-risk approach, however, may not lead to the correct
conclusion. First, there is the philosophical problem that current risk
levels may have been set illogically and that they may not be consistent
from one situation to another. Even more importantly, the conclusions
often vary, depending on the units in which the comparison is made. For
example, if there are many individuals involved, the probability of death
or illness per person may look very small, while the expected number of
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cases may appear large. Similarly, if we express the results in terms of
a percentage change in the background rate of death or illness, a
radically different impression of the significance of the impact may be
created.

A final technical difficulty concerns biases in expert judgment. For
example, we have observed a "conservative bias" while obtaining
information from health specialists. Because of a genuine concern for
preserving life that arises from their training and orientation, health
scientists may unconsciously bias the information they provide for the
decision analysis. This conservative bias is analogous to the
motivational bias that an optimistic sales manager may have about next
year's forecast of sales. As a result of this conservative bias, we have
sometimes found health specialists more concerned that management makes
what the specialists consider the "right decision" than that management
makes the decision on the basis of the best information. Skilled
interviewers can use assessment techniques to identify and greatly
mitigate this bias and others.

Ethical Questions

Environmental health decisions, and the analysis of those decisions, raise
difficult ethical questions. It is important to realize that these
questions exist even if they are not explicitly addressed. Unfortunately,
there are no widely agreed upon answers to these questions. However,
management can take a consistent ethical position and be aware of the
potential implications of these issues.

Ethical judgments arise as a result of how the analysis is conducted and
what factors are included. For example, is it ethical to trade off costs,
public image, and 1iability in analyses of corporate environmental health
decisions? In addition, is it ethical to exclude some option or some
potential outcome from an analysis because of possible liability
implications?

The valuation or weighting of health outcomes is another ethical issue
arising in analyses. What if the health effect does not impair the
individual's function in his job or personal 1ife, but changes only his
likelihood of developing other problems? Or what if a toxic substance
causes cellular damage to an organ but does not affect the organ's
function? What value should be put on these effects?

The decision itself also has ethical implications. While these
implications are not necessarily a part of the decision analysis, the
analysis process often brings these issues into the open. In our
experience, we have heard senior management debate the ethics of the
following actions.
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¢ Protect a worker by denying him a particular job, when his own
actions (such as smoking) or physical condition leave him more
susceptible to certain risks.

e Pay workers nigher salaries for accepting risky jobs.

e Allow workers in some plants to be exposed to different
probabilities of death and injury than workers’ in other plants
(for example, plants in foreign countries).

o Undertake research prohibited in one country in another place
where human experimentation of the type needed is allowed.

o Restrict sales to customers known to use the product in a safe
way.

° Inform workers or the public about risks when, although the
company is meeting current regulatory requirements, new but
uncorroborated information not reflected in the regulations
becomes available.

® Warn end users of risks that are not advertised by downstream
packagers or distributors of products.

o Sell similar products with different levels of safety at
different prices.

o Decide whether to undertake further research tnat may reveal
unrecognized hazards.

Although the above list is not exhaustive, management should be aware that
many subtle ethical issues do exist.

Liability Implications

Quantifying the probability of a health effect may increase the company's
chance of being liable for knowing about that effect. Quantification may
be interpreted as an admission that there is a finite risk and may put the
company in a worse liability position than if the analysis were not done.
Although this possibility contradicts common sense, it is an unfortunate
fact in today's judicial system.

However, in terms of liability, decision analysis has an important
advantage over conventional analysis. Because the output of the decision
analysis is a probability distribution showing the range and likelihood of
health effects, the uncertainty in the environmental nhealth decision is
apparent. Conventional analysis, which focuses on a single case, does not
emphasize the uncertainty surrounding such problems. Instead, the results
of a single-case analysis make it seem that the company is certain of the
problem's severity. An analysis that presents only the best, most 1likely,
or even the worst case can be easily criticized.
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In addition to this advantage, there are several things that can be done
to ensure that the decision analysis does not aggravate the company's
Tiability position. First, it goes without saying that to protect the
company's liability position, the analysis must not have obvious technical
mistakes.

Second, trade-offs of health amd financial outcomes can be evaluated using
a wide range of weighting factors on the health consequences. In many
cases, the best option is obvious regardless of the values chosen. If the
decision is sensitive to the values, then, as in the asbestos example,
other considerations, such as liability, may recommend a particular option.

Third, small changes in the wording of reports and presentations may make
a big difference concerning the company's potential Tiability. Because of
the uncertainties involved, the analysis can be described as preliminary
or the data, as illustrative. Value-laden words such as "large,"
“insignificant," or "serious" can be avoided in describing health effects,
and notes can be included if forthcoming data may change the conclusions.

Fourth, the company may be able to improve its liability position by
undertaking the decision analysis jointly with other companies through a
trade or professional association. This action may prevent one company
from being in a worse liability position than others. It also spreads the
cost of the analysis and may increase the perceived objectivity of the
study.

Finally, legal counsel should be consulted before doing any analysis.

This does not mean that the lawyers should dictate whether, or how, an
analysis is done. However, their inputs are just as important as those of
the operating division or the medical staff. In doing the analysis and in

presenting it, companies should never place themselves in an untenable
position.

CONCLUSION

As we have discussed, environmental health decisions are fraught with
technical, ethical, and legal difficulties. But because management faces
these strategic decisions with increasing frequency, and because most
senior managements are not equipped by experience or training to deal with
the medical aspects of environmental health decisions effectively,
management needs an analytic framework to arrive at the best decision.

Our experience with decision analysis suggests that it is one effective
tool for increasing management's confidence in its decision.
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INTRODUCTION

Two fallacies have often impeded the studying of decision-making about
hazards to human life. The first fallacy--the altruistic fallacy--is that
the value a person places on his life is primarily related to such measures
as the life insurance he carries, court Judgments, and discounted future
earnings --even though these measure mainly the value of his 1life to others
rather than to himself. The effect of this fallacy is usually to place
value on life too low for people to accept in making their own decisions.

The second fallacy is the incremental fallacy. Simply stated, it is
the belief that because a person is willing to incur additional risk for
money, one can infer a cash payment that the person should accept for being
killed. Clearly, this is absurd, but this fallacy is often why discussions
about placing values on lives have seemed both silly and frightening to the
public.

The incremental fallacy is also present in other spheres of life. Thus
the price a person would exact to accept a given incremental risk should
rise as the total risk the person faces increases. No conceptualization of
life decision-making is complete until it has captured this phenomenon.

This paper extends previous work concerned with risks to 1ife 1, 2, 3,
4, 5] to include the possibility of Tiving with various degrees of
disability. We shall investigate not only risks of disability themselves,
but the interaction between death and disability risks that such events as

medical operations might pose.

The author thanks the referees for several helpful suggestions in both the
presentation and the citation of references.
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THE ETHICAL FOUNDATION AND ITS IMPLICATIONS

Before proceeding, we must be clear on the ethical framework of the
analysis. Our ethical assumption is that each person, and only that person,
has the right to make or to delegate decisions about risks to his life or
well-being. We note in passing that several present social arrangements do
not meet this ethic and are the source of continuing controversy; for
example, consider the development of the "right-to-die" movement.

Once we accept this ethic and deal with an individual who is rational
in that he desires to follow the axioms of probabilistic logic, we can
develop a procedure that will allow the individual to make consistent
rational choices about the hazards in his life. In particular, the
procedure focuses on what the person's life is worth to himself, using his
preferences for different life states. Furthermore, it shows that an
individual is consistent in being willing to trade risk of life or
disability for money at low risk levels and yet refusing to do so at high

risk levels.

SUMMARY OF PREVIOUS WORK

We shall now summarize briefly the model we will use and extend in this
paper. Readers are referred to other sources [2] and [4] for a more
complete description. In the simplest model investigated, we assume the
individual has a fundamental preference on consumption and length of life
and ignore the question of legacies. Consumption is defined as the constant
level of consumption beyond bare survival over the remainder of life,
measured in real dollars, that would be equivalent to current expectations;
this is called the constant annual consumption ¢ . When we combine ¢

with the remaining years of life & , we have the fundamental descriptors
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of life quality and quantity. We assume that the individual can trade
between ¢ and 2 to develop a worth numeraire w(c,2), and we use the

simple model:

w(c,) = c(-%)n n2>0

Here n is the parameter governing the tradeoff, and % is the expected
lifetime remaining, a useful benchmark, when 3 =13, w(c,2) = c .
In fact, the emphasis of this model is on percentage changes in ¢ and 2
rather than on their magnitudes. When 2 1is small, this property may not
be appropriate, and other models may be useful [2].

Now we must specify the risk preference of the individual on the

numeraire w . We use the exponential form with risk tolerance o |,

alw) = - ¥/P .

To find the payments that will compensate for risk, we use those
payments to modify c¢ in this model. We assume that any payment received
will be used to buy an annuity at the prevailing interest rate i from a
seller who agrees with the buyer's probability distribution on life.
Payments to be made can be financed in a complementary manner. For example,
if the individual receives one dollar, then he will be able to increase his

annual consumption by

where< > denotes expectation.
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One result is immediately derivable from this model. If the individual
is offered larger and larger amounts of money to face a probability of

imminent death p , there is a maximum value of p ,

Ppay = <e' . (%)n>

No amount of money, however, would induce the individual to accept a risk of

death as large as Pmax *

The Micromort Value

While curves can be, and have been, derived to determine the

payments x(p) required for risks of death p < p , the case of small

max
incremental risk is of special interest. We define Ve s the small-risk

value of life, as

v =tin 2B,
S p+0 P

which is readily computable from the model. If a person had calculated his
small-risk life value, then it would suffice for all decisions in the safety
range, say for p < 1/1000 . To determine the death risk to him, in
dollars, that should be compared with other costs and benefits, a person
would simply multiply p by V-
However, since even the small-risk 1ife value may lead some to the
incremental fallacy, it is better to use Ve in the form of the value of
a micromort [um] , a 107 chance of death. Then Vum = 1076 Ve

Now, by keeping in mind a micromort value Vim when confronted with a risk
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in the safety range, any person can simply compute the number of micromorts

in the risk, multiply by Vum

Although this change is cosmetic only, we should remember the size of the

, and establish the death risk in dollars.

cosmetic industry.

As we have said, the model described is the simplest one we have
analyzed that both possesses the desired qualities of finite Pmax and a
small-risk life value and is rich enough to suit many tastes. However, to
represent a wide range of value functions and risk preferences, more general
formulations are available [2].

We should note that the concept of developing a worth numeraire on

attributes and then assessing a risk preference upon it is as general a

procedure as using a multi-attribute utility function.

Numerical Results

To obtain a feeling for the model, it is useful to summarize previous
numerical results. Consider a base-case individual--a 25-year old male with
a $20,000 per year constant annual consumption. He chooses n = 2 , which
means he would forgo 2% of his consumption over his remaining 1ife to have
it be 1% longer. His risk tolerance is $6000, which means, for example,
that he is roughly indifferent between his present situation and a lottery
with a 2/3 chance of $32,000 per year and a 1/3 chance of $14,000 per year.
The prevailing interest rate i is 5%.

How much would this individual have to be paid to accept a probability
of death p ? Figure 1 shows the answer. Note that no amount of money will
induce him to accept a risk of death greater than Pmax = 0.103 . In the

safety region, the curve becomes a straight line corresponding to a

small-risk life value of $2.43 million.
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If the individual can avoid a risk of death p by paying money, then
we obtain the curve of Figure 2. Even to avoid certain death, he would not
be able to pay more than the value of the annuity represented by his
constant annual consumption c/t ; we call this the economic value of his

life, Vo = $363,000. The straight-line portion of the curve in the

safety region again corresponds to a small-risk life value of $2.43 million.

Thus, while there is a considerable difference between buying and
selling risks for large probabilities of death, the treatment is symmetric
in the safety region. The individual is willing to buy and sell micromorts
at a price of $2.43. If someone wanted him to take on a risk of Tﬁ%ﬁﬁﬁ
probability of death, he would evaluate the death risk at $243 (100 um). Of
course, if someone wanted to buy 1,000,000 um, he would refuse. This
micromort value will increase as the individual takes on more and more risk;
however, for most of us who are both buying and selling very small risks all
the time, it should be relatively constant and hence a useful guide to
safety decisions. Naturally, the death risk cost computed in this way must

be combined with other costs and benefits to arrive at a decision.

Continuing Hazards

While we have discussed risk as if it will occur only in the present
year, many of life's activities, 1ike smoking, for example, imply a change
in the risk of death in future years [2] and [4]. Knowing the changes in
risks in future years will enable us to derive the corresponding lifetime
distribution and to use the model to compare this situation with any other.

A serious hazard, like smoking, which might double the chances of dying
in any year, would reduce life expectancy from 46.2 to 38.4 years. To be

consistent, the base-case individual would demand a lump-sum payment of
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$212,000 or an annuity of $12,400 before assuming such a risk. If smoking

is not worth that much to him, he should reconsider whether to pursue it.

HEALTH STATES

Now let us show how to use this same structure with a slightly more
complex description of life. We shall retain constant annual consumption as
the economic indicator of 1ife, but consider more possibilities for the
non-economic aspects of life. Suppose we define a number of health states
i=12,...,n for the individual that he might occupy at any time in his
life. Such states might be defined in many ways; we are concerned here,
however, with the concept. The states might be characterized by the
potential mobility of the person, by the amount of pain he feels, or by the
senses he has available. For any life, the transitions through the states
would be probabilistic, both as to the succession of states and as to the
time spent in each. A semi-Markov model would be a fairly simple
probabilistic model to describe this process, provided that the Markovian
assumption was justified in this particular case [6]. For related
approaches, see references [7] and [8].

To complete the description of the system, we need to extend the earlier
value model, which depended only on ¢ and % . As a simple extension,
let us retain the original form for w(c,2) , but let ¢ now be a weighted

sum of the years spent in each state i, 25

For the state of full health and capacities, the weight would be one;

however, for less desirable states, it would be less than one.
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For example, suppose a person faced a normal lifetime except that from
this point on he would be blind. If he said that living his remaining 1ife
blind would be equivalent to 1living only 30 percent of that life sighted,
then the weighting for the blind years would be 0.3. While more complicated
schemes can be developed to represent preferences, let us see how valuable
this simple model can be.

One question that immediately arises is whether the weights can be
negative; that is, are some life states so bad that 1iving them would be
worse than being dead? Many people feel that there are, seeing total
paralysis as one such state. Since we have assumed that each person has the
right to make and delegate decisions about his own 1ife, any person could
choose suicide at any time and, thus, weight that 1ife state as zero. The
restriction to non-negative weights is, therefore, not a problem for those

who have suicide as an option.

DISABILITY

We shall focus our analysis on the case of disability: where the
person faces the possibility of spending the rest of his life with a serious
health impairment, like blindness, paralysis, or severe pain. In each case,
we imagine assessing the worth function by asking the person the following
question: "Suppose that instead of living the rest of your life in the
state of health you expect, you would live it in this way (a specified
disabled state, like blindness or total paralysis). However, you have a
choice--you can continue to live with the state of health you expect, but
for a reduced time. What fraction of your remaining years lived in this
state would be just equivalent to living all your remaining years in the

disabled state?" The fraction f that the person answers will be used as
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the weighting factor in the value model. We can then see how the person
would make various decisions involving a risk of disability or a risk of
either death or disability. We shall assume that the fraction f is
assessed independent of ¢ , although there is only modest difficulty in
making it a function of & . For the moment, we shall further assume that
the person's income will be unaffected by his disability and, hence,

concentrate on the qualitative aspects of the disabled state.

The Disability Black Pill

We proceed now in a manner analogous to our earlier work on death
risk. Suppose the person is offered an amount of money x to assume a
risk p of being disabled to a 1level f . For example, someone could be
offered $1000 to take a 1 chance of becoming totally paralyzed, an

10,000
outcome he regards as equivalent to f = 0.1. The choice is diagrammed in

Figure 3. For simplicity, we can imagine the risk is contained in a pill
and that everyone agrees on the probability p . If the person refuses to
take the pill, then he lives his normal 1ife, receiving any windfalls and
calamities that may be in store for him--his future 1ife lottery. This has
a utility of <@(c,z)>» , obtained by multiplying the utility of each
constant annual consumption level ¢ and remaining 1ife % by the joint
probability distribution on these quantities. If the person takes the pill,
then with probability 1-p he will live his future life lottery as before,
only with more money. He converts the payment x into the constant annual

consumption ¢ + ¢x , with expected utility

Qulc + zx,2))
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However, if he becomes disabled, which he will with probability p , then he
transforms the payment in the same way, but has his remaining years
multiplied by f so far as his value function is concerned. Therefore, he

has expected utility

{ulc + ¢x,£2)) -

Setting the expected utility of the two alternatives equal, we find

p (ulc + ox,£2)) + (1-p) (ulc + tx,2))

{ulc, )
or

Qlc + zx,0)> - (ulc,))
Qulc + zx,2)) - (ulc + x,£0))

Base-Case Results

This equation allows us to calculate the risk of a disability
Tevel f that would be assumed for a payment x once all the other
parameters of the model have been specified. With the results shown
in Figure 4, we evaluate the equation for the base-case individual
described earlier. We see that the curves begin to diverge from
straight lines on these scales only for P close to one and f
small, that is, when there are severe risks of serious
disabilities. Within the safety region (p = 1073 or less), they
are all straight lines. This means that in this region, we can

define a small-risk value of disability level f , vsd(f) that
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can be used by the individual in the expected value sense to

compute x as

x =pvy(f),

where v d(f) = lim ETJL' . If we define
s 0 “Prax

PO
6

vud(f) =10 " v_.(f) ,
then we have the value of a 10'6 chance of a disability level

f in consonance with our definition of a micromort.

The results for the base-case individual are listed in Table I and
plotted in Figure 5. Notice that the microdisability value

approaches the micromort value of $2.43 when f is small, and that

it approaches zero as f approaches 1 .

Table I
Small Risk Value of Disability at Level f for Base-Case Individual

f 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
vsd(f)[ﬂ$] 2.333 2.066 1.696 1.297 0.927 0.620 0.383 0.210 0.087

vafI[8] 2.33 207 170 130 .93 62 .38 .21 .09
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The Disability White Pill

We can also think of selling risks of being disabled. Suppose that a
person facing a risk p of being disabled to level f could avoid that
risk for a payment x . How much should he pay? We call this the
disability white pill question and diagram it as shown in Figure 6. Note
that if the person pays x , he finances the payment by reducing his
constant annual consumption to ¢ - zx . Of course, the most he could pay

would be

the economic value of his life. Equating the utility of the two
alternatives, we find
Qulc - zx,2)> = p {ulc,fR)) + (1-p) <(ulc,2)>

and

u(e,g)d = ¢ulc - zx,2)>
u(c,2)y - <(ulc,fL)

Base-Case Results

Figure 7 shows how much the base-case individual would pay to avoid
a probability p of a disability level f . Note that the curves are
again straight lines in this plot until they approach p =1 . In this
region, they bend downward as the individual encounters the finiteness
of his resources. However, for values of p in the safety region, they
are straight lines and, in fact, the same straight lines as in Figure 4.
This means that the individual will buy and sell small risks of being
disabled for the microdisability values in Table I and Figure 5. He
thus treats small risks of disability in the same way as small risks of

death.
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CHANGES IN DISABILITY LEVEL

We can also consider the risks of changing from one level of disability
to another. In particular, we shall consider the case of a person who is
currently disabled becoming more disabled, even to the point of death. The
situation is diagrammed in Figure 8: a person who is currently disabled at
level f] is offered x to assume a probability p of being disabled to
a more restricted level f2 » including even the possibility of death,
f2 =0 . To find the x to which he is indifferent, we equate the

utility of the two alternatives,

<u(c,flz)> = p <u(c + x, f22)> + (1-p) <1(c + Tx,£,0))

and find

<u(c + r,x,flz)> - <u(c,f12.)>

<u(c + r,x,flz)> - <u(c + ;x,f2£)>

where

If we let vsd(fl’fz) be the small-risk value of disability from
level f] to level f, defined by

. 1
,fz) = lim -

w0 Plax
p>0

(f

Vsa'ta
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then in the safety region we can compute the required payment x from
X = pvsd(fl,fz)

or from the equivalent microdisability value of this change

-6
vud(fl'fz) = 10 vsd(fl'fZ) .

The results for the base-case individual are shown in Table II. Notice
that the first row of the table reproduces the small-risk values of Table I
for the case of risk of disability to a healthy individual. In general, the
value decreases as f] decreases for a fixed f2 and increases as
f2 decreases for a fixed f] . The first phenomenon results from
contemplating the same prospect from worsening initial states, and the
second one results from contemplating worsening final states from the same

initial state.

Table 11

Small-Risk Value of Changing from Disability
Level f] to Disability Level f2 . f] > fz

(Thousands of Dollars)

X

From\ 2
l0-90-_8MM0_-5.MMMM__0
1.0 87 210 383 620 927 1297 1696 2066 2333 243
0.9 96 231 416 656 944 1256 1547 1752 1829
0.8 107 254 444 673 920 1149 1314 1374
0.7 120 277 464 667 855 991 104
0.6 136 300 477 641 759 802
0.5 156 325 482 594 636
0.4 184 354 477 522
0.3 225 386 446
0.2 291 398
0.1 372
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COMBINED HAZARDS OF DISABILITY AND DEATH

Deciding to participate in certain activities, like driving a motor

vehicle or operating a chain saw, entails hazards ranging from minor

disabilities through death. Suppose there are n such hazards, and let

P

fi’ i=12,...,n , where fi = 0 represents death. Then, the total

be the probability that the individual will be disabled to level

probability of one of these outcomes is

n

p= I p.,
i=1

and the conditional probability of disability to level i given that some
hazard occurs is q; = pi/p. The amount x that the individual would
have to be paid to take on this combined hazard can be determined from
Figure 9 by equating the expected utility of the two alternatives:

n
LA Qate + tx, £,

<u(c,2)> = (1-p) é(c + Ix,2) +p

or

(ulc + zx,2)) - (ulc,))

<u(c + l;x,l)> - j,gl qi <u(c + z;x,fil)> .

p:

We can now let Ven be the small-risk value of the combined hazard,

defined by

v = lim 1

Sh —
E dp /dx
x>0
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and compute x using x = PVeh when the probability p is in the safety

region. Equivalently, we can use

-6
= 10
vuh vsh

-6

as the microhazard value of a 10 chance of combined hazard.

To illustrate these computations, suppose that the base-case individual
confronts a situation where he has probabilities Py = 0.00005 of death,
P, = 0.00025 of disability level f, = 0.3 (perhaps from losing a
leg), and Py = 0.0007 of disability level f3 = 0.9 (perhaps from
losing a finger). We find that the microhazard value is $0.606 and
since p = 1000 x 10'6 » that the required payment to accept this
combined hazard would be x = $606.

An equivalent and more convenient way to compute x 1in the safety
region is to add the amounts he would have to be paid to assume each of the
individual hazards,

n
x= I p, v .(f.)
i=1 i sd i

where Ved (0) is equal to v the small-risk value of life. If

S 9
P; s measured in microprobability (10'6) units, then

and using the values in Table I, we find

x = 50 (2.430) + 250 (1.696) + 700 (0.087)
= 121.5 + 424 + 60.9
= 606.
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We see that the major contributor to the payment is the $424 required by the
threat of disability to level 0.3.

The payment to accept combined hazards in the safety region is thus

easily computed by adding the payments required to accept each of them

individually.

Disability or Death

Suppose an individual disabled at level f faces an operation that
may cure him at some risk p of death. How large a risk of death could
he tolerate as a function of his disability level? The choice is diagrammed

in Figure 10. Equating expected utilities produces

Culc,8)y - <ulc,f2)>
u(c,t)d> - <¢u(0,0) :

We can, therefore, determine the maximum death risk p that would be
associated with each level of disability f . The results for the
base-case individual appear in Figure 11. Note that a severely handicapped
individual could tolerate very high death probabilities. This corresponds
to the fact that the riskiest treatments are reserved for patients without
much to lose.

We can easily add the possibility that the operation will be costly as
well as dangerous. Figure 12 diagrams the case where the operation costs
the patient an amount x . We note that even if p =0 » the operation

may not be desirable. If

Qu(c,fL)) < l(c - tx,2)) ,
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then the operation costs so much that the patient considers himself worse
off than he is now even if it succeeds. The maximum payment for the

operation is obtained by setting the two utilities equal

Q(c,f2)> = (ulc - gx,2))
w(c,f2) = w(c - zx,8)
£y _ i} Ly
*(3) = - (3)
or (o] n
X = ZE [1 - f ]
_ _ N
= v, [1-¢]

If f=0, the individual would pay his whole economic value Vo »

which is $363,048. As f increases, the amount he would pay falls as

shown in Table III..

Table II1I
Maximum Payment for Operation as Function of Disability Level

Disability
Level 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Payment[K$] 363 359 349 330 305 272 232 185 131 69 0

Provided we 1imit the payment as discussed, we can then use the tree of

Figure 12 to write

_Sule - gx,8)> = (u(c,fL))
ulc - tx,L)) - <u(0,0)) !

p:

and compute the maximum tolerable probability of death for an individual at

disability level f facing an operation that costs x .
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We have done this for the base-case individual for the cost
x = $100,000--the dashed line in Figure 11. For seriously disabled people,
the cost is not important, but for moderately disabled people, it is. No
operation would be considered at a disability level of 0.85. At f = 0.7

only a 0.10 rather than a 0.16 probability of death could be tolerated.

Compensation

We can use the model even without risk to determine the amount of
compensation that an individual would require to be indifferent to a given
disability level. Thus, to determine the amount x he would have to be

paid for being placed at disability level f , we equate

(u(c + gx, fL)

Qu(c,2)>

w(ic + x,fR)

w(c,)

n
£ _ 2
(c + gx) (E) C(E)
or
c (1 _
o\ gn
The annual consumption increase required would be

o (L -
fn

Table IV shows the results for the base-case individual. Given that his

constant annual consumption is $20,000, that amount would have to be doubled

to make him indifferent to a 0.7 1level of disability.
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Table IV
Compensation Required by the Base-Case Individual for a Disability Level f

Disability

Le;e] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

tgmg;ﬁ:gtion 35,942 8,713 3,671 1,906 1,089 645 378 204 85 0

x [ks]
Annual

Payment 1,980 480 202 105 60 3 21 11 5 ¢
ex [K$]

Income Effects of Disability

Up to this point, we have assumed that the effect of disability is to
decrease the desirability of the 1ife experience, but not to change either
the 1ife expectancy or the income received by the person. Let us now relax
this income assumption, since disability will usually depress income. A
simple way to investigate this effect is to assume that a person's income
will be reduced by the same factor f that appears in his value function.
(Naturally, we could make the reduction factor different from f if
necessary.) The net effect of this assumption is that in every expression
we have seen where we have multiplied ¢ by f we now also multiply ¢
by f .

Consider, for example, the effect of this change on the microdisability
value Vud(f) of this change. Fiqure 13 shows that when this income
effect is incorporated, microdisability values for the base-case individual
increase substantially at every level of f except towards f = 0 and
f =1 where they are bounded respectively by the micromort value and by
zero. At f = 0.5, the increase is from $0.927 M to $1.484 M. The prospect
of losing both health and income is significantly more worrisome than losing

health alone.
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As we would expect, including the income effect makes the base-case
individual more willing to accept a potentially fatal operation that could
cure him. Figure 14 shows an increase in the tolerable death risk at all
levels except f =0 and f=1. At f = 0.5, for example, the
tolerable death risk for a free operation increases from 0.38 to 0.61.

Just as we have been able to explore the income effect rather easily
within the model, so too could we incorporate the combined effects of

disability on health state, income, and 1ife expectancy.

CONCLUSION

Analyzing fates comparable to death has required only a relatively
straightforward extension of the models used earlier to analyze risks of
death. The idea of a small-risk value that can be used to evaluate safety
decisions is directly applicable to the case of disability. Using the

combined results of these analyses, an individual can evaluate safety

situations where he faces both risks of death and disability.

The concept of micromort, microdisability, and microhazard values are
more important than the details of the model used to derive them. Even
without an analytic model, an individual could directly assign such values
and then use them for decisions in the safety region. While he would not be
assured of consistency with underlying preferences, he would be assured of

consistency across different hazardous situations.
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PROFESSIONAL PRACTICE






Preface

These papers focus on issues and methodology that arise in the
professional application of decision analysis.

"The Foundations of Decision Analysis" shows the steps taken, the
models constructed, and the computations made in performing a decision
analysis. It discusses the role that concepts such as stochastic dominance
and value of clairvoyance play in professional practice.

“"The Difficulty of Assessing Uncertainty" reports on an experiment on
how well engineers assess uncertainty. The results illustrate several of
the universal biases in probability assessment.

"Probability Encoding in Decision Analysis" prescribes a procedure for
obtaining probability assessment that avoids common biases. The paper
summarizes the results of psycnological experimentation and their
implications for encoding procedures.

"Risk Preference" presents the use of utility functions to capture
risk-taking attitude and describes both theory and assessment procedures.
The paper shows that the "delta property" axiom makes it possible to use
simpler assessment procedures.

“"The Development of a Corporate Risk Policy for Capital Investment
Decisions" describes an early experimental effort to determine
quantitatively the risk attitude of a major industrial corporation.

“The Used Car Buyer" is an extensive example of decision tree analysis
requiring probability revision using Bayes' rule. The paper provides a
step-by-step solution of a sequential decision problem and emphasizes
qualitative interpretation and quantitative evaluation of results.

“Influence Diagrams" is a previously unpublished paper that has been
circulating among students of decision analysis for several years. It
defines influence diagrams, a promising new concept for treating decision
problems that may supersede decision trees in both structuring and
evaluating decision situations, and develops in detail an application to
screening cnemicals.

“"The Use of Influence Diagrams in Structuring Complex Decision
Problems" emphasizes the need for communication with a decision-maker to
capture tne probabilistic structure of a problem. It illustrates a
sequential process of building the influence diagram in a hierarchy
beginning with the value attributes.
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The Foundations of Decision Analysis

RONALD A. HOWARD, SsENIOR MEMBER, IEEE

Abstract—Decision analysis has emerged from theory to practice
to form a discipline for balancing the many factors that bear upon a
decision. Unusual features of the discipline are the treatment of
uncertainty through subjective probability and of attitude toward
risk through utility theory. Capturing the structure of problem
relationships occupies a central position ; the process can be visual-
ized in a graphical problem space. These features are combined with
other preference measures to produce a useful conceptual model
for analyzing decisions, the decision analysis cycle. In its three
phases—deterministic, probabilistic, and informational—the cycle
progressively determines the importance of variables in deter-
ministic, probabilistic, and economic environments. The ability to
assign an economic value to the complete or partial elimination of
uncertainty through experimentation is a particularly important
characteristic. Recent applications in business and government
indicate that the increased logical scope afforded by decision anal-
ysis offers new opportunities for rationality to those who wish it.

INTRODUCTION

ECISION analysis is a term that describes a com-

bination of philosophy, methodology, practice, and
application useful in the formal introduction of logic and
preferences to the decisions of the world. There was a time
less than a decade ago when suggesting that decision
theory had practical application evoked only doubtful
comment from decision makers. The past five years have
shown not only that decision theory has important prac-
tical application, but also that it can form the basis for a
new professional discipline, the discipline of decision anal-
vsis. Many of the professional aspects of the field have
already been described in the literature (see Howard [1]).
Here we shall concentrate on the rationale and method-
ology of decision analysis.

In discussing the rationale and philosophy of decision
analysiz, we shall focus on those concepts that are most
unfamiliar to the intuitive decision maker. These concepts
are generally concerned with the measurement of un-
certainty and with the decision maker’s reaction to it.
In providing a methodology for decision analysis, we shall
be concerned primarily with developing a procedural form
that will be broad enough to cover the important areas of
application.

T'THE RATIONALE OF DECISION ANALYSIS

The problem of the decision maker is to select a course of
action in a world that is perceived as uncertain, complex,
and dynamic. To follow a course of action is to make an

Manuscript received July 2, 1968. This research was partially
supported by the National Science Foundation under Grant NSF-
GK-IGS:} and by the Office of Naval Research under Contracts
ONR N00014-67-A-0112-0008 and ONR N00014-67-A-0112-0010.

The author is with the Department of Engineering-Economic
Svstems, Stanford University, Stanford, Calif.
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irreversible allocation of resources, an act that we call
making a decision. Perhaps the resource whose allocation
is least reversible is time, but other resources may vie for
this characteristic.

Although the development of a theory of decision that
comprises uncertainty, complexity, and dynamic effects is
a formidable task, such a theory would not be complete,
for it often turns out that what is most perplexing to the
decision maker is not the mystery of his environment, but
rather the specification of his own preferences. Thus we
shall discuss the rationale of decision analysis by comment-
ing on the three topics of uncertainty, structure, and
preference.

Our primary interest in the topic of uncertainty is the
philosophical basis for the treatment of uncertainty ac-
cording to the mathematical laws of probability. The topic
structure includes the complex and dynamic interactions
that may exist among the many facets of a decision prob-
lem. Finally, we shall discuss under preference not only
the difficulty of assigning values, but also the necessity for
a value language that will be useful in a dynamic and un-
certain environment.

Uncertainty

The problem of describing uncertainty has tormented
philosophers for centuries. Pascal and Fermat laid the
mathematical foundations of probability over three
hundred years ago, and its development continues today.
It might seem obvious that this theory would be the
natural medium for thinking about uncertainty. However,
the obvious was not proved until the present century,
when it was shown that reasonable axioms for a theory of
uncertainty led directly to the mathematical theory of
probability.

Subjective Probability: While virtually everyone agrees
on the proper use of the probability calculus, there is
considerable disagreement on the interpretation of its re-
sults. Many users of probability theory consider proba-
bility to be a physical characteristic of an object as its
weight, volume, or hardness. For example, they would say
that a coin “has’’ a probability of falling heads on any toss
and that to measure this probability would merely require
a large number of tosses. This view of probability is called
the objective interpretation.

Another group considers probability as & measure of the
state of knowledge about phenomena, rather than about
the phenomena themselves. This group would say that one
“‘assigns’ a probability of heads on the next toss of a coin
based on all the knowledge that he has about the coin. A
coin would be “fair” if, on the basis of all available evi-
dence, there is no reason for asserting that the coin is more
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likely to fall heads than tails. This view is called the sub-
jective interpretation.

The distinction between the interpretations might seem
small, but it is the key to the power of decision analysis.
The objectivist requires repeatability of phenomena under
essentially unchanged situations to make what he would
consider to be meaningful inferences. The subjectivist can
aceept any amount of data, including none, and still apply
logic to the decision. The objectivist was able to survive
and even flourish, when the main problems of inference
arose in areas such as agriculture that provide large
amounts of cheap data. Today, when decisions regarding
space programs must be based on a single launch of a
one hundred million dollar rocket, the ability of the sub-
jectivist to apply logic to one-of-a-kind situations has be-
come indispensable.

These examples might lead one to believe that the sub-
jeetive view of probability is modern; in fact, it was clearly
held and understood by Bayes and Laplace two hundred
years ago. The objectivist view is associated primarily with
the founding of the British school of statistics in the early
1900's. It ix the feeling of many, including decision analysts,
that the creation of the field of statistics through the
advent of the objective interpretation was a heresy in the
‘development of the treatment of uncertainty. While ob-
jectivists are definitely in the majority at present, their
ranks seem to be diminishing.

Subjective Probability Notation: Since the decision analyst
necessarily holds the subjective viewpoint, he prefers a
notation for probability that reveals that it is an assign-
ment based on a certain set of information. Such a notation
i constructed as follows: Let 4 be an event and § be the
state of information on which the probability of the oc-
currence of A is to be assigned. Then {48} ix the symbol
for the probability of 4 given 8. If v is & random variable,
then the probability density or mass function of r assigned
on the basis of § is {xs}. The expectation of x based on §
ix written (.r]S) and ix defined by

(r§) = fz{r;b}

where S, is a general summation on @ to be interpreted as
a summation or integration as appropriate. The nth
moment of . based on § would then be

(@8 = f.z'"{.r

The varianee of x is written *(r|s) and defined by

s}.

(@ls) = (@s) — (xls)n

One very special state of information is the total knowl-
edge available at the beginning of the problem under con-
sideration, the total prior experience denoted by &. Then
{z/e} would be called the prior density function on r, or the
“prior” for short. The quantities (x|&) and *(xl&) would
then be the prior mean and variance.
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Fig. 1. Problem space.

Although this notation often seems strange, it provides
a mathematical language for uncertainty that describes
precisely both the quantities on which the probability
assignment is to be made and the state of information to be
used in the assignment. The subjective view thus induces
not only care in the interpretation of probability but also
precision in its written expression.

Structure

The primary funetion of the decision analyst is to capture
the relationships among the many variables in a decision
problem, a process called structuring. The complexity of
structure required will differ from problem to problem:
from a “back-of-the-envelope” decision tree to a svstem of
interconnected programs that tax the largest computers.

The Problem Space: A diagram like Fig. 1 ix an aid in
visualization. This diagram, the problem space, permits
characterizing decision problems by their underlying
structure. The dimensions of the problem space are degrees
of uncertainty, time dependence, and complexity. Degree
of uncertainty can range from the deterministic situations,
where all variables are known, to the highly probabilistic
situations, where little information is available about any
problem variables. The time dependence can range from
static to dynamic; complexity is measured in terms of the
number of variables required.

Each corner of the problem space corresponds to certain
mathematical models. Corner 1 is the deterministic static
one-variable decision problem, such as that of finding the
largest rectangular area that can be fenced with a given
length of fencing. The models of elementary caleulus,
developed over 300 years ago, would be appropriate.
Corner 2, the deterministic  dynamie  single-variable
decision problem. would arise in elementary  auto-
matic control applications. The mathematical models of
differential equations and transform caleulus would be
relevant;; they were developed over 100 years ago. Corner 3
represents the probabilistic static single-variable problem,
such as whether or not to buy life insurance. Three-
hundred-year-old elementary probability would be quite
helpful in reaching u decision. Corner 4 introduces com-
plexity in the form of the deterministic static, but many-
variable problem. Decision problems like assigning cus-
tomers to warehouses or men to jobs provide an illustration.
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One-hundred-year-old matrix algebra and 20-year-old
linear optimization techniques would be very useful.

Corner 5 combines the two factors of uncertainty and
dynamism in the uncertain dynamic, but single-variable
problem, such assimple inventory control. Here the theory
of stochastic processes and queuing models developed over
the last 50 years would be most relevant. Corner 6 corre-
sponds to the probabilistic static multivariable problem.
Decision problems like bidding on new product introduc-
tion might have such an underlying structure. The mathe-
matics of joint probability distributions would be especially
helpful. Corner 7 refers to the deterministic dynamic multi-
variable decision problem, such as the complicated control
problems posed by a space vehicle or a steel mill. Although
probabilistic elements may be present, they are usually
treated as perturbations of the deterministic model. The
modern theory of control developed in the past three
decades applies successfully to these problems.

Finally, corner 8 is the most complex corner, describing
problems involving uncertainty, dynamism, and com-
plexity. In a sense, all decision problems could be located
here because they all involve the three factors to some
degree. However, this corner is used to indicate problems
where the three elements are indispensable to a meaningful
analysis. Problems like electrical power system planning or
business mergers are particular examples. Useful models
might be Markov processes and their derivatives.

The extent to which formal models are available varies
considerably over the problem space. Near the origin there
are usually several alternative models for the problem;
near corner 8 it is more a matter of patching together
approximations to obtain a useful representation. As tech-
nology advances, more realistic models of uncertain, dy-
namie, and complex processes will be developed. How-
ever, it will continue to be the job of the decision analyst
to be the engineer who matches technology to the require-
ments of the problem. His product is the embodiment of
logic.

Preference

The problem of preference measurement is to determine
in quantitative terms just what the decision maker wants.

V'alue: The first step is to assign a single value v to each
possible outcome of the decision problem. If the problem
is concerned with the allocation of monetary resources,
then it is logical to measure this value in monetary terms.
In business organizations, some form of profit may be
appropriate. But the need for monetary values as a
precedent for monetary allocation applies even if the out-
come involves the loss of life or limb. As decision analysis
is increasingly used in problems of social significance, a
monetary value may have to be assigned to such out-
comes as i cultured life or an ignorant life. Though these
assignments may be very difficult, there is no rational
alternative.

Time Preference: However, even in dynamic world,
the preference question would not be resolved until the
decision maker had stated his preference for outcomes

that are distributed in time: a preference called time prefer-
ence. The importance of time preference is revealed when
the analyst studies problems like the development of the
national parklands or management of an individual’s in-
vestment portfolio.

The phenomenon of time preference could be described
as the greed-impatience tradeoff. It is characteristic of
individuals and organizations that they want more now.
However, the alternatives provided often give them a
choice between more later or less now. Examples would be
the choice between hydroelectrie and gas turbine electricity
production or, in general, the choice between investment
in capital goods and consumer goods.

While the problem of preference is complicated, it is
usually treated in decision analysis by the specification
of a discount or interest rate and the rule that the alterna-
tive with the highest discounted, or present, value is to be
preferred. Even within this framework, selecting the
appropriate interest rate is not easy; it involves the nature
of the interaction between the organization and its financial
environment.

Risk Preference: The most unusual and challenging
preference problem concerns preference for risk. The exis-
tence of the phenomenon is established by noting that few
people are willing to bet double or nothing on next year's
salary, even though the proposition is fair. Most people
and organizations are averse to risk: they are willing to
engage in uncertain propositions only if the expected
value of the proposition is positive and relatively large.
The description of this type of preference requires a set
of concepts that are unusual, but logical.

To be specific in describing the concepts, it is necessarv
to define the technical term “lottery.” A lottery is a set f
prizes or prospects, one and only one of which will be
received. Associated with each prize is a probability;
the sum of all the probabilities is one. In many cuses the
prizes will each correspond to the amount of some com-
modity, such as money, that will be received. In these cases
we can think of the lottery as a random variable described
by either a probability mass or probability density func-
tion.

Utility theory: The most common structure for en-
coding risk preference requires that the individual sub-
seribe to a set of axioms concerning lotteries. The first is
that he must be willing to provide a transitive rank order-
ing of all prizes in any lottery. That is, if the prizes in a
lottery are A, B, and C, he must be able to say in what
order he prefers the prizes; further, if he prefers 4 to B
and B to C, then he must prefer A to C.

The second axiom is that if he says he prefers 4 to B to ¢
then there must exist a value of p such that heis indifferent
between receiving B for certain and participating in a
lottery that produces .4 with probability p and C with
probability 1 — p. When the appropriate value of p has
been found. we would say that B is the certain equivalent
of the lottery on 4 and C.

The third uxiom is that if he prefers prize A to prize B
and if he is presented with two lotteries, each offering 4
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and B with different probabilities, then he must prefer
the lottery that yields A with the higher probability.

These axioms are the most significant ones. However,
two others are necessary for completeness. One is that a
certain equivalent of a lottery may be substituted for the
lottery in any situation without changing the preferences of
the decision maker; we might call this a “did you really
mean it?”" axiom. The other is that a lottery whose prizes
are themselves lotteries is equivalent to a lottery that
produces the same ultimate prizes with probability com-
puted according to the laws of probability; this could be
termed 2 ‘“‘no fun in gambling” axiom.

Mathematical arguments reveal that an individual who
subscribes to these axioms can encode his risk preference
in terms of a function on the prizes of the lotteries, a func-
tion ealled a utility function. The utility function has two
important properties: first, that the utility of any lottery
is the expected utility of its prizes; second, that if one
lottery is preferred to another by the individual, then its
utility will be higher.

Thus the utility function assigns to any lottery a real
number; the lotteries will be preferred in the order of these
numbers. However, the actual magnitude of the utility is
not important, because the preferences revealed by the
utility function are unchanged if the utility function is
modified by multiplication by a positive constant or by
addition of any constant. Thus the utility function serves as
a risk preference thermometer that can be used for rank-
ing lotteries according to the risk preference of an in-
dividual.

In problems of professional interest the lottery prizes are
usually measured in a commodity such as money. In this
case the utility function can be represented by a curve
that shows the utility to be assigned to any amount of the
commodity. Such a utility curve appears ax Ilig. 2. The
curve (uj€) shows the utility u assigned by some individual
to amounts of money v between 0 and 100 dollars. Be-

cause of the invariance to linear transformation, the scale
of measurement can be selected arbitrarily; this curve
assigns a utility of 0 to 0 dollars and a utility of 1 to 100
dollars.

The two lotteries below the curve show how it is used.
The expected value of a lottery L is defined in our nota-

tion by
(v|LE) = fv{v

Lottery Ly has an expected value of 38 dollars: L., an ex-
pected value of 36 dollars. Someone who was indifferent
to risk would prefer L;. However, to determine the prefer-
ence of the individual with the utility function in Fig. 2,
we first determine the utility of each prize in each lottery
from the utility curve and then find the expected value of
the utility. The expected utility of a lottery is given by

Lg}.

(u|LE) = f (ulve) {¢|Le}.

Since the expected utility of lottery Ly is 0.44, whiic that
of lottery I is 0.51, the individual would prefer lottery L.
in spite of its lower expected value. We would deseribe
individuals whose utility curves are concave downwards as
risk averse.

The certain equivalent: Although this calculation serves
to determine the individual’s preference, it gives us no
feeling about the strength of the preference. The maghni-
tude of the utility can be no help because we see that if we
added 10 to all utility numbers, we would derive exactly
the same preference ordering but with much smaller per-
centage difference in utility numbers. To measure st rength
of preference, it is helpful to return to the concept of cer-
tain equivalent.

To evaluate a lottery in a single meaningful monetary
number, we can ask what amount of money received for
certain would have the same utility as the lottery. The
certain equivalent of a lottery L. denoted by ~(lLg), is
thus the amount of money shown by the utility curve to
have the same utility as the lottery. The certain equivalent
is mathematically defined by the equation

(ulo="0|18)8) = (u|LE).

Thus from the curve we see that the utility of 0.44 for
lottery Ly corresponds to a certain equivalent of 28 dollars.
while the utility of 0.51 for lottery L. would mean a cer-
tain equivalent of 34 dollars. The individual would be just
indifferent between receiving either 28 dollars for certain or
lottery L, and between receiving 34 dollars for certain or
lottery L.. It would be slightly inaccurate, but intuitively
satisfying, to say that lottery L, is worth 6 dollars more to
the individual than is lottery L.

Exponential utility curves: In some cases the individual
is willing to subscribe to a sixth axiom: that if all prizes in
a lottery are increased by any amount 3, the certain equiv-
alent of the lottery will also increase by A. The axiom ix
persuasive, since the increment A will be received with cer-
tainty regardless of the outcome of the lottery. However,
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the axiom is very powerful, for someone who subscribes to
it must have a utility curve that is linear or exponential in
form; that is, (u|v8) is proportional either to v or to e™".
Furthermore, the curve is completely described by the
constant vy called the risk aversion coefficient. Although
few individuals may in fact wish to be governed by this
axiom, the exponential utility curve is very useful in
analyses, as we shall see.

Stochastic dominance: There is one important case in
which risk preference need not be measured at all. That
is the case in which the choice between two alternatives
would be clear to a rational man regardless of his risk pref-
erence; it is called the case of stochastic dominance.
Lottery L, stochastically dominates lottery L, if the prob-
ability of receiving a monetary return in excess of ¢ is
higher for L, than for L, for any value of ¢; that is,

{v>c|L|} > [v>c|L;}, —o < ¢c< o,

If one lottery stochastically dominates all others, then it
will be preferred by the individual regardliess of his attitude
toward risk; there is no need to use the utility function.

Joint Time-Risk Preference: Individuals often have to
choose between monetary rewards that are not only un-
certain, but distributed over time. In these situations time
and risk preference must be jointly encoded. The descrip-
tion of joint time-risk preference is a problem that admits
many solutions. Here we shall employ the idea of reducing
any time stream of value to a present value using the time
preference measure and then applying the utility function
to determine which lottery on present values is most de-
sirable.

THE METHODOLOGY OF DECISION ANALYSIS

With this background we can go on to a discussion of
how a decision problem can be progressively analyzed using
decision analysis principles. The procedure is best explained
in terms of a diagram like that in Fig. 3. Here we view the
decision analysis procedure as divided into three major
phases, the deterministic, probabilistic, and informational
phases. The deterministic phase establishes the deter-
ministic relationships among the variables of the problem.
The probabilistic phase introduces uncertainty and risk
preference. Finally, the informational phase determines the
cconomic value of gathering more information. Following
these phases, a decision is required on whether to act or to
gather new information. If additional information is ob-
tained, e.g., through market testing or building a pilot
plant, then this information must be incorporated into the
structure and probability assignments of the problem;
the cycle is then repeated.

The decision analysis cycle is a convenient conceptual
model rather than an inevitable method for analyzing
decision problems. With this point in mind, we shall now
examine the steps required in each phase.

The Deterministic Phase

The first step in the deterministic phase is to construct
a deterministic model of the decision problem.

THE DECISION ANALYSIS CYCLE
PRIOR INFORMATION

Ftn:mns'rnc | |ProsasiLisTic| v ommaTional T
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Fig. 3. Decision analysis cycle.
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The Deterministic Model: Fig. 4 is an abstract representa-
tion of the model. The model relates the important vari-
ables in the problem that are not under the control of the
decision maker and the vuriubles that are under his con’ .ol
to the production of value in time. These variables are
called the state variables s; and decision variables d,. We
can visualize the state variables as a set of knobs on the
model that are set by a disinterested nature; the decision
variables are knobs set by the decision maker. Fig. 4 shows
that the values developed over time ¢(0), v(l), v(2),---
are operated upon by the time preference specification to
produce a present value reading v that we may regard as
appearing on a value meter. Thus any setting of the state-
and decision-variable knobs will produce a value reading.
The deterministic model will generally be realized in the
form of a computer program.

Deterministic Sensitivity: Fig. 5 shows the first analytical
step in the deterministic phase, the measurement of
deterministic sensitivity. In the representation of Fig. 5
the time preference measure is shown incorporated into the
deterministic model to produce a single present value read-
ing. The analysis begins by assigning each state variable a
nominal value and a range that might correspond to the
10- and 90-percent point on its marginal cumulative prob-
ability distribution. Decision variables would also be
assigned nominal values and ranges to reflect initial feel-
ings about what the best decision might be.

With all variables but one set to their nominal values,
that one variable would be swept across its range to deter-
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mine the effect on the value reading. The figure shows
the measurement for the ith state variable s,. State or
decision variables that showed high sensitivity would be
retained in the further analyses of the model. A variable
could show a high deterministic sensitivity because of its
wide range, erucial nature, or a combination of these effects.

In some problems this one-at-a-time type of sensitivity
analysix will not be sufficient: the joint sensitivity of
variables will have to be measured by sweeping more than
one varinble at a time over their ranges. Because the num-
ber of possibilities for joint sensitivity increases combina-
torially with the number of variables, the analyst must use
judgment in determining where joint sensitivity measure-
ments will be required.

The net effect of the deterministic sensitivity analysis
will be to determine the state variables and decision
variables that have a major effect on value. The next step
will be to introduce the current state of knowledge on un-
certainty in the state variables and determine which
decision would be best, given the uncertainty ; this is done
in the probabilistic phase. '

The Probabilistic Phase

The probabilistic phase requires assignment of prob-
ability distributions on the state variables.
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The Value Lottery: Fig. 6 shows this assignment as a
marginal probability distribution {s,|8} on each stajte
variable. Since the state variables will generally be joint y
related, the complete description of the state of knowledge
about them would be the joint probability distribution
{s1,8, - -,sv|6] = {s[€}, but the marginal distributions
shown will serve as a pictorial representation. The ~ettings
of the decision variables are summarized by the decision
vector d = [dy,d,- - - ,dy]. For any setting d the joint dis-
tribution {sls} on the state variables will imply a prob-
ability distribution on the value, {¢|d€}, a distribution we
call the value lottery. The decision problem then reduces
to finding the setting d that produces the most desirable
value lottery.

The determination of the value lottery corresponding to
any decision vector d will be performed by analytical or
simulation methods, as appropriate. Efficient search pro-
cedures are helpful in establishing the best setting for d.

Risk Preference: There remains the question of which
value lottery is best. erhaps the question will be easily
resolved by the observation that one setting of d produces
a value lottery that stochastically dominates the lotteries
produced by all other settings. But if not, then it will be
neeessary to encode the risk preference of the decision
maker in a utility curve. This curve will allow each value
lottery and hence each setting of d to berated by its utility.
The setting that produces the highest utility (uid8) would
then be judged the best. To gain intuitive meaning, the
utility of each lottery could be returned to the utility curve
to show the certain equivalent value ~(v|dg) implied by the
decision setting d.

This procedure establishes the setting of the decision
variables d(8), that is most desirable to the decixion maker
in view of his state of knowledge regarding uncertainties
and his risk preferences,

de¢) = m:\x“(u}d&) = max~! ‘(I-Idt'.).
d d

Furthermore, it shows the utility (u]€) and certain equiv-
alent. ~(n]€) of the best decixion,

(uley =
“(rle)

(uid = d(&)8)
S(rid = d@)e).

I[n a sense, this step completes the solution of the decision
problem. However, since decision analysis is more engineer-
ing than mathematics, the procedure does not stop here,
but rather continues to the measurement of another kind
of sensitivity, stochastic sensitivity.

Stochastic Sensitivity: The idea behind stochastic sensi-
tivity ix the desire to measure the effect of a variable on the
result of the decision problem not in the deterministic
environment where all other variables are set to their
nominal values, but in the probabilistic environment where
all other variables are governed by their appropriate
probability distributions. As Fig. 7 shows, if the ith state
variable s, were known, the other state variables would be
governed by the conditional distribution |s(s,&} obtained
by dividing {sje} by {s;€]. Thus the specification of any
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value for s; would imply some joint probability distribu-
tion of the remaining state variables, and in turn a value
lottery lvls,d&} for the given setting of the decision vector.
The risk preference encoding would describe this value
lottery by a certain equivalent ~(v|sdg).

Suppouse now that the decision vector d is adjusted to the
value d(s;€) that produces the highest certain equivalent
for this value of s, maxs~(v|sd§), that is,

d(s&) = mux"(u]s,d&) = max~! "(l'ls‘ds).
d d

If this procedure is repeated for the various values of s,
within its range. the plot of maxg ~(v|s,d8&) will show the
stochastic sensitivity of the variable s,.

Stochastic sensitivity shows how the certain equivalent
of the decision problem depends on a particular state
variable when all other state variables are uncertain.
Stochastic sensitivity can be measured in a different sense
if, rather than choosing the best decision variable setting
d for each s, the setting d(€) that was best for {s|8} is used
throughout. This technique measures the stochastic sensi-
tivity to the ith state variables under the original decision
rule rather than under a decision rule adjusted to take ad-
vantage of knowledge of s, Stochastic sensitivity to a
decision variable d, can be measured by using the prob-
ability assignment {s|€} for the state variables and then
seeing how the certain equivalent changes with d, either
with other decision variables fixed or continually optimized.
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The problems of joint sensitivity measurement arise
just as they did in the case of deterministic sensitivity.
However, here the cost of joint sensitivity measurement
is even greater than before because of the need to develop
lotteries on value rather than single numbers.

Stochastic sensitivity can provide important additional
insight into problem relationships. It can show the need for
further structure to allow available information to be
encoded more effectively. It might reveal that variables
originally thought to be of vital importance on the basis
of deterministic analyses are relatively unimportant in the
probabilistic environment. At a minimum, it yields a use-
ful measurement of the robustness of the indicated decision.

The Informational Phase

The probabilistic phase of the analysis provides further
insight into the importance of uncertainty in state vari-
ables, but it stops short of what we would really like to
know, namely, what is the worth in monetary terms of the
various forms of uncertainty remaining in the problem?
The informational phase covers this last step of measuring
economic sensitivity and hence indicates what sort of
additional information could be economically gathered.

Clairvoyance: A useful concept in discussing the in-
formational phase will be the clairvoyant. The clairvoyant
is an individual who can tell us the precise value of any
uncertain variable. Clearly, such help would be valuable,
but how valuable?

Fig. 8 illustrates the case where we have engaged the
clairvoyant to tell us the value of the ith state variable »,
at a cost k,,. Knowing s, will have two effects on the result.
First, the probability assignments on the other state vari-
ables will be governed by {s|s,&}. Second, whatever pres nt
value v is produced will have to be reduced by the clair-
voyant's charge ks, to a net present value v’. Once s, is re-
ported, the best setting d(s/k5,8) of the decision vector
will be the setting that produces a net present value lottery
having the highest utility. Thus

d(sh8) = nn:x"(u!s,l;,,d&) = m‘:'nx 'f(u,'sl.x,d('.){sfs‘a}

.
and

nmx(uls,l;,ld&) = (u].\'.l.‘,‘d(s,vk\_é‘.)t‘.).
d

Therefore, if we knew that the clairvoyant would report
a particular value of s,, the utility of the resulting lottery
would be (u's.k._d(s.k,ls)s). However, we are not sure that
he will report that value; indeed, if we were sure, there
would be no point in employing him. Consequently, we
must weight the utility we shall derive if he reports a value
of s, by the probability that he will report that value in
order to determine the utility (u|k, &) of the lottery we
enter by engaging him. The probability we assign to his
reporting any value of s, is, of course, just {s.!f‘,} since he
is assumed competent and trustworthy. Therefore,

(ulk,8) = f (ujsk, d(sik.8)E) {58}
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If the cost of the clairvoyant k, were equal to zero, we
would expect this utility (u|k.‘ = 0 &) to be greater than the
utility (u|8) of the best lottery without clairvoyance. How-
ever, as the cost of the clairvoyant increases, his service
will become progressively less desirable until the utility of
the lottery with clairvoyance is just equal to the utility of
the best lottery without clairvoyance. The value of k,; that
satisfies the equation

(ulk, & = (ulg)

is called the value of clairvoyance about the variable s,.

The value of clairvoyance on a variable is an important
quantity because it represents the largest amount that one
should pay to eliminate completely uncertainty regarding
the variable. Since most real information gathering oppor-
tunities provide less than perfect information, they should
never be employed when their cost exceeds the cost of
clairvoyance.

Notice that the actual availability of a clairvoyant is
irrelevant to this argument. The clairvoyant in decision
analysis plays exactly the same role as the Carnot engine
in thermodynamics: a conceptual reference against which
to compare the performance of physically realizable
alternatives.

As with sensitivity measurement, the value of simul-
taneous clairvoyance on several variables can also be cal-
culated with somewhat more difficulty. In the preceding
argument, s, would be replaced by a subset of state vari-
ables, but the nature of the calculations remains the same.
Even if the state variables are independent, the value of
clairvoyance on several of them can differ from the sum of
the values of clairvoyance on each separately. (See [4],
(51.)

The value of clairvoyance on any state variable or set
of state variables will depend on the prior distribution
{sle}. It is clear that some prior distribution will maximize
the value of clairvoyance; we might call this the maximum
value of clairvoyance. It is the value of clairvoyance to a
decision maker who had the most unfortunate initial state
of information as far as purchasing clairvoyance is con-
cerned. The ealeulation is useful because it shows the most
that anyvone should pay for clairvoyance regardless of his
state of information. Of course, the calculation is predicated
on a given time and risk preference.

Experimentation: The real-world approximation to
clairvoyance is some form of experimentation. An im-
portant question in guiding the gathering of additional
information is, therefore, the value of a given experiment.
The caleulation follows almost the same form as the com-
putation of the value of clairvoyance.

Lig. 9 illustrates the nature of the caleulation. Suppose
that the experiment costs kg and that after it was con-
ducted, it produced the data D. Knowledge of D would
change the probability distribution on s to {s|Dg}, which
ix related to the prior distribution {s|8] by Bayes’ equation,

o) = ) o
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The new quantities {D|s¢} and {D]g} are interesting in
themsevles. The quantity {D|sg] is the probability of
observing the particular data D for any setting of the state
variables; it is called the likelihood function. The quantity
{Dl&} is the probability of observing D assigned before the
experiment is performed; it is related to the likelihood
function and the prior by

(Dle} = [ (Dlsc} e}

and is called the preposterior distribution.

Once D is known, the best setting d(Dk &) of the decision
vector will be the setting that produces the net present
value lottery of highest utility,

d(Dk,8) = max~ ‘(ull)k,dt‘,)
d

m:x -t j: (u|sk ,dE) {s|De}.

The utility of this lottery will be

max(u|Dk,d€) = (u|Dk,d(DkyE)8).
d

However, this utility will be received conditional on the
reporting of D. The probability that D will be reported by
the experiment is the preposterior probability {Dlel.
Therefore, the overall utility of the experiment at a cost
ky, (u|ks8), will be just

(ulks8) = fo (u| Dk d(Dk,8)8) {D]6} .

The number kg that satisfies the equation
(ulks8) = (ul8)

and thus makes the utility of the best lottery with the
experiment equal to the utility of the best lottery without
the experiment is the value of the experiment.
Comparing this calculation with the one for the value of
clairvoyance shows that we can interpret clairvoyance as a
very special kind of experiment: one that completely
eliminates uncertainty in one or several state variables.



HOWARD: FOUNDATIONS OF DECISION ANALYSIS

Once the value of the experiment has been computed,
it can be compared with its real-world cost. Experiments
whose value exceeds their cost are profitable alternatives
for the decision maker; others are not. Determining the
profitability of various information gathering plans shows
which, if any, should be pursued before the primary
decision is made.

The Decision Analysis Cycle

This discussion of the decision analysis cycle has in-
dicated most, but not all, of the types of analyses that
may be useful. For example, determining sensitivity of the
best decision and its present value to the discount rate
representing time preference would be an obvious test to
perform. In some decision problems, particularly those
requiring the consensus of several interested parties, it
may be wise to measure risk sensitivity. This would involve
seeing how the best decision and its certain equivalent
value change as the risk aversion coefficient is increased.
Fortunately, it often happens that the same policy remains
best for a range of risk coeflicients that includes those of
all participants. In these cases, there is no point in argu-
ment over just what attitude toward risk should govern
the decision.

Division of Effort: The total effort devoted to the cycle is
not typically equally divided among the phases. Because
of the need for a detailed understanding of fundamental
problem relationships, the deterministic phase requires
about 60 percent of total effort. The probabilistic phase
might receive 25 percent; the informational phase, the
remaining 15 percent. As the analysis progresses through
the phases, the nature of the work changes from the con-
struction and tuning of the model to the development of
insight by exercising it.

Computational Demands. The difficulty of exercising the
model changes from phase to phase. For example, a com-
puter run to establish stochastic sensitivity might require
ten times as much time as a run to measure deterministic
sensitivity. Similarly, an economic sensitivity run in the
informational phase might require ten times as much com-
putation as the measurement of stochastic sensitivity.
Thus we see the need for the continued screening of vari-
ables to assure that only important factors are retained in
each phase of the analysis. To think of performing a deci-
sion analysis by including all possibly relevant variables in
each phase would be very unrealistic.

The Model Sequence: Typically, a decision analysis is
performed not with one, but with a sequence of progres-
sively more realistic models. The first model in the sequence
we call the pilot model; it is an extremely simplified repre-
sentation of the problem, useful only for determining the
most important relationships. Its aeronautical counterpart
would be the wind tunnel model of a new airplane. It looks

very little like the desired final product, but it is in-
dispensable in achieving that goal. Perhaps 20 percent of
total effort might be devoted to construction and testing
of the pilot model.

The next model in the sequence is called the prototype
model. It is a quite detailed representation of the problem
that may, however, still be lacking a few important at-
tributes. Its aeronautical analogy would be the first flying
model of a new airplane. While it will generally have bugs
that must be eliminated, it does demonstrate overall
appearance and performance of the final version. Because
of the need for verisimilitude of the prototype model, it
might require 60 percent of the total effort.

The final model in the sequence is the production model;
it is as accurate a representation of reality as will be
produced in the decision analysis. Like the production air-
plane, it should function well even though it may retain
features that are treated in a less-than-ideal way. Perhaps
20 percent of the total effort might be devoted to this
final stage of model development. When completed, the
production model should be able to withstand the test of
any good engineering design: additional modeling re-
sources could be utilized with equal effectiveness in any
part of the model.

It would be unrealistic to expect the decision analysis of
any large problem to employ all the phases, sensitivity
analyses, and models that we have discussed. However,
having the concepts and nomenclature necessary to depict
these steps is a powerful aid in the planning and execution
of a decision analysis. The future should bring continual
refinements in the theory and application of the meth-
dology.

CoNcLusioN

The last few years have seen decision analysis grow from
a theorist’s toy to an important ally of the decision muker.
Significant applications have ranged from the desirability
of kidney transplants through electric power system
planning to the development of policies for space explora-
tion. No one can say when the limits of this revolution will
be reached. Whether the limits even exist depends more on
man’s psychology than on his intellect.
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The Difficulty of Assessing Uncertainty

E. C. Capen,
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Introduction

The good old days were a long time ago. Now, though
we must harmess new technology and harsh climates to
help provide needed energy supplies, we are also faced
with the complex problem of satisfying not altogether
consistent governments, the consumer, our banker, and
someone’s time schedule. Judging from the delays,
massive capital overruns, and relatively low return this
industry has experienced lately, it would seem that we
have been missing something. At least one explana-
tion is that we have not learned to deal with uncertainty
successfully.

Some recent testing of SPE-AIME members and
others gives rise to some possible conclusions:

1. A large number of technical people have little idea
of what to do when uncertainty crosses their path. They
are attempting to solve 1976 problems with 1956
methods.

2. Having no good quantitative idea of uncertainty,
there is an almost universal tendency for people to un-
derstate it. Thus, they overestimate the precision of
their own knowledge and contribute to decisions that
later become subject to unwelcome surprises.

A solution to this problem involves some better un-
derstanding of how to treat uncertainties and a realiza-
tion that our desire for preciseness in such an unprcdlct-
able world may be leading us astray.

Handling Uncertainty

Our schooling trained us well to handle the certainties
of the world. The principles of mathematics and physics
work. In Newton’s day, force equaled mass times ac-

celeration, and it still does. The physicists, when they
found somewhat erratic behavior on the atomic and
molecular level, were able to solve many problems
using statistical mechanics. The extremely large number
of items they dealt with allowed these probabilistic
methods to predict behavior accurately.

So we have a dilemma. Our training teaches us to
handle situations in which we can accurately predict the
variables. If we cannot, then we know methods that will
save us in the presence of large numbers. Many of our
problems, however, have a one-time-only characteris-
tic, and the variables almost defy prediction.

You may embark on a new project whose technology
differs from that used on other projects. Or perhaps
your task is to perform a familiar project in a harsh
environment. Try to estimate the total cost and comple-
tion time. Hard! You cannot foresee everything. And,
for some reason, that which you cannot foretell seems
to bring forth more ill than good. Hence, the predictions
we make are often very optimistic. Even though we see
the whole process unfolding and see estimate after esti-
mate turn out optimistic, our next estimate more than
likely will be optimistic also.

What happens? Is there some deep psychological
phenomenon that prevents our doing better? Because we
are paid to know, do we find it difficult to admit we do
not know? Or can we obtain salvation through knowl-
edge? As we were trained to handle certainty, can we
also find a better way to estimate our uncertainty?

[ think so, but it will take some special effort — just
as it did when we first learned whatever specialty that

suggests a better way to treat the unknown.

What do you do when uncertainty crosses your path? Though it seems that we have been
taught how to deal with a determinate world, recent testing indicates that many have not
learned to handle uncertainty successfully. This paper describes the results of that testing and
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got us into the business. As one of the Society's Dis-
tinguished Lecturers for 1974-75, I had a unique oppor-
tunity to collect information on the way our membership
treats uncertainty. [ do not claim that what you are
about to read will set the scientific or business com-
munities to quaking (others have noticed similar phe-
nomena before’). But there are lessons that should help to
improve our perceptions of uncertainty and, we hope,
increase our economic efficiency by giving us better
information on which to base decisions.

SPE-AIME Experiment

The experiment went like this. Each person put ranges
around the answers to 10 questions, ranges that de-
scribed his personal uncertainty. The questions were the
following:

1. In what year was St. Augustine (now in Florida)
established as a European settlement?

2. How many autos were registered in California in
19722

3. What is the air distance from San Francisco to
Hong Kong in miles?

4. How far is it from Los Angeles to New Orleans
via major highways in miles?

5. What was the census estimate of U.S. population
in 1900?

6. What is the span length of the Golden Gate Bridge
in feet?

7. What is the area of Canada in square miles?

8. How long is the Amazon River in miles?

9. How many earth years does it take the planet Pluto
to revolve around the sun?

10. The English epic poem ‘‘Beowulf” was com-
posed in what year?

For some, the task was to put a 90-percent range
around each answer. The person would think up a range
such that he was 90-percent sure the range would en-
compass the true value. For example, in one section a
gentleman put a range of 1500 to 1550 on Question 1.
He was 90-percent sure that St. Augustine was estab-
lished after 1500, but before 1550. In his view, there
was only a 5-percent chance that the settlement came
into being after 1550. If he were to apply such ranges
for many questions, we would expect to find about 10
percent of the true answers outside of his intervals.

Other groups were asked to use 98-percent ranges —
virtual certainty that their range would encompass the
true value. [ also asked for ranges of 80, 50, and 30
percent. The 30-percent interval would supposedly
allow 70 percent of the true answers to fall outside the
range.

Most sections used a single probability range. How-
ever, a few groups were divided in two, with each half
using different intervals, usually 30 and 90 percent. |
shall refer to these ranges as probability intervals.

You may want to test your skill on the test, too. The
answers are in the Appendix. Use a 90-percent interval
SO you can compare with results given later.

Results and Conclusions

My testing turned up traits that should be of interest.
[From this point on, the people referred to are the
1,200+ people at the local section meetings who an-
swered the questions sufficiently to be counted. There
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were a significant number (350 or so) at the meetings
who either had no idea of how to describe uncertainty
or thought it chic not to play the game.]

1. People who are uncertain about answers to a ques-
tion have almost no idea of the degree of their uncer-
tainty. They cannot differentiate between a 30- and a
98-percent probability interval.

2. The more people know about a subject, the more
likely they are to construct a large probability interval
(that is, one that has a high chance of catching the
truth), regardless of what kind of interval they have
been asked to use. The converse seems to hold also: the
less known, the smaller the chance that the interval will
surround the truth.

3. People tend to be a lot prouder of their answers
than they should be.

4. Even when people have been previously told that
probability ranges tend to be too small, they cannot
bring themselves to get their ranges wide enough,
though they do somewhat better.

5. Simultaneously putting two ranges on the answers
greatly improved performance, but still fell short of the
goal.

Such conclusions come from the following observa-
tions. Looking at the data collected on each of the sec-
tions, we find that the average number of ‘‘missed”’
questions was close to 68 percent. We could adopt the
following hypothesis:

SPE-AIME sections will miss an average 68
percent of the questions, no matter what prob-
ability ranges they are asked for. '

Mathematical statisticians have invented a way to test
such hypotheses with what they call confidence inter-
vals. They recognize, for instance, that the Hobbs Pe-
troleum Section average of 6.26 misses out of 10 ques-
tions is subject to error. Slightly different questions, a
different night, a longer or shorter bar — all kinds of
things could conspire to change that number. By ac-
counting for the variability of responses within the
Hobbs chapter and the number of data points that make
up the average. these statistical experts can put a range
around the 6.26 much like the ranges the members were
asked to-use. Except that (unlike the members) when
the statistician says he is using a 95-percent range, he
really is!

For Hobbs, that range comes out to be 5.45 to 7.07.
Since that range includes 6.8, or 68-percent misses, the
statistician will agree that, based on his data, he would
not quarrel with the hypothesis as it applies to Hobbs.

Table 1 shows all the 95-percent ranges and Fig. |
illustrates how these ranges compare with the 68-
percent hypothesis. You will see a portion of the Los
Angeles Basin Section whose confidence interval (5.24
to 6.68) does not include 6.8. There are three possible
explanations:

1. The group has a bit more skill at handling such a
problem than most.

2. Being part of an audience that was asked to use
two different ranges, there was a more conscious etfort
on their part to use a wider range.

3. The statistics are misleading, and the group is not
different from the others. We expect this to happen
about 5 percent of the time. (Our testing mechanism
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TABLE 1 — SUMMARY OF 95-PERCENT RANGES

Number of Requested Expected
SPE-AIME Usable Range Number of Actual Number 95-Percent Confidence
Section Responses (percent) Misses Average Misses Interval
Hobbs Petroleum 34 98 0.2 6.26 5.45 to 7.07
Oklahoma City 11 98 0.2 7.00 6.64 to 7.36
Los Angeles Basin (1) 28 90 1 5.96 5.24 to 6.68
San Francisco 61 90 1 6.41 5.89 to 6.93
Oxnard 26 90 1 7.38 6.64 to 8.12
Long Beach (1) 28 90 1 6.04 5.20 to 6.88
New York 29 90 1 6.52 5.76 to 7.28
Bridgeport Charleston (1) 16 90 1 7.63 6.89 to 8.37
Anchorage 63 90 1 6.54 6.00 to 7.08
Bartlesville 44 90 1 6.30 5.61 to 6.99
Lafayette e 90 1 6.51 6.03 to 6.99
Shreveport 41 90 1 6.83 6.18 to 7.48
Vernal 13 80 2 7.23 6.30 to 8.16
Denver 129 80 2 6.46 6.12 to 6.80
Cody 42 80 2 7.31 6.74 to 7.88
Columbus 27 50 5 6.96 6.47 to 7.45
Lansing 30 50 5 6.83 6.16 to 7.50
Chicago 41 50 5 6.54 597 to 7.11
Tulsa 53 50 5 6.79 6.33to 7.25
Los Angeles Basin (2) 27 30 7 7.00 6.26 to 7.74
Long Beach (2) 28 30 7 7.39 6.80 to 7.98
Bridgeport Charleston (2) 15 30 7 7.82 6.97 to 8.67

was a 95-percent confidence interval.)

Likewise, the Bridgeport/Charleston (W. Va.) sec-
tions had ranges that did not encompass 6.8. In their
defense, the meal service had been poor, the public
address system had disappeared, and there were more
than the normal misunderstandings. Even so, their
lower limits of 6.87 and 6.97 just barely missed the
6.8 target.

One group of highly quantitative people also took the
test. [ mention this group because of the large number
of members it includes and because it provides evidence
that the more quantitative people may do a little better
in estimating uncertainty — but still not as well as they
would like. (See Table 2.)

The 68 percent would not be expected to hold on all
kinds of questions or all kinds of people. In fact, it is
clear that the number would have been higher had it not
been for relatively easy questions such as Questions 1
and 4. Most people know St. Augustine was a Spanish
community and, therefore, had to be established be-
tween 1492 and 1776. By making the range a bit more
narrow than that, they could be reasonably sure of brack-
eting the true answer. Even so, more than one-third of
the members missed that one — regardless of their in-
structions on range.

Based on a sample of the 1,200+ quizzes, here are
the average misses for each question:

Average Misses
Question (percent)
1 39
67

OO0~ WN
[*.)
oo

10 85

Questions such as Questions 9 and 10 were difficult,
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and we found 80 percent or so misses — again regard-
less of the requested probability of a miss.

People who have no idea of the answer to a question
will apparently try to fake it rather than use a range that
truly reflects their lack of knowledge. This trait may be
as universal a part of human nature as laughter; cer-
tainly it is not peculiar to SPE-AIME members.

Is the Problem Costly?

Why should anyone get excited about such results? Be-
cause, [ think, similar behavior on the job can cost in-
dustry a bundle. Our membership at various levels of

AVERAGE NUMBER OF MISSES

5 6 7 8 9
E————— Hobbde
agmm——— Oklahoma City
EEEssE— Los Angeles (1)
Pre— San Francieco
———— Oxnard
eE————— Long Seach (1)
————— Nev York
aee———— Bridgeport/Charleston (1)
[r— . Anchorage
SRS Sartlesville
E—— Lafayette
Shreveport
E——— Vernal
m— Deaver
GEEEE—— Cody
ca— Columbus
n———— Lansing
a——— Chicago
Tulss
c——— Loe Angeles (2)
T——— Long Beach (2)
——————— Bridgepore/Charleston (2)

Hypothesis: 68%

Fig. 1 — The 95-percent confidence intervals of SPE-AIME
sections. Average number of misses on 10-question quiz.



TABLE 2 — COMPARISON OF RESULTS

Number of Requested Expected
Usable Range Number of Actual Number 95-Percent Confidence
Section Responses (percent) Misses Average Misses Interval
Atlantic Richfield R&D 52 98 0.2 4.52 3.84 t0 5.20
SPE-AIME Section
(Hobbs and Oklahoma City) 145 98 0.2 6.83 6.50 to 7.16

management is responsible for all sorts of daily esti-
mates that ultimately work their way into investment
decisions. To the extent that the success of the invest-
ments relies on those estimates, business can be in trou-
ble. If one’s range so seldom encompasses the truth on
tough questions, then the more common single-point es-
timates have little chance of being very close. Even
those beloved ‘‘what-ifs’’ cannot be of much help since
such questions would only be expected to test *‘reason-
able’’ ranges. This research seems to indicate that most
of us have little idea of what is a reasonable range.

Other Experiments

Earlier, I mentioned that we might be able to practice
this business of estimating uncertainty and improve our
track record. Experience with the SPE-AIME sections
says that the practice may have to be substantial. Hav-
ing established the 68-percent norm during the early
part of my tour, I was able to do some other experi-
menting later.

One section had the benefit of knowing ahead of time
what all the other sections had done. They knew be-
fore they started that no matter what range I had asked
for, the membership always responded with about 68-
percent misses, or a 32-percent probability interval.
This group of 143 knew, then, that the tendency was to
give much too tight a range and that they should be
very careful not to fall into the same trap. (See Table
3.) It would seem that my wamning had some effect. The
mere telling of the experience of others is not, how-
ever, enough to shock most people into an acceptable
performance.

Menke, Skov, and others from Stanford Research In-
stitute’s (SRI) Decision Analysis Group have experi-
mented along similar lines. (and. in fact, their work
gave me the idea for these tests). They say that if
groups repeatedly take quizzes such as those described
here, they are able to improve. Initially, people gave
:50-percent ranges even though 98-percent ranges had
been asked for. After several such tests (different each
time, of course), the participants were able to reach a
70-percent range, but could never quite break that bar-
rier. Their results show, apparently, that many intelli-
gent men and women (they dealt largely with business
executives) can never admit all their uncertainty. SRI
made sure that some of their tests were built from sub-
ject matter familiar to the executives, such as questions
extracted from their own company’s annual report.
Therefore, the phenomenon we are describing must
have very little to do with the type of question.

Value of Feedback

For several years now we have asked our exploration
people for 80-percent ranges on reserves before drilling
an exploratory well. But we recognized that the act of
putting down a 10-percent point and a 90-percent point
would not in itself be sufficient. We also asked them
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to see what their 80-percent range told them about other
points on the distribution curve. If one is willing to as-
sume a certain form of probability distribution, then
the 80-percent range dlso specifies every other point.
Hence, the explorationist can essentially put himself
into a feedback loop. He puts two points into a sim-
ple time-share computer program, and out pop all the
others. He now may check the 90-percent point, the
50-percent point, or any other. He well may find some
that do not fit his notions — for example, his 80-
percent range does not yield a 40-percent range that suits
him. So he compromises one or the other until he gets
the fit he likes.

All that is design and theory. In practice, most peo-
ple throw in the 80-percent range and just accept what-
ever comes out. Based on the recent testing with SPE-
AIME groups, [ would have to guess that the 80-percent
range constructed without feedback is actually much
more narrow — perhaps 50 percent. It would take a lot
of data, which we do not have, to measure the range.
Almanacs and encyclopedias cannot help much here.

My estimate of 50 percent comes from the follow-
ing judgment. It must be more difficult to put ranges
on exploration variables than to put them on questions
such as when St. Augustine was founded. On the other
hand, it should be easier for a geologist to conceive
of his vocational uncertainties than for him to handle
Beowulf-type questions. Since the audiences’ average
ranges on those two questions were about 40 and 85
percent, respectively, I chose 50 percent.

The feedback process, if used, can be of benefit. The
following experiment was performed with some sec-
tions. I asked the members to write down two ranges
simultaneously. That forced some sort of feedback. And
since both ranges could not have 68-percent misses. it
seemed logical to expect that such a ploy would yield
better results — which, in fact, was what happened.
(See Table 4.)

By having to use two ranges, the members were able
to greatly improve their 90-percent range compared
with those who worked with only one interval. The
50-percent range, however, was shoved in the other di-
rection. I would guess that the best strategy for one
faced with an uncertainty problem would be to consider
whole distributions (that is. many ranges), continually
playing one against the others. That scheme should re-
sult in even better definition of one’s uncertainty.

Even then, studies suggest that people may come up
short. 1 once saw the results of a full-scale risk analysis.
including a probability distribution of project cost. A
few months later the same people did another risk
analysis on the very same project. Amazingly, the cost
distributions did not even overlap. Changes had taken
place on that project in the space of a few months that
moved the results far beyond those contemplated when
the experts were laying out their original ranges. People
tend to build into their ranges those events that they can
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TABLE 3 — KNOWLEDGE OF PREVIOUS RESULTS

Number of Requested Expected
Usable Range Number of Actual Number 95-Percent Confidence
Section Responses (percent) Misses Average Misses Interval
New Orleans 143 90 1 5.46 5.08 to 5.84
TABLE 4 — RESULTS USING FEEDBACK PROCESS
Number of Requested Expected
Usable Range Number of Actual Number 95-Percent Confidence
Section Responses (percent) Misses Average Misses Interval

Bay City 26 90 1 5.04 3.99 to 6.09

Bay City 26 50 5 8.31 7.67 to 8.95

Houston 98 90 1 4.05 3.63 to 4.47

Houston 98 50 5 7.32 6.94 to 7.70
see as possibilities. But since much of our uncertainty 385 280t0 475
comes from events we do not foresee, we end up with 390 370 to 410
ranges that tend to be much too narrow. 450 400 to 500
500 15010 780
Are the Tests Valid? 626 500t0 700
There may be those who still feel that the kinds of ques- 735 468 to 1,152
tions I used cannot be used as indicators of what one 750 500 to 1,500
does in his own specialty. | know of several arguments 795 7300 840
to counter that view. but no proof. 800 750 t0 850
The less one knows about a subject, the wider should 960 710 to0 1,210
be his range. An English scholar might have a 90 per- 1,000 900 to 1.100
cent range of A.D. 700 to 730 for the ‘‘Beowulf’’ 1,026 700 to 1,800
question. The typical engineer might recognize his 1,053 953 to 1,170
limitations in the area and put A.D. 500 to 1500. Both 1.070 700 to 1,300
ranges can be 90-percent ranges because the degree of 1,080 700 to 1,400
uncertainty is a very personal thing. One’s knowledge, 1,152 952 to 1,352
or lack of it, should not affect his ability to use 90-per- 1,200 500 to 3,600
cent ranges. So the type of question should not matter. 1,200 1,000 to 1,500
[ mentioned earlier that SRI's use of material from a 1.201 1,000 to 1,400
company's own annual report did not change the re- 1,300 500 to 2.000
sults. Regardless of whether one is an expert, the ranges 1,300 600 to 2.000
generally come in too narrow. 1,400 1.200 to 1,600
Another criticism of these questions has been that 1,500 400 to 1.300
they test one’s memory of events already past rather 1,500 800 to 2,000
than the ability to predict the future. Conceptually. is 1,600 1.350 to 1.950
there any difference regarding the uncertainty? There 1.681 1,440 to 2,000
may be more uncertainty associated with, for instance, 1.850 1.400 to 2,200
the timing of an event yet to take place. But it seems 4,655 4,000 to 5,000
that the difference is only one of dégree when compared 5,000 2,000 to 15,000

with recalling a date in history from an obscure and
seldom-used brain cell. In either case, one does not
know for sure and must resort to probability (likely a
nontechnical variety) to express himself.

Bean Counting

You may find a third argument even more compelling.
We asked groups of people to estimate the number of
beans in a jar. Not only were they asked for their best-
guess single number but also for a 90-percent range.
The players were mostly professional people with tech-
nical training, and most had or were working part time
on advanced degrees. Since we built in a reward system
(money), the estimators were trying to do a good job, at
least with their best guess. The following table gives
their results. The jar contained 95! beans.

Best Guess 90-Percent Range
217 180 to 250
218 200 to 246
250 2250 275
375 200 to 500
AUGUST. 1976

The experiment provides added insight because
everyone could see the beans. No one had to test his
memory of geography or history or his company's per-
formance reports. The jar was somewhat square in
cross-section so as not to introduce any tricks in es-
timating volume, though no one was allowed to use a
ruler. Still, the requested 90-percent ranges turned out
to be more like 36-percent ranges because only 12 of 33
included the true value. After our testing., Elmer
Dougherty of the U. of Southern California tried the
same experiment and privately reported very similar re-
sults. We then asked some of our exploration people to
go through the exercise, and they too repeated the ear-
lier performances of others.

Interestingly, we have three more bean estimates made
by people using a computer model (Monte Carlo simu-
lation) to get ranges. They estimated their uncertainty
on the components (length, width, heighth, and packing
density) to get an over-all range. All included the true
value of 951. Equally competent people not using the
simulation approach could not do as well.
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Best Guess 90-Percent Range

1,120 650 to 1,900
1,125 425 to 3,000
1,200 680 to 2,300

This experiment provides evidence that even a simple
approach to probability modeling usually will be a lot
better than what one dreams up in his head when it
comes to assessing uncertainty.

Still More Experiments

Few people give in easily when confronted with this
kind of material. They complain that I am testing
groups and it was the ‘‘other guys’ who caused the
problems we see reflected in the data. Or they did not
know my game was a serious one. Or they had no real
incentive to do well, as they normally have on the job.
Or that while they admit to having missed cost esti-
mates, project completion times, producing rates, infla-
tion rates, crude oil prices, etc., now and then, those
were caused by external circumstances and certainly
nothing they could have been responsible for. (Who
ever said that we should only estimate that part of un-
certainty for which we have responsibility?)

To counter such talk, I have engaged in other testing.
One group had money riding on their ability to properly
assess probability ranges. I asked them for 80-percent
ranges and even agreed to pay them if, individually,
they got between 60 and 90 percent. If they did not, they
had to pay me. The group was so convinced the game
was in their favor that they agreed to pay for the privilege
of playing! And it was not sight unseen, either. They
had already taken the test before the wager (same 10
questions given to SPE-AIME sections). They lost. But
the point is that before getting their results, they did not
feel that the questions were in some way beyond their
capabilities.

At the SPE-AIME Fall Technical Conference and
Exhibition in Dallas, I needed to save time while pre-
senting this paper but I still needed to illustrate the
point. [ used a color slide of some beans spread about in
an elliptical shape. It was the easiest test yet; the audi-
ence could clearly see every single bean. We used a
12-ft screen so the images would be large even for those
in the rear. Still, only about one-third of the several
hundred present came up with a 90-percent range that
encompassed the true value.

As early as 1906, Cooke? did some testing of mete-
orological questions to see how well he could assess
uncertainty. Since then, others®>* have examined the
problem and noticed similar results. Lichtenstein et al.®
have an extensive bibliography.

Don Wood of Atlantic Richfield Co. has been using
a true/false test to study the phenomenon. The subject
answers a question with true or false and then states
the probability he thinks he is correct. Most people are
far too sure of themselves. On those questions they say
they have a 90-percent chance of answering correctly,
the average score is about 65 percent.

To illustrate his findings, Wood describes the results
on one of his test questions: **The deepest exploratory
well in the United States is deeper than 31,000 ft.”
Several knowledgable oil men have said the statement is
false and that they are 100-percent sure of their answer.
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Other oil men have said true, also believing they are
100-percent sure of being correct. Two petroleum en-
gineers argued about another of Wood’s questions:
‘‘John Wayne never won an academy award.”’ Each
was 100-percent sure of his answer, but one said true
and the other said false. By the way, an Oklahoma
wildcat has gone deeper than 31,000 ft and ‘‘True Grit"’
won an Oscar for the actor.

Where this paper reports results on how SPE-AIME
groups act, Wood gives a test that has enough questions
so that an individual can calibrate himself apart from
any group. The grade one receives after taking the test
may be loosely defined as the probability he knows
what he is doing. It comes from a chi-square
goodness-of-fit test on binomial data. Typical scores
have been smaller than 1 X 1073, or less than 1 chance
in 100,000.

Every test we have performed points in the same di-
rection, as have most of the tests performed by others.
The average smart, competent engineer is going to have
a tough time coming up with reasonable probabilities
for his analyses.

What Can We Do?

First, think of a range of uncertainty without putting
any probability on that range. Since our sample showed
that people tend to use the same range no matter what
kind of range they were asked for, it seems plausible
that a range such as we obtained during the tour would
be forthcoming.

Having written it down, we arbitrarily assign some
relatively small probability to the range encompassing
the truth, say 40 percent. Decide on the form of the
error. For example, in estimating project completion
time, one may feel his uncertainty is symmetrical (* 6
months). (See Fig. 2.)

If the uncertainty is best expressed as symmetrical,
then get some normal probability paper like that illus-
trated in Fig. 3. Plot the low end of your range at the
30-percent point and the high end at the 70-percent
point. Note that 70 — 30 = 40. Your range has a 40-
percent chance of encompassing the truth. Connect the
points with a straight line and extend the line all the
way across the paper. By reading the ordinates at the
S-percent and 95-percent points, you have your 90-
percent range (95 — S = 90). Our = 6 months has been
converted to = 1% years. If that range seems uncom-
fortably large, good! Remember that if you are like
most people, your natural tendency is to make such
ranges too narrow. To repeat an earlier idea, uncertainty
comes about because of what we do not know. Ranges
constructed using what we do know are likely to be too
small. (Bias, either pessimism or optimism, may be a
problem too, but we have not addressed it here.)

You may feel the uncertainties are asymmetrical with
a long tail region to the right, such as in estimating
reserves (see Fig. 4). One cannot have less than 0 bbl,
though with small probability he can have very large
numbers.

In such cases, use log-probability paper as in Fig. 5.
Say the 1ange is 3 to 6 million bbl. Again, go through
the ritual of plotting the low and high, drawing the line,
and checking to see how comfortable you are with a
90-percent range. This time our range has been con-
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verted from 3 to 6 to something like 1.4 to 12. Discom-
fort is a good sign.

Because they fit so much of the world so well, the
normal and lognormal distributions are logical choices
for describing uncertainty. Do not worry a great deal
about this apparent straight jacket. A realistic range
(that is, wide) is often more important than the form of
the distribution anyway.

Nor is there anything particularly holy about defining
your original range as 40 percent. I could have used 50
or 30 percent. | am just proposing a simple way to get
started in this business of defining the degree of your
uncertainty and at the same time paying homage to the
finding that people tend to overestimate the extent of
their knowledge.

If each bean counter had plotted his range on log-
probability paper as a 40-percent range and graphically
determined his 90-percent range, 25 of the ranges (or 76
percent) would have included the true value of 95I.
Using such a technique, the group would have achieved
a significant improvement in their ability to set ranges.
After all, 76 percent is not that far from their target of
90 percent.

As you begin to keep records of your probability
statements and compare them with actual outcomes,
you will begin to build your own rules for making esti-
mates. And, ultimately, your own tested rule is going to
work better for you than anything others design.

The Value of Training

Winkler and Murphy® reported on some meteorologists
who showed little or no bias in assessing probability.
Training through years of almost immediate feedback
on their predictions very likely accounts for this rare but
enviable behavior. The oil business seldom allows such
feedback. We may not find the answers to our predic-
tions for several years, and by then we have been re-
tired, promoted, banished, or worse.

Best Guess = 3.5 years

“Probability"
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Fig. 3 — Determining range, symmetrical uncertainty.
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But since training in this area appears to be vital. [
urge you to set up a program for yourself. Every month
make some predictions about the future, predictions
whose outcome will become known during the follow-
ing few weeks. Assign probabilities to your predictions,
and religiously check your results. Find out what hap-
pens when you are 90-percent sure, 70-percent sure.
etc. Example:

1. The next holiday weekend will see more highway
deaths recorded than the similar period last year.

True 60 percent

2. The Cincinnati Reds will lead their division on
July 4.

True 70 percent

3. XXX Corp. common stock will close above $Z
before Sept. 1.

False 50 percent

To find out how well you are doing, consult some
binomial probability tables (or a friendly expert). Say
you had 20 statements to which you assigned a 70-
percent chance of being right. You would have ex-
pected to get 14 of them right. What if you only got 10
right? [s that good? The tables show a probability of 4.8
percent of getting 10 or less right under conditions
when you expect to get 14 right out of 20. It would be
long odds (1 in 20) to claim, therefore, that you had
learned to set the probabilities correctly. Better practice
some more. Ask your stockbroker to do likewise.

Does a Better Range Lead to a
Better Mean?

One might be tempted to argue that improving our un-
derstanding of uncertainty would not in itself improve
the estimate of the mean, best guess, or whatever
people tend to use for making their decision. But look,
for example, at the Alyeska Pipeline and the 1969 cost
estimate of $900 million. Most everyone associated

“Probability"
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with the project knew that it could not cost much less
than $900 million. If everything had gone off without a
hitch (roughly equivalent in probability of occurrence.to
all the molecules congregating on one side of a room),
it might have come in for around $800 million.

What kind of things could happen to drive the cost in
the other direction?

1. Labor problems such as jurisdictional disputes and
the lack of an adequate supply of necessary skills in
such a harsh environment.

2. Weather.

3. Shortages of equipment and supplies resulting
from the unique nature of the project and remoteness of
the site.

4. Design problems. An axiom of engineering: All
doth not work that man designeth.

5. Economy of scale in full retreat. Some projects
are so large that they are most difficult to manage
effectively.

6. Bureaucratic delays brought about by masses of
government regulations.

(Note that the list does not include the large cost in-
crease brought about by government inflationary policies
and the oil embargo, nor does it include the problems
caused by so-called environmentalists. Reasonably in-
telligent forecasters might have missed those events
back in early 1969.)

An analysis of these six items would have led one to
imagine some chance for a pipeline costing as much as
$3 billion giving the following range.

Rock-bottom cost
Best estimate
High-side cost

$0.8 billion
$0.9 billion
$3.0 billion

How long could such a ‘‘best guess’" survive in such a
range? Merely writing down the numbers exposes the
best guess to sharp criticism and doubtless would force
it to a higher and more realistic level. Though the new
best guess would still have been far below present cost
estimates of almost $8 billion. it nevertheless would
have been very useful. Crude prices, we remember,
were much lower then.

It seems logical, then. to expect that quite 2 number
of projects would benefit similarty from a better range
analysis. Consider the bean counters mentioned earlier.
What if all those whose best guesses were less than 500
had known that there was a chance the truth might be
up around 1,000? Is it not likely that they would have
moved those best guesses up somewhat?

The Payoff

The payoff for having a better grasp on uncertainty
should be quite a sum. In recent years both industry and
government could have been more cautious in their es-
timates and perhaps achieved a better return for their
investments.

The Oil and Gas Journal of Oct. 9, 1967, quoted
management at the Great Canadian Oil Sands plant ded-
ication: ‘‘Operating in the northiand offers no unusual
problems — in fact, it has some advantages." Business
Week, Jan. 5, 1974, quoted the GCOS President:
**We're the proud owners of a $90 million loss. This is
the cost of being a pioneer.”

Most tax payers remember the many government
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programs that ended up costing much more than origi-
nal estimates (TFX. C5A, Interstate Highway Program,
BART., and the Dallas-Fort Worth Regional Airport, for
example). There has been a long history of cost under-
estimates for all kinds of projects because of not ade-
quately accounting for future unknowns.

The whole planning and budget process stands at the
mercy of supposedly expert estimates. It may be that we
have gotten ourselves into trouble by looking for *‘the
answer’’ (never attainable) when we should have con-
centrated on realistically setting our uncertainties. If the
ranges are adequate, then at least the plan can cope with
possible events of the future.

A better view of our uncertainties should have a
significant effect on our success as risk takers and
ultimately on profits.
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Answers to the ten questions used in the quiz.

1. A.D. 1565.
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. 4,200 ft.
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. 248.4 years.

10. A.D. 700 to 730.
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1. INTRODUCTION

Probability encoding plays an important role in the application of
decision analysis, since it is the process of extracting and quantifying
individual judgment about uncertain quantities. This paper is intended
as a start in disseminating probability encoding methodology. It sum-
marizes the probability encoding methods currently used by the Decision
Analysis Group at Stanford Research Institute. These methods are based
on several years of experience with probability encoding in decision
analysis applications, as well as on evidence from experiments.

There is a vast literature that relates to probability encoding.
The annotated bibliography by Stael von Holstein [8] covers the items
that are most relevant to this paper. Some encoding techniques are sum-
marized in [7]. The last twenty years have seen a flood of psychological
experiments dealing with various aspects of man as an "intuitive sta-
tistician" or "processor of probabilistic information"; many of the ex-
periments provide relevant insights. Two recent overviews of the field
are provided by Peterson and Beach [5] and Rapoport and Wallsten [6].
However, the psychological studies have restricted usefulness for proba-
bility encoding in practical situations for three reasons. Most studies
deal with binary probability distributions (an event either occurs or
does not occur) rather than continuous distributions. Moreover, they
are based on laboratory experiments rather than actual decision situations.
Finally, while the studies show how well (or poorly) subjects perform in
various tasks, they do not develop procedures for improving performance.

During our research, we have collaborated with Professors Daniel
Kahneman and Amos Tversky of Hebrew University, Jerusalem; the material
in Section 4 is based on their work. We have benefitted from many dis-
cussions of the subject with our colleagues in the Decision Analysis
Group, in particular with Dr. James E. Matheson, and we are grateful for
their valuable comments. The paper has further benefitted from a careful
review by Dr. Michael M. Menke.
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2. THE DECISION ANALYSIS FRAMEWORK

Probability encoding is primarily done in the context of a decision
problem. A brief overview of decision analysis is given below to provide
a frame of reference. More extensive discussions of decision analysis
are found in Howard [1], [2] and Stael von Holstein [9]. A second, but
not necessarily less important, reason for encoding probabilities is
that they provide a clear means for communication about uncertainty.

Decision analysis procedures usually involve three phases--the de-
terministic, probabilistic, and informational phases. The deterministic
phase accomplishes the basic structuring of the problem by defining rele-
vant variables, characterizing their relationship in formal models, and
assigning values to possible outcomes. The importance of the different
variables is measured through sensitivity analysis.

Uncertainty is explicitly incorporated in the probabilistic phase
by assigning probability distributions to the important variables.
These distributions are obtained by encoding the judgment of knowledgeable
people. They are transformed in the model to exhibit the uncertainty in
the final outcome, which again is represented by a probability distribu-
tion. After the decision maker's attitude toward risk has been evalu-
ated and taken into account, the best alternative in the face of uncer-
tainty is then established.

The informational phase determines the economic value of information
by calculating the worth of reducing uncertainty in each of the important
variables in the problem. The value of additional information can then
be compared with the cost of obtaining it. If the gathering of additional
information is profitable, the three phases are repeated again. The
analysis is completed when further analysis or information gathering is
no longer profitable.

Throughout, the analysis is focused on the decision and the decision
maker. Expanding the analysis is considered of value only if it helps
the decision maker choose between available alternatives.
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3. MODELING AND ENCODING

The personal interpretation of probability represents a cornerstone
in the decision analysis philosophy. Probability represents an encoding
of information. Since various people are likely to have different infor-
mation, two persons can make different probability assignments to the
same uncertain quantity. We have found an interview process to be the
most effective way of encoding a probability distribution.

The decision maker is the person (or group of persons) who has the
responsibility for the decision under consideration. It follows that a
decision analysis must be based on the decision maker's beliefs and pref-
erences. He may be willing to designate some other person or persons as
his expert(s) for encoding the uncertainty in a particular variable if
he feels that the expert has a more relevant information base. The de-
cision maker can then either accept the expert's information as his input
to the analysis or modify it to incorporate his own judgment.

Definition of Decision and State Variables

A decision analysis model includes two kinds of input variables:
decision variables and state variables. The two must be carefully dis-
tinguished from one another because while the decision maker can choose
the values of the decision variables, the values of the state variables
are beyond his control. Thus it is only meaningful to discuss encoding
with respect to state variables. Some variables, such as price, may at
first seem difficult to classify as decision or state variables. This
difficulty, however, may be resolved by further structuring of the prob-
lem: e.g., into a controllable price strategy and the uncertain market
response. A similar problem can arise when variables interact. For ex-
ample, development time, program cost, and product performance are closely
related in new product decisions. One or two can be selected as decision
variable(s) and the other(s) become(s) a state variable(s). The problem
must be structured carefully according to which variables are best con-
sidered decision variables and which are state variables. Often this
separation is most easily achieved by redefinition of the variables.

There is always a choice between encoding the uncertainty in an im-

portant variable or modeling the problem further. At one extreme, it is
conceivable that the final worth or profit contribution of a project
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could be encoded directly, thus bypassing a need for examination of the
underlying variables. Generally, a distribution for final worth is more
easily reached, or provides more confidence, if a model is constructed
that relates final worth to other variables. The modeling effort tends
to be most effective and most economical if it starts with a gross model
that is successively refined. The model should be refined only while

the cost of each addition provides at least comparable improvement in in-
formation. This test depends on how the information bears on the deci-
sion at hand.

The choice between additional modeling and encoding may need to be
reconsidered during the encoding process, since the subject may reveal
biases during the interview that often can be treated by further struc-
turing of the problem.

Some Encoding Principles

The following list of principles should be used in defining and
structuring any variable whose uncertainty is to be encoded: Violating
them invariably leads to problems in the probability encoding. It serves
as a checklist before the actual encoding takes place. These principles
are:

* The uncertain quantity should be important to the decision, as
determined by a sensitivity analysis.

¢ The quantity should be defined for the subject as an unambiguous
state variable. 1If the subject believes the outcome of the
quantity can be affected to some extent by his decision, then
the problem needs restructuring to eliminate this effect.

¢ The level of detail required from the encoding process depends
on the importance of the quantity and should be determined by
sensitivity analysis before the interview. It may sometimes be
sufficient to elicit only a few points on the distribution.

¢ The quantity should be well structured. The subject may think
of the quantity as conditional on other quantities; accordingly,
conditionalities should consciously be considered and brought
into the structure because our minds deal ineffectively in com-
bining uncertain quantities, Mental acrobatics should be
minimized.

e The quantity should be clearly defined. A good test of this
quality is to ask whether a clairvoyant could reveal the value
of the quantity by specifying a single number without requesting

606



clarification. To cite an example, it is not meaningful to ask
for the "price of wheat in 1974," because the clairvoyant would
need to know the quantity, kind of wheat, at what date, at which
Exchange, and the buying or selling price. However, ''the closing
price of durum wheat on June 30, 1975 at the Chicago Commodity
Exchange" would be a well-defined quantity.

The quantity should be described by the analyst on a scale that

is meaningful to the subject. For example, in the o0il industry,
the subject--depending on his occupation--may think in terms of
gallons, barrels, or tank cars. The wrong choice of scale may
cause the subject to spend more effort on fitting his answers

to the scale than on evaluating his uncertainty. It is important,
therefore, to choose a unit with which the subject is comfortable;
after the encoding, the scale can be changed to fit the analysis.
As a rule, let the subject choose the scale if there is no
obvious scale.
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*
4. MODES OF JUDGMENT

Relevance for Probability Encoding

People perceive and assess uncertainty in a manner similar to the
way they perceive and assess distance. They use intuitive assessment
procedures that are often based on cues of limited reliability and va-
lidity. At the same time the procedures (we will use mode of judgment
as a synonym) generally produce reasonable answers. For example, an
automobile driver is generally able to estimate distance accurately
enough to avoid accidents, and a business executive is generally able to
evaluate uncertainties well enough to make his enterprise profitable.

On the other hand, a particular mode of judgment may lead to answers
that are systematically biased, sometimes with severe consequences.

To pursue the analogy with estimation of distance, people are known
to overestimate the distance of a remote object when visibility is poor
and to underestimate the distance when the sky is clear. Thus, they ex-
hibit a regular systematic bias. This is because we normally use the
haze as a cue to distance. This cue has some validity, because more dis-
tant objects are usually seen through more haze. At the same time, this
mode of judgment may lead to predictable errors. Three features of this
example are worth noting: (1) People are not generally aware of the
cues on which their judgments are based. Few people know that they use
haze to judge distances, although research shows that virtually every-
body does. (2) It is difficult to control the cues we use; the object
seen through haze looks more distant, even when we know why. (3) People
can be made aware of the bias, and can make a conscious attempt to con-
trol its effects, as the captain of a ship does when navigating in a
mist.

An analogous problem exists in the assessment of uncertain quanti-
ties. Here too, one relies on certain modes of judgment that may intro-
duce systematic biases. Here too, modifying impressions and intuitions

*
Much of the material in this and the next section is based on private

communications with Daniel Kahneman and Amos Tversky. The analogy be-
tween judgment of distance and judgment of uncertainty is due to them.

608



is exceedingly difficult, but it is possible to learn to recognize the
conditions under which such impressions are likely to lead us astray.

We will now briefly categorize biases that may be encountered in
probability encoding. In the subsequent sections we will discuss some
modes of judgment that are often used in responding to questions about
uncertain quantities.

Biases in Probability Encoding

For the purpose of this discussion the subject is assumed to have
an underlying stable knowledge regarding the quantity under investigation.
This knowledge may be changed through receiving new information. The
task of the analyst is to elicit from the subject a probability distribu-
tion that describes the underlying knowledge. Conscious or subconscious
discrepancies between the subject's responses and an accurate description
of his underlying knowledge are termed biases. Biases may take many
forms. One is a shift of the whole distribution upward or downward rela-
tive to the basic judgment; this is called displacement bias. A change
in the shape of the distribution compared with the underlying judgment
is called variability bias. Discrepancies may be a mixture of both kinds
of bias. Variability bias frequently takes the form of a central bias,
which means that the distribution is tighter (has less spread) than is
justified by the subject's actual state of information. Biases are il-
lustrated in Figure 1 in the form of three density functions, where A
represents the underlying state of information and distributions B and
C, respectively, represent the effects of central bias and displacement
bias.

>
1

Underlying Judgment

@
[

= Centrally Biased

Displacement Biased

PROBABILITY DENSITY

VALUE

FIGURE 1 EXAMPLES OF VARIABILITY AND DISPLACEMENT BIASES
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The sources of biases can be cognitive or motivational. Motivational
biases are either conscious or subconscious adjustments in the subject's

responses motivated by his perceived system of personal rewards for vari-
ous responses; he may want to influence the decision. He may also want
to bias his response because he perceives his performance will be evalu-
ated by the outcome: For example, a sales manager may consciously give

a low prediction of sales because he thinks he will look better if the
actual sales exceed his forecast. Finally, the subject may suppress the
full range of uncertainty that he actually believes to be present because
he feels that someone in his position is expected to know what will hap-
pen in his area of expertise.

Even when a subject is honest--in the sense that he lacks motiva-
tional biases--he may still have cognitive biases. Cognitive biases are
either conscious or subconscious adjustments in the subject's responses
systematically introduced by the way the subject is intellectually pro-
cessing his perceptions. For example, a response may be biased towards
the most recent piece of information simply because that information is
the easiest to recall. Cognitive biases depend on the judgment mode
used; they will be discussed further in the next section.

Basic Modes of Judgment

A bias results from the use of a mode of judgment. An important
responsibility of the interviewer is to try to elicit what modes of judg-
ment may be used by the subject and then try to adapt the interview to
minimize biases. 1In this section, we will define five different modes
of judgment and give examples of how they might operate. ,

Availability

Probability assignments are based on information that the subject
recalls or visualizes. The probability of a breakdown in a production
process may be assigned by recalling past breakdowns. Availability re-
fers to the ease with which relevant information is recalled or visual-
ized [10]. It is easy to recall information that made a strong impres-
sion at the time it was first presented. Past results and present
business plans also become easily available. Recent information is more
available than o0ld information and is often given too much weight. For
example, a piece of recent news regarding a competitor may influence a
sales forecast much more than should be allowed on the basis of past ex-
perience with such news. Some events may become overly available because
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of their potentially disastrous consequences (e.g., an accident with a
nuclear reactor) and are thus assigned probabilities that are too high.

Availability will be an important judgment mode in most probability
encoding sessions. It can also be introduced deliberately by the inter-
viewer. For instance, if the interviewer believes that the subject has
a central bias, he can ask the subject to make up scenarios for extreme
outcomes, which thereby become more available and help counteract the
central bias.

Adjustment and Anchoring

The most readily available piece of information often forms an ini-
tial basis for formulating responses; subsequent responses then represent
adjustments from this basis. For example, the current business plan is
often used as an available starting point. Likewise, when predicting
this year's sales, the subject may use last year's sales as a starting
point. He may use the recent years with the biggest and smallest sales
as the bases for formulating judgment about the extreme values for this
year's sales. The initial response many times serves as a basis for
later responses, especially if the first question concerns a likely value
for the uncertain quantity.

The subject's adjustment from such a basis is often insufficient.
We then say that the response is anchored on the basis; the result is
likely to be arcentrailbias. Anchoring thus occurs when some information
has become overly available at the beginning of the procedure. It re-
sults from a failure to process information regarding other points on
the distribution independently from the point under consideration.

Representativeness

Representativeness means that the probability of an event or a sam-
ple is evaluated by the degree to which it is representative of, or simi-
lar to, major characteristics of the process or population from which it
originated [3], [4]. We can then say that probability judgments are
being reduced to judgments of similarity. For example, people tend to
assign roughly the same distribution to the average of a sequence of un-
certain quantities (e.g., the average production volume for a group of
machines) as to each individual quantity forming the average when they
usually should assign a much tighter distribution to the average. The
main characteristic of the average value is the population from which
the individual quantities were sampled; information about that population
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therefore has a much greater influence on the distribution of the average
than has the number of quantities making up the average.

There is a tendency to disregard general information and base proba-
bility assignments on what appears to be a specific fact. For example,
a company had to decide whether to introduce a new product that was con-
sidered to have a high demand potential. The product was test-marketed
with a slightly unfavorable outcome, and the revised judgment of the
market was then a low demand. This revision was made in spite of past
experience with similar market tests that had been less than accurate in
predicting the final market size and in contrast to the strong prior
judgment indicating a high demand. This is a case of focusing on infor-
mation that relates to an individual hypothesis and of ignoring general
information, which perhaps should carry the main weight in the probability
assignment.

Biases can sometimes be explained by different modes of judgment.
For example, the fact that people attach too little weight to general in-
formation can also be explained by availability. That is, the market
test information in the example above was more recent than the general
information, and therefore more available.

The biases resulting from representativeness can often be reduced
or eliminated by further structuring of the problem. In the marketing
example, it is easy to encode the prior probabilities for various levels
of demand and encode the probability distribution for the test result
conditional on the demand. A simple application of probability calculus
will then provide the posterior probabilities of demand level given the
outcome of the market test.

Unstated Assumptions

A subject's responses are typically conditional on various unstated
assumptions; consequently, the resulting probability distribution does
not properly reflect his total uncertainty. This means that the subject
may not have considered such possibilities as future price controls, ma-
jor strikes, currency devaluation, war, and so on, when expressing his
judgment. He does not hold himself responsible for considering such
events. One result is that he may be less surprised than might be ex-
pected when the revealed value of an uncertain quantity falls outside
the range of his distribution. He justifies this because of a drastic
change in some condition that he did not feel responsible for incorpo-
rating into his judgment.
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The subject cannot be held responsible for all of the unstated as-
sumptions; rather, he is responsible for stating the assumptions he is
using so they can be built into the model and so that the most appropri-
ate expert (who may or may not be the current subject) can assign their
probabilities.

Coherence

People sometimes assign probabilities to an event based on the ease
with which they can fabricate a plausible scenario that would lead to
the occurrence of the event. The event is considered unlikely if no rea-
sonable scenario can be found; it is judged likely if many scenarios can
be composed that could make the event occur or if one scenario is particu-
larly coherent. The credibility of a scenario to a subject seems to de-
pend more on the coherence with which its author has spun the tale than
on its intrinsically "logical" probability of occurrence. For example,
the probability assigned to the event that sales would exceed a high vol-
ume may depend on how well market researchers have put together scenarios
that would lead to that volume; for instance, scenarios on what markets
might be penetrated and what the penetration rate might be with a reason-
able marketing effort. Arguments in court are another example of evalu-
ation based on the coherence of the sequence of evidence (as presented
by the prosecution as well as the defense). It is thus important that
the discussion of possible outcomes for an uncertain quantity be well-
balanced, since the discussion and generation of arguments may affect the
probability assignments.
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5. ENCODING METHODOLOGY

Encoding Methods and Response Modes

Most encoding methods are based on questions for which the answers
can be represented as points on a cumulative distribution function. We
classify encoding methods as follows:

e P-methods ask questions on the probability scale with the
values fixed.

e V-methods ask questions on the value scale with the proba-
bilities fixed.

e PV-methods ask questions to be answered on both scales
jointly; the subject essentially describes points on the
cumulative distribution.

The encoding procedure consists of a set of questions that requires
response either directly or indirectly through choices between simple
bets. In the direct response mode, the subject is asked questions that
require numbers as answers. The answers can be given in the form of
probabilities (or equivalently in the form of odds) or values.

In the indirect response mode, the subject is asked to choose be-
tween two or more bets (or alternatives). The bets are adjusted until
he is indifferent; this indifference can then be translated into a proba-
bility or value assignment. With a reference process, one bet is defined
with respect to the uncertain quantity and the other with respect to the
reference process.

The choice can also be made between events defined on the value
scale for the uncertain quantity, where each event represents a set of
possible outcomes for the uncertain quantity (e.g., sales being less
than or equal to 2,000 units or sales being greater than 2,000 units).
We can say that this response mode makes use of internal events.

Specific Techniques

Each probability encoding technique can be classified according to
the encoding method and response mode used. The techniques which we
have found most useful are given in Table 1.
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Table 1

CLASSIFICATION OF PROBABILITY ENCODING TECHNIQUES

Response Mode

Indirect
External Reference | Internal

Encoding Method Direct Process Events
Probability (value Cumulative Wheel Odds
fixed) probability
Value Fractiles Wheel; fixed Interval
(probability fixed) probability events | technique
Probability--Value Drawing graph; - --
(neither fixed) Parametric de-

scription

The probability wheel is useful with most subjects. As an external
reference process, it can be used as a P-method or a V-method, but the
former is the method generally preferred. The probability wheel is a
disk with two sectors, one blue and the other red, with a fixed pointer
in the center of the disk. The disk is spun, finally stopping with the
pointer either in the blue or the red sector (see Figure 2). A simple
adjustment changes the relative size of the two sectors and thereby also
the probabilities of the pointer indicating either sector when the disk
stops spinning. The subject is asked whether he would prefer to bet ei-
ther on an event relating to the uncertain quantity, e.g., that next
year's production will not exceed x units, or on the pointer ending up
in the red sector. The amount of red in the wheel is then varied until
the expert becomes indifferent. When indifference has been obtained,
the relative amount of red is assigned as the probability of the event.
This is a P-method since the event (value) is fixed and the probability
is determined through the process.

One advantage of the probability wheel is that the probability can
be varied continuously from zero to onme. It is only useful, however,
for probabilities in the range from 0.1 to 0.9 because it is difficult
for the subject to discriminate between sizes of small sectors. One al-
ternative to the probability wheel (with the same restricted usefulness)
is a horizontal bar with a marker (defining two events, to the left and
to the right of the marker); another is an urn with, say, 1000 balls of
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FIGURE 2 A PROBABILITY WHEEL

two colors (a ball is supposed to be drawn at random from the urn and
the reference event is '"the ball drawn is red"; the composition of the
urn can then be varied). We prefer to use the probability wheel because
it is easier to visualize the chance process than in the case of the bar
or the urn.

Other reference processes may be useful, particularly when reference
has to be made to low-probability events. For example, the event 'ten
heads in a row with an unbiased coin" has a probability close to 1/1000.
An event that some subjects might identify with is a royal flush which
has a probability of roughly 1/65,000. Typical for the reference pro-
cesses mentioned in this paragraph is that they concern events with
known probabilities and therefore only work as V-methods.

The interval technique is an example of the internal events response
mode and is a V-method. An interval is split into two parts, and the
subject is asked to choose which part he would prefer to bet on, or which
part he considers most likely. The dividing point is changed to reduce
the size of the part considered most likely (and thereby to increase the
size of the other part), and the subject is asked to choose between the
two new parts. The procedure of changing the dividing point is continued
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until indifference is reached, and the subintervals are then assigned
equal probabilities. Starting from an interval covering all possible
outcomes and then splitting into two parts will first give the median,
then the quartiles, and so on. The method does not seem to be very
meaningful after the quartiles have been obtained because each question
depends on earlier responses, thus errors may be compounded. The inter-
val technique can also be based on splitting the interval into three
parts.

A P-method with the internal events response mode asks the expert
to assign the relative likelihoods (or odds) to two well-defined events.
For example, the expert may first be asked whether he considers next
year's sales more likely to be above or below 5,000 units. The next
question is then: how much more likely is it? This method is used pri-
marily for uncertain quantities with only a few possible outcomes.

In the direct response mode one asks for the probability level (cumu-
lative probability) at a given value (e.g., what is the probability that
next year's sales will be less than or equal to 3,000 units?), or asks
for the value (fractile) corresponding to a probability (e.g., what is
the level of sales that corresponds to a 10-pércent probability?). The
probability response can be given as an absolute number, 0.20; as a per-
centage, 20 percent; or can be expressed in a fractional way as '"one in
five" or "two in ten.'" The last way is particularly useful for small
probabilities because the subject can discriminate more easily between
"one in 100" and "one in 1000" than between the absolute numbers 0.0l
and 0.001. Expressing a probability in the fractional form is closely
related to expressing it in terms of odds, in particular for probabilities
close to zero.

The direct response mode can also be used in a free format (making
it a PV-method) where the subject either draws a picture of a density
function or a cumulative distribution, or states a series of pairs of
numbers (value and probability). The distribution can also be described
in parametric form, e.g., a beta distribution with parameters 2 and 7.

Verbal encoding makes use of verbal descriptors for events (e.g.,
high, medium, and low production cost) in the first phase of the encoding.
The descriptors are those that the subject is accustomed to. The inter-
pretation of the descriptors is encoded in a second phase. This method
might have some use for quantities that have no ordinal value scale. It
can be viewed as a PV-method.
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6. THE INTERVIEW PROCESS

While the structure of the interview process is still evolving, the
following approach has been found quite effective. The process is di-
vided into five phases.

e Motivating--Rapport with the subject is established and
possible motivational biases are explored.

e Structuring--The structure of the uncertain quantity is
defined.

e Conditioning=--The subject is conditioned to think funda-
mentally about his judgment and to avoid cognitive biases.

e Encoding--This is the actual quantification of judgment
in probabilistic terms.

e Verifying--The responses obtained in the encoding are
checked for consistency.

Motivating

This phase has two purposes. The first is to introduce the subject
to the encoding task. This may entail an explanation of the importance
and purpose of probability encoding in decision analysis, as well as a
discussion of the difference between deterministic (single number) and
probabilistic (probability distribution) predictions.

The second purpose is to explore whether any motivational biases
might operate. The interviewer and the subject should have an open dis-
cussion on what payoffs might be associated with the probability assign-
ment as well as on possible misuses of the same information. The subject
may be aware of misuses of single-number predictions, e.g., that they
often are interpreted as 'commitments.'" It should be pointed out that
no commitment is inherent in a probability distribution. In fact, the
distribution represents the complete judgment of the subject.
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Structuring

The next step in the encoding process is to define and structure
clearly the uncertain quantity. This quantity is assumed to be important
to the decision. It should be defined as an unambiguous state variable
and the definition should pass the clairvoyant test, i.e., a clairvoyant
should be able to specify the outcome without asking additional questions
for clarification. The structure may have to be expanded so that the
subject does not have to model the problem further before making each
judgment. It is also important to choose a scale that is meaningful to
the subject.

The subject should be required to think the problem through care-
fully before the actual encoding session begins. He should decide what
background information might be relevant (or irrelevant) to the problem.
Otherwise, only the readily available information will be used initially,
and new information may later rise to the surface in the course of the
session and invalidate all prior answers. Even if it does not, however,
the resulting distribution may be highly biased with respect to the sub-
ject's underlying judgment.

Conditioning

The aim of this phase is to head off biases that otherwise might
surface during the encoding and to condition the subject to think funda-
mentally about his judgment. Basically, the phase should be directed
toward finding out how the subject goes about making his probability as-
signments. This will reveal what information seems to be most available,
what (if any) anchors are being used, what assumptions are made, and so
on. The interviewer should thus watch out for (and make use of) the
modes of judgment discussed in Section 4. The following are some sugges-
tions for a checklist that we have found useful in many applications.

The subject can be asked to specify the most important bases for
his judgment. These may often be values from the current business plan
or results from previous years. Such values could then be expected to
act as anchors and often lead to a central bias.

Asking the subject what he is taking into account will show what in-
formation becomes most easily available. The interviewer can also make
use of availability if he suspects the subject to have a central bias.

He can then ask the subject to compose scenarios that would produce ex-
treme outcomes.
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Uncertain quantities sometimes represent averages, such as average
productivity or average reliability. The interviewer should then try to
determine whether the distribution assigned by the subject really is a
distribution for the average or a distribution for an individual unit.
(The reason is that people often have difficulty in discriminating be-
tween the two situations.) If the latter is the case, it is probably
best to use the resulting distribution and restructure the model. Rep-
resentativeness may come into play in another situation when one is con-
cerned with revising a probability assignment in the light of new infor-
mation. The best way to handle such a situation is often to ask for the
probability distribution of the quantity without the new information and
for the probability of the information conditional on the outcome of the
quantity; it is then a matter of applying probability calculus to obtain
the distribution for the quantity given the information.

It is important to specify all assumptions (conditionalities) that
will underlie the probability distribution, as well as those factors
that the subject is supposed to integrate into his judgment. The struc-
ture may sometimes be changed because some conditionalities have been
made explicit. The encoding may then be made conditional on different
sets of assumptions, and the probabilities that the various assumptions
will hold are then encoded separately (from the current subject or from
someone else).

When a subject is assigning a probability to the occurrence (or non-
occurrence) of some event (e.g., that a product will be successful in
the market), he may base his assignment on whether he can generate plausi-
ble scenarios leading to the occurrence of the event in question. Asking
him to state the basis for his probability assignment may reveal that the
coherence of such scenarios has been an important factor. The inter-
viewer may then want to generate more scenarios that would or would not
lead to the occurrence of the event. For example, simply devising a sce-
nario that implies the opposite outcome might considerably change the
first probability assignment.

Encoding
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