
 GENERAL PROOF THAT DIVERSIFICATION PAYS**

 Paul A. Samuelson*

 "Don't put all your eggs in one basket," is a familiar adage.

 Economists, such as Marschak, Markowitz, and Tobin, who work only with

 mean income and its variance, can give specific content to this rule--

 namely, putting a fixed total of wealth equally into independently,

 identically distributed investments will leave the mean gain unchanged

 and will minimize the variance.

 However, there are many grounds for being dissatisfied with an

 analysis dependent upon but two moments, the mean and variance, of a

 statistical distribution. I have long used the following, almost

 obvious, theorem in lectures. When challenged to find it in the

 literature, I was unable to produce a reference--even though I should

 think it must have been stated more than once.

 Theorem I: If U(X) is a strictly concave and smooth function

 that is monotonic for non-negative X, and (X ,...,Xn) are
 independently, identically distributed variates with joint

 frequency distribution

 Prob{X 1 - . < l <X} x F(x)F(x2)...F(x)

 with E[xi] = J XidF(Xi) 1

 E[x 1 J (Xi -p1)2dF(X ) = 12 E[ i- i 2

 with 0 < p2 < 00
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 then

 E[U[XXj1 = fX .x.jX dF(X) ... dF(X)

 = n(X1 ' A)

 is a strictly concave symmetric function that attains its

 unique maximum, subject to

 1 + 2 + + An 1 -i > ?

 at WP( '

 The proof is along the lines of a proof used to show that equal dis-

 tribution of income among identical Benthamites will maximize the sum

 of social utility.

 3V(Al...,n) X0 X n

 aXi = X1Xul xxJJXndF(X .. dF(X

 is independent of i at (X1 .. Xn) = (1/n,....l/n) by symmetry.

 The Hessian matrix with elements

 ax iaX; f f XiXjU[7EXkXk] dF(Xl) ... dF(X )

 is a Grammian negative definite matrix if -U'' > 0' 0 < p2 < X

 Hence, sufficient maximum conditions for a unique maximum are

 satisfied, namely

 1 1 n n 1 1
 n _n ... _ nn

 1 n

 nn 2

 EEaXiaXi yiy. < 0 for all non-negative X's and not all y's
 11 axiaxi

 vanishing.
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 Remarks: Differentiability assumptions could be lightened.

 It is not true, by the way, that - X + - X has a "uniformly more-

 bunched distribution" than X1 or X2 separately, as simple examples

 (even with finite P2) can show: still the risk averter will always

 benefit from diversification. The finiteness of p2 is important. Thus,
 for a Cauchy distribution - X + - X has the same distribution as

 2 1 2 2

 either X1 or X2 separately; for the arc-sine Pareto-Levy case, it
 has a worse distribution. The proof fails because the postulated E[U]

 cannot exist (be finite) for any concave U.

 The General Case of Symmetric Interdependence

 We can now drop the assumption of independence of distribution,

 replacing it by the less restrictive postulate of a symmetric joint

 distribution. I.e., we replace F(x1) ... F(xn) by

 Prob{X1 < x1, X2 < X2' ... X_ < x } = P(xx2 xn

 where P is a symmetric function in its arguments. We can rule out,

 as trivial, the case where the x's are connected by an exact functional

 relation, which in view of symmetry would have to take the form

 x1 = x2 = ...=x =x

 Prob{X < x} = P(x) = P(x,...,x)

 We do stipulate finite means, variances, and covariances

 E[x.] = { .. { XidP(X1 .. n) P

 E[$ -P) (xj - 5, = J J(xi - ) (xj -p >dP (Xl . X . n)
 = cf..

 oij

 the elements of a positive definite Grammian matrix. A generalization

 of our earlier theory on diversification can now be stated.

 Theorem II: For U(x) a smooth, strictly concave function,

 the maximum of the symmetric, concave function

 E[UX.x] ] = {..x. { U [EX.X.] dP(X1,.. .,X)

 (1' 'n)
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 subject to

 x1+ XX2 + n = Xi > 0

 is given by n ' n- Thus, diversification always pays.

 The proof is exactly as before. By symmetry

 ol1 1 i 1 i
 n n ... n n

 axn

 the necessary first-order conditions for the constrained maximum.

 The Hessian matrix has elements

 2

 3x. aX. =Fg *g j XiU1 X dP(XV,...,X)

 which, being the coefficients of a negative-definite Grammian matrix,

 do confirm the concavity of p and therefore the maximum value at

 ?(l/n,...,l/n).

 If equal diversification is to be mandatory, symmetry or some

 assumption like it is of course needed. To verify this obvious fact,

 suppose (x1,x2,x3) to be independently distributed, with x2 and 3

 having the same distribution P(xi), but with x1 having a distribution
 that is identical with that of 2 X2 + 2 x3, namely

 ,00

 Prob1 < xl} Q(x) = (2xl 2s)dP(2s)

 In this case, symmetry tells us that wealth should be divided equally

 1 2 2 2 31 1 1 1
 investing in the (x1,x2,x3) in the fractions [2' , 4]. Those who

 work with two moments, mean and covariance matrix, will find that

 minimum variance does not come at (X1'* . ) X (1/n,...,l/n) when

 3ii C ajj' aij 0 ars a

 It is possible, though, to prove that some positive diversification

 is mandatory under fairly general circumstances. Thus, in (x1,..,xn)
 let each have a common mean and each have finite but nonzero variance.

 Finally, suppose that one of the variables, say xi, is independently

This content downloaded from 165.123.34.86 on Sun, 10 Apr 2016 13:30:15 UTC
All use subject to http://about.jstor.org/terms



 distributed from the rest. Then an optimal portfolio must involve

 > 0, with some positive investment in xi, as shown in the following.

 Theorem III. Let (x1,x2,....,x ) be jointly distributed as

 P(x1)Q(x2,... ,x ) with common mean and finite positive

 variances

 E[x xidP(xl )dQ(x2,.. . Xn -P
 O < E[(x. 2 < 2

 and

 00 X0 n

 E[U] = {.. { x[x. dP(X )dQ(X2 X

 (Xsx 2 ~xn)

 where, for U" < 0, 0 is a strictly concave function.

 Then if

 *( * * n
 O(xi iX 2 ' ) = Max (X1 s.t. 1, X > 0,

 necessarily n1 > ? and * < 1.

 This will first be proved for n = 2, since the general case can

 be reduced down to that case. Denoting 30(X1,X2)/axi by i(X1Vx2), we
 need only show the following to be positive

 1(0,1) e2(0,1) J XidP(X1) J{U'(X2)dP(X2)
 2~~~~~~~~

 00 -}x 2u'(X92 dP(X 2)

 = E[x2JE[U(x2)] - E[x2U'(y2)]

 = -E[{x2 - {U' (x2) - E[U' (x2)]}> 0

 if U"(x2) < 0, since the Pearsonian correlation coefficient between

 any monotone-decreasing function and its argument is negative.

 We reduce n > 2 to the n = 2 case by defining
 n

 x1 + EX.x. =x x + XIIX

 where
 n X. nX.

 X x , Z X = 1, as definition of X
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 To show that the optimal portfolio has the property

 * * * n

 1 2 ' ' n )'> 6(o,X2 ,X) for Z. = 1,

 it suffices to show that

 0(X1 'X 2 ' Xn ) > 6(o'X2 * n *
 n

 - Max }(O,X2, X) for EX. 1

 {2 .X}1 2

 But now if we define

 ** *

 ( eI) (X1' II x2 ' XIn)'

 we have an ordinary n=2 case, for which we have shown that

 * *

 X > ? and X > 0.

 Having completed the proof of Theorem III, we can enunciate two

 easy corollaries that apply to risky investments.

 Corollary I. If any investment has a mean at least as good as

 any other investment, and is independently distributed from all

 other investments, it must enter positively in the optimal

 portfolio.

 Corollary II. If all investments have a common mean and are

 independently distributed, all must enter positively in the

 optimum portfolio.

 Can one drop the strict independence assumption and still show

 that every investment, in a group with identical mean, must enter posi-

 tively in the optimum portfolio? The answer is, in general, no. Only

 if, so to speak, the component of an investment that is orthogonal to

 the rest has an attractive mean can we be sure of wanting it. Since a

 single counterexample suffices, consider joint normal-distributions

 (XVx 2), with common mean and where optimality requires merely the

 minimization of the variance of X1x1 + X2x2,4aijZ., ? X subject to

 EX. = l,Xi > 0. If one neglects the non-negativity constraints and

 minimizes the quadratic expression, one finds for the optimum

 6
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 * 22 a12
 (a 22- a12) + (a11 - a21)

 *

 If a12 = a21 < 0, X1 is definitely a positive fraction. But, if a12

 is sufficiently positive, as in the admissible case (a11ia12'a22) =
 *

 (2,1.1,1), X1 would want to take on an absurd negative value and would,
 1~~~~~~~~~~~~~~~ of course, in the feasible optimum be zero, even though xl's mean is

 equal to x's. Naturally this is a case of positive intercorrelation.

 If the assumption of independence is abandoned in favor of positive

 correlation, we have seen that positive diversification need not be

 mandatory. However, as Professor Solow pointed out to me, abandoning

 independence in favor of negative correlation ought to improve the case

 for diversification. We saw that this was true in the case of negative

 linear correlation between two investments. It is easy to prove for

 any number of investments with common mean, among which all the inter-

 correlations are negative, that total variance is at a minimum when each

 investment appears with positive weight in the portfolio. (Although

 there is no limit on the degree to which all investments can be positively

 intercorrelated, it is impossible for all to be strongly negatively

 correlated. If A and B are both strongly negatively correlated with C,

 how can A and B fail to be positively intercorrelated with each other?

 For 3 variables, the maximum common negative correlation coefficient is

 - 1/2; for 4 variables, - 1/3;... .for n variables -l/(n-l).)

 The whole point of this paper is to free the analysis from dependence

 on means, variances, and covariances. What is now needed is the gener-

 alization of the concept of negative linear correlation of the Pearsonian

 type. The natural tool is found in the concept of conditional probability

 of each variable, say xi, and the requirement that increasing all or any
 other variables x; be postulated to reduce this conditional probability.

 Thus, define

 Prob{X. < x,jeach other X. = x.} = P(xjly), i - i~~ J 3-i

 where X is the vector (xl,x.. Xi+l xn)

 As always with conditional probabilities

 P(Xjlx.) = P(x1lx2 ...,xn) dP(xlx2 i n
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 where the last divisor Q(x-) = Q(x1,.. .,xi,x1i,...,xn) is assumed

 not to vanish.

 The appropriate generalization of pair-wise negative correlation

 or negative interdependence is the requirement

 aP(x. X )
 1(xi < 0 j # i
 aj

 Theorem IV, which I shall not prove, states that where the joint

 probability distribution has the property of negative interdependence

 as thus defined, and has a common mean expectation for every investment,

 E[x.] = P, every investment must enter with positive weight in the

 optimal portfolio of a risk-averter with strictly concave U(x). Buying

 shares in a coal and in an ice company is a familiar example of such

 diversification strategy.

 Having now shown that quite general conclusions can be rigorously

 proved for models that are free of the restrictive assumption that only

 two moments count, I ought to say a few words about how objectionably

 special the 2-moment theories are (except for textbook illustrations

 and simple proofs). To do this, I must review critically the conditions

 under which it is believed the mean-variance theories are valid.

 1. If the utility to be maximized is a quadratic function of

 x, U(x) = a + a x - a2x,

 E[U(x)] = a0 + a E[x] + a2E[x] 2 a2V(x)

 a + al1 + a2 a2

 = f(p,a)

 where p = mean of x and = variance of x

 However, as Raiffa, Richter, Hicks, and other writers have noted, the

 behavior resulting from quadratic utility contradicts familiar empirical

 patterns. [E.g., the more wealth I begin with the less will I pay for

 the chance of winning ($O,$K) with probabilities (1/2,1/2) if I have

 to maximize quadratic utility. Moreover, for large enough x, U begins

 8
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 to decline -- as if having more money available begins to hurt a person.]

 Anyone who uses quadratic utility should take care to ascertain

 which of his results depend critically upon its special (and empirically

 objectionable) features.

 2. A quite different defense of 2-moment models can be given.

 Suppose we consider investment with less and less dispersion -- e.g.,

 let

 P(y1O... y ) have property E[yi] = 0 J J YidP(Y... ' n

 and

 Prob{X1 < x ,X < ,Xn - n | a < 1

 Then in the limit as a - 0, only the first 2 moments of E X x. will turn

 out to count in E[U(x)] = f(p,ac,...). In the extreme limit, even the

 second moment will count for less and less: for a small enough the

 mean money outcome will dominate in decision making. Similarly, when

 a is small, but not limitingly small, the third moment of skewness will

 still count along with the mean and variance; then the third-degree

 polynomial form of U(x) (its Taylor's expansion up to that point) will

 count. As Dr. M. Richter has shown in the cited paper, an n degree

 polynomial for U(x) implies, and is implied, by the condition that

 only the first n statistical moments count.

 3. If each of the colnstituent elements of (x1,...,xn) is normally

 distributed, then so will be z=EZXx. and then it will be the case that

 only the mean and variance of z matter for E[U(z)]. However, with

 limited liability, no x; can become negative as is required by the

 normal distribution. So some element of approximation would seem to

 be involved. Is the element of approximation, or rather of lack of

 approximation, ignorable? No, would seem to be the answer if there

 is some minimum of subsistence of z or x at which marginal utility

 becomes infinite. Thus, consider U = logx, the Bernoulli form of

 logarithmic utility

 E[U(x)] = logXdfN kl= lim JlogXdNl]
 S g [ c 3 aa -v; b Sa

 = -0 for b < 0,
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 where N(t) stands for the normal distribution with zero mean and unit

 variance.

 Suppose that each constituent xi takes on only non-negative values

 with variances all bounded by M < 0. The central-limit theorem will

 still apply, so that E x or z = ZX.x., with certain weak restrictions
 lj n jj 1

 on the spread of the X's around 1/n, will approach a Gaussian distribu-

 tion. Thus, let zn have the distribution P n(z ), with

 n ~ ~ ~

 limP (zn) = 4N bj

 Knowing how treacherous are double limits, we dare not infer

 nim E[logz ] = logZ lim Pn (Zn

 Actually, as n-- and each investment has its XA > a/n, each

 X.x. does have a smaller and smaller dispersion so that we might switch

 from reliance on the central limit theorem of normality to the 2-moment

 Taylor-expansion justification given in paragraph 2 above. The law of

 large numbers, which is even more basic than the central limit theorem

 involving normality, assures us that zn becomes more and more tightly

 bunched around some positive value and this fact will make the quadratic

 approximation applicable in the limit.

 4. A final defense of the mean-variance formulation, in which

 E[U(x)] is replaced by f( ji,a), comes when x belongs to a 2-parameter

 probability distribution P(x; l02).

 Then

 E[U(x)] = U(X)dP(X;01.02) = g(01,02)

 p = S XdP(X;61 02 = hl(01, 02)

 o]1/2
 u (X-P) dP (X;0e02) = h2(01,02)

 Then, provided the Jacobian a(p,G)/a(0 ,0) # 0, each 6. can be

 10
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 solved for as a function ei(pp,c), with

 f(P,Cr) = g[1(.p,), 02(p,)] a

 So far so good, although even here one has to take care to verify

 that P(x;01,02) has the properties needed to give f(ip,a) the quasi-

 concavity properties used by the practitioners of the mean-variance

 techniques. And furthermore one cannot draw up the f(p,a) indifference

 contours once and for all from knowledge of the decision-makers risk

 preferences, but instead must redraw them for each new probability dis-

 tribution P(x;61,02) upon which the f functional depends.

 But waiving these last matters, we must point out that the Markowitz

 efficient-portfolio frontier need not work to screen out (or rather in!)

 optimal portfolios. For even when each constituent xi belongs to a

 common 2-parameter family, the resulting z = EX.x. will not belong to

 that family or to any 2-parameter family that is independent of the X

 weightings. It suffices to show this in the case of statistical indepen-

 dencies. Thus, define the rectangular distribution

 R(x;a,b)=- , a < x < b
 b-a- -

 =0 , x < a

 =1 , x > b

 and

 n

 P(x1, . . .,x = fn R(xi;a.,bi)
 i=1

 Then, of course, ERXx. = z does not satisfy an R distribution but

 rather a 3n parameter distribution P(z;X ,...,X;a ,...,a ,b ,...,b ).

 Let (Xlt 'Ant) be a point on the Markowitz efficiency frontier, with

 minimum variance EX. a. subject to EXp. = p, EX. = 1. Then it need
 J J J J

 not be the case that the optimum (X1 . 'Xn ) that maximizes E[U(z)]

 will belong to the efficiency set (X t ' 'Ant)' I do not recall this

 fact's being mentioned by those who speak of 2-parameter-family justifi-

 fications of mean-variance analysis. Some quite different argument,

 such as that n -- and quadratic approximation to U then becomes increasingly

 11
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 good, will be needed to bring back the Markowitz frontier into more

 general applicability.

 I do not wish to end on a nihilistic note. My objections are

 those of a purist, and my demonstrations in this paper have shown

 that even a purist can develop diversification theorems of great

 generality. But in practice, where crude approximations may be better

 than none, the 2-moment models may be found to have pragmatic usefulness.

 1.2

This content downloaded from 165.123.34.86 on Sun, 10 Apr 2016 13:30:15 UTC
All use subject to http://about.jstor.org/terms



 FOOTNOTES

 1. H. Makower and J. Marschak, "Assets, Prices, and Monetary Theory,"
 Economica N.S. (Vol. V, 1938), pp. 261-88. Harry M. Markowitz,
 "Portfolio Selection," The Journal of Finance (Vol. VII, 1952),

 pp. 77-91 and Portfolio Selection: Efficient Diversification of

 Investments (New York: John Wiley & Sons, 1959); James Tobin,

 "Liquidity Preference as Behavior Towards Risk," Review of Economic

 Studies (Vol. XXV, 1958), pp. 65-86. The path-breaking article,
 E. D. Domar and R. A. Musgrave, "Proportional Income Tax and Risk-

 taking," Quarterly Journal of Economics (Vol. LVII, 1944), pp.

 389-422 replaces variance by risk of loss (mean absolute loss) as
 dispersion parametersto be avoided. (This paper is reprinted in

 A.E.A. Selected Readings in Fiscal Policy and Taxation (Homewood,
 Ill.: Irwin, 1959).

 2. P. A. Samuelson, "A Fallacy in the Interpretation of Pareto's Law of

 Alleged Constancy of Income Distribution," Essays in Honor of

 Marco Fanno, ed., Tullio Bagiotti, (Padua, Cedam-Casa Editrice Dott.

 Antonio Milani, 1966), pp. 580-584.

 3. Howard Raiffa, unpublished Harvard Business School memos; Marcel K.
 Richter, "Cardinal Utility, Portfolio Selection and Taxation,"
 Review of Economic Studies (Vol. XXVII, 1959), pp. 152-66; E. C.
 Brown, "Mr. Kaldor on Taxation and Risk Bearing," Review of
 Economic Studies (Vol. XXV, 1957), pp. 49-52; J. R. Hicks,
 "Liquidity," Economic Journal (Vol. LXXII, 1962), pp. 787-802,
 depicts a rediscovery of some of the Markowitz theory. Also see
 John Lintner, "Valuation of Risk Assets," Review of Economics and
 Statistics (Vol. XLVII, 1965), pp. 13-37, and "Optimum Dividends
 and Uncertainty," Quarterly Journal of Economics (Vol. LXXVIII,
 1964), pp. 49-95 and unpublished appendix.
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