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FOREWORD

- s

The central objective of the research program of the Harvard Business School
is the search for and development of findings which will enable business adminis-
trators to make wiser decisions in some phase of their activities. The broad field
of business administration involves so many facets or dimensions that the nature
of research findings varies widely in character. Nearly every field of study and
investigation by scholars has something to contribute to business management.
In recent years the School has been making special efforts to bring to bear on
business management problems the skills and approaches of men trained and
knowledgeable in some of the more significantly relevant disciplines which underlie
business administration. One such special effort is the application of mathematics
and statistics to business problems of decision under conditions of uncertainty.
The general nature of this approach is set forth in Professor Schlaifer’s Probability
and Statistics for Business Decisions published by the McGraw-Hill Book Company
in 1959, and it is expected that work in such problems will be a continuing part of
the research effort of the School.

It is seldom possible, however, to take findings, analytical techniques, or
conceptual frameworks from a basic discipline and apply them directly to a con-
crete business problem. Often the findings of another field must be refined and
adapted specifically to the particular problem at hand. At times it is discovered
that substantial new work is required of a fundamental character before an ap-
proach to a particular class of applied business problems is possible. This volume
reports the results of research of the latter type. In the field of statistical decision
theory Professors Raiffa and Schlaifer have sought to develop new analytical tech-
niques by which the modern theory of utility and subjective probability can actu-
ally be applied to the economic analysis of typical sampling problems.

This book, the first in a group entitled Studies in Managerial Economics, is
addressed to persons who are interested in using statistics as a tool in practical
problems of deeision making under conditions of uncertainty and who also have
the necessary training in mathematics and statistics to employ these analytical
techniques. It is not written for the general businessman, in contrast to most of
the publications of the Division of Research in the past. It is the first of a new
class of publications of the Division of Research that will report the results of
research in the basic disciplines that underlie the field of business administration.
These results, however, are expected to be widely usable in later studies dealing
with actual business problems.

Financial support for this study came from an allocation by the School of a
portion of a generous grant of the Ford Foundation to provide general support
for the School’s basic and exploratory research program. The School is indebted
to the Ford Foundation for the support of this type of research endeavor.

Soldiers Field BERTRAND Fox
Boston, Massachusetts Director of Research
November 1960






PREFACE AND INTRODUCTION

This book is an introduction to the mathematical analysis of decision making
when the state of the world is uncertain but further information about it can be
obtained by experimentation. For our present purpose we take as given that the
objective of such analysis is to identify a course of action (which may or may not
include experimentation) that is logically consistent with the decision maker’s
own preferences for consequences, as expressed by numerical utilities, and with
the weights he attaches to the possible states of the world, as expressed by numeri-
cal probabilities. The logical and philosophical justification for this statement of
the problem has been fully developed by Savage in his Foundations of Statistics;t
the purpose of the present book is not to discuss these basic principles but to con-
tribute to the body of analytical techniques and numerical results that are needed
if practical decision problems are to be solved in accordance with them.

We should like at the outset to call the reader’s attention to the fact that
the so-called “Bayesian’’ principles underlying the methods of analysis presented
in this book are in no sense in conflict with the principles underlying the traditional
decision theory of Neyman and Pearson. Statisticians of the school of Neyman
and Pearson agree with us —although they use different words —that the decision
maker who must choose a particular decision rule from within a suitable family
of rules should both carefully appraise the possible consequences of the acts to
which the rules may lead and carefully consider the relative importance to him of
having a rule which behaves well in certain states of nature versus a rule which
behaves well in other states. The only real novelty in the Bayesian approach
lies in the fact that it provides a formal mechanism for taking account of these
preferences and weights instead of leaving it to the decision maker’s unaided
intuition to determine their implications. We believe, however, that without this
formalization decisions under uncertainty have been and will remain essentially
arbitrary, as evidenced by the fact that, in most statistical practice, consequences
and performance characteristics receive mere lip service while decisions are actually
made by treating the numbers .05 and .95 with the same superstitious awe that
is usually reserved for the number 13. Even further, we believe that formalization
of utilities and weights leads to decisions which are not only less arbitrary but
actually more objective. In most applied decision problems, both the preferences
of a responsible decision maker and his judgments about the weights to be attached
to the various possible states of nature are based on very substantial objective
evidence; and quantification of his preferences and judgments enables him to
arrive at a decision which is consistent with this objective evidence.

We should also like to point out that we are in complete agreement with those
who assert that it is rarely if ever possible to find the best of all possible courses

t L. J. Savage, The Foundations of Statistics, New York, Wiley, 1954,
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Preface and Inlroduclion

of action and who argue that reasonable men “satisfice” much more than they
“optimize”’. We most emphatically do not believe that the objective of an optim-
izing analysis is to find the best of all possible courses of action; such a task is
hopeless. As we see it, the first step in the analysis of any decision problem is
necessarily a purely intuitive selection by the decision maker of those courses of
action which seem to him worthy of further consideration. Only after a set of
‘“reasonable contenders’”’ has thus been defined does it become possible to apply
formal procedures for choice among them, but even at this stage it will often be
preferable to eliminate some of the original contenders by informal rather than
formal analysis. In other words, it is our view that formal methods of optimiza-
tion such as those described in this book should be used in those parts and only
those parts of a complete analysis in which the decision maker believes that it
will pay him to use them.t ‘Satisficing” is as good a word as any to denote
both the preliminary choice of contenders and the intuitive elimination of some
of them; and we are quite ready to admit that in many situations informal analysis
will quite properly reduce the field to a single contender and leave no scope for
formal analysis at all.

When we started to write this book our intention was merely to produce a
short research report in which some of our as yet nebulous ideas would be sub-
mitted to the scrutiny of other specialists. Stimulated by each other’s enthusiasm,
however, we gradually expanded our objective in the direction of a self-contained
introduction to what we believe to be a coherent and important group of analytical
methods. As the book now stands, Part I (Chapters 1-3) describes the general
structure of this group of methods and indicates in principle how they can be
applied to a very wide variety of decision problems. Part 11 (Chapters 4-6) gives
specific analytical results for two specialized classes of problems which are of central
importance in applied statistics: (1) problems involving choice among two or more
processes when utility is linear in the mean of the chosen process, and (2) problems
of point estimation when utility depends on the difference between the estimate
and the true value of the quantity being estimated. Finally, Part III (Chapters
7-13) is a systematic compendium of the distribution theory required in Parts
I and II, containing definitions of distributions, references to published tables,
and formulas for moments and other useful integrals. Because of its self-contained
nature, we believe that the book should be accessible as well as of interest to a
quite heterogeneous audience. We hope that statisticians interested in practical
applications will find our techniques of practical use, but at the same time we
hope that the way in which we have formulated some of the standard statistical
problems will contribute to the unification of statistical theory with managerial
economics and the techniques usually categorized under the heading of ‘“operations
research’.

Anyone who has the equivalent of a good preliminary course in mathematical
probability and statistics, is familiar with the advanced calculus and with the
rudiments of matrix theory, and has read a little of the contemporary literature
on the foundations of statistics will have no difficulty in reading any part of the

 For a slightly more explicit statement of this principle, see Section 1.4,
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book; and much of it can easily be read with considerably less background. The
required matrix theory is modest and is essentially confined to Chapter 5B and
those chapters in Part 111 which deal with multivariate distributions. Advanced
calculus is scarcely used except in the proofs of the distribution-theoretic results
catalogued in Part III. The required knowledge of the theories of utility and
subjective probability can easily be obtained by a very little reading: a brief
axiomatic treatment of both utility and subjective probability can be found in
Luce and Raiffa’s Games and Decistons,t a brief informal discussion in Schlaifer’s
Probability and Statistics for Business Decisions.t For the reader who is already
familiar with utility but not with subjective probability, we have given in Section
1.5 a very informal proof of the proposition that self-consistent choice among risk
functions implies the existence of numerical weights or probabilities. I‘or a com-
plete discussion of the foundations, the reader should of course consult the book
by Savage which we have already cited.

As far as we know, parts of this book are original, although as regards any
particular formula or concept we would give better than even money that it has
already appeared somewhere in print. Since we unfortunately do not have even
the vaguest idea where most of these formulas and concepts appeared for the very
first time, we leave it to historians to distribute detailed credits where they are
due; but we would be inexcusably remiss if we did not acknowledge those who
have most contributed to the main currents of our thinking. Anyone who reads
this book will recognize our great debt to Neyman, Pearson, Jeffreys, Von Neumann,
Wald, Blackwell, Girshick, and Savage. We should also like to record our grati-
tude for the innumerable corrections and helpful suggestions which we have re-
ceived from John Bishop, Marshall I'reimer, Andrew Kahr, and I. R. Savage, all
of whom have given most generously of their time. Iinally, we would like to
express our appreciation to the Division of Research of the Harvard Graduate
School of Business Administration for the very generous financial support which
has made this publication possible.

* * * * *

A somewhat more detailed description of the topics covered in individual
chapters may be of use to the reader who wishes to organize his study of the
complete book or who wishes to sce what we have to say on certain subjects with-
out reading the complete book. We hope that by providing such an outline to-
gether with a rather detailed table of contents we may earn the forgiveness of
those who are displeased by the lack of an index—a lack that is due purely and
simply to our inability to discover how a book of this sort can be usefully indexed.

In Chapter 1 we start by defining the basic data of any decision problem in
which experimentation is possible. These are: a listing of the potential terminal
acts {a} which the decision maker wishes to compare, a listing of the states of
nature {6} which he believes possible, a listing of the potential experiments {e}

t R. D. Luce and H. Raiffa, Games and Dectsions, New York, Wiley, 1957; Chapters 2 and 13.
1 R. Schlaifer, Probability and Statistics for Business Decisions, New York, McGraw-Hill,
1959; Chapters 1 and 2.
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Preface and Introduction

which he wishes to consider, a listing of the outcomes {z} of these experiments
which he believes possible, a ufility function which evaluates his preferences for all
(e, 2, a, ) combinations, and listing of the weights or probabilities which he assigns
to all {z, 6} for each potential e. We then describe two basic modes of analysis
of these data; in the language of game theory, they are (1) the normal form, in
which a choice is made among strategies each of which specifies a particular experi-
ment and assigns a terminal act to every possible outcome of that experiment,
and (2) the extensive form, in which the optimal strategy is ‘‘built up”’ by taking
all possible experimental outcomes one at a time, determining for each one sepa-
rately what terminal act would be optimal, and then using these results to select
an optimal experiment.

After proving that the two modes of analysis must ultimately lead to exactly
the same course of action, we argue that even though the extensive form has been
very little used in statistical analysis, it often possesses great advantages both
conceptual and technical; and we use the extensive form exclusively in the remain-
der of the book. In particular it permits a clear distinction between two com-
pletely different statistical problems: choice of a terminal act after an experiment
has already been performed, which we call terminal analysis, and choice of the
experiment, which 7s o be performed, which we call preposterior analysis. In ter-
minal analysis one simply computes the expected utilities of all possible acts with
respect to the posterior distribution resulting from a particular experimental out-
come 2, and chooses the act whose expected utility is greatest; in the normal form,
on the contrary, a person who has already observed 2, cannot choose a terminal
act until he has determined what terminal act he would have chosen given every
conceivable z which might have occurred. In the extensive form it is only when
one is evaluating potential experiments before they are actually performed that
one needs to consider outcomes which might occur. In this case the utility of
any one potential experiment is evaluated by first using terminal analysis to de-
termine the utility of the terminal act which will be optimal given each possible
experimental outcome; the “preposterior’”’ expected utility of the experiment is
then computed by taking the expectation of these posterior expected utilities with
respect to the unconditional prior measure over the experimental outcomes.

It is perhaps worth remarking in passing that although the data of most
statistical problems occur in such a form that Bayes' theorem is required when
they are analyzed in extensive form but not when they are analyzed in normal
form, this relation is by no means necessary. As we point out in Sections 1.1.2
and 1.4.3, problems do occur in which the data are such that analysis in extensive
form does not require the use of Bayes’ theorem whereas the performance charac-
teristics which play a central role in the usual normal-form analysis can only be
computed by use of Bayes’ theorem. For this reason we believe that it is essen-
tially misleading to characterize as ‘“‘Bayesian’ the approach to decision theory
which is represented by this book, even though we arc occasionally driven into
using the term faute de mieux.

In Chapter 2 we define a sufficient statistic as one which leads to the same
posterior distribution that would be obtained by use of a “complete’” description
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of the experimental outcome. Although we show that this definition implies and
is implied by the classical definition of sufficiency in terms of factorability of the
joint likelihood of the sample observations, we prefer our definition because it
leads naturally to the concept of a statistic which is “marginally sufficient” for
those unknown parameters which affect utility even though it is not sufficient
for any nuisance parameters which may be present (Section 2.2). We then use
this concept of marginal sufficiency as a basis for discussion of the problems sug-
gested by the words “optional stopping” and show that after an experiment has
already been conducted the experimental data can usually be “sufficiently” de-
scribed without reference to the way in which the “size’” of the experiment was
determined (Section 2.3). It is usually sufficient, for example, to know simply
the number r of successes and the number (n — r) of failures which were observed
in an experiment on a Bernoulli process; we have no need to know whether the
experimenter decided to observe a predetermined number n of trials and count
the number 7 of success, or to count the number 7 of trials required to produce a
predetermined number r of successes, or simply to experiment until he ran out of
time or money. For this reason we uniformly refer to r and n as the sufficient
statistics of such an experiment, in contrast to the classical practice of reserving
the term ‘‘statistic”’ to denote those aspects of the experimental outcome which
were not determined in advance.

For essentially the same reason it seems to us impossible to distinguish usefully
between ‘‘fixed”’ and ‘‘sequential’”’ experiments. As for terminal analysis, we have
already said that the decision maker usually does not care why the experimenter
started or stopped experimenting; and although in preposterior analysis he is of
course concerned with various ways of determining when experimentation should
cease, even here we believe that the only useful distinction is between fixed and
sequential modes of analysis rather than fixed and sequential experiments as such.
By the fixed mode of analysis we mean analysis in which the entire experiment is
evaluated by use of the distribution of those sufficient statistics whose values are
not determined in advance, and this mode of analysis can be used just as well
when a Bernoulli process is to be observed until the occurrence of the rth success
as it can when the process is to be observed until the completion of the nth trial.
In the sequential mode of analysis, on the contrary, an experiment is regarded as
consisting of a potential sequence of subexperiments each of which is analyzed as
a separate entity: the analysis does not deal directly with the statistics which will
describe the ultimate outcome of the complete experiment but asks whether sub-
experiment e; should or should not be performed if subexperiment e, results in
outcome z;, and so forth. Any experiment can be analyzed in the fixed mode if
the sufficient statistics are appropriately defined and the necessary distribution
theory is worked out, but for many experiments the sequential mode of analysis
is much more convenient. In this book we deal only with experiments for which
the fixed mode of analysis is the more convenient.

In Chapter 3 we take up the problem of assessing prior distributions in a
form which will express the essentials of the decision maker’s judgments about
the possible states of nature and which at the same time will be mathematically

xi



Preface and Inlroduclion

tractable. We show that whenever (1) any possible experimental outcome can
be described by a sufficient statistic of fixed dimensionality (i.e., an s-tuple

(y1, y2 . . ., ¥:) where s does not depend on the “size” of the experiment), and
(2) the likelihood of every outcome is given by a reasonably simple formula with
Y, Y2, - - ., Ys 85 its arguments, we can obtain a very tractable family of ‘“‘conjugate”

prior distributions by simply interchanging the roles of variables and parameters
in the algebraic expression for the sample likelihood, and the posterior distribution
will be a member of the same family as the prior. This procedure leads, for ex-
ample, to the beta family of distributions in.situations where the state is described
by the parameter p of a Bernoulli process, to the Normal family of distributions
when the state is the mean u of a Normal population, and so forth; a conspectus
of conjugate distributions for some of the likelihood functions most commonly
met in practice is given in Section 3.2.5. In Section 3.3 we show that these
conjugate families are often rich enough to allow the decision maker to express
the most essential features of his basic judgments about the possible states and
to do so with only a reasonable amount of introspection, and we then conclude
the chapter by showing in Section 3.4 how the use of conjugate prior distributions
facilitates preposterior analysis——i.e., extensive-form evaluation of potential experi-
ments. Briefly, the first step in the analysis is to express the posterior expected
utility of optimal terminal action as a function of the parameters of the posterior
distribution of the state. Any particular experiment e can then be evaluated by
first obtaining the prior distribution of the parameters of the posterior distribution
which may result from that experiment and then using this distribution to calculate
the prior expectation of the posterior expected utility.

A word about notation is in order at this point. We admit that we should
have furnished a magnifying glass with each copy to aid the reader in deciphering
such symbols as &y; for such typographical hieroglyphics we apologize to the
reader—and more especially, to the compositor. Statistical theory has however
always been beset with notational problems-——those of keeping parameters distinct
from statistics, random variables from values assumed by random variables, and
so forth. In Bayesian decision theory these minor annoyances develop into serious
headaches. The same state variable which appears as a parameter in the condi-
tional distribution of a statistic appears as a random variable in its own right
when expected utility is being computed and the distribution of this state variable
has parameters of its own. Sample evidence takes us from a prior distribution to
a posterior distribution of the state variable, and we must distinguish between
the parameters of these two distributions. When an experiment is being con-
sidered but has not yet been performed, the parameters of the posterior distribu-
tion which will result from the experiment are as yet unknown; accordingly they
are random variables and have distributions which in turn have still other param-
eters.

It is only too obvious that on the one hand we must distinguish notationally
between random variables and values of random variables while on the other hand
we cannot permit ourselves the luxury of reserving capital letters for random
variables and small letters for values. It is equally obvious that the notation
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must have enough mnemonic value to enable the reader to keep track of the logical
progression from prior parameters through sample statistics to posterior param-
eters to the parameters of the prior distribution of the posterior parameters.
Briefly, our solution of this problem is the following. A tilde distinguishes a
random variable from its generic value; thus if the state is the parameter p of a
Bernoulli process, the state considered as an unknown and therefore a random
variable is denoted by p. If the sufficient statistics of a sample from this process
are r and n, the parameters of the conjugate prior distribution of p will be called
r’ and n’ and the parameters of the posterior distribution will be called "/ and »n".
If we are considering an experiment in which »n trials are to be made, the statistic ¥
will be a random variable and so will the parameter ¥’ of the posterior distribution.
In some situations we shall be more directly interested in the mean of the distri-
bution of # than in its parameters; in such situations the mean of the prior dis-
tribution of § will be denoted by 7’, that of the posterior by 5’’, and "’ is a ran-
dom variable until the sample outcome is known. Despite our apologies for typog-
raphy, we are proud of this notation and believe that it works for us rather than
against us; no system of notation can eliminate complexities which are inherent
in the problem being treated.

In Part 11 of the book (Chapters 4-6), we specialize to the extremely common
class of problems in which the utility of an entire (e, 2, a, §) combination can be
decomposed into two additive parts: a ‘‘terminal utility’’ which depends only on
the terminal act a and the true state 8, and a “sampling utility”’ (the negative of
the “cost”’ of sampling) which depends only on the experiment e and (possibly)
its outcome 2.

In Chapter 4 we point out that this assumption of additivity by no means
restricts us to problems in which all consequences are monetary. Problems in
which consequences are purely monetary and the utility of money is linear over a
suitable wide range do of course constitute a very important subclass of problems
in which sampling and terminal utilities are additive, but additive utilities are
frequently encountered when consequences are partially or even wholly of a non-
monetary nature. In general, sampling and terminal utilities will be additive
whenever consequences can be measured or scaled in terms of any common
numéraire the utility of which is linear over a suitably wide range; and we point
out that number of patients cured or number of hours spent on research may well
serve as such a numéraire in problems where money plays no role at all.

In situations where terminal and sampling utilities are additive, it is usually
possible also to decompose terminal utility itself into a sum or difference of eco-
nomically meaningful parts; and since we believe that the expert as well as the
novice has much to gain from the economic heuristics which such decompositions
make possible, we conclude Chapter 4 by defining and interrelating a number of
new economic concepts. Opportunity loss (or regret) is introduced in Section 4.4
and it is shown that minimization of expected opportunity loss is equivalent to
maximization of expected utility; all of Chapter 6 will be based on this result.
The value of perfect information, the value of sample information, and the net
gain of sampling (the difference between the value and the cost of sample informa-
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tion) are introduced in Scction 4.5 and it is shown that maximization of the net
gain of sampling is equivalent to maximization of expected utility; all of Chapter 5
will be based on this result. The chapter closes with a conspectus of the definitions
of all of the economic concepts used in the entire book and of the relations among
them.

In Chapters 5A and 5B we further specialize by assuming that the terminal
utility of every possible act is linear in the state 6 or some transformation thereof.
This assumption greatly simplifies analysis, and despite its apparently very restric-
tive character we are convinced that it is satisfied either exactly or as a good
working approximation in a very great number of decision problems both within
and without the field of business. Given linearity, terminal analysis becomes
completely trivial because the cxpected utility of any act depends only on the
mean of the distribution of the state variable; and even preposterior analysis
becomes very easy when the mean of the posterior distribution is treated as a
random variable. Some general theorems concerning this prior distribution of
the posterior mean or “preposterous distribution” are proved in Section 5.4.

Aside from these general theorems about preposterous distributions, Chapter
5A is primarily concerned with problems in which the posterior mean is scalar
and the act space contains only a finite number of acts. In Section 5.3 we show
that under these conditions the expected net gain of many types of experiments
can be very easily expressed in terms of what we call a “linear-loss” integral with
respect to the preposterous distribution. The preposterous distributions corre-
sponding to a variety of common statistical experiments are indexed in Table 5.2
(page 110); among other things the table gives references to formulas for the linear-
loss integral with respect to each distribution indexed.

The remainder of Chapter 5A specializes still further to the case where there
are only two possible terminal acts and examines the problem of using the results
previously obtained for the net gain of a sample of arbitrary “size’” to find the
optimal sample size. For the case where sampling is Normal with known vari-
ance, we give complete results including charts from which optimal sample size
and the expected net gain of an optimal sample can be read directly.f For the
case where sampling is binomial, we describe the behavior of the net gain of sam-
pling as the sample size n increases, discuss the problem of finding the optimum
by the use of high-speed computers, and show that surprisingly good approximate
results can often be obtained with only trivial computations by treating the beta
prior and binomial sampling distributions as if they were Normal.

In Chapter 5B we take up the problem of selecting the best of r ‘“processes’
when terminal utility is linear in the mean of the chosen process and sample ob-
servations can be taken independently on any or all of the means. Terminal
analysis—choice of a process on the basis of whatever information already exists—
again turns out to be trivial; the chapter is concerned primarily with preposterior
analysis, i.e. the problem of deciding how many observations to make on each

t Similar results for the case where the sampling variance is unknown have been obtained
by A. Schleifer, Jr., and the requisite tables are given in J. Bracken and A. Schleifer, Jr., Tables
for Normal Sampling with Unknown Variance, Boston, Division of Research, Harvard Business
School, 1964.
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process before any terminal decision is reached. The only case discussed in detail
is that in which the sample observations on each process are Normally distributed
and the variances of these sampling distributions are known up to a constant of
proportionality. Expressions are given for the net gain of any set of samples
(ny, me, . . ., m,) in terms of multivariate Normal or Student integrals, and we
show that these integrals can be easily evaluated with the aid of tables when
r = 2 or 3 while for » > 3 we discuss methods of evaluation by use of high-speed
computers. As regards the problem of finding the optimal (my, n., ..., n,), we
show that when r = 2 the problem can be completely solved by the use of the
univariate results of Chapter 5A ; for higher values of r we suggest that the surface
representing the net gain of sampling as a function of the r variables (n,, no, . . ., n,)
might be explored by application of standard techniques for the analysis of re-
sponse surfaces.

In Chapter 6 we turn to another special class of problems, of which by far
the most important representative is the problem of point estimation. The basic
ideas are introduced by examining a problem which is not usually thought of as
involving “estimation”: viz., the problem of deciding what quantity ¢ of some
commodity should be stocked when the demand d is unknown and an opportunity
loss will be incurred if d is not equal to g. We then define the problem of point
estimnation as the problem which arises when the decision maker wishes to use
some number 8 as if it were the true value 8 of some unknown quantity, and we
argue that this problem is formally identical to the inventory problem because
here too the decision maker will suffer an opportunity loss if 8 = 8. The inven-
tory problem itself can in fact be expressed as one of finding the optimal “estimate’’
d of the demand d on the understanding that the decision maker will treat this
estimate as if it were the true d—i.e., that he will stock ¢ = d.

Generalizing, we prove that whenever terminal utility depends on an unknown
quantity », the utility-maximizing terminal act can be found indirectly by (1)
determining for all (&, w) pairs the opportunity loss which will result if a terminal
act is chosen by treating w as if it were @, (2) finding the & which minimizes the
expectation of these losses, and finally (3) choosing a terminal act as if this op-
timal estimate of w were the true value of w. This indirect procedure for allowing
for uncertainty about w will rarely if ever be of practical use as it stands, since it
will usually be just as difficult to determine the ‘‘estimation losses’” attached to
all (@, w) pairs as it would be to make a direct computation of the expected utilities
of the various terminal acts under the distribution of &; but we believe that when
it is not possible to take full analytical account of uncertainty about w, then a
very good way of proceeding will be’to make a judgmental evaluation of the losses
which will result from misestimation, to select the estimate which minimizes the
expected value of these losses, and to choose the terminal act which would be
optimal if « were in fact equal to this estimate. This procedure will be still more
useful in situations where it is possible to obtain additional information about w
and the decision maker must decide how much information it is economically
worth while to collect. In Sections 6.3 through 6.6 we consider two types of
functions which might be used to represent a judgmental assessment of the losses
which may result from misestimation—losses linear in (& — w) and losses quad-
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ratic in (& — w)—and for each type we give formulas for the optimal estimate,
the expected loss of the optimal estimate, and the optimal amount of information
to collect in one or two types of experiment.

Part 1II of the book, comprising Chapters 7 to 13, contains the analytical
distribution theory required for application to specific problems of the general
methods of analysis described in Parts I and II. The heart of Part III is in the
last five Chapters (9 through 13) each of which considers a different ‘“process”
generating independent, identically distributed random variables and gives the
distribution-theoretic results most likely to be required in a Bayesian analysis of
any decision problem in which information about the state of the world can be
obtained by observing the process in question. The two preceding chapters of
Part III (Chapters 7 and 8) are simply a catalog of definitions of various mass
and density functions together with formulas for their moments and references to
published tables; this material was collected into one place, ahead of the analyses
of the various data generating processes, simply because most of the functions in
question appear a great many times in the process analyses rather than just once.

In Chapter 7A we take up successively a number of what we call “natural”
univariate mass and density functions, belonging to the binomial, beta, Poisson,
gamma, and Normal families. In this chapter the same ‘‘basic’’ distribution often
appears in many alternative forms derived by a simple change of variable or even
by mere reparametrization, but we believe that this apparent duplication will
actually lighten the reader’s and the user’s task. The alternate parametrizations
are introduced in order to keep as clear as possible the relations between sample
statistics on the one hand and the parameters of prior and posterior conjugate
distributions on the other, while new functions are derived by a change of variable
whenever Bayesian analysis requires the distribution of the variable in question.
The case for thus multiplying the number of distributions is the same as the case
for having both a beta and an F or both a gamma and a chi-square distribution
in classical statistics, and we know by bitter experience that without such a syste-
matic catalog of transformed distributions the statistician can waste hours trying
to look up a probability in a table and then come out with the wrong answer.

In Chapter 7B we turn to what we consider to be ‘“compound” univariate
mass and density functions, obtained by integrating out a parameter of one of
the “natural” functions. Among these compound functions the negative-binomial,
obtained by taking a gamma mixture of Poisson distributions, will be already
familiar to most readers. The beta-binomial and beta-Pascal functions are simi-
lar, being obtained by taking a beta mixture of binomial or Pascal functions; in
Section 7.11.1 we bring out an interesting relation between these two compound
distributions and the well known hypergeometric distribution. Finally, it is inter-
esting to observe that in Bayesian analysis the Student distribution appears as a
gamma mixture of Normal densities and not as the distribution of the ratio of
two random variables.

In Chapter 8 we complete our catalog with the multivariate distributions we
require. There are only three in number: the multivariate Normal, concerning
which we have nothing new to say; the multivariate Student, a compound distri-

xvi



Preface and Iniroduction

bution obtained as a gamma mixture of multivariate Normals, and the “inverted
Student,” obtained from the Student by a change of variable.

Throughout Chapters 7 and 8 the reader may feel that there is an over-
abundance of proofs and he may well be right in so feeling. We do, however,
have two things to say in self-defense. First, many of the formulas we give are
hard or impossible to find in other books, and being only moderately sure of our
own algebra and calculus we wanted to make it as easy as possible for the reader
to verify our results; corrections will be greatly appreciated. Second, as regards
the results which are perfectly well known, our desire to produce an introduction
to Bayesian analysis which would be accessible even to readers who were not
professionally trained in classical statistics seemed to us to imply that we should
at least give references to proofs; but when we tried to do so, we quickly came
to the conclusion that differences both in notation and in point of view (e.g., as
regards compound distributions) would make such references virtually incompre-
hensible except to those readers who had no need of proofs anyway.

Chapters 9-13 constitute, as we have already said, the essentially Bayesian
portion of Part III, in which we give the results required for Bayesian analysis of
decision problems where information about the state of nature can be obtained
by observing a ‘‘data-generating process.” The five processes studied in these
five chapters are defined in Sections 3.2.5 by the densities of the independent
random variables which they generate; they are: the binomial, the Poisson, the (uni-
variate) Normal, the Multivariate Normal, and the Normal Regression processes.

The pattern of the analysis is identical in the case of the two single-parameter
processes, the Bernoulli and Poisson (Chapters 9 and 10). The steps in the anal-
ysis are the following.

1. Define and characterize the process and interpret its parameter.

2. Exhibit the likelihood of a sample consisting of several observations on the
process and give the sufficient statistic.

3. Exhibit the family of conjugate prior distributions for the process parameter
and give the algebraic mechanism for obtaining the posterior parameter from the
prior parameter and the sample statistic.

3’. Repeat the previous step for an alternative parametrization of the process
(in terms of p = 1/p in the Bernoulli case, in terms of an analogous substitution
in the Poisson case).

4. For a given type of experiment—e.g., fix the number of trials n and leave
the number of successes # to chance—derive the conditional distribution of the
nonpredetermined part of the sufficient statistic for a given value of the process
parameter.

5. Derive the unconditional sampling distribution by integrating out the
parameter with respect to its prior distribution.

6. Derive the prior distribution of the posterior mean for both parametriza-
tions of the process.

7. Obtain formulas for certain integrals with respect to the distributions ob-
tained in the previous step.
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8. Investigate convenient approximations to the results obtained in the two

previous steps.
4’-8'. Repeat steps (4) through (8) for an alternate experimental design—

e.g., fix r and leave 7 to chance.

The analysis of the univariate Normal process in Chapter 11 follows essen-
tially this same pattern except that (1) we consider only one kind of experiment,
that in which the number n of observations is predetermined, and (2) we must
allow for uncertainty about the process mean u and/or the process precision
h = 1/¢% We therefore analyze three cases separately: in case A, u is known;
in case B, h is known; in case C, neither parameter is known. In case A, the
conjugate distribution of % is gamma; in case B, the conjugate distribution of g is
Normal; in both these cases the pattern of the analysis is virtually identical to the
pattern in Chapters 9 and 10.

In case C, where both parameters are unknown, the conjugate family is what
we call Normal-gamma, with a density which can be regarded as either (1) the
product of a marginal gamma density of % times a conditional Normal density of
f given h, or (2) the product of a marginal Student density of & times a conditional
gamma density of £ given u. The number of degrees of freedom in the marginal
posterior distribution of g depends on the marginal prior distribution of £, so that
Bayesian analysis allows the decision maker a way through the classical dilemma
between asserting that he knows nothing and asserting that he knows everything
about . We must point out, however, that although the Normal-gamma distri-
bution has four free parameters and is amply flexible enough to represent the
decision maker’s judgments when his opinions about x4 and h are both ‘loose” or
both ‘‘tight’’ or when his opinions about u are loose while his opinions about k
are tight, it cannot give a good representation of tight opinions about u in the
face of loose opinions about h. In this case we really need to assign independent
distributions to & and A, but Jeffreys has already pointed out the distribution-
theoretic difficulties which arise if we do.t

As long as we can use a Normal-gamma prior, however, even preposterior
analysis is easy. The treatment of preposterior analysis in Chapter 11C follows
basically the same pattern that is followed in earlier chapters, except that all the
distributions (conditional and unconditional sampling distributions and the distri-
bution of the posterior parameters) involve two random variables; we give in
each case the joint distribution of the pair of variables and both the conditional
and the marginal distributions of the individual variables.

In Chapter 12 the results of the scalar Normal and Student theory of Chap-
ter 11 are generalized to the multivariate Normal and Student cases. We first
assume that sampling results in independent identically distributed, random vectors
X0 % where each ¥ has a multivariate Normal distribution with a mean
vector u and a precision matrix (inverse of the covariance matrix) h. In part A
of the chapter we assume h is known. In part B we write h = h i where |9 = |

t H. Jeffreys, Theory of Probability, 2nd edition, Oxford, Clarendon Press, 1948; pages
123-124.
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and assume 7 is known but h is not. In part C we specialize to the case where
7 is diagonal. Our interest in this special case is due primarily to the fact that
it depicts situations in which we wish to compare the means of a number of dis-
tinct univariate Normal processes each of which can be sampled independently,
and for this reason we give separate analyses for the case where all the univariate
processes are to be sampled and the case where only some of them are to be sam-
pled. As regards terminal analysis, the two cases are essentially the same; but
in preposterior analysis the second case gives rise to degenerate or singular prior
distributions of the posterior parameters.

The Normal regression process, considered in Chapter 13, is defined as a
process generating scalar random variables i, #2, . . . each of which is a linear
combination of known zs with unknown 8 weights plus random error; the errors
are assumed to be independent and to have identical Normal distributions with
precision k. The state variables (which are also the parameters of the conditional
sampling distributions) are 8;,..., 8, and h; the only experimental designs we
consider are those which prescribe a fixed coefficient matrix X, but we carry out
the analysis both for the case where X is of full rank and for the case where it is
not. The chapter is divided into three parts. In parts A and B we discuss
terminal analysis for any X and preposterior analysis for X of full rank; part A
deals with the case where & is known and the conjugate distribution of 8 is Normal,
part B with the case where k is unknown and the conjugate distribution of # and £
is Normal-gamma. Part C gives the preposterior analysis for k known or unknown
when X is not of full rank.

The distribution-theoretic results obtained in Chapters 12 and 13 are by no
means fully exploited in the applications discussed in Part II of the book; the
only real use made there of these last two chapters is in the analysis in Chapter 5B
of the problem of choice among a nurober of univariate Normal processes. We
should therefore like to call the reader’s attention to a few problems of great prac-
tical importance in which we hope that the contents of Chapters 12 and 13 may
prove useful.

All the analyses in Part II were based on simple random sampling, but the
results of Chapter 12 should make it fairly easy to analyze the same economic
applications when the sampling is stratified. If utility depends on the mean g of
an entire population and if we denote by u; the mean of the 7th stratum of this
population, then p = Z ¢; u;. Bayesian terminal analysis would proceed by put-
ting a multivariate prior on @ = (&, . . . fi,), revising this prior in accordance with
sample information, and then finding the corresponding distribution of & = Z ¢; .
Preposterior analysis might for example first obtain the joint prior distribution of
the posterior means 2 and from this the preposterior distribution of & = Z ¢, .

The results on the Regression process obtained in Chapter 13 promise to be
useful in two quite different respects. First, we would guess that the best way
of obtaining “prior” distributions for many economic variables such as demand
will often be to start from a regression of demand on economic predictors. The
unconditional distribution of the ‘“next’” § obtained from the Regression model
can then serve as a prior distribution in situations where additional information
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bearing directly on y can be obtained by sampling the population which creates
the demand.

Second, and probably much more important, the regression model will clearly
be required for Bayesian analysis of experiments in which blocking and similar
devices are used. The great obstacle yet to be overcome in the analysis of such
problems is the problem of setting prior distributions, but the game is well worth
the candle. Only Bayesian analysis can free the statistician from having to assert
either that he is sure that there is no row (or interaction, or what have you) effect,
or else that he knows nothing whatever about this effect except what he has learned
from one particular sample. We at one time thought of including at least a first
attack on some or all of these problems in the present book, but after all one must

stop somewhere.

XX
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EXPERIMENTATION AND DECISION:
GENERAL THEORY






CHAPTER 1

The Problem and the Two Basic Modes of Analysis

1.1. Description of the Decision Problem

In this monograph we shall be concerned with the logical analysis of choice
among courses of action when (a) the consequence of any course of action will de-
pend upon the ‘‘state of the world”, (b) the true state is as yet unknown, but (¢) it
is possible at a cost to obtain additional information about the state. We assume
that the person responsible for the decision has already eliminated a great many
possible courses of action as being unworthy of further consideration and thus
has reduced his problem to choice within a well-defined set of contenders; and we
assume further that he wishes to choose among these contenders in a way which
will be logically consistent with (a) his basic preferences concerning consequences,
and (b) his basic judgments concerning the true state of the world.

1.1.1. The Basic Data

Formally, we assume that the decision maker can specify the following basic
data defining his decision problem.

1. Space of terminal acts: A = {a} .
The decision maker wishes to select a single act a from some domam A of potential
acts.

2. State space: 6 = {6} .
The decision maker believes that the consequence of adopting terminal act a
depends on some “state of the world” which he cannot predict with certainty.
Each potential state will be labelled by a 8 with domain ©.

3. Family of expertments: E = {e} .
To obtain further information on the importance which he should attach to each 8
in 6, the decision maker may select a single experiment e from a family E of poten-
tial experiments.

4. Sample space: Z = {2} .
Each potential outcome of a potential experiment e will be labelled by a z with
domain Z. We use the nonstandard convention that Z is rich enough to encom-
pass any outcome of any ¢ in E, and for this reason the description of z will in part
repeat the description of ¢; the usefulness of this redundancy will appear in the
sequel.

5. Utility Evaluation: u(-, -, -, -)on E X Z X A X 06 .
The decision maker assigns a utility u(e, 2, a, 8) to performing a particular e,
3
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observing a particular z, taking a particular action e, and then finding that a partic-
ular 6 obtains. The evaluation u takes account of the costs (monetary and other)
of experimentation as well as the consequences (monetary and other) of the termi-
nal act; and the notation leaves open the possibility that the cost of experimenta-
tion may depend on the particular experimental outcome z as well as on the mode
of experimentation e.

6. Probability Assessment: Py, {-, -le} on 6 X Z .

For every e in E the decision maker directly or indirectly assigns a joint probability
measure Py.{-, -|e} or more briefly P, to the Cartesian product space 6 X Z,
which will be called the possibility space. This joint measure determines four
other probability measures:

a. The marginal measure Pg{-} or I’ on the state space 6. We assume that
Pj does not depend on e.

b. The conditional measure P,{:|e, 6} or P, on the sample space Z for given
e and 6.

¢. The marginal measure P,{-|e} or P;. on the sample space Z for given e
but unspecified 6.

d. The conditional measure Py {-|{z} or Pg. on the state space © for given
e and z; the condition e is suppressed because the relevant aspects of ¢ will be
expressed as part of z.

The prime on the measure ’s defined in (a) indicates that it is the measure
which the decision maker assigns or would assign to © prior to knowing the out-
come z of the experiment e. The double prime on the measure Py, defined in (d)
indicates that it is the measure on 6 which he assigns or would assign postertor
to knowing the outcome z of the experiment e. Strictly speaking the primes are
redundant, but they will be of help when used to distinguish between prior and
posterior values of the parameters of families of probability distributions.

Random Variables and Expeclations. In many situations the states {f} and
the sample outcomes {z} will be described by real numbers or n-tuples of real
numbers. In such cases we shall define the random variables § and 2 by

6(0,2) =0, 36,2) =z ,
using the tilde to distinguish the random variable or function from a particular
value of the function.

In taking expectations of random variables, the measure with respect to
which the expectation is taken will be indicated etther (1) by subscripts appended
to the expectation operator E, or (2) by naming the random variable and the
conditions in parentheses following the operator. Thus

Ej or FE® is taken with respect to  Pj
ore or E"(f2) is taken with respect to Bie
E,ies or E(zle, 0) is taken with respect to Pies
E,. or E(Zle) is taken with respect to Py

When no condition is shown, the condition e is to be understood and the expecta-
tion is with respect to the entire joint measure for that e:

E = Ea.;]. .
4



Definition of the Problem 1.1.2

1.1.2.  Assessment of Probability Measures

For any given e, there are three “basic’’ methods for assigning the complete
set of measures just defined. (1) We have already said that if a joint measure is
assigned to © X Z directly, the marginal and conditional measures on 8 and Z
separately can be computed from it. (2) If a marginal measure is assigned to ©
and a conditional measure is assigned to Z for every 6 in 6, the joint measure on
0 X Z can be computed from these, after which the marginal measure on Z and
the conditional measures on O can be computed from the joint measure. (3) The
second procedure can be reversed: if a marginal measure is assigned to Z and condi-
tional measures to O, the joint measure on © X Z can be computed and from it
the marginal measure on 0 and the conditional measures on Z.

All three methods of determining the required measures are of practical importance.
The decision maker will wish to assess the required measures in whatever way
allows him to make the most effective use of his previous experience—including
but not restricted to his knowledge of historical relative frequencies in 8 X Z—
and therefore he will want to make direct assessments of those measures on which
his experience bears most directly and deduce the other measures from these.

In some situations the decision maker will have had extensive experience on
which to base a direct assessment of the joint measure itself; the experience may
actually consist of so long a record of joint relative frequencies produced under
“constant” conditions that a directly assessed joint measure will be “objective”
in the sense that given this same evidence any two ‘‘reasonable’”’ men would assign
virtually the same joint measure to 6 X Z.

More commonly, the decision maker will be able to make the most effective
use of his experience by making direct assessments of the marginal measure on 6
and the conditional measures on Z, the reason being that very often the latter
and not infrequently the former of these two measures can be based on very ex-
tensive historical frequencies. In many situations the assessments of the condi-
tional measures P,., will be made via theoretical models of the behavior of 2
which rest on an enormous amount of relevant experience with relative frequencies;
thus a particular sampling process may be virtually known with certainty to behave
according to the Bernoulli model even though it has never actually been applied
in the exact circumstances of the particular problem at hand. In some situations,
moreover—e.g., in some acceptance sampling problems—the measure on 6 (e.g.,
lot quality) may be virtually as “objective’” as the measures on Z given 8,

Finally, situations are not at all infrequent in which the marginal measure
on Z and the conditional measures on 6 have the most extensive foundation in
experience. An example of such a situation is discussed in Section 1.4.3 below.

In addition to these “basic’”’ methods of assigning a measure to the possibility
space 6 X Z, there are of course a variety of special methods which can be used
to assess the parameters of a measure once the structure of the measure has been
specified. While it would be impossible to list all such methods, we can give one
important example.t If the spaces © and Z are each the set of real numbers and

t We owe this example to Professor Arthur Schleifer, Jr.
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1.1.2 Part I: General Theory

if the joint measure on the product space is bivariate Normal, then provided that
6 and 2 are not completely independent the joint measure can be uniquely deter-
mined by assigning to the same space Z both a marginal measure and a measure
conditional on each 6 in ©.

1.1.8. Ezample

Let A = {a;, a;} where a, stands for “accept the lot of 1000 items” and
az for “reject the lot of 1000 items”. Let @ = {6y, 6y, - - - , Bi0o} Where 8; is the
state in which [ items are defective. Let E = {eq, €1, - - - , €100} Where ¢; is the
experiment in which ¢ items are drawn from the lot and inspected. Let Z =
{(4,%): 0 < j <1 <1000} where (j,1) represents the outcome that j defectives
were found in a sample of 7 observations. [Notice that if e, say, is performed,
then the outcomes are constrained to lie in the set {(0, 5)(1, 5), --- (5,5)}.] Then
ufles, (j, ©), ax, 6;] is the utility which the decision maker attaches to drawing a
sample of 7 items, observing that j of these ¢ items are defective, and adopting a:
(“accept” if k = 1, “reject” if k = 2) when [ items in the lot are in fact defective.
[Notice that if the inspection is destructive, the cost of sampling includes the
manufacturing cost of the + — j good items destroyed in sampling and that the
utility assigned to {e;, (j, %), ax, 6} should reflect this.]

In a problem of this sort the required probability measure on the possibility
space O X Z will ordinarily be assessed via (1) a family of conditional measures
on Z, a typical one being P,{-|e;, 6:}, which assign conditional probabilities to the
various possible outcomes (7, ) given that 7 items are inspected and given that
there are actually ! defectives in the lot, and (2) a marginal measure P which
assigns probabilities to the various possible numbers ! of defectives in the lot
before observing the outcome of any experiment.

1.1.4. The General Decision Problem as a Game

The general decision problem is: Given E, Z, A, O, u, and Py, how should
the decision maker choose an e and then, having observed z, choose an a, in such a way
as to maximize his expected utility? This problem can usefully be represented as
a game between the decision maker and a fictitious character we shall call ““chance’.
The game has four moves: the decision maker chooses e, chance chooses z, the
decision maker chooses a, and finally chance chooses 6. The play is then com-
pleted and the decision maker gets the ‘“payoff” u(e, 2, a, 6).

Although the decision maker has full control over his choice of ¢ and a, he
has neither control over, nor perfect foreknowledge of, the choices of z and 6 which
will be made by chance. We have assumed, however, that he is able in one way
or another to assign probability measures over these choices, and the moves in
the game proceed in accordance with these measures as follows:

Move 1: The decision maker selects an e in E.
Move 2: Chance selects a z in Z according to the measure P,,.
Move 3: The decision maker selects an a in A.
Move 4: Chance selects a 6 in © according to the measure Pg,.
Payoff: The decision maker receives u(e, 2, a, 6).

6



Definition of the Problem 1.14

The Deciston Tree. When the spaces E, Z, A, and 6 are all finite, the flow
of the game can in principle be represented by a tree diagram; and although a
complete diagram can actually be drawn only if the number of elements involved
in E, Z, A, and 0 is very small, even an incomplete representation of the tree can
aid our intuition considerably.

A partial tree of this sort is shown in Figure 1.1, where D denotes the decision
maker and C denotes chance. At move 1, D chooses some branch e of the tree;

Move no.: 1 2 3
Move by : 0 c 0 c vie 208
Choices : e€ £ z2€2 o€ A §e®8
Meosure :  — A{le} - Az}
Figure 1.1

One Possible Play of a Game

at move 2, C chooses a branch z; at move 3, D chooses a; at move 4, C chooses 8;
and finally, D receives the “payoff’’ u(e, 2, a, 6). In two examples to follow shortly
we shall depict the tree completely and present an analysis of the problem in terms
of this representation.

1.2. Analysis in Extensive Form

Once we have at hand all the data of a decision problem as specified in Sec-
tion 1.1.1, there are two basic modes of analysis which we can use to find the
course of action which will maximize the decision maker’s expected utility: the
exlensive form of analysis and the normal form. Although the two forms are
mathematically equivalent and lead to identical results, both will be expounded
in this chapter because each has something to contribute to our insight into the
decision problem and each has technical advantages in certain situations.

1.2.1. Backwards Induclion

The extensive form of analysis proceeds by working backwards from the end
of the decision tree (the right side of Figure 1.1) to the initial starting point: in-
stead of starting by asking which experiment ¢ the decision maker should choose
at move 1 when he knows neither of the moves which will subsequently be made
by chance, we start by asking which terminal act he should choose at move 3 if
he has already performed a particular experiment e and observed a particular
outcome z. Even at this point, with a known history (e, z), the utilities of the
various possible terminal acts are uncertain because the 8 which will be chosen
by chance at move 4 is still unknown; but this difficulty is easily resolved by treat-

7



1.2.1 Part I: General Theory

ing the utility of any a for given (e, z) as a random variable u(e, z, a, ) and apply-
ing the operator Eg, which takes the expected value of u(e, z, a, §) with respect
to the conditional measure Py,. Symbolically, we can compute for any given
history (e, z) and any terminal act a ‘

u*(e, z,a) = Ey, ule, z,a, §) ; (1-1)

this is the utility of being at the juncture (e, z, a) looking forward, before chance
has made a choice of 6.

Now since the decision maker’s objective is to maximize his expected utility,
he will, if faced with a given history (e, z), wish to choose the a (or one of the as,
if more than one exist) for which u*(e, z, a) is greatest;t and since he is free to
make this choice as he pleases, we may say that the utility of being at move 3
with history (e, z) and the choice of a still to make is

u*(e, z) = max, u*(e, 2, a) . (1-2)

After we have computed u*(e, z) in this way for all possible histories (e, z),
we are ready to attack the problem of the initial choice of an experiment. At
this point, move 1, the utilities of the various possible experiments are uncertain
only because the z which will be chosen by chance at move 2 is still unknown, and
this difficulty is resolved in exactly the same way that the difficulty in choosing a
given (e, 2) was resolved: by putting a probability measure over chance’s moves
and taking expected values. In other words, u*(e, 2) is a random variable at
move 1 because 2 is a random variable, and we therefore define for any e

u*(e) = E,, u*(e, 2) (1-3)

where E,. expects with respect to the marginal measure P,..

Now again, the decision maker will wish to choose the e for which u*(e) is
greatest; and therefore we may say that the utility of being at move 1 with the
choice of e still to make is

u* = max, u*(¢) = max, E,. max, Ej, u(e, 2, a, ) . (1-4)

This procedure of working back from the outermost branches of the decision
tree to the base of the trunk is often called “backwards induction.” More descrip-
tively it could be called a process of “averaging out and folding back.”

1.2.2. Ezxample

Should a certain component be hand-adjusted at extra expense before it is
installed in a complicated electronic system? Should the only available test,
which is expensive and not infallible, be made on the component before a final
decision is reached? The possible choices by the decision maker and chance are
listed in Table 1.1; all the possible sequences of choices (e, 2, a, §) and the utility

t In some problems with infinite A it may be impossible to find an a whose utility is equal
to the least upper bound of the utilities of all the as. These problems can be handled by con-
sidering suprema rather than maxima, but some proofs which are obvious when the maximum
exists become complex when the supremum is not attainable and we do not feel that the slight
added generality is worth the cost for applications of the sort we are considering in this book.

8
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u(e, 2, a, ) which the decision maker assigns to each are shown on the decision
tree, Figure 1.2,

Table 1.1

Possible Choices

Space Elements Interpretation

1 a do not adjust

) as adjust

0 & component does not need adjustment
0, component needs adjustment

g Jeo do not experiment

? lex experiment
Jzo outcome of ¢; (a dummy)

Z £ outcome of ¢; which is more favorable to 6,
|22 outcome of e, which ig more favorable to 6,

The marginal probability measure P, which is shown below each z in Figure
1.2 and the conditional measures Py, which are shown below each ¢ are derived
from the following measures which we assume to have been directly assigned by
the decision maker: (1) the conditional measures P,,.4 shown for all possible (e, 6)
pairs in Table 1.2, and (2) the marginal measure Py shown in Table 1.3. From

Table 1.2 Table 1.3
Conditional Measures on Z Marginal Measure on 6
E
€0 €
6, 6, 6 6, 6 | A
2 1.0 1.0 0 .0 0, N
2) 0 .0 7 2 01 3
2; 0 0 3 8 —
—_ — —_ — 1.0
1.0 1.0 1.0 1.0

these we first compute the joint measure Py, for each of the experiments e and e;;
the results for e, are shown in Table 1.4. From this joint measure we then com-
pute the marginal measure P, for each ¢, the results for e; being shown in Table 1.4,
and the conditional measures Py, for every z, the results being shown in Table 1.5.
(We remind the reader that, as we pointed out in Section 1.1.1 above, the descrip-
tion of z includes everything about e which is relevant to the determination of the
conditional measure on 6.)

9



1.2.2

82

éq

82

€

76

Part I: General Theory

20
1.00

2y
.55

22
45

A {-le}

82

85

65

Figure 1.2

ay

92

4]

92

ay

gz

8

82

85

68

43

65

Analysis of an “‘Imperfect Tester”

6y
82

6
.891
8,

109

6
.891

108

466

534

466

534

Ay'{le}

100

36

82

82

94

68

68

92

65

65

We are now ready to begin our analysis of the tree Figure 1.2, and our first
step is to start from the end (the extreme right) and use the data we find there to
As a single example of the computations,

evaluate u*(e, z, a) for all (e, 2, a).

u*(ey, 21, 1) = uley, 21, a1, 61) Py {6121} + uley, 21, as, 82) Py {8:] 21}

= 94(.891) + 7(.109) = 85
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Table 1.4

Measures Associated with e,

Joint Measure

on® X Z Marginal Measure
—_— onZ
Z 6, 0,
2 .00 .00 .00
z 49 .06 .55
P2 21 24 45
Marginal Measure on 6 .70 .30 1.00

as shown on the tree. Having computed u*(e, 2, a) for all (e, z, a) combinations,
we are ready to compute u*(e, z) for all (e, 2). As an example,

w*(ey, 21) = max {u*(ey, 21, a1), u*(ey, 21, az)}

max {85, 68} = 85

as shown on the tree. [Notice from the tree that if e, is performed, then it is
Table 1.5

Conditional Measures on 6

Z 91 02 Sum
2 700 .300 1.000
2 .891 .109 1.000
2 .466 .534 1.000

better to take a, if z; occurs but to take a; if z; occurs.] Next we compute u*(e)
for all e, 1.e., for e = e and ¢;. For example,

u*(e)) = u*(ey, z1) P.{zile)} + u*(ey, 22) P.{z2]ey}
= 85(.55) + 65(.45) = 76
as shown on the tree. Finally, we compute
u* = max {u*(eo), u*(e1)}
= max {82, 76} = 82 .

The optimal course of action is thus to use ¢, and then a;—i.e., to hand-adjust
the component before installing it without bothering to test it first. It is better
not to use the imperfect tester even though if used it would be powerful enough to
determine the decision maker’s preferred action.

1.3. Analysis in Normal Form

The final product of the extensive form of analysis studied in the previous
section can be thought of as the description of an optimal strategy consisting of
two parts:

11



1.3 Parl I: General Theory

1. A prescription of the experiment e which should be performed,
2. A decision rule prescribing the optimal terminal act a for every possible
outcome z of the chosen e.

The whole decision rule for the optimal e can be simply “read off’’ from the results
of that part of the analysis which determined the optimal a for every z in Z; and
we may remark incidentally that these same results also enable us to read off the
optimal decision rule to accompany any other ¢ in E, even though the ¢ in question
is not itself optimal.

The normal form of analysis, which we are now about to examine, also has
as its end product the description of an optimal strategy, and it arrives at the same
optimal strategy as the extensive form of analysis, but it arrives there by a different
route. Instead of first determining the optimal act a for every possible outcome z,
and thus implicitly defining the optimal decision rule for any e, the normal form of
analysis starts by explicitly considering every possible decision rule for a given e
and then choosing the optimal rule for that e.  After this has been done for allein E,
the optimal e is selected exactly as in the extensive form of analysis.

1.3.1. Decision Rules

Mathematically, a decision rule d for a given experiment e is a mapping which
carrieszin Z intod(2) in A. In other words, d is a function which assigns a “value”
a to each zin Z. Given a particular strategy (e, d) and a particular pair of values
(2, 8), the decision maker’s act as prescribed by the rule will be a = d(z) and his
utility will be u(e, z, d(2), 8); but before the experiment has been conducted and
its outcome observed, u(e, 2, d(2), §) is a random variable because z and § are random
variables.

The decision maker’s objective is therefore to choose the strategy (e, d) which
maximizes his expected utility

u,(e, d) = Eq, ule, 2, d(2),0) .

This double expectation will actually be accomplished by iterated expectation,
and the iterated expeetation can be carried out in either order: we can first expect
over § holding Z fixed and then over %, using the same measures Pj, and P, which
were used in the extensive form of analysis; or we can first expect over Z holding §
fixed and then over 6, using the measures P,.o and P;. It is traditional and usually
more practical to use the measures P,,5 and Py and we shall therefore proceed
here in this manner, reserving for Section 1.4.3 an example of a situation in which
the alternative procedure is preferable.

If e and d are given-and § is held fixed, then by taking the expectation of
ule, 2, d(2), 6] with respect to the conditional measure P,.s we obtain

u,(e, d,0) = El|¢-9 u[er z,d(2), 0] ’ (1'5)

which will be called the conditional utility of (e, d) for a given state 8. Next expect-
ing over § with respect to the unconditional measure Pj, we obtain

u'(e: d) = Eé ut(es d: 6) y (1-6)

which will be called the unconditional utility of (e,d).
12
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Now given any particular experiment e, the decision maker is free to choose
the decision rule d whose expected utility is greatest; and therefore we may say
that the utility of any experiment e is

u,(e) = maxqgu,le, d) . (1-7)

After computing the utility of every e in E, the decision maker is free to choose
the experiment with the greatest utility, so that we may write finally

u, = max, u,(e) = max, maxq E§ E,.5 ule, 3, d(2), 6] . (1-8)

1.3.2. Performance, Error, and Utility Characteristics

For any given strategy (e, d) and state 6, we can compute the probability
that the rule d will lead to any specified act a. Formally, we define for any (meas-
urable) subset 4, C A

P {Ae,d, 8 = P,{2:d(2) e Aole, 8} = P.{d~'(4.)|e, 6} ,

and we say that the measure P, on Z induces the measure P, on A. Although
such measures can be defined for any act space A, they are of particular interest
when the act space contains only two acts, A = {a;, a2}. In thiscase P,{aile, d, -}
and P.{asle, d, -}, treated as functions of 8, are called performance characteristics
of d fore. (When the act a; can be identified as “acceptance’ and a. as “rejection”’,
it is customary to call P,{aile, d, -} an “operating characteristic’” and P,{asle, d, -}
a “power function’.)

If the utility measure u(e, 2, a, 8) is sufficiently specified to make it possible
to partition O into three subsets

Qo = {6 : a1 and a; are indifferent} ,
0, = {0 : a, is preferred to as} ,
0; = {0 : a, is preferred to a} ,

we can define another function on © which we shall call the error characteristic
of d; this is the probability that the chosen act will be the one which is not preferred
for the given 6 and is therefore equal to

P.,{azle, d, 0} 01
0 } if 6 {eo
Pu {a.]e, d, 0} 0 .

If the utility measure u(e, z, a, ) is completely specified, it will be possible
to compute u (e, d, 8) for all (e, d, 8), so that for any given (¢, d) we can consider
u,(e,d, -), as another function defined on 6. This function will be called the
ulility characteristict of (e, d).

‘.. Notice that to define the performance characteristics of d all that is required
is knowledge of A, 0, Z, and P,.s; neither Pg nor u enters the picture. In order
to define the error characteristic of d, we require enough information about u to
partition O into {Oo, 01, 62}, and in order to define the utility characteristic we

t The negative of what we have called the utility characteristic is sometimes called the
“loss’’ function of (e, d), but because **loss’’ is also sometimes used to denote the different concept
“regret”’ we prefer to avoid the word altogether for the time being.
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1.3.2 Part I: General Theory

need a complete specification of u, but even in these two cases Ps does not enter
the picture.

1.3.3. Ezample

As an example for the analysis in normal form we take the same problem which
was analyzed in extensive form in Section 1.2.2. We consider four potential
strategies:

1: Use ¢ and dy where do(z0) = a.
(Do not experiment and do not adjust.)
2: Use ¢o and dq; where doa(2z0) = a..
(Do not experiment but adjust.)
3: Use e, and dy, where di1(z)) = a; and du(2:) = aa.
(Adjust if and only if the experimental outcome is 2;.)
4: Use e; and di; where diy(21) = as and dizx(z2) = au.
(Adjust if and only if the experimental outcome is z,.)1

The performance characteristic P,{asle, d, -} and the error and utility character-
istics of these four possible strategies are shown in Table 1.6; the last column of

Table 1.6
Error Utility
Strategy P{a,le, d, 6} Characteristic Characteristic u,(e, d)
01 02 01 02 ol oi
1 0 0 0 1.0 100 36 81
2 1.0 1.0 1.0 0 82 82 82
3 .3 8 3 2 85 53 76
4 Jq 2 7 8 75 14 57

the table shows the values of u,(e, d) obtained by applying the prior measure Pj
to the values in the two preceding columns.

As an example of the computations underlying this table, consider Strategy 3,
which calls for ¢; followed by a, if z, is observed, a: if z; is observed.

1. From Table 1.2 we find that the probabilities of z; and thus of a, are .3
if 6, 1s true and .8 if 6; is true.

2. By Table 1.1, a, is preferred if 6, is true, a. if 6, is true; therefore the .3
probability of a: if 6, is true #s the probability of error if 8, is true, while the .8
probability of a: if 6; is true is the complement of the probability of error if 6 is true.

3. By Figure 1.2, the utility of (e, 21, @y, 6;) is 94 and the utility of (e, zs, as,
6,) is 65, so that

t Two more strategies could be defined, viz.
5. Experiment but do not adjust regardless of outcome.
6. Experiment but adjust regardless of outcome.
We omit these two strategies from the formal analysis because (5) is obviously inferior to (1)
and (6) is obviously inferior to (2).
14



Analysis in Normal Form 1.3.3

‘N‘(Pl, d“, 01) = (7)94 + (3)65 = 85 s
and similarly
u,,(e,, d“, 02) = (2)7 + (8)65 = 53 .
4. Finally, by Table 1.3, P5(8,) = .7 and P3(8;) = .3, so that
u (e, dn) = (7)85 + (.3)53 = 76 .

The last column of Table 1.6 shows that the optimal strategy is number 2
(adjust without experimentation) and that its utility is u, = 82. The reader
will observe that these results obtained by the normal form of analysis are identical
to the results obtained by the extensive form of analysis and shown on the decision
tree Figure 1.2. We next proceed to establish that the two forms of analysis are
equivalent in complete generality.

1.3.4. Egquivalence of the Extensive and Normal Form

The extensive and normal forms of analysis will be equivalent if and only if
they assign the same utility to every potential e in E, i.e., if the formula

u,(e) = maxqs Ej E, e ule, 2, d(2), §] (1-9)
derived as (1-7) by the normal form of analysis agrees for all e with the formula
u*(e) = E,,, max, Eg; u(e, 2, a, §) (1-10)

derived as (1-3) by the extensive form. We have already pointed out that the
operation Ej3 E, ..o in (1-9) is equivalent to expectation over the entire possibility
space O X Z and is therefore equivalent to E,, Eg,. It follows that the normal-
form result (1-9) can be written

uy(e) = maxq E,, Eg, ule, 2, d(2), 6] ,
and it is then obvious that the best d will be the one which for every z maximizes
Ed: ule, 2,d(2), 8] .
This, however, is exactly the same thing as selecting for every z an a, which satisfies
E#: u(e, 2, a,, §) = max, Ef; u(e, 2, a, §)

as called for by (1-2) in the extensive form of analysis. Letting d*(z) denote the
optimal decision rule selected by the normal form, we have thus proved that

d*(z) = a,

and that formulas (1-9) for u(e) and (1-10) for u*(e) are equivalent.

Thus we see that if we wish to choose the best ¢ and must therefore evaluate
u*(e) for all e in E, the extensive and normal forms of analysis require exactly
the same inputs of information and yield exactly the same results even though the
intermediate steps in the analysis are different. If, however, ¢ is fixed and one
wishes merely to choose an optimal terminal act a, the extensive form has the merit
that one has only to choose an appropriate act for the particular z which actually
materializes; there is no need to find the decision rule which selects the best act
for every z which might have occurred but in fact did not occur.

15



1.3.5 Part I: General Theory

1.3.6. Bayesian Decision Theory as a Completion of Classical Theory

In the classical theory of decision based in part on the evidence of a sample,
the choice of one among all possible (e, d) pairs is to be made by comparison of
their performance characteristics as defined in Section 1.3.2. Such comparisons
are inherently extremely difficult because (1) except in two-action problems it will
not be obvious which of two (e, d) strategies is superior even for given 6, and
(2) even if the comparison s easy for any given 6, there will usually be a very great
number of (e, d) pairs such that each pair is optimal for some 6 in 6 but no pair is
optimal for all 6 in ©.

Difficult as this problem of comparing incomparables may be, however, the
decision maker must act and therefore he must choose. The normal-form analysis
expounded in Section 1.3.1 and illustrated in Section 1.3.3 above amounts to solving
the problem of choice by (1) evaluating the utility of every (e, 2, a, 8), (2) using
this evaluation to translate the performance characteristic of each strategy (e, d)
into a utility characteristic, and then (3) computing a weighted average of this
utility characteristic with the measure Pj used as the weighting factor. It is thus
possible to think of the measure Ps, not as a measure of *“prior probability”, but
as a mere weighting device required to arrive at a reasoned choice between two
utility characteristics one of which is better for some 8 in 8 while the other is better
for others. It can be shown, moreover, that a few basic principles of logically
consistent behavior—principles which are eminently reasonable in our opinion—
compel one to choose among utility characteristics as #f one used such a weighting
function; a proof is given in Section 1.5 at the end of this chapter.

It is therefore our belief that the Bayesian analysis of decision problems is in
no sense in conflict with the classical theory of statistical analysis. The classical
theory leaves to the decision maker’s unaided judgment the task of choosing
amongst performance characteristics; Bayesian analysis in the normal form merely
formalizes this use of judgment by expressing it in terms of explicitly stated util-
ities and weights and can thus be thought of as a formal completion of the classical
theory. From this point of view, the introduction of the weights at the beginning
of the analysis, as is done in the extensive form of analysis, is justified by the proved
equivalence of the two forms; all that is needed to justify the name *“probability
measure”’ which we have given to the weighting measure is the fact that any
normalized system of nonnegative weights obeys the axioms of probability theory.

In this same vein, we view a decision theory which formalizes utilities but not
prior probabilities as a partial completion of the classical theory, and in some very
simple situations this partial completion may be all that is required for reasoned
practical action.

1.8.6. Informal Choice of a Decision Rule

If there are only two possible terminal acts and if e is given, the decision maker
may be able to select a “reasonable” d by an informal, direct comparison of per-
formance characteristics. In making such a comparison he must of course have
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in mind some appraisal of u and Pg, but it may not be necessary to formalize these
appraisals and express them precisely.

If the utility measure u is completely specified, the decision maker who wishes
to choose his d without formal specification of Py will obviously do better to apply
his judgment to comparison of the utility characteristics u,(e, d, -) of the various
ds under consideration, since in this way he has only his appraisal of Pj to keep
in mind informally. This procedure may have special appeal in some group deci-
sion problems where there is general consensus on all the data of the problem except
Ps, since it may turn out that the same (e, d) is optimal or near-optimal for all
the Pgs held by the individual members of the group even though these measures
are themselves widely divergent.

When e is not given and the decision maker must choose an ¢ as well as choosing
a d for that e, both these informal methods of choice obviously become much more
difficult to apply.

1.4. Combination of Formal and Informal Analysis

1.4.1. Unknown Costs; Cutting the Decision Tree

The general decision model stated in Section 1.1 is often criticized on the
grounds that utilities cannot be rationally assigned to the various possible (e, z, a, )
combinations because the costs, profits, or in general the consequences of these
combinations would not be certain even if 8 were known. In principle, such eriti-
cisms represent nothing but an incomplete definition of the state space 6. If, for
example, the decision maker is ignorant not only of the number of defectives but
also of the cost per defective, the state space can obviously be made rich enough
to include all possible pairs of values of both unknowns. The decision maker’s
uncertainties about these values can then be evaluated together with his other
uncertainties in the probability measure which he assigns to 0, and the analysis
of the decision problem can then proceed essentially as before.

Formally, let the state 6 be expressible as a doublet (6, 6') so that the state
space is of the form'6 = 6 X 0». Thus 6" might be the parameter of a
Bernoulli process while 8 might be the cost of accepting a defective item, but
observe that the notation does not imply that 8 is necessarily a single real number:
6® can be a vector quantity representing any number of unknown values.

In terms of our original decision tree Figure 1.1, a play was a 4-tuple {e, 2, a, )
and utilities were assigned directly to each (e, 2, a, 6). If 8 is split into (87, §'?),
a play is a 5-tuple (e, 2, a, 6, ) as shown in Figure 1.3; utilities are assigned
directly to each (e, 2, a, 6, 8?) and the utility of any (e, z, a, 8V) is the expected
value of the random variable u(e, z, a, 8V, §®), the expectation being taken with
respect to the conditional measure on 8 given the history (e, z, a, 8V).

Use of a Certainly Equivalent for 6. When 6 = (80, ') and 6” stands say
for a state (value) of a cost, the probability measure on 0 will often be independent
of 8V and z. This will be the case when, for example, 8V is a fraction defective
while 8 is the cost of a defective. If in addition u(e, z, a, 89, -) is a linear
function of 8?, it is easy to see that
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1
e z 0 g" e

u(e,z,a,&"’,&‘z’)

Figure 1.3
One Possible Play when 6 = (6, %)

u(e, 2, a, 0V) = E ule, 2, a, 8, ) = u(e, 2, a, 8, §v)
where
92 = E(g(z))

is the unconditional expected value of 6. It is therefore legitimate in this case
to replace §? by its expected value §®, i.e., to use §® as a cerlainly equivalent
of 6®,

It is perhaps worth calling attention to one specific type of problem in which
application of this principle would, as others have already pointed out, very greatly
simplify some of the analyses to be found in the literature. In discussing the eco-
nomics of acceptance sampling, it is customary to treat each sample as taken from
a finite lot, so that the sampling distribution is hypergeometric; and it has several
times been proposed to fit the prior distribution of the lot quality by a ‘‘mixed
binomial”’, i.e., by the compound distribution created by the assumption that each
lot is generated by a Bernoulli process whose parameter p is fixed during the
production of any one lot but has a probability distribution from lot to lot. On
this assumption we may partition the lot fraction defective 8 into two components
6", 0) where 6V is the process fraction defective p while 8® is the difference ¢ be-
tween the process fraction and the lot fraction defective; but if utility is linear in
lot fraction defective, as is usually assumed in problems of this sort, then since
the expected value of ¢ is O for any p and z,

Etlp.lu(e’ z,a,p, &) = ule, 2 a, D, 0)

for all p and z. In other words, there is simply no need to look at lot fraction
defective if utility is linear in this variable: we can assign wlilities directly to the
various possible values of P, assign a prior distribution to #, and treat the sampling
as being directly from the process and therefore binomial rather than from the lo¢
and therefore hypergeometric. {

Suppression of 8¥., When the conditional measure of # given 8 = (0¥, §9)
actually depends only on 8V, one can formally suppress 6 entirely by assigning
utilities directly to the various possible (e, z, a, 8) instead of assigning utilities
to all possible (e, z, a, 8V, ) and then expecting out §*. We remind the reader
that the utilities assigned to (e, z, a, 8'V) are merely expressions of the deciston maker's

t Cf. Probability and Statistics for Business Decisions, pages 377-381.
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preferences and that in deciding on his preferences he is free lo use any level of analysis
he ltkes. While he may wish to assign a formal measure to §? and then average
over it in order to decide whether or not he prefers a’ to a”’ when 6" is true, he
may prefer to give a direct, intuitive answer to this question keeping his uncer-
tainties about 6 informally in mind.

Actually, of course, a decision tree extending only to 6V is never really com-
plete. Life goes on after (e, z, a, 6'V), and to evaluate ufe, 2, @, ‘) one could
always look ahead by adding a 6 component, §* now standing for “future life”’,
assigning a utility to every (e, 2, a, 6, ), and then expecting out 6. In prac-
tice, however, it will not always be worth the effort of formally looking very far
ahead.

1.4.2. Incomplete Analysis of the Decision Tree

Besides cutting the decision tree before it is logically complete, the decision
maker may rationally decide not to make a complete formal analysis of even the
truncated tree which he has constructed. Thus if E consists of two experiments
e1 and e», he may work out u*(e), say, by formally evaluating

u‘(el) = Ell!x max, E;{; u(el: Z; a, 6) ;

but after this formal analysis of e, is completed he may conclude without any formal
analysis at all that e is not so good as e, and adopt e, without further ado.

That such behavior can be perfectly consistent with the principles of choice
expounded earlier in this chapter is easy to see. Before making a formal analysis
of ez, the decision maker can think of the unknown quantity u*(es) as a random
variable 5. If now he were to be told the number v which would result from formal
analysis and if this number were greater than the known number u*{e,), he would
adopt e. instead of e; and we could say that the value of the information that
v = vis measured by the difference v — u*(e,) in the decision maker’s utility which
results from this change of choice.f If on the contrary v were less than u*(e)),
the decision maker would adhere to his original choice of ¢; and we could say that
the information had been worthless.

In other words, we can meaningfully define the random variable

max {0, 5 — u*(e))} = value of information regarding e, ,

and before “buying’”’ such information at the cost of making a formal analysis of e,
the decision maker may prefer to compute its expected value by assigning a prob-
ability measure to v and then expecting with respect to this measure; the geometry
of the computation is shown in Figure 1.4. If the expected value is less than the
cost, he will quite rationally decide to use e; without formally evaluating v = u*(es).
Operationally one usually does not formally compute either the value or the cost
of information on e,: these are subjectively assessed. The computations could be
formalized, of course, but ultimalely direct subjective assessments must be used if
the decision maker is to avoid an infinite regress. In the last analysis we must cut
the tree somewhere.

t For a more careful discussion of the conditions under which arguments based on utility
differences are justified, see Sections 4.4 and 4.5 below.
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Velve of information:
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v a)
Figure 1.4
Value of Further Analysis of e;

Before leaving the subject of incomplete analysis we should perhaps remark
that completely formal analysis and completely intuitive analysis are not the only
possible methods of determining a utility such as u*(e;). In many situations it
will also be possible to make a partial analysis in order to gain some insight but at
a less prohibitive cost than a full analysis entails. This operation is very much
akin to taking a sample in order to learn more about the state space; and whether
or not a sample should be taken and if so of what kind is the main subject of the
remainder of this book. Even though we formally take leave of these philosophical
considerations at this point, we shall continue to be concerned with close relatives.

1.4.3. Ezample

An oil wildcatter must choose between drilling a well and selling his rights in a
given location. (In a real problem there would of course be many more acts,
such as selling partial rights, sharing risks, farmouts, etc.) The desirability of
drilling depends on the amount of oil which will be found; we simplify by consider-
ing just two states, “oil”” and “no oil”’. Before making his decision the wildcatter
can if he wishes obtain more geological and geophysical evidence by means of very

Table 1.7
Possible Choices

Space Elements Interpretations

A a drill, do not sell location
az do not drill, sell location
G no oil

® {o, ol

E € do not take seismic readings
e take seismic readings
2 dummy outcome of ¢

7 2 e; reveals no structure
22 e, reveals open structure
2 e, reveals closed structure.
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Figure 1.5
Analysis of a Drilling Decision

expensive experiments; we simplify again by allowing for only one form of experi-

ment, seismographic recordings, and by assuming that these recordings, if made,

will give completely reliable information that one of three conditions prevails:

(1) there is no subsurface structure, (2) there is an open subsurface structure, or

(3) there is a closed subsurface structure. The descriptions of the four spaces,
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1.4.3 Part I: General Theory

A, 0, E, and Z, are summarized in Table 1.7, and the possible sequences of choices
by the decision maker and chance are shown on the decision tree Figure 1.5. Notice
that the three possible ‘“‘conditions” of the subsurface structure are not the states
{6} of the problem but correspond to the experimental outcomes {z}.

Assignment of Utilities. The psychological stimulus associated in this problem
with an (e, 2, a, 8) 4-tuple is highly complicated. Different wells entail different
drilling costs, and different strikes produce different quantities and qualities of oil
which can be recovered over different periods of time and sold at different prices.
Furthermore, each potential consequence of the present drilling venture interacts
with future potential drilling ventures. For example, geological information gained
in one deal may be crucial for the next, and capital expenditures made in one deal
may prohibit the acceptance of the next one however favorable it may then appear.

In other words, there are uncertainties surrounding any particular (e, z, a, 8)
complex which must be kept in mind either formally or informally when these
complexes are compared. We assume nevertheless that, no matter how intricate
these considerations are, the decision maker ts psychologically able to act and there-
fore can not only rank complex stimuli of this sort but assign to them utility num-
bers which reflect his preferences among lotteries having such stimuli as prizes.
The kind of problem we are here discussing is simply one specific illustration of
the need to cut the decision tree which was discussed in Section 1.4.1; hypothetical
utilities are shown at the end of the decision tree Figure 1.5.

Asstgnment of Probabilities. As regards the assignment of a probability meas-
ure to the possibility space 6 X Z, this problem typifies a class of problems which
occur rather frequently in practice but have rarely if ever been recognized in the
literature: the available historical evidence bears much more directly on the
conditional (or “posterior’’) measure Ps. and the marginal measure P, than on
the complementary measures P,.s and P;. Specifically, previous experience with
the amounts of oil found in the three possible types of geologic structure (21 = no
structure, z, = open structure, z; = closed structure) may make it possible to
assign a nearly if not quite “objective’” measure Pg. to the amount of oil which
will be found given any particular experimental result, whereas it would be much
less clear what measure Ps should be assigned to the amount of oil in the absence
of knowledge of the structure. At the same time it will in general be much more
meaningful to a geologist to assign a marginal measure P, to the various structures
and thus to the sample space Z than it would be to assign conditional measures
P..s to Z depending on the amount of oil which will be found. Hypothetical
measures Py, and P, are shown on those branches of the decision tree Figure 1.5
which emanate from e;; the “prior’” probabilities Pe{6,} = .80 and Ps{6:} = .20
shown on the branches emanating from e, were computed from them by use of the
formula

9{0:} = Pg {8z} P,{zile;} + Py {8ilzs} P.{zoles} + P¢ {8ilzs} Pi{zsler} .

Analysis.  Since all data required for analysis in extensive form appear on
the decision tree Figure 1.5, the reader can easily verify that the optimal decision
is to pay for seismographic recordings (e;) and then drill (take act a,) if and only
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if the recordings reveal open (2:) or closed (2;) structure. It pays to buy the record-
ings because the expected utility of this decision is 15.25 whereas the expected
utility of the optimal act without seismic information is 0.

Observe that in this problem none of the probabilities required for analysis
in extensive form has to be computed by the use of Bayes’ theorem, but that if
the problem is to be analyzed in normal form and if this analysis is to be carried
out via a performance characteristic, it will be necessary to use Bayes' theorem.
Thus, for example, the probability given the state 6, (no oil) that the decision rule
“drill if and only if z; occurs” will lead to drilling can be found only by computing

P.{zsle, 0} = Ps'{ollzi%-l}@alel} ’

where Ps{6,} is to be computed from the last previous formula.

It was pointed out in Section 1.3.6 above that when all the elements of a deci-
sion problem except Py can be evaluated ‘“objectively’’, the normal form of analysis
has a real advantage in that it permits all the data other than P to be summarized
in the form of a utility characteristic u,(e, d, -) defined on 6 for each of the strat-
egies (e, d) under consideration. These characteristics can then be compared
with the judgmental or “subjective” element Pj held informally in mind. In
problems of the kind typified by our present example, on the contrary, a utility
characteristic u,(e, d, ) on 6 would be “subjective” because one of the elements
involved in its computation is the conditional measure on the sample space and,
as we have just seen, this measure has to be derived from the “subjective’”’ marginal
measure assigned to the sample space by the geologist.

We have already said, however, that the normal form of analysis does not
require the use of P, and Pg; and when the posterior measure Pj; is ‘“‘objective”
as it is here we can postpone the judgmental calculation to the end by using Pj.
to construct a new kind of utility characteristic to which P, is then applied as the
last step in the analysis. If utilities have been assigned to all (e, 2, a, 8), then for
any given strategy (e, d) we can use the measure Pj;: to compute

u*[e, 2, d(2)] = Ef: ule, 2, d(2), 6]
for all z; and we can then make our final evaluation of the (¢, d) pair by averaging
with respect to P,.:
ut(e) d) = Ellﬂ u.[ex 2, d(Z)] = Eg, Esf‘ u[e) z,d(2), 6] .

Considered as a function on Z, the quantity u*[e, -, d(-)] defined by the former
of these two formulas is the new kind of utility characteristic we set out to obtain;
and in simple problems the averaging over this characteristic involved in the
formula for u,(e, d) can be intuitive rather than formal.

1.6. Prior Weights and Consistent Behavior

In Section 1.3.5 we remarked that when one is forced to compare utility char-
acteristics because one is forced to act, a few basic principles of logically consistent
behavior necessarily lead to the introduction of a weighting function over 6. We
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then remarked that if this weighting function is normalized it has all the properties
of a probability measure on © and that it can be brought in at the beginning of the
analysis just as well as at the end or in the middle. In this section we shall investi-
gate these basic principles very informally; complete formal treatments can be
found in Blackwell and Girshick, Luce and Raiffa, and Savage.t

We here assume that every conditional measure P, on the sample space Z
(the “sampling distribution” of the experimental outcome) is ‘“objective” in the
sense that it corresponds to a known long-run relative frequency; and we take as
given the basic proposition proved by von Neumann and Morgenstern that in situa-
tions where all probabilities correspond to known long-run frequencies it is possible
to assign utilities to consequences in such a way that choices are logically consistent
only if they are such as to maximize expected utility. We shall therefore assume
that any strategy (e, d) can be described by a wutility characteristic u,(e,d, -) on
the state (parameter) space 6. Readers who do not accept the utility principle
even in situations where all probabilities are objective but who believe that within
certain limits it is reasonable to maximize objective monetary expectations can
substitute “income’ for ‘“utility”’ throughout our argument and find that it applies
just as well,

We start by sacrificing a little generality in order to simplify the discussion.
(1) We assume that O is finile, consisting of elements {6, 68, --- ,8,}. The util-
ity characteristic of any strategy (e, d) can then be represented as an r-tuple
[uyle, d, 1), u e, d, 0), -+, u,le, d, 6,)], and comparison of any two strategies is
equivalent to a comparison of r-tuples within a certain interval R in r-space, the
boundaries of the region corresponding to the bounds on the utility function
u,(e, d, -)—or to the limits within which the decision maker wishes to maximize
expected monetary value if he refuses the utility principle. (2) We assume that
our task is to find a conceptual principle for ranking all r-tuples in R, whether or
not they are all actually achievable in any particular situation. Given these two
simplifying assumptions, the argument can be visualized in 2-space and we shall
give diagrams to aid the reader in this visualization.

We now proceed to make three basic assumptions concerning logically consistent
behavior. The first of these is the so-called sure-thing or dominance principle:

Assumption 1. Let u = (u, -+, %) be the utility characteristic of strategy

(e1, d1) and let v = (v, -- -, v;) be the utility characteristic of strategy (ez, d2).

If u; 2 v for all 7 and if u; > v, for some 7, then (e, d1) is preferred to (ez, dz).

In order to express the second basic assumption informally, we shall make use
of the notion of indifference surfaces familiar in classical economic theory. In
terms of these surfaces we can express what might be called an assumption of
continuous substitutability as follows:

Assumption 2. Indifference surfaces extend smoothly from boundary to

boundary of the region R in the sense that, if u is a point on any indifference

1 D. Blackwell and M. A. Girshick, Theory of Games and Statistical Decisions, New York,
Wiley, 1954, Chapter 4; R. D. Luce and H. Raiffa, Games and Decisions, New York, Wiley, 1957,
Chapter 13; L. J. Savage, The Foundations of Statistics, New York, Wiley, 1954, Chapters 1-5.
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surface and if small changes are made in any » — 1 coordinates of u, then by
making a small compensating change in the remaining coordinate we can
obtain a new point on the same indifference surface as u.
The meaning of ‘‘smooth” can be made more precise by saying that the compensat-
ing change in the rth coordinate is a continuous function of the changes in the
r — 1 coordinates; or we can say that if preferences for utility characteristics u are
indexed by a Marshallian index function, this function is continuous on R.
Finally, we make what might be called the assumption that pigs is pigs.
Assumption 3. Let (e, dv), (es, d3) and (es, da) be three strategies such that
(e1, d1) and (es, d2) are indifferent. Then given any p such that 0 < p < 1,
a mixed strategy which selects (e, di) with “objective” probability p and
(e, d3) with probability 1 — p is indifferent to a mixed strategy which selects
(e2, d3) with probability p and (e;, d;) with probability 1 — p.
Before actually following out the implications of these three basic assumptions,
we make two observations. (1) If the decision maker compares two r-tuples
u= (u, -+ ,u)and v = (v, -+, v,) by means of the indices

Zio1piui and Zic1pivi

where (py, -+, p,) are preassigned positive weights, then clearly the indifference
surfaces must constitute a family of parallel hyperplanes whose common normal
is the vector p = (py, -+, pr). (2) Conversely, if the indifference surfaces are
parallel hyperplanes with a normal going into the interior of the first orthant,
then it is not difficult to see that there exist positive weights (py, - - - , p-) such that
r-tuples can be ranked on the basis of an index which associates to each r-tuple
the weighted average of its r components and that by our first basic assumption
an r-tuple with a greater index must be preferred to an r-tuple with a lesser index.

We shall now prove that, given our three basic assumptions about logically con-
sistent behavior, the decision maker’s indifference surfaces must be parallel hyper-
planes with a common normal going into the interior of the first orthant, from which
it follows that all utility characteristicsu = (u, - - -, u,) in R can in fact be ranked
by an index which applies a predetermined set of weights p = (py, - - - , pr) to their
r components.

We first show that the third basic assumption implies that the indifference
surfaces which exist by the second basic assumption must be hyperplanes. To do so
we assume the contrary and prove a contradiction; the geometry for r =2 is shown
in Figure 1.6, where an underscored letter denotes a vector and corresponds to
boldface in the text. If an indifference surface is curved, we can always find two
points u and v on the surface such that w = {u + v is not on the surface. Now
choose (e, d1) and (ez, d) so that they have utility characteristics u and v respec-
tively. Then by the utility theory we take as given—or by ordinary principles
of expected monetary value—the mixed strategy which chooses (e, d;) with “objec-
tive’’ probability 4 and (the same) (e, di) with probability 4 has the evaluation u
while the mixed strategy which chooses (e, di) with probability 4 and (e,, d;) with
probability 3 has the evaluation (Ju + 3v) = w. But by the third basic assump-
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Figure 1.6
Linearity of Indifference Surfaces

tion these two mixed strategies are indifferent, and therefore w must lie on the
same indifference surface as u. This establishes the linearity of the indifference
surfaces.

We next show that the indifference hyperplanes must be parallel. If the
region in r-space in which the comparisons are being made is all of r-space, the
proof is obvious: indifference surfaces cannot intersect, and the hyperplanes will
intersect unless they are parallel. If, however, R is not all of r-space, an additional
argument must be added because hyperplanes which are not paraliel need not inter-
sect in a finite region. We shall supply this argument by showing that all indiffer-
ence hyperplanes must have the same normal; the geometry for r = 2 is shown in
Figure 1.7.
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Figure 1.7

Parallelism of Indifference Surfaces
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Assuming without loss of generality that the origin 0 = (0,0, - - -, 0) belongs
to the interior of R, let H, be the indifference hyperplane containing 0 and let
b= (py +++, pr) be the normalized normal to H, (i.e. the normal with Z p; = 1),
so that H, consists of all points w = (wi, we, -+, w,) such that

E:-l Diwi = 0. (1—11)
Let ' be a point in R on H’, let ¥’ be a point in R on the prolongation of the ray
from 0 through u’, and define A (where 0 < A < 1) by
u=2xu'"+0-=XN0=\u".

Now 0 is indifferent to any w in R which lies on H,, and therefore by the third
basic assumption and the ordinary rules of utility or expected monetary value
the mixed strategy which selects u’’ with ‘“objective’’ probability A and 0 with
probability 1 — X is indifferent to the mixed strategy which selects u’’ with prob-
ability A and w with probability (1 — A), so that the points

A+ (=00 =10 and AN+ (01 -Nw=uv+d-Nw
lie on the same hyperplane H'. Now if p’ = (p1,p3, -+ -, pr) is the normalized
normal to H’, the projections onto this normal of any two points of H’' must be
the same. Consequently

Zicipowe =Zicipifui + (1 — N wi]
and therefore
E:-l p‘ w;=0. (1‘12)
Since (1-11) and (1-12) hold for all w in H,, both p and p’ are orthogonal to H,;

and since in addition both p and p’ are normalized by definition, p’ = p as was to
be shown. That all components of p are positive follows from assumptions 1 and 2,
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CHAPTER 2

Sufficient Statistics and Noninformative Stopping

2.1. Introduction

Of the various methods of assigning a probability measure to the possibility
space O X Z which were discussed in Section 1.1.2, the most frequently useful is
the method which starts by assigning a marginal measure Ps to © and a conditional
measure P,j.5 to Z for every e in E and every 6 in 6. If the decision maker does
proceed in this way, then the measures required for analysis in extensive form—
the marginal measure P;, on Z and the conditional measure P4, on 8—must be
computed from the measures directly assigned by the decision maker. In this
chapter and the next we shall deal with two important technical problems involved
in this procedure: (1) the selection of a prior measure Py which will both express
the decision maker’s best judgment about © and at the same time be mathematically
tractable, and (2) the use of sufficient statistics as an aid in the computation of Pg.
These two problems will actually be discussed in inverse order for reasons which
will be amply clear in due course.

2.1.1. Simplfying Assumplions

Since it is not our purpose in this monograph to seek generality for its own
sake, our subsequent discussion will make use of some agsumptions which greatly
simplify the analysis without any loss of practical applicability.

1. State Space 6. We assume that the state 8 can be described by an r-tuple
of real numbers (6,, - - - , 6,) and that the state space © can be represented as either
a discrete set or an interval set in Euclidean r-space.t

2. Prior Measure on ©. We assume that the prior measure Py on the state
space O possesses either a mass function or a density function (or possibly both).
In other words, we assume that if 6, is any measurable subset of 6, then either
there exists a function D’ on O (the prime denoting prior) such that

Pi{0.} = 3, D'(0) or P;{0,) = [e' D'(8) do

or else there exist two functions Di and D3 such that

Pi{0.} = a1 Y, Di()) + c2 [& Dj(6) do .

t The reader must be careful to distinguish between the r-tuple (6, - - - , 6,) here defined,
in which 6; is the sth component of one particular vector state 8, and the set {6, --+,6,} of
Section 1.5, in which 6; was the ith possible state in the state space . In the remainder of
this monograph, subscripts on 8 or z will always distinguish components rather than members
of a set.
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Since the three cases behave virtually identically in virtually all respects, we shall
usually discuss only the case where Ps has a density function, leaving it to the
reader to.match our results for this case with the corresponding results for the two
others.

3. Sample Space Z. We assume that if the sample space Z = {z} is tempo-
rarily restricted for the purpose of some argument to the potential outcomes of a
particular experiment e, then the outcomes {z} can be represented as a subset of a
Euclidean space.

4. Measures on Z. 1f P, 1s the conditional measure on Z for given (e, 6) and
Ps is the prior measure on 8, the marginal measure on Z for the given ¢ is

lec = Pz{le} = Eé P,{"e, 5}

where Ej is taken with respect to Ps. We assume that either (a) P, is discrete
for every 8 in © and P, is discrete, so that both measures possess mass functions,
or else (b) P,.s possesses a density function for every @ in 6 and P,. possesses a
density function. [This assumption would nof be satisfied if, for example, Ps
were continuous while P, conditionally put a mass of 1 on z = 6.]

If the conditional measure has a mass function, we shall denote by £(z|6) the
probability given 8 that e results in z; because our discussions of such probabilities
will in general be restricted to some particular experiment e, we suppress the condi-
tion e in our notation. If the conditional measure has a density function, we shall
denote by €(z|6) the value of this density function at z for given 6 (and e¢). In
either case, we shall use the word likelihood to denote the value {(z|6) taken on by
the mass or density function for given z and 6 (and ¢); and we assume that, for any
fixed zin Z, {(z]-) as a function on O is continuous except for at most a finite number
of discontinuities (which may depend on z).

We define the marginal likelihood of the experimental outcome z given a partic-
ular prior density DD’ by

D) = /; {(]8) D'(6) df (2-1)
and we shall say that z lies in the spectrum of D' if ¢*(z2|D’) > 0.

2.1.2. Bayes’ Theorem; Kernels

If the prior distribution of the random variable 6 has a density function D’
and if the experimental outcome z is in the spectrum of D’; then it follows from
Bayes’ theorem that the posterior distribution of § has a density function D'’ whose
value at 8 for the given z is

D" (6|z) = D'(9) £(2]6) N(2) (2-2a)
where N (2) is simply the normalizing constant defined by the condition
LUWMM=M@LU@&WW=I. (2-2b)

P To prove (2-2) when {(-|0) is discrete, let 6, be any measurable subset of 6. Then by
Bayes’ theorem
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(m Py (0s) = 2eelOudled .

P,{z]e}

Defining N(z) by
[N(2)]7! = P.{zle}

and recalling that

PM&A&=LJM@U@@
we may substitute in (1) to obtain
@ Py O} = [ D'6) Lelo) N2 a8,
and the integrand is by definition the posterior density of .

To prove (2-2) when {(- |6) is continuous, we must show that, for any interval (z, z + d2),
which we label Z,(dz) to show the dependence on dz,

D'(8) £(216) df
3 lim P§'{6,|Z,(d2)} = <2 O

ds—0 ’ '
AD@W@M
By Bayes’ theorem
" — Pa.z {eoy Z, e} .
(4) P0 {e"lZO} = P, {Zg‘C}

Because both Pg and P, s have densities,
Pos(0., Zule} = [ [, D@ ti6) dt a0 ;

and by the mean-value theorem this may be written

(5) Po(6s, Zule} = [ D'(6) L(a4lo) 1dz| do

where zj is some z in Z,(dz) and |dz| is the volume of Z.(dz). Similarly

® PuZdle) = [, [, D'(0) &s6) dy do = [ D'(0) 4(e¥0) laz| o

where 2y’ € Z,(dz). Substituting (5) and (6) in (4), taking the limit as dz — 0, and notic-
ing that as dz — 0 both zj and z§’ go to z, we obtain (3), which was to be proved. 4

If the density function of § is D, where D denotes either a prior or a posterior
density, and if K is another function on © such that

D) = _K@O ) (2-3)
LK@M
i.e., if the ratio K(8)/D(6) is a constant as regards 6, we shall write
D(8) « K(8) (2-4)

and say that K is a (not “the’”) kernel of the density of 6.

If the likelihood of z given 8 is £(z|6), and if p and « are functions on Z such
that forall zand 8
£(2]6) = «(2]0) p(2) , (2-5)
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i.e., if the ratio x(z|0)/¢(z]6) is a constant as regards 6, we shall say that x(z|f) is
a (not “the”) kernel of the likelihood of z given 6 and that p(z) is a residue of this
likelihood.

Letting K’ denote a kernel of the prior density of §, it follows from the defi-
nitions of K and £ and of the symbol o that the Bayes formula (2-2) can be written

D" (6]z) = D’(6) £(z|6) N (2)
= KO [ [[K6)ds] " x(elp) o) N(:)
« K'(6) «(2}6) . (2-6)
The value of the constant of proportionality for the given z,
PO NG [ [[K®) @],
can always be determined by the condition
L D"(6lz)df = 1 .

Ezample. Let the state 6 be the intensity A of a Poisson process and let the
sample outcome z be the fact that r successes were observed in time ¢, so that the
likelihood of z = (r, t) for given 8 = A is given by the Poisson mass function:

—~ At r
teln) = 2 @)
and let the prior density of X be gamma with parameters ' and ¢’, the primes denot-
ing prior,
VALt
DO = ET(i—‘})—,— ¢ (2-8)

Then we may take as kernels
x(z]0) = e~MN\",
K'(6) = e ™A't
and by (2-6) the posterior density of 8 given the observed z = (r, t) is
D”(XIZ) o e—k(l’-{—l) xr'-{—r—l = e—M" Xr"—l (‘2_9)
where 7'’ and ¢’ are implicitly defined, the double primes denoting ‘“posterior”.
The normalizing constant for D’ is the reciprocal of

[ e~ N N1 dN = (r = 1)1/

it can be found more easily by merely observing that the kernel (2-9) of the pos-
terior density is of the same form as the kernel of the prior density (2-8), from which
it follows that the normalizing constant for (2-9) must be of the same form as the
normalizing consiant in (2-8).

2.2. Sufficiency

There will in general be more than one way of describing the outcome of an
experiment, and therefore the definition of the set Z = {z} of all possible outcomes
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depends on the decision maker’s judgment concerning the features of the outcome
which may be relevant to his decision problem. Once he has formalized his deci-
sion problem, it is always possible to define a very extensive set {z} which is cer-
tainly rich enough to include all relevant information, but the question will then
arise whether there exists a set of descriptions which is simpler and therefore easier
to manipulate and yet contains all the information which is actually relevant to
the decision problem. Thus given a particular model of some production process
generating good pieces (g) and defectives (d) it may be obvious that a sample of
five pieces from this process can be adequately described by a 5-tuple such as
ggdgd which records the “values’ of the five pieces in the order in which they were
produced, but at the same time it may seem possible that all the relevant informa-
tion can be conveyed by a 2-tuple such as (3, 5) recording that 3 of the 5 pieces
produced were good. Letting y denote a possible abridged description of a purtic-
ular outcome, the question is whether y is a sufficient description of this outcome.
2.2.1. Bayesian Definition of Suffictency

We shall assume that any abridged description y consists of an r-tuple of real
numbers and can therefore be represented as a point in a Euclidean space Y, and
we shall denote by 7 the mapping (or random variable) which sends Z into Y.
The event that the random variable 3 assumes the value y will be abbreviated
§ = y; this event is thus equivalent to the event comprising the set of all z such
that §j(z) = y, i.e., the set

(2:9@) =y} =§'() . (2-10)
The conditional measure P,.s on Z determines the conditional measure on Y
given (e, 8), so that given any prior density or mass function D’ on 6 and any
particular value y of § the posterior density or mass function can be obtained by
the use of Bayes’ theorem. The posterior density or mass function so calculated
will be denoted D" (- |§ = ¥).

Clearly the coarser information y about a particular experimental outcome
will lead to exactly the same conclusions as the more refined information z if
D" (-|§ = y) is identical to D" (-|2 = 2) for all zin 7~ '(y). We are then entitled
to say that y is a “sufficient’”’ description of the experimental outcome; and if any
y in the range Y of 7 is sufficient, we are entitled to say that the mapping 7 itself
is sufficient. Formally, we give the following

Definition: The mapping § from Z into Y is sufficient if for any prior density

or mass function D’ and any z in the spectrum of D’

D"(-l§ = y) = D"(-|2 = 2) where y=13@) . (2-1)
Where no confusion can result, we shall also use the expression sufficient statistic
to denote either (1) a random variable § which satisfies this definition or (2) a

particular value y of such a random variable, i.e., a sufficient description of a
particular experimental outcome.

2.2.2. Identification of Sufficient Statistics

The definition of sufficiency which we have just given does not in itself enable
us to find sufficient sets {y} of abridged descriptions of the experimental outcome
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(or sufficient mappings § of Z into Y); this is accomplished by examination of the
kernel of the likelihood of the “complete’ descriptions {z}. We saw in (2-6) that
if x(z|8) is a kernel of the likelihood ¢(z!6), then the posterior distribution of
given z can be determined by consideration of the kernel «(z|6) just as well as by
consideration of the complete likelihood £(z|6). In other words, we learn abso-
lutely nothing useful by distinguishing among zs whose kernels are equal; and it
follows that a mapping 7 from Z into Y is sufficient if, given any y in Y, all z in
7~ '(y) have the same kernel. Such mappings can be found by use of the following

Theorem. Let§j map Z into Y. If the likelihood function { on Z X © can be
factored as the product of a kernel function k on ¥ X 6 and a residue func-
tion p on Z,

{(2l0) = k[§(2)|6] p(2) , (2-12)

then § is sufficient in the sense of (2-11).

P> For any measurable scts 6, and Z, the posterior probability of 6, given Z, is
Py {0.)Z.} = E* Py {6,]2} ,

where E* denotes expectation with respect to the measure on Z conditional on Z, but
unconditional as regards §. Now take Z, = §~!(y), so that the left-hand side of this equa-
tion becomes Py’ {6,|§ = y} while by (2-6) and (2-12) we have for the quantity following
the operator E* on the right-hand side

110,]2) « /e D'(9) k(g(2)10] 8 .

Since this quantity is obviously the same for all z € j7!(y), i.e., for all z such that §(z) = y,
we may suppress the E* and write

Py {B.g = y} = Py {0.2} , zey'(y) ,
showing that § satisfies the definition (2-11) of sufficiency. 4

Example. Let the “complete” description of an experimental outcome be
z = (z1, -+, Zan) Where the zs are the observed values of n independent random
variables with identical densities

(2r)~} o= h—wr
then the likelihood of z given 6 = u is
{(z)0) = I [(2m)~d e 4G = (2x)—ine—iZG-w |
If we define the (vector) function § = (§i, §2) = (M, ) by
n = number of random variables observed |,

m=-1-21:.»,
n

the likelihood can be written

{(zl6) = e~ tntm-wr . (25)~n o= dEGi—mn
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The first factor is the kernel k[§(2)|6] = k(m, n|x); the remaining factors consti-
tute the residue p(z) because they do not contain 8 = p.

Observe that we do not need to know the actual likelihood of y given 6 in order to
find D" (-|§ = y); all that we need to know is the kernel k(y|6) obtained by factor-
ing the likelihood of 2, since by (2-11) and (2-12) we may put the Bayes formula
(2-6) in the form

D"'[6]§(z)] = D" (6lz) < D'(6) x(z]6) = D'(6) k[§(2)|6] . (2-13)

Thus in the example just discussed: if D’ is the prior density of @, then the posterior
density is
D" (u|m, n) & D' (u) k(m, n|p) = D'(u) e~ Intm=wr
1t is true, of course, that the actual likelihood of ¥ given 6 will be of the form
k(yl0) r(v) ,

but after e is fized the residue r is irrelevant. We shall see later that r is not ir-
relevant when the problem is to choose the e which is to be performed.

2.2.3. Equivalence of the Bayestan and Classical Definitions of Sufficiency

Classically, sufficiency is usually defined in terms of the factorability condition
(2-12). We prefer the definition (2-11) because it is more easily extended to cover
the important concept of partial or marginal sufficiency which we shall define and
discuss in a moment, but before going on to this new subject we remark for the
sake of completeness that the two definitions of “ordinary” sufficiency are com-
pletely equivalent. That classical sufficiency implies Bayesian sufficiency is shown
by the theorem containing (2-12); that Bayesian sufficiency implies classical suf-
ficiency is shown by the following

Theorem: 1f 4 is sufficient in the sense of (2-11), then there exist a function k
on Y X 6 and a function p on Z such that the sample likelihood can be fac-
tored as in (2-12):

{(z10) = k[§(2)16] p(2) -

P We prove this theorem by (1) showing that if § is sufficient, it is possible to find a kernel
function «, such that «(2{6) has the same value for all zin any one §~'(y), and then (2) defin-

ing k[§(2)|0] = «,(2]6).
Consider a prior density D/, such that D/(8) > O for all 8 ¢©. Given the assumptions
in Section 2.1.1 above, we lose no generality if we restrict Z to all z such that

D)) = / D!(6) £(z0) d8 > O .

In accordance with the general definition (2-5) of kernels define the particular kernel and
the corresponding residue

) ka(2l6) = ,Lgll%) . p() =£4eD)) .

We now have by Bayes' theorem



Sufficient Slalistics 2.23

D,(6) {(2]6) ' {(2]0) '
—————— = Di0) 7o =7 = Di(0) xu(2}0) ;
/ D/(6) £(216) do £*(z|D,)

observe that with this kernel we have equality rather than proportionality between the two
sides.

Next consider any z; and 2, such that §(z;) = §(z:). Since § is sufficient, we have by
the definition (2-11) of sufficiency

D.'(6ly) = D,'(6z:) = D,/ (8lz,) .
By (2) above this implies that
D,(6) k4(2108) = D(8) K4 (22l6) ;
and since D,(6) > O for all 6, this in turn implies that

2 D, (6l2) =

3 Ke(21]0) = xy(2:6) , all 6.
Finally, define k by choosing some one z ¢ j~'(y) for every y ¢ ¥ and setting
(4) k(yl0) = x4(2]6) .

By (3), equation (4) will be true for every z ¢ Z; and we may therefore substitute (4) in (1)
to obtain

£(210) = k[3(2)|0) £*(z|D3) = k[5(2)(6] o(2)
as was to be proved. <4

2.2.4. Nuisance Parameters and Marginal Sufficiency

In the previous section we defined the conditions under which a description y
would be a sufficient summarization of the experimental evidence concerning the
complete state parameter 6. In many situations, however, some of the components
of 0 are nuisance paramelers in the sense that they are irrelevant to the utility
u(e, 2, a, 0) for any (e, z, a,6) and enter the problem only as parameters of the
conditional probability measure P,.¢. If in such a situation we partition 6 into
(61, 82) where 6, represents the nuisance parameters, it is clear that after the experi-
ment has been conducted and both e and z are fixed the choice of a terminal act a
will depend, not on the complete posterior distribution of § = (6, 6;), but only on
the marginal posterior distribution of 6; and we are therefore interested in con-
densed descriptions {y} of the possible experimental outcomes that summarize
all the experimental evidence which is relevant {o 6. Formally, we define ‘‘partial”’
or “marginal”’ sufficiency as follows:

Definition. Let 0 be expressible as a doublet (64, 82), so that 6 = 9; X 0,

and let C be a class of prior distributions on 6. Then § is marginally sufficient

for 8, relative to C if for any prior distribution in C' and any z in the spectrum

of that distribution the marginal posterior distribution of 6, is the same given

y as given 2.

In the applications the most important class C is that in which 6, and 8; are
independent, so that the prior density can be written

D'(O;, 02) = D{(Gl) D;(Oz) N (2-14)
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Relative to ‘this class of prior distributions, 7 is marginally sufficient for 6, if the
likelihood of z given 6 can be factored

(2161, 8,) = k[§(2)|01] p(2l62) (2-15)
For letting §(z) = y, we have by (2-2)
D" (61, 8:z) = D1(6)) D2(6:) k(yl61) p(2[62) N(2) , (2-16)

and integrating out 8; we get
D" (8|2) = D1(8) k(yl6:) .

It is perhaps worth emphasizing that even though the likelthood can be fac-
tored as in (2-15), § will not in general be marginally sufficient for 6; unless the prior
density can also be factored as in (2-14). The factor p(z|6;) in (2-16) will alter the
prior distribution of 6;; and if 6, is dependent on 6, this effect will be transmitted
to the distribution of 6,.

2.3. Noninformative Stopping

2.3.1. Data-Generating Processes and Stopping Processes

In many situations the complete description of an experiment can usefully
be decomposed into two parts. The experiment consists of observing random
variables £y, - -+, £;, - - - successively generated by some dala-generating process,
and the description of this process constitutes the first part of the description of
the experiment. The number of random variables observed depends on some
criterion which may or may not be of a probabilistic nature; we shall say that the
end of the experiment is caused by a stopping process which generates this criterion,
and the description of this stopping process constitutes the second part of the
description of the experiment. The stopping process will be deterministic if, for
example, it is definitely known before the experiment is begun that neither more
nor less than the first n random variables will be observed; it will be probabilistic
if, for example, the experiment is to be continued until the experimenter’s budget
of time or money is exhausted and the cost of any observation is itself a randorn
variable. We shall see, however, that in many situations there is more than one
way of defining the ‘“‘random variables” generated by the dala-generating process
and that a stopping process which is ‘““probabilistic’’ on one definition of these
random variables may be ‘“‘deterministic’’ on another, equally valid definition.

2.3.2. Likelihood of a Sample

Consider a dala-generating process which generates a discrete-time sequence of
random variables £y, - - - , £;, - - - not necessarily independent and not necessarily
discrete-valued. With a slight loss of generality we shall assume that a probability
measure is assigned to the £s via conditional likelihood (mass or density) functions.
Letting 6; denote the (scalar or vector) state parameter which characterizes this

process, the conditional likelihood of z: given the previous observations z;, -+ - Ziy
and the parameter 6, can then be written
f(xilzly e, Tl 01) y (2-17)
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and the likelihood that the first n elements of any sequence of n or more elements
generated by this process will be z = (z;, -+ - , z,,) is

h(z]61) = f(x:|61) flx2|x1; 60) -« f(xalry, -, 213 61) . (2-18)

Next consider a stopping process such that, given a particular value of the
parameter 6, which characterizes the data-generating process and a particular
value of another (scalar or vector) state parameter 6,, the probability that a first
observation z; will be made is

#(116,, 62) , (2-19a)

while given these same two parameters and a particular set (z), - - - , zx) of observa-
tions already made, the probability that at least one more observation will be made
before the experiment terminates is

ok + lxy, -+, 24501, 02) . (2-19b)
The likelihood that an experiment involving these two processes will result
in the sequence of exactly n elements z = (xy, - - - , x,) is obviously
{(2161, 62) = (16, 62) f(x1]61) - $(2|xy; 6y, 62) f(za|y; 6y)
© ¢B[x1, 22; 01, 62) - -+ f(xalry, -, Tai1; 6)
(1 = ¢n+ Yz, -+, 20504, 62)]
so that if we define h(z]6,) as in (2-18) and
s(n|z; 6y, 02) = ¢(116y,02) - -+ p(n|xy, -+ -, Tas; 6y, 6)
(1= o(n+ 1z, - -+, 24501, 6)] (2-20)
we may write
C(Zlol, 02) = h(ZlBl) s(n{z; 01, 02) . (2-21)

The likelihood of the sample depends both on the data-generating process through
h(z|6)) and on the stopping process through s(n|z; 6y, 6,).

2.3.3. Noninformative Stopping Processes

In most situations where an experiment can be decomposed in the way just
described, 6; is a nuisance parameter in the sense of Section 2.2.4: the utility of
(e, 2, a, 61, 62) depends on the state parameter 6, which characterizes the data-
generating process but does not depend on the state parameter 6; which partially
characterizes the stopping process. If this is true, then after the experiment has
been conducted and both e and z are fixed the rational choice of an act a will depend
only on the marginal posterior distribution of 6; and not on the complete posterior
distribution of (6, 62).

We therefore now inquire into the conditions under which the factor s(n|z; 6,, 6;)
in the sample likelihood (2-21) can be disregarded in determining the marginal
posterior distribution of 6;—i.e., into the conditions under which the nature of
the stopping process is totally irrelevant to 6. In the light of the discussion of
marginal sufficiency in Section 2.2.4, one set of sufficient conditions is virtually
self-evident. If

1. s(n|z; 6,, 8;) does not actually depend on 6,

37



23.3 Part I: General Theory

2. 8, and 8, are independent a priort,
then the factor s(nlz; 6;, 8;) in the likelihood (2-21) will have no effect on the dis-
tribution of ;. When this is true, the factor h(z|6;), which depends only on the
data-generating process, can be taken as a kernel of the likelihood for 6, and the
stopping process will be said to be noninformative for 6,.

P To prove that the two conditions just cited permit us to determine the marginal posterior
distribution of §, by use of h(z|6,) alone, we observe that they permit us to write

(2]6,, 6:) = h(2|6)) s(nlz; 6., 62) = h(z]6)) s(n]z; 62) ,
D'(6,, 62) = D1(6)) D3(6:) .
By (2-2) we then have for the joint posterior density of (6,, 8:)
D" (6, 82|2) < D1(6;) D3(8:) h(2]6)) s(nlz; 62) ,
and integrating out 8; we obtain

D" (6:]z) o D1(6,) h(z|61)
as was to be proved. 4

Quite obviously, if h(z]6:) is a kernel for 6, of £(2|6), 6:) and if h(z]6;) can be
factored
h(26:) = x(2]61) p(2) ,

then «(z|6,) is also a kernel for 6, of £(z|6), 6;). If furthermore there exists a func-
tion § on Z such that, for any z in Z,

h(z2|61) = k(@(2)|6) p(2)

then § can be said to be marginally sufficient for 8,.

Stopping in Continuous Time. So far we have considered the problem of
stopping only in the case where the data generating process is a discrete stochastic
process generating {£;,7 = 1,2, ---}. Since for all practical purposes it is in-
tuitively clear that the essence of our results for this case can be extended to the
case where the stochastic process is defined in terms of a continuous (time) pa-
rameter, generating {2, ¢ > 0} rather than {#;, ¢ > 1}, we shall not give a formal
statement or proof of the extension.

Ezample 1. Let the data-generating process be a Bernoulli process generating
independent random variables £, - - - , £;, - - - with identical mass functions

f(xlol) = of(l - el)l—’ ’ = 0: 1 )

and consider the following stopping processes (ways of determining the number
of observations n):
1. The experimenter by an act of free will decides before the experiment
begins that he will observe exactly n trials. The stopping probabilities
(2-19) are thus
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1 .
ok + lay, -+, 2456, 0) = {0 ?t" ]Ii :: ,,
and by (2-20)

s(nlz; 6,0;) = 1.

2. The experimenter decides to observe the process until » 1’s have occurred
(or has $ to spend and each observation costs $1 which is refunded if
2 = 0). The stopping probabilities are

1 if Tt <r
k+1I,"’,I;00 ={ ) ] 1
o 2 i O 6) 0 if Stri=1r,
and
8(n|z;6,6;) = 1 .
Because s(n|z; 6, 82) is simply a constant, these two stopping processes are neces-
sarsly noninformative and

h(z|6y) = T7., [6F(1 — 6)'1-7] = 677°(1 — @)~ %= (2-22)

is a kernel for 6, of the outcome z = (x4, - - - , 7).

In this example the first of the two stopping processes is ‘‘deterministic’’ while
the second is “probabilistic”’. Notice, however, that instead of regarding the
Bernoulli data-generating process as consisting of a sequence of trials each of which
may be either a success (£; = 1) or a failure (£; = 0), we can regard it as consist-
ing of a sequence of intervals each of which is measured by the number of trials
n; = 1,2, --+, «© required to obtain one success. If we do so regard it, then it is
the second stopping process described above which is ‘‘deterministic’’, since the
number r of intervals which will be observed is fixed in advance, while the first
stopping process is ‘‘probabilistic’.

Ezample 2. Consider the same data-generating process as before but assume
that the stopping process is the fellowing. The person operating the data-generat-
ing process knows the true value of 6, and says that if §, < } he will stop the process
after the 10th = has been generated but that if §; > 4 he will generate 20 zs; the
experimenter observes the process until it stops. The likelihood of z = (z,, - - - , z,)
is then

2|6y, 62) = h(2|6)) s(n|z; 6))
where h(z|6,) is defined by (2-22) and
1fn=106<4%,
s(njz; 6,) = {1 ifn=206>1%,
0 otherwise .
The stopping process is necessarily tnformative.

Ezample 3. Consider the same data-generating process as before but assume

that a coin is tossed before each trial is observed and that the experiment is stopped

as soon as tails occurs. Letting 6. denote the probability of tails we have for the
stopping probabilities

¢k + Llzy, -+, 2a; 6,00 = 1 — 65 ;
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the likelihood of (x1, + -« , za) is
((2101, 02) = h(le,) 02(1 -_— 02)" .

The factor h(z]6,) can be taken as a kernel for 6, provided that 6, and 8, are tnde-
pendent a priort; on this condition, the stopping process is noninformative for §;.

Erample 4. A production process generates items which may have either or
both of two possible defects dy and ds. Fori = 1,2, .- andj = 1, 2, let

1 does
Tij = { if the 7th item possess defect d; .
0 does not

The process thus generates vector-valued random variables (£11, £12), - -+ (£i1, £a),

- ; we assume that it behaves as a double Bernoulli process with parameter
6 = (61, 82) and that given 8 the components (£;;, £i2) are conditionally independent,
for all . An experiment is conducted by observing the process until the rsth
defect of type d: is observed; this turns out to occur on the nth trial and the » trials
turn out to contain r, defects of type di. The likelihood of this outcome is

{(2]6:, 62) = h(z|61) s(n|z; 64, 62)
where
h(z|6)) = 01 (1 — 6"~ ", 2 = (zn, -~ -, Tm)

— 1N
s(‘nlz; 01, 02) = (1'2 —(nl)|(nl)__ rz)! 0;’(1 - 02)"-1'! .

Suppose now that a decision problem turns only on ; in the sense that an act a
must be chosen and u(e, z, a, 61, 82) does not actually depend on 6, for any a in 4.
Then h(z|6,) is a kernel for 6; of £(z|6y, 6:) and (r1, n) is marginally sufficient for 6,
provided that 6, and 6, are independent a priori; with this proviso, the stopping process
ia noninformative for #,. If on the contrary 6, is not independent of 6, then
8(nlz; 61, 6;) must also be taken into account in determining the marginal pos-
terior distribution of 6: the stopping process is indirectly informative for 6, even
though it does not depend on 6,.

2.3.4. Contrast Belween the Bayesian and Classical Treatments
of Stopping

The essence of our discussion of noninformative stopping can be summed up
informally as follows. In Bayesian analysis, the decision maker asks what action
is reasonable to take in the light of the available evidence about the state 6 of
the world. If this evidence happens to include knowledge of the outcome z, of
some experiment, this knowledge is incorporated with the decision maker’s other
information by looking at the likelihood of z, given each of the possible states 6
which may prevail; the process does not involve looking at the implications of any
zs which were not observed. Since moreover the description z, of the experimental
outcome includes all information required to compute the likelihood of that out-
come given every possible 6, there is no need to know anything further about the
experiment e which produced the outcome—such information would bear only on
the likelihoods of the zs which were not observed.
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Thus suppose that a sample from a Bernoulli process consists of 10 trials the
third and last of which were successes while the remainder were failures. Unless
the decision maker sees some specific logical connection between the value of the
process parameter § and the fact that the experiment terminated after 10 trials
and 2 successes had been observed, his posterior distribution of p will be the same
whatever the reason for termination may have been, and that part of the complete
description of e which states this reason is therefore totally irrelevant.

In classical analysis, on the contrary, it is meaningless to ask what action is
reasonable given only the particular information actually available concerning the
state of the world. The choice of action to be taken after a particular z, has been
observed can be evaluated only in relation to requirements placed on a complete
decision rule which stipulates what action should be taken for every z which might
have been observed; and for this reason classical analysis usually depends critically
on a complete description of the experiment which did produce z, because this
same e might have produced some other z.

Thus suppose that the decision maker wants to make a minimum-variance
unbiassed estimate of the process parameter p on the basis of the sample described
just above. If he knows that the person who actually conducted the experiment
decided in advance to observe 10 trials, he must estimate

whereas if he knows that the experimenter decided in advance to observe 2 suc-
cesses, he must estimate

and this is true even if the decision maker is absolutely convinced (a) that the true
value.of the process parameter p cannot possibly have had any effect on the deci-
sion made by the experimenter, and (b) that the decision made by the experimenter
cannot possibly have had any effect on the true value of the process parameter p.
Again, if the decision maker wishes to test the null hypothesis that p > %
against the alternative hypothesis that p < 3, then if he knows that n = 10 was
predetermined by the experimenter, he must compute the binomial probability

P{f <2lp =4, n =10} = .0547

and conclude that the experimental evidence against the null hypothesis is not
significant at level .05; whereas if he knows that it was r = 2 on which the experi-
menter decided in advance, he must calculate

P(i> 10lp = ,r=2) = P{F <2p = },n =9} = 019

and conclude that the evidence s significant at level .05.

If the stopping process is not well defined—and this is more common than not
in situations where the experimental budget is fixed but the cost in time or money
of each observation is uncertain—then it is impossible in classical theory to make
unbiassed estimates. Hypotheses are usually tested under such circumstances by
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means of conditional tests, but it should be observed that when the stopping process
is not well defined the choice of the condition is completely arbitrary and therefore
the result of the test 18 completely arbitrary. 1f a sample from a Bernoulli process
consists of 10 observations only the third and last of which are good, we may think
of the process as generating random variables #,, --- , #;, --- where z = 0, 1 and
apply a test conditional on the fact that 10 observations were taken, thus obtaining
the level of significance .0547. We may however equally well think of the process
as generating random variables 7i; where n = 1, 2, 3, - - - is the number of trials re-
quired to obtain a success; in this case the sample consists of {wo observations
ny = 3, n, = 7, and a test conditional on the fact that 2 observations were taken
leads to the level of significance .0195.

2.3.6. Summary

To summarize the discussion in Section 2.3, suppose that a Bernoulli process
has yielded a sample consisting of r successes and (n — r) failures. (1) As far as
the tmplications of this particular sample are concerned, it will usually be quite
immaterial in the further analysis of the problem whether r was predetermined
and 7 left to chance, or n was predetermined and # left to chance, or neither r
nor n was predetermined and the experiment was terminated in some quite other
way. Even though the actual likelihood of this particular sample may well de-
pend on the stopping process, the likelihoods for all noninformative stopping proc-
esses have a common kernel and therefore all lead to the same posterior distribu-
tion. (2) On the other hand, we shall also be concerned with the problems of
experimental design as they look before any sample has actually been taken, and
then we shall want to ask what can be expected to happen if we predetermine r
rather than n, and so forth. The reader must keep in mind throughout the re-
mainder of this monograph that the extent to which the complete description of e
enters a Bayesian analysis depends on the cxact nature of the problem being
analyzed.
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CHAPTER 3

Conjugate Prior Distributions

3.1. Introduction; Assumptions and Definitions

Unless the state space O contains a very limited number of possible states {6},
it will usually be simply impossible for the decision maker to assign a prior prob-
ability to each 8 individually and then verify the consistency of these assignments
and make adjustments where necessary. In most applied problems the number
of possible states will be extremely large if not infinite—think of the number of
possible levels of demand for a given product or of the number of possible yields
with a given fertilizer—and the decision maker will be forced to assign the required
probapbilities by specifying a limited number of summary measures of the distri-
bution of § and then filling in the details by some kind of ‘“reasonable” short-cut
procedure. Thus the decision maker may feel that his ‘‘best estimate’’ of demand
is § = 2500 and may feel sure enough of this estimate to be willing to bet even
money that § is between 2000 and 3000, but at the same time he may feel that
further refinement is not worth the trouble and may be willing to act consistently
with the implications of any ‘‘reasonably’’ smooth and symmetric distribution of 6
which has a mode at 6§ = 2500 and which assigns probability 4 to the interval
2000 <6 < 3000.

An obvious way of finding a specific distribution to meet specifications of this
kind is to start by selecting some famzly of distributions defined by a mathematical
formula containing a certain number of adjustable parameters and then to select
the specific member of this family which meets the decision maker’s quantitative
specifications by giving the proper numerical values to these parameters. Thus
in the example just cited, a Normal distribution with mean 2500 and standard
deviation 746 may fully satisfy the decision maker’s requirements; or in a situation
where § represents a process fraction defective and is therefore certain to have a
value in the interval [0, 1] the decision maker’s requirements may be fully satisfied
by some member of the beta family, all members of which have the convenient
property of restricting the domain of § to the interval in question.

3.1.1. Desiderata for a Family of Prior Distributions

The fact that the decision maker cannot specify every detail of his prior dis-
tribution by direct assessment means that there will usually be considerable lati-
tude in the choice of the family of distributions to be used in the way just described
even though the selection of a particular member wtthin the chosen family will
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usually be wholly determined by the decision maker’s expressed beliefs or betting
odds. Our objective in the present chapter is to aid the useful exploitation of this
latitude by showing how it is possible in certain commonly occurring situations to
find a family F of distributions which at least comes very close to satisfying the
following desiderata.

1. F should be analytically tractable in three respects: (a) it should be reason-
ably easy to determine the posterior distribution resulting from a given
prior distribution and a given sample; (b) it should be possible to express
in convenient form the expectations of some simple utility functions with
respect to any member of F'; (¢) F should be closed in the sense that if the
prior is a member of F, the posterior will also be a member of F.

2. F should be rich, so that there will exist a member of F capable of expressing
the decision maker’s prior information and beliefs.

3. F should be parametrizable in a manner which can be readily inferpreted,
so that it will be easy to verify that the chosen member of the family is
really in close agreement with the decision maker’s prior judgments about ©
and not a mere artifact agreeing with one or two quantitative summariza-
tions of these judgments.

To help guide the reader through the discussion that follows we shall outline
very briefly the general procedure which we shall use in generating families of
prior distributions that satisfy these desiderata in the special but very important
case where the sample observations are independent (conditional, of course, on
knowing the state parameters) and admit of a sufficient statistic of fixed dimen-
sionality. Denoting this sufficient statistic by ¥ and its range by Y, we shall
show that it is possible to construct a family F of prior distributions for § where
cach member of F is indered by an element of Y. In addition, we shall show that
if we choose for 8 a particular member of F indexed by y’, say, and if a sample then
yields a sufficient statistic y, the posterior distribution will also belong to F and
will be indexed by some element of Y, say 3’’. The binary operation of combining
y’ and y to compute '’ = ¥’ * y will be examined in great detail for several data-
generating processes, and the family F indexed by Y will be shown in many cases
to be tractable, rich, and interpretable.

3.1.2. Suffictent Statistics of Fized Dimensionality
We consider only data-generating processes which generate independent,

identically distributed random variables #;, - - - , £, - - - such that, for any n and any
(x1, -+ -, ), there exists a sufficient statistic
g"(rh yIﬂ) =Yy = (yl’ oy Yy o ryl)

where y; is a (possibly restricted) real number and the dimensionality s of y does
not depend on n. More formally, we assume throughout the remainder of this
chapter that

1. If the likelihood of a sample (x1, - -+, z,) is Lu(z1, - -+ , Z4]8), then the joint
likelihood of any two samples (x1, - -+ , xp) and (xp41, - -+, 2n) IS
Lolzy, - - ,I,,lo) Anp(Tprny -, :C,.IB) . (3-1)
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2. Given any n and any sample (21, - - - , x,) there exists a function k and an
s-tuple of real numbers §.(x1, -+ ,2.) = y = (41, - -+ , ¥s), Where s does not
depend on n, such that

La(z1, -+, 2al0) < k(yl6) . (3-2)

The families of prior distributions which we shall discuss in this chapter exploit
the second of these assumptions directly and also exploit the following easily proved
theorem which rests on the two assumptions together.

Theorem. Let yV = §,(xy, - -+ , 2p) and let y® = Fu_p(Xps1, - -+, 2,). Then
it is possible to find a binary operation * such that
YV y® =yr =i, -0, Y0 (3-3a)
has the properties
ba(xy, - -+, 246) @ k(y*]6) , (3-3b)
k(y*6) & k(y(8) - k(y®16) . (3-3c)

The point lies of course in the fact that y* can be computed from ¥ and y*
alone, withou! knowledge of (x1, --- , x.).

Proof. Given y and y® we can always find some p-tuple (xi, - -- , ;)
and some (n — p)-tuple (Zp41, ---,2a) such that ,(zi, ---,z;) = y¥ and
Inp(Zp4+1, -+, zu) = y». Having found these fictitious experimental outcomes

we may define the operation * by
y(‘) * y(2) = gﬂ(x;y e 1I;$ I;’+l) e )I'Ii) (3'4)

because, by assumptions (3-1) and (3-2),

(a) La(@y, o+, 2al0) = L(21, <+, 2,]0) + Lap(Tpys, - -+, Tal6)
< k(y™[6) - k(y®o) ,

(b) Calxl, - zal6) = Lp(x1, -0, 2508) - bap(Tpir, -, 24l6)
o« k(y™|o) - k(yle) ,

(c) Cu(xl, -0, 24l0) & k(y*|6) .

The theorem follows immediately from these results.

The usefulness of the theorem will depend largely on the fact that when y is of
fized dimensionality we can usually find a very simple * and show that it is equiva-
lent to * as defined by (3-4). It can be shown that if (and only if) the common
density of the individual observations # is of the exponential formt and meets
certain regularity conditions, then it is possible to find sufficient statistics of fixed
dimensionality for which the * operation consists of simple component-by-com-
ponent addition, i.e., for which the ith component of y = 4» is simply

y7=y§l)+y§2), i=1)"'18'

We shall make no use of this fact, however, partly because we do not wish to restrict
our discussion to the exponential class but principally because even within the

t Cf. B. O. Koopman, “On Distributions Admitting a Sufficient Statistic,” Trans. Amer.
Math. Soctety 39 (1936) 399-409.
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3.1.2 Part 1. General Theory

exponential class we shall often find it more convenient to work with nonadditive
sufficient statistics.

Ezample 1. Consider a Bernoulli process with parameter § = p generat-
ing independent random variables £, - -, £;, - - - with identical mass functions
p*(1 — p)'~* wherez = 0, 1. If we define

n = number of random variables observed ,

r = EI.' y
then the likelihood of a sample (z4, - -« , z.) is obviously
L@y, -, 2al0) = PPl — )= = pr(1 — p)*7

the statistic
y = (yny) = (r,n)

is sufficient and is of dimensionality s = 2 independent of n. Furthermore, given
that two samples described by (r;, 1) and (rs, n2) have been observed, we can
verify that

y* = yW xy® = (r;, my) * (rz3, ma) = (11 + 12, 1 + 1) 3-5)
has the properties (3-3b) and (3-3c) either (1) by arguing that if we “pool” any
two samples described by (r, n1) and (s, n,) the pooled sample will contain n, + n,
values r; + r3 of which are equal to 1, or (2) by multiplying

p"(l - p)m—n . p"’(l —_ p)m—n = pn+n(1 — p)m+m—n—n .
In this example, the operation * consists of simple component-by-component

addition.
Example 2. Consider an Independent Normal process with parameter

0 = (u, h) generating independent random variables £,, -« - , £;, - - - with identical
densities
(2r)~de-dn-wr pt —o <r <o ;
and define
n = number of random variables observed ,
m = 7% i ’
L S@ieme  ifa>1
v=<4n—17"" !
0 fn=1,

It is shown in Section 11.5.1 that the likelihood of a sample (z;, - - - , z,) from this
process is
LTy, -0, 2al0) = (27)—dn e~ INT(zi—u)* pin
oc e—dAnim—u)?+(—10) hin -
the statistic
¥y =y ys) = (mv,n)

is sufficient and of dimensionality s = 3 independent of n. The reader can verify
that

Yy e y® = (my, 01, ) * (mg, 13, M) = (Mm*, v*, n*) (3-6a)

46



Stalistics of Fized Dimensionality 3.1.2

where

1
n* =n + ny , m* = oy (nmy + namy) (3-6b)

1
v = I {[(n1 — Vo1 + nym?] + {(n2 — vz + ngmd] — n*m**} |
In this example the » operation is simple addition for only one component; but if
we had chosen the sufficient statistic

y= (yll Yo, y3) = (E I‘}E 142) n)

the » operation would have been simple addition for all three components.
Ezample 3. As an example of a process which is not of the exponential class,

consider a process generating independent random variables £,, - - - , £;, - - - each of

which has & uniform distribution over the interval [0, 8] where 6 > 0, and define

n = number of random variables observed ,

M = max {z.} .
It is easy to see that the likelihood of a sample (24, - - - , ) can be written
= g-n _ [0ife <O,
LTy, <+ ,24|0) = 6800 — M) where é(a) = lifa>0;

the statistic
y=(ny) = M,n)

is sufficient and of dimensionality s = 2 independent of n. It is also easy to verify
that
Yy y® = (My, m) * (Mo, na) = (max {My, Mo}, ny + na) :

the * operation on the component M is not addition and it is impossible to find a
sufficient statistic such that * does consist of component-by-component addition.

3.2. Conjugate Prior Distributions

3.2.1. Use of the Sample Kernel as a Prior Kernel

Instead of considering the kernel function k defined by (2-12) as a function
k(-|6) with parameter § on the reduced sample space Y, we can consider it as a
function k(y|-) with parameter y on the state space 6. We shall now examine the
conditions under which a density function f(-|y) with parameter y on the state
space O can be derived by defining

j@ly) = N(v) k(yl6) @-7)

where N is a function of y still to be determined. Such a density f(-|y) on 6 will
be called a natural conjugale with parameter y of the kernel funection k.

All that is required for a function f(-|y) defined on © to be a proper density
function is (1) that it be everywhere nonnegative and (2) that its integral over
© be 1. Since k(:|¢) is a kernel function on Y for all 8 in 6, k(y|6) is necessarily
nonnegative for all (y, 8) in Y X 6; and f(8]y) as defined by (3-7) therefore satisfies
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the first requirement automatically if y is restricted to ¥ and N(y) is positive. It
follows that if the integral of k(y|-) over © exists, we can define N (y) by

NI = [ k(ylo) ds (3-8)

and f(-]y) as defined by (3-7) will be a proper density function on 6.

Erxample 1. 1t is shown in Section 11.3.1 that the likelihood of observations
(r1, - -+, x,) on an Independent Normal process with known precision & > 0 and
unknown mean § = i can be expressed in terms of the sufficient statistic

1
= ) = (S 200)
by the kernel
k(ylo) = e=¥nim=wr
Since the integral of k(y|-) over® = (—«, ) for fixedy in Y is
—o <mL o,
n = 1, 2, -,

/:: e~ hn(m—p)t du = (21)5 (hn)—i ,

we may take the function fy(-|m, hn) of u with parameter (m, n) defined by

filulm, hm) = (22)=} ()b g-dimin=pr =% ST €2
as a density function for .

Ezample 2. To see that we may not simply assume that the integral of k(y|-)
over the state space © will converge for any parameter y in the range Y of the statis-
tic §, consider the rectangular process discussed in Example 3 of Section 3.1.2,
where it was shown that the likelihood of observations (z), - -, z.) can be ex-
pressed in terms of the sufficient statistic

y= (M, TL) = (max {I"}r n)
by the kerne!l
k(y|8) = 6" 8(8 — M) , 6>0.
Although n = 1 is in the range of the statistic §, the integral of k(y|-) over 6 =
(0, ) for fixed y = (M, n),

AMOdO-}- [ omas,

converges only if n is greater than 1.

3.2.2. The Posterior Distribution When the Prior Distribution
Is Natural-Conjugate
We have seen in Section 2.2.2 that if the prior density of 8is D'(-), if y = §(2)
is a sufficient statistic, and if k(y|0) is a kernel of the likelihood of z given 6, then
the posterior density of 8 given y is D"'(-|y) as defined by
D" (6y) o« D'(8) k(yl6) .

We have also seen, in Section 3.1.2, that if y is of fixed dimensionality we can always

find an operation * such that
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k(y o) - k(y®(6) = k(y®” » y@16) .
It follows immediately that if D’ is a natural conjugate of k with parameter 3’
in the range Y of the statistic 7, i.e., if
D’(6) « k(y'l6) , yeY
and if a sample yields a sufficient statistic y, then
D" (6ly) o k(y'l6) k(yl6) < k(y’' * yl6) ; (3-9)

the kernel of the prior density combines with the sample kernel in exactly the same way
that two sample kernels combine.

Ezxample. We return to the first example in Section 3.2.1, an Independent
Normal process with known precision h and unknown mean § = f, and recall that
in terms of the sufficient statistic

y=(mn) = (;112: x;, n)

the likelihood of (z,, - - -, x.) is proportional to
k(yl) = ¢~ Inim=s
The reader can readily verify that if we have two statistics ¥’ = (m’, n’) and
y = (m, n), then by the definition (3-4) of the * operation
yn = yl vy = (%’ n + n) = (mn’ ' . (3_10)

By (3-9) we may therefore infer that if the prior density of § = g is
D'(8) = fx(u|m’, hn') o e~ tan'(m’' w1

and the parameter (m’, n') is in the range of the statistic (7, 1), then the density
posterior to observing a sample with sufficient statistic (m, n) will be

D" (8ly) = fx(ulm”, hn'") o« e=n"im " —ur (3-11)

This result obtained via the * operation can of course be verified by using Bayes’
theorem (2-13) to write

D" (8ly) = D" (ulm, n) o o= ¥n'm=mt g—bhnim—wt = o= Bhn'(m’ 1= Jhnim =
and completing the square in the exponent.

3.2.3. Extension of the Domain of the Parameter

The result (3-9) indicates immediately that families of natural-conjugate
priors with parameter y in the range Y of the statistic § are very likely to have
the properties of (ractability which we listed as desirable at the beginning of this
chapter. The family will be closed: a Normal prior yields a Normal posterior,
and so forth. The posterior for given prior and sample will be easy to find if the
operation #* is simple; we have already seen that it ¢s simple for samples from
Bernoulli, Normal, and rectangular processes, and we know that it can be simple
for any process of the exponential class. Finally, the fact that the likelihood
functions from which these priors are derived have been well studied and tabulated
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means that it will often be possible to evaluate expectations of utility functions
in terms of tabled functions.

On the other hand, the richness of families of natural-conjugate densities can
obviously be very greatly increased by extending the domain of the parameter y
to include all values for which (1) k(y|8) is nonnegative, all 4, and (2) the integral
of k over © converges. We are clearly not obliged to restrict the parameter y to
the range Y of the statistic § if these two conditions are met by all ys in some larger
domain; and we shall now show by examples that an extended family of densities
obtained in this way is often just as tractable as the original family.

Ezxample 1. Consider again the Independent Normal process with known
precision A and unknown mean § = i which was considered in the first example in
Section 3.2.1 and again in the example in Section 3.2.2. Since the integral

Jo kGigydo = [ e duntn-un gy

converges for all real n > 0 and not just for the valuesn = 1, 2, - - - in the range of
the statistic 71, we may take the entire half line n > 0 as the domain of the param-
eter n. The natural-conjugate family in which n had the domain {1, 2, - .-} was
convenient because, as we saw in (3-11), a prior density

Inulm’, hn') c ==
yielded a posterior density of the same form with parameter

(ml’y n'') = (mI; nl) * (m» n)
given by the simple * operation defined by (3-10). 1t is easy to verify by applica-
tion of Bayes' theorem that the same operation holds when the domain of = is
extended to n > 0, even though proof by the interpretation (3-4) is no longer
possible.

Ezample 2. Consider again the Bernoulli process with parameter 6 = p dis-

cussed in the first example of Section 3.1.2, where the likelihood of the sample
outcome y = (r, n) was shown to have the kernel

k(yle) = pr(1 — p)~ .
It is well known that the integral of k(y|-) over © = [0, 1] converges for all real
r> —land n > r — 1 to the complete beta function,

[ o —prdp = Bo+1L,n—r+1),

and we can therefore obtain a richer family of densities by allowing the parameter
y = (r,n) to have any value in the domain thus defined instead of restricting it
to the range of the statistic (%, 7), which includes only the integers such that
r 2 0and n 2> max {1, r}.

Purely for notational convenience we shall actually make this extension, not
by allowing the parameter (r, n) to take on negative values, but by writing the
density in the form

Jalplr, n) = B—(r,nl—_r)p"‘(l - p)yt, n>r>0. (3-12)
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Placing primes on the parameters r and 7 of this density to indicate a prior density
and letting (r, n) denote the actual sample outcome it is easy to verify by applica-
tion of Bayes’ theorem that the posterior density will be of the same form as the
prior with parameter

0"y = (", n)s(r,n) = (" +r, 0" +n);

the extended family remains closed and the * operation is the same as it was when
applied in (3-5) to two statistics (r1, n;) and (re, no).

8.2.4. Extension by Introduction of a New Parameter

The results of the last section can be summarized by saying that a natural-
conjugate family can often be enriched without loss of tractability by extending
the domain of the parameter y beyond the range of the statistic 7; the essential
reason why the enrichment is “free’ is that existing tables serve as well or virtually
as well for the extended as for the original family. We shall now examine another
way of enriching a conjugate family without loss of tractability. As before, we
do so by examining the natural conjugate density to see whether additional flex-
ibility can be introduced without any change in the essential mathematical prop-
erties of the function; but this time what we look for is an opportunity to introduce
an additional parameter rather than an opportunity to extend the domain of an
existing parameter. We shall first try to make the general idea clear by an artificial
example, and we shall then go on to exploit the idea by applying it to the Independ-
ent Normal process with both mean and precision unknown.

As an artificial example, suppose that instead of considering the Bernoulli
process in its general form we had considered a Bernoulli process constrained to
stop as soon as but not before the tenth trial is produced. For such a process the
single statistic r = number of successes is sufficient, the likelihood of a sample is
proportional (actually equal) to

p’(l - P)m_' ) r>0 ’

and the natural conjugate density would have this same expression as its kernel.
Consideration of this kernel as a function of p would however immediately reveal
that, in the notation of (3-12),

(1 = p)or fylplr + 1,12)

and since we know that the general (two-parameter) beta function is just as tract-
able as this special case, we would realize at once that the family could be enriched
at no cost by (a) introducing another parameter, n, and (b) redefining the param-
eter r, so that the conjugate family becomes

fﬁ(PlT; n) x pr_l(l - p)n_r—l ’ n>r>0.

We now turn to the really important application of this idea, to the Inde-
pendent Normal process with both mean 7 and precision h unknown. As we re-
marked in the second example of Section 3.1.2, it is shown in Section 11.5.1 that

the statistics
51



3.2.4 Part I: General Theory

n = number of random variables observed ,
m = 12 zi,
n
1 Z(xi — m)? fn>1
v=4n— 17" ’
0 fn=1,

are sufficient for a sample from such a process and the sample likelihood is propor-
tional to
PR LLICEINLE § SPEE TICES LY ¥ ICES VI

Considering this expression as defining a function of u and h we observe that when
n > 1and v > 0it is the product of (1) a Normal conditional density of & given h
and (2) a gamma marginal density of &. Both these distributions are well known
and tractable, and further investigation reveals (as shown in Section 11.5.5) that
the marginal density of & is the tractable Student density.

Now this natural-conjugate joint density has only three free parameters,
m, v, and n, and this gives us very little flexibility in assigning a prior distribution
to two unknown quantities, 7 and k. We immediately observe, however, that if
we replace the expression n — 1 in the two places in which it occurs by a new,
fourth parameter », the mathematical forms of the two factors in the joint density
will be unchanged; and from this it follows that the form of the marginal density
of & will also be unchanged. In other words, no tractability would be lost if we
took

e—hnlu—my h; . e"i""’ hlr , v,V > 0 y

as the kernel of the conjugate density.

We now observe, however, that the complete integral of this kernel with
respect to (u, h) exists not only for» > 0,» > Obutalsofor 0> v > —1, v <0,
so that the family can be still further enriched by extending the domain of the
parameters v and v beyond the range of the statistics » and v. For convenience
of notation, however, we accomplish this same end by redefining the parameters
v and v and writing the “Normal-gamma’’ conjugate density in the form

—o L u<®© )
Ty (, hlm, v, n, v) o e=dmim—wi g} . o=dhm pho-1 h>0,
—o <m<L o,
v,n,v>0.
It is shown in Section 11.5.3 that the * operation for obtaining the posterior param-
eters from the prior parameters and the sample statistics remains simple: instead
of the original operation (3-6) we have

1)

1
=0+ n, m" = = (W'm' + nm) V=V v+ 1,

¥ = # [V + n'm'?) + (v + nm?) — n''m"'?] .
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3.2.5. Conspectus of Natural-Conjugate Densities

To summarize the results obtained thus far we now give a conspectus of the
natural-conjugate families for all the data-generating processes examined in this
monograph. Full discussion of all but one of these processes will be found in
Part 111 of this monograph.

Bernoulli Process

Defined as generator of either #s with mass function
z=01,

x -— 1—z
pr(1 —p)—=, 0<p<l,
or fis with mass function
n=12 -.-
1_ n—1 1 & y
d-p'p, 0<p<l.

Sufficient Statistics:

r = Zz, , or j r = number of 7is observed ,
n = number of £s observed ; n=2n,;.

Likelihood of sample: proportional to

p(l —p) .

Conjugate prior densily (beta):

’ " e 0<p <1

Bl W) e proi —pyrrt, S E S
Posterior density:
’n '
T rr=r+r,
fﬁ(plr y 1 where {nn =n +n.

Graphs of typical members of this family will be found ifl Section 7.3.2.

Poisson Process

Defined as generator of #s with density

s z20,
e, A>0
Sufficient statistics:
r = number of £s observed , t=2Z2z .
Likelihood of sample: proportional to
e "M\,
Conjugate prior density (gamma-1):
' e 20,
SN, ') o e=M N1 t',r'>0.
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Posterior density:
fair, ey where {}, L
Graphs of typical members of this family will be found in Section 7.6.2.
Rectangular Process

Defined as generator of £s with density

1 0<z<9,
0’ 6>0.
Suffictent statistics:
n = number of £s observed , M = max {z,} .
Likelihood of sample: proportional to
n _[0ifea <0,
6006 — M) where é(a) = lifa>0.
Conjugale prior denstly (hyperbolic; not discussed in Part III):
! ’ -n' _ 12 0 > O 3
@M, ) <0780~ M), s 00T

Posterior density:

"o n M'" = max {M', M} ,
fa(@M", n'") where{ W = 4

Independent Normal Process
Defined as generator of £s with density

2r)~de-a-wrpt -0 <z <o,

—o <pLo, h>0.
u Known, h Unknown
Sufficient stalistics:
» = number of 2s observed , w = %E(xi —w?.

Likelihood of sample: proportional to
e~ pir

Conjugate prior density (gamma-2): -
h>0,

' —ihe b —1
fﬁ(hlv’y)ae h ) v/,y1>0 )
Posterior density:
V= 4w,
Fralhie”, »7) where {v" = % 'V + ww) .

Graphs of typical members of the implied inverted-gamma-2 density of & = ;-1
will be found in Section 7.7.2.
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h Known, p Unknown

Sufficient statistics:
= number of £s observed , m = iz zi .
Likelihood of sample: proportional to
e—im(m—pr
Conjugate prior density (Normal):
’ ’ —IAn'(u—m') -0 <p<L o, h>0 ’
fN(#lmyhn)me ) —o < m <o, n>0.
Posterior density:
n'=n"+n,
fh’(“lm s hn ) where {mn = 7% (nrmr + nm) .
Both u and h Unknown
Sufficient statistics:
n: number of £s observed ,
1
m=_ Zxi,
v = n — 1 (redundant)t , .
lsir — m) ;
v={yz(x. m) ify>0,
0 fr=0.
Likelthood of sample: proportional to
e~ dhnim—wt p} . g—dho pir
Conjugate prior density (Normal-gamma):
-0 <pu <o,
’ ’ o’ ’ h > 0
, T — 3An'(u—m’)? — M’y »— ’
ft\v(l")hlm)v:n;”)mea w=m* pd g = 40" !, —o <m <o,
v,n', v > 0.
Postertor density:
fA\'v(“’ hlmll’ vl’, nll, y’l)
where
n'=n"+n, m”=%(n’m’+nm), Vi=v +r+1

n
v = % [('v + n'm'?) + (w + nm?) — 2''m"'?] .

Marginal denstlies (prior or posterior):

t By redundant statistics we mean statistics whose values are wholly determined by the
values of the nonredundant sufficient statistics and which are introduced purely for mathematical
convenience.
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Ss(ulmn/vy) oc[v + (u — m)2 n/v]—4¢+0 (Student),
fve(hlv, v) o e~ 4 pir-1 (gamma-2) .

Graphs of typical members of the implied inverted-gamma-2 marginal density of
& = h—}% will be found in Section 7.7.2.

Independent Multinormal Process

Defined as generator of r X 1 vector £s with density

—© <x <™,
(2x) ¥ e~ dhGa—mrnx—w pir —o < pu <>,
h>0, =1,

where u is an r X 1 vector and n is an r X r positive-definite symmetric matrix.

N and h Known, u Unknown
Sufficient statistics:
n: number of ¥s observed ,

m=12x“7.
n

n = n N (redundant) .
Likelihood of sample: proportional to

e—&h(m—p)'n (m—p)

Conjugate prior density (Normal):
—o < pu<®
[P (ulm’, hn') o e~ Irm-myen’ (u—m’) h>0,
—o <m <o,

where n’ is an r X r positive-definite symmetric matrix.

Posterior density:

" ’
n n +n
¥ (ulm' hn' where ! .
fN (I". y ) m'’ = nn_l(nrml +n m) .

n Known, p and h Unknown
Sufficient statistics:

n: number of ¥s observed, n = n m (redundant), v = n — r (redundant) ,

m= %E x0

) = {%E(x‘f’ — m){(x'? — m) ifvy>0,
0 ifvr=0.
Likelihood of sample: proportional to

e—Ym—pwinm—p ptr . o=Yhew plv
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Conjugate prior densily (Normal-gamma):
O, Rlm', v, n’, V') o« = dhla—mym —m’) pir . o= dae phsi -1
where
—o < p <o, h>0, —o<m <o, Vv, ¥V>0,
and n’ is an r X r positive-definite symmetric matrix.

Posterior density:
J9ulm’, o, %, )

where
n” =n"+n, m’' =n""'o'm +nm) , Vi=vV 4+ v+,
1
V=5 [0V +mta'm') + (w+miam) — m'tn"m"] .
1 4

M arginal densities (prior or posterior):
f9im,n/v, ) « [v + (1 — m)'(n/v)(r — m)]-de+n (Student) ,
Fy2(hlv, v) o e=hm pir—1 (gamma-2) .

Normal Regression Process

Defined as generator of independent random variables 4, - - - , %, - - - such that for
any i the density of §; is
—o <y <® ,
(2m)~dexp [—3h(yi — Zjo12:585)%) hY —o < B <™, allj ,
h>0,

where the xs are known numbers.

Letting n denote the number of §s observed, we simplify notation by defining
the vectors 8 and y and the matrix X by

B=1[8 --- B8], y=[ - ul,
Irn Ty X1y
X =| za ri
T Zu

h Known, 8 Unknown
Sufficient statistics:
n=XX
and any b satisfying
X'Xb=X'y.
Likelihood of sample: proportional to
e~ h@®-pra-p

Conjugate prior density (Normal):
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—0 < <> ,
fR(BIY, hn') cc e~ 8-V B0 —o <V <o,
>0,

where n’ is an r X r positive-definite symmetric matrix.

Posterior densily:

(r) 71 " n” = n’ +n ,
fN (ﬂlb )hn ) where {b” = nll_](nlbl + n b) .

Both 8 and h Unknown
Suffictent statistics:
n=XX, p = rank n (redundant) , v = n — p (redundant) ,
any b satisfying
X'Xb=X'y,
and
1
v=-
14

y—Xb)y—-XD).
Litkelihood of sample: proportional to
Pt LCEOLLECETON S SRRPES TR S TR

Conjugate prior density (Normal-gamma):
In(B, hlb,) v,n', V) e~ 4hB-b) 0 B-Y) pir . o= dhre plr -1

where
—0 <fB <™, h>0,
—o <Y <>, Vo' >0,
and n’ is an 7 X r positive-definite symmetric matrix.
Posterior density:
fN‘v(a: hlb”) U”, n”) l'”)
where
n” =n" +4+n, b =n"'(n'd' +nb) , Vi=v+v+op,

<
|

"= LY+ BY) + o+ binb) — bnb"

Marginal densilies (prior or posterior):
9@lb,n/v, v) x [v + (B — b)(n/v)(8 — b)]~te+n (Student) ,
fra(hly, v) & e=dhm pir—1 (gamma-2) .

3.3. Choice and Interpretation of a Prior Distribution

3.3.1. Distributions Fuitted to Historical Relalive Frequencies

In some applications there will exist a substantial amount of “objective”
evidence on which to base a prior distribution of the state §; specifically, extensive
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experience may have made available a “solid” frequency distribution of values
taken on by 6 in the past, it may be clear that § is itself generated by a fairly stable
random process, and therefore most reasonable men might agree that the prob-
ability distribution to be assigned to 6 on the present occasion should closely match
the frequency distribution of actual historical values. In such cases it is easy to
select a close-fitting member of the family of natural conjugates and the only im-
portant question remaining for subjective decision is whether or not this distribu-
tion fits the “true’’ distribution closely enough to warrant its use as a convenient
approximation. It is possible, of course, to raise questions about the best method
of fitting the conjugate distribution, and it is virtually impossible to give conclu-
sive theoretical answers to these questions; but what experience we have had with
concrete examples convinces us that in the great majority of applications the
method of fitting will have absolutely no material effect on the results of the final
analysis of the decision problem at hand. Examples of the remarkable insensitiv-
ity of results to even substantial changes in the prior distribution are given in
Section 5.6.4 below.

3.3.2. Dustributions Fitted to Subjective Betting Odds

The problem of assessing a prior distribution is much more difficult and
interesting in those situations where no solid “objective’ basis for the assessment
exists. In such situations the prior distribution represents simply and directly
the betting odds with which the responsible person wishes his final decision to be
consistent; and, as we have already pointed out, the psychological difficulty of
assigning such odds is so great that it will rarely if ever be possible for the decision
maker to specify his “true’” distribution in more detail than by a few summary
measures such as the mean, the mean deviation, or a few fractiles. Provided
that these specifications are met by some member of the family of natural conju-
gates, the decision maker will usually be as willing to act consistently with the
implications of this distribution as with the implications of any other distribu-
tion meeting the same specifications; but it is of course a responsibility of the statis-
tical consultant who is about to base an analysis on this distribution to point out
to the decision maker any extreme implications of the fitted distribution, and it is
also his responsibility to suggest to the decision maker those summary measures
which are easiest to assess subjectively for a given family of distributions.

To illustrate the choice of a prior distribution in this manner, suppose first
that a decision problem turns on the true mean effect § = i of a proposed change
in package design on sales per customer or on the true effect i of a proposed change
in teaching method on the mean score obtained by students on a particular test;
and suppose in either case that sales to individual customers or scores obtained
by individual students can be treated as Normally distributed with known pre-
cision h (known variance 1/h), so that the natural-conjugate distribution of 7 is
Normal. It is then natural to ask the decision maker first (a) what is his ‘“‘best
guess’”’ A at the true value of 7 and (b) whether his subjective distribution of i is
reasonably symmetric about this value. If the answer to (b) is ‘“yes”, then a
natural way to obtain the dispersion of the distribution is to ask the decision
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maker (c) to specify a symmetric interval about g2 such that he would be willing
to bet at the same odds for or against the proposition that the true u lies within
this interval. The statistician can then determine the Normal distribution which
meets these specifications and can verify its suitability by calculating the prob-
abilities P{t > u} for a few values of u or by calculating the values u such that
P{g > u} = a for a few values of o and asking the decision maker whether he
accepts these implied odds.

As a second example, suppose that someone wishes to assign a distribution
to the random variable § = § describing the Democratic vote in the next election
as a fraction of the total vote. It may be very difficult for this person to assign
a subjective expected value to P, but he may be quite able to express his judgment
of the political situation by assigning probability 3 (say) to the proposition that
the fraction # will be greater than 509, and probability 4 to the proposition that
it will be greater than 53%. If this prior opinion is later to be combined with
evidence obtained from a straw ballot, then (abstracting for our present purposes
from practical difficulties of sampling and response bias) the sample observations
will be almost exactly binomially distributed and the conjugate family is the beta
family with density

fo(plr’, n') o p~1(1 = p)-r-1 .

With a little trial-and-error calculation the statistician can determine that the
member of this family with parameter (r' = 62.9, n’ = 118.5) agrees quite closely
with the specified odds; and he can then verify the suitability of the distribution
by computing a few additional implied probabilities in one or the other of the ways
suggested in our previous example.

Finally, suppose that a decision problem turns on the precision § = A of an
Independent Normal process generating £s with common density

fn(x|p, h) & e—trG—w* B}

Few people are used to thinking in terms of the precision £ and it may therefore
be very difficult to elicit any kind of direct opinion about A; but it may be quite
possible to obtain betting odds on the process standard deviation & = A~} and
these odds can then be used to find the appropriate member of the conjugate
gamma-2 family with density

f-,z(hlv', V) e— v pAv—1

If the decision maker assigns probability 3 (say) to the proposition that & > 5
and probability } to the proposition that ¢ > 10, then as shown in Section 11.1.4
it is very easy with the aid of Figure 7.5 to determine that the member of this family
with parameter (v = 12, »' = 1) agrees closely with the stated odds.

3.3.3. Comparison of the Weights of Prior and Sample Evidence

Even when ‘the decision maker is well satisfied a priori with a distribution
fitted to his subjective expectations or betting odds, he may become thoroughly
dissatisfied with the implications of this distribution when he sees them reflected
in the posterior distribution calculated after a sample has actually been taken.
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Suppose, for example, that after the bettor discussed in the previous section has
assigned the distribution fs(p{62.9, 118.5) to the fraction voting Democratic in the
next election, a simple random sample of 100 voters yields reliable information
that only 45 of them will vote Democratic. The posterior distribution of # will
have density fs(p|62.9 4 45, 118.5 4 100) = f5(p[107.9, 218.5), and this implies that
the odds in favor of the Democrats are now 6 to 4, i.e., that P{p > .5} = .6. It
is quite conceivable, however, that a person who was originally willing to bet 3 to 1
on the Democrats will still be willing to bet at nearly if not quite these same odds
rather than at 6 to 4, arguing that in his opinion so small a sample carries very
little weight in comparison with the analysis of the general political situation on
which the original 3-to-1 odds were based. It is also quite conceivable that he
will react in the opposite way, arguing that abstract political reasoning does not
convince him nearly so well as solid evidence on the actual intentions of 100 voters,
and accordingly he may now much prefer giving 3-to-1 odds against the Democrats
to giving 6-to-4 odds in their favor.

In either case, what has happened is simply that the person in question has
made two different, mutually contradictory evaluations of the “weight” of the
prior evidence; and in either case it is his next responsibility to reconcile these
two evaluations in whatever way seems best to him. If he finally decides that
his prior odds accurately represent his reasoned evaluation of the general political
situation, then he should still be willing to give odds of 6 to 4 on the Democrats.
If on the contrary he finally decides that he is now willing actually to give odds of
3 to 1 against the Democrats, then he has implicitly reevaluated the weight which
should be assigned to the prior evidence relative to the sample.

The possibility that posterior subjective feelings may not agree with calcu-
lated posterior probabilities suggests that without waiting for an actual sample to
give rise to difficulty it will usually be well to check subjective prior betting odds
against hypothelical sample outcomes before beginning the actual analysis of the
decision problem; and this in turn suggests that in some situations it may actually
be better to reverse the procedure, making the initial fit of the prior distribution
agree with attitudes posterior to some hypothetical sample or samples and then
checking by looking at the implied betting odds. Thus if our bettor on elections
had said (a) that without any sample evidence he would bet 3 to 1 on the Demo-
crats, but (b) that the presence of only 45 Democratic votes in a sample of 100
would lead him to reverse these odds, then from the implied right-tail cumulative
probabilities

Ga(Blr', n') = 3 | Gs(.5|r' + 45, n' + 100) = 1 |

the statistician could calculate r’ = 9.4, ' = 16 to be the appropriate prior param-
eters, implying a prior standard deviation of .12 where the distribution fs(p|62.9,
118.5) implied a standard deviation less than .05.

It is sometimes argued that a procedure which selects the prior distribution
to agree with the desired posterior distribution violates the basic logic of Bayes’
theorem, but in our opinion this argument rests on nothing but an excessively
literal interpretation of the words “prior” and “posterior”. As we pointed out in
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Section 1.1.2, the decision maker’s real task is to assign a measure to the entire
possibility space 8 X Z in whatever way enables him to make the most effective use
of his experience and knowledge; and in Section 1.4.3 we examined a situation where
it was reasonable to start by actually assigning a complete set of ‘“posterior’”
probabilities to 8 and then to compute the “prior” from the “posterior’” probabil-
ities. We go even further than merely rejecting the argument that prior prob-
abilities must be assigned without consideration of posterior probabilities; we
maintain that it is irresponsible to hold to an original prior distribution if after a
real sample has been taken the resulting posterior distribution disagrees with the
decision maker’s best judgment. Since it is usually difficult to intuit directly
concerning the relative weights to be given to prior and sample evidence, it may
be that the decision maker will usually do well to place his primary reliance on
prior expectations and betting odds; but even when this is true, calculation of the
distribution posterior to a hypothetical sample will provide a useful check.

3.3.4. “Quantity of Information’ and “Vague’ Opinions

In some situations the decision maker will feel that the information available
prior to obtaining actual sample evidence is virtually non-existent. There has
been a great deal of discussion concerning the representation of this state of mind
by an appropriate prior distribution, and we shall now briefly review some of the
principal arguments which have been advanced. Because the logic is slippery
we shall proceed by first discussing an example which makes as good a case as can
be made for the existence of distributions which express the absence of any definite
prior convictions and then discussing further examples which bring out the diffi-
culties involved.

Normal Prior Distributions. As we have already seen repeatedly, a sample
from an Independent Normal process with unknown mean & but known precision h
can be summarized by the sufficient statistic

y = (m,n) = (}l Tz n) , (3-13a)

the natural-conjugate prior density is

Fu(ulm’, hn') & e—dhmim' =t —:, :g‘ <® (3-13b)
1
and the parameters of the posterior density are
’ ’
m',n"y=(m",n)s(mn) = (W; n + n) . (3-13c)

The fact that the component n of the sample statistic (m, n) corresponds to
the number of observations on the process makes it natural to think of this com-
ponent as a measure of the “size” of the sample or of the ‘“weight”” of the sample
evidence or of the “quantity of information’’ in the sample, and the measure thus
defined has the obviously desirable property of being additive from sample to
sample. Once we have made this observation, it is very tempting to interpret
the parameters n’ and n’’ of the prior and posterior distributions of & as measuring
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the quantity of information about u contained in those distributions; the posterior
information »n'* will then be the sum of the prior and sample informations.

If the component n of the sample statistic (m, n) is to be interpreted as meas-
uring the quantity of information in the sample, then it seems natural to interpret
the component m as summarizing the tmpor? of this information; or since the ex-
pected value of 7t given u is equal to u, we naturally tend to think of m as an
“estimate’” of u based on n units of information. It then becomes natural to think
of the prior parameter m’ as an estimate of i based on n’ units of prior information,
especially since the prior expected value of & is m’, as can easily be shown. The
whole approach seems to hang together logically when we observe that by (3-13¢c)
the posterior parameter or “estimate’” m’’ can be interpreted as a weighted average
of the prior and sample estimates, the weights being the respective ‘‘quantities of
information” n’' and n.

Our inclination to interpret the prior and posterior distributions in this way
becomes even stronger when we examine the behavior of the prior distribution of &
as the parameter n' approaches the lower bound of its domain (0, «). It is well
known that the variance of the distribution (3-13b) is 1/hn’, so that asn’ approaches
0 the variance of @ increases without bound; and it is also easy to show that as n’
approaches 0 the distribution of & approaches uniformily in the sense that the
ratio of the probabilities of any two intervals of equal length approaches unity.t
An interpretation of n' as a measure of the quantity of information underlying
or summarized by the decision maker’s prior “estimate” m’' thus accords very
well with two instinctive feelings: (1) that large variance is equivalent to great
uncertainty and that great uncertainty is equivalent to little information, and
(2) that when one knows very little about the value of some quantity, it is not
unreasonable to assign roughly the same probability to every possible value of this
quantity (strictly speaking, equal probabilities to equal intervals).

Finally, we observe that as n’ approaches 0 the parameters m'’ and n'’ of the
posterior distribution as given by (3-13c) approach the values of the sample statis-
tics m and n respectively; and it is very tempting to interpret this limiting posterior
distribution as being a distribution of & which is wholly determined by the sample evi-
dence and completely independent of the decision maker’s vague prior opinions.
Notice that the posterior distribution with parameter n’’ = n’ 4+ n exists even for
n' = 0 despite the fact that no limiting prior distribution exists.

Beta Prior Dristributions. Unfortunately the interpretation of the prior dis-
tribution in terms of an “estimate” summarizing a certain “quantity of informa-
tion” becomes much less clear-cut as soon as we look closely at examples other
than the Normal; all the important difficulties can be illustrated by considering
as simple a distribution as the beta. We have already seen that the beta distribu-
tion is the natural conjugate for a Bernoulli process with unknown parameter g;
we remind the reader that for this process a sufficient statistic is

y=(r,n) = 2zin), (3-14a)

t Alternatively, let M, be the interval (u, us) and let M; be the interval (u; + k, ua + k).
Then as n' — O the conditional probabilities P{M;|M; U M,} and P{M,|M, U M;} approach
equality for all x;, us, and k.
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that the beta prior density can be written

falplr’, n') o« p”=1(1 = p)v=r-1 | n>r>0, (3-14b)
and that the parameters of the posterior density are
@Y=, nYs(r,n) =" +r,n +n). (3-14¢)

At first glance it may seem as natural in this case as in the Normal to regard
the number of trials n as measuring the ‘‘size”” of or ““quantity of information” in a
sample. It has already been pointed out, however (in Section 2.3.4), that instead
of thinking of a Bernoulli process in terms of random variables £; = 0, 1 which indi-
cate whether the 7th trial was a success or a failure, we can just as well think of it
in terms of random variables 7i; = 1, 2, - - - which indicate the number of trials re-
quired to secure the ith success; and we have seen that if we do look at the process
in this way, then it is the number of successes r which is the “natural” measure
of the sample size rather than the number of trials n. Clearly, then, we can not
think of either component of the statistic (r, n) as the measure of the information
in a sample from a Bernoulli process, and it follows at once that it would make no
sense to think of either component of the parameter (', n’) as the measure of the
information underlying a prior distribution.

It next occurs to us to try to remedy this situation by arguing that the choice
of statistic (r, n) to summarize the sample and of the parameter (', n’) to describe
the prior distribution is arbitrary even though convenient for practical computa-
tions and that interpretations will be easier if some other choice is made. Not
only is neither component of (r, n) an apparently clear measure of information
like n in the Normal case; neither component is a natural estimate of the process
parameter like m in the Normal case. It would seem, however, that if we sum-
marize the sample by the number of trials n and the sample mean m, defined exactly
as in the Normal case by

1 r

m= - TIi= ol

then we may recover all the simplicity of interpretation that we seemed to have

in the Normal case. The expected value of #it given p is p, so that m as here de-

fined is just as natural an “‘estimate’”’ of p as m is of u in the Normal case; and since

for given m an increase in n implies an increase in r, the sample size or quantity

of information would seem to be unambiguously measured by the component n of
the statistic (m, n).

If we now wish to interpret the prior and posterior distributions in an analogous
manner, we will substitute m’n’ for »’ in the formula (3-14b) for the prior density,
thus obtaining
) . ) — O<m' <1,
D'(p) « pvm=1(1 — pyvi-mr-t | W>0.

and we will think of m’ as a prior “estimate” of p summarizing n' units of prior
information. The implications are analogous to the Normal case and seem reason-
able in several respects. (1) Since the expected value of p is m’, m' is a ““natural”
estimate of p. (2) Since the posterior parameters are given by
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w_n'm 4+ nm
T o +n
we can interpret the posterior “estimate’” m'’ as a weighted average of the prior
and sample “estimates’’, the weights being the ‘“‘quantities of information” sum-
marized by these estimates. (3) As the prior information »n’ approaches 0, the
posterior parameter (m’’, n'’) approaches the sample statistic (m, n), so that we
are again tempted to think of the limiting posterior distribution as one which is
wholly determined by the sample information and independent of any individual’s

vague prior opinions.

Closer examination reveals serious difficulties with these apparently simple
interpretations, however. As n’ approaches 0 with the “estimate” m’ held fixed,
we find that the beta distribution (unlike the Normal) does approach a proper
limiting distribution: namely (as shown in Section 9.1.3) a two-point distribution
with a massof m’ onp = 1 and a mass of (1 — m') on p = 0. Now this limiting
distribution cannot in any sense be considered ‘“vague”. On the contrary it is
completely prejudicial in the sense that no amount of sample information can
alter it to place any probability whatever on the entire open interval (0, 1). A sin-
gle sample success will annihilate the mass at p = 0, and a single failure will
annihilate the mass at p = 1; but a sample containing both successes and failures
will give the meaningless result 0/0 as the posterior density at all p in (0, 1) and
also at the extreme values 0 and 1 themselves.

Even if we stop short of the actual limiting two-point distribution and con-
sider the implications of a beta distribution with a very small but nonzero n’,
we find that we cannot say that such a distribution represents ‘“very little informa-
tion”” or expresses opinions which are in any sense ‘““vague’’. As n’ approaches 0,
the distribution assigns a probability approaching 0 to any interval [g, 1 — €]
where ¢ and ¢; are arbitrarily small positive constants; and it requires a very great
deal of information in the ordinary sense of the word to persuade a reasonable
man to act in accordance with such a distribution even if the probability assigned
to the interval is not strictly 0. Long experience with a particular production
process or with very similar processes may persuade such a man to bet at long odds
that the fraction defective on the next run will be very close to 0 or very close to 1,
but he is not likely to be willing to place such bets if he is completely unfamiliar
with the process.

The Arbitrariness of Parametrization. Actually, the difference between Normal
and beta conjugate families which we have just emphasized is apparent rather
than real, since what we have said applies to only one among an infinity of possible
parametrizations of the families in question. A Bernoulli process can be character-
ized by » = log [p/(1 — p)] just as well as by pitself. If it is so characterized,
then the conjugate prior density becomes

n''=2+n,

’

’

err —o < T <o
1+ e’ w>r>0;
and as n’ and ' < n’ approach 0 in any manner whatever, this density behaves

exactly like the Normal density discussed above: it becomes more and more uni-
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form over the entire real line but does not approach any proper density as a limit.
And vice versa: as the Normal distribution of @ approaches uniformity over the
real line, the implied distribution of 7 = 1/2 approaches a mass of 1 at the point
7=0.

Thus in general: if the distribution of one particular set of parameters 6 has
very great variance, the distributions of other, equally legitimate sets of parameters
will have very little variance; so that if we choose one particular set of parameters
and assign to it a very broad prior distribution, it must be because we have reason
to assign such a distribution to these particular parameters and not to others.
The notion that a broad distribution is an expression of vague opinions is stmply
untenable. There is no justification for saying that a man who is willing to bet at
odds of a million to one that 1/ = 0 & .0001 holds an opinion which is either
more or less vague or diffuse than that of a man who is willing to bet at the same
odds that @ = 0 & .0001. There is no justification for saying that a man is either
“definite’” or “‘vague’ if he assigns the distribution fs(p|1,100) with standard devia-
tion .01 to the mean number P of successes per Bernoulli trial and thereby assigns
an infinite standard deviation to the mean number 1/p of trials per success.

Notice, however, that although we cannot distinguish meaningfully between
“vague’’ and “definite’’ prior distributions, we can distinguish meaningfully be-
tween prior distributions which can be substantially modified by a small number of
sample observations from a particular data-generating process and those which
cannot. Thus consider an Independent Normal process with known precision
h = 1 and unknown mean {, so that if a Normal prior distribution with parameter
(m’, n') is assigned to @ the posterior distribution will be Normal with parameter

n _ n'm 4+ nm
T on'4n

Given that the prior distribution of 7 is to be of the Normal form, willingness to
bet at odds of a million to one that @ = 0 4 .0001 implies m' = 0, n' = 2.4 X 10°,
so that almost no conceivable amount of sample information could make the pos-
terior parameters differ noticeably from the prior, whereas willingness to bet at
odds of a million to one that 1/a = 0 & .0001 implies m' = 0, n’ = 1.6 X 107%,
so that a single sample observation will almost wholly determine the parameters
of the posterior distribution.

) n'=n"4+n.

3.3.56. Sensilinily Analysis

Our last example suggests that ¢n some decision problems prior opinions and
prior betting odds may have little or no effect on the decision actually chosen.
Thus for example, we often find situations in which, after a sample has once been
taken, the posterior expected utility of every a in A is practically the same for
every prior distribution that the decision maker s willing to consider. The ques-
tion is sometimes delicate, however, and to avoid giving the impression that it is
simpler than it really is, we shall illustrate with an example involving the beta
rather than the excessively well-behaved Normal distribution.

Suppose that utility depends on the parameter p of a Bernoulli process; con-
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sider three extremely different prior distributions: (1) the rectangular distribution
f3(pl1, 2), (2) the extremely U-shaped distribution fs(p|.01, .02), and (3) another
extremely U-shaped distribution which places a mass of .49 on p = 0, a mass of .49
onp = 1, and distributes the remaining probability .02 uniformly over the interval
(0, 1); suppose that, after one of these distributions has been chosen, a fairly large
number n of observations are made on the process; and let r denote the number
of successes in this sample.

1. Assume first that 0 <r < n. Then the posterior distributions correspond-
ing to the first and third priors will be identical, having density fs(p|r + 1, n 4 2)
and mean (r 4+ 1)/(n + 2), while the posterior corresponding to the second prior
will have density fs(p|r 4+ .01, n 4+ .02) and mean (r 4+ .01)/(n 4 .02). In this
case the first and third priors are absolutely equivalent for any action problem;
and in the very common type of problem where the utility of any a in A depends
only on the mean of the distribution of p (cf. Chapter 5A) the second prior will
usually be practically equivalent to the other two if both r and (n — r) are at all
large compared to 1.

2. Assume next that r = 0. Then the first two priors yield posterior densities
fs(pl1, n + 2) and fs(p|.01, n + .02) respectively while the third yields a posterior
distribution which places a mass (n + 1)/(n + 1.04) on the point p = 0 and distrib-
utes the remaining probability over(0, 1) with density [.04/(n + 1.04)]fs(p|1, n + 2).
In many action problems each of these three posteriors would have implications to-
tally different from each of the others; in particular, the means of the three posterior
distributionsare respectively 1/(n 4- 2), .01 /(n + .02), and .04/(n? 4 3.04n + 2.08),
the first of which may be many times as large as the second.

Thus even when the sample n is large the criticality of the choice of a prior
distribution depends crucially on the value of the sample r. When 0 <r < nin
our example, a decision maker who feels sure that his prior information should
lead to some distribution “between’” the rectangular and an extreme U simply
does not need to worry further: he can select the terminal act which is optimal
under the posterior distribution corresponding to any prior in the range he is con-
sidering and be sure that for all practical purposes he has maximized his expected
utility with respect to any prior he might have chosen. He can in fact simplify his
problem still further by observing that all possible posteriors are practically equiv-
alent to the posterior density fs(p|r, n) corresponding to the improper prior fs(p|0, 0)
and spare himself the trouble of interpolating for fractional r and n in tables of
the beta distribution. When on the contrary r = 0, the decision maker may be
forced to make a definite choice of the prior distribution with which he wishes his
act to be consistent, no matter how vague or confused his initial psychological
state may be. In short, sensible men will always observe the principle of de
minimis, but what are minima depends on circumstances.

One particular point is so often overlooked that it requires explicit mention.
In a great many applications of great practical importance, the question is not
one of deciding what to do after a sample has already been taken; it is one of decid-
ing whether or not any sample should be taken at all and if so how large the sample
should be. We cannot emphasize too strongly that, in situations where it is pos-
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sible to take at most one sample or where each successive sample involves a sub-
stantial “‘stage cost’’ independent of the sample size, answers to questions of this
kind must always depend critically on the prior distribution. In such situations
it is therefore a vital and unavoidable responsibility of the decision maker to adopt
a prior distribution which represents his best judgment as accurately as possible,
however much he may wish that this judgment could be based on more evidence
than is actually available.

3.3.6. Scientific Reporting

Finally, let us look briefly at the implications of the discussion above for the
vexed question of the proper way in which to report a “scientific’’ experiment, by
which we presume is meant an experiment carried out with no immediate action
problem in mind. An obvious “solution” to this problem is simply to report the
data or—provided that there is no substantial doubt about the nature of the
data-generating process—to report the sufficient statistics; but it has long been
urged that the reporter should add some indication of the ‘reliability’”’ of the data
or the sufficient statistics, and if the proper measure of reliability is to be given
we must ask what purpose the measure will serve.

It seems to us that the answer to this question is not hard to find. It is true,
of course, that the ultimate use to which a measure of reliability will be put depends
upon the user. If the reported values of certain physical constants are uncertain,
a physicist may want a measure of uncertainty because he wants to decide whether
or not to invest effort in improvement of the basic data before putting the data
to any use whatever, whereas an engineer examining the same values may want a
measure of uncertainty in order to allow a suitable margin of safety in the equip-
ment he is designing. In either case, however, the user is not interested in un-
certainty out of idle curiosity or because he wants to verbalize about it; he is inter-
ested because he has a decision problem to solve, to solve it he must take account of
his uncertainty about some quantity 0, and therefore he must, implicitly if not explicitly,
assign a probability distribution to §. We are, of course, using the word “decision”’
in its broadest interpretation, but we believe that it is very clearly a decision
problem to choose between alternatives such as (1) consider some scientific theory
as having been substantiated to the extent that the expenditure of further effort
on research would be unwarranted, and (2) reserve judgment about the validity
of the theory, thereby implying that further research should be done before the
theory is accepted or rejected.

Because the distribution which the user of any report will ultimately assign
to § must depend in part on evidence external to the data being reported, the re-
porter cannot in general supply the user with the distribution he requires; but what
he can do is to report in such a way that the user has ready access to those aspects
of the data which will enter into his own assignment of a distribution to §. What
is completely intolerable is to report in such a way that the sufficient statistics
cannot be recovered by the user; and while it is probably unnecessary to point out
that it is inexcusable to report a level of significance or a confidence interval with-
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out also reporting sample size, it does seem necessary to point out that even if
sample size 1s reported the user cannot in general recover the information he needs
from a statement that the data was or was not significant at some predetermined
level or from an asymmetric or randomized confidence interval. And even if a
report, ¢s full enough to make it possible to recover the sufficient statistics, the user
is not well served if he is forced to calculate these numbers which might have been
given to him directly.

Although the only way in which the user of a scientific report can obtain a
really adequate analysis of his decision problem, whatever it may be, is to take
the sufficient statistics and then make the calculations required by his particular
problem, it is true that in many situations the reporter can foresee (a) that many
users will want to know whether or not an unknown scalar § is above or below some
“standard” value 8, and (b) that many users would if pressed assign to § a prior
distribution with very substantial variance. In such cases the reporter may be
able to spare some users some arithmetic. by adding to his report of the sufficient
statistics a statement of the posterior probability P{§ < 8,} based on a rectangular
prior distribution, warning the user at the same time that this probability is inap-
propriate unless the user’s own prior distribution of this particular parameter is
at least roughly rectangular. If no clear-cut ‘“standard” 6, exists, the entire
cumulative posterior distribution based on a rectangular prior can be reported
either graphieally or by listing quartiles, deciles, or other fractiles.t

In the very common case where the sufficient statistics are the sample size
and the value of an unbiassed, approximately Normally distributed “‘estimator”,
a statement of the value and the sampling variance of the estimator can of course
be directly interpreted as the mean and variance of the posterior distribution of
the estimated parameter given a rectangular prior distribution. Unsophisticated
users of statistical reports usually do interpret probability statements about statis-
ties as if they were probability statements about parameters because their intui-
tion tells them that probability statements about parameters are directly relevant
to their problem while probability statements about statistics are not. What we
are suggesting is that the sophisticated reporter should make clear to such users
the conditions under which their relevant interpretations are valid, rather than
insist on valid interpretations which are not directly relevant to the users’ problems.

Finally, let us remark that if the reporter believes that he has substantial
information outside the evidence of the particular experiment which he is reporting,
no reasonable canon of scientific reporting should force him to suppress this in-
formation or any conclusions he believes can be based on it. If he feels that the
evidence obtained from this one experiment does not completely overwhelm his
own personal prior distribution, and if he believes that his prior judgments are
well enough founded to be of interest to the reader of the report, then he can—
and we believe he should—add to his report a posterior distribution based on his
own explicitly stated and defended prior distribution.

t It is perhaps worth remarking that the posterior probability of ‘“‘extreme” propositions of
the type § = 6, exactly are necessarily so sensitive to the prior distribution that it is completely
impossible to make a useful general-purpose statement of posterior probability.
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3.4. Analysis in Extensive Form When the Prior Distribution and
Sample Likelihood are Conjugate

The basic principle of the extensive form of analysis as set forth in Section 1.2.1
is to evaluate every e in E by computing

u*(e) = E,. max, Egj; u(e, 2, a, §) (3-15)

and then to select an e which maximizes u*. The application of the analysis was
illustrated in Sections 1.2.2 and 1.4.3 by simple examples in which these computa-
tions could be carried out numerically, but in the majority of practical applica-
tions numerical analysis would be extremely difficult if not impossible because ©
and Z are extremely large if not infinite. We shall now show, however, that an-
alytical computation is often very easy when:
1. The experimental outcome z admits of a sufficient statistic y of fixed dimen-
sionality;
2. The prior measure Pj on O is conjugate to the conditional measures Py,
on the reduced sample space Y.
In the present section we shall indicate in a brief and general way how the cat-
alogue of distributions and integrals which constitutes Part III of this monograph
can be used to evaluate u* when y is generated by one of the data-generating
processes listed in Section 3.2.5 above and the prior distribution is conjugate to
the likelihood of y. We shall then go on in Part II to develop still simpler methods
of analysis for cases where the utility function (-, -, -, -) meets certain conditions
which are often met in practice.

3.4.1. Definttions of Terminal and Preposterior Analysis

Given the existence of a sufficient statistic y, the definition (3-15) of u*(e)
can be rewritten in the form

u*(e) = Ey, max, Eg, u(e, §, a, ) . (3-16)

Our discussion of the evaluation of (3-16) for any given e will be divided into two
parts:
1. Evaluation for a particular y of

u‘(e; y) = MaXa Esllr u(e) Y, a, 6) . (3'17)
2. Repetition of this procedure for all y in ¥ followed by computation of
u*(e) = Eyou*e, §) . (3-18)

Evaluation of (3-17) will be called terminal analysis because it deals with the eval-
uation of and choice among terminal acts after the experiment has (actually or
hypothetically) already been conducted and the outcome y observed; it includes
as a spectal case the evaluation of and choice among terminal acls when the experiment
and oulcome are the dummaes ey and yo which consist of no experiment and no observa-
tion at all. Evaluation of (3-18) will be called preposterior analysis because it
involves looking at the decision problem as it appears before the experiment has
been conducted and taking the prior expected value of all possible posterior ex-
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pected utilities u*(e, y). In terms of the game trees discussed in Section 1.2,
terminal analysis is concerned with the two outer levels of branches (the last two
moves in the game) while preposterior analysis is concerned with the two inner
levels (the first two moves in the game) and can take place only after the two outer
levels have been averaged out and folded back.

Each step in the analysis will be illustrated by application to the following
example. A choice must be made between two agricultural processes, one of
which will yield a known profit K, while the profit of the other depends on an un-
known quantity p in a linear manner, K, + k.u. It is possible to take observa-
tions £ on u which are Normally distributed with known precision; the density of
any £ is

Iz, h) = 2m)—Ye-dh—wrp} | (3-19)

If n observations (x), - - -, z.) are made and the process with profit K, is chosen
(act @), the decision maker’s utility will be

u[e, (1'1, e 71-")1 @, “'] = —€xXp (k'n - Kl) ; (3'208')

if the same experiment is conducted but the process with unknown profit is chosen
(act a;), his utility will be
ule, (z1, -++ , za), a3, 1] = —exp (kin — Kp — kap) . (3-20b)

(One interpretation of these utilities would be that the cost of sampling is
proportional to n and that utility to the decision maker of ' units of money can
be approximated over a suitable range by a function of the form

W) = c(l — er—ov) | (3-21a)
which can be reduced without loss of generality to the form
u@) = —e* (3-21b)

by linear transformations of the scales on which money and utility are measured.
We use this function here simply as a mathematical illustration; its applicability
to a real problem involves acceptance by the decision maker of the very restrictive
implication that addition of a constant amount to every prize in a lottery increases
the value of the lottery by that same amount.)

3.4.2. Terminal Analysis

1. Computation of the Posterior Distribution of §. The first step in terminal
analysis as defined by (3-17) is to use the prior measure P and the conditional
measure P, to determine the posterior measure Py, for the particular y which has
(actually or hypothetically) been observed. We have already seen in Section 3.2.5
that the conjugate prior distribution for any data-generating process considered
in this monograph possesses a density function, that the posterior distribution
possesses a density of the same mathematical form as the prior, and that it is
possible to compute the parameter of the posterior distribution from the prior
parameter and the sample statistic by a simple algebraic * operation; no analysis
is required.

The conspectus in Section 3.2.5 gives the * operation as well as definitions
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of the sufficient statistics and conjugate densities for all the data-generating proc-
esses there listed. In our example, if the decision maker assigns to @ a Normal
prior distribution with parameter ' = (m’, n’),

D' () = fu(ulm’, hn') o = Inammyr
and if he then observes a statistic y = (m, n)—i.e., if the mean of n experimental
observations turns out to be m—his posterior distribution will be Normal with
density

D" (um) = fa(ulm", hn'') a0 = In"Gu=m"y: (3-22a)
where
"oty = (m! _ (mn tmn .
(m', n —(m,n)*(m,n)—( 7+ n +n). (3-22b)

2. Computation of the Posterior Ulility of an Act. 'The next step in terminal
analysis as defined by (3-17) is the use of the posterior distribution to compute
the expected utility of each a in A. Here the feasibility of the analysis will obvi-
ously depend on the choice of mathematical function used to approximate the
decision maker’s “true’’ utility, but with a little ingenuity it will often be possible
to find a tractable function which gives a good approximation over the range of
consequences which have any substantial probability of occurrence in the particular
deciston problem at hand.

In our example, we make use of the fact (easily verified by completion of
squares) that for any 2, and z; > 2

/““ estt fu(zlm, H) dz = exp (a + bm + é%) :fN (z]m + %» H) dz (3-23)

to evaluate the expectations of the utilities given by (3-20):
u*fe, (m, n), a1] = /_"“ —exp (kan — K1) fw(ulm”, hn'') du
—exp (kin — K,) (3-24a)

u#[e’ (m, n), az] = /_‘” —eXp (k.n - K2 - k?“) fN(“’lm”) hn”) d”' (3 24b)

2hn’’

= —exp (k.n — Ky — kom"' + 1 kg) .

Because of the great variety of possible utility functions we have made no attempt
to give a complete catalogue of integrals of this sort in Part III, but we do call the
reader’s attention to the fact that the expectations of linear and quadratic utilities
can be evaluated by use of the moment formulas given in Chapters 7 and 8 for
every distribution occurring in the analysis of the data-generating processes listed
in Section 3.2.5 above.

3. Choice of an Optimal Act. 'The last step in terminal analysis as defined by
(3-17) is to select an a which maximizes u*(e, y, -), and this will ordinarily be rela-
tively easy if explicit formulas have been found for all u*(e, y, a).

In our example we can compare the utilities (3-24) of a, and a; by writing
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" - r - 1 1
u-le, sznZzal = exp —I\1+I\2+]\'2m _2},,7}(%

u“[e, (mv n)y aﬂ]

and observing that this ratio will be equal to or less than 1 if

1 1
" X _ —_ 2 -
m S k: <K1 Kz + o2hn'’ kz) . (3 25)
Since the utilities of both acts are negative for all m’’, this implies that @, is an
optimal act if m"’ satisfies (3-25); if m'’ is greater than or equal to the right-hand
side of (3-25), @, is an optimal act.

3.4.3. Preposterior Analysis

1. Repetition of Terminal Analysis for all y. 'The first step in preposterior
analysis as defined by (3-18) is the repetition of terminal analysis as deseribed in
the previous section for every y in Y, and it is here that the use of conjugate prior
distributions makes its greatest contribution to the feasibility of the analysis. A
stngle terminal analysis can be carried out in almost any problem, but if the mathe-
matical form of Py, depends on y, the task of repeating this analysis for every y in
Y will be prohibitive unless Y is extremely small. If, however, the prior dis-
tribution is conjugate to the likelihood of y, so that the mathematical form of
Py, is the same for all ¥ and the only effect of a particular y is on the parameter
y'" = y’ =y, then formulas which give u*(e, y) for any y (and y"’) give it for all y
(and y’) which may result from the e in question or from any other ¢ whatever.

Thus in our example, formulas (3-24) for u*(e, y, a1) and u*(e, y, a2) and condi-
tion (3-25) for determination of the optimal act hold unchanged for every possible
y'' = (m"”,n’") and thus for every possible y = (m, n).

2. Computation of the Marginal Distribution of §. The next step in prepos-
terior analysis is the determination of the measure P,), with respect to which the
expectation called for by (3-18) is to be carried out. We again call attention to
the fact that it is only at this point in analysis in extensive form that it becomes
necessary to know anything about the distribution of , since terminal analysis
requires knowledge of only the kernel of the likelihood of ¥ and (as we pointed out
in Section 2.2.2) this kernel can be found without actually finding the distribution
of §j or even knowing anything whatever about the e which produces y.

The marginal distribution of § given e¢ which is called for by (3-18) is usually
most easily found by first determining the conditional distribution of § given e
and 0 from the nature of the experiment ¢, the nature of the data-generating process
with which we are dealing, and the definition of § in terms of the random variables
generated by the process. Then letting D.(-|e, 8) denote the mass or density
function of this conditional distribution of § and letting D’ denote the prior density
of 4, we can obtain the marginal mass or density function D,, of § for the given e,

Da(yle) = [, Delyle, 0) D'(6) ds .

In Part III we have derived both the conditional and marginal distributions
of § for one or more kinds of experiments on each of the data-generating processes
listed in Section 3.2.5 above; thus for the Bernoulli process the functions are given
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both for the case where the number of trials n is predetermined, the number of
successes 7 being left to chance, and for the case where r is predetermined and 7
is left to chance. These results are catalogued in Table 3.1 (page 75). The first
and second columns name the data-generating process and the conjugate prior
distribution as defined in Section 3.2.5. The third column shows the nature of
the experiment by listing the components of the sufficient statistic with a tilde over
those which are random variables, the others being predetermined by the experi-
mental design. The next two columns give respectively the conditional and mar-
ginal distributions of the random components of § with references to the sections
in Part III where these distributions are discussed; the first reference in each case
is to the section where the distribution is derived while the second is to the section
where its properties are described and tables of the distribution are cited. The
last column of the table will be explained in a moment.

If in our example the experiment consists of taking a predetermined number n
of observations on the Normal process defined by (3-19), then as shown in Sec-
tion 11.4.1 the conditional distribution, given 8 = u, of the random component #
of the sufficient statistic § = (M, n) has the density

D.(m|n, u) = fw(m|y, hn) o« e~ rnim—wr
The unconditional density of (i, n) is then, as shown in Section 11.4.2

D(min) = [ f(ml, hn) fo(ulm’, hn') dp = fu(mim', hn,)  (3-26a)
where
1_L. 1 (3-26b)

3. Computation of the Expected Utility of an Experiment. The third step in
preposterior analysis as defined by (3-18) is the use of the marginal distribution
of § to compute

u*(e) = By, u*(e, §) where u*(e, y) = maxo u*(e, y, a) .

When explicit formulas for all u*(e, y, a) have been found in terminal analysis, it
will sometimes be possible to find a single explicit formula for u*(e, y); in other
cases it will be necessary to express u*(e, ) by a whole set of formulas for u*(e, y, a),
each of which gives u*(e, y) for those y for which the a in question is optimal.
Thus in our example u*(e, y) is given by (3-24a) for all y = (m, n) such that
condition (3-25) for the optimality of a; is met; it is given by (3-24b) for all other y.

4. The Distribution of §j'’. Because u*(e, y) is obtained by expectation with
respect to the posterior distribution of §,

u*(e, y) = max, Eg, u(e, y, q,0) ,
a formula ¢ for u*(e, y) obtained by carrying out this expectation analytically will
in general have as an argument the posterior parameter y’’ = y’ » y as well as the
statistic y itself,
u*(e,y) = o[y, ¥y W] ;
and in many cases (of which our example is one) the formula will involve only y"'.
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Table 3.1

Distributions of Statistics and Posterior Parameters

Distribution of Statistic Distribution
Prior Experi- of Posterior
Process  Distribution ment Conditional Marginal Parameter
Fln binomial beta-binomial —
_ (9.2.2; 7.1) (9.2.3;7.11)
Bernoulli beta
filr Pascal beta-Pascal —
(9.3.2;7.2) (9.3.3; 7.11)
Pt Poisson negative-binomial —
, (10.3.2; 7.5) (10.3.3; 7.10)
Poisson gamma-1
Ilr gamma-1 inverted-beta-2 —
(10.2.2;7.6.2)  (10.2.3; 7.4.2)
(h known; min Normal Normal Normal
ii Normal (114.1;7.82) (114.2;782)  (11.4.3;7.8.2)
Normal u known; Dy gamma-2 inverted-beta-2  inverted-beta-1
' h gamma-2 (11.2.1;7.6.4) (11.2.2;7.4.2) (11.2.3; 7.4.1)
Normal- m, ¥|n, » See 11.6.1 11.6.2, 11.6.3 11.7.1, 11.7.2
lgamma
(h known; fin Normal Normal Normal
Multi- A Normal (12.2.1; 8.2) (12.2.2; 8.2) (12.3.1; 8.2)
normal Normal- m, ¥n, » See 12.5.1 12.5.2, 12.5.3 12.6.1, 12.6.2
gamma
(h known, bin Normal Normal Normal
. # Normal (13.3.1; 8.2) (13.3.2; 8.2) (13.4.1; 8.2)
Regression
1Normal- b,oln,» See13.6.2 13.6.3 13.7.1, 13.7.2
gamma

In order to compute
u*(e) = Ey.u*(e, §)

we can of course substitute y’ * y for ¥’/ in the formula ¢[y, ¥’ (y)] as originally
derived and then sum or integrate over y,

u*(e) = D ¢y, ¥’ *y) Dulyle) or f ¢(y,y' *y) Dn(yle) dy ;

but when the original ¢ does not even contain y explicitly, it will be easier to proceed
by first deriving the distribution of the random variable 4’ = 3’ *§ and then
summing or integrating over y'’,

ut(e) = 3 ¢(y") Dy"le) or [ Du"le)dy" .

Thus in our example we can derive the distribution of §"/ = (', n’’) by first
solving (3-22b) to obtain
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343 Parl 1: General Theory

m = (0 + n)ym'" — n'm’

n

and substituting this result in the formula for the unconditional density (3-26) of
§ = (#it, n) to obtain

Den"[n) = fum”im', hn*) , g == n

Then letting m” denote the “critical value” of m'’ which corresponds to exact
equality in the optimality condition (3-25) we have by (3-24) for the experiment
e which consists of taking n observations

u*(en) = f:". —exp (kan — Ky) fu(m"|m’, hn*) dm"’

+ /; —exp (k.n — K; — ko' + ﬁ k%)fy(m”lm’, hn*)dm’ .
By use of (3-23) the integrals can easily be evaluated explicitly in terms of the
tabulated cumulative unit-Normal function.

In Part T11 we have derived the distributions of '’ for most of the experiments
listed in Table 3.1 (page 75); the last column of the table names the distribution
and gives references, first to the derivation and then to the discussion of properties.
The experiments for which no distribution of '’ s given are those where the
operation is simple addition, i.e. where ¥"’ = y’ + y, and it is therefore a trivial
matter to reexpress a formula ¢(y, ¥"') for u*(e, ) in terms of y alone.
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EXTENSIVE-FORM ANALYSIS WHEN
SAMPLING AND TERMINAL UTILITIES ARE ADDITIVE






CHAPTER 4

Additive Utility, Opportunity Loss, and the Value of Information:
Introduction to Part 11

4.1. Basic Assumptions

In the first chapter of this monograph we described the extensive form of
analysis and explained how it can be applied numerically in problems where the
spaces E, Z, A, and © are all discrete and reasonably small. In Chapter 3 we
showed how even when these spaces are very large or infinite the extensive form
can often be applied analytically provided that two conditions are met:

1. The experimental outcome z can be described by a sufficient statistic y of
fixed dimensionality;

2. The prior measure P on © is conjugate to the conditional measures P, ¢
on the sample space Z.

In Part IT of this monograph we devote our attention to the development of special
versions of the extensive form which greatly simplify the analysis of certain prob-
lems in which both the above conditions are met and in addition

3. The utility function u(:, -, -, ) on E X Z X A X O can be expressed as
the sum of a function u,(-, -) on E X Z and a function u.(-, ) on 4 X 6:
ule, 2, a,0) = u,(e, z) + uda,d) , alle, z2,a,0 ; (4-1)

the reader can observe that our analysis will hold with only trivial modifications
if the function u,(-, -) on E X Z is generalized to a function on E X Z X 6. In
the present chapter, which is merely an introduction to Chapters 5 and 6, we ex-
amine certain implications of this new assumption concerning the utility function
without reference to assumptions (1) and (2) concerning the probability measures
on9 X Z.

4.2. Applicability of Additive Utilities

The assumption that utility can be decomposed according to (4-1) will be
valid at least as a very good approximation in a wide variety of practical decision
problems; we shall first explain its rationale in problems in which all consequences
are purely monetary, but we shall then show that the assumption will hold in a
great many problems where the consequences are only partially measurable in
money or not measurable in money at all.
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4.2 Part I11: Additive Ulilities

In the great majority of decision problems in which the consequence of every
pussible (e, z, a, 8) can be described completely enough for practical purposes by
the net amount of money which the decision maker will receive or pay out, this
net amount will be expressible as the algebraic sum of (1) the cash flow due to per-
forming an experiment e which results in the outcome z, and (2) the cash flow due
to taking action a when the prevailing state is . If in addition the utility of money
to the decision maker is lznear over the whole range of cash flows which are possible
in the decision problem at hand, we can set the utility of any cash flow numerically
equal to the cash flow itself. The terminal utility u.(a, 8) in (4-1) will then be
either the profit or the negative of the cost of the terminal act while the sampling
utility u.(e, z) will be the negative of the cost of sampling.

As we have already said, measurability in money is by no means a necessary
condition for utility to be decomposable according to (4-1). The decomposition
will be possible whenever (1) the consequence of (e, z) and the consequence of (a, 6)
are measurable in some common unit or numéraire such that the ““total’”’ consequence
of (e, z, a,8) is the sum of the two “partial”’ consequences and (2) the utility of
this numéraire to the decision maker is linear over the whole range of consequences
involved in the problem at hand. Thus the director of a clinic who must ulti-
mately decide whether or not to adopt a new drug in place of an old one may well
feel that the consequence of either terminal act is measured almost entirely by the
number of patients cured as a result; and if so, then he will probably also feel that
at least the most important part of the “cost” of further experimentation with the
new drug is measured by its effect on the number cured among the patients involved
in the experiment. If “number cured” does thus constitute a common numéraire,
it may well be that the utility of this numéraire to the decision maker is at least
close to linear over a fairly wide range.

Even when the possible consequences of an act are complex and cannot be
completely described in terms of any single numéraire, monetary or other, the most
effective way of assigning utilities may nevertheless be to start by scaling the actual
consequences in terms of a single numéraire; utilities can then be assigned to the
consequences indirectly, via a utility function assigned directly to the numéraire.
Thus in an industrial setting, an act may under certain circumstances result not
only in a certain cash payment but also in a serious administrative annoyance which
has no “objective” monetary equivalent; but if the decision maker feels that he
would be willing to pay about D dollars cash to avoid this annoyance, he can sub-
tract D from the purely monetary consequence of the act under each state 6 under
which the annoyance will result and then assign utilities to the “adjusted”” monetary
consequences via his utility function for money. Evaluation of the utilities by
this indirect procedure will probably be much easier than evaluation by direct
consideration of a large number of hypothetical gambles all involving mixed mon-
etary and nonmonetary consequences.

Similarly in our drug example, the new drug may differ from the old not only
as regards the numéraire “patients cured” but also as regards certain unpleasant
or dangerous side effects. The most effective way of handling this complication,
however, may well be to start by scaling these side effects in terms of the cure rate,
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Letting 8, denote the known fraction cured by the old drug and  the unknown
fraction cured by the new drug, the director can ask himself what choice he would
make if he did know the true value of 4. If he decides that because of its side
effects he would not adopt the new drug unless 6 — 0, > ¢, say, and if N is the
expected number of patients affected by the decision, the consequence of accepting
the new drug is measured by (6 — ¢) N, the consequence of continuing to use the
old drug is measured by 8,N as before, and the “adjustment’ of the consequence
of adopting the new drug should leave the director’s utility as linear as it was
before.

In many cases it will be possible to find a common numéraire even though the
natural descriptions of the consequences of (e, z) have nothing at all in common
with the natural descriptions of the consequences of (a,8). Thus a scientist who
wishes to estimate some physical constant 8 may feel that whatever the error (a — 6)
in his estimate a may be, he would be willing to make 10k more observations if he
could be sure that by so doing he would reduce (a — 6)? by & units. If so, the
consequence of any (e, z, a, ) can be measured by the sum of the actual number
of observations plus 10(a — 6)?; and if given any k£ > 0 the scientist would also
be willing to make 10k more observations in order to reduce the expected value of
(@ — 6)? by k units, then the utility of (e, 2, a, 8) can be expressed as u,(e, 2) +
u(a, 8) where u,(e, z) is the negative of the number of actual observations and
u(a, 0) is the negative of 10(a — )2

43. Computation of Expected Utility

When the utility of any (e, z, a, ) can be expressed as the sum of a sampling
utility u,(e, 2) and a terminal utility u.(a, 8), the expected utility of an experiment e
can be expressed as the sum of the expected utility of sampling and the expected
terminal utility. For by (1-3) and (4-1)

u*(e) = K,, maxa Eg,[u.(e, ) + u.(a, 6)]

(-2)
= E,,,[u,(e, 2) + maXa "ft ul(ay 6)] ]
and we may therefore write
u*(e) = u(e) + ut(e) ) (4-3a)
where
ui(e) = E,. u,(e, 2) , (4-3b)
ut(e) = E.. max, Eg; ui(a, §) . (4-3c)

This decomposition very materially simplifies the computation of u*(e).

Computation of the expected sampling utility u$(e) is usually very easy, since
u,(e, 2) is usually either a known number independent of # or a very simple func-
tion of Z whose expected value is easy to compute once the (marginal) distribution
of 2 has been determined; the required distributions are given in Part III and in-
dexed in Table 3.1 (page 75) for the data-generating processes and conjugate prior
distributions listed in Section 3.2.5.

Computation of the expected terminal utility uf(e) will of course require the
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successive steps of terminal and preposterior analysis defined in Section 3.4.1, but
even so the work is much easier when we have a function of only a and § to deal
with rather than a function which depends on e and # as well. First, the posterior
expected terminal utility for given (e, z),

max, Eq. u/(a, §) ,

will depend on (e, z) only through the measure Pg, and not through the utility
function itself; and if we also assume that the mathematical form of Pp is fixed
because P is conjugate to the likelihood of a sufficient statistic #(z), the expected
terminal utility will depend on (e, z) only through the parameter "' = y' * y.
Since the expected utility of terminal action without experimentation will be merely
the special case y"’ = y’, we can omit all reference to (e, z) in terminal analysis as
defined by (3-17) and discuss simply the evaluation of max, Es u«(a, §) without
specifying whether the expectation is with respect to a “prior’” or “posterior”
measure. Second, we shall see in Chapters 5 and 6 that when we have a function
of only a and 4 to deal with we can often devise special methods which greatly
reduce the burden of preposterior analysis as defined by (3-18).

Before taking up these special methods, however, we shall digress briefly in
the remainder of this chapter to define and discuss the concepts of opportunity loss
and value of information, both of which are useful and instructive in any problem
where the utilities of terminal action and of sampling are separable and additive.
Specifically, we shall show that when terminal and sampling utilities are additive
(1) it is often much easier for the decision maker to assess the opportunity loss of
every a in A given every 6 in © than it is to assess the corresponding utilities, and
(2) computation of expected opportunity loss often enables the statistician to find
upper bounds on optimal sample size which greatly reduce the labor required to
find the optimum. We shall then go on to isolate and examine the value of a
particular piece of information concerning O, a concept whose usefulness as an
analytical tool will become fully apparent in Chapter 5.

Because these concepts of opportunity loss and value of information involve
nothing more abstruse than decomposition of conditional and expected utility into
sums of economically meaningful parts, we suggest that in a first reading of Sec-
tions 4.4 and 4.5 attention be paid primarily to the economic sense of these de-
compositions rather than to their formal derivations; a summary of definitions
and results will be found in Section 4.5.3.

44. Opportunity Loss

Dropping all special assumptions for the moment, we shall first give a definition
of opportunity loss which applies in any decision problem and show how any
decision problem can be analyzed in terms of opportunity loss rather than utility.
We shall then show how this new concept is useful when terminal and sampling
utilities are additive.
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4.4.1. Definition of Opportunity Loss

Let e, denote the *null” experiment corresponding to immediate choice of a
terminal act, let zo be the dummy outcome of ¢y, and define as by

u(eo, 2o, as, 8) = uleo, 2, a, §) , allaeAd . 4-4)

In other words: if 6 is known and if a terminal act is to be chosen immediately,
then the decision maker’s utility will be maximized by the choice of as. If now
instead of choosing as without experimentation the decision maker performs e,
observes z, chooses a, and thereby enjoys u(e, 2, a, 8), we shall say that he has
“lost the opportunity” of enjoying u(eo, 2o, as, 6) and has thereby suffered an oppor-
tunity loss amounting to

(e, z, a, 0) = uleo, 20, as, ) — ule, 2,a,6) . (4-5)
In most decision problems u(eo, 2o, as, 8) is at least as great as any possible u(e, z, a, 6)
and our use of the word “loss” to denote the quantity defined by (4-5) reflects
this fact, but the use which we shall make of opportunity loss does not depend on
this inequality and situations do occur in which it is possible and even natural to

define the spaces E and A and the spaces Z and 6 in such a way that (4-5) is negative
for some (e, 2, a, 0).

4.4.2. Extensive-Form Analysis Using Opportunity Loss Instead of Utility

Writing (4-5) in the form

u(e) z, a, 0) = u(CO) 20, Qo, 0) - l(ey z,a, 0) (4-6)
and observing that u(eo, 20, as, 8) is a function of 6 alone and not of the decision
variables ¢ and a, we see that mazimizalion of expected utilily is equivalent to min-
tmization of expected opportunily loss. Instead of labelling the end branches of the
decision tree with their utilities u(e, 2, a, 8) and then making choices of a and e
which maximize expected utility as we work back down the tree (cf. Section 1.2.1),
we can label the end branches with their opportunity losses l{e, 2, a, 8) and work
back making choices of a and e which minimize expected opportunity loss. Thus
after ¢ has been performed and z observed, the expected opportunity loss of any a
in A is X
I*(e, 2,a) = Eg,l(e, 2,a,68) ;

since the decision maker is free to choose an a which minimizes this quantity,
‘““the’” opportunity loss of being at the “position” (e, 2) is

1*(e, 2) = min, l*(e, 2z, a) = min, Eg, l(¢, 2, a,§) ;
before z is known the expeeted value of this opportunity loss is
I*(e) = E,l*(e, 2) = E,. min, Eg, l(e, 2, a, §) ; 4-7)

and since the decision maker is free to choose an ¢ which minimizes this quantity,
his expected opportunity loss is

I* = min, l*(¢) = min, E,;, min, Eg, l(e, %, a, §) . (4-8)
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To see the relationship between expected opportunity loss and expected utility,
we first define the quantity

U = E; u(eq, 2o, ds, 0) (4-9)
and observe that this is equivalent to
U = E,,, Eg, u(es, 2o, @, )
because E,;, Eg; = E,,. and E, .. is equivalent to E; when the function being
expected does not depend on 2. Then by (1-3), (4-6), and (4-7),
u*(e) = E,. max. Eg; u(e, 2, a, §) = E,,. max, Eg.[u(eo, 2o, o, ) — (e, 2, a, §)]

= E,,. Eg; u(eo, 2o, ds, ) — E, | min, Eg}, l(e, 2, a, §)

= U — I*e) . (4-10)
The expected utility of any experiment i3 stmply a constant less its expected oppor-
tunity loss.
4.4.8. Opportunity Loss When Terminal and Sampling Utilities Are Additive

We next show that when u(e, z, a, 6) is the sum of a part u((a, 6) due to terminal
action and a part u.(e, z2) due to sampling, opportunity loss can be similarly de-
composed; but to facilitate the interpretation of our result we first define the cost
of sampling to be the negative of the utility of sampling,

c (e, 2) = —u,e, 2) , 4-11)
so that (4-1) can be written in the form
ule, z, a,0) = wi(a, 8) — c.(e, 2) ; (4-12)
and we specify that utility shall be measured on a scale such that
c.(e, 20) =0 , so that uleo, 20, @, 0) = ui(a, 6) . (4-13)

Now substituting (4-12) and (4-13) in the definition (4-5) of opportunity loss we
obtain
le, z,a,0) = uas, 8) — wila, 8) + c.(e, 2) ;

and if we also define the terminal opportunity losst

_ lia, 9) = udas, §) — ua,o) , (4-14)
we can write
lle,2,a,8) = l(a, 8) + c.le 2) . (4-15)
In other words, we can regard the opportunity loss of (e, 2, a, §) as the sum of two
parts: (1) the cost of experimenting instead of making an immediate terminal
choice. and (2) the opportunity loss due to making a “wrong” terminal choice
after the experiment has been conducted. Observe that substitution of (4-13) in
(4-4) yields
ui(ae, 6) > uia, 8) , allaed , (4-16)
so that terminal opportunity loss as defined by (4-14) is necessartly nonnegative.

t The quantity li(a, 8) is called by some writers the decision maker's ‘‘regret” at having
chosen a rather than a,, The word “loss” is used by some writers to denote the negative of the
terminal utility u.(a, 8), by others to denote l:(a, 8), i.e. what we call terminal opportunity loss.
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Whenever the opportunity loss of (e, 2, a, 8) can be expressed as the sum of
terminal opportunity loss and sampling cost, the expected opportunity loss of an
experiment e can be expressed as the sum of the expected values of these quantities.
For if we define the expected terminal opportunity losst of e by

I3(e) = E, min, Eg, l:(a, ) (4-17)
and the expected cost of sampling by
ci(e) = Eqe (e, 2) (4-18)

then substituting (4-15) in (4-7) we have
1*(e) = E,, ming Eg;, l(e, 2, a, 6) = E,;, min, Eg.[l:(a, 6) + c.(e, 2)]
= E, min, Eg|, li(a, 6) + E,. c.(e, 2) (4-19)
= li(e) + ci(e) .
We have seen in (4-3) that the expected wufility of ¢ can be similarly decomposed,
u*(e) = ui(e) + ui(e) = ui(e) — cife) , (4-20)
and as we might suspect there is a simple direct relation between u(e) and I (e).
Substituting the right-hand sides of (4-19) and (4-20) in (4-10) we have
. ul(e) = U — Ite) (4-21)
where by (4-9) and (4-13)
U = Eju,d, 0) . (4-22)
An economic interpretation will be attached to U in Section 4.5.1 below.

4.4 Darect Assessment of Terminal Opportunity Losses
The calculations required to minimize the expected value of

lle, 2,a,0) = l(a, 0) + c.le, 2) (4-23)

are in general neither more nor less difficult than the calculations required to max-
imize the expected value of

ule, 2, a, 9) = w(a, 9) — Cule, 2) (4-24)

but in many situations analysis in terms of opportunity loss will have a very real
advantage because the decision maker will find it much easier to assess li(a, 9)
than to assess u(a, 8) for all (a,8)in A X 8. Thus in a problem of inventory con-
trol where the utility of money is linear, it may be very difficult to evaluate the net
profit and hence the utility of stocking a units when there is a demand for 6 units
because the net profit depends infer alia on the costs of purchasing, receiving,
processing accounts payable, and so forth, and it is usually very hard to trace the
share of these costs which is really attributable to any particular order; but it may
well be clear that these costs are virtually independent of the quantity ordered,
and if so it will be relatively easy to compute for any 8 the difference l:(a, 6) between
the net profit with an arbitrary stock a and the profit with the optimal stock
as = 6.
t Called the Bayes or average “‘risk” by some writers.
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Observe "that assessment of (e, z, a, §) will not be easier than assessment of
u(e, 2z, @, 0) in any situation where these quantities cannot be decomposed as in
(4-23) and (4-24).

4.4.6. Upper Bounds on Optimal Sample Size

Provided that utility and therefore opportunity loss can be decomposed as in
(4-23) and (4-24), analysis in terms of expected opportunity loss will sometimes
greatly facilitate the selection of an optimal e whether or not it is easier to assess
the conditional opportunity losses li(a, 6) than to assess the corresponding utilities
ui(a, 8). The problems in which this may be true are those in which the experi-
ments in E can be ordered in a sequence {e.} such that uf(e.) and ci(e,) are both
increasing functions of n; and such problems are very common in the applications.

Our objective in such a problem will of course be to find the value n° of n
which maximizes

u*(en) = ui(en) — cilen)
or equivalently minimizes
1*(ea) = lt(en) + cifen) .

In a very few problems of this kind n°® will be defined by an equation which can be
solved either explicitly or by a simple iterative procedure—examples will be given
later in this monograph—but more often n° can be found only by actually comput-
ing u*(ea) or [*(e.) for a number of values of n and thus tracing the behavior of
u*(e,) or [*(e,) as a function of n. In such a situation, suppose that

1*(ear) = li(en) + cilenr)

has been computed for some value n’ of n. We know by (4-10) that the increase
in utility which will result from using any n larger than n’ is

ut(en) — ut(en) = 1*en) — 1*(en)
= [lt(en) — li(ea)] — [ci(en) — ci(en)]

and since l;(a, 6) is necessarily nonnegative by (4-16) and therefore lf(e.) is neces-
sarily nonnegative for all n, we may write

u*(en) — u*(enr) < Uen) — [cien) — cilenr)] -

The left-hand side of this expression will certainly be negative if the right-hand
side is negative, and therefore n cannot possibly be optimal unless it satisfies

ci(en) — cilen) < li(en) . (4-25)

In other words: given any arbitrarily chosen n' with its associated sampling cost and
terminal opportunily loss, it will never pay to increase the expenditure on sampling
by more than the terminal opportunity loss of e... The largest n which satisfies
(4-25) is an upper bound on the values of n for which we need to evaluate u*(e.)
or I*(e.).

In practice, the best procedure will usually be to start the analysis of a decision
problem by determining the upper bound corresponding to the terminal oppor-
tunity loss of the “null’” experiment e;. Since ¢}(e)) = 0 we obtain the constraint
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cien) < li(eo) (4-26)

on possibly optimal n without having to compute the term ¢}(e..) which appears
in (4-25); and since the distribution of § “posterior” to e, is simply the ‘‘prior”’
distribution of 4, the definition (4-17) of If(e) gives us

It(e0) = min, Ej li(a, §) ,
which is in general much easier to compute than
lt(enr) = Ey.. min, Eg; li(a, §) , n>0.

Once an initial upper bound has been found by use of (4-26), the fact that
even a very small experiment ¢, often has a terminal opportunity loss I} (e..) which
is very much smaller than [}(e;) implies that we can often obtain a much smaller
upper bound by next evaluating (4-25) for some n’ which is much closer to 0 than
to the upper bound given by (4-26). Thus if we seek to locate n° by tracing the
function If(e.), each computation not only serves to establish a point on the curve
but may also bring a new reduction in the domain over which it has to be traced;
and the computations are no more difficult than those required to trace the fune-
tion uf(es) without any hope of discovering reduced upper bounds on n°. We
remind the reader that if the decision maker originally assigns terminal utilities
rather than terminal opportunity losses to the various possible (a, 8), we are not
obliged to determine as for every 6 and then to compute l(a, 8) = u(as, ) — u.(a,6)
for every possible (a, 8) in order to compute {;(¢). For by (4-21),

lite) = U — ui(e) ;
and by (4-22) U = Ej u.(dy, §) is a constant which need be computed only once
in the analysis of any decision problem.

4.6. The Value of Information

In the extensive form of analysis as we have used it hitherto, an experiment e
has always been evaluated by computing the “absolute” utility u*(e, 2) for every
possible z and then taking a weighted average of these absolute utilities. When
sampling and terminal utilities are additive an alternative procedure is available
and we shall see in Chapter 5 that under certain circumstances this alternative
procedure is very advantageous. For each z we can compute, not the absolute
utility u*(e, z), but the increase in utility which would result if the decision maker
learned that 2 = z and therefore altered his prior choice of an act a; and we can
then take a weighted average of these utility increases. The increase in utility
which results or would result from learning that Z = z will be called the value of
the information z.

4.6.1. The Value of Perfect Information
Given the additivity assumption, we may regard equation (4-16),
u(as, 8) 2 ua, o) , allaed |,

as the definition of as: as is an act, which, if chosen, would maximize the decision
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maker's realized terminal utility. Let us similarly define @’ to be an act which
maximizes the decision maker’s expected utility under his prior distribution of §,
satisfying
Esu.(a’, §) > Epuia,d) , allaed . (4-27)
Now let us imagine an ideal experiment e,, with a known cost ¢}(e,,) which
is capable of yielding exact or perfect information concerning the true state 6, and
let us suppose that the decision maker wishes to choose between e, and the “null”
experiment ¢ (i.e., immediate choice of a terminal act.) If he purchases the perfect
information on 6, he will choose as and his net utility will be

U(ew) 2w, G0, 0) = ui(as, 0) — ciew) ,

whereas if he acts without this information he will choose @’ and his net utility
will be
u(eo, 20,a’,0) = u,(a’,6) — 0 .

The former of these two quantities will be greater than the latter if ¢;(e,) is less than
vl(eun 0) = ll(a,, 0) = u‘(a') 0) - ul(a,’ 0) ’ (4'28)

and therefore we may regard v.(e., 8) = l.(a’, 8) as the conditional value of perfect
information given a particular 8. 'We shall henceforth refer to this quantity as the
CVPI of 8 and regard it as defined by (4-28).

The idea of CVPI can be visualized by reference to Figure 4.1, where it is
assumed that A = {a, a, a;}. Assuming that a; is optimal under the decision
maker’s prior distribution, a’ = a,, perfect information that ¢ = 6, would lead
the decision maker to choose a; rather than a’ and thereby increase his utility
by the amount l.(a;, 8,) shown on the graph. Perfect information that 8 = 6*
would leave the decision maker’s original choice of a; unchanged, and the value
of the information would therefore be 0 = [,(as, 8*).

The CVPI as defined by (4-28) can be evaluated only conditionally or after
the fact; but before the fact we can compute its expected value, which we shall call
the expected value of perfect information or EVPI: remembering that e, will lead to o’
we have

vi(ew) = Egvi(ew, 6) = Epli(a’,8) = lt(er) = Ep[ud(ds, 6) — uila’,8)] . (4-29)

Observe that since the terminal utilities of action without information and of action
with perfect information are respectively

uf(eo) = max, Epui(a, §) = Eyui(a’, §) (4-30)
and
ul(en) = Ep max, ui(a, §) = Ef u.(G, §) , (4-31)
we may write
v (ew) = If(e0) = ul(e.) — ul(eo) . (4-32)

The quantity uf(e.), which was given the designation U in (4-22), may be called
the prior expectation of the utility of terminal action posterior to receipt of perfect
information.
Graphically, the prior expected utility of any terminal act a,, ¢ = 1, 2, 3, can
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be interpreted as the weighted-average height of the corresponding utility curve
in Figure 4.1, the weights being given by the prior measure Pg; the quantity 1} (e.)
can be interpreted as the weighted-average height of the upper envelope of these
lines; the prior expected opportunity loss of any a; is given by either the difference

Ur(ﬂ},g)

{09,6,)

Figure 4.1
CVPI When a’ = a,

between the average height of the envelope and the average height of the ith curve
or by the weighted average of the local differences in height; and a’ is an act which
minimizes this difference of averages or average difference.

4.6.2. The Value of Sample Information and the Net Gain of Sampling

We now go on to show that we can regard the value of the information to be
obtained from a real experiment e in a way which is closely analogous to the way
in which we have just looked at the value of perfect information obtained from
the ideal experiment e,.

In (4-27) we defined a’ to be an act which is optimal under the decision maker’s
prior distribution,

E$ ui(a’, §) = max, Eg u(a, §) , allaed ;
we now define a, to be an act which is optimal under the posterior distribution
determined by the outcome z of some real experiment e,

E#: ui(a,, §) = max, Eg, u.(a, §) , allaed . (4-33)
Now if instead of choosing a’ without experimentation the decision maker per-

forms e, observes 2, and then chooses a., he increases his terminal utility as eval-
uated after the fact by

. v‘(e’ Z) = Eéft ul(aly é) - Eé{,u;(a’, é) ’ (4'34)

we shall call this the conditional value of the sample information z or CVSI of 2.
The conditional value of sample information can be given a graphical repre-
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sentation nearly identical to the representation of the value of perfect information
in Figure 4.1. In Figure 4.2 we show for each act in A = {a,, a3, a3} the posterior
expecled terminal utility Eg, u.(a, ) as a function of the experimental outcome 2.
If the optimal act under the prior distribution would be a’ = a; but if instead of

Eg s uel02,8)

Eqrvt 0y, )

Figure 4.2
CVSI When a’ = a,

choosing a’ immediately the decision maker performs e, observes z,, and chooses
a3, he has increased his terminal utility by the amount v(e, z,) shown on the
graph. If the experimental outcome were z*, his qriginal choice of a; would be
left unchanged and the value of the information would have been 0.

The CVSI as defined by (4-34) can be evaluated only conditionally on z or
after z is known; but before z is known the decision maker can compute the ez-
pected value of sample information or EVSI of any given e,

vie) = E, vi(e, 2) . (4-35)
The economic significance of this quantity is due to the fact that the expected

terminal utilily of any expertment is the expected ultlily of immediate terminal action
augmented by the expected value of the sample information:

ut(e) = utleo) + vie) . (4-36)

Graphically, uf(e) can be interpreted as the weighted-average height of the upper
envelope of the curves of posterior expected utility in Figure 4.2, the weights
being given by the marginal measure P, ; the expected terminal utility uf(e,) of
terminal action withou! experimentation is the weighted-average height of the
curve corresponding to a’; and the expected value of sample information is the
difference between these two averages or the weighted average of the local differ-
ences between the heights of the two curves. Formally, we have by (4-3¢), (4-33),
(4-34), (4-29), (4-30), and (4-35)
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Ellc maxg E‘{z ul(a, 6) = Ella Eﬁz ut(dn 6)
= E:Ic[ ”z ul(a,y 6) + U;(e, Z)] = u,‘(eo) + vt‘(e) y

as asserted by (4-36).

Similarly it is apparent and can easily be proved that the expected terminal
opportunity loss of any experiment e is lhe expected opportunily loss of immediate
terminal action diminished by the expected value of the sample information:

lt(e) = If(eo) — vi(e) = vi(en) — vi(e) . (4-37)
The expected net gain of sampling or ENGS of a particular experiment e is

now naturally defined to be thie expected value of the sample information less the
expected cost of obtaining it,

u(e)

v*(e) = vi(e) — cile) . (4-38)
It follows by (4-36) that the net utility of a decision to perform any experiment is
u*(e) = ui(e) — ci(e) = ui(en) + v*(e) = u*(e) + v*(e) (4-39)

and thus that the general decision problem may be viewed as maximization of net gain
rather than maximization of utility or minimization of opportunity loss.

4.6.3. Summary of Relations Among Utilities, Opportunity Losses,
and Value of Information

With No Special Assumptions
Def. u(e, 2, a,6): utility of performing e, observing z, and choosing a, when 8 is true.

Def. u*(e): expected utility of experiment e;
u*(e) = E,, max, Eg, u(e, 2, a,0) .
Def. eo: null experiment, i.e. a terminal act is chosen without experi-
mentation.
Def. 2zo: dummy outcome of €.
Def. aq: an optimal act given 8,
u(eo, 2o, as, 6) > u(eo, 20, a, 9) , allued .

Def. l(e, z,a,6): opportunity loss of (e, 2, a, 8);

l(e, 2, a, 8) = uleo, 20, as, 6) — ule, 2, a,6) .

Def. 1*(e): expected opportunity loss of e;
1*(e) = E,, min, Eg;; l(e, 2, a, ) .

Def. U U = Eg u(eo, 20,'ds, §) .

Result: u*(e) = U — 1*e) .

When Terminal and Sampling Ulilities are Addilive
ule, 2z, a,0) = uia, 0) — c,e, 2) ; ci(€o,20) = 0 .
Def. l(a, 6): terminal opportunity loss of (a, 8);

l;(a, 0) = u.(a., 0) - ‘u.(a, 0) .
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4.5.3

Resull:
Def. It(e):

Def. ci(e):

Result:
Def. e,:

Def. u(ew):.
Result:
Def. epo:
Result:
Def. a’:

Def. vi(ex, 0):

Resultl:
Def. v1(e):

Def. vi(e, 2):

Def. v?(e):

Result:

Def. v*(e):

Result:

Part 11: Additive Ulilities

lle,z,a,0) = li(a,8) + c.e,2) .

prior expectation of terminal opportunity loss posterior to e;

It(e) = E, min, Ej;, li(a, §) .
expected cost of experiment e;
ci(e) = E; cule, 2)
1*(e) = li(e) + ci(e) .

ideal experiment which would result in exact knowledge of

the true state 6.
u?(ex) = Eg max, w:(a, §) = Ejui(do, §) = U .
ui(e) = uf(ex) — Lie) .
optimal experiment.
ci(ene) — c2en) < Len) all n .
optimal act under prior distribution;
Es ui(a’, §) > Ejui(a,d) , allaed .
conditional value of perfect information (CVPI) given 6:
Vi(ew, 8) = ui(ae, ) — ui(a’, 8) .
vi(es, 8) = li(a’, 6) .
expected value of perfect information (EVPI);
vf(ee) = Egli(a’, 6) = I3 (er) .
conditional value of sample information (CVSI) given z;
vi(e, z) = max, Eg. ui(a, §) — Eg ui(a’, §) .
expected value of sample information (EVSI) given e;
vi(e) = Eyevile, 2) .
ui(e) = ui(eo) + vi(e) ,
li(e) = Ii(eo) — vie) .
expected net gain of sampling (ENGS) of e;
v*(e) = vi(e) — ci(e) .
u*(e) = uf(eo) + v*(e) ,
1*(e) = li(eo) — v*(e) .
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CHAPTER b5A

Linear Terminal Analysis

5.1. Introduction

In many situations where the utility of (e, 2, a, ) can be expressed as the sum
of a utility due to (e, z) plus a utility due to (a, 8), it will also be true that u.(a, -)
considered as a function of 8 will be linear in 6 for every a in A. Thus if a choice
must be made between acceptance (a)) and rejection (a2) of a lot of purchased
parts, the utility of a; may be of the form K; — k.0 where 6 is the unknown fraction
defective while the utility of a; may be some fixed amount K, independent of 6.
Or if a choice must be made between continuing to use an old drug with known
cure rate 6, and adopting a new drug with unknown cure rate § and undesirable
side effects, the utilities of the two acts may, as we saw in Section 4.2, be respec-
tively N8, and N(@ — c).

In other situations u,; may be a linear function, not of the parameter 6 in
terms of which it is customary to describe the state, but of some function of 6.
Thus suppose that a choice must be made between an old production process
which generates a known fraction defective 6, and a new production process which
generates an unknown fraction 8, and suppose further that defectives are scrapped
at a total loss. If the cost of manufacturing one piece is k, if N good pieces must
be manufactured, and if the utility of money is linear, the utilities of the old and

6,
linear in 8; but if we characterize the two processes, not by the ratio 8 of defectives

the new processes are respectively (—1 k_N ) and (— ] kiV 0) and the latter is not

to total pieces, but by the ratio p = of total pieces to good pieces, then the

1
1—6
utilities of both acts are obviously linear in p.

6.1.1. The Transformed State Description w

In this chapter we shall derive special methods of analysis for problems of the
kind illustrated by these examples, i.e., problems where the terminal utility of
every a in A can be expressed as a linear function of either the customary state
description 8 or some simple function W of . Formally, we shall consider problems
in which

There exists a mapping W from the state space © into a new space , carrying

6 into w = W(8), such that

ua,8) = Ko+ koo allaed , all8eO . (5-1)
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5.1.1 Part 11: Additive Ulilities

In general, k&, and w are respectively a 1 X ¢ matrix and a ¢ X 1 vector, although
some special analytical results will be given in this chapter for the case where &,
and w are scalar. K, is of course always scalar.

Nuisance Parameters. We have seen in Section 2.2.4 that when the state 6
is vector valued, 8 = (6, - - - , 8,), some of the components of 8 may be nuisance
paramelers in the sense that they are irrelevant to the utility of any (e, z, a, 8) and
enter the problem only as parameters of the conditional probability measures
P,.s. Given the assumption of additive utilities, a nuisance parameter is a com-
ponent of # which is irrelevant to u.(a, 6) and enters the problem only as a param-
eter of P,j.,.

The presence of nuisance parameters does not really create any special problem
as regards the linearity of terminal utility, since if u((a, 8) is linear in a component
6, and independent of 8 it is obviously linear in . We can however simplify nota-
tion and comprehension by always defining the transformed state description w
as free of nuisance components. Thus if utility is linear in the unknown mean
6, = p of an Independent Normal process but independent of its unknown pre-
cision 6; = h = 1/¢?, we shall define w = u just as we would define w = u? if
utility were linear in p? but independent of A.

6.1.2. Terminal Analysis

When 6 is mapped onto @, any measure Ps on 8—prior or posterior—induces
a corresponding measure P, on ©. Using the same symbol u, to denote the termi-
nal utility function on 4 X Q that we used to denote the corresponding function

on A X 6, we have for the expected terminal utility of any act
E, ui(a, @) = wi(a, d) = K, + ki@ (5-2)

where

o= E,(a) . (5-3)
When terminal utility is linear in w, the mean of the distribution of & s suffictent for
evaluation of and choice among terminal acts. In Figure 5.1 we give a geometric
interpretation of this result for the case where Q is the real lineand A = {a,, a;, a.}.

Ur(ﬂ Jw) -
? ey 0y, @)

|
|£, uplag, &)

;\5 w
£ uglo,,a))
Yy (US'W) :

Figure 5.1

Expectation of Linear Terminal Utilities
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Terminal analysis under the assumptions of this chapter is thus completely
trivial once the appropriate distribution of @—prior or posterior—has been ob-
tained, and in many practical applications the required distribution is very easy
to obtain. Very often w will be the “natural” process parameter 8 itself or the
nonnuisance component of #; and even when the distribution of & has to be derived
from the distribution of §, the derivation is often very easy. Two examples of
such derived distributions have been worked out by way of example in Part III
of this monograph:

1. If a beta distribution is assigned to the parameter § = p which describes
the mean number of successes per trial generated by a Bernoulli process, then
@=1/pora=1/(1 — p) has a very tractable inverted-beta-1 distribution (Sec-
tions 9.1.4 and 7.4.1).

2. If a gamma distribution is assigned to the parameter § = X which measures
the mean number of events per unit of time generated by a Poisson process, then
@ = 1/X has a very tractable inverted-gamma-1 distribution (Sections 10.1.4 and
7.7.1).

When w is not identical to 6 there is of course no real advantage in finding
the distribution of & if all that we want to do is choose among terminal acts—it
would usually be just as easy to expect the formula for the terminal utility in terms
of 8 over the distribution of § itself. The advantage of the linearization lies in the
simplification it makes in the computation of the EVPI and in preposterior analysis,
as we shall now see.

6.2. Expected Value of Perfect Information When w is Scalar

When a decision problem is to be analyzed in terms of the random variable &,
let a., denote an act which is optimal for given w, satisfying

ua,, w) 2 ula, w) , allaeA ; (5-1)
define the terminal opportunity loss of any a to be
li(a, w) = wia,, w) — ula, w) ; (5-5)
define a’ to be an act which is optimal under the prior distribution of &, satisfying
E, ua’, @) 2 EL uia, @) , allaed ; (5-6)
define the conditional value of perfect information or CVPI to be
vi(ee, w) = Li(a', w) = ula., w) — ula’, w) ; (5-7)
and define the expected value of perfect information or EVPI to be
vi(ew) = li(en) = Eili(a’, @) . (5-8)

For a discussion of the interpretation of these quantities, see Sections 4.4 and 4.5
above; we now turn our attention to their evaluation in the case where the terminal
utility of every a in A4 is linear in a scalar w.
5.2.1. Two-Action Problems
Assume that A = {a,, a;} and that  is the real line, write
ug(a;, w) =Ki+kiw , 1= 1,2 y (5-9)
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5.2.1 Part 11: Additive Ulililies

and assume that the acts have been labelled so that k; < k. (We exclude the
trivial case ky = k, in which at least one of the two acts is optimal for all w.) The
two utility functions are graphed in Figure 5.2, and it is apparent that in any

ulog, W)= K +hw
vt(0g. W) = Ky + hpw

140w,

Iplay, @*)

r
[
l
|
: .
wy w* \ -
Figure 5.2
Terminal Utilities and Opportunity Losses: A = {a,, a,}

problem of this sort there will exist a breakeven value wy satisfying

Ki+ ki = K2 4+ kaws (5-10)
and that the optimal acts for given w are
a. = {a; lf w S wy ,
“ " lag if w > w .

Recalling that the linearity of (5-9) implies that
Fo uas, @) = uwai, @) = Ki+ ko,

we sec that the optimal act under the prior distribution of @ is

' _ [+ if @' S wh
a = as lf (:)' 2 wp .
The conditional value-of perfect information is therefore
CVPI = lia, w) = |ky — ki| max {& — ws, 0} if @ <,
l.(a,, w) = lka - kx‘ max {wb - w, 0} if @ > wy
A: @' 2wy 0'= 0 B:@&'S wyy o' =0,
Llo' o) Lle" W)
1 )l
wp Jl 5' Wy
Figure 5.3

Conditional Value of Perfect Information: A = {ay, a;}
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the CVPI function is graphed in Figure 5.3. It is immediately apparent that
the expected value of perfect information or EVPI is

ELlday, &) = ke — ki L "w-w)D@de i &<,
vilen) = li(eo) = (5-11)
ELl(as8) = [k — b [* (@ —0) D@ do i & 2.

If now we define the left- and right-hand linear-loss integrals under the distribu-
tion of any random variable £, discrete or continuous, by

LP(a) = [j_ (a — z) dP, ,

. (5-12)
LY@ = [ @ - a)aP,,
we can write for the EVPI in our present problem
. e _ [lka = k1| LY (w) if o L w,
Uy (Cao) = ll (60) - {“Cz _ kl] L'(‘l)(wb) if g > w . (5'13)

Notice that formulas (3-13) give the expected terminal opportunity losses of
acts a; and a. whether or not the acts in question are optimal under uncertainty.

5.2.2. Finite-Action Problems

Assume as before that © is the real line and that u.(a;, w) = K; + kw but
assume now that A = {a;, a;, --+, a,} where s may be any finite number, and
assume that the acts have been labelled so that k; <k, < -+ <k.. We may
also assume without loss of generality that every a in A is optimal for some w,
since the fact that E,u.(a, @) = u((a, ®) implies that an act like a® in Figure 5.4

v (o, w)

Ut(U: w)

v lopw)

Figure 54
An Inadmissible Act

which is not optimal for any w is not optimal for any P., prior or posterior, and
would therefore never be chosen in any case.t It follows that the utilities of the
acts in A will appear as in Figure 5.5 and that there will exist s — 1 “breakeven
values” wy, ws, - ++ , w._1 such that a; is optimal for w in the interval (—«, w],

t Notice also that if three or more lines meet in a point, all but two of the corresponding
acts are inadmissible,
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az is optimal for w in [wy, w2), - - , @, 18 optimal for w in [w,—, *). If we define
wo = —= and w, = *, we may say more briefly that a, is optimal for w if and only
if wpy € w € wy; and the linearity of u, then implies that a, is optimal under
uncertainly (prior or posterior) if and only if w1 £ & £ w,.

M+ hw

U‘ (ﬂw, We )

I' (02|U.) 'l‘z'ﬂ“ﬂﬁ - W)

. .
”l( 2‘U.) l’l-‘SI(w -03)

Ky+thyw
A’5+l3w

T
|
|
|
!
|
|
|

|

[

|

|

| i
t Wy wy w*

Figure 5.5
Terminal Utilities and Opportunity Losses: A = {ay, a,, a;, a}

N IS N

b —— 4

On these assumptions, the prior expected terminal opportunity loss of any
act a,—the EVPI if a, is optimal under the prior distribution of a—can easily be
shown to be

El l(a,, @) = Ep—l |kivs — kL (wi) + Z'-I ki — kLD (ws) , (5-14)

=] t=p

L™ and L being defined by (5-12).

P> Since the basic idea of the proof is extremely simple but the proof is hard to present
formally because of notational complexities, we shall merely show that (5-14) is valid for ay
in the problem illustrated by Figure 5.5. It is clear from the geometry of Figure 5.5 that
in this case the conditional terminal opportunity loss of a; (the CVPI if a, is optimal under
the prior distribution of @) is

lks — ki|(wy — w) if —0 <w <Lw,

- if [~ S (5] $ ws ,

li(ay, w) ks — kal(w — w9) if w <w<Sw,
\s = ka|(w — wn) + [k = Ka|(w — o33) if wSw<o ,

Fxpecting these conditional values we obtain the expected terminal opportunity loss of as
(the ISVPI if g, is optimal under the prior distribution of &):
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Edas, @) = /:"' lk2 — ki| (w1 — w) D'(w) dw

+ /: [ks — ka|(w — w2) D'(w) dw + /ﬁ: ke — Kal(w — ws) D'(w) dow ;
and comparing the definitions (5-12) of the linear loss integrals we see that this result can
be written

El l(ay, @) = [ks — ka| LO (@) + ks — ko] LD (ws) + [k — kal L (ws)
in agreement with (5-14) for s = 4, p = 2. 4

5.2.3. Evaluation of Linear-Loss Integrals

The linear-loss integrals which occur in formulas (5-13) and (5-14) for the
EVPI can often be evaluated in terms of well tabulated functions when & is a
simple function of § and 4 has one of the conjugate distributions listed in Section
3.2.5. In Table 5.1 we index the cases which have been worked out in Part 111

of this monograph.

Table 6.1
Linear-Loss Integrals

“Natural”
Parameter Distribution Loss Integrals Reference
Process ] of 6 w in Terms of Section
. P cumulative beta or 9.1.3
Bernoulli P beta {p =1 /p} binomial function {9.1.4
Poisson A amma-1 A cumulative gamma 10.1.3
g u = 1/N| or Poisson function 10.1.4
h known, tabulated 11.3.2
f Normal # function Lys -
Normal wh _
Normal- Student density and 1155
gamma # cumulative functions e
Multinormal mh — Zcimi same as univariate 8.2.3,8.3.2
Regression B,h — Zebs same a8 Multinormal 8.2.3, 8.3.2

6.2.4. Ezamples

There follow four examples intended to illustrate the calculation of EVPI in
concrete situations. Because problems of quality control present the essential
features of decision problems with a minimum of extraneous complexities, three of
the four examples are from that area; one example from outside this area is given
to remind the reader that identically the same features will often be present in
totally different functional applications.

Ezample 1. Pieces are produced in lots of size N by a machine which be-
haves as a Bernoulli process, the parameter p being the fraction defective. After
a lot is produced, it can either be accepted (a;), meaning that all pieces are sent
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directly to the assembly department, or screened 100Y; (a:), meaning that all
defectives are removed and replaced by good pieces from an inspected stock. It
costs S to screen the lot plus an amount ¢, for each defective replaced; it costs
¢s(> ¢,) to remove and replace a defective which reaches assembly. The utility
of money is linear, and therefore we may adopt a scale such that the terminal
utilities are

u(ay, p) = —cNp , us(az, p) = —cNp — S .

The breakeven value defined by (5-10), which we shall call = for typographical
convenience, is
N B
TEPT G )N

a, is optimal if p < =, a2 if p > 7; and we define
k=1lky— kil = |ca — c|N .

If a beta prior distribution of type (9-9) with parameter (r’, n') and therefore with
mean p’ = r'/n’ is assigned to P, the expected value of perfect information or
expected opportunity loss of immediate terminal action is, by (5-13),

kL® () if P>,

vilea) = lifes) = {ICL;"(W) if p <.
The linear-loss integrals in these formulas are given by (9-12) and (7-23) as
L¥(x) ==l (0,0 — 1) - pl.(c" + 1,2 - 1),
Ly(x) = p’ iy =", 7' + 1) = li_,(n' —r',7)
where [ is the “incomplete beta function’ tabulated by Pearson (cf. Section 7.3.1).
Ezample 1a. Same as Example 1 except that a tumbling operation costing T

per lot can be expected to eliminate one fifth of the defectives. There are thus
four possible acts:

ap: accept as is,
a®: tumble and then accept,
a,: screen as is,
a;: tumble and then screen;

the reason for the peculiar numbering will appear in a moment. Assuming that
N = 1000 , S =20, T=10, c. =10, ¢ = 4,
we have for the terminal utilities
wa, p) = —c.Np = —1000 p ,
u(a®, p) = =T — ¢c.N(8p) = —10 — 800 p ,
uas, p) = —S — e.Np = —20 — 400 p ,
uas,p) = =T — S — ¢, N(8) = —30 — 320 p .

These utilities are graphed in Figure 5.6, where it is apparent that a® can be im-
mediately rejected because there is no p for which it is optimal; cf. Section 5.2.2
and Figure 5.4. The breakeven values for the three “admissible’” acts are
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Uy 1\
0 P 05 10 P 15 20 /4
0 T T
Ut(a| p) |
-1000p :
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\ Up (az, p) = :
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Figure 5.6
Terminal Utilities in Example la
S 20 T 10 .
P = G =) 600~ 033 Pr= 5N — 80~ 1%
and
ky — k| = | —eN 4 coN| = 600 lky — kol = |—.8e,N + ¢.N| =
By (5-11) we have for the IEVPI
600 L{(.033) + 80 Ly’(.125) if 0<p £.033,
v(es) = If(eo) = 1600 LY (.033) 4 80 L{(.125) if 033 < ' <.125,
600 LP(.033) 4 80 LY(.125) if A28 <5 <1

the linear-loss integrals LY and L{’ are given in terms of Pearson’s beta function
by the formulas at the end of Example 1.
Ezample 2. A drug which has been in use for a long time is known to cure
a fraction = of patients treated; very limited experience with a new drug leads the
director of the only clinic investigating the drug to assign to its cure rate p a beta
distribution of type (9-9) with parameter (+', n'); its mean p’ = r’/n’ is less than =
and the director is therefore thinking of stopping further use of the new drug im-
mediately, but if he does he will be unable to obtain any further information con-
cerning its true effectiveness. Perfect information concerning the new drug could
reveal that # > = and lead the director to adopt it in place of the old drug. Letting
101



5.2.4 Part 11: Additive Utililies

a; denote a terminal decision in favor of the old drug and a; a terminal decision in
favor of the new drug, assume that for the reasons discussed in Section 4.2 the
director assigns utilities

wa, p) = Nx ulas, p) = Np ,
where N is the expected number of patients who would be affected by an immediate

terminal decision. Because p’ < , the optimal act under the prior distribution
of P is a; and the EVPI is given by the first formula in (5-13):

v}(ew) = Ut(ee)) = NLY(m) = N[p'Ih,(n' — 1,7 + 1) — v [,_,(n' — ¢, )] .
In other words: if in fact p > «, discarding the new drug at this point can be ex-
pected to reduce the number of cures by N(p — =) ; this loss is of course conditional
on the unknown p, but in the director’s best judgment the unconditional expected
value of the potential loss is [?(e;) as given by the formula just above.

Ezample 3. The standard method of producing a certain part behaves as a
Bernoulli process with known fraction defective p,. Some experiments with a
proposed new method lead to the assignment of a beta prior distribution of type
(9-9) with parameter (r', n') to its unknown fraction defective #. Manufacture
of one piece, good or defective, costs ¢; with the old process, c; with the new process;
N good pieces must be manufactured by one process or the other; and the utility
of money is linear. If we define p = 1/(1 — p), the terminal utilities of the acts
“retain old process” (a,) and ““adopt new process’” (a;) can be written

uay, p) = —aN/(1 — p;) = —aNp, ,
uas p) = —aN/(1 — p) = —a:lNp ;

the breakeven value is
P = C1po/C2 ;

ay is optimal if p 2> gy, a2 if p < m; and we define
k=|—cN —0] =cN.
The EVPI or expected opportunity loss of immediate terminal action is

oo N — 1oy — JE L (o) if F2>2m,
Uy (ew) = ll (eo) = k Lﬁ"(m) if ﬁ, S o,
where as shown in Section 9.1.4
!
-1
L .
p = rl - 1
If we define
T = l/Pb ’

then by (9-16), (7-18), and (7-19) the linear-loss integrals can be evaluated in
terms of Pearson’s incomplete beta function I:

LOG) = mLa(n’ = 1',7) = BLsn’ = r'yr = 1),
L) =pl.(r' — 1,0 — 7)) — pwL_,(+',n — 1) .

Erample 4. One batch of raw material yields a variable amount z of a certain
102



EVPI, Scalar w 5.2.4

chemical and the product sells for an amount sx. The standard method of produc-
tion has a mean yield g, per batch. It is believed that this yield can be increased
by preliminary beneficiation of the raw material; the required equipment costs B
and operation costs b per batch processed. The exact degree to which beneficiation
will increase the yield is uncertain, however; the responsible manager assigns to
the mean yield i of the beneficiated batches a Normal prior distribution with
mean g’ and variance j’. He wishes to choose between a;, immediate purchase
of the equipment, and a;, postponement of a terminal decision for one year, after
which he is sure that accurate information on the effect of beneficiation will be
available. The number of batches to be processed during this year is N and the
utility of money is linear, so that the terminal utilities can be written

uiay, p) = Nsu— Nb— B, ui(az, u) = Nsu, .

The breakeven value is
Nv+ B

wo= ot —p = ;

a; is optimal if u > w, azif ¢ < w; and we define

k=lk2—k1l=10—N3‘=N3 .
The risk involved in an immediate choice of a terminal act is measured by the
EVPI, which is given by (5-13) as
k LD (ps) if B 2w,
ke LD (ps) if B <m.
In order to evaluate the linear-loss integrals by use of (11-25), we first write the
decision maker’s prior distribution of & in the notation of (11-21):

D' (u) = fau(ulm', hn') o e~ din’Gu—m’y?
where in the present context h is simply an arbitrary positive constant and

R S
hy'

vi(ea) = li(e0) =

ml

a7, n
We then have by (11-25)

vilea) = lie)) = k Lie(w)/Vhn' ,  u = —m|Vhn' ;
the function Lys is tabulated in Table IT at the end of this monograph.

6.3. Preposterior Analysis

Our assumption that sampling and terminal utilities are additive implies, as
we saw in (4-3), that the expected utility of an experiment can also be broken down
into a sum of the expected utility of sampling and the expected terminal utility,

u*(e) = ul(e) + ui(e)
where (in terms now of w rather than 6)
ui(e) = E,. max, E,; uia, @) . (5-15)

We now turn our attention to evaluation of uf(e) when u(a, +) is linear in w.
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5.8.1. The Posterior Mean as a Random Variable

The assumption that wu(a, -) is linear in (either a scalar or vector-valued) w
implies that the posterior expected terminal utility of any act depends only on the
mean of the posterior distribution,

EL, uia, @) = wila, @) where @) = Ej.(@) , (5-16)

so that “‘the” expected terminal utility after observing 2z is max, u.(a, @;") and is
thus a function of @;" alone. We shall call this function ¢, defining

v(&) = max, wla, @) = maxq (Ko + ko a2') . (5-17)

To perform the preposterior analysis of any e as defined by (5-15) we must
evaluate
ur(e) = . 9(8;") . (5-18)

-1

Now formula (5-17) for ¢ is in terms of @;" rather than z and would have to be
reexpressed in terms of z before we could evaluate (5-18) by direct use of the meas-
ure P,.. It is often much simpler to turn the problem around and proceed much
as we did in paragraph 4 of Section 3.4.3 when we had to find the expectation of
[y’ ()] with respect to P,.: we can treat the posterior mean explicitly as a random
variable &;’, obtain its distribution P, from the distribution P, of 2, and then
compute

ui(e) = Eyo¥(8:) = Eare ¥(8") , (5-19)

where we drop the subscript from &,’ in the last member because 2 plays no role
once P;~, has been determined.

The distribution P~ will be called the prior distribution of the posterior mean;
it is also called the preposterous distribution. The theory of this distribution
will be discussed in Section 5.4, after we have completed our discussion of the basic
economics of problems with linear terminal utility in Section 5.3.2.

5.3.2. The Expected Value of Sample Information
1. General Theory. In Section 4.5 we defined a’ to be an act which is optimal
under the prior distribution of 4, satisfying
Eb ula’, §) = max, Kgua, §) ,
and we defined a, to be an act which is optimal under the posterior distribution
corresponding to a particular experimental outcome z, satisfying
Eg: ui(as, §) = max, Eg; ui(a, §) .
We then defined the CVSI or value of the sample information z by
1)‘((’, i) = Eé]’; u((al, 6) - Eérz u‘l(aly é) ’
defined the EVSI or expected value of sample information to be obtained from ¢ by
vi(e) = E,,vi(e, 2) ,

and showed that the terminal utility of e is the utility of immediate terminal action
augmented by the EVSI of e:
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ut(e) = ui(eo) + vi(e) .

This way of looking at uf(e) is particularly instructive when the utility func-
tion u(a, -) on Qis linear in w = W(8). Remembering that this linearity implies
that E, u.(a, ) = uia, @), we see that a’ can now be defined by

ua’, @') = max, ui(a, @') ; (5-20)

and remembering that z uniquely determines &' we can see that a, can be denoted
by az~ and defined by
ulagr, @'') = max, uda, @) . (5-21)

The CVSI or value of the “sample information” &'’ is accordingly
v,(e, ‘;’”) = ‘lh(ag", ‘:’”) - u‘(a’, ‘;’”) = mMaX, u‘(a) ‘:’”) - u;(a’, ‘;’”) ’ (5'22)

where we use the same symbol v, for the CVSI function on A X Q that we use for
the CVSI function on 4 X Z because the meaning will always be clear from the
context. Comparing the definition (5-7) of the CVPI funection, we see that

ve(e, @) = li(a’, &) : (5-23)

when terminal utility is linear in w, the CVSI function is formally identical lo lhe
CV PI function. It follows immediately that the expected value of sample informa-
tion is given by

vi(e) = Eamevile, &") = Eare L', 8") , (5-24)

where the substitution of Eg for E,, is explained in Section 5.3.1.

2. Scalar w, Finite A. The formal analogy between EVSI as given by (5-24)
and EVPI as given by (5-8) implies at once that EVSI for the case where & is
scalar and A is finite is given by the same formula (5-14) which gives EVPI for
this case,
wie) = D01 lhin — RiLQ(w) + 2007 hin = KILO(w) , e =0, (5-25)
the only difference being that in this case the linear-loss integrals are to be evalu-
ated with respect to the distribution of & rather than the distribution of @&. When
the number s of acts in A is 2, this formula reduces to (5-13):

Ikz — ky|L&(ws) if @ < w,

%) = ks — ko L9 s) if &>

(5-26)

For a geometrical interpretation of these results, return to the problem
with 8 = 4 illustrated in Figure 5.5. The figure graphs the conditional terminal
utilities u:(a, -) as functions of w, but because E.; ui(a, &) = ui(a, &'), we may
relabel the horizontal axis @’ instead of w and interpret the “curves” as graphs of
EJ. u:(a, @); observe that this does not change the “breakeven values” wi, ws, and
wy, which depend only on the constants K, - -+ , Ky, k1, -+ , ki. We have already
seen that if no experiment is performed, the decision maker will choose the terminal
act for which the prior expected utility E; u.(a, ®) = ui(a, &) is greatest; supposc
that w; < @ < w; and that this act is therefore a;. If an experiment is performed,
then after observing z the decision maker will compute &'’ and choose the terminal
act for which the posterior expected utility Ej; u.(a, &) = u.(a, &) is greatest;

105



5.3.2 Part I11: Additive Ulilities

suppose that & = w, and that as indicated by the figure the decision maker
therefore chooses a;. Then as evaluated after the fact, the decision maker’s utility
is ui(a1, w,) rather than u(as;, w,) and we may say that the value of the sample
information has been

u.(al, w.) —_ u;(az, w,) = lt(at, w.) ’

just as li(as, w,) is the value of “‘perfect” information that & = w, if before receiv-
ing this information the decision maker would have chosen a.. Generalizing, we
see that the CVSI for any &" is l,(a’, @"'), and it follows at once that the EVSI for
any e is Egv, L(a, 8").

5.4. The Prior Distribution of the Posterior Mean &'’ for Given e

We now turn our attention to the actual distribution of the random variable &,
but before beginning our formal treatment we shall try to guide the reader by some
heuristic observations. (1) If no sample is taken at all, the “posterior” distribu-
tion of @ will be identical to the “prior” distribution and therefore the posterior
mean &'’ will be equal to the prior mean &’; the “distribution’” of & consists of a
mass of 1 at the point @’. (2) Under appropriate conditions an infinitely large
sample would yield exact knowledge of the true w; and therefore before such a
sample is taken, the distribution of &’ is identical to the prior distribution of & itself.
(3) It seems reasonable to infer that as the “sample size’’ increases from 0 to « the
distribution of & will in most cases spread ow! from a single mass point at &'
toward the prior distribution of & as a limit. In other words, the effect of sample
size on the distribution of &' should be (loosely speaking) the opposite of ils effect on
the sampling distribution of the sample mean for given w.

6.4.1. Mean and Variance of &'’

We now turn to formal treatment of the theory of the distribution of & and
give some general results which apply in all cases where the mean and variance of
the prior distribution of & exist. We begin with two theorems which will prove
very useful in the applications:

Theorem 1. For any e, the expected value of & is the mean of the prior dis-
tribution of &:
E®') = E'(@) . (5-27)

Theorem 2. For any e, the variance of &' is the variance of the prior dis-
tribution of @ less the expected variance of the posterior distribution of &
given z:

V(@) = V'(@) — Eqe Vai(@) - (5-28)

In general, @ is an r X 1 vector, the expected values of (5-27) are r X 1 vectors,
and the ‘“‘variances’”’ of (5-28) are r X r matrices of (actual or expected) variances
and covariances; we use the word “variance’’ rather than ‘‘covariance” for the
entire matrix to avoid having to use special terminology for the case r = 1.
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P The proof of (5-27) is trivial. Recalling that for any given prior distribution ' is
uniquely determined by z and that E,, EL, = E. .,

E®;) = Ej EL(@) = E,(0) = E(@) = &' .

To prove (5-28) we first prove the following lemma: Let £ and § be jointly distributed
and define
T, = E(2) Z=E(@) =EE,@2 ;
then
V(@) = E, V5, (2) + V, Eq(2) .
For
V&) =E@-I?*=E,E (- % + & — I)?
= Ev Ezlv(z - Iv)’ + Ev(iv - £)’ + ZEV(iv - 1-7) Exlv(z - tv)
= E, V;,(2) 4+ V, E;(2)

as asserted. The result can be interpreted as saying that the variance of £ is the sum of
(1) the mean conditional variance of £ about the regression surface of £ on ¢, plus (2) the
variance of the regression surface about its mean E(%).

The theorem (5-28) is now proved by rewriting the lemma in the form

v, Ezlv(f) =V — E, V:Iv(f)
and substituting w for z and z for y to obtain
vzle Eﬁz(‘;’) = Vz[e(dil) = v(bu) = V(&) - El[d vﬁz(‘:’) . ‘

5.4.2. Limiting Behavior of the Distribution

Now consider a sequence of experiments {e.} = e, ey, €3, - - - where nisin some
sense a measure of the “‘sample size”’ or of the “amount of information” to be ob-
tained from e,. The marginal distribution P, of the experimental outcome 2
depends of course on n, and since & is a function of Z its distribution P.-{-|e.}
also depends on n. We now wish to investigate the behavior of the distribution
of &' as n increases, and we shall therefore display the dependence by writing &;’
for the random variable. We shall consider only sequences {e.} for which the
corresponding sequence {&;'}, considered as a sequence of ‘estimators’” in the
classical sense, is conststent in squared error in the sense of the following

Definition. The sequence {8,} is conststent in squared error over the subset
Q, C Q1if forall win Q,

(a) lim E@Gy|w) = w , (5-29a)
(b) lim V(&/|lw) =0 . (5-29b)

P When & and therefore &, is an r X 1 vector, the second part of the definition requires
all elements of the r X r variance matrix V(&;') to vanish in the limit, but it suffices to
verify this for the diagonal elements (the marginal variances of the scalar components of &)
because by the Schwarz inequality

107



5.4.2 Part I11: Additive Ulililies

|E@z — 2)(7 — 7)| < V@)-V(@)E.

for any two scalar random variables 2 and §. 4

We have already seen in (5-27) that the mean of the distribution of &y is &'
regardless of the value of n; the effect of n on the vartance of &, is given by the
following

Theorem 3. Let {64} be consistent in squared error over the spectrum of the
prior distribution of @ Then as n — © the variance of &, approaches the
prior variance of @:

lim V(&) = V(@) . (5-30)

n—wo

P By the lemma in the proof of (5-28),
V(&) = ELV(87|6) + V, E@By|a) .

Taking the limit as n — « and then interchanging the order of the operations lim and E
in the first term on the right and of the operations lim and V in the second term we have

lim V(&) = E lim V(&/|®) + V lim E&y|@) .

n—eo nN— 0 n—saw

The theorem then follows by (5-29). <4

A much more basic result is contained in

Theorem 4. Let (&, be consistent in squared error over the spectrum of the
prior distribution of @.  Then the sequence converges in distribution to @; i.e.,

lim P{&) < ¢} =P{a< ¢ (5-31)
for any ¢ which is a continuity point of the prior cumulative distribution
function of &.

P Given any r X 1 vector w in the spectrum of P., the sequence of r X 1 vectors {&u}

converges to w in mean squarc by hypothesis, and it follows by Chebysheff’s inequality

that {8} converges to w in probability, i.e., that for any r X 1 vector ¢ > 0 however small
lim P{w—e <&/ <w+¢ew} =1.

n— o0

From this it follows that, for any r X 1 vector ¢ whatever,

1 if w; < ¢, all %,
0

. " _
lim P{& < clw} = i wi>e,  anyi

n—w
Now writing
lim P{&) <¢} = lim E,P{&) <cl®} = E, lim P{&) < c|a}
n—o n— w n— o
and using our previous result for the limit on the right we have
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Ploa<c) £limP®, <c} <P{@<ec},

n—e

and (5-31) follows because the left- and right-hand members of this expression are equal
when ¢ is a continuity point of P,

We could have taken an alternate route to Theorems 3 and 4 by first proving that &;
converges unconditionally to & in mean square and then using theorems in probability
theory relating different modes of convergence. |

5.4.8. Limiting Behavior of Integrals When w 1s Scalar

We now specialize to the case where Q is the real line and give two results
concerning the limiting behavior of the integral of a linear function of &, with
respect to the distribution of &,. We first define the incomplele first moment or
parlial expectation over (—x, ¢] of any scalar random variable # with measure P,
to be

ES o(il) = /j_, wdP, . (5-32)
We then have
Theorem 5. If & is scalar, then for any real ¢
lim E- (&) = E- (@) . (5-33)

Corollary. If @ is scalar, then for any real ¢
lim L (c) = LI(c) ; lim L¥(c) = LY (c) (5-34)

n—o n— oo

where the L functions are defined by (5-12).

P The proof of Theorem 5 follows from the Helly-Bray theorem which can be found in
M. Lodve, Probability Theory, Van Nostrand, 1955, pages 180-183. Then if we write the
definitions (5-12) of the L functions in the form

L9 = /_‘” (¢ — 1) dP, = ¢ P.{d < ¢} — E%u(d) ,

LO(c) = j:’ (4 — ¢) dP, = E(f) — E-u(@) — cP.{d@ > ¢} ,

the corollary follows at once from (5-31), (5-33), and (5-27). |

5.4.4. Ezxact Distributions of &"

The distribution of & has been worked out in Part III of this monograph for
the processes and ws listed in Table 5.1 (page 99) and for all the experiments listed
in Table 3.1 (page 75); since & is a function of the sample outcome # and the
distribution P, depends on e, the distribution of &"” will obviously be of one type
if, say, the number of trials is predetermined in sampling from a Bernoulli process,
of another if the number of successes is predetermined. The results are summarized
in Table 5.2, where references are to formulas rather than to sections. The column
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Table 5.2

Distribution of &'’

Distribution of &"

Prior Approximation
Process Distribution Experiment @ P v E, L Parameters
[ B (9-20) n (9-21b) (9-23)
Fln hypergeometric n+n' (9-22)
1/ (9-25) (9-29) (9-27b) (9-30)
B I bet ) hypergeometric (9-28)
ernouti 2 P (9-34) (9-38) (9-36b) (9-39)
filr hypergeometric (9-37)
1/ (941) r (9-43b) (9-43)
L L hypergeometric r+r —1 (9-44)
( (% (10-36) _t (10-37b) (10-39)
At ) binomial t+t (10-38)
1/% (10-42) (10-45) (10-43b) (10-46)
. L binomial (10-44)
Poisson gamma .
} A (10-21) r (10-22b) (10-24)
I beta r+r 41 (1023)
<
1/x (10-27) r (10-28¢) (10-30)
L L beta r+r—1  (10-29)
h known, & Normal fii|n it (11-32) n (11-24b) —
. Normal n+n (11-25)
Normal
Normal-gamma m, fn, v i (11-67) n (11-49¢) —
Student n+n (11-50)
Multinormal — — Z el same as univariale
Regression — — Z e same as univariale
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headed P cites the formula for the distribution of &’ and names the most familiar
function in terms of which cumulative probabilities can be evaluated. Except for
the Bernoulli process, the function cited has been well tabulated; computation
and approximation in the Bernoulli case is discussed in Section 7.11.2. The col-
umn headed V gives the ratio V(&")/V'(@) of the variance of & to the prior vari-
ance of @. The column headed E, L cites (1) the formula for the partial expecta-
tion of & as defined by (5-32) and (2) formulas for the linear-loss integrals LY
and L$ as defined by (5-12). In the case of the Bernoulli and Poisson processes,
these formulas involve cumulative probabilities of the type listed in the column
headed P; in the other cases, the formulas involve one Normal or Student density
and one Normal or Student cumulative probability.

6.4.6. Approximations to the Distribution of &

If we let 7 denote the predetermined component of the sufficient statistic in
Table 5.2, the sequence {&,} is consistent in squared error in every case in the
table and therefore (a) the distribution of &, approaches the prior distribution
of @ as 7 increases, and (b) the first two moments, the partial expectation, and the
loss integrals under the distribution of &, approach the corresponding quantities
under the prior distribution of @. This implies that when 7 is “large” we will ob-
tain accurate results if we approzimate the exact distribution of & by an appropri-
ately chosen distribution belonging to the same conjugate family as the prior distribu-
tion of @. Notice that we can not expect good results from a Normal approxima-
tion unless the prior distribution of & is Normal. The last column of Table 5.2
cites formulas for the parameters of a distribution of the conjugate family which
will have the same first two moments as the exact distribution of &".

5.4.6. Ezxamples

To illustrate the use of the information indexed in Table 5.2 we shall compute
the value of the information which could be obtained by sampling before reaching
a terminal decision in some of the situations for which we computed the expected
value of perfect information (or expected opportunity loss of an immediate termi-
nal decision) in Section 5.2.4. In each case we shall assume a prior distribution
of the same type that we assumed in Section 5.2.4.

Ezxample 1. In the situation of Example 1 of Section 5.2.4, assume that 7’ is
below the breakeven value ps, so that the optimal immediate terminal act would
be acceptance. The expected value of the information which could be obtained
by sampling the lot before making a terminal decision is then given by (5-26) as

vi(e) = k LX(ps) .

The value of the loss integral L in this expression depends on the distribution of P’
and this depends in turn on the experimental design; we shall consider two possible
designs.

la. Binomial Sampling. If a predetermined number n of pieces is to be
drawn from the lot, the number of defectives 7 being left to chance, then '’ has the
distribution (9-20) and by (9-22b) and (7-82)

L (py) = p' Ga(ren, ', re + 7') — po Gia(reln, 7' — 1, 1. + 7' — 1) (5-35a)
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where r. is defined by
r'+r.
7‘1 + n - pb

and Gi(s.S, F, v) is the hypergeometric probability of obtaining s or more successes
in v drawings without replacement from a finite population containing S successes
and F failures.

Exact evaluation of the first of the two cumulative probabilities in this formula
involves computing and summing no more than r’ 4 1 individual hypergeometric
terms, the second no more than r’ terms; but even this usually moderate labor is
unnecessary if 7” and p, are small, since condition (7-86) will then be met and we
can use the approximation

L m) = ' Gy (rc — .+ r’) — DG (r, pretr— 1) (5-36)

n+n n+n —

where Gy(r|m, v) is the binomial probability of r or more successes in » Bernoulli
trials when the probability of a success on any trial is =.

1b. Pascal Sampling. If the sample is to be taken by drawing pieces from
the lot until a predetermined number r of defectives has been found, the number #
of drawings being left to chance, then §" has the distribution (9-34) rather than
(9-20), and by (9-37b) and (7-82)

L) = ¢ Gr(rine, ', r + 1') — py Gi(rlne, 0’ — 1, r + 7' — 1)
where 7. is defined by

(5-35b)

r 4r

n + n
Exact evaluation of the first cumulative hypergeometric probability involves
computing and summing no more than r’ 4 1 terms, the second no more than r';
if ' and ps are both small, we may use the binomial approximation

Li(ps) = 9’ Gy (r nc 1_:‘_‘ ks + 1-') — » Gy (r ﬂ%’-—_l

Example 2. In the situation of Example 2 of Section 5.2.4, suppose that the
director of the clinic proposes to try the new drug on n more patients before making
up his mind definitely whether or not to return to exclusive use of the old drug.
Recalling that we have already assumed that 7’ is less than the known cure rate
7 = pp of the old drug, we have by the same reasoning as in Example 1 above

vi(e) = N Li(ps)

wherc N is the expected number of patients affected by the terminal decision and
the value of the loss integral is given in terms of hypergeometric cumulative prob-
abilities by (5-35) above.

Suppose now that

r=p, = .500 , r =23, n =51, P =r'/n = 451 .
(These values of r' and n’ describe the distribution which the director would now

assign to P if, starting from an original rectangular distribution of f, he had already
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tried the new drug on 49 patients and found that 22 were cured.) Suppose further
that the proposed new test is to involve

n = 50

patients. Under these assumptions, condition (7-86) for the use of the binomial
approximation (5-36) to the hypergeometric probabilities in (5-35) is definitely
nol met; but on the other hand the fact that the sample size n is large means that
we are probably justified in using a direct beta approximation to the distribution
of " itself. By (9-23) a beta distribution with parameters

50 + 51

5 52— 1=10¢,

n.="+_"(nf+1)_1=
n

£,
r“=:—,r’=%23=47,

will have the same mean and variance as the exact distribution of ", and we may
then use (9-12b) and (7-23) to evaluate

Lo(r) = wLis(n* — r*, 7% + 1) — 5 L. (n* — r*, r¥)
51657, 48) — A55 I 4(57, 47) .

The required values of I are beyond the range of Pearson’s tables, but they can
be expressed in terms of binomial probabilities by use of (7-20) and doing so we

obtain
L (x) = .5 Gy(57].5, 104) — .455 G,(57|.5, 103)

(.5 X .1888) — (.455 X .1622) = .0206 .

The expected value of the sample information is thus the equivalent of .0206N
patients cured. As we pointed out in Section 4.2, the “cost” of this information
to a person with the utilities assumed in this example lies in the fact that, given
his present information about the new drug, he can expect only 50 p’' = 50 X .455 =
22.7 of the experimentally treated patients to be cured whereas he could expect
50x = 50 X .5 = 25 of them to be cured if they were treated with the old drug.
The cost of the proposed experiment is thus 2.3 patients cured, and the net gain
to be expected from it is therefore (.0206N — 2.3) patients cured.

Ezxample 3. In the situation of Example 4 of Section 5.2.4, assume that the
decision maker can have raw material beneficiated by an outside contractor. The
contractor charges more than it would cost the decision maker to do the work
himself if he bought the necessary equipment, but the decision maker is thinking
of having a small number n of lots treated by the contractor so that he can meas-
ure their yields x before deciding whether or not to invest in the equipment. As-
sume that the lot-to-lot variance of the yields £ of individual untreated batches is

V(zgiw) = 1/h

where A is a known number, and assume that it is virtually certain that the treat-

ment will have no appreciable effect on this variance even though it does affect

the mean u = E(£). Letting 2’ and &’ denote the mean and variance of the decision
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maker’s prior distribution of 7 and defining the parameters m’ and n’ of this dis-
tribution by

1

’ ! ’

m = n =7,
r, hi'

we have by (5-26), (11-32), and (11-25)
vi(e) = k(hn*)~} Lye(u)
where
u = —m|V hn* ;

the function Ly is tabulated in Table II at the end of this monograph.

5.6. Optimal Sample Size in Two-Action Problems When the Sample
Observations are Normal and Their Variance is Known

It is usually fairly easy to compute the expected cost ci(e.) of performing an
experiment of size n, and when we also have a convenient formula for the expected
value v?(es) of the information to be obtained from the experiment, we can always
find the value n° of n which maximizes the expected net gain

v*(en) = vi(ea) — ci(en)

by actually tracing the behavior of v*(e.) as a function of n; cf. Section 4.5.2.
In one very important case, however, we can write an equation for the optimal
sample size which can be solved either by a reasonably simple iterative procedure
or still more easily by reference to published charts. This case, which we shall
now examine in detail, is that of two-action problems where terminal utility is
linear in the mean of an Independent Normal process whose precision A (or vari-
ance 1/h) is known and where the cost of sampling is linear in the sample size.

5.6.1. Definitions and Notation

Let p denote the mean of an Independent Normal process with known pre-
cision, i.e., a process generating independent random variables £, - -« , 2;, - -+ with
identical densities

D(z|u, ) = fn(zln, h) < e~ Iz (5-37a)
where h is known; and let the prior density of g be
D' () = fw(ulm’, hn') ac = hn'u—m’ (5-37b)
Let A = {a, a2}, let
ulai,p) = Ki+ ki, i1=12, (5-37¢)
and define the breakeven value u, and the terminal loss constant k; by
sy = H , ke = ks — ki| . (5-37d)

Assume temporarily that the known or expected cost of sampling is proportional
to the number of observations n,
ci(en) = kem ; (5-37e)
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we shall generalize later to include a fixed element in sampling cost, i.e., to the
case where cj(en) = K, + kn. Then by (4-38) and (5-26) in conjunction with
(11-32) and (11-25) the expected net gain of an experiment e, which consists of
observing (z1, -+ -, Z4) 18

v*(en) = vi(en) — ci(en) = ki(hn*)~} Ly(D*) — kun (5-38a)
where
1 1 1

n* n n4+n

) D* = |u — m/|(hn*)} . (5-38b)

The really essential features of the problem are best brought out by putting
the net gain v*(e,) into a dimensionless form and by looking at certain ratios in-
volving the sample size n and the prior parameter »n’ rather than at = itself; and
the interpretation of these ratios will be easier if we first define the sampling and
prior standard deviations

o.=h}, o, = (hn')-} . (5-39)
We then define the ratios

N _ 9% _
p= n Uf/n ’ (5-40a)
D = |u — m/| (')} = 1&;‘,—"” : (5-40b)
— ' - -1 k‘”' E; ¥ .
A= k(n®h) kS = % | o ; (5-40c)
to facilitate typography we define the supplementary symbol
2 *
0= [%T = | (5-40d)
P af + = g2
n
and we then consider the dimensionless net gain of e,
™
glp; D', N) = ?T(ft_,") = NOLx«(D'/6) — p . (5-41)

The first term on the right is the dimensionless EVSI; the second is the dimension-
less cost of sampling or sample size.

6.6.2. Behavior of Net Gain as a Function of Sample Size

Concerning the function g(p; D', \) defined by (5-41) we shall prove the fol-
lowing results, treating p as if it were a continuous variable.

If D’ = 0, then for any given A the net gain behaves with increasing p in the
way shown in Figure 5.7. Because the prior distribution is totally indecisive, the
value of additional information at first rises much more rapidly than the cost of
obtaining it. The EVSI cannot exceed the EVPI, however, and as it approaches
this bound it increases more and more slowly, while the cost of sampling increases
steadily in proportion to the sample size. The net gain accordingly reaches a
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maximum and then declines more and more rapidly; the optimal “sample size” p°
is the value of p corresponding to this maximum. The true optimal value of n
may of course be 0 if p° corresponds ton < 1.

If D' > 0, the prior distribution definitely favors one of thg two terminal
acts, so that it is very improbable that a very small sample could reverse this deci-
sion, and the EVSI accordingly at first increases very slowly with n. The rate of
increase of the EVSI becomes greater as the sample becomes large enough to have
an appreciable chance of reversing the decision, but then slows down again as
the EVSI approaches the EVPI. Meanwhile the cost of sampling increases stead-
ily; and the net result is that the net gain may behave in any of the ways shown
in Figures 5.8 and 5.9, depending on the value of (D', ). For any given D',
there is some value A, of A such that if A > A, the net gain has a local maximum

0'>0 0\00///
A > A, \1//{
//Al'(/ ('0"
7|
e
/ I
// / !
o
7, l
/ s /{-\ .
I & P
%
Figure 5.8
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which is a true maximum as in Figure 5.8 and the optimal sample size p° is the
value of p which produces this maximum. If A <\, then as shown in Figure 5.9
the net gain has either a negative local maximum or no local maximum at all and
the optimal sample size is 0. The critical value A, increases with D’ as shown
by the graph Figure 5.10 of Z. = A .

5.5.3. Optimal Sample Size
When D’ = 0, the optimal *“‘sample size”” p° is the unique root of

Dol + 1)3@n) =1 (5-42a)
when D’ > 0 and the optimal sample size is not 0, p° is the larger of the two roots of
P (e + 1) fu(D'/6) = 1 (5-42b)

where 6 = Vp/(p + 1). The quantity

° o h}

o_ o = N\ = “ =
e PN LI VA

(5-43a)
is graphed as a function of
D.=D", D,=0(1).2(2)34, and Z=MN, 7<Z<L8, (543b)

in Chart I at the end of this monograph. A nomogram showing N = p° as a func-
tion of A and |X| = D’ for 70 < A\ <€ 4000 and 0 < |X| < 2.6 is given on page 37
of the Journal of the Royal Statistical Soctely, Series B, Volume 18, Number 1
(1956).
For some purposes all that we require is the net gain of an optimal sample for
given (D', \), the actual size of this sample being irrelevant. Chart II at the end of
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this monograph, the data for which were computed at the expense of the Interna-
tional Business Machines Corporation under the direction of Arthur Schleifer, Jr.,
shows the quantity

o _ V*(en)

T = Kokl
as a function of the parameters defined by (5-43b).

= g(p°; D", \) n' (5-43c)

hi
(ke/ka)}

P The results presented in Sections 5.5.2 and 5.5.3 were first published by Grundy,
Healy, and Rees (JRSS 18 [1956] pp. 32-48), who derived the equivalent of formula (5-41)
for the net gain by using the fiducial distribution resulting from an initial sample as a prior
distribution and then applying the normal form of analysis to the problem of determining
the optimal size of a second and final sample. The size n, of the first sample in their analysis
plays the role of the prior parameter n’ in ours; their n;is our n. For completeness we shall
reprove the results here by a line of argument which differs from theirs in a few details.
We start from the dimensionless net gain as given by (5-41),

(1 g(p; D', \) = N0 Lyo(D'/8) — p

where

- [T

and differentiate twice with respect to p, thus obtaining

3) g'(p; D, N) = Moo+ 1) i (D/8) — 1,

4) g"(p; D', N) = I\[p(p + 1)] ¥ fne(D'/6){D"* + (D"* — 1)p — 4p%} .

For D' = 0, we see that g'(p) decreases steadily from +w at p=0to —1 at p = =, s0
that g(p; D', \) must behave as shown in Figure 5.7. For D’ > 0, we see that g'(p) = —1
at p = 0and at p = « while g"’(p) is positive for all p below the unique positive root of the
quadratic in curly brackets and negative for all greater p; it follows that g(p; D’, \) may
vary with p in any of the ways shown in Figures 5.8 and 5.9.

The first-order condition for a local maximum of g(p; D’, N) is obtained by setting (3)
equal to 0,

(5) Moo+ D fne(D'/6) —1 =0 .

Denoting by p° the root of this equation which corresponds to a local maztmum of g(p; D, \)
if one exists, we observe that by Figures 5.7, 5.8, and 5.9:

If D’ = 0, a local maximum always exists and p° is the unique root of (5).
If D’ > 0, a local maximum may or may not exist. If one does exist, the maximizer p°
is the larger root of (5), but g(p°; D', \) may or may not be greater than g(0; D', \) = 0.

We can partition all (D', \) pairs into those for g(p°; D/, \) > 0 and those for which
g(p°; D’, \) <0 by first finding the ’pairs (D., \.) for which g(p°; D', \) = 0 exactly. The
computation of A, as a function of D is best carried out by treating both \. and D} as func-
tions of the ratio D./6; where 8; is the optimal 8§ = V/p/(p + 1) for the given (D., o).
Substituting (2) in (3) and setting the result equal to 0 we obtain the optimality condition

20 -
(1 =602 i (D'/8)
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Substituting (2) in (1) we obtain the condition for zero net gain

8
@ =69 Lo /8 ~

These two equations taken together define the locus of (8;, D., \.) as a curve in 3-space.
Eliminating N between them, substituting

Lye(u) = fyo(u) — uGue(u) |
and defining the function ¢ by

_ uGue(w)
® o) = L0
we obtain
9 #(D/67) = §(1 + 62%) .

Computation of A, as a function of D} can be carried out by inserting values of D:/6,
into the left side of (9) and for each such value: (a) solving (9) for 6, and then computing
D, = 0;(D./6:); (b) inserting 0, and D./6; into (6) or (7) to determine \..

Since 0 < 6, < 1 by the definition of 8, the right-hand side of (9) is restricted to the
interval [4, 1], and therefore the permissible values of D/, for this computing procedure
are those for which 4 < ¢(D}/8.) < 1. To delimit these permissible values, we first observe
that

(U 4+ 1) Gye(u) — ufao(u)
Sae(n)

d
d—u¢(u) = >0

for all u < =, as is proved by the fact that

(u? 4 1) Gao(u) — u fve(w)

is 0 at ¥ = » and that its derivative
d
au [(u® + 1) Gyo(u) — ufye(u)] = —2Lpe(u) <0

for all ¥ < ©. Then since ¢(.612) = } and ¢(0) = 1, we conclude that the permissible
values of D./8; are those in the interval [.612, ©): as D./8; runs from .612 to « the right-
hand side of (9) runs from % to 1 and 6, itself runs from 0 to 1. We remark incidentally
that the fact that D./6; increases with 6, implies directly that D, increases with 6. and
implies via (6) that A, increases with 6., from which it follows that A, increases with D,
The quantity Z, = VA, is graphed as a function of D’ in Figure 5.10.

Our next task is to lay out a systematic procedure for computation of the optimal 6°
for those (D’, \) for which net gain is positive, and as a preliminary step we prove the two
following propositions.

(10) For any fixed D’ and any p > 0, net gain increases with A.
(11) For any fixed D', the optimal p° and therefore the optimal 6° increase with A.

Proposition (10) is obvious on inspection of formula (1). To prove proposition (11), we
observe that the optimality condition in the form (5) implicitly defines p° as a function of A
with parameter D’. Differentiating this constraining equation totally with respect to X for
fixed D’ we obtain, with the aid of (4),

10~ + 1)—;'{‘\..(1)'/0)[1 + o p+ Dt {-} 3{] =0
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where {-} stands for the expression in curly brackets in (4); and since {-} must be negative
at a local maximum, dp°/dN > 0 as was to be proved.

Proposition (10) implies that g(p°; D', N\) > ¢(0; D', N\) for given D’ if and only if N
is greater than the critical value A, for the D’ in question; and proposition (11) then implies
that g(p°; D', N) > g(0; D', \) for given 1’ if and only if 8° > 8, for that D’. Optimal
sample size may therefore be computed as a function of N for given 1)’ by taking a series of
values of 6° such that 8° > 6, and using (6) to find the A corresponding to each 6°. The
value 68° = 1 corresponds, of course, to p° = «.

Finally, the net gain of an optimal sample g(p°; D', \) can be computed as a function
of D’ and N by inserting the valucs p°® and 6° which are optimal for each (D', N) into for-
mula (1).

5.5.4. Asymplotic Behavior of Optimal Sample Size
For any values of the parameters D’ and N an upper bound for the optimal
sample size p° is given by
p° < VINfw(D) . (5-44)

As X increases with D’ fixed the ratio between the two sides of this inequality ap-
proaches unity, so that for large N we can approximate the value of p° by

p° = VINfxe(D') (5-45a)
for fixed N the relative error in the approximation increases with D’.
Expressed in natural rather than dimensionless units, formula (5-45a) becomes

n® = [3(kwo/k)(o/a.) fas(D)]E . (5-45b)

If we take o, as the unit of measurement for u, optimal sample size increases with
the seriousness of a wrong decision as measured by k0., decreases with the “decisive-
ness”’ of the prior distribution as measured by D', and decreases with the standard
deviation of the prior distribution as measured by o./c.. The last relation is of
particular interest: while it is suggestive in some situations to think of the recip-
rocal of the prior variance as a measure of “quantity of information,” the contrary
is true when we are making a decision concerning sample size. In this case a large
prior variance—strictly, a large ratio o.2/oc2—represents a great deal of relevant
information, since it amounts to an assertion that u is almost certainly so far from
the breakeven value p in one direction or the other that a very small sample can
show with near certainty on which side of p the true u actually lies.f In problems
of point estimation, on the other hand, optimal sample size naturally increases
with o}, as we shall see in Chapter 6.

P T'o prove (5-44) and (5-45) we substitute Vp/(p + 1) for 6 in the optimality condition
(5-42b), thus obtaining

oo + 1)3 = I@2r)texp (—4 ‘% D’z) = I[(2r)~t =307 - 1De

1 Observe, however, that when we make these statements about the effect of variation in o%
we are assuming that D’ is held fixed. If 7’ is held fixed instead of D’, then D' = |uy — i'|/0%
will vary with ok and the effect of the variation will be different.
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and hence
W pz[(%)*eio'w] = I fwe(D) .

Since the larger root p° of this equation increases with M for fixed D', as shown in proposition
(11) of the previous proof, and since as p increases the factor in square brackets in (1)
approaches 1 from above, we see at once that the inequality (5-44) holds for all p° and that
as p° increases the ratio of p° to the right-hand side of (5-44) approaches 1. 4

5.6.6. Asymplotic Behavior of Opportunity Loss

We have seen in (4-37) that the prior expectation of the expected terminal
opportunity loss to be incurred after performing e, (often called the Bayes risk)
is the EVPI diminished by the EVSI of e,

li(en) = li(eo) — vi(en) .

Using (5-13) and (5-26) to obtain the values of these quantities when u.(a, -) is
linear in w and using (11-32), (11-25), and (5-40) to evaluate the loss integrals
under a Normal distribution we have

I(eq) = ki(hn')~4 [Lys(D’) — 0 Lyo(D'/6)] , (5-46)
and in dimensionless form this becomes

1(p; D', \) = '—k(j—f,z = NLn+(D') — 8 Lxe(D'/6)] . (5-47)
An upper bound on the expected terminal opportunity loss of e, is given by
(03 D', N) < $h fN.(D’)% , p>1. (5-48a)

As p increases with D’ and \ fixed, the ratio between the two sides of this inequality
approaches unity, so that for large p

"(o; D, N) = A D) - (5-48b)

P To prove (5-48a) we first observe that

—d—LN.(u) = —GN.(u)

du
is an increasing function of u, so that
(1) LN-(u + E) > LN-(u) - eGm(u) .

’
Substituting (1) in (5-47) withu = D’ and ¢ = % — D’ we obtain
@ L7005 D, N) = Ln(D) = 8 L(D'/0)

< Ly (D) — 8 [LN.(D’) —pl > 6 GN.(D’):I
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= (1 — 0)[La«(D) + D’ Gre(D')]
= (1 — 6) fae(D) .
The inequality (5-48a) follows from the fact that for p > 1

-3
® 1—o=1- (14 5) = 5/0 - Ju/m + -

<¥l/p ;

and we prove the asymptotic approximation (5-48b) by observing (a) that as p — « the
ratio of the two sides of (3) approaches unity and (b) that as 6 approaches 1 and therefore

1 - . . .
e= D ( 7 0) approaches 0 the ratio of the two sides of (1) approaches unity.

It is perhaps worth remarking that rcasoning very like that which led to (2) gives a
lower bound

S 7(0; D, N) > (1= 6) fulD'/8) . <

The approximation (5-48b) is valid for any (D', \) when p is large, whether
or not p is optimal for the given (D’, \); but because p° increases with A for fixed
D’, we may approximate the terminal opportunity loss of an opttmal sample when
A is large by substituting in (5-48b) the approximation (5-45a) to p°. We thus
obtain

(0% D', N) = A fas(D)]} = p° . (5-49a)

When \ and therefore p° are large, the cost of an optimal sample is equal to its expected
terminal opportunity loss. (The same result can be obtained by adding the dimen-
sionless sampling cost p to (5-48b), thus obtaining an approximation to the total
expected opportunity loss when p is large, and then minimizing this total with
respect to p.)

Expressed in natural rather than dimensionless units, formula (5-49a) becomes

It = ¢t = [Ykwks)(o/an) fre(D)]} . (5-49b)

Both the terminal opportunity loss and the sampling cost of an optimal sample
increase with the seriousness of a wrong decision as measured by k.o, and with the
cost k, of a sample observation; with o fixed, they decrease with the ‘“decisiveness”
of the prior distribution as measured by D’; and with D’ fixed, they decrease with
the probability that i is far from g, as measured by o,/0..

5.6.6. Fized Element in Sampling Cost

All of the above discussion has rested on the assumption (5-37¢) that the
expected sampling cost is strictly proportional to the sample size, cj(es) = k.n.
We now generalize to the case where sampling cost also includes a fixed element
which is incurred if any sample is taken at all but which is independent of the size
of the sample,

ci(en) = K, + kin .
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The effect of K,—or rather, of the dimensionless fixed cost K,/(k,n')—on the
curves of net gain in Figures 5.7, 5.8 and 5.9 is obvious: every point except the
point at p = 0 will be depressed by the amount K,/(k.n'). If a local maximum
exists when K, = 0, one will exist when K, > 0 and it will correspond to the same
value of p in both cases; but a local maximum which gives positive net gain when
K, = 0 may give negative net gain when K, > 0. Obviously, therefore: if for
given (D', A) it does not pay to sample when K, = 0, then a fortiori it does not pay
when K, > 0;if it does pay to sample when K, = 0, then when K, > 0 the optimal
size can be found by finding the size which would be optimal if K, = 0 and com-
puting the net gain of this sample to see whether it is greater or less than the 0 net
gain of taking no sumple at all.

6.6. Optimal Sample Size in Two-Action Problems
When the Sample Observations are Binomial

Convenient exact solutions of the problem of optimal sample size in two-
action problems with linear terminal utilities have unfortunately not been found
for any data-generating process other than the Independent Normal process with
known precision. We shall therefore consider only one other problem of this sort:
that of sampling from a Bernoulli process when terminal utility is linear in p, when
the number of trials is to be predetermined, and when the cost of sampling is
linear in n. This one example will suffice to illustrate both the difficulty of finding
an exact solution to nonnormal problems and the possibility of finding an approx-
imate solution by use of the results of our analysis of the Normal problem.

6.6.1. Definilions and Notalion
Let p denote the mean of a Bernoulli process, i.e., a process generating inde-

pendent random variables %, - - - , £, - - - with identical densities
D(z|p) = fu(zlp, 1) = p=(1 — p)*~=, z=0,1; (5-50a)
and let the prior density of f be
D'(p) = fa(plr’,n'y o p"~}(1 — p)v'=r'-1 . (5-50b)
Let A = {ay, a3}, let
ulai, p) = Ki+ kip , i=12; (5-50¢)
define the breakeven value p, and the terminal loss constant k; by
Py = -’i‘C;:—kKl’ : ke = ks — k| (5-50d)

and assume that
0<m<l1. (5-50e)

(If this last condition is not met, one of the two acts is optimal for all possible p.)
On these assumptions the EVSI or expected value of the information to be
gained from n observations on the process is, by (5-26),
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IV LY 7 CONE S - N

o ke L (ps) if P2p,
and the values of the functions L and L” are given in terms of the cumulative
beta-binomial function by the very similar formulas (9-22a) and (9-22b). All

essential features of the problem can be brought out by considering only the case
where

P’

3 |‘L

72D, (5-50f)

implying that the optimal act under the prior distribution is a;. The dimensionless
EVSI can then be defined to be

h(n) = —v: t(en) = LP(ps)

=D Fﬂb(pnlr ’ n' ’ n) - ﬁ, ng(p,‘[rl + 17 n' + 1; ’I’l) ('5'518')

where Fg is the left tail of the beta-binomial function defined by (7-76) and p is
the tnteger-valued function of n defined by

pn = [po(n' +n) — 1], (5-51b)

(] denoting the greatest integer in . ¥or any sample size n, p, is the greatest
value of the sample statistic » which will lead to "’ < py and thus to the conclu-
sion that the act a, is optimal; recall that a, is optlmal under the prior distribution
by the hypothesis (5-50f). ¥or n small enough, the definition (5-51b) may lead
to a negative value of p, implying that no possible outcome of the sample can
reverse the prior choice; if so, then (5-51a) gives h(n) = 0 — 0 = 0 in accordance
with common sense.

5.6.2. Behavior of the EVSI as a Funclion of n

In order to understand the behavior of the EVSI as a function of the sample
size n, we first observe that as n increases from 0 through integral values the func-
tion p defined by (5-51b) at first retains some constant value, then increases by 1
and retains this value for a time, then increases by 1 again, and so forth. The
effect on the dimensionless EVSI defined by (5-51) of a unit increase in n is given
in terms of the beta-Pascal function (7-78) by

an(w) = [ 5EEEL — g |t + 117,y 0 4+ 1)
if puss = o, (5-528)
antm) = [ 254 = 1[0 = T2 st 4 U s a4 1)
if pagr =pn+ 1, (5-52b)

where
Ah(n) = h(n + 1) — h(n) .
The first differences given by (5-52a) are always positive and those given by (5-52b)

are always nonnegative, corresponding to the fact that one would never refuse to
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accept free information. As long as p remains constant, each successive first differ-
ence is smaller than the previous one,

Ah(n) < Ah(n — 1) if Prtl = Pn = Pn_1 | (5-53a)
if py << 3, each increase in p is either accompanied or followed by an increase in the
first difference:

Ak(n) > Ak(n — 2) if {;i A (5-53b)

It follows that for p, << } the dimensionless EVSI behaves in the way shown by
the solid curve in Figure 5.11; the dotted curves will be explained in a moment.

Ala)

|
I
|
!
I

e p=-1] :'L—/FO—J k=1 k—p=2-
Figure 5.11

Behavior of EVSI with n: Binomial Sampling

P To prove (5-52a) we start from formula (5-51) for A(n) and obtain, writing pa for pay,
(l) Ah(n) = pb[Fﬂb(Palr'p n" n+ 1) - FBb(Pnlr', n'r n)]

= S Fasoalr’ + 1,0 + 1L,n + 1) = Fas(palr’ + 1,77 + 1,m)]

We then use (7-80) to express Fg in terms of Ggpa and (7-78) to obtain a recursion relation
for fara:

(2) Ah(n) = pb[Gﬂ-Pﬂ(n + 2IT', n’: Pn + 1) - Gﬂp.(n + llTI, n,) Pn + 1)]

- :7[Gm(n + 2+ 1,0+ 1,00+ 1) — Gara(n + 1|r' + 1,1 + 1, pa + 1)]

—pofora(n + 1), 7', pa + 1) + ’% Jersn + 1r' + 1,0+ 1, p.+ 1)

"+t o
[-r+ ZE2E ot + 1t 1

This quantity is necessarily positive by the definition (5-51b) of pny1 = pa.
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To prove (5-52b) we start again from (5-51) but this time write p, + 1 for p.y, thus
obtaining

(3) Ak(n) = I:Pb Fgo(pa + 1!, 0", n 4+ 1) — %Fﬂb(p. +1r'4+1L,n4+1,n+ 1)]

’
- I:Pb Fﬁb(Pnlr', ﬂ', n) - rn_,FBb(Per' + ly n’ + l; n)]
= A+ A
where

(4) A = [pb Fﬂb(pﬂlr', nlx n + 1) - :_;—,Fﬂb(pllr' + 17 n’ + 1: n+ 1)]
- I:m Fas(palr’, n', n) — %Fab(p,.h' + 1,n" 41, n)] ,

(5) Ar = pofas(pa+ 1,0, n+ 1) — %fﬂb(Pn + 1+ 1L+ 1,041,

Now (4) is identical to (1) and therefore by (2)

= [prteatl
© &= [ - Gt

To evaluate A; we use (7-76) and (7-78) to obtain the relations

n'(r' + pa 4 1)
r'(n' +n+ 1) fﬂb(pl\

n+41
pnt1

:Ifarn(n + 1|, 7', pa 4 1) .

faslpn+ 1+ 1L, +1,n+1) = + 1, n,n4+1),

fﬁb(pl + l‘f’, n’x n + 1) =
and substitute in (5) to obtain
_n+1 _ "+ pnt+1
Tt I[P Tt

Substituting (6) and (7) in (3) we obtain (5-52b), which is nonnegative by the definition
(5-51b) of pay1 = pa + 1.

To prove (5-53a) we observe that if p.41 = pa = pa-1, then by (2)
+pat1 :I
n4+n41 e
’ . 1
r+et1 pb] .

n4+n

fBPa(n + lIT', n’l Pa + 1) ]

(7 A, ]fﬂ!’n(n + 1, n, pa+1) .

(8) Ah(n) — Ah(n — 1) = fara(n + 1IF, o, pu + 1)[

- fBPa(nlr'; ﬂ', Pn + 1)[
By a recursion formula in (7-83)

(n" 4+ n)(n — pn)
nn' +n—1r' — py—

fBPa(nlr'r n,pat 1) = D Jopa(n + ll',y n,: pt1),

and substituting this result in (8) and writing

e =1 4 pa, ' =n"4+n,
we obtain

w1 __n'n—p) (rat+1 L
(9) [(nu +1 pb) nin' — T,’.’ _ l) ( n' pb)]fﬂ?.(ﬂ + llr, n, Pa + l) .
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This expression will be negative if the factor in square brackets is negative, and the factor
in square brackets is negative because, first,

i’ +1 el 4+1

(10) nII nll + 1

>Dps

the first inequality being obvious and the second following from the definition (5-51b) of
Pnst = P, and second,

n"'(n — pa)
(1D n(n —r — 1) > 1

as we shall now prove. Writing the inequality in the form

n—pn_ ' —(rd+1)
> m

n
we see that it is equivalent to
’”
N 1
<R
and will hold a fortiori if
"
n r
(12) B
But we know by (5-51b) that
Tw _ 1"+ pa
W= ST

and since 7'/n’ > p, by the hypothesis (5-50f), (12) follows immediately.
To prove (5-53b) we first rewrite it in the form

Ah(n)
Ahtn—2) > 1
We next substitute (5-52a) for the numerator and the same expression with n — 2 in place

of n and p. — 1 in place of p, for the denominator, thus putting the assertion (5-53b) in
the form

4 pat 1
n +n+1

T’+pn (n_lrlnl
—_— a » ) Pn)
(n’ Frn—1 ”") or |

Now using (7-78) to obtain the relation

- Pb> fopa(n 4 1|7, 0, pa 4+ 1)

(13) >1.

(' =r) = 1) n(n —
n""(n" — 1) pa(n — pu)

1
fBPﬂ(n + llrlr n’v Pn + l) = )fﬁpﬂ(n - 1[7", n,y Pu)

and substituting in the numerator of (13) we see that (5-53b) will be true if
1 —("+1)ps ) n'' —1 ) ra(n” —r) — 1) nn—1)
tn = (0" = 1)ps n” + 1 n’(n” — 1) pa(n — py)
(' = pin )+ (A =p) (@’ —r)n? n"(0" =1 = D(n =1 .
(r — pin”) + py n''2 p(n — pg) (" 4+ D@’ - r)n

(14) 1<

The first factor on the right will be greater than 1 for p, < } if its denominator is positive,
and the denominator is positive because the fact that pn_y = p. — 1 implies that
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oo e et
n" -1 n4+n-1 n4+n-—1

>1)b-

The second factor on the right is never less than 1 when p, < } because by (5-51b) and an
argument in the proof of (12) above

p" rll
n—S;;SPb<%-

The third factor is less than 1, but it will be very close to 1 when = is large and n will be
large when p, > 0 and p, is small. Since the first factor will be much greater than 1 when
Do is small, the entire expression will clearly be greater than 1 when p; is small. (How small
is small could be answered precisely, but since the condition is tantamount to requiring
that the product of the first and third factors on the right-hand side of (14) be greater than 1
we shall omit this cumbersome nicety.) > |

Some additional insight into the behavior of the EVSI graphed in Figure 5.11
can be obtained by looking at the problem for a moment in terms of normal-form
rather than extensive-form analysis. It can easily be shown that if the decision
maker takes a sample of size n and then applies a decision rule calling for act a,
if and only if r is less than or equal to an arbitrary ‘‘critical value” or ‘“acceptance
number” ¢, his expected terminal utility will exceed the expected terminal utility
of an immediate choice of a; by the amount

kdpy Fa(clr', n', n) — p' Fa(elr’ +1,n' + 1,n)] . (6-54)

Comparing (5-51), we see that if ¢ is the optimal critical value for the given n,
i.e., if ¢ = p, as defined by (5-51b), then (5-54) is the EVSI as we have defined the
EVSI in Section 4.5. If on the contrary c is not optimal for the given n, i.e., if
¢ # ps, then the value of the decision rule as given by (5-54) is less than the EVSI.
If we were to plot the value of (5-54) for fixed ¢ as a function of =n, it would coincide
with the solid curve in Figure 5.11 for those n for which p, = ¢ but for n outside
this range the curve would behave as shown by the dotted curve in Figure 5.11;
in particular, it would turn down as soon as n exceeded the largest value for which
c is optimal. If the “acceptance number” ¢ is fixed arbitrarily, too large a sample
actually decreases terminal utility; the cost of taking the excessive observations is
worse than wasted.

P To derive (5-54), we first observe that the same reasoning used to derive (5-26) shows
that when utility is linear in w the expected increase in utility obtained by using a decision
rule of the type discussed in the text instead of simply choosing the terminal act which is
optimal under the prior distribution is

ke D g, (e = @) PG} if & >w,

and this becomes (5-54) when evaluated by the aid of (9-20) and (9-21b).

To prove that the value of (5-54) actually decreases with n as soon as n exceeds the
highest value for which p, = ¢, we need only observe that by (5-52a) the first difference
of (5-54) with respect to n is a positive number multiplied by
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_rhetl o rtetl
S tntr1 n +n Ps -
If now n is such that
'+ @+ 1)
—_— <
n 4+ n Shes
i.e., if pa 2> ¢ + 1, then obviously A < 0, as was to be proved. |

5.6.3. Behavior of the Net Gain of Sampling; Optimal Sample Size
Let us now assume that the cost of sampling (or the prior expectation of this
cost) is proportional to the sample size n:
cien) = km ; (5-55)

generalization to the case where ci(e.) = K, 4 k.n is trivial as we saw in Section
5.5.6. We can then define the dimensionless net gain to be expected from taking
a sample of size n to be

g = - (e — citen)] = hn) — wn (5-568)
where
k= k,/k; . (5-56b)
A local maximum of g will occur at any value n° of n such that
Ah(n® — 1) > x> AR(n®) , (6-57)

where Ah is given by (5-52); but it is apparent from (5-53) or Figure 5.11 that
there may be more than one local maximum, and the only way to determine
(a) which of these local maxima is the greatest and (b) whether this greatest local
maximum is greater than 0 net gain of n = 0 is actually to evaluate g(n°) at each
n° by use of (5-56) and (5-51).

With a high-speed computer this method of determining optimal sample size
is quite feasible. The best method is probably to start from g(0) = 0 and then
to sum the first differences of g, each difference being obtained from the previous
one by recursion. Thus for the case p' > p, for which the first differences are
given by (5-52), it is not hard to show that g(n) can be computed by starting from
the base

g(0) =0, $(0) = ——

m=—-1, VO =77 m,
and then recursively computing in the following order

0 if gn) = —xn, ¥(n) >0,
g(n + 1) = g(n) — x + 3 (ps — 1) ¥(n) ¢(n) if g(n) > —xn, ¢(n) <0,
(pn + 1) ¥(n) $(n) if g(n) > —«xn, Y(n) >0,
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(W 4+n—r —p)n+1)
m—pa+ 10 +n+1)

¢(n) if y(n) >0,

R P e
st et D o) it wm <0,
Prpl = Pn 1f ¢(n)>0,
= ot 1 it wm <0,

Mt tl
w(n+1)_nl+n+2 pb-

If on the contrary the computations are to be carried out by hand, evaluation
of g(n) for all n up to and beyond the optimal n° will scarcely be feasible unless n°
is extremely small. In most cases, it will be much less laborious to start from an
approximation to n° obtained by the rough and ready but surprisingly accurate
method which we shall describe in the next section. The exact net gain at the
approximate optimum can then be computed by using one of the methods dis-
cussed in Section 7.11.2 to evaluate the cumulative beta-binomial functions in
(5-51), after which recursion formulas can be used to trace the net gain in a limited
neighborhood of the approximate optimum.

5.6.4. A Normal Approximation lo Oplimal Sample Size

Because no really convenient way of determining optimal sample size has
been found except in the case where the sample observations are Normally dis-
tributed with known precision and the prior distribution of the process mean is
Normal, it is natural to inquire whether the results obtained for this special case
in Section 5.5 above can be used to find an approzimation to optimal sample size
in other cases, since if it can, then the true optimum can be found by computation
of the true net gain for a few values of n in the neighborhood of the approximate
optimum. We have made no systematic investigation of this question, but ex-
perience with a number of numerical examples seems to show empirically that
an approximation of this kind will very often be astonishingly close to the true
optimum, particularly if we remember that the comparison should be made, not
between the approzimale and true optimal sample sizes, butl between the expected net
gains of the two sample sizes.

We shall illustrate one method of approximation and test its accuracy by
applying it to the three examples of economically determined optimal sample
size discussed by J. Sittig in “The economic choice of a sampling system in accept-
ance sampling,”’ Bulletin of the International Statistical Institute Vol. 33 (Interna-
tional Statistical Conferences 1951, India) Part 5 pp. 51-84. All three involve
acceptance sampling from finite lots but are treated by Sittig as if (1) the number
of pieces affected by the terminal act were independent of the sample size and
(2) sampling were binomial rather than hypergeometric; we shall follow Sittig in
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both respects, since our purpose is merely to compare approximate with exact
analysis of a given set of assumptions.t

Sampling Variance. Letting p denote the unknown fraction defective, we see
at once that the conditional variance of a single observation 2 is a random variable
P(1 — P) in contradiction to the assumption of Section 5.5.1 that the variance 1/h
of a single observation is a known number. To apply the theory of Section 5.5
we shall set

] ’ =7 =17
F=Va@p =) =P -9

where P’ is the mean of the prior distribution of #; our justification for this way of
handling the difficulty is (a) that it works and (b) that we do not know how to
choose among various more ‘“‘precise’”” approximations such as 1/h = E[p(1 — )]
and V1/h = E V(1 — p).

Prior Distribution. In all examples to be discussed Sittig assigns to P a beta
prior distribution of the form

Jo(pll, v) < (1 — p)o—b—t
which by (7-22) has mean and variance
v — 1
vy + 1)

We shall “approximate’” this by a Normal distribution with the same mean and
variance,

< |-

E@ly) =9 =-; Vi, v) =

Iu(plm’, k') o ¢~ Wan'to—m
where
v—1 o = 1
’ h V'(p)

Ezample 1. An acceptance lot contains 500 brush spindles for floor polishers.
Acceptance of a defective ultimately leads to loss of the part to which it is welded;
this part costs 3.90 guilders. A rejected lot is screened at a cost of .079 guilders
per piece; sampling inspection costs this same amount per piece. The sampling
cost is

w -
—

m =E@) =9 =-) r=p'(1-p)= =v+1.

h

p?

cilen) = kan k., = .079 ;

the terminal costs (treated as if they were incurred on the whole lot rather than
on only the uninspected portion) are

cost of acceptance = K, + kip = 3.90 X 500p = 1950p ,

cost of rejection = K, + k;p = .079 X 500 = 39.5 ;

and from these we can compute

t The first of Sittig's two simplifications is indeed a simplification, but treatment of sampling
as binomial rather than hypergeometric amounts to treating the sample as taken from the process
which produced the lot and is exact on the assumption that the process average remains constant
during the production of any one lot. Cf. Section 1.4.1 above.
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- 39.5
ki = ks — k| = [0 — 1950] = 1950 , P = 1950 = 020256 .
The beta prior distribution of $ has mean
P = .022 implying v = L 4545 ;

the Normal approximation therefore has parameters

}1 = 022 X 978 = 02152 .

Both the “true” prior density and its Normal “approximation’ are graphed in
Figure 5.12.

m = .022 , n' = 4645 ,

~ Cl/p/ ;l

1 1 1 T T -
-04 -02 0 02 04 06 .08 *
Figure 5.12

Terminal Opportunity Losses and Prior Distribution, Example 1

To find the optimal sample size under the Normal approximation to the real

problem we first compute the sampling and prior standard deviations defined
by (5-397,

0. = h~ = V02152 = .1467 ,
o, = (hn')~} = vV 02152/46.45 = .02152 ,
we then compute the parameters D’ and Z defined by (5-40bc) and (5-43b)
b - L= m| _ 020256 — .022000] _

P 02152 = 081,
Z = %2\’/k.a./k, = %‘2 V1950 X .1467/.079 = .1467 X 15.36 = 2.25 ,

and find from Chart I at the end of this monograph that

no

PRy i : ° = ?
(k)i .169 , so that n .169(15.36) 39 .

In Figure 5.13 we graph as functions of n the exact net gain as given by (5-56) and
(5-51) and the net gain as given by the Normal approximation (5-41). The true
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optimal sample size is n° = 32 with a true net gain of 5.80 guilders; the true net
gain of the sample n = 39 obtained by use of the Normal approximation is 5.66
guilders or 97.69%, of the maximum.

Ezxample 2. An acceptance lot contains 500 radio potentiometers. Rejected
lots are screened, while acceptance of a defective part ultimately leads to partial

-
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é ormal v*(e,
A

// T
VA< N
‘/ Ve = vile)-cilen) N

I

0 10 20 30 40 50 60 70 80 90 100

Figure 5.13
Net Gain as a Function of Sample Size, Example 1

disassembly and reassembly of the radio set at a cost 10.8 times as great as the
cost of inspecting one part. The prior distribution has density fs(p|l, 40); its
mean is ' = 1/40 = .025 and its standard deviation is ¢, = .0244. The ‘“true”
prior distribution and the Normal approximation are graphed in Figure 5.14.
After we have computed p, = .0926, k, = 5400 in units of the cost of inspect-
ing one part, o, = .156, D’ = 2.77, and Z = 1.48, we find from Figure 5.10 above
that no sample should be taken. Exact calculations show that there in fact exists
no sample with a positive net gain; they are easy to carry out because the EVPI
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or expected value of perfect information concerning the true value of  can be
shown to be only 2.72 times the cost of a single sample observation and therefore
the largest sample which need be considered is n = 2. Since the prior mean

—

T
-06 -04

Figure 5.14
Terminal Opportunity Losses and Prior Distribution, Example 2

the optimal tmmediate terminal act is acceptance without screening; if both pieces
in a sample of 2 were defective, the posterior mean would be

so that the optimal act would still be acceptance without screening. Since the
largest sample worth consideration cannot lead to a reversal of the initial decision,
the EVSI of all samples worth consideration is 0; and therefore all samples have a
negative net gain.

Example 3. An acceptance lot contains 200 sheets of toughened glass to be
used in busses. Testing is destructive; the cost of testing one sheet is essentially
the cost of manufacturing the sheet, since the labor involved in the testing is
negligible in comparison. The ‘“cost’”’ of passing a defective sheet consists in the
resulting danger to drivers and passengers and is evaluated at 10 times the cost
of manufacturing one sheet, while rejection of a lot leads to reannealing and re-
toughening of the glass at a cost equal to half the total manufacturing cost. The
prior distribution has density fs(p|1, 20); its mean is p' = .05 and its standard
deviation is o, = .0475. The “‘true” prior distribution and its Normal “approx-
imation’” are graphed in Figure 5.15.

After we have calculated p, = 3/10 = .05, k; = 10 X 200 = 2000 in units of
the cost of manufacturing one sheet, ¢, = .218, D' = 0, and Z = 1.65, we find
from Chart I at the end of this monograph that

n° = .124(2000 X .218/1) = 7 .
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In Figure 5.16 we graph as a function of n both the exact net gain of e, and the
net gain as calculated on the basis of the Normal approximation. The true optimal
sample size is n° = 8 with a net gain of 11.10 times the cost of one sheet of glass;
the net gain of the sample n = 7 obtained by use of the Normal approximation
is 11.00 times the cost of one sheet or 99.19, of the maximum.

? 10 .20 p
P
Figure 5.15

Terminal Opportunity Losses and Prior Distribution, Example 3

Why the Approximalion Works. In Figures 5.12, 5.14, and 5.15 above we
have shown not only the ‘““true” and “approximate’” prior distributions for the
three examples but also the terminal-opportunity-loss functions i:(a, p) for both
possible acts, accept and reject. The CVPI or conditional value of perfect informa-
tion is /,(a’, p) where a’ is the better act under the prior distribution; it is given by
the left-hand loss line in Figure 5.12, by the right-hand loss line in Figure 5.14,
and by either of the two loss lines in Figure 5.15.

Since the CVSI or conditional value of sample information is given by the
same function as the conditional value of perfect information when terminal utility
is linear (cf. Section 5.3.2), the EVSI or expected value of sample information can
be regarded as the integral of the CVPI function weighted by the prior distribution
of the posterior mean $’; and since the distribution of 7" tends to be of the same
general shape as the prior distribution of 7 (cf. Section 5.4.2), it seems astonishing
at first sight that the Normal approximation should lead to anything remotely
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resembling the true optimal sample size in the example illustrated by Figure 5.12.
The mystery can be partially explained, however, by a moment’s reflection on the
implications of Figure 5.15, where since ' = p» either act is optimal under the
prior distribution and therefore etther of the two [, functions can be taken as
representing the CVPI function. It seems reasonable in this case that the exact
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Figure 5.16
Net Gain as a Function of Sample Size, Example 3

and the approximate integral of the right-hand [, function should be of roughly
the same magnitude for given n and behave in roughly the same way as n increases;
and if the behavior of the approximate integral with n is roughly correct, the
value n° of n at which it attains its maximum will be roughly correct.

Returning now to the case of Figure 5.12, it again seems plausible that the
integral of the right-hand /i function weighted by the Normal approximation to the
distribution of " should be roughly equal to the integral of this same function
weighted by the exact distribution of $””. The approximate and exact EVSI’s are
of course given by the integrals of the lefi-hand [, functions in this case, and these
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integrals are not equal to the corresponding right-hand integrals; but the differ-
ence between either left-hand integral and the corresponding right-hand integral
is a constant independent of sample size as proved below. Consequently the
rate of change with n of either left-hand integral s equal to the rate of change of
the corresponding right-hand integral, and then since the magnitude of the right-
hand approximate integral is roughly correct in the neighborhood of the optimal =,
it 18 not too surprising that the rate of change of the lefi-hand approximate integral
should be roughly correct and therefore that the approximation to optimal n
should be roughly correct.

P Letting a, denote the act which is optimal for low values of p, the left- and right-hand
integrals under the prior distribution of the posterior mean are respectively

Ii = E l(es, 7") = E[max {uday, "), u(as, 5")} — uilaz, "))
I, = E li(a;, §”) = E[max {uiai, $), uias, §")} — uia;, "))
and therefore
I;— I, = Eufa), p") — Euay, P’) = uda, ) — uiaz, ') = constant
as was to be proved. 4
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CHAPTER 6B

Selection of the Best of Several Processes

6.7. Introduction; Basic Assumptions

One of the classical problems of statistics is that of choosing the “best” of
several “treatments”’—e.g., the best of several different fertilizers or the best
amount to use of a given fertilizer, the best of several package designs for a com-
mercial product, the best of several educational methods, and so forth. Fre-
quently additional information concerning the “quality’”’ of any one of the treat-
ments can be obtained by sampling, so that the decision maker must decide (1) how
large a sample (if any) to take on each of the various treatments, and then (2) which
of the treatments to choose after the various sample outcomes are known. {

In the present ehapter we shall analyze this problem on the assumptions
(1) that the utilities of terminal action and experimentation are additive, and
(2) that the terminal utility of adopting any particular treatment is linear in the
quality of that particular treatment and independent of the qualities of the re-
jected treatments. Formally, we assume that

u(e) 2, @, 0) = ul(aiy 0) - Cl(ey Z) y 1= 19 27 T, (5'58)
and that
There exists a mapping W from the state space 6 to a new space {, sending 8
into W) = w = (w1, wy, * - -, w,), such that
ula;, ) = K; + kw; , i=12---r. (5-59)

The quantity w; may represent the mean yield of the {th fertilizer, the mean score
on a certain test of students taught by the ith method, and so forth. Specific
analytical results will be obtained only for the still further restricted case where
sample observations on the 7th process are independently Normally distributed
with mean w;.

6.8. Analysis in Terms of Differential Utility

Analysis of the class of problems to which this chapter is devoted is greatly
facilitated by formulating the problems in terms of wiility differences or differential
ulilities, but because this approach may be useful in other classes of problems as

t For an historical account of the literature, as well as for some very interesting contributions
to this problem and its variants, see C. W. Dunnett, “On selecting the largest of k normal popu-
lation means”, Journal of the Royal Statislical Society (Series B), 1960.
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well we shall first define the concepts and notation without any reference to our
linearity assumption (5-59). We do assume, however, that terminal and sampling
ultlities are additive and that A = {a;, - - - , a,} is finite.

5.8.1. Nolation: the Random Variables v and §

When the state § is a random variable, the terminal utility of an act a; is a
random variable which we shall now denote by i;, defining

Ui = way, §) 1=1,2---,r. (5-60a)
We also define the vector of the s deseribing all the as in A,
R (5-60b)

The measure P; assigned by the decision maker induces a measure P, on ©

with respect to which we can evaluate
E'(I-J) =v = (I-J;, T 76;) )
and we shall find it convenient to adopt the convention of numbering the acts
in A in such a way that
v 2 0, 1=12---,r; (5-61)

in other words, we assume without loss of generality that the rth or last act s optimal
under the prior distribution.

Finally, we denote by §; the difference between the terminal utility of a, and
the terminal utility of a,, defining

8, = v — b, = uiay, 6) — uia, b) , TET (5-62a)
and we also define the vector of all the s,
b=, -0 ,80) . (5-62b)

5.8.2. Analysis in Terms of v and §

Terminal Analysis. We have already remarked that the prior measure Py
will induce a prior measure P, with respect to which we can evaluate

EI(D) =i = (Diy ot !l-’i)

and thus select an act which is optimal under the prior distribution; and obviously
an experiment e with outcome z which substitutes for Ps the posterior measure Pg’,
will induce a posterior measure P,{, which permits us to evaluate

E::I,z(l-’) = = (I.J{', o ,I-J;')
and thus select an act which is optimal under the posterior distribution. In this
notation, terminal analysis reduces to the problem of finding the mean of i as
determined by the distribution of § and the definition (5-60) of o.

Ezpected Value of Perfect Information. By our convention (5-61) the prior
expected terminal utility v; of a, is at least as great as the prior expected terminal
utility of any other a in A, but its actual terminal utility may be exceeded by that
of one or more other as in A. If the decision maker were to be given perfect
information on 8 and thus on v, he would choose an act a* such that

w(a*, 8) = max {v, -, v}
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rather than the act a, which was optimal under the prior distribution. The value
of this information is obviously

Vi(w, 8) = li(ay, 8) = max {v, +-*, v} — v

= max {(Ul - Ur); trty (Ur - U,)} ]
and by the definition (5-62) of & this can be written
vl(em 0) = ll(a‘r) 0) = max {61) crey by 0} . (5'63)

Before the perfect information is received, this quantity is a random variable;
but by using the measure P; induced by the measure P, via P, the decision maker
can compute the expected value of perfect information

vi(ew) = lt(e0) = Eymax {&, -+ ,8,.1,0} . (5-64)
The geometry of this computation is shown in Figure 5.17 for the case where r = 3
and & has a density; the straight lines are “loss contours” along which the CVPI

or conditional opportunity loss, max {3, 8;, 0}, is constant, while the curved lines
are “probability contours” along which the density of § = (§,, 5,) is constant.

for TN\

/
W/ } a
Y - - &

5 ° i

- Loss =
A 10 | 2 3

/N
Y-52
Figure 5.17

Terminal Opportunity Losses and Distribution of &

Preposterior Analysis; Expected Value of Sample Information. We have al-
ready remarked that if the outcome z of some experiment e results in replacement
of P, by P., the decision maker will select an act such that his expected utility is

max {01, -+, v)
rather than the act a, which was optimal under P;. The resulting increase in utility
or value of the information z is obviously

vile,2) = max (o', -+, 8’} — o = max {(W' =), ---, @ — ")},
and by the definition (5-62) of § this can be written
vile, z) = max {8, ---, 8", 0} . (5-65)
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When e is being considered but has not been performed, Z is a random variable
and therefore for any ¢ = r

8:’ = fI:I - l:I:, = E;l’z ul(ai, g) - Eéi’z ul(an g)

is a random variable with a measure Ps+, induced by the marginal measure P,,.
By expecting (5-65) with respect to this measure the decision maker can compute
for any e the expected value of sample information

vi(e) = Egromax {81, ---,8°,,0} . (5-66)

Expression (5-66) for the expected value of sample information is formally
identical to expression (5-64) for the expected value of perfect information and
therefore the geometry of (5-66) is also given by Figure 5.17; the only changes are
in the labelling of the axes (5" instead of &) and the shape of the probability (but
not the loss) contours.

Net Gain of Sampling. Denoting by c;(e) the (prior expected) cost (in utiles)
of performing the experiment e, we saw in (4-38) and (4-39) that the decision
maker’s utility will be maximized if he selects an ¢ which maximizes the net gain
of sampling

v*(e) = vi(e) — cile) . (5-67)
By repeating the evaluation of (5-66) for every e in E and also computing c}(e)
for each ¢ the decision maker can find an optimal e.

6.8.8. The Usefulness of Differential Utility

The theory developed in Section 5.8.2 amounts really to nothing more than a
demonstration that maximization of the expected difference between the utility
of e and the utility of the optimal immediate terminal act is equivalent to max-
imization of the utility of e, and the reader may well wonder why we have taken
the trouble to reformulate the problem in this way. The answer is given by Fig-
ure 5.17: the introduction of the differential utility § permits us to reduce the an-
alysis of any decision problem to (1) a series of systematic transformations of prob-
ability distributions, from Py to P, to P; and from P, to Py, and (2) expectation
with respect to P; or Py of the fairly “clean” function max {5, --- , 8,-1,0}. As
we have already said, the method is applicable whenever we can obtain the dis-
tributions Ps and Py, either analytically or in a numerical form which permits a
Monte-Carlo evaluation of the expectation. In the remainder of this chapter we
shall consider these problems in detail for the most important special case.

6.9. Distribution of § and §”” When the Processes are Independent
Normal and i; is Linear in g,
6.9.1. Basic Assumptions; Notation
We now return to the basic assumption that
Yy = u.(a;, 0) = K.' + k,‘ [ON where w = W(O)

and develop general analytical results for the case where w, - - - , w, are the means
p1, -+, ur of r Independent Normal data-generating processes. We assume, in
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other words, that the ith process (i = 1, - - - , r) generates independent scalar ran-
dom variables £{, - .- , £, ... with identical densities

(@i, hy) o< e= drtri—udt p (5-68)
and that the terminal utility of the ith act is
vi = K; + kv‘#.’ . (5'69)
As regards the process precisions hy, - - - , h, we shall consider two cases: (1) all k;
are known, and (2) the k; are unknown but the ratios h;/k, are all known. In
the present Section 5.9 we shall derive the distributions of the random variable &
defined by (5-62) and of its posterior mean §"; in the remainder of the chapter
we shall discuss the problem of using these distributions to evaluate the EVPI as
given by (5-64) and the EVSI as given by (5-66).

We now adopt the vector and matrix notation described in Section 8.0.1 below,
using boldface roman or vertical Greek letters (either upper or lower case) for
matrices, boldface italic or Porson Greek letters (either upper or lower case) for
column vectors, and denoting transposition by a superscript ¢.

5.9.2. Conjugate Distributions of g

1. Likelihood of a Sample. The distribution of & is determined by the dis-
tribution of ¢ and this in turn by the distribution of j; and since we wish to use
a distribution of # which is conjugate to the likelihood of the experimental outcome,
our first task is to examine this likelihood. Before doing so we simplify notation
by defining the mean precision of the r processes

h=(h-hg - h)Vr. (5-70)
Now consider an experiment with a noninformative stopping process (cf.
Section 2.3 above) resulting in n; observations (z{", - -« , z{") on the ith process,
i =1,---,r. Define for each univariate process
1y = ni(hi/h)
1 .
e = E_E}‘f_lxéf’ if n >0,
0 lf ng = ’
_fn;—1 if n; >0,
%=1, i =0 (5-71)
e )
b -me & w0,
0 if Vi = 0 H

and define the multivariate statistics

ny

Ny
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m=[m - m), (5-72)

-
i
4
[]
E

v

p = rank(n) = number of processes for whichn; > 0 .

It is shown in Sections 12.8 and 12.9 of Part III that the kernel of the joint likeli-
hood of the combined samples is

(2r)~dptn . - dhm-winim—pw plp . o= b plr (5-73)

2. Conjugate Distribution of @ When h is Known. If h is known, the kernel
of (5-73)—the only factor which varies with an unknown parameter—is

e~ Yam—p)tn (m—u) ; (5-74)

and accordingly the conjugate family for g is multivariate Normal as defined by
(8-17),
7 (ulm, hm) cc ¢ Prw=mto e | (5-75)

where h is the mean precision of the processes as defined by (5-70) andnisanr X r
positive-definite symmetric matrix. By (12-13) the mean and variance of this
distribution are

E=E@ =m, B = V(@) = (hn)™". (5-76)

A prior distribution of @ with parameter (m’, n") would in general be assessed
by assigning a mean vector fi’ and a positive-definite symmetric matrix {’ of vari-
ances and covariances; m’ and n’ would then be computed from the relations (5-76).
As for the posterior distribution, it is shown in Sections 12.8 and 12.9 that if the
prior distribution is Normal with parameter (m’,n’) and a sample then yields a
statistic (m, n), the posterior distribution is again Normal with parameters

n’"=n"+n, m' =n'""'(n'm 4+ nam) . (5-77)

3. Conjugate Distribution of @ When h s Unknown. If h is unknown, the
kernel of (5-73) is
e—3him—pytn (m—p) hlp . o—khwo pv ; (5-78)

and accordingly the conjugate family for the joint distribution of (g, k) is Normal-
gamma as defined by (12-27),

I (s, hlm, v, n, ») = f(wlm, hn) fr2(hlv, v)
o e~ hm—mrnu-m pir . o—dhm plo-1  (5.79)

where n is an r X r positive-definite symmetric matrix and v, v > 0; because n is
positive-definite and therefore of rank r, the statistic p of (5-78) is replaced by the
parameter r in (5-79). It is shown in Sections 12.8 and 12.9 that if the prior dis-
tribution of (g, %) is Normal-gamma with parameter (m’, v, n’, »') and a sample
then yields a statistic (m, v, n, v) where n is of rank p, the posterior distribution of
(4, k) is again Normal-gamma with parameter (m’,v”’, n"’, »"') where m’”’ and n”
are given by (5-77) above and
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V" = V’ + v + p ,
V' = ;1,—, [ +m'a'm) 4+ (w+mnm) —m''n" m’']. (580)

The two factors in (5-79) display the marginal distribution of 4 and the condi--
tional distribution of @ given h, but in the applications studied in this chapter
what we require is the marginal distribution of g. It is shown in Section 12.4.5
that this distribution is Student as defined by (8-28),

fElm,n/v,v) « [v + (8 — m)* (@/v) (p — m)] 4o+ (5-81)

where the parameters will be primed if the density is prior, double primed if it is
posterior. By (8-29) the mean and variance of this distribution are

a=E@ =m, asvm)=vr4r12. (5-82)

5.9.3. Distribulion of é

In the notation we are now using the basic assumption (5-59) or (5-69) con-
cerning the utility function can be written

it=K+4+kg (5-83a)
where
=0 - ', K=[K, --- K],
ky
. 0
k= . , (5-83b)
0 .
k,
and the definition (5-62) of & can be written
6=Bo (5-84a)
where
1 o - 0 -1
0 1 o --- 0 -1
B=| 0 0 1 .- 0 -1 is r—=1)Xr. (5-84b)
0 0 o -+ 1 -1
Substituting (5-83a) in (5-84a) we have
6=BK+Bkga, (5-85)

and we can now proceed to obtain the distribution of & from the distribution (5-75)
or (5-81) of a.

1. If h is known and g has the Normal density (5-75) with parameter (m, n),
where m and n may be either primed or double-primed, then by (8-26) the distribu-
tion of & is Normal with density

JE71(8|8, hn,) (5-86)
where
§=BK+Bkm, n;'= Bk)n!'(Bk)' . (5-87)
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2. If h is unknown and @ has the Student density (5-81) with parameter
(m, n/v, v), where m, n, v, and v may be either primed or double-primed, then by
(8-32) the distribution of & is Student with density

FE1(8]8, ns/v, v) (5-88)
where 8 and n; are given by (5-87).

5.9.4. Distribution of 8’ When All Processes are lo be Sampled

By formula (5-85) for & in terms of 4, the posterior mean of & treated as a
random variable before the sample outcome is known is given by

" =BK+Bkg", (5-89)

and we can now proceed to obtain the distribution of 8 from the results obtained
in Part III of this monograph for the distribution of 2. We assume that the
design of e is such that the value of the statistic n defined by (5-71) and (5-75) is
predetermined; and for the moment we also assume that n is of full rank, i.e., that
at least one observation is to be taken on each of the r processes.

1. If h is known and the prior distribution of @ is Normal with parameter
(m’, n’), then by Section 12.8 and formulas (12-22) and (8-26) the distribution
of 8 is Normal with density

f&~1(8"|%', hnj) (5-90)
where
8 =BK+Bkm', n;!

n*=n"n'n" =n"n'n", n*'=n

(BK)n*'(Bk)',

"—y

(5-91)

r—1

—n
2. If h is unknown and the prior distribution of g is Student with parameter

(m',n’/v', ¥'), then by Section 12.8 and formulas (12-46) and (8-32) the distribu-
tion of 8" is Student with density

7§~@"18, 03/, ¥) (5-92)
where & and nj are given by (5-91).

5.9.5. Distribution of 8" When Some Processes are nol lo be Sampled

If observations are to be taken on only p < r of the r jointly distributed means
A, -+, A, then (as shown in Section 12.9) the distribution of A" is degenerate or
singular in the sense that it is confined to a p-dimensional subspace within the
r-space on which @" is defined. For this reason the distribution of

" =BK +Bkg"

cannot in general be obtained by the method used in Section 5.9.4 just above, but
it is still determined by the distribution of @' and the distribution of #’’ can be
obtained by making use of the fact that (1) the distribution of those components
of A" corresponding to the processes actually sampled is perfectly well behaved,
and (2) the values of these components of 4" determine the values of the remaining
components.

Distribution of &' When the rth Process is not to be Sampled. If the process
which is optimal under the prior distribution and which is therefore identified by
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the subscript r is not to be sampled, we are free to number the other r — 1 processes
in such a way that it is the first p processes which are to be sampled. The statistic n
will then be of the form

_ | Bu 0 nisp Xp, _
n—[o 0] where noisrXr, (5-93)

and we partition the random variable g and the parameters m and n (primed or
double primed) correspondingly

_ 'zl _ m - n; Ny i
A= [ﬂ?] ’ m= [mﬂ] ’ n [nzl nn] ) (5-94)
If now we define
nn ' = (@', i '=nL"'— (@L+nu)t,  (5-95a)
then as shown in Section 12.9.6 the distribution of A{’ is nondegenerate with density
i _ [T (@1 |mi, hny) if h is known , ’
Dim) = {f.?)(ﬂi'[mf, nn/v', V') if h is unknown ; (5-95b)
and if we also define
I I ispXp
) = ’ "
¢ = l:—néz_l néx] where Chisr X p, (5-96a)

then it follows from (12-73) that the distribution (5-95) of fli’ determines the dis-
tribution of the complete vector A’ through the relation
g’ =g +Cco@’ —m) . (5-96b)

Distribution of i’ When the rth Process 18 to be Sampled. 1f the process which
is optimal under the prior distribution and which therefore bears the subscript r is
to be sampled, we are free to number the other »r — 1 processes in such a way that
it is the last p processes which are to be sampled. The statistic n will then be of

the form
0 0
n = [o nn] . (5-97)

and the reader can readily modify the results of the previous paragraph to show
that if we define

! = (@' Ve, ny ! =0, — (o, + ng)!, (5-98a)
then the distribution of 43’ is nondegenerate with density
oy [P (@' |ma, hnt) if h is known ,
D) = {f? Y(|3'\my, nh /v, ) if h is unknown ; (5-98b)
and if we define
11 .7 .
@ = | ~0u D I spXp, .
Co = [ I ] where C®isr X P, 5 998.)

then the distribution (5-98) of fI;’ determines the distribution of the complete
vector A’ through the relation

ﬂ” = nl + C(z)(ﬂé’ — n;) . (5-99b)
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Distribution of 8. Substituting (5-96b) or (5-99b) in (5-89) we obtain
8 = B(K + km') + BRCY( — mi)
=8 +BkCYA! — @) (5-100)
where ¢ = 11if it is the first p processes which are to be sampled, ¢ = 2 if it is the last

p processes which are to be sampled. Concerning the distribution of 8" as deter-
mined by this relation or the equivalent relation (5-89) we have in all cases

E(su) =& :
V@) = {(hni)“ if h is known (5-101a)
T @)y~ 2) if h is unknown ,
where
0~ = BkCY)(n, ' — nm "Bk CW) (5-101b)

= Bk)(n'' —n"-)(Bk) . (5-101¢)

» The formula for the mean follows from (5-27) applied directly to the distribution of 3.
The formula for the variance with nj given by (5-101b) follows from (8-8c) in conjunction
with (5-100) and (5-28) applied to the distribution of &;’. The formula for the variance
with nj~! given by (5-10lc) follows from (8-8c) in conjunction with (5-89) and (5-28)
applied to the distribution of "',

As regards the delails of the distribution of 8", however, we must distinguish
two cases.

1. If only one process s not to be sampled, i.e. if p = r — 1, then the (r — 1) X
(r — 1) matrix Bk C® in (5-100) is of rank (r — 1), so that by (8-26) or (8-32)
the distribution of 8" is nondegenerate with density

D(SH) - {f-(\r'_l)(suisl, hn;) lf h iS known f
LY@ |8, a3, V) if h is unknown ,

n} being defined by (5-101b) or (5-101¢c).

2. If there are two or more processes which are notto be sampled, i.e. if p <r — 1,
then the fact that by (5-100) the (- — 1) X 1 vector 8" is a function of the p X 1
vector &/’ implies that the distribution of 8 is degenerate. In this case it is more
convenient to treat 8 explicitly as a function of A’ than to try to work with an
analytical expression for the density of 8" itself.

(5-102)

6.10. Value of Information and Optimal Sample Size
When There are Two Independent Normal Processes

With the theory of Sections 5.8 and 5.9 as background we are now ready to
attack the problem of actually evaluating the expected value of perfect information
or KVPI and the expected value of sample information or EVSI and the further
problem of using our results concerning the EVSI to select the optimal e in E.
We remind the reader that by (5-64) and (5-66) the EVPI and EVSI are respec-
tively given by
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vi(ee) = Esmax {8, ---, 81,0} = [(e0) , (5-103a)
vi(e) = Epyomax {81/, -+, 87,0} , (5-103b)

and that an optimal e is one which maximizes the net gain of sampling
v*(e) = vi(e) — cie) . (5-104)

In the present section we shall consider these problems for the special case r = 2,
so that & is actually a scalar d and we have by (5-83), (5-84), and (5-72)

Bk = [kl —kz] y

§ = (K1 + klmi) - (Kz + kzmé) ) (5‘105)
_ nl(hl/h) 0
n= [ 0 nz(hz/h)] '

5.10.1. EVPI

1. If h is known and the prior distribution of g is Normal with parameter
(m', n’), we have by (56-103a), (5-86), and (11-25b) that

vl(ea) = Li(eo) = [_‘_‘ max {5, 0} fiw (8|5, hnj) ds

= [ 84n(@lF, hni) ds = (hnd)= Lye((§|VAR)  (5-106)
where by (5-87)
n,~' = (Bk) n'-'(Bk)* , Bk = [k —ki], (5-107)

and Ly« is tabulated in Table IT at the end of this monograph.
2. If h is unknown and the prior distribution of g is Student with parameter
(m',n’ /v, v'), we have by (5-103a), (5-88), and (11-50b) that
vi(es) = li(ea) = (na/v')~} Lse(|§'|Vni/v'[¥) (5-108)
where nj is defined by (5-107) and L« is defined in terms of tabulated umtvariate
Student ordinates and tail areas by

P L foth) — 1 Ganll) (5-109)

Lg(t|v) =

5.10.2. EVSI

Whether both or only one of the two processes are to be sampled, we have by
(5-91) and (5-101¢)

ni™!= BK){n'~' — (' + n)"} (BK)', Bk =[k —kJ; (5-110)

in the case where the 1th process is to be sampled but the jth is not, this formula
reduces by (5-101b) to

[
mit = [kt B2 o = Gy, = @ G
o7}

In either case the EVSI is given by
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hn3)—4 Lys(|5|Vhns if hisk ,
oHe) = {( n3)~ 4 Ly«(|3'| Vhn3) if h is known 5-112)

(n3/v')-} Ls'(|3'|\/?/v'lv') if A is unknown .

When g is Normal (h known), the result follows from (5-103b), (5-90) or (5-102),
and (11-25b). When g is Student (h unknown), the result follows from (5-103b),
(5-92) or (5-102), and (11-50b).

6.10.3. Optimal Allocation of a Fixed Expertmental Budget

In analyzing the problem of optimal experimentation we shall consider only
experiments which have a predetermined “sample size”

2 =[5 ] =" wim) (5-113)

n; and n, being the actual numbers of observations; and we shall assume throughout
that the (prior expected) cost of sampling is of the form

C;(e) = clm + cong , (5-114)

leaving to the reader the easy generalization to the case where fixed costs inde-
pendent of sample size may be incurred (a) if any observations at all are taken,
and/or (b) if any observations are taken on p;, and/or (¢) if any observations are
taken on u;. In the present section we show that, whether or not 4 is known, it is
always possible to obtain an explicit solution of the *‘allocation problem’ of op-
timizing n; and n, subject to the condition that some predetermined amount A4
is to be spent on n, and n, together; formally, we shall optimize n, and n; subject
to the budgetary constraint
am +cme = A . (5-115)

In the following sections we shall then show how when h is known we can easily
determine the unconstrained optima for n; and n,.

Whether % is known or not, we have by (5-112) that the only effect of either
n, or n; on the EVSI is through the quantity n}; and since both factors in both
formulas decrease as nj increases, our present objective is to minimize n} subject
to the constraint (5-115). This is equivalent to maximizing n}~' and thus by
(5-110) to minimizing

n'= BK)@n' + n)'(Bk)’, Bk = [k —k].

Substituting herein

' ’ 144 [

’ nn N ny O nny Mz
n+n-= ’ ’ + = ' 17
nyn  Nag 0 7 N3y MNaz

and recalling that n’ is symmetric we obtain as the quantity to be minimized

21 ’ 2.1
ny =l = kinag +”2k,1,k2nm I-i- kanii (5-116)
Nunze — M2
where ni{ = nyy + n,;and ni; = n;hi/hfori =1, 2.
The problem of choosing n;; and ns; and thus n;, and n; so as to minimize
(5-116) subject to the constraints
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ny 20 , Ny 2> 0 ’
(Clh/hl) nn + (Cgh/hz) Nga = A y

is a special case of a more general convex programming problem analyzed by
Ericson,t whose results we shall present without proof.

In a plane with n;; and ng axes let R’ denote the positive orthant as shown in
Figure 5.17*; define

(5-117)

cym Yolbi oz (5-1182)
j
and let ¢{* and ¢~ be the two lines defined by
(n11 + nn) eu + nizcie = £[(n22 + n2) € + nizcn] , (5-118b)

¢+ corresponding to the use of + on the right-hand side and ¢~ to the use of —.
Since ¢;; > 0 for all 7, j, the line {* must intersect R’; the line {~ may or may not
intersect R’, but it can be proved that the intersection of ¢{*+ and ¢~ can never lie
in R’.  We thus have altogether four cases to distinguish: the two shown in Figure
5.17*, and two more obtained by interchanging the labels n;; and n,, in that figure.

n22 a2

Iy A
'a /+
N
Ny - Tn

gy

Figure 5.17%
Optimal Sampling Path

In what follows we shall refer explicitly to only the first two of these four cases,
leaving it to the reader to make the easy translation to the other two.

The principal result proved by Ericson is that as the sampling budget A of
(5-117) increases from 0, the sample-size pairs or ‘“vector sample sizes’’ (ny, na)
which minimize (5-116) for given A follow a path like one or the other of the two
indicated by the heavy lines and arrows in Figure 5.17*. In case (1), where (-
does not intersect R’, there exists a number A, such that if the budget A < A4,,
then the entire budget should be spent on sampling from process 1, whereas if
A > A,, both processes should be sampled with sample sizes given by ¢*. In case

t William Ericson, Optimum Stratified Sampling Using Prior Information, unpublished
doctoral dissertation, Harvard University, 1963.
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(2), where £~ does intersect R’, there exist numbers 4, < 43 < A; such that if the
budget A < A,, then only process 2 should be sampled;if A, < A < A;, then both
processes should be sampled with sample sizes given by £~; if A; < A < 4,, then
only process 2 should be sampled; and finally if A > A;, then both processes should
be sampled with sample sizes given by ¢*.

P The proof of these results as given by Ericson (l.c. supra) employs the theory of convex
nonlinear programming and makes use of the Kuhn-Tucker saddle-point theorem. We
merely remark here that if one ignores the nonnegativity constraints on n;; and n,; and sets
up the problem in Lagrangian terms, a quadratic equation results whose two roots corre-
spond to the two critical lines £* and £~ defined by (5-118b). |

5.10.4. Optimal Sample Size When h 1s Known and Only One
Process is to be Sampled

Having seen that optimal allocation of any given sampling budget will yield a
vector sample size (ny;, ne) lying somewhere on a path like one of the two shown in
Figure 5.17*, we next address ourselves to the problem of determining the optimal
sampling budget, or alternatively, the optimal sample point on the optimal sampling
path. We shall attack this problem as follows. (1) In the present section, we
shall show how to determine a local maximum of the net gain of sampling when
the sample is constrained to lie on one of the ares in Figure 5.17*—i.e., when only
one of the two processes is to be sampled. (2) In the next section, we shall show
how to determine a local maximum of the net gain of sampling when the sample
is constrained to lie on one of the lines £* or {~ in Figure 5.17*. (3) In Section
5.10.6 we shall then show how to use these results to determine the sample which
yields a global maximum of the net gain.

When only the ith process is to be sampled, we have by (5-112) and (5-114)
that the net gain of a sample of size n; is

v*(e) = vi(e) — ct(e) = (hn3)~} Ly+(15'|Vhn}) — cin; (5-119a)

where by (5-111)
nl = Al = (nh + )] (5-119b)
7 2
A= [ki + k; 7}_?] ’ = (@Y.
nyy
Defining

nt = n/A |,  vs=ni/A = nhi/R)JA, K& =ciA/(hi/h) , (5-120)

we can put (5-119) in the form

v*(e) = (An3)~3 Las(|6'|Vhn}) — % »s (5-121a)
where
ny ' =0t — (0% 4wt (5-121b)

Our choice of the symbol n% is due to the fact, apparent from (5-121b), that nj
has the value n% when the sample size n, and therefore the ‘“‘adjusted sample

size”’ y; are infinite.
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Now regarded as a function of the parameter n% and the variable »,;, the net
gain of sampling as given by (5-121) is formally identical to the net gain in the
univariate problem described by (5-38),

v*(e) = k(hn*)=% Las(us — m'|Vhn*) — ki
where
n* 1l =n'"l — (0 4 )t

and therefore we can apply the analysis of Section 5.5 to our present problem.

Comparing (5-38) as repeated above with (5-121), we see that the constant k,
of the earlier problem has the value 1 in our present problem (essentially because
the random variable § is measured in utiles), so that the parameters D’ and A
defined by (5-40) become

D’ = |#|Vhnt = D, , A= SR (5-122a)
where n% and «% are defined by (5-120). Once these quantities have been computed,

the optimal value »; of v, can be found by entering Chart I at the end of this
monograph with D, and Z = A} and reading

0°/ 2% = vy(hd)} (5-122b)
after which the optimal sample size n;; can be found from (5-120).

If ng as thus determined lies on the segment of the n,; axis in Figure 5.17*
which belongs to the optimal-allocation path, it is a candidate for the role of global
optimizer. If it lies outside the segment of the n,; axis that is on the optimal-
allocation path, we know at once that it is not the global optimizer since the cost of
ny can be spent more profitably on some sample that does lie on the path.

5.10.5. Optimal Sample Size When h vs Known and Both Processes
are to be Sampled According to £+ or £~
We now turn to the problem of locating the vector sample sizes (ny;, ns) that
correspond to local maxima of the net gain of sampling when (n.,, ) is constrained
to lie on one of the two lines {* and ¢~ in Figure 5.17*; and to do so we first define
or repeat the definition of
= Bk)n' " 'Bk), ny ' = (Bk)(n' + n)'(Bk)! . (5-123)
We next define the ‘‘scalar sample size”
ng=ny —n; , (5-124)
calling the reader’s attention to the fact that the definition of n, is not analogous
to the definitions of n; and n;’, and proceed to show that if the vector samgple size
(ny1, n22) lies on one of the lines £+ or ¢~ in Figure 5.17*, then the cost of a &mple e
of size n, is linear in n;—more specifically that
cte) = K% + ki ng (5-125a)
where

(5-125b)

. {h(kl \% C]/h] + kg \/Cg/h2)2 if (nu, nzz) elt y
kb = .
h(kl V C]/hl —_ kg \/Cz/h2)2 if (nn, n”) el ,
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and K* is a constant (different for {* and {~) whose value need not be determined
for the purpose of our present argument.

P To prove (5-125) for £*, we first write the constraint (5-118b), using the + sign on the

right, in the form
., kVea/h o [x/cl/hl k,] ,

l n : —_— - — | n
M == kl\/Cz/}h ” \/Cz/hz ki e
substitute the right-hand side for ngz in the formula

11 12
nnn22 — ﬂlz
kinzs + 2kikaniz + kinig

derived from (5-116), and solve for ni; in terms of n;’, obtaining, after considerable algebra,

4 " \/ 2, h2 ;
3) nfl = \/('1_ (k;\/cl/hx -+ kz\/cz/h2) ng <+ \/‘;/

Each unit of increase in ns = n;’ — nj thus implies that n;; increases by the amount

) ny' =

4) (kVe/h + kiVe/hy) ;

\/Cl/

and by the constraint (1) this in turn implies that n; increases by the amount

(5) (Ve b + kiVes/hy)

\/Cg

By (5-114) and (5-113) the costs of unit increases in ni; and nz; are respectively c.h/h; and
csh/hs, 80 that as long as the constraint ts satisfied while n, and n; are increasing we have

dci(e)
dﬂa

and from this result, (5-125) for {* follows immediately.

To prove (5-125) for {~, we follow exactly the same procedure except that we use the
— sign in (5-118b).

(6) = h(k;Vey/hy + ksVea/ho)?

By (5-112) and (5-125) we now have that the net gain of a sample e of “‘scalar
size’’ ng lying on ¢* or {~ in Figure 5.17* is

v*(e) = (hn3)~4 Lys(|8'| Vhn}) — Kt — k% n, (5-126a)
where by (5-110) and (5-123)
ny =04 — (ng + ngydt . (5-126b)

Regarded as a function of the parameter n; and the variable n; the net gain as
given by this expression is formally identical to the net gain in the univariate
problem described by (5-38), and therefore we can apply the analysis of Section
5.5 to our present problem just as we applied it in Section 5.10.4 to the problem of
sampling from just one of the two processes.
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Comparing (5-38) and (5-126), we see that the constant k, in the former prob-
lem again has the value 1 in our present problem, so that the parameters D’ and A
defined by (5-40) become

D’ = |§| Vin} A= PR R (5-127a)
where by (5-123) and (5-105)

ny~' = [k —ks] o' [k, — k] (5-127b)
and k? is defined by (5-125b).

Once these quantities have been computed, the optimal value n; of n; can be
found by entering Chart I at the end of this monograph with D, = D’ and Z = A}
and reading .
n° = p°/Z* = ny(hk®)E . (5-128)
After the optimal scalar sample size n§ has been computed from (5-128), the cor-

responding vector size (nj), n3;) can be obtained as follows. If the sample 1is
constrained to lie on ¢+, then

ng = m S*(ns + n3) + —Z\/\/% ny — ny (5-129a)
where
§* = ky Ver/h + ks Vb ; (5-129b)
if the sample is constrained to lie on {~, then
n = (—1)" \/fW S-(nj + n3) — —Z% nly — nly (5-130a)
where
S~ =k Vea/h — ks Ves/hs . (5-130b)

If both ni, and n3; as determined by (5-129) or (5-130) are nonnegative, they
correspond to a local optimum on ¢+ or ¢-; if either one is negative, there is no local
optimum on the line in question.

P Formulas (5-129) follow from (3) and (1) in the proof of (5125); formulas (5-130) are
similarly derived.

6.10.6. The General Problem of Optimal Sample Size When h is Known

We are now ready to describe a general procedure for determination of the
optimal vector sample size (n1,, nz.) which in turn determines the optimal values
for the two actual sample sizes n, and ns via (5-113).

1. Draw ¢+ and ¢~ and determine the optimal allocation path as in Figure 5.17*.

2. For each segment determine whether a local optimum exists on that seg-

ment, using the results of Section 5.10.4 or 5.10.5 as appropriate.
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3. If more than one local optimum exists, evaluate the net gain of each via
(5-112) and (5-110) and select the largest; if no local optimum exists, the optimal
sample size is zero.

B.11. Value of Information When There are Three
Independent-Normal Processes

6.11.1. The Basic Integral in the Nondegenerate Case

When a choice is to be made among three Independent-Normal processes,
r = 3, formula (5-64) for the EVPI becomes

vi(es) = li(e) = /_'_, /_" max {8, 2, 0) D'(8) db, dé. , (5-131a)
where by (5-86) and (5-88)

(2) ’ ’ . .

' _ [fP(818, hny) if h is known , . .
Do) = {f§2’(6}5', ni/o’, v') if h is unknown |, (5-131b)
n;”'= Bk)n'(BK)' ; (5-131c)

and provided that a! least two of the three processes are to be sampled, we have by
formula (5-66) for the EVSI

vie) = [, [ max (31", 81',0) D@”) di’ dby’ (5-132a)
where by (5-90), (5-92), and (5-102)
i _ [R(8"\%, hn}) if h is known ,
D) = {f_‘g”(a”la', nj/v’, V') if h is unknown , (5-132b)
n}~' = B)[n'~! — (0’ + n)"](Bk)" . (5-132¢)

The problems of evaluating the integrals (5-131) and (5-132) are clearly iden-
tical when both densities are of the same type, Normal or Student, and we may
therefore take as our task the evaluation of what we shall call the expected value
of information without specifying whether the information is perfect or comes
from a sample:

EVI = [~ [ max {5, 8,0} D() do: ds, (5-1338)
where & is now simply a dummy variable,
_ [18(8]8', hnp) if h is known i
D) = {f?’(é}a’, ng /v, v') if h is unknown (5-133b)

and nj represents etther nj or nj. Since moreover many of the problems involved
in evaluating this integral are the same whether the density is Normal or Student,
we shall sometimes avoid repetition by replacing the symbol for the actual density
by a symbol which can stand for either density, writing

2) ’ D . .
v oy _ [JR(8]&, hnP) if h is known ,
J(@1®', n5) = {f.‘?’(oSIS’, n; /v, v') if h is unknown .
In the same spirit we define for notational convenience what we shall call the
scale parameler

(5-134)
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=] w] 0y—1 : N
o _[en o] _ [(hnj) if h is known :
o= [agml Uzun] L mf/v)! if A is unknown . (5-135)

(When k is known, ¢ is the variance of 8, but when % is unknown, o is (v — 2)/»
times the variance.)

The geometry of the general problem is depicted in Figure 5.18A, which shows
the contours on which the conditional value of information,

CVI = max {5, &, 0} , (5-136)

is constant and the contours on which some particular density function D(é) =
f(8|%', n?) is constant.

cvl = up = 03t by Uy
A 0 \ 2 3

e

] up =ay+ by
Figure 5.18

Conditional Value of Information and Distributions
of Original and Transformed Variables

5.11.2. Transformation to a Unit-Spherical Distribution

The first step towards evaluating the EVI, i.e., towards finding the expecta-
tion of the CVI with respect to D(8), is to transform Figure 5.18A into Figure 5.18B
by a linear transformation

u=A@G-%) (5-137)
such that

1. i has mean 0 and scale parameter I;
2. the line A4’ in Figure 5.18A is carried into a line u; = u}.
This transformation puts the CVI into the special form

CVI = {max {0, k(uz — [az + bywi]} if wy < ut,

max {0, k(uz — [a1 + byu]} ifw > b (5-138)

where the constants can be found by computing
157



5.11.2 Part 11: Additive Ulilities

a= Vel — 2% + of , B =VoReh — o,

k=8/a, uf = (82 — 8)/a , (5-139)
a = —8/k, a, = —8&/k ,

b= —(¢eh —o2)/8 , by = (62 — o12)/B .

The integral (5-133) then becomes
BV =k [*[[", (= (o + ban]) f*(w) dus | () dus

+k fu;[ /;:Hm (uz — [a1 + biw]) f*(u2) duz] J*(w) duy (5-140a)

where
fas(u) if h is known |,

- —
P = | Jeulv) if h is unknown . (5-140b)

P The transformation which takes us from Figure 5.18A to Figure 5.18B can be written
(dropping the superscript from o)

u=AG-8), A 1[ B -8 ]

aflop — 01 oy — oy

It is obvious from the nature of the transformation that E(I) = 0, and it is a matter of
straightforward algebra to verify that the transformed scale parameter A ¢ A* = I, thus
proving that the transformed densities are as specified by (5-140b).

To verify the transformed CVI function, we first observe that the transformation
carries the point (§,, é;) into the point

W= (6 =8 = (5= ],
a

1 - ,
U = a_ﬁ [(0’21 — 012)(0 — &) + (on — 012) (82 — 52)] .
It is then again a matter of straightforward algebra to verify that
6=80+A"1u, A~1=l[ o — on ﬁ],
al —(on — o) B
and therefore

<, 1
h =20+ ; (on — o) wy + g‘uz = k[ua — (& + blul)] ,

5z=%—i(an—ou)u1+£uz=k[ua—(az+bzul)] ;

Compering the right-hand sides of these two expressions we can verify that the line §, = &,
is transformed into the line u; = u}; and since

1
by — b = B(Gn—20u+0u) >0
this shows that §, < &, if and only if vy < u}. Formulas (5-138) and hence (5-140a) then
follow immediately. 4
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5.11.3. Evaluation of the EVI by Numerical Integration

Numerical integration of the double integrals (5-140) is not at all difficult
under either a Normal or Student distribution because the inner integrals are easily
evaluated for any given u; by means of formulas for linear-loss integrals. For
the Normal distribution we have by (11-25b) that (5-140) can be written

EVI = &k /_ui Lys(as + bouy) fas(wi) dua

+ & [ Lye(a + bu) fwe(w) dun - (5-141)

and the Ly. function is tabulated in Table II at the end of this monograph. For
the Student distribution we have by (11-50b) that (5-140) can be written

EVI = k /_‘ Ls+(az + bals’) fse(lv') dua

+k °° Lss(a; + biudv’) fr(udv’) duy  (5-142a)

where the function Ly« is defined in terms of tabulated univariate Student densities
and tail areas by
v+ &

v—1

Lsu(tlv) =

Fse(tl) — t Gsalt]y) . (5-142b)

The complete double integral can thus be evaluated by choosing a number of
equally spaced values ui, evaluating the inner integral for each by means of the
appropriate formula, multiplying each inner integral by the weight fy+(u1) or
fs+(wa}v"), summing, and dividing by the sum of the weights. A numerical exam-
ple of this procedure is given in Section 5.11.6.

5.11.4. Evaluation of the EVI by Bivariate Normal Tables
When h 13 Known

When the distribution of & is Normal, the integral (5-141) giving the EVI
can also be directly evaluated in terms of tabled functions, specifically the uni-
variate Normal density and cumulative functions and the bivariate Normal inte-
gral V(h, k) defined by (8-14); the last named function enters via bivariate “wedge
probabilities,” written Wx+(v, 8), which are defined in Section 8.1.2 and which
depend on v and @ only through the auxiliary quantities

¢c=vcosh , s=|vsing| , t = |8/¢|

To express the results concisely we first define, redefine, or repeat the definition of

(T — 0'13:2
a=\/aﬂ-—2aﬁ+o%, p’=o'_—ﬁo—92x
of = Vol , of = Vi,
b= —b8/dP , fa = —8/o? ,

_ 46— pbs _ 5= 0oh
LRV v e
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ut = (65 — 1)/, wy = (eFm + o¥ne) /e, (5-143a)
O = —m, 81 = l;2| ’
= —n , s2 =[5 ,
v=vVitt+ni=vii+at,
r_Mh | N2 PR YU ¢ 1
P=uitop’ ¢ =05 45’
Cy = U_L— ’ 83 = v—_Lq—L—— .
VT Ve
We then have

EVI = a fas(ul) Guye(ud) + oF fae(51) Fae(nz) + o8 fae($2) Fao(m)
+ W ns(v, 8)) + 81 W (v, 8,) — |83 — 81| Was(v, 63) , (5-143b)

where Wns(v, 8;) depends only on ¢;, s,, and ¢; = |s;/¢i| and can be evaluated from
tables of the bivariate Normal function V(h, k) by use of formulas (8-16).

P Before entering on the main proof of (5-143), we clear the ground with two casily
verified formulas for integrals. First,

1) / Gye(a + bu) - u fne() du = —Gye(a + bu) fus(u) — b / Fro(w) fela + bu) du

a simple case of integration by parts. Second,
a \ 1 ab :l
——— '\ Vi + b’) ,
VIt Vits ([u+1+b‘

as can be shown by completing the square in the exponent on the left and then making the
substitution

2 [ furla + b) fun(w) dc = fu (

p— ab 2
v-—liu+1+b1:|\/1+b .

Now substituting the definition (11-26) of Ly. in (5-141) we sce that we must integrate
two expressions of the type

3) J= / [fnve(a + bu) — (a + bu) Gye(a + bu)] fas(u) du ,

one over (—, u}] and the other over [u}, »). We start by expressing J in two parts,
4) J = J] - (IJz ,

where

5) Jy = / [fwe(a + bu) — bu Gye(a + bu)] fe(ar) du |

6) Jy = / Gae(a + bu) fre(u) dut .

The integral J; is readily evaluated by substituting (1) in (5) to obtain

7 Ji = bGxe(a + bu) fwe(u) + (1 + b7) /f:v-(a + bu) fye(u) du
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and then substituting (2) in (7) to obtain

8) Ji = bGye(a + bu) fye(w) + V1 + bify. (T‘;—b,) Fye <[u + 1 b,] v+ b’)

Evaluating this integral with coefficients a, and b; over (—, u}) and with coefficients a,
and &, over [u}, ») and adding the two results we obtain

9) b2 Gye(az + baul) favs(ul) + V1 + b3 fre <\/1 T b2) Fye ([ 1 10:-b1b§:| V1+ bg)

-—_ bl GN.(al + b,u{) fN.(uT) + \/1 + b% fNo <\/1 + b2) GN. <[ » ! + b?

Using (5-139) and (5-143a) to compute

a,+b1u{=az+bzuf=“;; bz_bl:a/k’
VIF T =GP = ob/k, VIt 8 =50f =of/k,
a/V1+b=2¢, ay/Vi+ b=,
b —_—
[ i+ 10-;-1172] Vi+bl=—-mn, Gre(—m2) = Fye(na) ,

I:u1+1+b2:|\/1+b2—171;

substituting these results in (9), and multiplying the sum by k as called for by (5-141) we
obtain the first three terms of (5-143).

We next turn our attention to the two J, integrals defined by (6) above:

10) Jin = /—ui GN.(a, + bz‘ul) fN.(u,) du1 5

11) I = f ® Gue(ar + bus) fe(w) duy

The quantity J§* is clearly the probability that i lies above the zero loss contour and to
the left of the line % = u} in Figure 5.18B and thus corresponds to the probabxhty that &
lies within the “wedge” (—6,)04’ in Figure 5.18A; and similarly the quantity J? is the
probability that & lies within the wedge AO(—B,). Proceeding in the manner described
in Section 8.2.2, we express each of these two wedges in Figure 5.18A as a sum or difference
of two “canonical” wedges both having one side on the line 8’0A which passes through the
mean of the distribution and the common vertex of all the wedges,

(—8)0A’ = (—5,)0A — A'0A A'0(=8;) = A'0A + AO(-8y) ,
and we denote the probabilities of the canonical wedges by
Wye(v, 6) = P{(—5)04} ,
12) Wys(v, 6s) = P{AO(-8)} ,

Waely, 63) = P{A'04} ,
so that

13) JP = Wae(v, 6,) — Wie(v, 85) , JE = Whe(v, ) + Wye(n, 6) .
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By (5-141) and (4) the contribution of the J, integrals to the EVI i:
K —a/§ — ad§) = I + 85,

and substituting (13) herein we obtain

14) 82 Wan(v, 0)) + 51 Wye(v, 6) — (83 — 8]) Wy,

If the point 8’ in Figure 5.18A had been below the line AA’ rather t
A’OA would have been added to (—8,)0A and subtracted from
have had instead of (14)

15) 55 Wae(v, 0) + 8] Wya(v, 0s) — (8] — 83) Wae(v,

It is easily seen, however, that the position_of 8’ relative to AA’ i
magnitudes of &{ and 4} in such a way that (8 — 8;) > Oin (14) anc
so that we may substitute |5; — 81| for either of these coefficients.
(14) and (15) become identical to the last three terms of (5-143).
That the three probabilities Wx(v, 8;) can be evaluated by su
¢i and &; given by (5-143) in formulas (8-16) follows upon comparis
formulas (5-143a) with Figure 8.4 and formulas (8-23); the quantit

(5-143a) are V2 times the quantities p and ¢ as defined by (8-23) fo

EVI When 61 = 8 and of} = ¢%. In some circumstanc
the current “standard’” process is deemed superior to both of two equally little
known contenders—it may be nearly if not exactly true that &; = 3; and of} = o%;
and in this case formula (5-143b) becomes very easy to evaluate. Defining

=8=5, 0® = Vol = Vo§ ,
- o3 _ i
{= =)0, =[] (5-144)
we have (as is easily verified)
EVI = 2[¢%wns(t) Fae(n) + & Was(v, 0)] (5-144b)
where Wy«(v, 8) depends only on
_ _ e + Bt
c=—n<0, s=1¢, t= m (5-144¢)

6.11.6. Bounds on the EVI

Whereas exact evaluation of the EVI is fairly laborious except for the special
case just mentioned and some other special cases which we shall examine presently,
upper and lower bounds on the EVI can be found very easily and in some applica-
tions these bounds may be such as to eliminate the need for exact evaluation,

If we recall that by definition

EVI = E max {4, &, 0}
then it is clear that a lower bound on the EVI is provided by

EVI > max [E max {§;, 0}, E max {5, 0}) (5-145)
while an upper bound is provided by
EVI < E max {§;, 0} + E max {§, 0} . (5-146)
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Livaluation of either of the two expectations involved in these bounds is a simple
univariate problem involving only the marginal qistribution of &, or &, as the case
may be. If h is known and the distribution of & is Normal, then by (8-20) and
(5-135) _
D(8:) = fw(848, 087"

and hence by (11-25b)

E max {5, 0} = Vo3 Lys(u.) , u; = —8/Ved . (5-147)
If h is unknown and the distribution of & is Student, then by (8-30) and (5-135)

D) = fs(3:l8, 81, ¥)
and hence by (11-50b)

E max {0, 3} = Vol Las(t¥) , ti = —8,/Vel . (5-148)

5.11.6. Ezxzample

A chemical manufacturer wishes to choose one of three possible processes for
producing a certain product; the criterion of choice is to be expected monetary
profit. The chosen process will be definitely used for one year, after which time
the entire question will be reexamined; accordingly the manufacturer wishes any
investments in fixed assets required by the choice of process to be considered as
expense in this year. If process A is used, it will be possible to produce 110 batches
during the year; materials and labor will cost $500 per batch; for process B, the
corresponding figures are 100 batches at $600 per batch; for process C, 90 batches
at $700 per batch. Processes B and C require no equipment other than that
already available; but if process A is used, it will be necessary to invest $7500 in a
special mixer. The product sells for $1 per pound. Ten pilot-plant experiments
have been conducted on each of the three processes in order to determine their
yields; the means of the indicated yields are 950 1b/batch for process A, 1000 for B,
and 1150 for C; and management feels that in comparison with this experimental
evidence all other information concerning the yields is of negligible weight. Fur-
ther experiments can be conducted at a cost of $100 each for process A, $110 for B,
and $120 for C. Letting z denote the yield of a single experimental trial multi-
plied by a factor converting it into an estimate of the yield of a batch of full pro-
duction size, these experiments have indicated that the standard deviation of £ is
50 lbs/batch for any one of the three processes; the experiments are considered to
be unbiassed in the sense that the average of £ over an infinite number of experi-
ments on any process would be equal to the full-scale mean yield of that process.

Since management wishes to treat its outside or judgmental information as
negligible in comparison with the experimental results already obtained, we have
as the expected yields per bateh of the three processes

A:950 , B: 1000 , C: 1150 .
From these we can compute the expected profits
A:110($950 — $500) — $7500 = $42,000 ,
B: 100($1000 — $600) = 40,000 ,
C: 90($1150 — $700) = 40,500 .
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By our convention (5-61) we must assign the subscript 3 to process A, and therefore
we now define

p1: yield of process B |

p2: yield of process C ,

pa: yield of process A .

We are now ready to formalize the statement of the problem; in so doing we
shall express all monetary amounts in units of $100. The economic structure is
described by

v=K+kp, 6§=Bv=BK+Bkpu,
where
—100 X 6 —600 10 0 0
K=| —-90x7 =|-630], k=0 9 0|,
—110 X 5 - 75 —625 0 0 11
25 1.0 0 —11
BK:[—s]' Bk:[o 9 —1.1]'

Regarding the data-generating processes, we may treat as known for all practical
purposes
hi =hy =hs=h =1/50% .
As regards the prior distribution of s, we have already seen that
m =g’ =[1000 1150 950])¢ .
Since the manufacturer wishes to treat any judgmental information he may have
as negligible in comparison with information obtained from the experiments al-

ready conducted, the marginal variance of each of the fis is simply 502/10 = 250
and the covariances are all 0:

250 0 O
V() = (hn')~t = 0 250 O ’

0 0 250
and therefore

100 10 0 0
ni=(0 .1 0], n=|010 0.
0 0 .1 0 0 10

From these results we can compute
o =K+ kg =[400 405 420)°
(a result already obtained), and
¥ =Bo =[-20 —15]*,

221 .121]
J21 202 ]

Terminal Analysis. 1f the manufacturer is to choose one of the three processes
without further experimentation, he will simply choose process 3 because it max-
imizes his expected utility.

nj~' = (Bk) n'-\(Bk)* = [
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Bounds on the EVPI. To analyze the expected value of perfect information
we first compute
o' = (hn))~! = 2500 nf! = [552.5 302.5] .

302.5 505.0

Our next step is to find upper and lower bounds for the EVPI by the method of
Section 5.11.5, and to do so we first compute

Vi = 2351 , Vg = 2247 ,
u, = 20/23.51 = .8507 , uy = 15/22.47 = 6676 ,
find from Table II at the end of this monograph that
Lx«(.8507) = .1099 , Lx(.6676) = .1509

and compute
E max {8, 0} = 23.51 X .1099 = 2.584 ,

E max {5, 0} = 22.47 X .1509 = 3.391 ,

< 2.584 + 3.391 = 5.975 (= $597.50)
> 3.391 (= $339.10) .

Since a single additional observation on just one of the three processes will
cost from $100 to $120 depending on the process, it seems obvious that the net
gain of further experimentation will almost certainly be negative for all possible
experiments; at best it can be a negligible positive amount. The common-sense
conclusion is to choose process 3 without further ado; the calculations in the
remainder of this analysis are given solely to illustrate computational method.

Before going on to these computational exercises, however, let us pause to
contrast our results so far with those which would have been obtained by a tradi-
tional test of significance. In a situation where the economics are such that the
process with the lowest yield may be the most profitable, it clearly makes no sense
to test the null hypothesis that the three yields are equal; and we assume therefore
that the test called for in this problem is of the null hypothesis that all the profit-
abilities are equal. The sufficient “estimators’ are

b = —600 + 1.07 = 400 ,
o= —630 + .97, = 405 ,
By = —625 + 1.17, = 420 ,

and their sampling distributions can be treated as Normal with means v;, vz, and v,
and known variances

EVPI {

= V(hijw) = 1.02 X 250 = 250.0 ,
o3 = V(Tlw) = .92 X 250 = 202.5 ,
2= V(Tilvs) = 1.12 X 250 = 302.5 .
The test statistic will be
1

1 - - -
z=2;2(5—v)2, V=5 2 u/e,
i

E 0’(_2
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which has a chi-square distribution with 2 degrees of freedom; and since its observed
value is .8 the experiment is just significant at the level

Pa{2> 8y =2} = .67 .

This means, of course, that if the three profitabilities are in fact equal, two samples
out of three would show at least as much (mean-square) tnequality as was actually
observed. Traditionally, the decision maker must now decide by the use of judg-
ment whether or not this level of significance is sufficient (numerically small
enough) to warrant a terminal decision without further experimentation.

Ezact EVPI by Numerical Inlegration. To evaluate the exact value of perfect
information(or expected opportunity loss of an immediate decision to use process 3)
by the method of Section 5.11.3, we first compute the constants defined by (5-139):

o = V552.5 — 2(302.5) + 505.0 = 21.27 ,
B = V/(552.5)(505.0) — (302.5)? = 433.0 ,

_ ‘ - . o - (=15) — (=20) _
k = 433.0/21.27 = 20.36 , u = 2197 = .2351 ,
a; = 20/20.36 = .9823 , a; = 15/20.36 = .7367 ,
_ —(5652.5 —302.5) _ 505.0 —302.5 _
b = 4330 = —.5774 , by = 30 - 4677 .
Then dividing the interval (—3.625 < u; < +3.625) into 29 equal intervals
centered on —3.50, —3.25, - - -, +3.25, +3.50 we can lay out the computations as

shown in Table 5.3 below; recall that for v, < ui = .2351 we compute a + bu,
with coefficients a; and b, while for u; > ut we use a; and b;. From the totals in
the table we compute

. .94955
weighted mean of Lys(a + bu;) = 3.9987 = 2375
EVPI = 2375k = .2375 X 20.36 = 4.835 (= $483.50) .
It is worth remarking that if we base our computation on only the 7 values u, =
—3.00, —2.00, - -+, +3.00 we get a weighted mean of .2377, virtually identical to
the .2375 obtained with all 29 values.
Table 5.3
Computation of EVPI
Up a+ bul LNt(G + bul) fN.(ul) LN'fN'
—3.50 -—.9002 1.0006 .0009 00090054
0 + 7367 1342 .3989 .05353238
+3.50 —1.0386 1.1160 .0009 .00100440
total 3.9987 94955
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EVPI Using Bivariale Tables. To evaluate the EVPI by the method of
Section 5.11.4, we first compute the first set of constants defined by (5-143a)

a = V552.5 — 2(302.5) + 505.0 = 21.27 ,

. (302.5)? - T 2o -
o' = B52.5)(505.0) ~ = .3280 , p = .5727 , V1 — p* = 8198 ,
of = V5525 = 23,51 , o5 = V505.0 = 2247 ,
f1 = 20/23.51 = 8507 , t2 = 15/22.47 = 6676 ,
8507 — (.5727)(.6676) _ 6676 — (.5727)(.8507) .,
m-= 8198 = 5713 N = 8198 = 2201 ,
_ (=15) — (—20) _ (22.47)(.5713) + (23.51)(.2201) _
ut 21.27 = 2351 , wu} 2127 = 0468 ,

from which we can compute the first three terms of (5-143b)

A = afn(ul) Gro(ul) + ol fve(5s) Fan(ma) + 05 fae(S3) Fae(m)
(21.27)(.3880)(.1986) + (23.51)(.2778)(.5871) + (22.47)(.3192)(.7161)
1.639 + 3.834 + 5.136 = 10.609 .

We then compute the remaining constants called for by (5-143a) and (8-16a)

6= —5713 o = 6676 1/t = 5713/.6676 = 8557 ,
6= —.2201 , s = 8507 , 1/t = .2201/.8507 = 2587 ,
v = V(8507)" + (2201) = V(6676)' + (5713)* = .8787 ,
, _ 5713 2201 _ _ 8507 _ 6676 _
= 2351 T 047 — 03409, ¢ = 2947 ~ 2351 — 00946,
00946
a>0, = 87875300 = 2349, s = 00946/.03409 = 2775 ,

use (8-16b) to compute

Wae(v, 6,) = 4G x+(.6676) + V(x, 8557 ) — V(.6676, .8557 s,)
1261 + .1125 — 0265 = 2121 ,

= 4GN+(.8507) 4 V(x, .2587 ) — V(.8507, .2587 s,)
= .0988 + .0402 — .0125 = .1265 ,

Wan(v, 05) = 3Gx+(.2349) — V(.2775 w, w) + V(.2775 3,, .2349)
2036 — .2070 + .0012 = —.0022 .

The obviously incorrect negative result for Wy«(v, 6;) is due to the use of linear
interpolation A\-wise in the bivariate tables, and following the indication of this
result we reduce all the bivariate probabilities to 2 decimal places. We can then
compute the last three terms of (5-143b)

B =8 Wae(v, 0,) + 5 Wae(v, 62) — |85 — 8l Wan(v, 6s)

= —15(.21) — 20(.13) — 5(0) = —5.75 ,
167
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and we then have
EVPI = A + B = 10.61 — 5.75 = 4.86 (= $486) .

The result is in reasonably good agreement with the $483.50 obtained by numerical
integration, which is the more accurate as well as the less laborious method in the
general case. (Use of the bivariate tables will, however, be advantageous in the
special case to which (5-144) applies.)

Ezpected Value of Ten Additional Observations on Each Process. To illustrate
the computation of EVSI, we shall work out the arbitrarily chosen case where
10 observations are to be taken on each process and therefore (since h;/h =1

for all 1)
n=101I.

The first step is to compute
n" =n"+n=201I, n'-'= 051,
n'!'—n"1'=051I,
.1105 .0605:'
.0605 .1010] -

Because all the entries in this matrix are simply half those in n;~!, ¢* for our
problem will be simply half o’ for the EVPI and the various constants required
for numerical integration of the EVSI can be easily obtained from the constants
computed above for integration of the EVPI,

nft = @)@ - HBY = |

1

a=2\l/-'—2§7=15.04, ﬂ=‘-1-:-3%9=216.5,

k = 216.5/15.04 = 14.39 , ut = 5/15.04 = 3324 ,

a; = 20/14.39 = 1.390 , a: = 15/14.39 = 1.042 ,

by = —125/216.5 = —.578 , by = 101.2/216.5 = .467 .
Using 13 values v, = —3.0, —2.5, ---, +3.0, we then obtain by the method of
Table 5.3

weighted mean of Lys(a + bu,) = .141
EVSI = .141 X 14.39 = 2.03 (= $203.00) ;

using only the 7 valuesu; = —3, —2, - -+, +3 we obtain $207. If observations cost

on the average something less than $203/30 = $7 each, rather than $100 or more,
a sample of this size would be worth taking; although of course some other sample
might have a still larger net gain.

6.11.7. EVI When the Prior Expected Utilities are Equal

When the prior expected utilities of all three acts are equal, & = vz = v3,
the prior expected utility differences 8 and §; are both zero and very simple formulas
can be given for the EVI whether or not k is known. Defining

u= {n"‘ if EVPI is to be evaluated , (5-1498)
~ ot = ' if EVSI is to be evaluated ,
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U12 = \/k?uu - 2k1k2U12 + kéuﬂ )
Ui = \/k-f‘uu — 2kiksws + kius ’

(5-149b)
Uns = Vk3un — 2kokausy + kuss R
1
U= —=Up+ U+ Uxn) ,
2 27r ( 12 13 23)
we have
Uh-} if h is known ,
FVI = o ,—— (5-150)
U H Vi if h is unknown .
i - .

If v is large enough to justify the use of Stirling’s approximation, the last formula
reduces to

LVl = U [ v ,]5 if h is unknown

5_15
y — 27 and »' is large . (5-151)

P First Proof. Formula (5-150) for A known can be obtained as a special case of (5-143),
after which the formula for A unknown can be obtained by substituting E(A~}) for A-%.

1. We first clear the ground by establishing the relation between the quantity U which
appears in (5-149b) and the quantities «, o7, and ¢ which appear in (5-143a). By (5-135),
(5-133b), (5-132¢), (5-131c), and (5-149) we have

1 kk 0 —k
0 = - ¢ =
o h(B k) u (Bk)¢, Bk |:0 ks k,:]

from which we can readily compute

a= \/m U h-3 ,
1) '
of = Vol = Unht, 0P = Vel = Unht.
2. Substituting §; = §; = 0 in (5-143a) we obtain

O=fH=h=m=m=ul=u=5=25.
Substituting these values in (5-143b) and recalling that

fas(0) = (2m)~} Fxe(0) = Gxe(0) = %,
we obtain

1

2V2r
and substituting (1) herein we obtain (5-150) for A known,

2) EVI = (a + P + 6P ;

3. If the marginal distribution of k is gamma-2 with parameter (v/, »'), then by (7-58a)
the distribution of A~4 is inverted-gamma-2 with parameter (v'}, ") and hence by (7-59a)
-3

"
VW

EGD =5,

Substitution of this result for A~} in formula (5-150) for the EVI with A known yields the
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corresponding formula for A unknown. The approximate formula (5-151) is then obtained
by defining

r=4H'-1,
writing
(YA OV w I Rt )12 o 0L ,
D V¥
and then using Legendre’s formula and Stirling’s approximation
(2z)!x}
(z—é)!=2—k)}!‘ ’ 2l = 2m)izeth e,

Alternate Proof. Formulas (5-150) can also be proved by direct integration of formula
(5-140) for the EVI. Again we proceed by first deriving the result for A known, after
which the result for A unknown follows by step (3) in our previous proof.

\Y2
02"‘
7 |
Uy
32 8
cvi
0 ”2=02U1
vy =h - 3
0 cv
Figure 5.19

Conditional Value of Information and Distribution of 4 When & = 0

When §; = &§; = 0, Figure 5.18B assumes the form of Figure 5.19; the constants a,
and a; in (5-140) have the value 0. Changing to polar coordinates p and 8 defined by

u =pcosf , u; = psinf ,

the integral (5-140) becomes
k /2 » .
EVI = —— [ [ |7 psin6 = bycos 6) fu(p) p dp o

+ ./32 ﬁ)‘ p(sin § — by cos 6) fn+(p) pdp d0] )

The integral with respect to p is simply one half the unit variance of fy., so that

. k /2 o, .
3) LVI—2\/2_T[LI (sm0—b,cos&)d&-}-ﬁ/z(sm&—b,cosl?)dl?]
k [cos 6 cos @ bi(1 — sin 8,) + ba(1 — sin 65))
= - - - 2 - .
2\/5; 1 2 1 1 2

170



Choice Among Three Processes 5.11.7

By Figure 5.19
cos 8 = (1 +bhH-1 | cos §; = —(1 + b3)~14
sin 8, = b(1 + b1, gin 0 = —bo(1 + b3)~4 ;

substituting these values in (3) we obtain

k
EVI =2\/;[bz—b,+(1+b?)i+(1+b2)%] ;
and substituting herein the values of b, and b; as defined by (5-139) we obtain formula (2)
of our previous proof. 4

A still more special case occurs when the @s or v'’s not only have common
means but are independent and tdentically distributed; when this is true, the EVI
can be derived as easily for r processes as for 3 processes. For the moment letting
o stand for either the vector of actual utilities or the vector of posterior expected
utilities v/, we define the parameter n, by writing

_ [ fn(|®’, hn, I) if h is known , ~
D) = {fs(ulﬁ’, In,/v', ) if A is unknown . (5-152)
The assumption that v; = o3 = -+ = i; allows us to write

EVI = E max {iy, vy, --- s} — o)
= E max {(‘-’l - l-};)l (62 - l-/2): Tty (i;f - l-J;)} y

and the additional assumption that the is are independent with equal scale param-
eters then gives us

cr(hn,)"3 if h is known , (5-153a)

V] = !
FVL =1 oy H Vi if h is unknown , (5-153b)
where ¢, is the expected value of the maximum of r independent unit-Normal
random variables. The value of ¢, is half the expectation d, of the range of a
sample of r independent unit-Normal variables, and d, is a well tabulated function. {
Observe that if the is are independent and have equal means a priori, then
even though the prior variances are unequal it will be possible to allocate the sample
observations in such a way that the variances of the ¥'’s are equal. When the rela-
tive precisions and the costs of sampling from the various processes are the same,

such an allocation will be optimal.

» Formula (5-153a) for known k was obtained by Dunnett, Jour. Roy. Stat. Soc. Series B,
1960, by further specializing some formulas for the case where, in our notation, the prior
distribution of g is spherical Normal, the matrix k = kI, and the matrix n = nl. If in
this case we define

1 E.g., Biomelrika Tables for Statisticians, Table 27 (Page 174), giving d. to 5 decimal places
for n = 2(1)500(10)1000.
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k1 = kz = k; = k ,
s = {u ifi=j,
Y70 ifisyg,
then our formula (5-149b) for U reduces to
3k —

=—=Vu

2Vr
and (5-150) with this value of U is equivalent to (5-153) for r = 3. |

6.11.8. EVSI When Only One Process is to be Sampled

If only one of the three processes is to be sampled, then as shown in Sec-
tion 5.9.5 above the distribution of 8 is degenerate or singular and the EVSI can-
not be obtained by any of the methods we have discussed above. It can be very
easily calculated by an appropriate method, however, since the fact that only one
process is sampled means that the entire problem is univariate. For convenience
of both notation and computation we shall express the analysis in terms of

u =n""t . (6-154)

If it is the sth process which is to be sampled, then by (5-95) or (5-98) the
distribution of

T=a4—m (5-155)
is univariate with density
_ [fx(2|0, hny) if h is known ,
De) = {fs(xlo, ns/v', ') if k is unknown |, (5-156a)
where
nm = ug — (w4 ng)Tt, ni = ni(hi/h) . (5-156b)

As shown by (5-100), this distribution determines the distribution of & = [§]’ §;']¢
through two linear relations

8 =8+ bz,

L (5-157)
2 = 52 + bzf ’

but because of our convention that the subscript » = 3 is to be assigned to the
process with the greatest prior expected utility we must distinguish two cases in
giving formulas for the coefficients b; and b,.

1. If the process whose prior expected utility is greatest is nof to be sampled,
we may assign the subscript 1 to the process which 7s to be sampled. We then
have by (5-100) that

N vyl a1 ’ ’ r—-1 ., - 1=
I)l = ]srl d k;.u;“un , b2 = (k2“21 -_ k;u:u) U , (-')-1-)8{1)

and the distribution of £ is given by (5-156) with 7 = 1.
2. If the process whose prior expected utility is greatest and which therefore
bears the subscript 3 7s to be sampled, then by (5-100)
172



Choice Among Three Processes 5.11.8

by = kyuauzs® — ks, by = kauzgusg ' — ky ; (5-158b)

and the distribution of £ is given by (5-156) with ¢ = 3.
In this second case b1 and b, will usually (though not necessarily) be negative,
so that &;’ and 83’ would behave as functions of z in one or the other of the two

O(x)

Figure 5.20
CVSI When One of Three Processes is Sampled

ways depicted in Figure 5.20A and B; and in either of these cases the EVSI is
easily found by applying the univariate theory of Section 5.3.2. Defining

(hn)~ 3 Lys(|z| Vhns) if h is known , (5-159)
(n&/v')~Y Les(|z]Vn/v'|¥)  if h is unknown ,

we have by (5-26) and (11-25) or (11-50) for the case of Figure 5.20A

L(z) =

vi(e) = |bi] L(zo) (5-160a)
and by (5-25) and (11-25) or (11-50) for the case of Figure 5.20B
vi(e) = |bjl L(z2) + |be| L(za) . (5-160b)

The reader can readily convince himself that regardless of which process is
sampled and regardless of the numerical values of b, and b, the EVSI will always
be given by a formula of one or the other of these two types; recall that by the
definition of 8, both §;’ and 5" must be negative when z = 0.

6.12. Value of Information When There are More Than Three
Independent-Normal Processes

When r > 3, we know of no general expression in terms of tabulated functions
for the integrals

EVI=[

[_"‘ max {1, - - - , 8,1, O} F*~1(8|8’, nF) db, - - - db,-,
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where
-0(g|3 a0y = JIN (8|8, hnF) if h is known ,
[ (8l¥, nd) {f&'-”(ﬂs', nf/v', ) if h is unknown .

(A formula for one very special case was given as (5-153) above.) The EVI can
always be evaluated by numerical methods, however, and we shall now suggest
one method of evaluation.

5.12.1. The Nondegenerate Case

When the distribution of & is nondegenerate (as it always is when the EVPI
is evaluated and as it is when EVSI is evaluated provided that at least r — 1 of
the r processes are to be sampled), our first step is to find a transformation A
such that

@=A06-9) (5-161)

is standardized Normal or Student; and this can be accomplished by first diagonaliz-
ing the symmetric matrix

(hnf)—! if h is known ,
o= ]
7 (nf/v')! if h is unknown , (5-162)

and then reducing the diagonal matrix to the identity matrix. There already exist
programs for digital computers which employ the method of Jacobi and von Neu-
mann for finding all eigenvalues and eigenvectors of a real, symmetric matrix;t
the expected operating time is approximately 10(2» + u)n® where n is the order
of the matrix (= r — 1 in our application), » is the computer addition time, and
u i8 the computer multiplication time. Having found in this way an orthogonal
matrix C such that C ¢° C' is diagonal, it is easy to find a diagonal matrix D such
that

DC)e(DC)*=1. (5-163)
The desired transformation can thus be obtained by taking
A=DC; (5-164a)
and the inverse transformation is then very easy to obtain because
A-'=C'D!, (5-164b)
The distribution of & as defined by (5-161) is
- L, B

There exist many methods for rapid generation on digital computers of u vectors
having either of these distributions; and for each u the quantities

6§=8+A'u, Y(u) = max {8, 8, -+, 81,0} ,  (5-166)

can be computed. As the sequence ¥V, ..., u‘? ... is generated, the computer
needs to retain at the mth stage only the summary statistics
t John Greenstadt, “The determination of the characteristic roots of a matrix by the Jacobi

Method,” in Mathematical Methods for Digital Computers (edited by A. Ralston and H. 8. Wilf),
John Wiley and Sons, 1960.
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m, =Y eee),  S=Y" o). (5-167)
The EVI is estimated at any stage by
Vm=1l/m
and the variance of this estimator is estimated by

7= (5~ m)

When for an m greater than some specified m, the estimated variance is sufficiently
small, we take ¢, as the approximation to the EVI.

5.12.2. The Degenerate Case

When the EVSI is to be computed for an experiment in which p <r — 1
processes are to be sampled, it follows from (5-100) that one can generate &8
vectors by first generating p-dimensional (m;’ — m{) vectors. From (5-95b) or
(5-98b)

0oy f;\?)(n(” - n:loy hn;n) lf his known y _
D"~ ) = @@’ — mio, nn/v',v") if his unknown . (O168)
We next find a transformation in p-space to reduce
« _ [(hnp)! if h is known
%" = \@4/v)"  if h is unknown (5-169)

to the identity matrix. If we let A denote this transformation, then
i =A@’ — m) (6-170)

has a standardized Normal or Student distribution; and by generating a sequence
of u vectors we can compute a sequence of vectors

B —mi=Alu
and hence by (5-100) of vectors
" =8 +BkCPA'u . (5-171)

The remainder of the procedure is identical to that suggested for the nondegenerate
case.

5.12.3. Choice of the Optimal Expertment

The real problem of preposterior analysis is of course not simply to compute
the EVSI of some given experiment e but to find the optimal experiment. Since
any e is characterized by an r-tuple (n,, - - - , n,), we may display the dependence
of v*(e) on the n; by writing v*(ny, ns, - - - , n,), and we may view our task as that
of finding the maximum (or an approximation to the maximum) of the v* surface.
Since a good deal is known or can be learned about the general nature of this
surface, it would seem not unlikely that the maximization problem can be solved
by use of search techniques based on those suggested by G. P. Box and others.
With the collaboration of Marshall Freimer, we are currently investigating dig-
ital computer programming techniques for coupling Monte-Carlo evaluations of
v*(ny, ma, . . ., n,) with search routines.
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CHAPTER 6

Problems in Which the Act and State Spaces Coincide

6.1. Introduction

In the present chapter we take leave of the class of problems characterized
Ly linear terminal utility which we studied in Chapters 5A and 5B and take up
another special class of problems characterized essentially by the fact that the act
space coincides with the state space or with some transformation thereof. Thus in a
problem of inventory control where the act space 4 consists of all possible numbers
of units stocked and the state space © consists of all possible numbers of units
demanded, A and 6 may both be the set of all positive integers or may both be
treated approximately as consisting of the positive half of the real line. Or in a
more complicated problem of the same sort, the state may be described by an
r-tuple (6, - - - , 6,) where each component describes the quantity demanded by a
particular subgroup of customers, but the act space 4 may still coincide with a
transformed state space 2 the generic element of which is w =6, 4+ --- + 6.
The problem of point estimation of an unknown parameter usually falls in this
same class because the space of possible estimates {a} usually coincides with the
space of possible true values {w}.

6.1.1. Basic Assumptions

Formally, this chapter will be devoted to the consideration of problems in
which

There exists a mapping W from the state space © into a new space Q, carrying

6 into w = W{(#), such that @ and the act space A coincide.
The class of problems considered will be further restricted by two assumptions
about the utility function u(:, -, -, -)onE X Z X A X 6. Asin Chapters4and5
we shall assume that terminal and sampling utilities are additive; letting ¢, denote
the negative of the sampling utility, this assumption can be written

ule, z, a,0) = wa,w) — cle, 2z) , w=W(@) . (6-1)

For motivation of this assumption, see Section 4.2. We shall also assume that,
for any w in Q,

ww, w) > ula, w) , allaed =Q , (6-2)

t Most of the theory developed in this chapter will apply to the even more general class
of problems in which the possible states {w] are a subset of the possible acts {a}, thus including
problems in which the act @ may fall between two successive possible values of the state w. We
leave the generalization to the reader.
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so that by the definition (4-14) of terminal opportunity loss,
l{w,w) =0 . (6-3)

In words rather than symbols: if the true state is w, then the best act is w—the
best number of units to stock is the number demanded, the best estimate of w
is w, and so forth.

6.1.2. Example

As an example of a problem where assessment of the terminal opportunity
losses l:(a, w) is particularly straightforward, consider an inventory problem of the
kind suggested above. A retailer stocks a product which spoils if it is not sold by
the end of the day on which it is stocked; each unit stocked costs the retailer an
amount k,; a unit is sold by him for k, more than it costs; the utility of money is
linear. The retailer must decide on the quantity to stock, which we shall denote
by ¢ = a; and if we let d = » denote the number of units actually demanded by
the customers, the terminal opportunity loss of g given d is obviously

_ Jkolg — d) if d<gq,
Med=\k@-9 i d2gq.
The function I,(q, -) is graphed against d in Figure 6.1 for k, = 1, k, = 4, and
g = 10.

0 5 10=¢ 15 4

Figure 6.1
Terminal Opportunity Loss of the Act ¢ = 10

6.2. Certainty Equivalents and Point Estimation

In most applied decision problems the number of unknown quantities is so
great that the decision maker cannot practically take full formal account of all of
the uncertainties that he would like to introduce into his analysis: he cannot
assign a proper joint probability distribution to all the unknowns he would like
to treat as random variables and then compute exact expected utilities under this
distribution. Even in the simplest problems of quality control, the costs of ac-
ceptance and rejection (and often the very number of pieces in a lot) may be sub-
ject to uncertainty; but only rarely will it be economically sensible to take full
formal account of all such uncertainties in selecting a sampling plan.
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6.2.1. Certainty Equivalents

In some cases a “‘subsidiary’’ uncertainty can be disregarded in the analysis
without loss because some summary measure of the marginal distribution of the
unknown quantity in question is a certainty equivalen! in the sense that treatment
of this summary measure as if it were the {rue value of the quantity will lead to
exactly the same course of action that would be chosen if an analysis were based on
the complete distribution. In Section 1.4.1 we have already examined one very
important example: substitution of the expected value of an unknown cost for the
complete distribution of the cost will have no effect on the results of analysis when-
ever (as often happens) the cost enters linearly into the analysis and the distribu-
tion of the cost is independent of the other state variables.

We shall now examine the general problem of the finding and use of certainty
equivalents—i.e., of summary measures (including but not restricted to means)
which in some particular problem or class of problems can be substituted without
loss for the complete distribution of some unknown quantity. We begin our
investigation of this problem with an artificially simple example in which exact
results can be obtained; after this example has fixed the ideas, we shall develop a
more pragmatic approach to the general problem.

6.2.2. Example

Returning to the problem of inventory control discussed in Section 6.1.2
above, assume that the demand d has a probability measure of known form with
parameter o, denote the expecled terminal opportunity loss of an act (quantity
stocked) ¢ by

Ll(q‘”) = Edlv ll(Q! J) ’ (6'4)
and denote by ¢, an act which minimizes L(-ls), i.e., which satisfies
Li(g.lo) < Li(glo) , allg . (6-5)

Consider first what will happen if for any reason whatever the retailer, instead
of stocking an amount ¢, which satisfies (6-5), stocks an amount ¢; which would
satisfy (6-5) if the parameter ¢ had the value ¢ rather than its actual value o.
By (6-4) this means that his expected terminal opportunity loss is L(gs|o) rather
than L.(q.|o); the decision to stock ¢; instead of q. has increased his expected
opportunity loss by the amount

M(8, o) = Ligile) — Li(gdo) . (6-6)

Now suppose that the decision maker does not know the true value of the
parameter ¢ but believes that it is close to some number ¢ and proposes to act as
if this were in fact the true value, i.e., to stock the quantity ¢q;. By (6-4) and
(6-8) his conditional expected terminal opportunity loss, given any particular
true o, is

Li(q;l0) = Li(q.lo) + N(é,0) . (6-7a)

If he assigns a probability measure to ¢ we can say that his unconditional expected
terminal opportunity loss is the expectation of (6-7a) with respect to this measure,
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Li(g;) = E.Lg;9) ; (6-7b)
and if we define
L: = E, L(g] 9) , (6-8a)
Ad) = E, N(4,6) , (6-8b)
this expectation can be written
L#(gs) = Lt + A9) . (6-8c)

The decision maker’s “overall” expected terminal opportunity loss is thus the
sum of (1) the terminal opportunity loss L which he would “expect” to suffer if
he were to be told the true o (but not the true d) before choosing his terminal act,
and (2) the additional opportunity loss A.(¢) which he must expect to suffer be-
cause his act will actually be based on the “‘estimate’” ¢ rather than on the true
value ¢. Because the first of these two quantities does not depend on any decision
variable, the problem of finding the terminal act ¢ which will minimize the decision
maker’s expected terminal opportunity loss as defined by (6-7b) is equivalent to the
problem of finding the estimate ¢* which will minimize the expected “estimation
loss” as defined by (6-8b); and once this optimal estimate ¢* has been found, it
will be a certainty equivalent in the terminal action problem of deciding on the
actual number ¢ of units that should be stocked. Because the set of possible esti-
mates {¢} coincides with the set of possible true values {¢} and the “imputed”
loss function A, defined by (6-6) has the property \(es, 0) = 0, this problem falls
in exactly the same formal category as the problem of direct terminal action discussed
in Section 6.1.2 above.

To obtain a better feeling for the nature of these imputed loss functions A,
let us assume by way of example that the demand d is known to be generated by
an Independent Normal process with known mean u but unknown standard devia-
tion #&. Then as shown by (6-42) and (11-24b), the expected terminal opportunity
loss defined for any act ¢ by (6-4) is given by the formula

Lgle) = (ku + ko) o {fws(u) + ulks Fye(u) — ki Gns(u)]} (6-9a)
where

_q— . = ko . o K 6-9b
u = o ) ko_ku-*-ka, ku ku+ko’ ( )
and fys, Fye, and G+ are respectively the unit-Normal density and left and right-
tail cumulative functions; and as shown by (6-44) the optimal act ¢, defined by
(6-5) must satisfy

Fie (q—:—“) =k . (6-10)

From (6-10) it is easy to calculate the stock ¢ which will result if any estimate ¢
is treated as if it were the true o, and from (6-9) it is easy to calculate the increase
in terminal opportunity loss due to stocking ¢; rather than ¢,—i.e., the loss \.(4, o)
to be imputed to use of the estimate ¢ when o is true. In Figure 6.2 we graph the
function A,(¢4, -) for the cost parameters of Section 6.1.2 and the estimate ¢ = 1;
this graph should be compared with the graph Figure 6.1 of the terminal oppor-
tunity loss of the act ¢ itself as a function of the actual demand d.
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Figure 6.2
Imputed Opportunity Loss of the Estimate ¢ = 1

6.2.3. General Theory of Cerlainty Equivalents

We now proceed to generalize the theory of certainty equivalents suggested
by the example we have just discussed.

Terminal Theory. Let the state 6 be expressible as a doublet (8, 6;) = (w, {);
define u; and I; by

ui(a, w, {) = uia, 0) ; li(a, w, §) = U(a, §) ; (6-11a)
define U and L, by

Uia, w) = Epauifa, w,{) ; Lia, w) = Epuli(a, »,§) ;  (6-11b)
define a, by

Uia,, w) > Uia, w) , allaed , (6-12a)
or equivalently by

Li(a,, w) < La, w) , allaed ; (6-12b)

and define the imputed loss of the estimate & to be
M(&, w) = U, w) — Udas, w) = Li(as, w) — Li(au, w) . (6-13)
Then since Eq = E, E;,

Es uiaz, 8) = Eu Ui(du, @) — Eo M6, &) (6-148)
or
Eo Li(az, 0) = Eo Li(du, @) + Eu M(0, @) . (6-14b)

Provided that the set {a,: w ¢ Q} is coextensive with the set {a} = A, i.e. that every
ain A is optimal for some w in g, it follows immediately that
max, [ ui(a, §) = B, Ud,, @) — ming E, M(8, @) , (6-15a)
and that
min, 1% li(a, §) = Ly, Li(d., @) + ming E, A\(®, @) . (6-15b)
In words rather than symbols, mintmization of impuled estimation loss as defined by

(6-13) followed by treatment of the optimal estimate as if tt were the true value of the
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quantity estimated s equivalent to mazimization of expected utility or minimization
of expected “overall” opportunity loss.

Preposterior Theory. In general the decision maker is not obliged to proceed
immediately to make an estimate & on the basis of which he will choose his terminal
act a but can if he wishes perform an experiment e which will give him additional
information about Q. Formally, consider a set of experiments E with potential
outcomes Z such that the conditional measures P,. on Z depend on 6 = (w, {)
only through the component w, and let A\}(¢) denote the prior expected value of
the estimation loss due to the estimate & which will be made posterior to e:

N(e) = E,, ming E(j; \(, @) . (6-16)
Then by (4-3) and (6-15a) we have for the expected utility of e
u*(e) = ui(e) + uile) = ui(e) — cile)
= Etlt [Ea’-fz U((au, (:)) el mina E;{, )\;(0, (:))] —_ C:(C)
= Ei Ui(@u, @) — [M(e) + ci(e)] ; (6-17)
and since the first term on the right is independent of any decision variable, the
optimal e must minimize
A*(e) = Ni(e) + cile) . (6-18)
We conclude that

Any decision problem involving an unknown parameter w can be decomposed

without loss of accuracy into two parts: (1) a first-stage “estimation” problem

of deciding how much information should be obtained concerning w and what
estimate & should be chosen in the light of this information; (2) a second-stage

‘“‘terminal-action” problem in which a terminal act a is chosen by treating this

estimate as if it were the true w.

It is perhaps worth remarking that this principle extends even to problems in
which w is the only unknown quantity involved. Our example of Section 6.1.2,
where the only unknown was the actual demand d, can if we like be treated as a
problem of “estimating”’ d or of finding a ‘“certainty equivalent” for d. If we
assume that an estimate d will be treated as if it were the true demand d, the
“imputed” losses A.(d, d) will be simply the “terminal” opportunity losses l,(d, d):

ko(d — d) if d<d,
ku(d — d) if d>d.

Choice of the Quantity to Estimate. In most discussions of point estimation
an effort is made to define the properties of a ““good”’—or even a “best’’—estimator
without reference to the use to which the estimate will ultimately be put; it is
easy to find statements in the literature than an estimate ‘“‘should” be unbiassed
or that the “best” unbiassed estimator of w is one which minimizes E(&d — w)? or
something of the sort. Now it is perfectly obvious from the role of the imputed
losses A\(&, ») in the above discussion that it is flatly impossible to find any one
estimator which is “good’’—let alone “best”’—for all applications in any absolute
sense, but this discussion has another implication which is less obvious.

It is well known that if ¢ is, say, an unbiassed estimate of the standard de-
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viation o, then 4% is not an unbiassed estimate of the variance ¢?; if & is an esti-
mator which minimizes max, E(d — w)?, then f(&) does not in general minimize
max, E[f(d) — f(w)]?; and in general, many classical estimation procedures are
dependent on the parametrization of the problem. When we think, however, of the
way in which a point estimate is actually used, we see that if an estimate & of w leads
to the terminal act a;, an estimate &? of w? will lead to this same terminal act az; and
it follows at once that if a particular estimate &* of w minimizes imputed estimation
loss, then the estimate f(&*) of f(w) will also minimize imputed estimation loss. In
terms of our example: if 6* is the best estimate of the standard deviation of demand
d in the circumstances of that particular decision problem, then ¢*? is the best estimate
of the variance of d, and so forth.

6.2.4. Approximation of \,

Although it is possible in principle to obtain an exact solution of a problem of
point estimation by application of the theory which we have just developed, this
procedure will rarely if ever be of much practical use. In order to obtain the exact
conditional losses \(®, w) for the ‘‘first-stage’ estimation problem, we must first
make a complete conditional analysis of the “second-stage’” terminal problem for
each possible w; and if we are to carry out this analysis and then take the exact
expected values of the derived conditional losses we might just as well eliminate
the decomposition and introduce the uncertainty about w directly into the analysis
of the terminal problem itself.

The practical value of the theory developed in the last section lies rather in
the fact that, by giving us a meaningful definition of the estimation problem, it
guides us in the choice of suitable methods for finding approzimate solutions of the
problem. When it is practically impossible to allow for uncertainty about w in
the terminal analysis, it may be possible to calculate A\(®, w) for a few (&, w) pairs,
fit some convenient function N\i(-, -) to these calculated values, and then select the
estimate which minimizes E, A{(®, @) or to choose the experiment ¢ which minimizes
Ellu min; LT: k;(0) ‘:’)

In choosing the class of functions one member of which will be selected as \;
by specification of numerical values for the parameters, the decision maker will
of course be guided not only by the values of \,(®, @) which he has actually com-
puted but also by a more general intuitive analysis of the ‘“second-stage’” decision
problem in which the estimate @ will ultimately be used. Whatever the nature
of the second-stage problem, he knows that the imputed loss of a correct estimate
is zero, A(w, @) = 0; and if the second-stage problem is an infinite-action problem
(e.g., a problem like the example of Section 6.1.2 above or a problem of optimal
sample size), then it will usually be reasonable to assume that \,(®, w) increases in
some smooth manner with the “error” (& — w) or (w — @) in the estimate. When
this condition is met, an appropriate approximation function will often be found
within one of two particularly tractable classes analyzed in detail in Sections 6.3
through 6.5 below: (1) the linear class defined by

koo — w) g(w) if w <
ku(w — @) g(w) if w> o (6-19)
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and (2) the quadratic class defined by
M8, @) = k(@ — w)? g(w) (6-20)

where g(w) may be any function which is “compatible” with the prior density of &
in a sense to be discussed in Section 6.5.

In choosing between and within these two classes of functions, the decision
maker will probably find it easier to think of & rather than » as the “variable”,
letting w play the role of a “parameter”. Thus in the linear class (6-19), k, repre-
sents the loss which will result for each unit by which w is overestimated, while k,
is the loss for each unit by which w is underestimated. The addition of g(w) to
the loss function makes it possible to find a function which will properly allow for
the fact that the seriousness of a given error (& — w) may depend on the true value
of w as well as on the error itself. Thus while

(g, 1) = ke(a — p)?

may often be an appropriate loss function for estimation of the mean p of an Inde-
pendent Normal process, the loss due to misestimation of the mean p of a Bernoulli
process will often be better described by the function

) — 2
a,p) = [E22]
D
which looks at the relative rather than the absolute error in 7, or by the more

symmetric function

7] 2

p(l —p)

Choice of the Quantity to Estimate. Although it makes no difference whether
we estimate w or some function of w when we optimize the estimate with respect
to the exact loss function \,, it does make a considerable difference if we are going
to optimize with respect to an approximation A chosen from a limited class of
tractable functions: the class may contain a very good approximation to the true
loss function when the problem is parametrized in one way but may contain no
even tolerable approximation when the problem is parametrized in another way.

As an example, let us consider once again the problem of estimating the stand-
ard deviation of a Normal distribution of demand which was discussed in Sec-
tion 6.2.2 above. Substituting formula (6-9) for the terminal opportunity loss
L.(glo) in the definition (6-6) of the imputed estimation loss and defining the
constant u by

x‘(ﬁ! p) =

FN.(u) = k:
we obtain after a little algebraic reduction
1
PRy \(d, 0) = o ¢(d/0) (6-21a)

where

o(d/a) = fxe(ud/o) — fae(u) + (ud/o)[ks Fyr(uz/c) — ki Gys(ud/a)] . (6-21b)
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From this it follows that if we define

w = o* (6-22)
where k is any real number, we can write
1
TR A(D, w) = W' gp(d/w) (6-23)

where ¢ is implicitly defined.

If now we wish to approzimate (6-23) by a quadratic of type (6-20), we will
wish to know whether we will do better to takek = 1 and w = 0, i.e., to approximate
the losses by a function of the form (¢ — ¢)? g1(¢), ortotakek = 2andw = 2 = v
(say), i.e., to approximate the losses by a function of the form (§ — v)? g2(v), or
possibly to work with some still other power of ¢. The question can be settled

\\ /. /

A N S o B A
SN /

t
g/0 v/
Figure 6.3
Estimation Loss as Function of /0 or of v/v

by examining the functions ¢, graphically, as is done in Figure 6.3 for £k = 1 and 2.
This figure makes it clear that the approximation

#(8/0)  [(¢/a) — 17 = =20

will be much better over a wide range than the approximation

f — p)?
$a(6/v) < [(6/v) — 1]? = Q_v_va ;
and we conclude that an approximation of the type

(¢ — o)?

1
MN(d,0)x 0 ——— = (¢ — 0)*-
ol o

will be much better than one of the type
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(B, v) \/5%L = —v)2v ¥,

In this sense, it is better in this particular example to estimate the standard devia-
tion ¢ than to estimate the variance v.

6.2.5. Subjective Evaluation of \,

In many situations the decision maker may wish to base the imputed oppor-
tunity losses A\(®, w) in an “estimation’ problem entirely on subjective judgment
instead of computing exact values \(®, w) for selected (8, w) pairs and then “fitting”’
some function to these computed values. Such a procedure is in perfect accord
with the general principles of decision under uncertainty which have been advo-
cated throughout this monograph. We have already seen in Section 1.4.1 that
in preparing for the formal analysis of any decision problem the decision maker
is free to cut the decision tree at any level L that he likes and to assign “subjective”
utilities to the branch ends thus created, whether or not he could cut the tree and
assign subjective utilities farther out and then compute the utilities at level L.
Again as we pointed out in Section 1.4.1, a really “complete” decision tree would
be infinitely complex and therefore totally useless; the proper scope of formal
analysis in any decision problem is always a matter of judgment.

Judgmental evaluation of the imputed-loss function A, in an *‘estimation”
problem will be particularly reasonable when previous exact analyses of complete
decision problems of the type in which the estimate is to be used has provided sub-
stantial even though indirect evidence on which to base the assessment of A;; and
in our opinion it is an important objective of statistical research to make such
previous experience generally available. To give a single important example of
the kind of numerical research which would be extremely useful, consider the
“ultimate” problem of determining optimal sample size for choice between two
terminal acts whose utilities depend linearly on the unknown mean of a Normal
population whose standard deviation o, is also unknown. Because this “ultimate”
problem is very laborious to solve as it stands but would be very easy to solve if ¢,
were known (as we have seen in Section 5.5 above), one would like to solve the
ultimate problem by treating a point estimate 4. as if it were the true value o,
itself. Systematic analysis of the loss function (¢, o¢) in problems of this gen-
eral class would provide a really sound basis both for making an optimal estimate
on given information about ¢, and (in situations where information about o, can
be obtained separately from information about u, e.g. by means of uniformity
trials) for deciding how much information about ¢, should be collected before
proceeding to determine the sample size for the “ultimate” decision about p.

6.2.6. Rough and Ready Estimation

Unfortunately there is often a very great difference between what is conceptu-
ally desirable and what is mathematically feasible. We have already referred to
the difficulty of finding the exact imputed loss function A;; but even if we substi-
tute a very well behaved approximation for the exact function it may still be impos-
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sible to find the estimate @* which minimizes the expected value of the loss because
the posterior distribution theory may not be tractable.

In such situations, the best practical solution may well be to exploit the classical
methods of point estimation; we give one example to illustrate the point. Sup-
pose that the imputed loss function A, is such that the true certainty equivalent is
some particular fractile of the posterior distribution of @ Although we may be
unable to find the posterior distribution of & based on the entire sample or on a
sufficient statistic—i.e., the posterior distribution which represents all of our
information about @—we may know the approximate distribution of the maximum-
likelihood “estimator”, and if so then from the observed value of this estimator we
may be able to find the corresponding posterior distribution of & Our actual
estimate—i.e., the certainty equivalent on which our choice of a terminal act will
be based—will then be the appropriate fractile of this posterior distribution, not
the “maximum-likelihood estimate’’ itself.

It should also be remarked that when the posterior distribution of @ is “tight”
(relative to the context of the decision problem), it may not be worth the effort to
formalize the nature of A or to worry unduly about approximating it, since it may
be clear that any reasonable summary measure of the posterior distribution of &
will lead to the choice of a terminal act whose ‘“‘true’”’ expected utility differs
negligibly from the expected utility of the “true’” optimal act.

6.2.7. Multipurpose Estimation

All of our discussion hitherto has been based on the assumption that some
estimate ® of w is to be used as a certainty equivalent in a single, well defined
second-stage action problem. It was on the basis of this assumption that it was
possible to introduce at least conceptually the imputed opportunity losses A (&, w).
We now turn to the case where a given body of information concerning @ may be
used in a number of different second-stage action problems.

Terminal Considerations

In some situations it may be true that even though the imputed loss functions
A\« are not tdentical in the various second-stage action problems, they are neverthe-
less stmilar in the sense that the same estimate & is a certainty equivalent for all the
problems. We cite two examples.

Consider first a two-action problem involving a Bernoulli p and let u.(a;, p) =
kp and u.(az, p) = K; the quantity p might represent a fraction defective, kp the
cost of accepting the lot, and K the cost of rejecting the lot. Now let K be un-
known and let it play the role of @; and assume that K and p are independent.
If our estimate of K is K, then

MR, K) = { 0 if K and K are on the same side of k7 ,
a7 UK - k) if K and K straddle kp ,

and it is easy to see that for any distribution of K, the mean K is an optimal esti-
mate K*. Observe that K is a certatnly equivalent for any problem in which the
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ultlities and therefore the tmputed losses are of this form, regardless of the numerical
values of the coefficient k and the mean P of p. We can think of K as being a ‘“‘broad”
rather than a “restricted’’ certainty equivalent.

As a second example, consider the well known production-smoothing problem
which in very restricted form can be presented as follows: at time n, the decision
maker must choose a production level r, and demand will be d,; the terminal
opportunity loss at time = is of the form

an(xn s Jn)2 + bn(xn - xn—l)z .

Given the boundary condition zo = ¢ and the constants @., b, forn = 1,2, --- | N,
the problem is to choose r, as the first stage of a policy which will minimize the
expected sum of the terminal opportunity losses in N periods. It is knownt that
if the problem is modified by replacing the random variables d;, - - - , dy by their
expected values d, - - - , dw, then the original and modified problems have the same
optimal first stage act ;. The means d,, - - - , dv are certainty equivalents for the
joint distribution of dy, - - - , dv regardless of the numerical values of the parameters
c, a, bl, Qaz, bz, v, AN, by.

Usually, however, it will not be true that any single estimate & can serve simul-
taneously as a certainty equivalent for a number of different second-stage action
problems. If the posterior distribution of @ is “tight,”” a “reasonable” summary
measure like a mean or mode may serve all purposes reasonably well; but when this
is not the case, one should refrain from making unnecessary compromises. It is
much better—and nearly as easy—to report the posterior distribulion of & and then
lo try to find the best possible estimate for each terminal-action problem individually,
cf. Section 3.4.6 on scientific reporting.

Preposterior Considerations

Suppose now that our immediate problem is not to make an estimate or set
of estimates of w for use in a number of terminal-action problems but to choose
an experiment e which will give us additional information about Q. If this in-
formation is ultimately to be used in a number of different second-stage action
problems, then the immedigte result of the experiment will presumably be a pos-
terior distribution of & in one guise or another. But how does this help to decide
on sample size? One possible approach is to define some index of “tightness’” of
the posterior distribution (such as the variance if the distribution is symmetric)
and then to decide on a substitution rate between the index of tightness and the
cost of sampling. A second possible approach would be to concoct a composite
imputed loss structure A\, as if we were eventually going to choose a single esti-
mate &. A standard preposterior analysis can then indicate a ‘“‘reasonable’” sample
size, even though after the experiment has been conducted we will actually report
the posterior distribution of & and then use this as a basis for finding a different
certainty equivalent &* for each terminal-action problem that arises.

t See H. Theil, “A note on certainty equivalence in dynamic planning’’, Econometrica 25

(1957) pages 346-349. In this paper Theil refers to an alternate proof given previously by
H. Simon.
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6.3 Part 11: Addilive Ulililies

6.3. Quadratic Terminal Opportunity Loss

In this section and the next we shall examine some of the analytical problems
which arise when the conditional terminal opportunity losses li(a, w) are quadratic
or linear in (¢ — w); the entire discussion will obviously apply without change to
problems in which the conditional “imputed estimation losses” \(&, w) of an esti-
mate & are quadratic or linear in (& — w). In the present section we shall consider
the quadratic structure

Lla, w) = kila — w)? (6-24)
where k. is a constant; in Section 6.4 we shall consider the linear structure
_ [ko(a — w) if w<a,
l(a, w) = {k..(w —Y . oS (6-25)

and in Section 6.5 we shall see how either of these structures can be made much
more flexible without loss of tractability through multiplication by suitably chosen
functions of w.

6.3.1. Terminal Analysis

If the conditional terminal opportunity loss of an act a given the state w is
of the simple quadratic form (6-24), then the expected opportunity loss of a under
either a prior or a posterior distribution of & is

Ela,0) =kiE@ — )=k Ela— o+ & — @)?

= kf(a — & + o] (6-26)
where
o= E(@@) , o=V(@ =EG-— o?. (6-27)
It follows at once that the optimal act is given by
a*t = (6-28)

and that the expected terminal opportunity loss of this optimal act is
El(a* &) = min, Eli(a, @) = k. . (6-29)

In Table 6.1 formulas for & and & are given for various @ = W(f) associated
with the univariate data-generating processes listed in Section 3.2.5 above and
discussed in Part III below. In each case it is assumed that the distribution of
the process parameter § is conjugate to the likelihood of a sample.

P> Except in the case of w = o?, all the formulas in the table are derived in Part III;

references to the formula in Part III are given in the last column of the table. To derive

the formulas for E(#?) and V(?%), we first observe that if k has the gamma-2 density (7-50)

with parameter (v, v), then by (7-51a) and (7-55) 1/h = & has the inverted-gamma-1

density (7-54) with parameter (3», $»v). The formulas in the table then follow immediately

from (7-56). |
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Table 6.1

Mean and Variance of @

Process Conjugate Distribution w w = E(@) &= V() Reference
r r(n —r)
p - Y (9-11)
n n¥(n + 1)
Bernoulli: p*(1 — p)'-= beta: p—'(1 — p)» ! J
- Bl n = D(n—r) .
p=r r—1 r—1)Yr—2) (8-15)
A TE :; (10-10)
Poisson: e™* A gamma-1: e 2 \r-1 <
4 {3
=\ — -
R (r— D¥r — 2) (10-15)
h known, I Normal: ¢~ }*nx—m» M m hl_n (11-24)
1 1 1
h - o (11-10)
—RhE - N ke k- —p-3 G =P w_o_o, (7-59);
Normal; ¢=47¢" " J# koown, k gamma-2: ¢~ 4pd = jo=h (v — 1! Viw -0 of. Section 11.1.4
2= pmt w v
\or h 9 P rT— see note
v v
- 1 -
Normal-gamma: - m ny —2 (11-49)
e—ihn(p—m)'h} . e—}hn’dr—-l
. , 0, 0% same as for p known




6.3.2 Part 11: Additive Ulilities

6.3.2. Preposterior Analysis

If we now introduce primes and double primes to distinguish between values
prior and posterior to a sample, we have by (6-28) and (6-29) that if the decision
maker does not experiment but acts under his prior distribution of &, then the
optimal act is E'(#) = &' and its expected terminal opportunity loss is k; V/(a) =
k¢ &' ; whereas if he does perform an experiment e and observes 2, then the optimal
act is E,(®) = &, and its expected terminal opportunity loss is

ke Vie(@) = ke . (6-30)

When an experiment e is being considered but has not yet been performed, its
outcome 2 is a random variable and therefore the posterior terminal opportunity
loss k¢ &'’ is in general a random variable. In order to make a preposterior analysis
of any e the decision maker must compute the prior expected value of this posterior
terminal opportunity loss; and since this expectation is

l:(e) = Ep(kie ") = ki EQ(&:) (6-31)

this problem is equivalent to the problem of computing the prior expectation of the
posterior variance.

When the prior variance of the posterior mean is known, the prior expectation
of the posterior variance can he easily obtained by using a result derived in Chap-
ter 5 above. Defining

@ = Etlz(az” = E:Ie v:vllt(‘:’) ’

&' = Vv:lc(b;l) = vﬂ! EL;’(&) ?

we have by (5-28) that for any distributions whatever on @ X Z, provided only
that the means and variances in question exist,

& =a - & . (6-33)

In Table 6.2 formulas for & and &'’ in terms of &' are given for one or more kinds
of experiments which might be conducted in order to obtain information on each
of the various ws appearing in Table 6.1 (page 189). The nature of the experiment
is indicated by listing the components of the sufficient statistic with a tilde over
those which are not predetermined but left to chance. For the parametrization,
see Table 6.1 or Section 3.2.5 above; for formulas for &' in terms of the parameters
of the prior distribution, see Table 6.1. References in parentheses are to formulas
for & in Part III; references in square brackets are to derivations of & in the
notes immediately below.

(6-32)

P Note 1. In this case ji” is independent of the sample outcome; its value and the value
of i’ are given by (11-24¢) and (11-22).

Note 2. By (11-10b) the prior and posterior variances of h are

1 4 1
r " = —_— .
h = iv’v" h %V" 7’2
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Table 6.2
Expected Posterior Variance of @
Prior
Process  Distribution Experiment w &/ "/ Reference
( n n'
bn P et et (9-21¢)
p=1/p see reference (9-29)
Bernoulli beta <
P see reference (9-38)
lr r r—1
L p=1/p r+r—=1 r4+¢r -1 (8-43¢)
[ A _t - (10-37c)
7t t4t t4t
= 1/\ see reference (10-45)
Poisson gamma-1 < r 41
1 {)‘ r+r4+1 r4r 41 (10-22c)
r
r r -1
w=1/x r4+r—1 r4+r' -1 (10-28b)
h known, v n n'
{iI Normal min u At "t (1]
v v 4+ 2
h S rv+2 v+rr2 @
u known, _
Normal <k gamma-2 oy o=t see note (3]
T o pt v v -2
ot =h v+ -2 v4vV -2 [4]
n n'
11-66
;\;?;Tnil- , Bln, v n+ n+n (11-662)
h, o, o? same as for u known —

By (11-15) and (11-61) the density of 7"’ is the same whether or not u is known, and by the

second formula in the proof of (11-65)

by = [2

L”’:'—’ @' =D+ 1! V'O +2) _
G+ DIGY = 1! V" + 20

We thus have for the expected posterior variance of k

Eu =

1

yll(yl + 2) _
y’(y” + 2)')[’ -

V42,
yll+2ﬁ .

Note 3. By Section 11.1.4 and formulas (7-59) the posterior variance of & is
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6.3.2 Part 11: Additive Ulilities

[y (=) ]

By (11-15) and (11-61) the density of &’ is the same whether or not u is known, and by
(7-27a) or the second formula in the proof of (11-65)

W -1
W ="

Substituting this result for "’ in the previous formula we obtain

&”=[ 1 Ch“—vvﬂh"—lhv.

E(8") =

p—1 \W =01 b -1
Note 4. By Table 6.1 (page 189), the prior and posterior variances of &? are
1,02 1y w1y
V(Y = 2"ty ’ V(Y = 2" 9

' — 2} — 4) o =2 —4)
By (11-15), (11-61), and the second formula in the proof of (11-65)
ylz vlg (l’” — 2)(!’" — 4)
) - . .
E@™) y'' =20 —4)
Substituting this result for 5’2 in the formula for V'/(¢?) we obtain
2"t (' = 2)(" - 4)v? , v —2

-0 — 1) - e’ oz o) 4

6.3.3. Optimal Sample Size
The decision maker’s objective is to choose ¢ in such a way as to minimize his
expected opportunity loss, which by (4-19), (6-31) and (6-32) is
I*(e) = lt(e) + ci(e) = ke @ + cie) . (6-34)
We are interested particularly in the case where every ¢ in E is characterized by a

real number » (the “sample size’’) such that the expected sampling cost is a linear
function of »,

EV"(5Y) =

C,(e.) = K' + k,ﬂ .

Since by (6-32) the expected posterior variance &' is a function of e and there-
fore of n, we add a subscript # to &'’ and write (6-34) in the form

I*(ey) = ke Dy + Ko + kan . (6-36)

If now n is continuous or can be treated as continuous for practical purposes, and
if &;' has a derivative with respect to n (as it does in all cases listed in Table 6.2
on page 191), then the optimal n is either 0 or a solution of the equation

.d_ 5= L *

dp B = T where k
For each w for which a formula for &'’ was given in Table 6.2, we give in Table 6.3
a formula for the root n° of this equation which, if it is positive, corresponds
to the unique local minimum of I*(¢,). If however ° is negative, then the optimal
sample size is 0; and even if 9° is in fact positive, the optimal sample size may
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Quadratic Terminal Loss 6.3.3

be 0: in this case the question must be settled by actually computing {*(e,s) and
comparing it with [*(eo) = k. &'.

Table 6.3
Optimal Sample Size

Prior Optimality  For-
Distri- Experi- Condition:  mula
Process bution ment w S vVE*S = Number
- r'(n’ — 1) o ,
Fln p n—'(n' ) n°+n 1
Bernoulli  beta o — D )
- W=0Dw-ry o ,_
#lr p=1/p "= 1) =2 r+r -1 2
4 T'
t A 7 e+t 3
. r(r 1
Poisson gamma-1 < A _(_t":'_) P41 4
r|l
tlz 0 /
\ e B
(h known, - 1 o ,
& Normal min o Y n+n 6
']
h 2%__’22_)_ v+ +2 7
;’: known, v v
Normal <5 gamma-2 21y’
2 = &z o ' _
o*=1/h v —2)(/ — 4 w4y =2 8
v o ,
Normal- i ln v o Y n°+n 9
gamma rorn
L h, a? same as for u known 10

P All the formulas for &,’ given in Table 6.2 (page 191) are of the form

:)II - 71' + [4 (:)’
T ontnto
where ¢ is a constant. Differentiating twice with respect to n we obtain
d AL ’7, + [4 v/
! — &) = ———
M n T Tarr ol
) £ vrr _ 2£’7, +e) .,

" T+
Substituting (1) in (6-37) we see that [*(e,) is stationary if n satisfies

4+ +c= =V + o) ;
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6.3.3 Part I11: Additive Ulilities

and it then follows from (2) that the solution corresponding to a local minimum is the one
for which the square root is taken positive. The formulas in Table 6.3 are obtained by
substituting in this result the formulas for &' given in Table 6.1 (page 189). > |

Interpretation of the Formulas for Optimal Sample Stze. The role of the factor
* = k,/k,in the sample-size formulas of Table 6.3 is easy to “understand’’ econom-
ically: it says simply that optimal sample size increases as the cost of a discrepancy
between a and w increases and that optimal sample size decreases as the cost of
sampling increases. When we seek a similar “explanation’” of the factor S, it
seems at first sight that a clue is offered by formula 6, for the case where the mean x
of an Independent Normal process is unknown but the process precision k is known.
In this case we have by (11-2b) that the factor S = 1/h is equal to the sampling
variance V(£|u) of a single observation £; and it seems reasonable enough that
optimal sample size should increase with V(2|u) because an increase in V(2|p)
means a decrease in the amount we can learn about u from each observation in the
sample.
In the other cases in Table 6.3 the variance of a single observation depends on
the value of the quantity being estimated, so that the interpretation of the factor S
must necessarily be more complicated than in the very simple case of formula 6,
but it naturally occurs to us to inquire whether in these other cases the factor S
may be related to the expected sampling variance E, V(£|@) of a single observation.
The factor S does turn out to be actually equal to E, V(2|@) in several cases,
specifically in those covered by formulas 1, 2, and 5; and in those covered by formu-
las 3 and 8 the factor S turns out to be equal to the expected variance of the statistic
 or 1 in a sample of size n = 1.

P> In the case covered by formula 1, we have by (9-1), (7-9¢), and (7-22ab)

I _ ;o _i_r'(r’+l)=r'(n'—r)_
E,Veelp) = [['p(l = p) ol w) dp = 5 = T = S = 8

In the case covered by formula 2, we have by (9-2), (7-12b), and (7-21)

1 —
B VG = [ L putole’, ) dp

- 1(n' = 1)(n' = 2) ' _ r_ _ tn —1 ' _ ' _
= | e g e — 2 =2 dp = [ ST el = 1w = 1y dp

_(n’—1)(n'—2)_n’—l_(n'—l)(n’—r’)_
T -r=-2) -1 (-10r"-2

In the case covered by formula 3, we have by (10-32), (7-33c), and (7-45a)

S.

ExV@A L= 1) = L" Mo, ) dA = :— =S.

In the case covered by formula 5, we have by (10-1), (7-45¢), and (7-43)
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Ex V(Z[K) = f I\, ¢) d\ = f

o (r
't

“Toeon S

T oo =gt -

6.3.3

2,t)d\

In the case covered by formula 8, we have by (11-12), (7-52b), and (7-50)

EsV(@lhy= 1) = [° ih,fyz(hw' vy dh

- [ 2
0 @ - Hg — 2

21', 2

=m=s-

V’v, ,
)f'yi (hlv'_—_‘l, Vv — 4) dh

Unfortunately, however, this line of explanation breaks down totally when we

examine the two remaining cases in Table 6.3.

In the case covered by formula 4,

the factor S is equal to the expectation of the rectprocal of the sampling variance
of a single observation; and in the case covered by formula 7 the factor S is four
times the expectation of the reciprocal of the variance of the statistic & in a sample
of size v = 1. We must therefore confess that we have as yet been unable to

attach any clear economic ‘“meaning” to the factor S.

P> In the case covered by formula 4, we have by (10-1), (7-45a), and (7-45b)

B [V(IIX):I _[ M, ) dN =

r(r'+l)_=

'

In the case covered by formula 7, we have by (11-12), (7-52b), and (7-50)

1 ° 2 ’ ’
B [Wm]=ﬁ, 3h fra(hlv’, v') dh

- [yl +l)fn<

(')

2
=;”,T, -1S.

6.4. Linear Terminal Opportunity Loss

We next consider the linear loss structure

ko(a — w) if
ku(w — a if

where k, and k., are positive constants.
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6.4.1. Terminal Analysis
If the conditional terminal opportunity loss of an act a given w is of the linear

form (6-38), then the expected terminal opportunity loss of a under either a prior
or a posterior distribution of & is

Elfe,d) = ko [ (a = @) dPu+ ku [7 (@ — o) dP.

=k, LY(a) + k., L (a) . (6-39)
The “linear-loss integrals” L and L™ have already been defined in (5-12), and
it has already been shown in Table 5.1 (page 99) that they can often be easily
evaluated in terms of well tabulated functions when & is a reasonably simple func-
tion of the state # and § has one of the conjugate distributions listed in Section 3.2.5
above and discussed in Part I1I below.
If we let F, and G, respectively denote the left and right-tail cumulative
functions of @,

F.a)=P{a < d}, Gua) =P{o > a} , (6-40)
and if we define the “partial expectation” E2 of & by
Efa) = L #wdP, , (6-41)

then (6-39) can be written in the alternative form
E l(a, &) = k,[a F.(a) — E% o(@)] + kJEZ (@) — aG.(a)] . (6-42)

If now & possesses a density function D, and a is continuous or can be treated as
such for practical purposes, then the act a* which minimizes (6-42) can be found
by setting the derivative of (6-42) equal to zero: a* must satisfy

0 = ko[a*Du(a*) + Fu(@*) — a*D.(a*)] + ku[—a*D.(a*) + a*Du(a*) — Gu(a™)]
= ko Fu(a*) — ki Gu(a®) . (6-43)

That the stationary value of E /,(a, @) corresponding to a = a* is in fact a mini-
mum follows at once from the fact that the right-hand side of (6-43) is an increasing
function of a.

To put the optimality condition (6-43) into a more convenient form we sub-
stitute G,(a*) = 1 — F (a*), thus obtaining

F.(a*) = i k+" W (6-44)

Observe that if the loss structure is symmetric, k, = k,, then the optimal act is
equal to the median of the distribution of . Observe also that if ¢ is any increas-
ing function of w and if

ko(¢(a) — ¢(w)] if ¢(w) < ¢(a) ,
ku¢(w) — ¢(a)] if ¢(w) = ¢(a) ,

so that the optimal act a* is given by

l;(a, w) =

ky
Fé(u)[¢(a‘)] = ku + k. ?
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then because
F‘(u)[d’(a)] = Fo(a)

the optimal act is exactly the same as if the losses were linear in (@ — w) itself
with the same coeflicients k, and k..

Formulas for the optimal act in terms of standardized, tabulated cumulative
functions are given for a number of &s in the fourth column of Table 6.4, where
Fg and Gg refer to the beta function (7-15), F,» and G+ refer to the gamma func-
tion (7-34), F x» refers to the unit-Normal function, and Fs« refers to the standard-
ized Student function.

P The optimality condition in row 1 is derived from (9-9), (7-23), and (7-18) ; row 2 then
follows from the definition p = 1/p. The condition in row 3 is derived from (10-8) and
(10-12); row 4 then follows from the definition 4 = 1/A. Row 5 is derived from (11-21)
and (11-23). Row 6 is derived from (11-8) and (11-11); rows 7 and 8 then follow from
the definitions ¢ = h~3 and ¢ = 1/h. Row 9 is derived from (11-47) and (11-48). Row
10 follows from the fact that (11-8) and (11-44) are identical.

When the optimality condition (6-43) is substituted in the general formula
(6-42) for the expected terminal opportunity loss we obtain the expected terminal
opportunity loss of the optimal act a*:

El(a* @) = k. Eq(@) — k. ETa(@) . (6-45)

Specific formulas for a number of @s are given in the fifth and sixth columns of
Table 6.4 just below. The formulas in the fifth column are the more convenient
for computations, being expressed in terms of the well tabulated binomial (f,)
and Poisson (fp) mass functions and unit-Normal (fy+) and Student (fs+) density
functions. The formulas in the sixth column, on the other hand, show more
clearly the essential similarity of all the separate cases: with a single exception,
the expected loss is of the form

El(a* @) = (ks + ko) V(@) f(a*)

where f is a member of the same family as the conjugate density of @ but with the
parameters possibly augmented or diminished by 1 or 2. A formula of this type
can in general be obtained when (and only when) w is an integral power of the
“natural’’ process parameter 9.

P To derive the formulas for E I,(a*, @) in Table 6.4 we first observe that by the defini-
tion (6-41)

o(@) = E@) — ETa(@) = @ — E¥.(@)
provided that the distribution of & is continuous as it is in all the cases in Table 6.4. We

then substitute this formula in (6-45) to obtain for the dimensionless terminal opportunity
loss of a*

_ 1
" ku + ko

ky

M L kot Fo

E li(a* &) = &[ - %E“_‘.(a)] .
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Table 6.4
Optimal Act and Expected Terminal Opportunity Loss

Conjugate Optimal Act: E li(a* @) E li(a* @)
Process Distribution w k./ (ke + ko) = ks + ko (ke + ko) V(@) Row
p Fo@inn—n D00 fola®lr +1,n+2) !
Bernoulli  beta ]
p=1/p Gge(1/a*lr,n — 1) :l_— ;fb (r -1 prd i 1) fima®*lr —2,n —1,1) 2
\ For(a*tl) Z fo(rla*t fn(a®lr +1,0) 3
Poisson gamma-1 ¢
uw=1/\ Gs(t/a*|r) — 1jp(r — 1jt/a*) fin(a*lr — 2,0) 4
[
& ( Fxo(u*),
h known, g Normal " () Y e (u®) fn(a*|m, hn) 5
u* = (a* — m) Vhn
(1 F.(hwa*[3v) ! e (3vliwa®) for (a‘ LI 2) 6
i v’ T v+ 2
u known, k gamma-2 <¢ =k} Gp(drv/a*?|by) see note 7
Normal <
kU’ =1/ Gp(iw/a*|}v) ; _vf 2fP(il' - 1|3w/a*) fin(a*|dv — 2, dw) 8
1 Fsc(‘.ll‘), * _—
M { iy e fs (a‘lm, v—2n8 2) 9
Normal-gamma 1 t* = (a®* — m) Vn/v v—1 v.v
L \h, 0, 0 all formulas same as for u known 10
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All the derivations except number 7 then follow the same general pattern. By manipulating
the expression given in Part I1I for E¥.(®) we find a function ¢ such that

‘-%E"_'.(&) = Fu(@%) — ¢(a* y)

where y denotes the parameters of the conjugate density of @. We then use this result
and the optimality condition (6-44)

ky

Fule”) = 7

to put (1) in the form
L=ada%y) ;

and substituting herein the value of w given in Table 6.1 (page 189) we obtain the formula
in column 5 of Table 6.4. The formula in column 6 of Table 6.4 can then be derived by
using the formula in Table 6.1 for & and the formula in Part III for the conjugate density f..

Throughout these derivations the definitions (7-8) of the binomial function f and (7-11)
of the Pascal function fr, are to be understood as applying to all real positive r, n (not neces-
sarily integral), while the corresponding cumulative functions Gy and Fp, are to be taken
a8 defined in terms of the cumulative beta function by (7-20) and (7-13). The arguments
originally given to prove these latter formulas now become proofs that the redefined func-
tions have the properties typified by

Gb(flp, n) = FPn("lP' r) ’
Fpo(n + 1ip, 1) = Fra(nlp, 1) + fra(n + 1lp, 1) .

Similarly the definition (7-32) of the Poisson function fr is extended to all real positive r,
the function G is taken as defined in terms of the cumulative gamma function by (7-39),
and what was originally a proof of this latter formula becomes a proof that

Gre(rlm) = Ge(r + 1|m) + fe(r|m) .
Row 1. By (9-11b),
(@ %Ea‘@) = Fpla*lr+ 1,n+1) = 1= Gpla*lr +1,n +1) .

By (7-24) and (7-13)
3 Gala*lr+ 1,n+ 1) = Go(n — 7|1 — a*, n) = Fp,(n|]l — a*,n—71)
= Fps(n — 1|l —a*,n—r) + fra(n|l —a*,n—7r) .

By (7-13) and (7-24) and the optimality condition
ky
kot ko

4) Fesn—=11 —a*,n—r)=Gn—r|l —a*,n— 1) = Gs(a*|r,n) =1 —
Substituting (4) in (3), the result in (2), and this result in (1), we obtain

L = P fra(n|l — a*,n—1r) ;
and by Table 6.1 and then (7-11) and (7-8)

=1 frlat,m)

L= :‘:fp.(ﬂll -atn—r)=

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-8),
(7-21), and Table 6.1.
Row 2. By (9-15b), (7-20), and (7-13)
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1

»

®  LErG =Gn'< ro 1,n—r) =Go<n—rll—$:n—2)

a
. i
= Fp, n—2|1—;;:n—r

1 1
Fp,,(n— 1)1 —a—_:n—r)—jp,.<n— 11 —;;n—r) .
By (7-13), (7-20), and the optimality condition

6) Fp,(fl—lll—al_‘rﬂ—r)=Gb<ﬂ—Tll—;1::ﬂ—1)

= Gpla®lryn = 1) = o

Substituting (6) in (5) and the result in (1), we obtain
L=pfp..<n— 11 —(%,n—r) ;

and by Table 6.1 and then (7-11) and (7-8)

n—1

1 _—
L= fr.(n-—lll—;:n—r)=n ;fo(r—l

r—1 r—

1
"1—‘; n— 1) .
This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-8),

(7-25), and Table 6.1.
Row 8. By (10-10b) and (7-39)

) QN
(N iE"‘ (A) = Fpa(a®tlr 4+ 1) = Ge(r + 1|a*t) = Go(r|a*t) — fe(rla®t) .
By (7-39) and the optimality condition
(8) Ge(rla*t) = Fe(a*r) = kul_c; %

Substituting (8) in (7) and the result in (1) and then using Table 6.1 we obtain
L = X fe(rla*) = %fp(rla‘t) .

This is the formula in column § of Table 6.4; the formula in column 6 follows by (7-32).
(7-43), and Table 6.1.
Row 4. By (10-15b) and (7-39)
© %E(‘;'(ﬁ) = Gpt/a®lr = 1) = 1 = Go(r — 1|t/a*)
= 1— Gp(r|t/a*) — fr(r — 1|t/a*) .
By (7-39) and the optimality condition

kot ko

(10) 1 = Gp(rlt/a®) = Gya(t/a®|r) =

Substituting (10) in (9) and the result in (1) and then using Table 6.1 we obtain
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L = pfe(r — 1t/a*) = ¢ 1_ﬁ»(r — ljt/a*) .

r —
This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-32),
(7-54), and Table 6.1.
Row 5. By (11-24b) and (11-24a)

(11) }IE"_'.(ﬂ) = Fpe(u*) — Ilz-(hn)‘ifm(u‘) , u* = (a* — m) Vhn .
By the optimality condition
k.
] ®\ _ .
(12) Fue(u*) = ko 4+ ke

Substituting (12) in (11) and the result in (1) we obtain
L = (hn)~} fne(u®) .

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-61),
(7-63), and Table 6.1.
Row 6. By (11-8), (7-52a), and (7-39)

(13) (1/R) E§’(h) = F.«(3wa*|dv + 1) = Go(3v + 1[3wva*)
= Gr(dv[hwa*) — fe(dv|dwva®) .
By (7-39) and the optimality condition

(14) Gr(vlina®) = Fy(hwatlpy) = —

kot ko
Substituting (14) in (13) and the result in (1) and then using Table 6.1 we obtain

L = F fo(hlima®) = 3 fo(hviina®) .

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-32),
(7-50), and Table 6.1.
Row 7. By Section 11.1.4 the distribution of ¢ is inverted-gamma-2 with parameter
(v}, »), and by an obvious modification of the proof of formula (7-59a) for E(#) we have
E§(3) = 3 Fye(dwv/a®iv - §) .
Substituting this expression in (1) we obtain

1
ku+ko

El(a* 3) = 2 [k’; = = Frliw/atlyy ;)] .

It is impossible to obtain a formula of the same type as those in columns 5 and 6 of Table 6.4
because we cannot reduce F,(z|}v — }) to an expression of the form F..(z|4v) + ¢(2).

Row 8. 1f h has a gamma-2 density with parameter (v, »), then by (7-51a) and (7-55)
6% = 1/h has an inverted-gamma-1 density with parameter (v, $»v). Then since by (10-13)
the distribution of & in row 4 of Table 6.4 is inverted-gamma-1 with parameter (r,t), the
formulas in row 8 of Table 6.4 can be derived from the formulas in row 4 by substituting 4»
for r and §wv for t.

Row 9. By (11-49c) and (11-49a)

y+tt1
v—1

(15) LEe @) = Folt'l) — ﬁ(n/v)-i Sorlt*19)

a
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where
* = (a“—m)\/r—z_/l-) .
By the optimality condition

k.
(16) Fa(*|y) = kot E
Substituting (16) in (15) and the result in (1) we obtain

«
(17) L= (n/u)-} "y+_‘l' fol*]) .

This is the formula in column 5 of Table 6.4. To obtain the formula in column 6 we simplify
notation by defining

z=a*—m, H=n/y,
and then use the definition (7-66) of fs» to put (17) in the form

v+ Hz (v — P}’

L=H-1% id Hz?)— 44
v—1 \/x(;u-l)!(y+ )
OISR NS L ( v )H b ,] vy —2 ]i v —HvH
vV (v — 2)! [v—2 @+ Hey [ y Fv-=1D@E-1)

_ v—2 1 v _ .. V=21 _ fv v
—fs(zIO, " H,v 2)(Hy_2>—fs(a lm,-——-y e 2>(nv—2>

and by Table 6.1 the last factor is V().
Row 10. This follows from the fact that (11-8) is identical to (11-44). 4

6.4.2. Preposterior Analysis

In order to evaluate an ¢ which is being considered but has not yet been per-
formed, the decision maker must compute

I3(e) = E,je min, EJ; li(a, &) = E,;s Elf L(a2, @) (6-46)

where a} is the optimal act for a given sample outcome z, i.e. for a given posterior
distribution P.};, and E[} l,(@:, @) is given by formula (6-45) or, for specific as,
by Table 6.4 (page 198).

To see the problems involved in the expectation with respect to 2, suppose
for example that & is the parameter § of a Bernoulli process and that the e which
is being considered consists in taking a predetermined number n of observations,
the number ¥ of successes being left to chance. Then by (6-46) and row 1 of
Table 6.4

te) = (ku + k) B[ T i, ) | (6-475)

where 7' = ¢/ + ¥, where d! is the very complex function of ¥ defined by the
optimality condition

Fa(@sf”’, n' — #) = ko (6-47b)
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and where the expectation is with respect to the beta-binomial distribution (9-18)
of 7. It seems difficult if not impossible to obtain an algebraic formula for the
expectation of fy(F’|a;, n'") alone, let alone the product of this random variable
and another; and in fact we have not succeeded in finding a formula for I}(e) for
any case of this type. Even numerical evaluation with the aid of a high-speed
computer seems difficult; the successive values of the beta-binomial mass function
of # can be computed by means of simple recursion relations, but determination
of the value of a? for each r is not easy.

In some cases, however, the problem of evaluating (6-46) is much simpler
because the factor corresponding to fo(7''|@, n”’) in (6-47a) is a constant independent
of the experimental outcome 2. Suppose for example that & is the intensity X of
a Poisson process and that e consists in observing the process until the rth event
occurs, the amount of “time” I being left to chance. Then by (6-46) and row 3
of Table 6.4 (page 198)

te) = (ko + k) B Tosotelar 1 | (6-485)
where l'” = ' 4+ I, where a! is defined as a function of I by the optimality condition
~ (2PN k“

Fo@l) = =2 (6-48b)

and where the expectation is with respect to the inverted-beta-2 distribution
(10-18) of I. Because the value of the product a7 1" is fixed by (6-48b) and r” is
known in advance, the value of the factor fe(+"'|d@f I’’) in (6-48a) is independent of
the sample outcome and evaluation of I}(e) requires merely the finding of the ex-
pected value of 1/1”. If on the contrary the experiment consisted in observing
the process for a predetermined amount of “time” ¢ and leaving the number of
successes 7 to chance, then

rl

te) = (b + k) B[ sotelat ) | 5

and since 7/ is a random variable while the value of d?¢"’ is determined by the
optimality condition, the factor fo(7’|@’ ¢'’) is a random variable and the expecta-
tion is very difficult to obtain. We conjecture, however, that the expected terminal
opportunity loss with fixed ¢ = ¢, is very nearly equal to expected terminal oppor-
tunity loss with fixed r such that E(l) = ¢,.

In Table 6.5 we show an algebraic formula for {{(e) for every w and every e
for which we have found such a formula; the derivations are given in the following
notes.

P Note 1. In all four cases with reference to this note we can see by comparing the for-
mula for the expected loss in column 5 of Table 6.4 (page 198) with the formula for & in
Table 6.1 (page 189) that the posterior expected loss is of the form

1

Py Egie Li(a*, @) = @," fe(n” + ¢|x®)
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Table 6.5
Prior Expectation of Posterior Terminal Opportunity Loss

Definition
Zf «*: " Refer-
Prior Experi- Kk _ i(e ence
Process  Distribution ment w ko + k, k. + k, Note
'
\ Fr(lr) 5 1e("Ix%) 1
Poisson gamma-1 iir ,
g =1/ Gp*lr") r,'_ Sfe( = 1k%) 1
(h k f - "y—
2 N“::n“al iin u Fne(x*) (hn'")=} fre(x®) 2
h Forle ") fe 0 1c*) 1
# known,
Normal ﬁh gamma-2 v c=h1t 8ee nole 3
’
0t = 1/h Gp(Ip") — - S0 fe(b = 1x*) 1
Normal- i, B, v {p see nole 4
gamma P h, o, o? same as for p known

where ¢ is a constant (0 in two of the four cases), n” is predetermined by e, and «* is fixed
by the optimality condition given in column 4 of Table 6.4. Since E,(&;") = &' by (5-27),
we have at once

I(€) = Eue [8)' fo(n” + clx*)] = & feln + clx®) .

Note 2. In this case we have by Table 6.4 that the posterior expected opportunity
loss is completely independent of the sample outcome; no expectation is required.
Note 3. By the note on row 7 of Table 6.4,

: i) = [k— = Fpx*p"” — %)] E@")

k. +k, ki + ko
where «* is determined by the optimality condition
ku
* "y . ;
G (x*|3V) = P

and by (5-27) and Table 6.1
/! 1 —_—
E(&H) =3 = u \/iylul .

' - Dl
Note 4. By Table 6.4
1 . . v’ + 1% ol .
i e = ST fe ) w"- A E@")

where t* is determined by the optimality condition
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ku
kit ko~

Fso(t.ll’") =

By the second formula in the proof of (11-65)
’ i | !(%yl — g_)|
~ni = u/_] (%y ) Y.
sy = | 5 [ e
if ¥ is large enough to permit use of Stirling’s approximation
! = @o)izthe=

then by a procedure like that used to prove (11-66b) it can be shown that

PR b e T
E@ i)‘“[1—2/»'] ' <

6.4.3. Optimal Sample Size

The decision maker’s objective is to minimize
I*(@e) = lt(e) + cie)

where c3(e) is the (expected) cost of performing the experiment ¢; we are partic-
ularly interested in the case where ¢}(e) is linear in the “sample size’’ 5 and therefore

1*(ey) = li(eq) + Ko + ki . (6-49)

Of the cases for which a formula for If(e) has been given in Table 6.5 (page 204)
there is only one for which we can obtain an explicit formula for optimal sam-
ple size by differentiating (6-49) with respect to # and setting the result equal to
zero. This is the case of the Independent Normal process with known precision A,
for which n plays the role of n and (6-49) becomes

1*(en) = (ku + ko)(hn')~¥ fne(x*) + K, + kin

where n”’ = n’ + n. On differentiating with respect to n and setting the result
equal to 0 we obtain the condition for a stationary value of I*(e.),

W= [h-i(ku +k) fh-—(x*)]; ’

and it is easy to show that the unique solution of this equation corresponds to a
local minimum. If the root is negative, the optimal sample size is 0; if the root
is positive, it is certainly the optimal sample size if K, = 0 but if K, > 0 a check
must be made to determine whether I*(e,) is greater or less than the opportunity
loss I} (eo) of immediate terminal action.

(6-50)

6.6. Modified Linear and Quadratic Loss Structures

We have already remarked in Section 6.2.4 that in some situations the decision
maker may feel that for any given « the function !,(a, ) is linear or quadratic in
(s — w) but that the coefficient or coefficients in this linear or quadratic function
depend on the value of w. We shall now see that it is often possible to allow for
this kind of dependence without any loss of mathematical tractability.
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Let li(a,.w) denote any “simple’’ loss function which is analytically tractable,
consider the family of ‘“modified” loss functions obtained by multiplying this
simple function by some function g of w,

l(a, w) = li(a, w) g(w) ,
and let D denote the conjugate density function of & and y the parameters of this
density, so that the expected terminal opportunity loss of a is then

Ella, &) = [ l(a, w) g(w) D(wly) dw .
If now g is such that
g(w) D(wly) = D(wly*) ,
i.e. if multiplication of D by g changes the parameter of D but leaves its algebraic
form unchanged, then the expected terminal opportunity loss of a can be written
El(a,4) = [ l