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An analytical development of flight performance opt imizat ion according to the method of gradi­
ents or "method of steepest descent" is presented. Construction of a min imiz ing sequence of flight 
paths by a stepwise process of descent along the local gradient direction is described as a computa ­
tional scheme. Numerical application of the technique is i l lustrated in a s imple example of orbital 
transfer via solar sail propulsion. Successive approximations to m i n i m u m t i m e planar flight paths 
from Earth's orbit to the orbit of Mars are presented for cases corresponding to free and fixed bound­
ary conditions on terminal velocity components . 

THE PAST decade has seen considerable progress in 
techniques for the determination of flight paths which are 

optimal in the sense of various performance criteria. Treat­
ments have employed almost exclusively the classical "in­
direct" method of the calculus of variations which is based 
on the reduction of variational problems to differential equa­
tions. A number of works on this subject are listed in (1 
through 9).2 An excellent bibliography is presented in the 
survey paper of (10). 

Although many interesting results have been forthcoming 
from analytical solutions of the Euler-Lagrange differential 
equations governing optimal flight, the idealizing assump­
tions usually invoked limit their applicability in practical 
situations. Under more realistic assumptions, a numerical 
attack on these equations is required, and in this approach a 
serious difficulty may arise in the satisfaction of two-point 
boundary conditions. [See, for example, (11, 12 and 13).] 
This difficulty becomes a limiting factor where the order of 
the differential equations governing the basic system is four 
or higher. 

Attention is directed in the present work to one of the direct 
methods of the calculus of variations, namely the method of 
gradients or "method of steepest descent," which offers cir­
cumvention of the two-point boundary value difficulty. The 
method also possesses the attractive feature of simultaneous 
optimization with respect to configuration parameters. 

The notion of descent along the gradient direction was 
originally introduced by Hadamard in connection with 
mathematical existence proofs (14). Only in recent years has 
it found practical application to multivariable minimum 
problems of ordinary calculus (15) and to solution of systems 
of algebraic equations (16, 17) and integral equations (18). 

The main idea of the present treatment stems from material 
presented by Prof. R. Courant in a 1941 address to the Ameri­
can Mathematical Society (19). An application of the gradient 
method to fixed end-point variational problems has been 
given by Stein (20). Our extension of the gradient idea to the 
case which includes differential equations as subsidiary condi­
tions is heuristic in character. 

Problem Formulation 

For present purposes it will be assumed that the system of 
differential equations to be satisfied along the flight path is 
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given in first-order form 

(Xi, . . ., Xn, V, t) 1, [1] 

These equations relate velocities and positions, forces and 
accelerations, mass and flow of propellants and coolants, and 
the like. xm may be termed problem variables, and y the 
control variable. Differentiation with respect to the inde­
pendent variable, time t, is denoted by a superscribed dot. 

An important class of problems is that in which the per­
formance quantity to be minimized is expressed as a func­
tion of the final values of the variables xm and t 

P = P(xlf, . 0) [2] 

At a specified initial time to as many as n boundary condi­
tions on the xm may be stipulated. Since an entire function 
y(t) is at our disposal, we may reasonably consider problems 
in which numerous conditions are imposed upon the xm at 
various subsequent t values. In the following we will restrict 
attention to conditions imposed at the terminal point of the 
flight path. Among the n + 1 quantities consisting of the n 
final values of the xm plus the final time tf, no more than n 
relations may be specified in order that the value of P not be 
predetermined. 

Neighboring Solutions—^Variations 

We now assume that a solution of Equations [1 ] is available 
which satisfies the boundary conditions but which does not 
minimize P. Denoting the solution by xm = xm(t), y = y(t), 
we examine behavior in the neighborhood of this solution by 
setting xm = xm + dxm, y = y + 8y and linearizing 

. A dgm 
OXm = 1_J ^ °X3 ~T 

dgm 

by ty m = 1, [3] 

The partials of gm are evaluated along xm = xm, y = y and 
are therefore known functions of the independent variable t. 
The functions 8xm and by are the variations of xm and y in the 
neighborhood of xm, y. 

A formal solution of Equations [3] may be written in the 
form 

dXm = ] C fopo£mp(t) + I Mm(7 
39 = 1 Jto 

t r)8y(r)dr 

m = 1, . . ., n [4] 

where the first member represents solution of the homogeneous 
system of equations and the second a superposition of control 
variable effects. The functions /um are Green's functions or in-
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fluence functions; ^m(r, t — r) may be thought of as the 
solution for 8xm corresponding to 8y a uni t impulse (Dirac 
delta function) introduced a t t ime r (21). 

Since interest centers on final values of xm, we evaluate the 
expressions [4] a t t = tf; however, to cover the possibility of 
a variable end point, tf = lf -{- 8t/, a first-order correction 
term must be included 

n fir 
8xmf = E top&mvOi) + T Vmir, 1/ — T)8y(r)dT + xmf8tf 

v = \ J u 

= E fap0£mp(h) + I »m(T, If — T)8y(r)dr + gmf8tf 
P = i J t o 

m = 1, . . ., n [5] 

where gmf = gm(xlf, . . ., xnf, yf, tf). 

Computation of the Functions \xm 

Since computat ion of the functions AiTO(r, t — r) over a 
complete range of both arguments is unnecessary, only their 
evaluation a t t = tf required for subsequent calculations, it is 
reasonable to seek a means for performing the special compu­
tat ion which avoids the labor of the more general one. The 
following development relates the functions /*OT(T, If — r) to 
solutions of a system of equations adjoint to the system [3] 
through an application of Green's theorem. The scheme em­
ployed is due to Bliss, as reported by Goodman and Lance 
(22). 

We rewrite Equat ions [3] employing a subscript notat ion 
suitable to our immediate purpose 

^ *Qi *Qi 
8±i = E ^ dxJ + ^ dV i = l , . . ., n 

j = 1dxj by; 

and write the system of equations adjoint to this system 

Ai = - L — Aj i = 1, . . ., n 
j = i OXi 

which is obtained by transposing the matr ix of coefficients and 
changing the sign. 

The solutions of the two systems are related by 

[6] 

[7] 

d-± \<Sxt = ± *<*-'Sy 
dtf?! i = 1 by 

[8] 

After integration of both left and right members between 
definite limits U and lf) we find 

E Hb)tei(l,) - E \i(fo)Sxi(to) = I / E ^i—^^ydt [9] 
1=1 *=i J h %=i dy 

This is the one-dimensional form of Green's theorem (22). 
We now consider numerical solutions of the adjoint system 

with all boundary values specified a t t = tf. To the special 
solutions corresponding to 

\i(tf) = 0 t V w i 
\%(if) = 1 i = m 

[10] 

we assign the symbols \i(m\f). In this fashion n expressions 
for the values of the 8xm{lf) are obtained from [9] 

te~(h) = E X/m)(*o)fc(*o) + P E *i(m)^rtydt 

m = 1, . . ., n [11] 

By comparison with Equat ions [5] it may be seen t h a t the de­
sired relation between the /xTO(r, lf — r) and the X/m) is the 
following one 

Mm (r, If — T) = E ^ 
dy 

and, also, t ha t the £mp(i/) of Equat ions [5] is equal to \p
im)(to). 

In the preceding development the choice of symbols A for 
the variables of the adjoint system is deliberate, for Equat ions 
[7] are precisely those governing the Lagrange multiplier 
functions of the "indirect" theory. We note the important 
distinction, however, t ha t the coefficients of [7] employed in 
the "indirect" theory are evaluated along a minimal solution 
of Equat ions [1], whereas in gradient computat ions they 
correspond to nonminimal pa ths . 

Descent Parameter 

Following Courant (19), we now introduce a parameter a as 
a second independent variable, and seek a functional de­
pendence of the control variable y(t, a) on this parameter such 
t h a t the derivative of the performance quan t i ty dP/da is 
negative. I n fact, within the restrictions imposed by the 
boundary conditions and the system equations, we shall 
a t t empt to make the slope of descent dP/da "as steep as 
possible." 

To enable operation within the restrictions just mentioned, 
we break down the control variable y as follows 

y(f, a) = 4>{t, a) + E aMfS) [13] 
ff = i 

Here the fg(t) are a set of known linearly independent func­
tions of t. Our intention is t h a t the coefficients aq of the 
second member of [13] be sacrificed to the fulfillment of 
boundary conditions, the number r being chosen appro­
priately for this purpose. This will leave the function </> free 
for the minimization of P. 

We now take the derivatives of various quanti t ies with re­
spect to a and evaluate them a t a = a, corresponding to the 
nonminimal solution xm(t, a) = xm, y(t, a) = y introduced in 
the preceding section. For a — a = Aa small, the varia­
tions appearing in Equat ions [5] m a y be identified as 

Xm0 + 8xmo = xmo + (dxmJda)Aa 
m = 1, . . ., n [14] 

+ 8xmf = xmf + (dxmf/da)Aa 
m = 1, . . ., n [15] 

tf = If + 8tf = If + (dt//d*)A<r [16] 

y = y + $y=zy+ (dy/da-)Aa 

= $ + E agm + 
q = l Oa q=z da 

Aa [17] 

Equations [5] then take the form 

dxmf \^ dxPo C 

Oa v = \ da Jto 

7 / 7 \ ^ 
Vm{T, tf ~ T) — G 

Oa 

lr + 

t P ft
tf^(r,lf~r)f,(r)dr + g,nf 

l = l aa J to 

dtf 

da 

., n [18] 

Boundary Conditions 

We consider boundary conditions of the separated type, 
i.e., equations relating either initial values or final values. 
Boundary values may be variable on a surface, typified by 

<J\Xuj) Xvf) If) vJ [19] 

in which case the following linear combination of derivatives 
mus t vanish 

m = 1, . . ., n [12] 
d3 _ d3 dxUf , d3 dxvs c)3 dtf _ 

da OXu da dxv da dtf da 
[20] 

948 ARS JOURNAL 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 -

 D
A

V
IS

 o
n 

Ja
nu

ar
y 

31
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/8

.5
28

2 



In this expression the partial derivatives of 3 are evaluated at could be expressed as 
%uf == %"Ufj *£"i>f == % vf ano. t/ == tf> 

In the case of fixed boundary conditions of the form xUf = 
xUf = constant, tf = tf = constant, the relations to be satisfied 

dP 
da 

= grad P- — 
da 

[28] 

take the simple form 

§* = 0 or f' = 0 
da da 

[21] 

As many as n final conditions, fixed or of the form [19] 
may be specified, as mentioned earlier. Where fewer than this 
number are specified, we speak of "free" or "open" boundary 
values. 

At the initial point similar freedom of choice may exist 
among the n initial values of the xm, the only difference here 
being that to will usually be fixed. 

Gradient of P 

Upon inspection it may be noted that there are n equations 
of the form [18] and at most 2n equations for boundary 
values, making a possible total of 3n equations. These relate 
2n + 1 derivatives of the xmo, xmf and tf, the r derivatives of 
the aq and integrals containing d(f>/ba. We accordingly 
choose the number r of the aq as r = n — 1 — s, 
where s is the number of open boundary conditions. Thus 
the system of equations will be determinate for arbitrary 
b^/ba. 

These equations may be arranged as a linear simultaneous 
system 

AZ = B [22] 

where Z has Sn — s elements consisting of the derivatives with 
respect to a of xmo, xmf, tf and aq. The matrix A is square 
and contains among its elements the quantities £mp, gmf, the 
3 partials, and integrals of products jnmfq, all of which are 
known. The column B includes integrals containing b4>/ba in 
their integrands. The solution 

Z = A~lB [23] 

may be obtained through matrix inversion or equivalent proc­
esses. The matrix A expresses the relationship between small 
shifts in boundary values and small adjustments in the con­
trol function (through the aq) to deal with them. Hence in 
normal circumstances A will be nonsingular. 

The derivative with respect to a of the quantity P to be 
minimized 

*P _ &L ^n 4. dP dXnf d P ^ 
da dxif da ' ' ' bxnf da bt/ da 

[24] 

may now be expressed in terms of known quantities and inte­
grals containing b<f)/ba according to the solution [23]. It 
will take the form of a linear combination of the integrals 

dP 
da 

Vm{T, tf — T) — l 
Oa tc.s: 

1 = 1 J h 

ressed as a 
(T J to [_ms=1 

which may be expressed as a single integral 

r) 
dP 

d7 

[25] 

[26] 

By analogy with a characteristic property of a vector gradi­
ent, we are now prepared to identify the gradient of P with 
respect to the function 4>. [See p. 222 of the Courant-Hilbert 
English edition, (23), also (19).] If 0 were a vector possessing 
a finite number of components </>;, i = 1, . . ., j , the derivative 
of P with respect to a 

dP 
da i = i d(j)i da 

[27] 

If 4>{t, a) is a continuous function, and P a functional of 0, 
as in the case of present interest 

da Oa 
[29] 

and the function occurring in product with d<f>/da, which we 
denote [P]</>, may be regarded as the gradient of P by ex­
tended definition. 

Thus for the problem at hand it is evident from Equation 
[26] that 

IP]* = Z Cm/xm(r, 1/ - r) 
m = l 

[30] 

is the gradient of P. 
Were the solution xm = xm, y = y such as to minimize P, 

contrary to our assumption, the gradient [P]<t> would vanish. 
If our development were to parallel the classical or "indirect" 
approach, the construction of a solution would be sought from 
the vanishing of [P]^ for which P is stationary and possibly a 
minimum. Thus [P]0 is in some sense an Euler expression and 
the equation [P]^ = 0 and the relations [23] have an equiva­
lence to the Euler-Lagrange equations and transversality 
conditions of the "indirect" theory. 

Descent Process 

Returning momentarily to the elementary geometric con­
cept of a vector gradient, we regard P(<f>i, . . ., <f>j) as a surface, 
and starting from P(0i, . . ., 0y) we move a point along this 
surface so that P and fa become functions of a time parameter 
a. Then the velocity of ascent or descent along a line on the 
surface is as given by Equations [27 and 28]. We now 
choose the line along which the descent is as steep as possible, 
characterized by 

^ = fc 
d p 

[31] 

where k positive corresponds to ascent and k negative to 
descent. 

It is clear that in this continuous process, wherein the point 
moves according to the system of ordinary differential equa­
tions [31], the process will for cr—^ °o approach a position for 
which grad P = 0, if P is bounded below. 

This elementary idea may be generalized to the present 
variational problem according to the extended interpretation 
of the gradient of P, Equation [29]. We set 

^ =k[PU= -[P]+ 
Oa 

[32] 

and starting from the nonminimal solution a = a, <t> = 0, xm — 
evaluate these quantities on a continuous basis 

as the parameter a increases. 
Thus the continuous version of descent along the gradient 

requires numerical treatment of a partial differential equation 
for <j>(t, a) with determination of <f>(t, °°) the ultimate objec­
tive. 

Stepwise Version 

As an alternative to the continuous procedure given by 
Equation [32], we may elect to proceed stepwise, correcting a 
set of approximations to the solution [P]^ = 0 by corrections 
proportional to the negative of the gradient 

4> (i+D 0 (0 _ [PU*<T [33] 
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MARS ORBIT 

Fig. 1 Orbital transfer schematic 

After choice of step size Aa and evaluation of 0 ^ + 1 ) and the 
a<z( t+1\ the functions xm^+1^ would be obtained from numeri­
cal integration of the basic system Equations [1 ] and P ^ + ^ de­
termined from the values at £/*+1) . 

Since the determination of the gradient [P]<j> is expensive in 
terms of volume of numerical computations, it would seem 
desirable to exploit each calculation of local gradient direction 
of the utmost, taking A a- as large as possible. A procedure em­
ployed in some applications (17) is to follow the local gradient 
direction until the function P reaches a minimum. Such a 
procedure could be implemented by numerical integration of 
Equations [1] for a number of values of Aa and selection of 
the value of Aa for minimum P. 

A possible pitfall of such a scheme of operation is that the 
boundary conditions, having been satisfied only in linearized 
version (Eq. [20]), may long since have been violated before 
minimum P is reached (24). Thus the choice of Aa involves 
a compromise which must be decided in the particular appli-
tion at hand. If the minimum P rule is employed for choice 
of Aa, the boundary conditions must be restored by a correc­
tion cycle designed to recover from the departures. 

After such restoration has been accomplished, for example 
via the coefficients aq, the solution so obtained takes on the 
role of xm, y for the computation of a new local gradient direc­
tion. 

Convergence 

The convergence of the descent process has been investi­
gated by Stein for a case not complicated by subsidiary condi­
tions (20); his conclusion was that the process will converge 
if the functional whose minimum is sought is bounded below. 
In the process described in the preceding sections, the ques­
tion of convergence is intimately related to the success of the 
technique for maintaining or correcting the boundary values 
at the terminal point. 

The possibility of correcting small departures in terminal 
values of the xm through small changes in the coefficients ag 

can be shown to hinge on the nonvanishing of the determinant 
of the matrix A of Equation [22]. In certain cases a tendency 
of this determinant to become small may be observed as a 
minimum of P is approached. Where the difficulty is acute, 
the behavior may be likened to breakdown of a first-order 
differential correction scheme for guidance along the trajec­
tory. 

This type of behavior is a close relative of the conjugate 

end-point phenomenon of classical variational theory. If an 
extremal through point 1 has on it a contact point 2 with the 
envelope of a family of extremals through 1, then point 2 is 
said to be conjugate to point 1. The term conjugate end points 
refers to specification of boundary values at two such points 
as 1 and 2. The reader is advised to consult the text of Bliss 
(25) for the analytical basis of conjugate point theory. 

The relevant test of the classical theory, the necessary con­
dition of Jacobi, employs a determinant as a criterion. The 
requisite analysis amounts to investigation of optimal dif­
ferential corrections of terminal values. Thus a matrix which 
is the optimal correction analog of the matrix A is set up, and 
the criterion of the Jacobi test is the nonvanishing of the de­
terminant of this matrix at points along the extremal up to 
the terminal point of interest. Vanishing at the terminal point 
indicates that the end points are conjugates, and the necessary 
condition is fulfilled in borderline fashion. Computational 
procedures for applying the Jacobi test are of some interest; 
however, the acquisition of a "test specimen" solution requires 
that any convergence difficulty encountered in the descent 
process first be overcome. 

Thus a possibility of convergence difficulty arises in conju­
gate end-point cases if the functions fq selected happen to re­
semble the optimal correction functions of the indirect theory. 
There are certainly other possibilities for unfortunate choice 
of correction functions. Computational experience will be 
required to establish guidelines on this matter. 

Configuration Parameters 

In many practical engineering applications, optimal per­
formance is sought not only in terms of flight path selection 
but also in terms of parameters influencing vehicle configura­
tion. We have, for clarity, avoided complicating the preced­
ing analytical work by such considerations. It is an easy 
matter, however, to add terms to Equations [5] of the form 
(dxmf/dei)8ei and to carry them through along with con­
straints relating ei} thus forming a basis for simultaneous 
optimization of configuration and flight path. The slopes 
dxmf/dei are probably best determined by numerical integra­
tion of Equations [1 ] for small changes in e*. 

Solar Sai l ing Example 

For the purpose of exploring the computational aspect of 
the gradient optimization technique, we have chosen a planar 
case of transfer between planetary orbits by means of the in­
teresting solar sailing scheme. The potential capabilities of 
solar sail propulsion have been investigated in the papers of 
Garwin (26), Cotter (27), Tsu (28) and London (29). This 
problem has the simplicity appropriate to an exploration of 
method, yet sufficient complexity to render analytical solu­
tion quite difficult unless drastic simplifications are intro­
duced. 

The equations of motion and kinematic relations are given 
in a notation nearly the same as that of Tsu (28). With 
reference to the schematic of Fig. 1, these are as follows: 

Radial acceleration 

U = & = R~ AO\R) + a VR) 'C0S °\ [ 3 4 ] 

Circumferential acceleration 

uv 
i) = g2 = - — - a(Ro/R)2 sin B cos2 6 [35] 

K 

Radial velocity 

R = g3 = u [36] 

Circumferential angular velocity 

t = v/R [37] 
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Since the heliocentric angle \p does not appear in the first 
three equations, and will not appear in the s ta tements of 
boundary conditions to be considered, Equat ion [37] may be 
ignored for purposes of gradient optimization. This amounts 
to the assumption tha t terminal matching of the heliocentric 
angles of vehicle and " t a rge t " planet is accomplished by selec­
tion of launch t ime. 

Seeking minimum-time transfer, we identify the functional 
P a s 

P = tf [38] 

The functions u, v, R are the variables xm of the theoretical 
development, and the sail angle 6 appears in the role of the 
control variable y. 

As initial conditions we specify velocity components u, v 
and radius R corresponding to motion in Ea r th ' s orbit ap­
proximated as a circle 

£o = 0 [39] 

u(0) = UQ = uE = 0 

V(0) = VQ = VE 

R(0) = Ro = RE 

[40] 

[41] 

[42] 

We consider terminal conditions corresponding to arrival a t 
the orbit of the planet Mars (also taken as a circle) with pre­
scribed velocity components 

U(tf) = Uf 

V(tf) = Vf 

R{tf) = Rf = RM 

[43] 

[44] 

[45] 

For fixed boundary values of u, v and R, the equations cor­
responding to Equat ions [5] of the preceding theoretical de­
velopment are 

8iif = 1 jjudddr + (jifUf = 0 

bVf = Jo ^Qdr + g2f8tf = 0 

oRf = f'f tizbddr + gSfdtf = 0 

[46] 

[47] 

[48] 

In this case the number of functions fg and coefficients aq 

required is 

3 - 1 - 0 [49] r = n — 1 — s 

We select the functions fg as 

Mt) = l [50] 

MO = t* [51] 

and the control function 6(f) is broken down as 

e = <j> + ait + a2t
2 [52] 

The system of equations corresponding to Equat ion [22] 
simplifies to 

a 'ff \ dai ( (h \ <kh , . dtf 

L 

a,7wo:f+a 
2 ^ ^ d a 2 i -

•lld2dr ) — + g2f 

vi —dr [53] 
u Oa 

(fof T^TY£ + (fof T2^dT)d£ + 
dtf_ 

rda 

- ; . 
Ms ^ dr [55] 

0 Oa 

This 3 X 3 case may conveniently be inverted analytically. 
There seems little point in listing the inverse e lements here, 
however. 

fdai 

| da 

1 da2 

1 da 

\ d t f 

\_da _ 

= -

" 

C 

/mi ^— dr Jo ^da 
rtr dcf> 

Jo ^Zad'> 

rif d 0 . 
J 0 MB-dr da 

[56] 

The slope of descent dtf /da is given by 

dh _ __ rif 

da ~ JO 

and the gradient of P by 

[P]<t> — ""(ftlMl + C32/i2 + C33M3) 

Accordingly we set 

d<t>/da = - [ P ] 0 = CSIMI + C32M2 + C*m 

{Czini + C32M2 + CW3) T~ Ô r [57] 

[58] 

[59] 

and proceed with stepwise descent as in Equat ion [33]. 
A particularly suitable case for a first illustration of com­

putat ional technique is the one in which terminal velocity 
components are unspecified—"free" boundary conditions. 
Here Equat ions [46 and 47] may be deleted and 

r = n - l ~ s = 3 - l - 2 = 0 

so t h a t no functions fq are needed. Hence 

[60] 

and 

d0 

da 

dtf 

da 

_ M3_ 

03/ 

M3' dr 

[61] 

[62] 

in this case. 
Computat ions have employed numerical values of the 

various constants from Tsu 's paper, with 

a = 0.1 cm/sec 2 = 3.28 X 10~3 fps2 

This value corresponds to about 10 ~4 g thrus t acceleration 
developed by the sail when oriented broadside to the sun (0 = 
0) a t Ea r th ' s orbit radius, or about 17 per cent of the sun's 
gravitat ional a t t ract ion. 

Results of descent computat ions for the case of "open" 
terminal velocity components are shown in Figs. 2 through 4. 
The control program of the original flight pa th (Figs. 2 and 3), 
chosen arbitrarily, was far from optimal in t h a t the radial 
velocity component a t crossing of Mars ' orbit was small. 
The greatest reduction in flight t ime—more than half of the 
original—is seen to be obtained in the course of the first de­
scent (Fig. 4) . In three descents minimum flight t ime has 
been at ta ined for practical purposes, al though small changes 
in the detailed structure of the control program are still in 
evidence. 

Results for the case of terminal velocity components 
matched to the target planet 

Uf = UM Vf = VM 

are presented in Figs. 5 through 8. The tendency of the 
terminal values to depart from the prescribed values is shown 
in Fig. 5. These were restored via an i terative correction 
process employing increments in the coefficients ai and a2 of 
Equat ion [52]. Typically, two or three iteration cycles were 
required to correct each point. Descent curves are shown in 
Fig. 6. The approach to the minimum-time solution is de­
picted in Figs. 7 and 8. 
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MARS 

ORBIT 

Fig. 2 Successive approximations to optimal transfer path, 
terminal velocity components open 
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" FT/SEC. 

Fig. 5 Departure of terminal values, "matched" terminal 
velocity components 

200 300 

TIME - DAYS 

Fig. 3 Successive approximations to optimal sail angle program, 
terminal velocity components open 

2 N 0 DESCENT 

d 1 f A C T 

Fig. 6 Descent curves—solar sail transfer, "matched" 
terminal velocity components 
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Fig. 4 Descent curves—solar sail transfer, terminal velocity 
components open 
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Fig. 7 Successive approximations to optimal sail angle program, 
"matched" terminal velocity components 
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MARS 
ORBIT 

Fig. 8 Successive approximations to optimal transfer path, 
"matched" terminal velocity components 

The first a t t emp t a t computations for this "matched ve­
loci ty" case employed functions fq constant and linear with 
time. This met with near zero determinant difficulty of the 
type discussed earlier. The combination of linear and square-
law corrections indicated in the foregoing was successfully 
used to avoid this difficulty. 

C o n c l u d i n g R e m a r k s 

Attent ion has been confined in the preceding development 
to the main ideas of the gradient technique. The extension to 
cases involving several control variables offers no particular 
difficulty. The limited computat ional experience reported 
here suggests t ha t the gradient technique may be a useful one 
in applications, and particularly in those presenting difficulty 
when the classical " indirect" approach—numerical integration 
of the Euler-Lagrange equations—is used. Apar t from the 
feature of surmounting the two-point boundary value dif­
ficulties of such cases, the gradient method may be particu­
larly appropriate in distinguishing between minimal solutions 
of the Euler-Lagrange equations and those which are merely 
stationary. 
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N o m e n c l a t u r e 

y 
Qm 

t 
P 
8xm 

Mm 

&y 

problem variables 
control variable 
functions of xm and y appearing in basic system 

equations 
time 
function of final values of xm to be minimized 
variations of xm and y 
functions appearing in the solution of Equations 

[3] 
Green's functions in the solution of Equations [3] 
variable of integration 

Ao 
3 
A 
Z 

k 
et 
u 
V 

R 

A, 

u, v\ 

Subscripts 

f 
0 
m, p. 
q, r) 

E 
M 
(•) 
(-) 
( i ) 
(m) 

variables of the adjoint system, Equation [7] 
descent parameter 
auxiliary control variable, Equation [13] 
known linearly independent functions of t 
coefficients of the functions fq 

increment in a-
function relating boundary values of xm and t 
matrix of coefficients, Equation [22 ] 
column matrix having dxmJdv, dxmf/da, dtf/da 

and dag/da as elements, Equation [22] 
column matrix containing integrals of fxm(dcf>/d<T) 

products, Equation [22] 
coefficients of the linear combination of /*m, Equa­

tion [26] 
gradient of P , Equation [30 ] 
proportionality constant of descent 
configuration parameters 
radial velocity component (see Fig. 1) 
circumferential velocity component (see Fig. 1) 
radial distance to sun (see Fig. 1) 
heliocentric angle 
acceleration due to sun's gravitational attraction 

at Earth 's radial distance 
thrust acceleration of radially oriented solar sail 

at Earth 's radial distance 
sail angle measured from radial orientation 

denotes final value 
denotes initial value 

general indexes 

Ear th 
Mar 
denotes time derivative 
denotes nonminimal solution 
denotes value at ith step 
denotes special functional notation, explained by 

Equation [10] 
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Optimum Thrust Programming of 
Electrically Powered Rocket Vehicles 

in a Gravitational Field C. R. FAULDERS1 

North American Aviation, Inc. 
Downey, Calif. 

The general problem of o p t i m u m thrust programming of an electrically powered rocket under 
the condition of constant je t power is considered. The thrust vector is assumed to be parallel to the 
instantaneous velocity vector at all t imes . The various opt imizat ion problems possible under these 
restrictions are shown to be equivalent to maximizat ion of the change in velocity for specified pro­
pellant mass and arbitrary range, maximizat ion of range for specified propellant mass and arbi­
trary change in velocity, and maximizat ion of the change in velocity for specified range and specified 
propellant mass . The calculus of variations is employed to obtain analytical expressions for the 
thrust acceleration program for the foregoing problems wi th a constant gradient of the tangential 
component of gravitational force. Limit ing values of this gradient for which the tangent ia l c o m ­
ponent of gravity can be assumed constant in the derivation of o p t i m u m thrust programs are deter­
mined. 

ELECTRICALLY powered rocket engines, such as the ion 
rocket and the plasma rocket, are characterized by a 

power source that is separate from the propellant. For a 
fixed power setting, therefore, the rate of propellant expendi­
ture and the exhaust velocity can be varied over wide ranges, 
and a variety of thrust programs can be achieved. Electrical 
rockets are presently limited to very low thrust levels of the 
order of 10 ~3 or 10 ~4 Earth gr's per unit mass of the complete 
space vehicle. For this reason, an entire mission would 
generally be carried out under power, with operating times 
measured in days or weeks. 

The various possible requirements for optimum thrust 
programs are summarized in Table 1, assuming that the total 

Received Dec. 8,1959. 
1 Research Specialist, Aero-Space Laboratories, Missile Divi­

sion. 

time of powered flight is a specified parameter, and that the 
thrust is always in the tangential direction. The change in 
vehicle velocity is indicated by AV, the change in position, or 
range, by As, and the propellant mass by mv. 

Table 1 

Case 
1 
2 
3 
4 
5 
6 
7 

Optimum thrust program requirements 
(total time specified) 

AV 
maximum 
specified 
arbitrary 
arbitrary 
maximum 
specified 
specified 

As 
arbitrary 
arbitrary 
maximum 
specified 
specified 
maximum 
specified 

mv 

specified 
minimum 
specified 
minimum 
specified 
specified 
minimum 
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