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A Random Effects Model for Effect Sizes
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Recent interest in quantitative research synthesis has led to the development of
rigorous statistical theory for some of the methods used in meta-analysis. Statis-
tical theory proposed previously has stressed the estimation of fixed but unknown
population effect sizes (standardized mean differences). Theoretical considerations
often suggest that treatment effects are not fixed but vary across different imple-
mentations of a treatment. Such considerations lead naturally to a random effects
model (analogous to random effects analysis of variance) in which the population
effect sizes are not fixed but instead are sample realizations from a distribution
of possible population effect sizes. A large sample test that the effect-size distri-
bution has zero variance is given. An analogy to variance component estimation
is used to derive an unbiased estimator of the variance of the effect-size distri-
bution. An example shows that these methods may suggest insights that are not
available from inspection of means and standard deviations of effect-size esti-
mates.

There has been intense interest in quan-
titative methods for research synthesis in the
years since Glass (1976) proposed the use of
statistical methods in research reviews. The
most popular procedure seems to involve the
use of the effect-size index proposed by Glass
(1976). The method involves the calculation
of an estimate of effect size (the standardized
difference between experimental and control
group means) from each study. The average
of effect-size estimates across studies is used
as an index of the overall effect size across
studies. Substantive conclusions are usually
drawn based on the magnitude of the average
of the effect-size estimates. Some statistical
theory for estimation of effect size was given
by Hedges (1981, 1982), who derived the
sampling distribution of effect-size estima-
tors and showed how to construct confidence
intervals for the effect size when a series of
studies share a common population effect
size.

One extension of analyses based on the
average effect size used the idea that char-
acteristics of a study may influence the mag-
nitude of its effect size. Glass (1978) rec-
ommended a general strategy of coding the
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characteristics of studies as a vector of pre-
dictor variables and then regressing the effect-
size estimates on these predictors to deter-
mine the relationship between characteristics
of studies and their effect sizes. For example,
Smith and Glass (1977) used ordinary linear
regression to determine the relationship be-
tween characteristics of studies (e.g., type of
therapy, duration of treatment, internal va-
lidity of the study) and effect size in their
meta-analysis of psychotherapy outcome
studies. The same methods have been used
in quantitative syntheses of gender effects in
decoding nonverbal cues (Hall, 1978), the
relationship between motivation and aca-
demic achievement (Uguroglu & Walberg,
1979), and the effects of goal structures on
achievement (Johnson, Maruyama, Johnson,
Nelson, & Skon, 1981). In general these anal-
yses have found few consistent relations be-
tween study characteristics and effect size.

One explanation for the elusiveness of
these relations derives from a proposal by
Cronbach (1980). He suggests that evaluation
studies should consider a model in which
each treatment site (or study) is a sample re-
alization from a universe of related treat-
ments. Thus when evaluators look at "rep-
lications" of a treatment across sites, they
observe many different treatments, each sam-
pled from some universe of possible treat-
ments. If these variations in treatment are
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more or less effective in producing the out-
come, then variations in the true (population)
effect of the treatment would be expected.
Such variations might be expected to atten-
uate any relationship between a fixed char-
acteristic (such as age or sex of subjects) and
the outcome variable. Note that this model
implies that there is no single true or popu-
lation effect of the "treatment" across studies.
Rather there is a distribution of true effects:
Each treatment implementation (site) has its
own unique true effect. One may speak of the
average true effect of the treatment as an in-
dex of overall efficacy. The average true effect
is not very meaningful though, without some
measure of the variation in the true effect of
the treatment. One might find, for example,
that the average of the true effects was larger
than zero, but the true effect of the treatment
was negative in nearly half the implementa-
tions. The problem of estimating the vari-
ability in the true effects is complicated by
the fact that the true effect in any treatment
site (or study) is never known. We must es-
timate that true effect from sample data, and
that estimate will itself be subject to sampling
fluctuations.

The implication of this "random effects"
model for quantitative research synthesis is
that the underlying population effect sizes
will not be constant across a series of studies
that replicate the same treatment. Hedges
(1982) developed a test of homogeneity of
effect sizes. This procedure tests whether the
observed estimates of effect size vary by more
than would be expected if all studies shared
a common population effect size. Applica-
tions of this test in one quantitative research
synthesis (Giaconia & Hedges, in press) sug-
gest that effect sizes of even carefully selected
and apparently identical studies are often
much more variable than would be expected
if they shared a common underlying effect
size,

The purpose of this article is to present an
analogue to random effects analysis of vari-
ance for effect-size analyses. In this model we
assume that the population values of the ef-
fect size are sampled from a distribution of
effect-size parameters. Thus the observed
variability in sample estimates of effect size
is partly due to the variability in the under-
lying population parameters and partly due

to the sampling error of the estimator about
the parameter value. This model is appro-
priate when the studies used in the analysis
are representative (if not a random sample)
of a larger population and the researcher
wants to generalize to that larger population.
A statistical test is given to test the hypothesis
that the variance in population effect sizes is
zero. A method for estimating the variance
of population effect sizes (the parameter vari-
ance component) is given, and the variance
component estimates are shown to be un-
biased.

Model and Notation

Cohen (1977) proposed a population mea-
sure d of effect size in connection with the
t test for the difference between means. Glass
(1976) proposed the quantitative synthesis of
the results of a collection of experimental/
control group studies by estimating d for each
study and then combining the estimates
across studies. The statistical analyses used
in such studies typically involve the use of
a t or F test to test for the difference in group
means. In this article, we assume that the
requirements for the validity of the two-sam-
ple t test are met in each study. We start by
stating these assumptions explicitly.

Suppose that the data arise from a series
of k independent studies, where each study
compares an experimental group (E) with a
control group (C). Let Yf and Yf be thejth
observations on the /th experiment from the
experimental and control groups, respec-
tively. Assume that for fixed i, Yf and Yf
are independently normally distributed with
means ^,E and /i,c and common variance <r,2;
that is,

Yf , <r,2), j = 1, . . . , «/E,

and

Yf .., n,c,

I — 1, . . . , K,

where n,E and »/c are the experimental and
control group sample sizes in the rth study.
In this notation the effect size for the /th study
(5/) is defined as



390 LARRY V. HEDGES

ffi
(1)

where we use the Greek letter S (instead of
d) to emphasize that this effect size is a pop-
ulation parameter.

Previous work on statistical theory for ef-
fect-size analyses has treated the § / , ; ' = 1,
. . . , k as fixed, but unknown constants. In
this article we depart from previous practice
and treat the <5,-, / = 1, . , . , k as realizations
of a random variable A. Each 6, considered
by itself is indeed a population parameter for
the ith study. The studies, however, are con-
sidered as a sample from a population of
studies with a distribution of <5, values. By
sampling studies, we are, in effect, obtaining
a sample of 5, values. In principle, a repli-
cation of our research synthesis would result
in a different sample of studies and therefore
different 6, values. Generalization to the pop-
ulation of <5, values is possible from either
sample, however. This conception of 5 is anal-
ogous to the idea of the true score in classical
test theory. In one sense, the true score for
a particular individual is a population pa-
rameter describing the hypothetical distri-
bution of observed scores for that individual.
In another sense, the individual is sampled
from a human population with a distribution
of true scores. Thus the individual true score
is both a parameter and a sample realization
from a distribution of true scores.

The model proposed herein is also analo-
gous to that of the random effects analysis of
variance in which treatment levels are sam-
pled from a population of possible treat-
ments. In random effects analysis of variance
the object of the statistical analysis is to test
whether the treatment variance component
is zero and to estimate that variance com-
ponent. In the present context, the object of
the statistical analysis is to estimate the mean
A of the distribution of <5/ values, test the hy-
pothesis that the variance <rA

2 of A is zero,
and estimate o^2.

Estimating Effect Size

The definition of effect size given in Equa-
tion 1 above defines a population parameter
5, in terms of other population parameters
nt,-E, ju/c, and a/, and thus we will have to es-

timate <5, from sample data. Glass (1976) pro-
posed estimation of 5,- by essentially replacing
At,E, /i,-c, and <r,- by their sample analogues in
Equation 1. Hedges (1981) studied the prop-
erties of Glass's estimator and showed that
it was biased. He derived a simple unbiased
estimator that is always more precise than
Glass's estimator. This unbiased estimator is
given by

_ C(m,)(f,E - Yf)
gi - - ̂ - , l - 1, ... , K , (2)

"I

where ?,E and 7/c are the experimental and
control group sample means, 51,2 is the usual
pooled within-group estimate of the sample
variance

' n,E + n,c - 2

m/ = nf + nf — 2, and

T(m/2)
c(rn) =

m/2T[(m-
(3)

A table of exact values of c(m) is given in
Hedges (1981), but an excellent approxima-
tion (with maximum error less than .0005
when m > 10) is

> -

The Variance of Estimates of Effect Size

Hedges (1981) showed that the sampling
variance of gj for fixed 5, (i.e., the variance
conditional on <5,) is

where «,- = «,E«(-
c/(n/E 4- «/c),

w,-[c(/n/)]2

• - 2 ) '
a, =

(5)

(6)

and mt = nf + «,-c - 2. Since B, is a random
variable, the unconditional sampling vari-
ance of g, involves the variance <rA

2 of the
population effect sizes. Because gt is an un-
biased estimator of 5,-, it is easy to show (see
the Appendix) that the unconditional sam-
pling variance of gt is given by

<TA2 + <r,2(5,-). (7)



RANDOM EFFECTS MODEL FOR EFFECT SIZES 391

Note that Expression 7 would not be true if
a biased estimator (such as Glass's) of 5,- were
used in place of gj, because bias in the esti-
mator may result in a nonzero covariance
between sampling error and A.

Equation 5 for the conditional sampling
variance of gj shows that this variance de-
pends only on sample size and on St. This
variance could be estimated by using gf as an
estimate of 5, in Equation 5. Similarly, the
unconditional sampling variance of the gt
could be obtained from the variance of a
sample ofg, values. Therefore an estimate of
<rA

2 could be obtained by subtraction in a
manner similar to that used to obtain esti-
mates of variance components in random
effects analysis of variance.

Estimation of Effect-Size Variance

In random effects analysis of variance, the
expected values of the mean squares are ex-
pressed in terms of variance components.
The expected values of the mean squares are
then replaced with their sample values, and
the equations are solved for the variance
components. This process gives unbiased es-
timates of the variance components. The ra-
tionale for estimating <rA

2 is the same as for
the estimation of variance components in
random effects analysis of variance. The ex-
pected value of the sample variance of the gj
is expressed as a function of variance com-
ponents including the conditional sampling
variances of the gt, i = 1, . . . , k. Unbiased
estimators of conditional sampling variances
will be given. Then the expected value of the
unconditional variance of the g, is replaced
by the observed variance of the gi, and the
equations are solved for <rA

2, This process re-
sults in an unbiased estimator of <rA

2. It is
worth noting that many quadratic functions
of the observations can be used to estimate
variance components in random effects anal-
ysis of variance (see, e.g., Searle, 1971). Sim-
ilarly, many other estimates of <rA

2 could be
obtained by using quadratic functions of the
gi other than the sample variance.

The Expected Value Equations

Let £1, . . . , gk be the unbiased estimates
(Equation 2) of effect size from k independent

studies and define

Sg
2 = ~j~\ 2 (St - S)\

K, 1 ,-=[

where g is the unweighted mean of the %•„
i = 1, . . . , k. A direct application of a theo-
rem in Searle (1971, p. 55) yields the ex-
pected value of Sg2 as

E[Sg
2] = -

K /=
(8)

A direct computation (see the Appendix)
shows that an unbiased estimator of ff/2(5,) is

(9)

where a,- is given by Equation 6 and ??, =
«,-E«,c/(«,-E + H,C). Combining Equations 8
and 9 and solving for o-A

2 yields

= Sg
2 - \ 2 [4- + (1 - l/a,)gi\ ,

K ;=] Ln, J

which is an unbiased estimator of a/2-.

(10)

Testing that Parameter Variance is Zero

It is sometimes useful to test the hypothesis
that o-A

2 = 0. This test is analogous to the F
tests in random effects analysis of variance.
Note that if <rA

2 = 0, then 5i = 52 = • • • =
5jt = 5. Therefore a test of o-A

2 = 0 in this
model corresponds to testing homogeneity of
effect size in models with fixed parameters
(Hedges, 1981, 1982). An asymptotic test
that <rA

2 = 0 uses the test statistic

(g-g.)2

(11)

where ff,2(g,) is the conditional variance of gf
given in Equation 5 (using the sample esti-
mate gi for di) and g. is the weighted mean
effect size given by

k
2

8- =T (12)
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When the null hypothesis that o-A
2 = 0 is true,

the test statistic H has an asymptotic (as «/E

and «,-c —» oo) chi-square distribution with
(k — 1) degrees of freedom. Therefore the test
of ffA

2 = 0 involves comparing the obtained
value of H with the 100(1 — a) percent crit-
ical value of the chi-square distribution on
(k — 1) degrees of freedom. If the obtained
value of H exceeds this critical value, then
we reject the hypothesis that a^ = 0 at the
100(1 - «)% level of significance. Although
this is an asymptotic test, extensive simula-
tions (Hedges, 1982) suggest that the nominal
significance levels are quite accurate when
the experimental and control group sample
sizes exceed 10 and |6| < 1.5. Many bodies
of research are likely to have sample sizes and
effect sizes that meet these requirements.

Because H has an asymptotic chi-square
distribution with (k — 1) degrees of freedom
when <7A

2 = 0, E[H] = k - 1 under this con-
dition. When o-A

2 > 0 the statistic PI does not
have a chi-square distribution, but it is pos-
sible to show that H —* oo as «E, «c —» co if
<rA

2 ¥= 0. Hence in the random effect size
model of this article, the test statistic H will
tend to be larger and will reject the null hy-
pothesis more often when erA

2 > 0 than when
tfA

2 = 0.

Estimating the Mean Effect Size

Each of the estimators gj, i = 1, . . . , k is
an unbiased estimator of <5, and therefore the
unweighted^ average g is also an unbiased es-
timator of A, the mean of the distribution of
A. However, the unweighted mean g is not
the most precise estimator of A. If some of
the k experiments have larger sample sizes
they will yield more precise estimates of the
corresponding 6, than will experiments based
on smaller samples. Thus it makes sense to
give more weight to the estimators from the
larger experiments than to those from the
smaller ones. It is easy to show (Hedges,
1982) that the most precise estimate of A is
given by

(13)

where v, is the unconditional variance of gi}
i = 1, . . . , k. A problem with Equation 13
is that the optimal weights depend on the
unconditional variances of the gh which in
turn depend on the unknown 8,- and the un-
known variance component <rA

2. One ap-
proach to the problem of weighting is to es-
timate the weights from sample data. Such
an approach generally results in a biased es-
timator (even though the g, are unbiased)
although the bias is likely to be small if <rA

2

is not large (Hedges, 1982). Another ap-
proach to the problem of weighting is to as-
sign weights on some a priori basis, such as
approximating v, by l/(n,E + «,-c). This ap-
pro_ach will give a simple unbiased estimator
of A that is slightly less efficient than the op-
timal weighted estimator.

The variance and distribution of the
weighted estimator will generally depend on
<rA

2,_therefore no parametric significance tests
for A are possible without placing restrictions
on the distribution of A.

Computing Estimates and Test Statistics

The estimates and test statistics described
in this article can easily be computed using
any standard packaged computer program.
Let each study be a separate case and define
seven variables for each case:

VAR1 =#,.,

VAR2 =-^-,

g,VAR3 =

VAR4 =

VAR5 = —

VAR6 = Wj (a weight assigned to the study,
like «/E H- w/c),

VAR7 = wigl.

The homogeneity test statistic H can be ex-
pressed as
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tf=2 k

2

(2 VAR2)2

Equation 14 is algebraically equivalent to
Equation 11. The estimate (Equation 10) of
<rA

2 can be expressed as

1 *
7 2
/C ;=)

1

- - 2 VAR5,

where «,• = «,-E«/c/(«/E + «,-c) and 5/ is the
sample variance of the gj,' i = ! , . . . ,# . The
weighted estimator of A is given by

k

2 w,g, ^ VAR7
1=1

* • " 2 VAR6 '

Therefore the estimates described in this ar-
ticle can easily be computed from standard
packages or calculators that can provide
means and variances.

Example

The techniques described in this article
were applied to 24 estimates of effect size
obtained from a meta-analysis of the effects
of open education (Hedges, Giaconia, &
Gage, Note 1). The effect-size estimates re-
ported in Table 1 are indices of the effect of
open education on mathematics achieve-
ment. Twelve of the effect-size estimates were
obtained from a sample of studies using ran-
dom assignment of subjects to treatment
groups. The other 12 effect-size estimates
were obtained from a sample of studies that
did not use random assignment. The average
effect-size estimates for these two groups of
studies are almost identical, with g = -.0197
for the studies with random assignment and
| = -.0120 for the studies that did not use
random assignment. The (unweighted) stan-

dard deviations of the effect-size estimates are
also similar; Sg = .278 for the studies with
random assignment and Sg = .438 for the
studies without random assignment.

Investigators might be tempted to con-
clude that the studies with random assign-
ment give essentially the same answer as the
quasi experiments. Several meta-analyses
(e.g., Smith & Glass, 1977, or Glass, 1978)
have reported a similar finding; that is, that
well controlled and poorly controlled studies
yielded essentially the same average effect
sizes.

Examination of the homogeneity test sta-
tistics (Equation 11) for the two groups of
studies suggests that the variance o-A

2 is not
zero in either group. These values are H =
23.09 for the studies using random assign-
ment of subjects to treatments and H = 90.61
for the studies without random assignment.
Comparing these values with critical values
for the chi-square distribution, we see that
both are significant at the a = .02 level, and
the latter value is significant beyond the
a = .001 level. Thus in each case we reject
the hypothesis that <rA

2 = 0. Calculation of
the unbiased estimate (Equation 10) of o-A

2

for each group yields <rA
2 = .036 for the stud-

ies with random assignment and <rA
2 = .162

for the studies without random assignment.
The difference in the magnitude of the

estimates of <rA
2 suggests that the population

effect sizes are far more variable among the
studies that did not use random assignment.
Thus the statement that the two groups of
studies "yield the same results" needs to be
qualified. Whereas the average effect-size es-
timates are the same for the two groups of
studies, the variation of the true (population)
effect sizes is much less for the studies with
random assignment. This finding makes con-
ceptual sense because the preexisting differ-
ences between groups are not controlled in
the quasi experiments. If the studies that did
not have random assignment exhibited a dis-
tribution of real preexisting differences, then
these differences would also be reflected in
the distribution of (posttest) effect-size esti-
mates. Unfortunately the studies from which
these effect-size estimates were obtained did
not provide information on pretest scores
that might have helped to investigate this
hypothesis. These findings do suggest that
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Table 1
Effect Size Estimates From 24 Studies of the Effect of Open Education
on Mathematics Achievement

Study

1
2
3
4
5
6
7
8
9

10
11
12

«E

57
48

180
80

131
90
41
60
10

138
156
56

Randomizec

«c

112
86

180
61

138
90
52
55
10

160
50
56

experiments

, J*
.146
.248
.049

-.313
-.267
-.110

.124
-.151

.529

.190
-.362
-.320

(1 - l/a)g2

.027

.033

.011

.029

.015

.022

.044

.035
.209
.014
.027
.036

Studies without

Study

I
2
3
4
5
6
7
8
9

10
11
12

«E

42
74
89
40

133
76
80
72

120
120
38
40

nc

100
44

425
40

127
105
81
72

150
167
52
40

random

g

.506

.330

.109
-.380

.260
-.488

.584

.387
-.345
-.718

.006
-.395

assignment

^ + (1- l/a)g2

.035

.037

.014

.051

.016

.023

.026

.028
.015
.015
.046
.051

Note. E = experimental group; C = control group.

casual inspection of means and standard de-
viations of effect-size estimates is not suffi-
cient to distinguish whether the studies in a
series share a common effect size, nor does
such inspection necessarily provide much
evidence about the variability of the true
(population) effect-size distribution.
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Appendix

The technical arguments used in this article all
depend on an expression for the unconditional
sampling variance of the g/. Write the random
variable g as g = A + e, where e = g - A is the

sampling error about the sample realization of
A. Then

Var(g) = Var(A) + Var(e) + 2Cov(A, e),



RANDOM EFFECTS MODEL FOR EFFECT SIZES 395

and we need only show that A and e are uncor-
related to show that the unconditional variance of
g is the variance of A plus the conditional variance
of g, that is, the variance given in Equation 5. The
covariance is Cov(A, e) = E[&e] — E[k]E[e]. Since
g is conditionally unbiased E(e\t\) = 0. Evaluate
each of the expectations as follows:

= 0,

and
E[e] = 0,

which imply that Cov(A, e) = 0.
The unbiased estimator of the conditional sam-

pling variance of g, is obtained by finding an un-
biased estimator of 5,2. Since V/^gv has the non-
central /distribution with noncentrality parameter

(Hedges, 1981), it follows that nig? has the

noncentral F distribution with noncentrality pa-
rameter X = fifi2, Using the expectation of the non-
central F distribution (Johnson & Kotz, 1970, p.
190), we obtain

where a, is given in Equation 6. Solving this
expression for 5,-2 yields the unbiased estimator

_

a, n,

for 5,2. Substitution of this estimator for <5,2 in
Equation 5 for <r,2(5,-) gives Equation 9.
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