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We examined the evidence for heterogeneity (of effect sizes) when only minor changes to sample
population and settings were made between studies and explored the association between heterogeneity
and average effect size in a sample of 68 meta-analyses from 13 preregistered multilab direct replication
projects in social and cognitive psychology. Among the many examined effects, examples include the
Stroop effect, the “verbal overshadowing” effect, and various priming effects such as “anchoring” effects.
We found limited heterogeneity; 48/68 (71%) meta-analyses had nonsignificant heterogeneity, and most
(49/68; 72%) were most likely to have zero to small heterogeneity. Power to detect small heterogeneity
(as defined by Higgins, Thompson, Deeks, & Altman, 2003) was low for all projects (mean 43%), but
good to excellent for medium and large heterogeneity. Our findings thus show little evidence of
widespread heterogeneity in direct replication studies in social and cognitive psychology, suggesting that
minor changes in sample population and settings are unlikely to affect research outcomes in these fields
of psychology. We also found strong correlations between observed average effect sizes (standardized
mean differences and log odds ratios) and heterogeneity in our sample. Our results suggest that
heterogeneity and moderation of effects is unlikely for a 0 average true effect size, but increasingly likely
for larger average true effect size.

Public Significance Statement

This article suggests that for direct replications in social and cognitive psychology research, small
variations in design (sample settings and population) are an unlikely explanation for differences in
findings of studies. Differences in findings of direct replications are particularly unlikely if the
overall effect is (close to) 0, whereas these differences are more likely if the overall effect is larger.
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Empirical research is typically portrayed as proceeding in two
stages. First, belief in the existence of an effect is established.
Second, the effect’s generalizability is examined by exploring its
boundary conditions (Simons, Shoda, & Lindsay, 2017). In the
first stage, inferential statistics (including testing of statistical
hypotheses, confidence intervals, or Bayesian analyses) are used to
minimize the risk that a discovery is due to sampling error. In the

second stage, one may ask to what extent the effect depends on a
particular choice of four contextual factors; the (a) sample popu-
lation, (b) settings, (c) treatment variables, and (d) measurement
variables (e.g., Campbell & Stanley, 2015). This extent is often
explored through replications of the original study that are either as
similar as possible to the original (called direct or exact replica-
tions) or with some deliberate variation on conceptual factors
(so-called conceptual or indirect replications; Zwaan, Etz, Lucas,
& Donnellan, 2018), and once sufficient studies have accumulated
through meta-analysis. In meta-analysis, the heterogeneity of an
effect size (henceforth referred to as heterogeneity) is a measure of
an effect’s susceptibility to changes in these four factors. An effect
strongly dependent on one or more of the four factors, unless
controlled for, should exhibit high heterogeneity. In this paper we
examine the heterogeneity in replication studies in psychology,
focusing on direct replications, and explore a proposed relationship
between effect size and heterogeneity.

The possibility of heterogeneity can create controversy in the
interpretation of replication results. The proclamation of a “fail-
ure” to replicate an effect (by the reader’s preferred definition) is
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sometimes taken to suggest that the original finding was merely a
false positive, due to “p-hacking” (Simmons, Nelson, & Simon-
sohn, 2011) or publication bias (Inzlicht, Gervais, & Berkman,
2015). Unsurprisingly, some researchers take offense (e.g.,
Baumeister, 2016), interpreting such implications as attacks on
their abilities as researchers. An alternative explanation for non-
replication, often espoused by the original authors (e.g., IJzerman,
Szymkow, & Parzuchowski, 2015; Strack, 2016), is that the effect
is more heterogeneous than (perhaps implicitly) claimed origi-
nally, meaning that the true effect varies across contextual factors
as described earlier. From this perspective, nonreplication implies
(possibly previously unknown) predictors of effect size, so called
“hidden moderators” (Van Bavel, 2016), the discovery of which
can be seen as an opportunity for theoretical advancement (Simons
et al., 2017; McShane, Tackett, Böckenholt, & Gelman, 2019). To
attenuate the risk of heated discussions on the (non)existence of an
effect, original authors have been recommended to prespecify the
degree of heterogeneity that would make them lose interest in the
effect (e.g., by declaring “constraints on generality”; Simons et al.,
2017).

It is commonly believed that heterogeneity is the norm in
psychology. In support of this notion, recent large-scale reviews of
meta-analyses in psychology (Stanley, Carter, & Doucouliagos,
2018; van Erp, Verhagen, Grasman, & Wagenmakers, 2017) report
median heterogeneity levels that can best be described as “large”
(see the section Quantifying Heterogeneity). In comparison, the
median heterogeneity estimate in medicine (Ioannidis, Patsopou-
los, & Evangelou, 2007) would be considered “small” by the same
standard. It may simply be that effects in psychology are more
heterogeneous than those of medicine. However, meta-analyses in
psychology also typically include more studies than those in med-
icine, and it could be that they tend to include studies from a much
broader spectrum. That is, varying on more contextual factors
(sample population, settings, treatment variables, measurement
variables) or varying more on these four factors than what is
typical in medicine. The median number of studies (effect sizes)
per meta-analysis in the psychology sample of van Erp et al.
(2017) was 12, whereas in medicine it was only 3 (Davey, Turner,
Clarke, & Higgins, 2011). It is difficult to separate these explana-
tions (intrinsically more heterogeneity, or psychology including
studies from a broader spectrum). To facilitate doing so, in this
article we focus on meta-analyses of only direct replications,
which are exempt from the potential problem of including too
disparate studies. Our sample consists of all preregistered multilab
direct replication projects in psychology available on https://
curatescience.org/app/home up until 2019–10-25. By only includ-
ing preregistered multilab studies we also avoid the issue of
publication bias, which can have a large and unpredictable effect
on the assessment of heterogeneity (Augusteijn, van Aert, & van
Assen, 2019), as well as on the assessment of the effect size itself
(e.g., Dickersin, 2005; Simes, 1986).

Heterogeneity is often considered a primary outcome in meta-
analysis for good reasons. As described above, unaccounted for
heterogeneity suggests that a theory is unable to predict all con-
textual factors of importance to its claims and its existence affects
the interpretation of replication outcomes. Moreover, unaccounted
for heterogeneity can have practical consequences not to be ig-
nored. This is readily evident for medicine, where in the case of
heterogeneity an intervention, such as a medication, that is suc-

cessful for some may have direct negative health consequences for
others. The same is true of mental health interventions in psychol-
ogy. Heterogeneity can also have major consequences for topics
such as child development, education, and business performance,
where research often impacts policy recommendations. A newly
implemented policy to, say, help socialize children (e.g., in a day
care), improve learning outcomes in education or employee satis-
faction in business, which works only in some contexts or for some
individuals and not others (i.e., is heterogeneous) could have an
overall null or even negative impact instead of positive. Awareness
of heterogeneity thus affects the cost–benefit analysis of whether
to implement a particular policy. In other words, heterogeneity
should be no less of a concern for psychologists than for medical
practitioners.

Heterogeneity also affects meta-analytic techniques used to sta-
tistically summarize findings on a certain topic. Heterogeneity
alters the interpretation of meta-analytic estimates as either the true
effect size (under homogeneity) or the average of the true effect
sizes (under heterogeneity), though one may question the useful-
ness of interpreting the average true effect size in the presence of
heterogeneity (Simonsohn, 2017), just as it may be questionable to
interpret an average main effect in the context of an interaction
effect (Aiken, West, & Reno, 1991). In addition, techniques that
attempt to correct for publication bias in their estimate tend to fail
in the presence of heterogeneity (Carter, Schönbrodt, Gervais, &
Hilgard, 2019; McShane, Böckenholt, & Hansen, 2016; Stanley,
2017; van Aert, 2018; van Aert, Wicherts, & van Assen, 2016; van
Assen, van Aert, & Wicherts, 2015), which is problematic if we
believe publication bias is widespread in psychology (Cooper,
DeNeve, & Charlton, 1997; Franco, Malhotra, & Simonovits,
2014, 2016; although see Stanley et al., 2018 and van Aert,
Wicherts, & van Assen, 2019 for opposing conclusions). To con-
clude, heterogeneity or its absence provides vital information for
the implementation of research in practice, the advancement of
theory, and the interpretation of research outcomes.

Quantifying Heterogeneity

Assessing heterogeneity can be problematic due to its inherent
uncertainty. Heterogeneity is often measured by the I2 index (Hig-
gins, Thompson, Deeks, & Altman, 2003; Higgins & Thompson,
2002). It can be interpreted as the percentage of variability in
observed effect sizes in a meta-analysis that is due to heterogeneity
among the true effect sizes (that is, sensitivity to contextual fac-
tors) rather than sampling variance, and ranges from 0–100%.
More formally, I2

� �̂
2/(�̂2

� �̂
2), where �̂

2 is the estimated
between-studies variance and �̂

2 is an estimate of the “typical”
within-studies variance, and I2 is set to zero if negative. An
alternative but related index of heterogeneity is H2 (Higgins &
Thompson, 2002), with H2

� 1/(1 � I2) or (for the DerSimonian-
Laird estimator) H2

� Q/(K � 1). As opposed to I2, H2 is not
truncated (when Q � K – 1), and H2 ranges from zero to infinity,
with higher values signaling more heterogeneity, with a value of 1
indicating homogeneity.

The I2 index has several advantages when using it for metare-
search as in our article. First, it has an easy and intuitive interpre-
tation as it is between 0 and 100%. Second, well-known rules of
thumb (Higgins et al., 2003) exist to interpret values of I2 as small
(25%), medium (50%), or large (75%). As with all rules of thumb
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these should be used with caution. We do not use these labels
normatively, but just as examples of “small,” “medium,” and
“large” heterogeneity. Third, I2 can be computed for any effect
size metric (correlations, standardized mean differences, odds ra-
tios, etc.), without having to transform effect sizes to a specific
metric. And finally, most large meta-meta analyses also employ I2,
which allows for comparing results of different meta-meta analy-
ses. Two well-known examples of such large scale meta-meta
analyses are Ioannidis et al. (2007) in medicine, and van Erp et al.
(2017) in psychology. Because of these advantages we employ I2

(and its relative H2) as one of our heterogeneity indices in our
article.

However, I2 also has two important disadvantages. First, I2 is
not an absolute but a relative measure of heterogeneity, as it is
dependent on the primary studies’ sample sizes (Borenstein, Hig-
gins, Hedges, & Rothstein, 2017; Rücker, Schwarzer, Carpenter, &
Schumacher, 2008). For instance, keeping constant �̂

2, multiplying
all primary studies’ sample sizes with 3 will increase I2 from small
to medium (25% to 50%) or medium to large (50% to 75%), and
multiplying with 9 will turn a small I2 into a large I2. Note that this
characteristic of I2 also implies that values of 25, 50, 75% cannot
be normatively used as labels for small, medium, large heteroge-
neity, respectively. Second, even though heterogeneity of all dif-
ferent effect sizes (correlations, standardized mean differences,
odds ratios) are placed on the same I2 scale, one can argue that I2

values originating from different effect size metrics cannot be
directly compared as they are based on different distributions and
assumptions. Hence, these two disadvantages also call for another
assessment of effect size heterogeneity, and estimators of � seem
to be the most promising alternatives, although � estimates also
cannot be compared across effect size types.

The Pearson’s correlation and their Fisher-transformed counter-
parts could be a viable alternative for a common effect size metric.
It is possible to transform effect sizes such as mean differences to
point-biserial correlations, which are simply Pearson’s correlations
as applied to dichotomous data (see, e.g., Borenstein, 2009;
Schmidt & Hunter, 2015). However, there are potential concerns
with transforming effect sizes to either Pearson or Fisher-
transformed correlations. Our analyses revealed two undesirable
characteristics of (transformed to) point-biserial correlations, mak-
ing them inappropriate for answering our main research questions
on heterogeneity of effect size in multilab direct replications and
its association to average effect size. First, values of �̂ are restricted
for larger values of average effect size as the point-biserial corre-
lation gets closer to 1, implying a possible unwanted negative
association between average effect size and effect size heteroge-
neity. Second, while transforming from one metric to the point-
biserial correlation, strong assumptions need to be made. Both
undesirable characteristics may lead to serious distortions of het-
erogeneity assessment. For instance, if �̂A � �̂B for two meta-
analyses A and B based on exactly the same sample sizes and
assessed on the same metric (e.g., standardized mean differences),
then after transforming to point-biserial correlations the order of
heterogeneity assessments may be reversed (see the online Sup-
plement A for an illustration using our data). This issue is allevi-
ated by using the Fisher-transformation, although violations of
nonmonotonicity may still be observed (see online Supplement A).
These findings suggest that researchers should carefully consider

whether it is advisable to combine or transform effect sizes from
different effect size metrics in a meta-analysis.

Another alternative estimator of heterogeneity is using � based
on the original effect size metrics. Estimates of � can then not be
compared across meta-analyses based on different metrics, but can
be straightforwardly compared across meta-analyses based on the
same metric, without having the disadvantages detailed above
(negative association between average effect size and heterogene-
ity, strong assumptions) of using a common effect size metric.
Hence, in addition to I2 we also report results of � based on the
original metric. The consequence for our analysis on the associa-
tion between heterogeneity and average effect sizes is that we only
estimate this association for standardized mean difference and log
odds ratios, since other effect size types (correlations, Cohen’s q)
were rare in our dataset (see Method section).

Uncertainty and Statistical Power of Heterogeneity

Assessment

Tests of heterogeneity typically have low statistical power in
many practical situations (Huedo-Medina, Sánchez-Meca, Marín-
Martínez, & Botella, 2006; Jackson, 2006). This complicates the
discussion of heterogeneity, because while I2 always provides an
estimate of heterogeneity, this estimate is often accompanied by
high uncertainty and by wide confidence intervals (Ioannidis et al.,
2007). For example, Ioannidis reports that in a large set of Co-
chrane meta-analyses, all meta-analyses with I2 point estimates of
0% had upper 95% confidence intervals that exceeded I2 estimates
of 33%, exceeding what Higgins et al. (2003) defined as small
heterogeneity. In addition, under homogeneity the Q-statistic has a
central chi-square distribution (von Hippel, 2015), a distribution
that is right-skewed with 40–50% of observations falling above
the expected value (for all k � 3). As point estimates of both � and
I2 are related (this relation is one-to-one, i.e., Q � df implies �

2
�

0 and I2
� 0), a meta-analysis of four or more studies will also

have close to 50% of estimates exceeding zero, even in the absence
of true heterogeneity.

To simplify interpretation of estimates of � and I2, we will report
both these estimates as well as their confidence intervals, and
report the results of power analyses of the Q-test of heterogeneity
assuming zero/small/medium/large heterogeneity (here defined as
I2

� 0/25/50/75%, respectively). Conducting power analyses is
necessary as a high frequency of zero estimates of � and I2 as well
as a high frequency of confidence intervals including 0 can be the
result of, for instance, either (a) a high frequency of true homo-
geneity, or (b) a high frequency of true heterogeneity but combined
with low statistical power. We need to be able to distinguish
between these two cases. The power analyses additionally provide
information to researchers on how many labs and participants may
be needed to assess certain heterogeneity, based on real data rather
than only simulations (Huedo-Medina et al., 2006; Jackson, 2006)
and in a context highly similar to that of future multilab projects
(e.g., Registered Replication Reports, ManyBabies, the Psych Sci-
ence Accelerator).

Association Between Effect Size and Heterogeneity

Effect size is likely associated with heterogeneity. Intui-
tively, it makes sense to believe that if the meta-analytic effect
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size is zero there is nothing to moderate (i.e., no heterogeneity).
However, a null or near null (average) effect size estimate may
arise from failure to consider contextual factors (“hidden mod-
erators”; Van Bavel, 2016) and does not by itself imply the
absence of heterogeneity. To the contrary, a large meta-analytic
effect size can be expected to be associated with more hetero-
geneity. To explain further, consider first the definition of
heterogeneity.

Heterogeneity is defined as the standard deviation of the true
(study-level) effect sizes. True effect size, however, may refer
to two possibly very different entities. First, it may refer to the
effect size that is obtained for a study with an infinite sample
size (or having the complete population of subjects in one’s
study; in any case, sampling error equals 0). Second, the true
effect size of a single study may refer to an effect size obtained
with an infinite sample size but that is also corrected for
unreliability of the measurements. We need to distinguish both
entities when assessing and interpreting the average true effect
size and true effect size heterogeneity, and their estimates.

Estimates of effect size heterogeneity always attempt to
“partial out” sampling error. Whether heterogeneity estimates
also partial out measurement error depends on whether effect
sizes were corrected for unreliability beforehand (in which case
standard errors must also be corrected; Schmidt & Hunter,
2015, pp. 314 –320). Typically measurement error is not cor-
rected for when estimating individual study effect sizes in a
meta-analysis (although the field of Industrial-Organizational
psychology is an exception to this rule). None of the 13 multilab
projects did so in any of the 68 meta-analyses. We therefore
also do not attempt to correct for measurement error when
estimating average effect size and effect size heterogeneity, and
true (study-level) effect sizes in our article refer to the effect
size obtained by that study if sample size were infinite (i.e., the
first entity). Below we illustrate how measurement error may
result in a positive association between effect size as thus
conceptualized, and heterogeneity.

To illustrate, consider a meta-analysis of say, the correlation
between neuroticism and procrastination (e.g., Steel, 2007).
Each included study would need to measure the two variables
somehow, possibly the same way across studies in the meta-
analysis. However, because of individual differences and dif-
ferences in study samples, measurement reliabilities may differ

across studies either due to sampling variance (that the sample
happens to be more or less homogeneous) or to differences in
contextual factors (e.g., sampling population, measurement
variables). This means that even if the underlying true effect
size (after correcting for measurement error; second entity
above) is the same, the correlation between the two variables
will differ between studies (see also Schmidt & Hunter, 2015).
Assuming no association exists between reliability and true
effect size (second entity above), differences in observed study
effect sizes will increase with the underlying true effect size,
resulting in more variability being ascribed to heterogeneity.
More formally, an observed correlation rxy can be expressed as
the product of the true correlation or effect size (second entity),
	xy, multiplied by the square root of the measurement reliabili-
ties for X (Rxx) and Y (Ryy=

): rxy � �xy��Rxx���Ryy� . As
such, keeping constant study differences in �Rxx� � �Ryy�

while increasing true effect size 	xy (second entity) increases
heterogeneity of effect sizes (first entity). Table 1 illustrates
this relationship using three values of rxy and true study-level
effect sizes. We therefore explore with a correlational analysis
if a positive association exists between effect size and hetero-
geneity in the sample of preregistered multilab replication proj-
ects in psychology.

The Preregistered Multilab Replication Projects

Table 2 lists the 13 replication projects, with a total of 68
primary outcome variables, we used to examine heterogeneity and
the correlation between effect size and heterogeneity in psychol-
ogy. These “Many Labs” (ML) and “Registered Replication Re-
port” (RRR) projects are a recent phenomenon in psychological
science where multiple labs collaborate to replicate one or multiple
effects from the psychological literature. Fundamental to these
projects is that they are preregistered and that each collaborating
lab uses the exact same materials (possibly with language trans-
lations), so that essentially the only difference between participat-
ing labs is that they run the study in different locations and using
different people. This also means that heterogeneity estimates
based on these data only reflect this type of variation in sample
population and settings. The projects are often done to examine the
robustness of seminal findings with high impact and typically in

Table 1
Variation in Observed Effect Sizes as a Function of True Effect Size and

Measurement Reliability

Meta-analysis 	xy

Observed effect sizes

SD (ES)

Study 1 Study 2 Study 3

�Rxx���Ryy�. � .60 �Rxx���Ryy�. � .70 �Rxx���Ryy�. � .80

I 0.00 0.00 0.00 0.00 0.00
II 0.30 0.18 0.21 0.24 0.03
III 0.50 0.30 0.35 0.40 0.05

Note. The values under Study 1, 2, and 3 are observed effect sizes for that study given its measurement
reliability �Rxx���Ryy� and the true effect size 	xy when within-study sample size is infinite. SD (ES) is the
standard deviation of the observed effect sizes (ES) for meta-analysis I, II, and III, equivalent to heterogeneity
given infinite within-study sample sizes. Code to reproduce table: osf.io/gtfjn.
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Table 2
Preregistered Multilab Replication Projects

RP Paper Countries K (US) Effects N Sample and settings Description of effects

ML1 Klein et al. (2014) 10 36 (25) 16 5,975 26/36 samples were primarily university
students, three general population and
seven undescribed; 9/36 samples
were online, including all the general
population ones.

Two correlational effects: “Gender
math attitude” compared implicit
attitudes (IAT) towards math
between genders and “IAT
correlation math” correlated
implicit attitudes with self-
reported measures. The
remainder were experiments with
two independent groups. The
groups were primed in some way
(Anchoring 1–4; low vs. high
category scales; norm of
reciprocity; flag priming;
currency priming), asked to
imagine slightly different
situations (Sunk costs; gain vs.
loss framing; gambler’s fallacy;
imagined contact) or asked their
agreement with statements
presented differently (Allowed
vs. forbidden; quote attribution).

ML2 Klein et al. (2018) 35 115 (21) 28 6,570 79/125 samples were collected in
person (typically in labs), remainder
online. Mean age in two rounds of
data collection were 22.67 and 23.34
years.

Most effects were experiments with
two independent groups. Often
participants were primed in some
way (Structure & Goal Pursuit,
Priming Consumerism, Incidental
Anchors, Position & Power,
Moral Cleansing, Priming
Warmth) or asked to imagine
slightly different situations (SMS
& Well-Being, Less is Better,
Moral Typecasting, Intentional
Side-Effects, Tempting Fate,
Affect & Risk, Trolley Dilemma
1, Framing, Trolley Dilemma 2,
Disgust & Homophobia,
Choosing or Rejecting). Some
groups saw slightly different
statements (Correspondence Bias,
Intuitive Reasoning), were asked
to perform slightly different tasks
(Direction & SES, Actions are
Choices), or had to read a text
with a clear vs. unclear font
(Incidental Disfluency). Two
correlational effects measured the
correlations of Moral
Foundations with political
leaning, and Social Value
Orientation with family size.
Two effects examined order
effects (Assimilation &
Contrasts, Direction &
Similarity). Finally, in False
Consensus 1 and 2, participants
made a binary choice and
estimated how many people had
made the same choice.
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Table 2 (continued)

RP Paper Countries K (US) Effects N Sample and settings Description of effects

ML3 Ebersole et al.
(2016)

2 21 (19) 10 2,845 20/21 samples were university students,
one general population, which was
also the only online sample.

Several effects were experiments
with two independent groups.
The groups were either primed in
some way (power and
perspective; warmth perceptions;
subjective distance interaction),
saw slightly different statements
(elaboration likelihood
interaction; credentials
interaction) or experienced
different situations (weight
embodiment). Examined
interactions were between
treatment conditions and
participant characteristics. One
priming effect (metaphor)
compared two treatment groups
with a control. One effect was
correlational: “conscientiousness
and persistence” was measured
by an unsolvable anagram task
and self-report respectively. The
Stroop task is a within-person
experiment with two conditions
and the “Availability” effect asks
participants to judge whether
some letters are more common in
the first or third position.

RRR1 Alogna et al.
(2014)

10 32 (17) 1 4,117 31/32 samples were undergraduate
students aged 18–25, one general
population, which was also the only
online sample.

Verbal overshadowing 1:
Independent two-group
experiment. Participants either
described a robber after watching
a video or listed
countries/capitals and after a
filler task attempted to identify
the robber in a lineup.

RRR2 Alogna et al.
(2014)

8 23 (14) 1 2,442 22/23 samples were undergraduate
students aged 18–25, one general
population, which was also the only
online sample.

Verbal overshadowing 2: Different
from 1 only in that the filler task
took place before the descriptive
task instead of after.

RRR3 Eerland et al.
(2016)

2 12 (10) 3 1,187 11/12 samples were undergraduate
students mostly aged 18–25, one of
which was online. One sample was a
broader online sample.

Grammar’s effect on interpretation:
Independent two-group vignette
experiment with three outcome
variables. Participants read about
actions either described in
imperfect or perfect tense and
then rated protagonist’s
intentions (intentionality/intention
attribution/detailed processing).

RRR4 Hagger et al.
(2016)

10 23 (7) 1 2,872 All samples consisted of in-lab
undergraduate students

Ego depletion: Independent two-
group experiment. Participants
either assigned to a cognitively
demanding task or a neutral, and
performance was then measured
in a subsequent cognitive task.

RRR5 Cheung et al.
(2016)

5 16 (9) 2 2,071 All samples consisted of in-lab
undergraduate students aged 18–25

Commitment on neglect/exit:
Independent two-group
experiment with two outcome
variables. Participants either
primed to think about
commitment to or independence
from partner.

(table continues)
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discussion with the original authors. The principal difference be-
tween Many Labs and RRR projects is that the Many Labs include
multiple distinct psychological effects (all run in one session),
whereas the RRRs focus only on one effect. That we report
multiple effects for three of the RRRs in Table 2 is because they
used multiple primary outcome variables.

We would consider most of the effects described in Table 2 to
belong to social and cognitive psychology (and Many Labs 2
explicitly selected effects from these domains). As an example,
RRR8 (O’Donnell et al., 2018) replicated an experiment examin-
ing the link between priming of social categories (soccer hooligan/
professor) and objective knowledge performance (a trivia quiz).
Priming can be viewed as the idea that brief (often subconscious)
exposure to a concept should activate related concepts or behavior.
The experiment replicated by the RRR8 authors has been cited
more than 800 times, and the manipulation (“professor priming”)
is well known in the field of social psychology (O’Donnell et al.,
2018). However, O’Donnell et al. report that when RRR8 was
organized there had been increasing debate over the validity of
priming effects in the past years, including of the professor prim-
ing effect. RRR8 was set up in response to this controversy. Many
of the studied effects (as in the case of O’Donnell et al.) used
priming (23 effects) in their design. Others asked participants to
imagine different situations (14 effects) or to react to slightly

different statements (six effects), with the remainder using a vari-
ety of approaches (see Table 2). We present only a succinct
summary of the studied results and direct readers to the original
multilab publications for more detailed descriptions.

In reference to meta-analyses of direct replications, McShane
with several coauthors (McShane et al., 2016, 2019) have argued
that if we were to expect heterogeneity to be absent or minimal
anywhere, it would be in preregistered multilab projects with a
common protocol (such as Klein et al., 2014). They further argue
that the fact that heterogeneity has been reported even under such
circumstances is an indication of widespread heterogeneity in
psychology, although McShane (personal communication, July 19,
2019) acknowledges that expected heterogeneity in multilab rep-
lication projects is much smaller than in large-scale meta-analyses
in psychology. However, In the case of multilab direct replication
projects, studies still vary on two contextual factors (sample pop-
ulation and settings) and if we believe an effect is sensitive to
changes in these two factors we might also expect to find some
heterogeneity.

As all 13 projects in our dataset were (relatively) large-scale and
preregistered, our dataset arguably represents the best meta-
analytic data currently available in psychology. To better interpret
the heterogeneity estimates we also estimate power of each project
to find zero/small/medium/large heterogeneity by the definitions

Table 2 (continued)

RP Paper Countries K (US) Effects N Sample and settings Description of effects

RRR6 Wagenmakers et
al. (2016)

8 17 (8) 1 1,894 All but one sample explicitly consisted
of students and all took place in-lab.
The last sample was recruited at
university grounds.

Facial feedback hypothesis:
Independent two-group
experiment. Participants either
induced to “smile” or “pout” by
holding a pen in their mouth
differently and simultaneously
rated funniness of cartoons.

RRR7 Bouwmeester et
al. (2017)

12 21 (5) 1 3,596 All samples consisted of in-lab
undergraduate students aged 18–34.

Intuitive cooperation: Independent
two-group experiment. Economic
game with money contribution to
a common pool either under time
pressure or time delay.

RRR8 O’Donnell et al.
(2018)

13 23 (9) 1 4,493 All samples consisted of in-lab
undergraduate students aged 18–25

Professor priming: Independent
two-group experiment.
Participants primed with either a
“professor” or “hooligan”
stimuli. Outcome was percentage
correct trivia answers.

RRR9 McCarthy et al.
(2018)

13 22 (4) 2 5,610 All samples consisted of in-lab students
aged 18–25

Hostility priming: Independent two-
group experiment with two
outcome variables. Participants
descrambled sentences, either
20% or 80% were hostile, then
rated an individual and a list of
ambiguous behaviors on
perceived hostility.

RRR10 Verschuere et al.
(2018)

12 19 (4) 1 2,294 All samples consisted of in-lab students
aged 18–25

Moral reminder: Independent two-
group experiment. Participants
either recalled the Ten
Commandments or books they’d
read. Outcome was degree of
cheating when reporting results.

Note. For studies with several effects the number of participants is the average across effects, rounded to the closest whole number. N � Participants used
for primary analyses by original authors (i.e., after exclusions). RP � replication project; K (US) � no. primary studies (number of U.S. studies); ML �

Many Labs; RRR � Registered Replication Report. Code to reproduce table: osf.io/gtfjn.
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of Higgins et al. (2003). Consequently, our analyses will provide
information on how two contextual factors (sample population and
settings) may affect consistency or heterogeneity of effects in
psychology, and on the precision of its estimate.

Method

All code and data for this project are available on the Open
Science Framework (OSF) at osf.io/4z3e7. We refer directly to
relevant files on the OSF using brackets and links in the sections
below. We ran all analyses using R Version 3.4.3 (R Core Team,
2017).

Data Collection

For the purposes of this project (as described in the introduction)
we collected meta-analyses of only preregistered direct replica-
tions in psychology. We defined a meta-analysis of “direct” rep-
lications as a meta-analysis of a set of studies with no differences
in treatment or measurement variables. This type of multilab study
has only recently become popular in psychology, and as typically
large collaborations on well-known and/or highly debated topics
(see section The Preregistered Multilab Replication Projects), each
publication garners wide attention. We set out to include all such
preregistered multilab projects in psychology with published data.
To decrease the risk of missing any published projects we made
use of the web page https://curatescience.org/app/home. Curate-
science.org is a crowdsourced project to keep track of replications
and transparency of research and so is well-attuned to the purpose
of finding replication studies with available data. In addition it
includes a section with a “curated list of large scale replication
efforts” which was intended to be “as comprehensive and inclusive
as possible” (LeBel, personal communication, November 12,
2019). We included all multilab projects from this list. Originally,
we included projects published before March 31, 2018, but up-
dated our dataset in the process of revision with three additional
projects that were published between 2018 and March 31 and
October 25, 2019, for a total of 13 projects containing 68 meta-
analyses of primary effects.

We downloaded and collated summary data from the 13 pre-
registered multilab replication projects in psychology (see Table
2). Data from all 13 projects were available on the Open Science
Framework (osf.io) and downloaded between February 2, 2018
and October 25, 2019. Although some projects (e.g., RRR4) re-
ported results from several outcome variables, we only included
primary outcome variables as explicitly stated in accompanying
publications, resulting in a total of 68 meta-analyses. For each
meta-analysis we extracted (osf.io/mcj5d) summary data (e.g.,
means and standard deviations) at the level of the lab as specified
by the original authors for their primary analysis (i.e., typically
after exclusions). We extracted information on the country of each
lab, whether participants were physically in the lab for the study,
total number of participants per lab, type of effect size, and
additional information related to each meta-analysis (see code-
book; osf.io/yn9fb). Extracted data were in a variety of formats:
Excel (Many Labs 1, RRR1 and RRR2), CSV (Many Labs 3,
RRR3, RRR4, RRR5, RRR6), and as PDF tables (RRR7). In three
cases (RRR5, RRR6, and RRR9) it was necessary to download the
raw data to extract summary data. In two cases (RRR8 and

RRR10) there was summary data available as a CSV file, but
without all the information we needed. For these, it was necessary
to download the raw data and make minor code edits to extract the
standard deviations. Although a particular lab may have partici-
pated in several projects, the lab indicator was typically not the
same across projects. Even so, we kept the original lab indicators
to facilitate comparing observations in our dataset with the original
data sets. Finally, we collated the summary data for all meta-
analyses into one dataset for analysis (osf.io/mcj5d)

Heterogeneity Across Meta-Analyses

To examine heterogeneity of each of the 68 effects, we com-
puted meta-analytic estimates for all 68 effects in our dataset (see
Table 3). In our primary analysis we ran all analyses as specified
by the replication authors (osf.io/q9vwb). In contrast, since the
replication authors sometimes transformed effect sizes (e.g., odds
ratios to standardized mean differences; ML1) in our analysis of
the association between heterogeneity and average effect size we
did not always follow the replication authors specifications (see
Method section Association Between Effect Size and Heterogene-
ity). Here we describe how effect sizes in Table 3 were estimated.
The effect size of the original study, which was the focus of the
replication effort, was not included in these meta-analyses. All
meta-analyses were estimated with random-effects models and the
Restricted Maximum Likelihood (REML) estimator using the
R-package metafor (Viechtbauer, 2010), though with a variety of
outcome variables: product moment correlations (r), differences in
correlations (Cohen’s q), standardized mean differences (SMD),
raw mean differences (MD), and risk differences (RD). Many Labs
1 transformed effect sizes measured as odd ratios into standardized
mean differences when meta-analyzing under the assumption that
responses followed logistic distributions (Sánchez-Meca, Marín-
Martínez, & Chacón-Moscoso, 2003; Viechtbauer, 2010). Two
projects (RRR5 and RRR7) used the Knapp and Hartung adjust-
ment of the standard errors (Knapp & Hartung, 2003) and Many
Labs 3 correlations were corrected for bias (Hedges, 1989; Viech-
tbauer, 2010). Many Labs 3 meta-analyzed (see osf.io/yhdau)
several effects that were not originally measured as correlations
(Availability, Metaphor; Stroop effect, Elaboration likelihood in-
teraction, Subjective distance interaction, Credentials interaction),
but were nonetheless transformed to and analyzed as product–
moment correlations. It is not clear from the Many Labs 3 docu-
ments how they transformed the dichotomous (Availability,
Metaphor) or within-person (Stroop effect) outcomes to product–
moment correlations and their standard errors. Interaction effect
sizes appear to have been transformed from the original partial 


2

by taking the square root. Many Labs 2 transformed all effect
sizes, except two measured as Cohen’s q, into product–moment
correlations for analysis by computing the noncentral confidence
intervals for each test statistic and then transforming these into
product–moment correlations using the R-package “compute.es”
(Hasselman, personal communication, October 14, 2019).

In each meta-analysis we estimated �, I2, and their 95% confi-
dence intervals. The R-package metafor uses a general expression
for I2 (Equation 9 in Higgins & Thompson, 2002) and estimates its
confidence interval using the Q-profile method (Jackson, Turner,
Rhodes, & Viechtbauer, 2014). We used this information together
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with our power analyses (described below) to examine the extent
of heterogeneity across meta-analyses.

Simulation of Type I Error Rate and Power

In order to facilitate interpretation of our results, we estimated
Type I error and power of the Q-test of heterogeneity (Cochran,
1954) for each of the 68 meta-analyses under zero/small/medium/
large heterogeneity (I2

� 0/25/50/75% respectively). In addition,
we approximated the probability density function of I2 across
meta-analyses at each of these four heterogeneity levels and com-
pared them with the observed frequency distribution of the ob-
served I2 (respectively �̂) estimates of the 68 meta-analyses.
Hence, five distributions of I2 were obtained; four simulated and
one observed. To do so we simulated results of I2 for each
meta-analysis given its number of studies (K), sample sizes of
those studies (vector Nk), and each of the four heterogeneity levels
(osf.io/mw4aq). We directly simulated the distribution of I2 for
correlation, Cohen’s q, standardized mean difference, and mean
difference effect size measures, but not for risk differences. We
treated risk differences as mean differences using the study sample
sizes to compute study precision, because treating them as risk
differences would require strong assumptions on the probability of
success in both treatment groups, assumptions which would
greatly affect the outcomes of the simulation. For the same reason
we treated the four effects of Many Labs 1 which were measured
as odds ratios (and then transformed into standardized mean dif-
ferences) as standardized mean differences. Many Labs 2 and
Many Labs 3 effects, which were reported as correlations were
treated as such.

As our concern was heterogeneity, for convenience we set the
average true effect size to zero in our simulations of heterogeneity.
This should not affect the results for correlations or mean differ-
ences, as estimates of effect size and heterogeneity for these
measures are unrelated (i.e., changing the value of one estimate
does not directly affect the formula and value of the other esti-
mate). For standardized mean differences we expect negligible
effects on the results, because while these estimates of effect size
are positively correlated to their standard errors, the within-study
variance �

2 was kept constant across studies. As a sensitivity
analysis we also ran all I2 analyses assuming medium effect sizes
(Cohen, 1988) and indeed found the same average power at the
different heterogeneity levels; see online Supplement B.

In case the observed effect size was a correlation, one run of a
simulation proceeded as follows. First, we randomly sampled K

true correlations 	i from a normal distribution with mean 0 and
heterogeneity (standard deviation) �. Second, for each of the K true
correlations we sampled one Fisher-transformed (Fisher, 1915,
1921) observed correlation from a normal distribution with mean
	i and variance 1/(Ni � 3). Finally, we fitted a random-effects
meta-analysis with REML and estimated I2 for that run. In the
simulations, we varied the between-studies standard deviation �

between 0.000 and 0.50 in increments of 0.005, and used 1,000
runs at each step to approximate the distribution of I2 at that value
for true heterogeneity. For Cohen’s q, we proceeded identically,
except that variance was computed as 1/(nt – 3) � 1/(nc – 3) where
nt and nc were the observed treatment and control sample sizes for
each study.

For mean differences (and hence also for risk differences) we
assumed a within-study variance of one for both treatment and
control groups, �c

2 � �t
2 � 1. For each run we then set the

population mean of the control condition to 0 and sampled K

treatment population means �k from N(0, �). Subsequently, K
sample means for both control and treatment conditions were
sampled, with x�c � N�0, 1⁄�nc� and x�t � N��k, 1⁄�nt�. Group
variances were sampled using Sc

2 � 

2(nc �1)/(nc �1) and St

2 � 

2

(nt �1)/(nt �1). Finally, we fitted a random-effects meta-analysis
with REML and estimated I2 for that run. For standardized mean
differences (and odds ratios) we proceeded identically, except that
in the final step we asked metafor to transform the effect size into
a standardized mean difference (Hedge’s g) in fitting the random-
effects model. As with correlations, the distribution of I2 was
approximated for values of � from 0 to .5 in steps of .005, using
1,000 runs at each step.

To approximate the statistical power of all 68 meta-analyses at
zero, small, medium, and large heterogeneity we continued as
follows. For each of the 68 meta-analyses we selected the values
of � that yielded the average value of I2 in the simulations closest
to 25% (small), 50% (medium), and 75% (large). For these values
of � and for � � 0 (homogeneity) we ran a simulation with 10,000
runs, and for each run I2 was calculated and the Q-test of hetero-
geneity was performed, yielding estimates of Type I error (in case
of homogeneity) and power (for heterogeneity) for each of the 68
meta-analyses. We considered a result significant when p � 0.05
for the Q-test. The distributions of I2 for zero, small, medium,
large heterogeneity, which we compared to the observed distribu-
tion of 68 effect sizes, was generated by pooling the 68 distribu-
tions of 10,000 I2 values in each category of heterogeneity. Hence
these I2 distributions can be considered a mixture distribution of 68
distributions, using equal weights across all 68 meta-analyses.

Association Between Effect Size and Heterogeneity

We examined the association between average (meta-analytic)
effect size and �̂, I2, and the closely related H2, for effect sizes on
the log odds ratio metric (10 effects) and the standardized mean
differences metric (Hedge’s g; 43 effects). We avoided transform-
ing effect sizes for this analysis because transforming effect sizes
will distort this association (see online Supplement A). Hence we
only used effect sizes that were originally measured as mean
differences or binary outcomes with two groups (risk differences,
odds ratios). There were too few product–moment correlation
effect sizes (4) and differences in correlations (2) to warrant
estimating a correlation to these effect types. Many Labs 3 re-
ported correlations, which they treated as product–moment corre-
lations, as summary statistics for several effects (Availability,
Metaphor; Stroop effect; interactions), which were not originally
measured in this metric. These effect sizes were excluded from the
analysis, as were three effects from Many Labs 2 for the same
reason (Choosing or Rejecting; Direction & Similarity; Actions are
Choices). The four effects (Allowed vs. forbidden, Gain vs. loss
framing, Norm of reciprocity, Low vs. high category scales) that
were transformed by Many Labs 1 into standardized mean differ-
ences we computed as (log) odds ratios.

In our analyses we computed the association of estimates of
average effect size with three different heterogeneity estimates:�̂,
I2, and the closely related H2 (Higgins & Thompson, 2002). All
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estimates were obtained with the REML estimator in metafor. We
added the H2 index as a robustness check to avoid the truncation
at zero of the I2 index when computing correlations between
estimates of effect size and effect size heterogeneity. However, to
avoid truncation we had to compute H2 as H2

� Q/(k – 1). This
expression of H2 is strictly only correct when using the
DerSimonian-Laird estimator of �̂, and readers should be aware of
this when interpreting the results of H2. To describe the association
between average effect size and heterogeneity due to variation in
sample population and settings, we report both Pearson’s product–
moment correlations and, as the association may be nonlinear,
Spearman’s rank order correlations. For these statistics we also
report 95% bootstrap confidence intervals using the percentile
method (osf.io/u2t3r).

Results

Table 3 presents the meta-analytic effect size estimates of � and
I2 with confidence intervals for each of the 68 included effects, as
well as simulated Type I error and statistical power for zero, small,
medium, and large true heterogeneity (defined in terms of I2

�

0/25/50/75%, respectively).

Heterogeneity Estimates and Confidence Intervals

There is limited evidence for widespread heterogeneity across
the examined effects. Rounding I2 estimates to their closest value
of 0/25/50/75% and under the specifications of the original authors
12/68 (18%) meta-analyses have I2 estimates that best correspond
to large heterogeneity (I2

� 75%), 7/68 (10%) to medium heter-
ogeneity (I2

� 50%), 18/68 (26%) to small heterogeneity (I2
�

25%) and 31/68 (46%) to zero heterogeneity (I2
� 0%). The

between studies standard deviation estimates (�̂) shows a similar
pattern, although interpretation is more difficult due to the differ-
ences in scale and lack of guidelines. For the two largest groups
of effect size measures (correlations and SMDs) the largest �̂ is .25

and 0.69, respectively, and their quartiles .014/.047/.068
and �0.001/0.090/0.160. The 48 meta-analyses that had confi-
dence intervals of I2 containing 0 (71%), also had confidence
intervals of �̂ that contained 0. Moreover, the 16 (24%) meta-
analyses with estimated I2

� 0 also had �̂ � 0 (note: two meta-
analyses had I2

� .005 and were rounded down when printed in
Table 3, and one of these also had a �̂ � .0005 which was rounded
down, see table footnote). The percentage of heterogeneity esti-
mates larger than 0 (52/68; 76%) suggests heterogeneity for at
least some meta-analyses, as this percentage is higher than the
expected frequency of nonzero estimates under homogeneity
(47%, or about 32/68), based on the chi-square distribution and
average K (29) across projects. Hence our results on the assess-
ment of heterogeneity are essentially the same using I2 or �̂.

I2 and Power

Figure 1 shows how estimated I2 varies across all 68 meta-
analyses as a function of true heterogeneity (averaged across all
simulation runs). Figure 1 makes clear that I2 is particularly
sensitive to changes in heterogeneity for small heterogeneity, and
that estimates of I2 may differ considerably across projects for the
same value of true heterogeneity. This can largely be attributed to
differences in the sample sizes of the studies incorporated in a
meta-analyses (with larger sample sizes resulting in larger esti-
mates of I2). For example, the cluster of lines at the bottom all
belong to RRR3, the replication project with the lowest average
sample size per study (99; see Table 2). This illustrates why only
relying on I2 can be problematic, and why also reporting �̂ is
recommended, despite the fact that the between studies standard
deviation (�) is not measured on the same scale across different
effect size measures and estimates are not directly comparable
across effect types.

Estimated Type I error and power for zero/small/medium/large
heterogeneity as defined by Higgins et al. (2003) are shown for
each meta-analysis in Table 3. In all cases the Type I error is

Figure 1. Result of simulation relating I2-values to between studies standard deviation. Each line represent one
of 68 effects. Tau (�) is not directly comparable across effect size measures. MD � mean difference; SMD �

standardized mean difference. Code to reproduce figure: osf.io/u2t3r. See the online article for the color version
of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
P

sy
ch

ol
og

ic
al

A
ss

oc
ia

ti
on

or
on

e
of

it
s

al
li

ed
pu

bl
is

he
rs

.
T

hi
s

ar
ti

cl
e

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

933HETEROGENEITY IN DIRECT REPLICATIONS



approximately nominal, as compared to the expected 5% error rate.
Power to detect small heterogeneity was low, ranging from 21% to
58%, with an average of 43%. Power to detect medium heteroge-
neity was generally very good, with an average of 90% power, but
goes down to as low as 66–68% for several meta-analyses with
low K (i.e., meta-analyses from RRR3). Power to detect strong
heterogeneity was excellent across the board. To conclude, even
though for most projects the number of included studies (median
22) and number of participants (median 96 per study) was rela-
tively large, only power to detect medium or larger heterogeneity
was good to excellent, whereas power to detect small heterogene-
ity was unacceptably low. Hence, even large multilab projects
struggle to distinguish zero from small heterogeneity when defined
as I2

� 0 versus 25%.
Figure 2 shows the distribution of I2 at different heterogeneity

levels and the distribution of the observed I2 estimates (bars) using
original model and effect size specifications (as detailed in the
methods section). The shortest bars in the observed distribution
correspond to a frequency of one heterogeneity estimate. The
considerable overlap of the theoretical (simulated) probability den-
sity functions illustrate that it will be particularly difficult to
distinguish zero heterogeneity (i.e., homogeneity) from small het-
erogeneity (here, I2

� 25%), and why confidence intervals for I2

are often wide. Given the distribution of observed I2 estimates in
Table 3 and Figure 2, the majority of observed I2 estimates are
most likely to have zero or zero to small heterogeneity. For I2 only
for 12 meta-analyses there seems to be substantial evidence that
they originate from medium or large true effect size heterogeneity,
as they fall outside the densities of zero and small true effect size
heterogeneity.

Heterogeneity and Effect Sizes

Larger estimated effect sizes appear to be associated with higher
heterogeneity estimates. Our data show a strong correlation be-
tween absolute effect size and heterogeneity due to changes in

sample population and settings (standardized mean differences and
log odds ratios; Figure 3). Among the 43 meta-analyses based on
standardized mean differences (lower graphs in panels A, B, and C
in Figure 3), Pearson’s correlations varied from .66 to .79 depend-
ing on the measure of heterogeneity (r�̂(41) � .77, p � .001,
bootstrap 95% CI [.57, .91]; rI2 (41) � .79, p � .001, bootstrap
95% CI [.63, .90]; rH2 (41) � .66, p � .001, 95% bootstrap CI [.37,
.88]. Results are similar for the 10 meta-analyses which could be
computed as (log) odds ratios (upper graph in panels A, B, and C
in Figure 3), although the lower number of effect sizes lead to less
precision than for standardized mean differences as can be seen in
the wider confidence intervals (r�̂(8) � .91, bootstrap 95% CI
[�.02, .98]; rI2 (8) � .90, bootstrap 95% CI [�.03, .98]; rH2 (8) �

.85, bootstrap 95% CI [.17, .98]). Excluding Anchoring effects (the
1st, 3rd, 4th, and 6th largest effect sizes among average standard-
ized mean differences) as robustness check results in only slightly
lower Pearson’s correlations between average standardized mean
difference effect size and estimated heterogeneity (r�̂ (37) � .74,
p � .001, bootstrap 95% CI [.48, .92]; rI2 (37) � .73, p � .001,
bootstrap 95% CI [.52, .90]; rH2 (37) � .64, p � .001, bootstrap
95% CI [.27, .91]). Also Spearman’s rank-order correlation across
all average SMDs resulted in similar correlations (r�̂ � .79, p �

.001, bootstrap 95% CI [.62, .88]; rI2 � .79, p � .001, bootstrap
95% CI [.61, .88]; rH2 � .75, p � .001, bootstrap 95% CI [.55,
.85]).

Finally, among the 22 standardized mean differences with av-
erage (meta-analytic) effect size not significantly different from
zero (given � � .05), the average estimate of heterogeneity was
�̂ � 0.018, with 14/22 estimates exactly equal to zero (average
I2

� 3.80% and average H2
� 0.90). These results are in line with

zero true heterogeneity for all meta-analyses in this subset, cor-
roborating the proposition that heterogeneity is not to be expected
when average effect size is zero. There was only a single log odds
ratio with an average effect size not significantly different from

Figure 2. Simulated I2 densities across 68 meta-analyses for zero, small, medium, and large heterogeneity
according to the definitions of Higgins, Thompson, Deeks, and Altman (2003), and the distribution of the
observed I2 estimates (bars) for the 68 meta-analyses. Each simulated density consists of approximately 680,000
estimates. Code to reproduce figure: osf.io/u2t3r. See the online article for the color version of this figure.
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zero (Verbal overshadowing 1, p � .060, �̂ � 0.132, I2
� 11.81,

H2
� 1.05).

Discussion

We examined the evidence for widespread sensitivity of effect
sizes to minor changes in sample population and settings (hetero-

geneity) in social and cognitive psychology and the correlation
between average effect size and this heterogeneity, in a sample of
13 preregistered multilab direct replication projects in psychology.
These 13 projects examined a total of 68 primary outcome vari-
ables and arguably represent the best meta-analytic data currently
available in psychology. To aid interpretation we also estimated
power of each project to find zero/small/medium/large heteroge-

Figure 3. The Pearson correlation between absolute effect size and A) �̂, B) I2, and C) H2 respectively for 43
effects that were measured as mean or standardized mean differences and 10 effects measured as odds ratios or
risk differences from 13 preregistered multilab replication projects. Effects reported as mean differences were
standardized and odds ratios/risk differences computed as log odds ratios; r � product–moment correlation,
square brackets contain 95% bootstrapped percentile confidence intervals. Code to reproduce figure: osf.io/u2t3r.
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neity as defined by Higgins et al. (2003) and approximated the
distributions of I2 under these four heterogeneity levels. Our re-
sults showed that most meta-analyses in our sample likely had zero
to small heterogeneity, that power to distinguish between zero and
small heterogeneity was low for all projects, and that heterogeneity
due to changes in sample population and settings was strongly
correlated with effect size for standardized mean differences and
(log) odds ratios.

In addition to most effects showing no or small heterogene-
ity, some effects that showed evidence for medium to large
heterogeneity were effects that might have been expected to be
sensitive to changes in sampling population. That is, most
replication projects included a large number of U.S. labs (see
Table 2) and some effects that demonstrated heterogeneity used
designs where a heterogeneous U.S.-related response would be
unsurprising, also within the United States. For example, effects
with large heterogeneity from Many Labs 1 (Klein et al., 2014)
either asked questions about the U.S. (anchoring effects), per-
sons related to the U.S. or issues that are well-known to
generate strong debate in the U.S. (i.e., free speech; allowed vs.
forbidden). For instance, someone living close to Chicago is
more likely to know the population of Chicago, thereby likely
generating heterogeneity in the anchoring effect concerning the
population size of Chicago. We must note, however, that this
observation is based on our ad hoc reasoning, and exploratory
analyses.

Implications

Our finding that heterogeneity appears to be generally small
or nonexistent is an argument against so called “hidden mod-
erators,” or unexpected contextual sensitivity. Indeed, our re-
sults imply that effects cannot simply be assumed to vary
extensively “across time, situations and persons” (Iso-Ahola,
2017, p. 14) and that we should not expect “minor, seemingly
arbitrary and even theoretically irrelevant modifications in pro-
cedures” (Coyne, 2016, p. 6) to have large impact on effect size
estimates. That is, our results suggest that minor changes to
sample population and settings are unlikely to affect research
outcomes in social and cognitive psychology.

Nonetheless, a few cases in our sample had large heteroge-
neity estimates. There was no clear pattern in experimental
design (as described in Table 2) to indicate when to expect
minimal or large heterogeneity. For example, among priming
effects (the largest subgroup, 23/68 experimental designs) there
were both effects with large heterogeneity estimates (Anchoring
1– 4) and zero (e.g., Structure & Goal Pursuit, Commitment on
exit). The same was true when participants were asked to
imagine slightly different situations (14/68 experimental de-
signs) where “Intentional Side-Effects” had the largest hetero-
geneity estimate (I2) of all meta-analyses, yet several meta-
analyses had zero estimates (e.g., Elaboration likelihood
interaction, Affect & Risk).

What heterogeneity to expect due to minor changes to sample
settings and population seems more dependent on the particular
effect rather than on research design features. Researchers
should thus carefully consider whether their particular topic is
susceptible to changes in context (as also recommend by Si-
mons et al., 2017). For example, a researcher working with

anchoring effects might wish to carefully consider minor
changes to sample settings and population as heterogeneity for
these effects was large, whereas this appears less important for
someone researching the Stroop effect. When information on
heterogeneity for a particular effect is lacking (i.e., Table 3 only
presents results for 68 effects) the appropriate default expecta-
tion seems to be that there will be no or very little heterogeneity
due to minor changes in sample settings and population, given
that this is what we found among most effects in our sample,
particularly for zero effect sizes. In general, we believe the
evidence presented in Table 3 can be useful for researchers
seeking to understand why certain research results do or do not
replicate. The exact implications for replicability under differ-
ent frameworks for defining replication await exploration in
future work. We cannot and do not generalize our conclusions
to conceptual replications, as these studies may vary from
original studies in aspects that are expected to yield different
effect sizes, anticipated by theory.

In view of the fact that most effects in our sample likely had
zero to small heterogeneity, the lack of power to distinguish
between these two heterogeneity levels is of concern. That heter-
ogeneity is small is not the same as being negligible, as even small
heterogeneity may have consequences for implementing interven-
tions, the advancement of theory, and the interpretation of research
outcomes including replication studies. A suggestion to double the
already very impressive number of participating labs and individ-
uals of the largest replication projects in our sample seems unre-
alistic. However, initiatives like the Psychological Science Accel-
erator, which is a globally distributed network of over 500
psychology laboratories, now allow for more powerful multilab
projects than those reported in this article (Moshontz et al., 2018).
Regardless, the good news is that sufficient power to detect me-
dium and large heterogeneity is realistically achievable for many
large multilab replication projects. As these projects’ designs and
methods are usually carefully controlled, we conclude that large
(preferably preregistered) multilab studies are very valuable for
increasing understanding of psychological phenomena.

Heterogeneity among the studied effects was positively associ-
ated with effect size for standardized mean differences and (log)
odds ratios. For both standardized mean differences and log odds
ratios the correlation was similarly strong (ranging from .66–.91
across heterogeneity and effect size measures). There are thus both
theoretical reasons, related to the measurement reliability of esti-
mates, and empirical reasons to expect larger effect sizes to exhibit
comparatively more heterogeneity when using observed effect
sizes in a meta-analysis.

For our own sample of meta-analyses, however, we have no
evidence that the association between heterogeneity and effect size
is (at least partly) explained by differences in measurement reli-
ability among labs. Measurement reliabilities were not reported by
the projects we examined, and downloading, cleaning, and com-
puting them from the raw data is outside of the scope of this article.
Yet, the strong similarity of research materials across replication
studies does imply smaller differences in measurement reliability
than typically found in “regular” meta-analyses in psychology, as
these regular meta-analyses include studies with different mea-
surements of the variables involved. We therefore hypothesize that
differential measurement reliabilities across studies in the same
meta-analysis may at least partially explain why heterogeneity in
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meta-analysis in psychology is typically larger than those found
in multilab replication studies. For applied meta-analysts, differ-
ential measurement error is thus yet another potential explanation
for observed heterogeneity. Nonetheless, we want to stress that
correcting for measurement error when estimating effect size is not
an easy fix to the problem of accurately estimating heterogeneity
of effect sizes; as both effect size and estimates of reliability are
imprecise (i.e., subject to sampling error), attempting to correct for
measurement error may also introduce heterogeneity, rather than
reduce it.

The positive association between estimates of average effect size
and heterogeneity cannot be a statistical artifact resulting from labs
with small samples sizes examining large true effect sizes (e.g.,
because of a priori power analyses). Adequate a priori power analyses
would imply a negative (spurious) association between estimates of
effect size and heterogeneity, which is the opposite of what we found.
We expand on this argument in online Supplement C.

Our correlational results also suggest that if there is a null overall
(meta-analytic) effect size, then it is likely the effect does not exist in
any sample population or setting. This is suggested by our finding of
no evidence of heterogeneity in the subset of 22 standardized mean
differences with an average (meta-analytic) effect size that was not
significantly different from zero. However, we advise caution with
generalizing this implication. This implication holds for direct repli-
cations only, and may not hold for conceptual replications that differ
more on sample population and setting (or that differ in a different
way than our subset of meta-analyzed studies; see Table 2), or along
other dimensions (treatment and measurement variables). Strictly
speaking, it is also possible that the effect exists only in a particular
subset of the population (e.g., elderly with low education), although
we do not believe this is a priori likely as an average nonzero effect
size would be expected in such a case. Another important caution is
that an average effect size may not be (significantly) different from
zero because of a lack of statistical power. This is not an issue for the
multilab projects included in our article, as their typical statistical
power exceeds 0.99 to detect a small true effect size (i.e., Hedge’s g �

0.20), due to very large sample sizes.
Finally, our analysis reported in online Supplement A demonstrates

that transforming effect sizes to another metric may generally be
inadvisable since the monotonicity principle can be violated (that is,
the order of heterogeneity estimates of different meta-analyses may
change due to the transformation). In view of this finding researchers
may wish to carefully consider whether combining or transforming
effect sizes from different effect size metrics in a meta-analysis is
advisable.

Limitations and Future Research Directions

There are some limits to the generalizability of claims based
on the data in our study. Primarily, the included effects are
neither a representative nor random sample of effects in psy-
chology and as such do not support making strong claims about
average heterogeneity levels in psychology. We would consider
most of the effects described in Table 2 to belong to social and
cognitive psychology (and Many Labs 2 explicitly selected
effects from these domains). Although these are large subfields
in psychology, the lack of effects from other disciplines means
our results may not generalize to disciplines such as develop-
mental, clinical, or educational psychology. Relatedly, at least

the Many Labs studies (which examined many effects in a
single session) selected effects partly based on their brevity,
and hence we cannot exclude the possibility that our conclu-
sions may be more applicable to these kinds of effects. In
addition, we only considered meta-analyses that varied two
contextual factors (sample population and settings) that may
cause heterogeneity, keeping constant two other ones (treatment
and measurement variables), which may have resulted in both
lower heterogeneity estimates as well as a stronger relationship
between effect size and heterogeneity estimates in our article.

Moreover, our results may depend on the type of variation in
sample population and settings across labs. Most samples consisted of
college undergraduates and took place in a lab or online (see Table 2)
and it may be that there would be more variation across studies when
using, for example, children or an organizational setting. In connec-
tion to this, it is possible that our use of a single web page (https://
curatescience.org/app/home) has led us to miss some multilab
direct replication projects, although we believe it unlikely that
we have missed many (if any) multilab direct replication proj-
ects, because of their relatively recent popularity and highly
publicized nature. Although we are confident to have included
the vast majority of relevant projects currently published, the
relatively small number of meta-analyses in our sample means
the association between heterogeneity and effect size might be
an artifact of the data. However, the exclusion of the rather
extreme anchoring effects from our analysis only slightly re-
duced the correlation between effect size and heterogeneity. We
also found similar results across two different effect size mea-
sures, although the low number of meta-analyses with log odds
ratios (10) meant confidence intervals for that measure were
wide. Relatedly, we should stress that while our results point
toward most meta-analyses having zero to small heterogeneity,
many confidence intervals are very wide and congruent with a
large range of actual heterogeneity.

Our results and the limitations of our data provide some
guidance in directions of future research. The 68 meta-analyses
studied here suggest that zero to small heterogeneity is the
standard for direct replications in social and cognitive psychol-
ogy, but it would still be desirable to examine heterogeneity in
a larger sample of meta-analyses of direct replications. We are
enthusiastic about the possibilities to do so in the near future,
thanks to the many ongoing multilab initiatives in psychology
(Registered Replication Reports, ManyBabies, the Psychologi-
cal Science Accelerator). Relatedly, a larger sample of meta-
analyses would enable testing whether the correlation between
heterogeneity and effect size is generally as strong as what we
found in our sample of standardized mean differences. Ideally
there would be a continually updating analysis of heterogeneity
and the association between heterogeneity, given the many
multilab projects in psychology likely to be published in the
next few years. Moreover, the spread of the multilab format to
disciplines other than social and cognitive psychology (e.g.,
ManyBabies; developmental psychology) will enable research-
ers to examine whether our conclusions also apply to direct
replications in other fields of psychology, and for direct repli-
cations varying other aspects of sample population and settings
than those varied here, and/or other contextual factors. Finally,
it may be worthwhile to attempt to disentangle the contribution
of reliability to the correlation between heterogeneity and effect
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size from other aspects of measurement that are likely to
contribute, such as range restrictions (Schmidt & Hunter, 2015).

Conclusions

To conclude, in the arguably best meta-analytic data cur-
rently available in psychology, most effects likely had zero to
small heterogeneity arising from minor variation in sample
population and settings, and this heterogeneity was strongly
correlated with effect size for standardized mean differences
and (log) odds ratios. Despite a relatively large number of
studies and participants in each meta-analysis, power was too
low to distinguish between zero and small heterogeneity in all
cases. Our results suggest that minor changes to sample popu-
lation and settings are unlikely to affect research outcomes in
social and cognitive psychology.
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