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Interaction effects, and moderation effects more generally, 
are common in psychology. Human behavior is notoriously 
sensitive to context, and testing interactions allows research-
ers to determine the degree to which the relationship between 
two variables is generalizable, or specific to certain environ-
ments or groups (Mackinnon, 2011). When conducting this 
research, it is typically insufficient to show that an interac-
tion exists: usually the onus is on showing that the interac-
tion corresponds to a pattern than supports one conclusion 
over another. Attenuated interactions (also referred to as 
spreading interactions) are one of these patterns, and charac-
terize situations where the effect of a moderator is to reduce 
or eliminate, but not reverse, the main effect. Naturally, not 
all interaction effects are attenuated: when interactions are 
crossed, moving across a moderator variable results in a 
reversal of the direction of a main effect. Nonetheless, atten-
uated interactions are often patterns of interest.

Even in light of the replication crisis, researchers greatly 
underappreciate the fact that attenuated interactions require 
surprisingly large sample sizes to achieve adequate statistical 
power. For example, assume that a study with one between-
subject factor with two levels has 80% power to detect a 
genuine main effect. Assume, as well, that an additional two-
level between-subject factor (a moderator) generates a true 

fully attenuated interaction effect: at one level of the modera-
tor, the genuine main effect just noted exists; at the other 
level of the moderator, the main effect is completely absent. 
For a study to possess 80% power to detect the interaction 
effect, sample size per cell must be double that of the study 
examining the main effect in the “non-attenuated” condition 
alone. As the addition of the moderator also doubles the 
number of cells in the study (as the design has become a 2 × 
2 factorial design rather than a simple two-condition design), 
the total sample size must increase by a factor of four to 
retain its efficiency (see also Simonsohn, 2014).

One way to appreciate why power to detect the attenu-
ated interaction is much lower than power to detect the true 
effect in the “effect-present” condition of the moderator is 
to understand each effect’s size. If a medium effect size 
exists in the “effect-present” condition (d = .50) and none 
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exists in the other condition, then the effect size of the 
interaction is half that in the “effect-present” condition 
(thus, d = .25). Naturally, all else equal, smaller true effects 
can be detected with targeted power only with larger sam-
ple sizes—and, indeed, halving of the effect size requires a 
quadrupling of total sample size to maintain comparable 
power. Even though these statistical facts have been dem-
onstrated (Aiken et al., 1991; McClelland & Judd, 1993), 
here we show they are frequently misunderstood by 
researchers. Our primary aim is to explain these phenom-
ena and guide researchers to avoid the common pitfall of 
underpowering their attenuated interactions.

The second condition affecting effect size estimates, and 
thus a priori power calculations, concerns measurement error 
as it pertains to operationalizing independent variables or 
predictors of interest. Some independent variables are often 
very easy to assess accurately, such as group membership, 
age or biological sex. Others are harder to assess accurately, 
perhaps because measures are unduly invasive, impractical, 
or impossible to obtain with 100% accuracy. For these mea-
sures, researchers operationalize the variables of interest 
with proxies, each of which contains a certain degree of mea-
surement error. Current fertility, or ovulatory status, illus-
trates these latter measures. Ovulatory status can only be 
confirmed with transvaginal ultrasound (Porterfield, 2001), 
though it can be estimated with a small degree of error by 
measuring particular hormone concentrations (e.g., 
Guermandi et al., 2001), and with larger error, from the cur-
rent day of a woman’s menstrual cycle. Measurement error 
naturally diminishes true manifest interaction effect sizes, 
relative to effects of true “latent” target variables of interest, 
and hence statistical power. The effect of measurement error 
on statistical power has also been demonstrated statistically 
(Busemeyer & Jones, 1983), but we show that effects are 
frequently underestimated. Our secondary aim is to illustrate 
the pitfalls of disregarding this type of measurement error 
and to show how calculation of sample sizes and resultant 
statistical power can correct for measurement error in predic-
tor variables.

We treat a paper by Netchaeva and Kouchaki (2018), 
recently published in Personality and Social Psychology 
Bulletin (PSPB), as our first case study to demonstrate 
these pitfalls and how they may be overcome, later extend-
ing our analysis of the first pitfall to a range of papers in 
PSPB. Netchaeva and Kouchaki (2018) presented an 
ambitious series of six studies, requiring a high degree of 
investment from the researchers. There is much to like 
about their paper, including multiple studies and attempted 
internal replication of effects, the utilization of multiple 
methods to assess proxy variables (i.e., fertility), varying 
sample pools to increase generalizability, and a final large 
study that was preregistered. In short, the project incorpo-
rated many strong research practices. Nonetheless, critical 
problems limit what can be concluded from the series of 
studies, the most notable of which concern an 

underappreciation of true manifest effect sizes that could 
have reasonably been detected, and hence overestimation 
of statistical power.

As we document here, none of the six studies reported—
including one with 537 participants—had anywhere close to 
sufficient statistical power to detect an attenuated interaction 
in which, within a predicted “effect-present” condition, there 
exists a true medium effect. The authors concluded that no 
attenuated interaction effect likely exists yet, in fact, their 
data do not support this conclusion. This article, then, offers 
a good case study illustrating how a well-intentioned and 
ambitious research program incorporating a host of strong 
research practices can nevertheless be hampered by misun-
derstandings of attenuated interactions and measurement 
error. By clarifying these misunderstandings, we hope that 
our discussion of this study can help prevent similar issues 
arising in future research.

Attenuated Interactions Affect Effect 
Size Estimates: A Case Study

Netchaeva and Kouchaki (2018) sought to test whether 
naturally ovulating women, when conceptive in their 
cycles, would especially distrust, dislike, derogate, and be 
more attuned to the dominance of a woman dressed in red, 
relative to a woman dressed in another color (in their stud-
ies, blue and gray). Six studies tested their hypotheses, 
exposing purportedly conceptive or non-conceptive women 
to a woman dressed in red or blue/gray, then measuring 
interpersonal judgments. The prediction tested was an 
attenuated interaction: when women evaluated a target 
woman dressed in red, conceptive status was predicted to 
have main effects on interpersonal judgments, but when 
women evaluated a woman dressed in blue or gray, concep-
tive status was expected to have little to no effect on inter-
personal judgments. Findings were mixed, with about one 
of six effects tested achieving statistical significance in the 
predicted direction (p < .05), and a little over one in three 
achieving “marginal” significance (p < .10). Ultimately, 
the authors concluded support for the null hypothesis.

Netchaeva and Kouchaki’s (2018) hypothesis was a risky 
one, as it stems from the conjunction of two separable ideas: 
that women are more attuned to compete intrasexually with 
female rivals in a conceptive state, and that the color red 
evokes both sexual motivation in men and competitive moti-
vation in women (for critical treatments of the latter idea, see 
Francis, 2013; Lehmann & Calin-Jageman, 2017). The 
authors furthermore posited that conceptive women’s com-
petitive motivations evoked by redness would manifest in a 
variety of forms: fundamentally, they focused on distrust, but 
they proposed that distrust could manifest in dislike, deroga-
tion tactics, and attunement to dominance. Our aim is not to 
weigh in on the a priori strength of these hypotheses. Rather, 
we show that even if their hypotheses are true, a misunder-
standing of statistical power in attenuated interactions, and 
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of measurement error, meant that their six studies had little 
chance of detecting the effects in question.

Calculating the Expected True Effect Size of an 
Attenuated Interaction

First, we examine how attenuated interactions affect the 
expected true size of an effect. A medium effect size (Cohen’s 
d) is generally considered to be d = .50 (Cohen, 1988). Let 
us suppose that women in the fertile window (generally 
thought to be approximately 5–6 days per cycle; Fehring & 
Schneider, 2008) trust women in red less than women out-
side the fertile window, with d = .50. We furthermore assume 
that they equally trust women in blue or gray, such that  
d = 0. This pattern constitutes a fully attenuated interaction: 
an effect present in one condition completely evaporates in 
the other condition. The effect size of the interaction—the 
standardized difference in the dependent variable along diag-
onals of a 2 × 2 matrix—is thus half that of the “effect-pres-
ent” condition effect size (thus d = .25). So long as sample 
size in the two groupings compared are equal, as should 
(approximately) be the case in this instance, we can express 
this effect size in a metric equivalent to r in Equation 1, with 
conversion of d to r such that when d = .25:

r
d

d
=

+2 4
	 (1)

r = .124 	 (2)

As shown in Equations 1 and 2, assuming a true effect size, 
d, in the “woman-in-red” condition at d = .50 and the exis-
tence of an attenuated interaction, the true interaction effect 
size expected by the design of Netchaeva and Kouchaki 
(2018) is r = .124. Sample sizes calculated to yield, say, 80% 
power to detect the true effect, based on the incorrect effect 
size estimate of d = .50, will at best result in a study with 
one-quarter the required sample size to achieve adequate sta-
tistical power.1

Although we focus on factorial designs, we note that the 
situation is not necessarily improved when one of the mod-
erators is continuous. Simulation studies have demonstrated 
that in comparison with a 2 × 2 design, normally distributed 
continuous moderators can result in an eight-fold decrease in 
statistical power (McClelland & Judd, 1993). This decrease 
eventuates because the ability of a continuous moderator to 
detect a genuine effect depends on the variance in the distri-
bution of the moderator and its co-occurrence with the other 
moderator. In short, the greatest statistical power results from 
a large number of co-occurring values in the tail ends of each 
moderator’s distribution. Although further focus on these 
subtleties is outside the scope of this article, McClelland and 
Judd (1993) provide a compelling explanation and should be 
consulted by interested readers.

The primary point of this section is worth repeating: 
although a sample size may be adequate for detecting main 

effects, it may be grossly inadequate for detecting modera-
tor effects of similar importance. The situation worsens 
when one deals with measurement error, which, in 
Netchaeva and Kouchaki’s (2018) case, pertained to con-
ceptive status. In what follows, we show that when account-
ing for measurement error, the expected true effect size 
diminishes even further.

Adjusting the Expected True Effect Size for 
Measurement Error

In five of six studies, Netchaeva and Kouchaki (2018) esti-
mated current fertility using two different variations of 
counting methods, both requiring women to estimate their 
typical menstrual cycle length. The first variation (“Method 
1”) used this length estimate in conjunction with counting 
backward from the last day of the cycle to estimate women’s 
current cycle day, classifying those women sampled on Days 
8 to 14 (a 7-day window) into the high fertility group, and the 
remainder to the low fertility group. The second variation 
(“Method 2”) used the cycle length estimate in conjunction 
with counting forward from the first day of the cycle, and 
actuarial data from Wilcox et al. (2001), to provide a con-
tinuous estimate of conception probability based on the for-
ward-counted current cycle day. How do these two methods 
stack up, in terms of measurement error? In addition to 
recalled menstrual cycle length being associated with around 
21% error in and of itself (Small et al., 2007), both Method 1 
and Method 2 are independently fraught with considerable 
error and low validities in their own right.

Using luteinizing hormone (LH) tests to indicate fertility, 
Blake et  al. (2016) provide one estimate of measurement 
error for both methods. When using a 6-day fertile window, 
Blake et al. (2016) show that Method 1 classifies women into 
the “fertile” group with an error rate of 39.5%; when using 
the 7-day window from Netchaeva and Kouchaki (2018), the 
error rate increases to 45.2%. For Method 2, Blake et  al. 
(2016) show that this method yields an error rate of 59.4%. 
Subsequent work supports modest degrees of measurement 
error for counting methods (Arslan et al., 2018), though they 
yield less dire rates of error than Blake et al. (2016), with an 
upper bound of around 30%. Taking all of the available evi-
dence into account, it is reasonable to say that at least one—
and possibly up to two—of every three subjects from the 
“fertile” group in Netchaeva and Kouchaki (2018) were very 
likely to be non-fertile at the time of measurement.

These error rates are sizable but do not present an insur-
mountable problem, assuming researchers account for 
reduced validity when conducting a priori sample size calcu-
lations. Gangestad et al. (2016) use simulated data to show 
how to do so, and we use their results to provide a second 
estimate of the validity of methods employed by Netchaeva 
and Kouchaki (2018). For Method 1—the binary 7-day fer-
tile window estimate—the correlation between true fertility 
status and measured fertility status in Gangestad et al. (2016) 
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is very close to r = .50. This estimate assumes a 7-day win-
dow covering Days 10 to 16, but we note that Netchaeva and 
Kouchaki’s (2018) 7-day window has lower validity than 
this window, and we approximate it to be r = .45. For Method 
2—the continuous estimate based on forward-counted con-
ception probability—the validity in Gangestad et al. (2016) 
is close to r = .50. Given Netchaeva and Kouchaki (2018) 
assigned the first day of the cycle to be Day 0, not Day 1, 
however, again this leads to a slightly less valid measure 
(also approximately r = .45).

These validity estimates have large effects on the true mani-
fest interaction effect size. Assuming validity estimates of  
r =.45, the true manifest interaction effect size for Studies 2 to 
6 in Netchaeva and Kouchaki (2018) under assumptions stated 
above, in r, is exceptionally small and shown in Equation 4:

r = ×. .124 45 	 (3)

r = .059 	 (4)

Thus, taking into account measurement error, the sample size 
estimated to yield 80% power is now at least 16 times larger 
than that estimated to yield 80% power assuming d = .50. 
The one exception is Study 1, which used LH tests to mea-
sure fertility status. As acknowledged by the researchers, LH 
tests are the most validated and least invasive method for 
estimating ovulation (Guida et al., 1999). If we assume that 
validity of that method is r = .9, then the manifest interaction 
effect size in that study, in r, is somewhat larger and shown 
in Equation 6:

r = ×. .124 9 	 (5)

r = .111 	 (6)

This still results in a sample size at least four times as large 
as that required when d = .50, but is nevertheless a big 
improvement on the sample required when using counting 
methods with such high rates of error.

In fairness to Netchaeva and Kouchaki (2018), they con-
ducted power analyses based on published effect sizes. 
Hence, for instance, for Study 2, they calculated the neces-
sary sample size to achieve 80% power to detect an effect 
size of f = .2 (i.e., r = ~.2), as reported in a previous study 
by Durante et al. (2014), resulting in targeted sample size of 
200. As Durante et al. used a measure of fertility status simi-
lar to Netchaeva and Kouchaki, effect sizes in their study 
should have also been affected by poor measurement validity. 
Yet, Durante et al. did not examine an attenuated interaction, 
meaning the effect size that could be expected in Netchaeva 
and Kouchaki’s studies was lower than what Durante et al. 
could expect. Furthermore, the true effect size of fertility sta-
tus that a manifest effect size of r = .2 assumes (i.e., disat-
tenuated for measurement error) is closer to r = .44 (i.e., 
.2/.45)—an unrealistically large effect size. Due to publica-
tion bias, published effect sizes tend to overestimate true 
effect sizes, even when the latter are non-zero. Hence, we 
suggest, researchers should base power calculations on real-
istic effect sizes, partly in light of measurement error, and not 

merely take published effect sizes at face value. We also note 
that, while Netchaeva and Kouchaki achieved sample sizes 
close to or greater than 200 in Studies 2, 5, and 6, sample size 
was 129 in Studies 3 and 4, and hence fell short of the sample 
size their own power estimate called for.

Improper True Effect Size Calculations 
Dramatically Reduce Power

It is probably not too surprising for most researchers that 
improperly calculating true effect sizes can dramatically affect 
estimated statistical power. What we suspect is less intuitive to 
researchers is the extent to which power can be reduced, and 
how large sample sizes may need to achieve adequate power. 
Sample sizes in Netchaeva and Kouchaki (2018) ranged from 
N = 129 to N = 537, so while they were not impressively large, 
neither were they intuitively much too small for a 2 × 2 design. 
Researchers may ask: surely sample sizes in a 2 × 2 design that 
exceed 500 approach adequate power, or at the very least, 
effects in the aggregate do? Here, we show that this intuition—
that sample sizes around N = 500 in 2 × 2 designs are fairly 
defensible—is not the case. In fact, even aggregate sample 
sizes closer to N = 1,000 can be severely underpowered to 
detect meaningful effects.

To examine the degree to which this intuition is mislead-
ing, we take our estimates of true manifest interaction effect 
size and sample sizes from Netchaeva and Kouchaki (2018) 
and calculate the power obtained in their studies to detect a 
pattern of meaningful effects. We assume a meaningful effect 
is of medium size (d = .50) in the “woman in red” condition, 
and of zero size (d = 0) in the “woman in blue/gray” condi-
tion. Table 1 documents our findings, which shows that the 
actual power for the individual studies in Netchaeva and 
Kouchaki (2018) ranges from just under 10% (when  
N = 129; Studies 3 and 4) to about 25% (when N = 537; 
Study 6). Even with a sample size of over 500, then, the 
power to detect a real substantive effect is seriously inade-
quate. Indeed, power to achieve even a “marginally signifi-
cant” result (p < .10, two-tailed) ranges from about 17% to 
36%. In even the most highly powered study, where N = 537, 
the probability of achieving even a marginally significant 
result is just over one in three. On average, across the indi-
vidual studies, power to obtain significant and marginally 
significant results is 14% and 22%, respectively, and a study 
with 80% power would have required a total sample size of 
about N = 2,500. Power estimates are similarly inadequate in 
the aggregate where total Ns = ~1,000: as shown in Table 2, 
power to detect true medium-sized effects in the aggregate 
data ranges from about 35% to 42%.

On the Pitfalls of Interpreting Results When 
Power Is Inadequate

Netchaeva and Kouchaki (2018) conclude that, “Across six 
studies, our research fails to provide support for the prediction 
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that an ovulating woman is less likely to trust another woman 
wearing red compared with a nonovulating woman” (p. 1). 
Yet, based on the power estimates from their individual stud-
ies, mostly non-significant results were to be expected. 
Specifically, about one in seven of the results should have 
been statistically significant, and one in four should have been 
marginally significant (if true effects were medium in size). In 
fact, across the two different fertility estimation methods and 
20 different specific outcomes examined in their six studies  
(a total of 39 effects), the number of effects with p < .05 (6/39; 
15%) and effects with p < .10 observed (14/39; 36%) equals 
or exceeds the numbers that could have been expected based 
on these power estimates.

This pattern is also evident in the p-values associated 
with the effect sizes when data are analyzed in the aggre-
gate. The mean interaction effect for the primary effect of 
interest—trust of the target women—is significant, with  
p = .008 and p = .004 for the continuous and binary mea-
sures of fertility status, respectively. Other effects are sig-
nificant, in aggregate, for prosocial giving toward the target 
(p = .004 and p = .054) and perceived warmth of the target 
(p = .119 and p = .002). Tests for other outcome variables 
vary (e.g., they approach significance or are significant for 
perceived dominance of the target [p = .119 and p = .048] 
and perceived attractiveness [p = .084 and p =.051]). Thus, 
of 14 different tests, five p-values—or 36% of tests—were 
less than .05 and eight p-values—57% of tests—were less 
than .10, values greater than expectation if true effects are 
medium in size (30% and 42%, respectively).

We can also use the observed manifest mean effect sizes 
to estimate the true interaction effect size in d. Once again,  
d for a medium attenuated interaction effect is equal to .25. If 
validity of measurement is assumed to be .45, the mean esti-
mated interaction effects across all outcomes are d = .33 and 
d = .36 (using continuous and binary fertility status mea-
sures, respectively). The mean effects for the primary out-
come of interest, trust in the target woman, are d = .39 and  
d =.43. More generally, d is above .3 for prosocial responses 
possibly related to trust (perceptions of warmth, prosocial 

giving, and liking), though lower (<.3) for other perceptions 
(attractiveness, competence, and dominance).

In aggregate, these data appear to be compatible with 
larger-than-medium effect sizes, at least in some domains. 
Nonetheless, our point is not that meaningful true effects do 
exist; further investigation is needed to assess their size and 
robustness. Rather, our primary point is that, in light of 
weak power to detect true effects, Netchaeva and Kouchaki’s 
(2018) conclusion that there is scant evidence for non-null 
effects is potentially misleading. Within their data, predic-
tions performed as well as could be expected if true 
medium-sized effects exist, such that the conclusion that 
the research failed to find support for them is not warranted. 
The conclusion only appears reasonable because the weak 
power in Netchaeva and Kouchaki’s studies is vastly 
underappreciated.

Tests of Attenuated Interactions Are 
Common and Typically Underpowered

We have used Netchaeva and Kouchaki (2018) as our case 
study to illustrate issues of power in tests of attenuated inter-
actions, but the problem is not confined to this one example. 
Tests of attenuated two-way interactions are commonly 
used by many researchers in social and personality psychol-
ogy, and issues with statistical power often result. To dem-
onstrate, we used Web of Knowledge to identify all papers 
published in PSPB in 2019, including online. Of 147 papers, 
we found 12 that explicitly sought to test attenuated interac-
tions.2 For instance, Nelson-Coffey et al. (2019) predicted 
that parenthood enhances men’s well-being more than wom-
en’s well-being. Wang and Ackerman (2019) predicted that 
infectious disease primes would increase the impact of indi-
vidual differences in germ aversion on perceptions of social 
crowdedness. Townsend et al. (2019) examined whether an 
intervention designed to educate students about the college 
experience would close the gap in achievement across social 
classes. Across these papers, 34 different studies examined 
attenuated interactions.

To gauge the statistical power of these studies, we make a 
few simple assumptions. Namely, we assume (a) a fully 
attenuated interaction, with a medium true effect (d = .50) in 
an “effect-present” condition and no effect (d = .00) in an 
“effect-absent” condition, (b) a balanced research design, 
and (c) measurement validity at .80. Under these assump-
tions, the effect size of the interaction (represented in r or f) 
is .10, and 80% power to detect it with a two-tailed test 
requires a sample size of N = 781 (where α = .05 and there 
are no additional covariates; G*power; Faul et al., 2009). As 
shown in Table 3, the actual sample size across the 34 studies 
ranged from N = 62 to N = 13,007 (median = 224, har-
monic M = 210), most of them (29 studies; 85%) fell below 
781, and five sample sizes were N = 2,452 or larger. Of the 
29 studies failing to meet the criterion of N ≥ 781, the 
median sample size was 206, the harmonic mean was 180, 

Table 1.  Estimates of Power to Detect Medium Attenuated 
Interaction Effect Sizes From Netchaeva and Kouchaki (2018).

Study N

Power

Two-tailed,
p = .05

Two-tailed,
p = .10

Study 1 66 .145 .233
Study 2 209 .126 .207
Study 3 129 .096 .166
Study 4 129 .096 .166
Study 5 192 .120 .198
Study 6 537 .253 .363
Total N 1,262 Mean power .139 .222
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and the range was 62–670. This median sample size yields 
just 30% power under the stated assumptions.

All but three studies (31; 91%) report at least one inter-
action p-value as “significant” (26 of the 29 studies [90%] 
with sample size < 781), yet an examination of the distri-
bution of reported p-values leads to the conclusion that 
mean power in these studies falls far short of 80%. If 80% 
power were achieved, then 70% of significant p-values 
should be p < .01. Yet, only 10 of the 31 studies yielded  
p < .01 (and when the five large studies were excluded, just 
six studies yielded p < .01). For these 31 studies, a p-curve 
calculated through p-curve app (Simonsohn, 2017) yielded 
a modest estimated power of 46% (95% CI = [22, 68]) 
across all studies, and a stunningly low power of 9% (95% 
CI = [5, 28]) across the 26 studies with sample size less 
than 781. Indeed, the distribution of these 26 p-values is not 
significantly different from what one would expect if all 
effects were null (p = .17).3

Many of these studies were underpowered despite 
authors conducting and reporting power analyses. Of the 
nine papers exclusively reporting studies with sample sizes 
less than 781, seven calculated a priori power analyses. Of 
these, four studies estimated power based on effect sizes 
calculated on a small pilot study (r = .26; Wang & 
Ackerman, 2019), or effect sizes that were presumed to be 
medium to large (r = .32; Carrier et  al., 2019), medium 
(.25; Yao & Chao, 2019), or small to medium (.20; Martin 
et  al., 2019). As these assumed interaction effect sizes 
imply true simple effects in an effect-present condition that 
is double the assumed interaction effect size (i.e., r = .40–
.64), the hypothesized interaction effect sizes were overly 
optimistic. Another two papers (Eck et al., 2019; Townsend 
et al., 2019) used prior data pertaining to effect size in an 
effect-present condition where d = .35 or d = .70, respec-
tively, but did not account for the effect size of a fully atten-
uated interaction effect halving that in the effect-present 

condition. Just one paper reported a power analysis based 
on a putative true effect within an effect-present condition 
and a zero effect within an effect-absent condition (Voelkel 
& Brandt, 2019), leading to a required sample size that was 
double that of the other six papers.

We emphasize that we are not saying that the attenuated 
interactions reported in these studies do not exist. Likewise, 
we emphasize that p-values in all studies with large sample 
sizes were close to or less than p = .01 (Bahamondes et al., 
2019; Nelson-Coffey et al., 2019; Sparks & Ledgerwood, 
2019). In two of the papers, authors also conducted internal 
meta-analyses across multiple studies, which yielded evi-
dence that suggests effects are real (Hasan-Aslih et  al., 
2019; Wang & Ackerman, 2019). Rather, we draw on these 
examples to illustrate that the issue of inadequate power in 
attenuated interactions is not just confined to our case study 
of Netchaeva and Kouchaki (2018), but common across 
personality and social psychology—even when power anal-
yses are reported.

Discussion

The first lesson that researchers can draw from our analyses 
is to beware effect size calculations for attenuated interac-
tions. In particular, it is critical to be mindful that, if a mean-
ingful main effect size in an “effect-present” condition is a 
medium d = .50, a meaningful effect size for a fully attenu-
ated interaction is d = .25. When a moderating variable only 
partially attenuates the effect, even larger sample sizes are 
required. To detect an attenuated interaction, then, a study 
requires at the very least twice as many participants per cell 
to achieve the same statistical power as a study designed to 
detect a main effect in an “effect-present” condition.

Second, it is important to remember that mostly non-sig-
nificant results are to be expected when studies are under-
powered, and these results are not especially meaningful. 

Table 2.  Significance Tests and Estimated Effect Sizes From Aggregate Data From Netchaeva and Kouchaki (2018).

Outcome Measure of fertility status N Mean zr z p Mean wtr Estimated d

Trust Continuous 795 –0.136 –2.66 .008 –0.111 –.39
Binary 795 –0.148 –2.89 .004 –0.121 –.43

Prosocial giving Continuous 209 –0.202 –2.88 .004 –0.199 –.66
Binary 209 –0.138 –1.93 .054 –0.202 –.44

Liking Continuous 258 –0.078 –1.22 .222 –0.077 –.33
Binary 258 –0.094 –1.43 .140 –0.093 –.40

Perceived warmth Continuous 858 –0.064 –1.56 .119 –0.069 –.30
Binary 858 –0.127 –3.08 .002 –0.113 –.47

Perceived attractiveness Continuous 858 –0.071 –1.73 .084 –0.064 –.28
Binary 858 –0.08 –1.95 .051 –0.069 –.30

Perceived dominance Continuous 987 0.048 1.56 .119 0.041 .18
Binary 987 0.063 2.04 .048 0.051 .22

Perceived competence Continuous 858 –0.039 –0.95 .344 –0.044 –.19
Binary 858 –0.053 –1.29 .198 –0.057 –.25
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Treating them as such can give the impression that an effect 
is absent, or that there is genuine inconsistency between 
studies, when those yielding null results may simply reflect 
a lack of statistical sensitivity (Vadillo et  al., 2016). 
Likewise, when manifest observed effect sizes yield point 
estimates of highly meaningful true effects and yet signifi-
cant tests yield mixed results, the conclusion should not be 
that that true effects are likely near-null. Rather, in such 
instances, mixed significance tests may very well reflect 

weak power to detect meaningful true effects, and demon-
strably so in our case study.

Third, a series of underpowered studies, while perhaps 
creating a veneer of reliability and coherence, do not pro-
vide the same evidence of an effect as one adequately pow-
ered study. This point has been convincingly made already 
(Schimmack, 2012), but its uptake has been disappoint-
ingly slow, especially in personality and social psychology 
where some of the top journals require multi-study papers. 

Table 3.  Sample Characteristics and t-Statistic Summaries of PSPB 2019 Papers Reporting Attenuated Interactions.

Paper Study N df t p

Wang and Ackerman (2019) Pilot 62 58 2.09 .041
Study 1 100 96 2.68 .009
Study 2 206 202 2.24 .026
Study 3 358 353 1.61 .108
Study 4 222 218 2.06 .041
Study 5 353 349 a a

Yao and Chao (2019) Study 1 195 191 2.42 .016
Study 2 153 148 2.02 .045

Hasan-aslih et al. (2019) Study 1a 152 148 2.58 .011
Study 1b 153 149 1.54 .126
Study 1c 225 221 2.00 .047
Study 2 276 272 2.73 .007

Martin et al. (2019) Study 2 148 144 2.15 .033
Study 3 165 161 2.37 .019
Study 4 212 204 2.46 .015
Study 5 235 231 2.14 .033
Study 6 156 152 2.57 .011

Adelman and Dasgupta (2019) Study 1 392 388 2.13 .034
Study 2 670 666 3.08 .002
Study 3 551 543 2.29 .022

Voelkel and Brandt (2019) Study 1 542 534 2.85 .005
Study 2 416 410 2.17 .031

Townsend et al. (2019) Pilot 124 116 2.74 .007
Intervention 133 115 2.24 .027

Sparks and Ledgerwood (2019)
Eck et al. (2019)

Study 2,452 2,439 2.53 .011
Study 2 131 124 2.03 .044
Study 3 414 398 2.44 .015

Bahamondes et al. (2019) Study 1a 12,959 12,943 3.14 .002
Study 1b 12,859 12,843 10.15 <.001b

Nelson-Coffey et al. (2019) Study 1a 13,007 13,003 4.00 <.001c

Study 1b 472 468 2.33 .020
Study 2 4,930 4,926 8.03 <.001d

Carrier et al. (2019) Study 2a 106 102 4.50 <.001e

Study 2b 88 84 2.09 .040
All studies (N = 34) Mean 1,577 1,571 .020

Median 224 220  
Harmonic mean 210 202  

Underpowered studies (N = 29) Mean 256 250 .023
Median 206 202  
Harmonic mean 180 173  

Note. All reported statistics were transformed to t, necessary to allow ease of computation of p. Where moderation interaction effects were examined 
but df were not reported (e.g., using Hayes’ [2012] process macro), we calculated t by dividing the reported effect by its SE. aNo t-value or other test 
statistic was reported; p > .25. bp = 4.09E–24. cp = 6.37E–05. dp = 1.21E–15. ep = 1.81E–05.
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It is likely that non-significant results will eventuate from 
multiple small, separate studies with low power (Maxwell, 
2004), but it is quite possible that these effects are “signifi-
cant” (i.e., in the aggregate, unlikely under the null hypoth-
esis), as we found with Netchaeva and Kouchaki (2018). 
Designing a single, well-powered study will almost always 
exceed the evidentiary value of a series of small, under-
powered studies, even if the latter bolsters its credibility by 
employing varying procedures and samples. Alternatively, 
an analysis that combines results across studies may yield a 
conclusion that differs from analyses of individual studies 
(Scheibehenne et al., 2016).

Fourth, when power is low, even positive results can be 
misleading. Studies that do detect effects will tend to overes-
timate their size, and in conjunction with publication bias, 
the published literature will tend to overestimate true effect 
sizes. In addition, when power is low, positive results are less 
compelling evidence for true effects, as the proportion of 
positive effects that result when true effects exist—as 
opposed to when no effects exist—is smaller, all else equal 
(e.g., Christley, 2010). Power analyses based on the effect 
sizes of past studies should account for these statistical facts, 
and may do well to estimate effect sizes conservatively rather 
than optimistically.

Fifth, researchers should keep in mind that measurement 
error of independent or predictor variables affects statistical 
power. Just as p-hacked studies with inflated alpha criteria 
can litter a field with false claims, so too can studies with 
excessive Type II errors offering null conclusions. Although 
much attention is paid to the harmful consequences of ele-
vated Type I errors, underpowered studies are a major con-
tributing factor to false positives and false negatives (Button 
et al., 2013). There are several reasons to suspect that decep-
tive null results are just as harmful to scientific progress as 
unreliable positive findings (Fiedler et  al., 2012; Vadillo 
et al., 2016). Although the replication crisis has led scholars 
to focus on the latter, the former too should be avoided.

For the field examining shifts across the ovulatory cycle 
specifically, progress depends on careful attention to estimat-
ing fertility using methods that meet a minimum acceptable 
criterion for validity. Estimating fertility through LH tests is 
the most cost-effective, well-validated, and reliable method, 
and Blake et al. (2016) provide a protocol for utilizing this 
method in research designs. However, even this method has 
important limitations that must be considered in study designs 
(Blake, 2018; Roney, 2018), and researchers are advised to 
choose a method best suited to answer their research question. 
Steroid hormones (notably estradiol and progesterone) may 
well be the primary signals that mediate psychological shifts 
across the cycle, and for this reason, it may be advisable to 
directly examine associations with steroid hormone levels. 
Sample sizes determined by properly informed power analy-
ses that account for error in the chosen fertility estimation 
method, and estimate true effect sizes accordingly, are a criti-
cal step forward (Gangestad et al., 2016).

Finally, we join calls made by other researchers to design 
studies that yield informative results about the presence—
and absence—of meaningful effects (Amrhein et al., 2019; 
Funder et al., 2014; Lakens et al., 2018). Null hypothesis sig-
nificance testing by itself can never provide information 
whether meaningful effects are absent, instead allowing 
researchers only to reject the null hypothesis (e.g., Rogers 
et al., 1993). Concluding that a meaningful effect is absent 
requires quantifying what a meaningful effect looks like 
(Anderson & Maxwell, 2016). Equivalence testing (Lakens, 
2017; Schuirmann, 1987), inference by confidence intervals 
(Amrhein et al., 2019; Westlake, 1972), and Bayesian statis-
tics (Jeffreys, 1939; Maxwell et  al., 2015) all allow the 
absence of meaningful effects to be detected and can be used 
to inform the minimum sample size required to obtain suffi-
cient statistical evidence.

Conclusion

Researchers are generally aware of the pitfalls of low power 
and of measurement error. Yet, they are sometimes insuffi-
ciently aware that the true effect sizes of meaningful attenu-
ated interactions appear relatively small and hence require 
substantial sample sizes to detect. Researchers may also 
neglect the considerable impact that measurement error can 
have on manifest sizes and, as a consequence, statistical 
power to detect a meaningful true effect. Incorrectly esti-
mated sample sizes needed to detect meaningful effects in 
these designs can dramatically weaken power. By follow-
ing some simple recommendations, researchers can avoid 
these pitfalls.
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Notes

1.	 A reviewer rightfully noted that although our point holds when 
one tests an interaction with traditional contrasts (comparing 
cells along the two diagonals in a 2 × 2 factorial design), one 
could assess an attenuated interaction with a +3 (assigned to the 
cell expected to differ from the other three) versus –1 (assigned 
to each of the other cells) contrast. This contrast is equally con-
founded with the two main effects and the interaction contrast in 
a traditional design and, for that reason, is typically considered 
inadequate to test whether effects of a variable in one condition 
on a moderating variable differs from the effects of the variable 
in the other condition of the moderating variable. If the two main 

https://orcid.org/0000-0003-4834-4120
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effects are sufficiently strong, the 3 versus –1 contrast could be 
non-zero even in total absence of any moderation effect, attenu-
ated or otherwise. If one does use this contrast, however, true 
effect size for the contrast is not halved relative to the effect in, 
say, the “woman in red” condition as stated here; it is equal to 
that effect. Netchaeva and Kouchaki (2018) used a traditional 
interaction contrast, as is typical.

2.	 Of course, additional studies examined interactions predicted to 
be cross-over interactions, and some may have examined attenu-
ated interactions that were not a primary focus apparent to us.

3.	 Some studies reported more than one p < .05. In such cases, we 
took just the first significant interaction effect reported. We note 
that effect sizes estimated from p-curve assume a homogeneous 
true effect across studies, which may bias p-curve effect size 
estimation (McShane et al., 2016); the same criticism may apply 
to power estimates. Still, one can refrain from placing weight 
on the exact quantitative power estimates from p-curve while 
appreciating the qualitative conclusion that, based on a p-value 
distribution, these studies are, on average, woefully underpow-
ered to detect true effects.
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